
Session Types without Sophistry

System Description

Oleg Kiselyov and Keigo Imai

1 Tohoku University, Japan
2 Gifu University, Japan

Abstract. Whereas ordinary types approximate the results, session types
approximate communication among computations. As a form of type-
state, they describe not only what is communicated now but also what
is to be communicated next. Writing session-typed programs in an or-
dinary programming language such an OCaml requires inordinary clev-
erness to simulate type-level computations and linear typing – meaning
the implementation and the error messages are very hard to understand.
One is constantly reminded of template metaprogramming in C++.
We present a system exploring a very different approach to session typ-
ing: lowering type-level sophistry to ordinary programming, while main-
taining the static assurances. Error messages are detailed and customiz-
able, and one can use an ordinary debugger to investigate session-type
problems. Our system is a binary-session–typed DSL for service-oriented
programming in OCaml, supporting multiple communication channels,
internal and external choices, recursion, and also channel delegation.
The key idea is staging: ordinary run-time checks in the generator play
the role of “type-checks” from the point of view of the generated program.
What is a fancy type to the latter is ordinary data to the generator.

1 Introduction

Whereas ordinary types approximate the results, session types approximate com-
munication among computations. Session types [14, 47] are appealing because
they can be inferred and statically checked, and because well–session-typed pro-
grams “do not go wrong”: no two parties attempt to both read from or both
write to their communication channel; no computation sends the data its party
is not prepared to handle; no program tries to use closed or delegated away chan-
nels.3 Therefore, there have been developed many session-typed communication
libraries [21–23, 32, 35, 37, 39, 41–43]. They are, in essence, DSLs for process
orchestration embedded in an extant mature programming language: data pro-
cessing parts are programmed as usual; data communication, written via DSL
operations, is guaranteed to obey the protocol.

On the other hand, session type systems needed for realistic service-oriented
programs are substructural and rather complicated [1, 2, 6, 51], with type-level

3 Binary session type systems like [14] and its successors, used in many libraries in-
cluding ours, do not in general prevent deadlocks (see § 5).

computations to express duality, with resource-sensitivity, with extensible (type-
level) record types and (equi-)recursive types. They are a poor match for the type
system of the typical host language such as OCaml, Scala or Haskell, and hence
have to be emulated, often with extraordinary sophistication, exploiting the
(mis)features of the host type system to the full (see examples in §5). Although
the emulation is possible – after all, the host type systems are Turing-complete –
it often feels like programming an actual Turing Machine. Abstraction, error
reporting and debugging are lacking. Linear types are a particular challenge
[21, 39, 43]. The emulation invariably also affects end users: as complicated
inferred types that quickly become unreadable [39]; as referring to channels by De
Bruijn indices rather than by names [21, 24, 41, 42]; and especially as bewildering
error messages should something go wrong [22, 41].

Having developed session-type libraries ourselves and become familiar with
intricacies and frustrations of type-level programming, we cannot help but envy
the ordinary term-level programming, which is actually designed for program-
ming. We would like to:

– add a session-typed communication layer to an existing programming lan-
guage, reusing all its libraries, tools and support;

– take a non-toy, off-the-shelf session-type system such as [51] essentially as it
is;

– use the host language itself (rather than its type system) to implement the
session-type checking and inference;

– statically guarantee that a well-sessioned program “does not go wrong”;
– make error messages customizable and use the host language debugging fa-

cilities to debug session types problems.

We have built an embedded DSL satisfying all these desiderata, relying on
staging, a form of metaprogramming. The key idea is type checking as a staged
computation. Our contributions are as follows:

1. The DSL, called <session>, for service-oriented programming embedded in
OCaml. It supports bidirectional communication on arbitrary many chan-
nels, internal and external choices, channel delegation, and recursion – over
named FIFO pipes. Other back-ends such as UDP or HTTP can be easily
added.

2. The showcase of using staging for embedding DSLs with sophisticated type
systems, maintaining the static guarantees.

3. The showcase of implementing extensible DSLs. In fact, <session> is built
by progressively extending the base DSL with choices and then delegation
and recursion. Type-checking operations, in particular, unification, are like-
wise extensible. Extensible records with record subtyping is one of the ex-
tensions.

4. The example of using canonical structures (first proposed for Coq, see §4.2),
e.g., to support communication for arbitrary many, user-defined types.

The next section presents <session> on a progression of examples, at the
same time reminding of session type systems. §2.3 deals with errors and error

messages. More interesting details of <session> are shown in §3. We then ex-
pound two implementation techniques characteristic of <session>: staging in
§4.1 and canonical structures in §4.2. (The lack of space precludes the descrip-
tion of extensible mutually recursive functions and unification: we refer to the
source code and the comments therein.) §5 discusses the related work.

The complete code is available at the following URL:
http://okmij.org/ftp/Computation/types.html#sessions.

2 Session Types by Example

This section recalls the binary session types (specifically, Yoshida and Vascon-
celos’ liberal system [51, §3]), by example, using <session>. The section hence
also serves as an introduction to <session>. Figure 1 presents the DSL in full
(as an OCaml signature), which we will explain step by step.

Ordinary type systems such as the Hindley-Milner system and its variations
deal with (potentially open) expressions, such as x+1>y. Assuming the free
variables x and y have the type int, the type system judges the expression well-
typed and infers its type as bool. The type is an approximation of the expression’s
result – computed statically, that is, before evaluating it. In fact, we cannot
evaluate the sample expression by itself since it is not a complete program: it is
open. In a sound type system, the type correctly approximates an expression’s
result (if it ever comes), from which follows that a well-typed program “does
not go wrong”. For example, we may use our sample expression in a conditional
if x+1>y then . . . else . . . , without worrying what to do should x+1>y happen
to return, say, a string.

2.1 Basic Communication

Session type systems deal not with expressions to evaluate but with communi-
cating processes to run, such as the process

y1?[z1] in y2?[z2] in y2![z1>z2]; inact (1)

in the conventional process calculus notation, employed in [51]. This process has
two communication channels, or, to be precise, endpoints,4 y1 and y2, which are
represented by free variables. (Our process is hence a mere process fragment;
we complete it soon.) It is to receive a value on the endpoint y1, bind it to the
variable z1, receive another value on y2 binding it to z2, and send on y2 the
result of the comparison of z1 and z2. After that, the process is finished.

Our <session> is a (Meta)OCaml library to write processes and orchestrate
them. It represents a process – to be precise, a perhaps infinite sequence of
computations and communications – as an OCaml value of the abstract type th

4 What we call an endpoint, Yoshida and Vasconcelos [51, §3] call a “polarized chan-
nel”, following Gay and Hole [12].

http://okmij.org/ftp/Computation/types.html#sessions

(named for “thread”). An endpoint is represented as a value of the type ep. The
sample process (1) is written as5

let p1 y1 y2 = recv y1 Int @@ fun z1 →
recv y2 Int @@ fun z2 →
send y2 Bool .< .̃ z1 > .̃ z2 >. @@
finish

 val p1 : ep → ep → th = <fun>

(the last line shows the type inferred by OCaml for p1). We use OCaml’s let-
statement to assign the process a name for easy reference, and make explicit
its free endpoint variables y1 and y2. Comparing the sample process in the two
notations, (1) and ours, shows them quite similar. Our notation however clearly
distinguishes the binding occurrences of z1 and z2 (and we write finish instead
of “inact” for the ended process). Also explicit in the p1 code are Int and Bool,
which may be regarded as type annotations on the communicated values. That
these annotations are mandatory is a drawback of the embedding (although not
that big), which we discuss in §4.2.

The p1 code also betrays staging. Staging is what MetaOCaml [25, 26] adds to
OCaml: the facility to generate code to compile and execute later. To be precise,
MetaOCaml adds the type α code for values representing the generated code,
and two facilities to produce such values. One, akin to quote in Lisp, is enclosing
an expression in so-called “brackets”, for example: .<1 > 2>.. The bracketed ex-
pression is not evaluated; rather, it becomes (a fragment of) the generated code.
The other facility, called “escape”, is like Lisp unquote. It can be understood as
poking a hole in a bracketed expression, turning it into a code template. In p1
code, .< .̃ z1 > .̃ z2 >. is such a template, with two holes to be filled by the code
values bound to the variables z1 and z2 – producing the code of the compari-
son expression. Although bracketed expressions are not evaluated, they are type
checked. For example, in order for .< .̃ z1 > .̃ z2 >. to be well-typed, with the
type bool code, the variables z1 and z2 should be of the type int code – or a type
error is raised. Thus MetaOCaml statically guarantees that the generated code
is well-typed – and also free from scoping errors (like unbound or unintention-
ally bound identifiers): unlike Lisp quotations, MetaOCaml is hygienic. Staging
is crucial in our approach to session typing, as detailed in §4.1. Staging also lets
<session> distinguish process computations (which are put in brackets) from
process communications (described by the combinators such as recv and send).
Thus <session> is a DSL for orchestration.

Type-checking a <session> expression in OCaml gives its OCaml type that
says nothing about communication (see, for example, the type of p1). Evaluating
the expression gives its session type (as well as the code to run, to be discussed in
§2.2); the error case is detailed in §2.3. The expression p1 however is open (rep-
resents an incomplete process fragment) and cannot be evaluated. We can still
get its session type, by evaluating infer Fun(EP,Fun(EP,TH)) p1, which supplies

5 The right-associative infix operator @@ of low precedence is application: f @@ x + 1
is the same as f (x + 1) but avoids the parentheses. The operator is the analogue of
$ in Haskell.

(a) Types

type proc top-level process
type th communication thread
type ep session endpoint
type shared shared name, e.g., host:name

(b) Basics

val proc : th → proc
val (||) : proc → proc → proc

val new shared : string → shared

val request : shared → (ep → th) → th
val accept : shared → (ep → th) → th
val send : ep → α trep → α code → th → th
val recv : ep → α trep → (α code → th) → th

val othr : unit code → th → th
val let : α code → (α code → th) → th
val finish : th

(c) Debugging, logging, etc

val describe ep : ep → string code
val describe sh : shared → string code
val debuglog : string → th → th

(d) Inference, execution, deployment

val infer : α trep → α → string
val proc run : proc → unit
val proc deploy : proc → unit code list

(e) Internal and external choices

type label = string
val branch : ep → (label ∗ th) list → th
val select : ep → label → th → th
val ifte : bool code → then :th → else :th → th

(f) Delegation

val deleg to : ep → ep → th → th
val deleg from : ep → (ep → th) → th

(g) Iteration

val toploop : (th → th) → th
val loop : ep list → (th → th) → th

Fig. 1. The syntax of <session>, as OCaml module signatures

(a) Environments

type envd (in text, ∆) Linear environment: finite map from ep to sess
type envg (in text, Γ) Non-linear environment: finite map from shared to sess

(b) Type formulas, as an extensible data type sess

type sess = ..
type sess += Var of var ref | End

(c) Basic communication extension

type sess += Send : α trep ∗ sess → sess | Recv : α trep ∗ sess → sess

(d) External and internal choices, based on row types [33]

type sess += Bra : rows → sess | Sel : rows → sess
and rows =
| Row : (label ∗ sess) ∗ rows → rows
| RowVar : rowvar ref → rows
| RowClosed

(e) Delegation

type sess += DSend : sess ∗ sess → sess | DRecv : sess ∗ sess → sess

(f) Recursion

type sess += Mu : id ∗ sess → sess | RecVar : id ∗ bool(∗dual∗) → sess

Fig. 2. Session types (see the explanations text; trep will be explained in §4.2)

the two “assumed” endpoints, obtaining:6

ep hyp-12/13 : Recv(int,End) (2)

ep hyp-14/15 : Recv(int,Send(bool,End)) (3)

Unlike the ordinary type (which is a single formula), a session type is like an
environment: a finite map from names to formulas, see Fig. 2. To be precise, a
session type is a pair of environments: the linear ∆ (which [51] calls “typing”)
and the non-linear Γ (called sorting in [51]). They are so named because in the
system of [51], endpoints are to be used linearly, but shared points, discussed
later, do not have to be. Shown above is the linear environment inferred for p1
(Γ is empty). The environment specifies the communication pattern for the two
endpoints of p1 in order for it to be well-sessioned (the concrete names for those
hypothetical endpoints, correspond to the free variables y1 and y2, are made up
by infer).

Session types (environments and type formulas) are the ordinary data types
in <session>. The type formulas are an extensible data type, because we keep
extending the syntax of formulas as we add more features to <session>. The

6 It should also be possible to supply a session type and check an expression against
it, to verify its communication obeys the protocol stated in the type. After all, if we
can infer a session type, we can check against it. However, we have not yet offered
this facility in the public library interface.

type formulas describe the communication protocol: the approximation, or pat-
tern, of the actual communication over a channel (endpoint). End is the end
of interactions; Send(t,s) means sending a value of the type t (represented as
“type representation” data type trep, see §4.2) with further interactions being
described by s. Recv(t,s) is the protocol of receiving a value of the type t and
then continuing as s. Thus, the process fragment p1, according to its inferred
session type, communicates on two endpoints. From one endpoint, (2), it reads
an integer and closes it; for the other, (3), it reads an integer, then sends a
boolean and closes.

2.2 Sessions

A session, whose type we have just discussed, is a series of interactions between
two parties over a channel. (This paper deals only with binary sessions.) A
session begins when two parties rendez-vous at a “common point” and establish
a fresh channel; it concludes when the communications over the channel end (as
we will see, <session> detects the end as part of the session type inference,
and automatically arranges for closing the channel and freeing its resources.)
The rendez-vous point is called shared in <session>, created on the base of a
name, such as a host name, known to all parties. The exact representation of
shared depends on the underlying low-level communication library: for a TCP/IP
back-end, shared may be a socket addr; for the FIFO pipe backend, shared is
represented by two (unidirectional) pipes, whose names are derived from the
supplied known name. There may be many rendez-vous at the same shared – all
of which, however, establish channels with the same protocol. This is the basic
assumption of structured communication behind session type systems. Therefore,
shared itself may be assigned a session type, describing the common protocol of
these channels.

A rendez-vous is performed when one process executes accept and the other
request, see Fig.1, on the same shared. (In TCP/IP terms, when one process
“connects” and the other “accepts” the connection.) As the result, a fresh pri-
vate communication channel is created; each of the two processes receive the
respective endpoint of it and can start communication.

To complete our running example p1 we create two channels, in two consec-
utive rendez-vous on two different shared:

let a = new shared ”sha” and b = new shared ”shb”
let pc = request b @@ fun y2 → accept a @@ fun y1 → p1 y1 y2

Why one shared or one channel would not suffice is discussed in §2.3; on the
other hand, which operation to use, request or accept, is arbitrary at this point
of developing the example. The party communicating with pc is the process q:

let q =
accept b @@ fun x2 →
request a @@ fun x1 →
send x1 Int .<1>. @@
send x2 Int .<2>. @@
recv x2 Bool @@ fun z →

othr .<Printf.printf ”got %b\n” .̃ z>. @@
finish

Since q is meant to communicate with pc, the choice of accept and request is
no longer arbitrary. The operation othr lets us perform computations other than
communication, specified as an arbitrary OCaml code enclosed in brackets. In
case of q, this computation is printing, of the received value.

Both pc and q have no free endpoints and can be regarded as “top-level
processes”: cast as proc. Top-level processes can be combined to run in parallel:

let r = proc pc || proc q

The inferred session type of proc pc is

sh>sha-49 : Recv(int,End) (4)

sh>shb-50 : Send(int,Recv(bool,End)) (5)

which is the non-linear environment Γ for proc pc; as top-level processes have no
free endpoints, the linear environment ∆ is always empty. The environment Γ
associates shared with session types. Process proc pc rendez-vous on two shared,
which hence show in the printed Γ . Here, sh>sha-49 is the internal identifier
for the shared point with the name ”sha” created earlier, and similar with for
”shb”. Comparing (4) with the earlier (2) illustrates what we have explained
already: the session type of a shared is the session type of channels created at
its rendez-vous. However, (5) and (3) are not the same: they look “symmetric”,
or dual. Indeed, when two processes communicate over a channel, one sends and
the other receives. Thus the session types of two endpoints of the same channel
have to be dual. The session type of a channel is taken to be the session type of
the ep of the accept-ing process – or the dual to the session type of the ep of the
request-or.

The inferred session type, or Γ , for proc q is the same as for proc pc ((4) and
(5)), which means the parallel composition r is well-sessioned. When pc is sending
an integer, q will be waiting to receive it. Evaluating r does more than just the
session type inference and checking. We also get the code for the processes to
run in parallel. The top-level r is the parallel composition of two complete th,
and hence two pieces of code are produced. Here is the first one, corresponding
to proc pc:7

1 .<let lv 78 = {sh arname = ”/tmp/SHshb−50.fifo”; sh name = ”shb−50”} in
2 let lv 77 = {sh arname = ”/tmp/SHsha−49.fifo”; sh name = ”sha−49”} in
3 let rawep 79 = sh request lv 78 in
4 let rawep 80 = sh accept lv 77 in
5 let x 81 = int of string (ep read rawep 80) in
6 ep close rawep 80;
7 (let x 82 = int of string (ep read rawep 79) in
8 ep write rawep 79 (if x 81 > x 82 then ”T” else ”F”);
9 ep close rawep 79;

10 ())>.

7 To improve readability, we adjusted indentation and removed module references,
while the rest is left as-is. Variables lv 77 and lv 78 are generated via let-insertion.

Clearly seen are the calls to the low-level communication library, as well as
the serialization/deserialization code such as int of string, converting sent and
received values to/from strings, that is, the sequence of bytes to exchange over
the channel. The serialization/deserialization code is generated by <session>.

Lines 5 through 10 are the code generated for the process fragment p1, with
the variable rawep 80 standing for y1 and rawep 79 to y2. Noticeable are the
ep close calls to close and deallocate the endpoints, which were not present in
p1. A call to close an endpoint is inserted as part of session type inference, as soon
as it is determined that the endpoint’s communication is complete. For example,
when the inferred session type of p’ in recv y1 Int @@ p’ does not mention y1,
this endpoint can be closed right after recv completes. Just as the automatic
memory management, the automatic endpoint management eliminates the class
of subtle bugs, as well as relieving the programmer of a chore.

The generated code for the processes can be extracted by proc deploy (see
Fig.1), stored into a file, compiled and then deployed on communication nodes.
Alternatively, <session> provides proc run to run the generated code as separate
(fork-ed) processes, for testing. One may do make tests to test-execute r (and all
other examples that come with <session>.)

2.3 What If One Makes a Mistake: OCaml types v. Session types

There are many opportunities for mistakes. This section shows what happens if
we make some of them. After all, detection and reporting mistakes is the main
reason to use a type system in the first place.

Some mistakes are caught already by the OCaml type checker, for example:

let p1’ y1 y2 = recv y1 T.Int @@ fun z1 → recv y2 T.Int @@ fun z2 →
send y2 T.Bool .<.̃ z1 > .̃ z2>.
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Error: This expression has type th → th but an expression was expected of type th

let p1’’ y1 y2 = recv y1 T.Int @@ fun z1 →recv y2 T.Int @@ fun z2 →
send y2 T.Bool .<.̃ z1 + .̃ z2>. @@ finish

ˆˆˆˆˆˆˆˆˆ
Error: This expression has type int but an expression was expected of type bool

with the detailed error message. The type errors mean that p1’ and p1’’ are not
well-formed processes.

In §2.2 we have created two shared for pc, saying that one would not suffice.
Let us see what happens if we do use only one shared (e.g., by mistake):

let a = new shared ”sha”
let pc1 = request a @@ fun y2 → accept a @@ fun y1 → p1 y1 y2

This code type-checks in OCaml, meaning it is a well-formed <session> expres-
sion. It is legitimate, after a rendez-vous on a shared do another rendez-vous on

the same shared, with the same or different process8 – but not in the case of p1.
All channels created on the same shared should be used with the same commu-
nication protocol. However, a glance at (2) and (3) tells the two endpoints of
p1 are used rather differently. Therefore, pc1, albeit a well-formed <session>

expression, is not well-sessioned. Indeed, its evaluation ends in an exception
that the types Send(int,Recv(bool,End) and Recv(int,End), inferred separately
for shared a, are not unifiable. Session-typing problems are reported as excep-
tions, carrying the problem descriptor (e.g., unification failure) and the details
(the non-unifiable types themselves) – so that one may print a custom error mes-
sages upon catching it, along with the backtrace. Standard tools like Emacs or
other IDEs understand such backtraces, thus allowing to investigate the problem.

When the session-type inference succeeds, it returns the session type plus
the code generated for the process (which can be extracted, for the complete
process, with proc deploy). The evaluation of pc1 ended in an exception, and
hence no code has been generated. Contrapositively, if the code is successfully
generated, it represents a well-sessioned process. This is a static guarantee, from
the process point-of-view – we know the process shall obey the protocol before
running its generated code.

When defining the fragment p1 in §2.1 we meant it to communicate on two
endpoints, denoted by the variables y1 and y2. Nothing stops the caller of p1,
however, from supplying the same endpoint value for both variables (i.e., make
y1 and y2 alias the same endpoint):

let pc2 = request b @@ fun y2 → p1 y2 y2

This time evaluating pc2 produces no errors: after all, it expresses a legitimate
communication behavior – only not the intended one and not corresponding to
the process q. Therefore, evaluating proc pc2 || proc q raises an exception that
the two processes make non-unifiable assumptions about the protocol associated
with ”shb”, namely, Send(int,Recv(bool,End)) vs. Recv(bool,End). One can then
look closely into the inferred session types for pc2 and its fragments, possibly
using the OCaml debugger, identifying the source of the problem.

The process q defined in §2.2 accepted on shared point b and requested on a;
therefore, its party pc should first request on b and accept on a. It is very easy
to confuse the two operations and write

let pc3 = accept b @@ fun y2 → request a @@ fun y1 → p1 y1 y2

Although this code defines a legitimate process, it cannot be a party to q. There-
fore, proc pc3 || proc q raises an exception that the two processes make different
assumptions about the protocol of the shared b, viz., Recv(int,Send(bool,End))
and Send(int,Recv(bool,End)). The two inferred types look dual, which is a hint
at a request/accept confusion.

Thus, when a <session> expression passes the OCaml type check, the com-
putations within the corresponding process are well-typed and “won’t go wrong”,

8 The code does not say that pc1 rendez-vous with itself, which is impossible. Com-
munications on a shared are synchronous (i.e. request and response blocks until its
counterpart becomes available) while those on session endpoints are asynchronous.

1 let srv ep =
2 loop with val (.< 0 >., [ep]) @@
3 fun continue acc →
4 branch ep
5 [”add”,
6 recv ep T.Int @@ fun x →
7 let .<.̃ x + .̃ acc>. @@ fun acc →
8 send ep T.Int acc @@
9 continue acc

10 ”quit”,
11 send ep T.Int acc @@
12 finish
13]

14 let cli ep =
15 select ep ”add” @@
16 send ep T.Int .<1234>. @@
17 recv ep T.Int @@ fun acc0 →
18 select ep ”add” @@
19 send ep T.Int .<5678>. @@
20 recv ep T.Int @@ fun acc1 →
21 select ep ”quit” @@
22 recv ep T.Int @@ fun ans →
23 othr .<printf ”sum: %d\n” .̃ ans>. @@
24 finish

25 let p = let sh = new shared ”sh” in proc (accept sh srv) || proc (request sh cli)

Fig. 3. Example: An arithmetic server

and the process itself is well-formed (“syntactically correct”). Further, when the
<session> expression successfully evaluates, it produces the code for the process,
whose computations and, in addition, communications are statically assured to
do no wrong.

3 Elaborate Examples: Choice, Recursion and Delegation

Arithmetic Server. Figure 3 shows a more interesting example with external
and internal choices and recursions. This is the standard example of the so-called
“arithmetic server”, which is common in literature. Function srv is a server which
takes an endpoint ep and iterates over a loop via construct loop with val. The
loop construct is supplied a pair of the initial value .< 0 >. of an accumulator and
the endpoint [ep] which are used in the following body of iteration. It binds itself
to variable continue and the accumulator to acc. Note that the construct itself
does not iterate but just produce the code for iteration. The loop body offers
two labels ”add” and ”quit” via external choice construct branch. Here, labels
represented by two strings then become part of the type for external choice, which
is an ordinary runtime value in (Meta)OCaml. In the ”add” branch, an integer
is received, bound to x and added to the accumulator. The result is rebound to
acc and sent back to the client. The server then recurs (with the updated acc)
to handle further requests. On ”quit”, the server reports the accumulator to the
client and terminates. Client’s function cli should be understood similarly.

Compatibility of srv and cli is checked at Line 25. Thanks to equi-recursive
nature of session types, this program actually typechecks. The example exhibits
a form of session subtyping in <session> implemented via row types, following
the Links language [5]. By evaluating infer Fun(EP,TH) srv, we get the following
type which describes the server’s protocol:

Mu(18,Bra(quit:Send(int,End)+add:Recv(int,Send(int,RecVar18))+RClosed)) (6)

Session Mu(id, t) denotes a (equi-)recursive type, with RecVarid bound to the
whole Mu(id, t) expression. Bra(l1:t1+. . . +ln:tn+RClosed) shows an external
choice among labels l1, . . . , ln where ti describes communication after li is cho-
sen. RClosed in the end says that the choice is closed, disallowing other labels.
In total, the above session type (correctly) specifies the recursive behavior of the
server with two operations quit and add. Similarly, infer Fun(EP,TH) cli yields
the client’s type which is dual to the type above:

Sel(add:Send(int,Recv(int,

Sel(add:Send(int,Recv(int, (7)

Sel(quit:Recv(int,End)+RMeta21)))+RMeta22)))+RMeta23)

Note that the type (7) does not show any recursive structure as well. Session
Sel(l1:t1+. . . +ln:tn+RMetaid) is an internal choice, where RMetaid is a row vari-
able which can contain more alternatives, enabling session subtyping. The type
unification invoked by (||) at Line 25 confirms that the session (6) and (7) are
dual to each other; thus the programmer can conclude cli and srv have no dead-
lock, in an earlier stage. Moreover, such type features come without annotations
like enter in [41] (see § 5), thanks to the flexibility of metaprogramming.

1 let agency agc ch svc ch =
2 accept agc ch @@ fun cus ep →
3 loop [cus ep] @@ fun continue →
4 branch cus ep
5 [”quote”, begin
6 recv cus ep String @@ fun dest →
7 send cus ep Int .< 350 >. @@
8 continue
9 end;

10 ”accept”, begin
11 request svc ch @@ fun svc ep →
12 deleg to svc ep cus ep @@
13 finish
14 end]
15

16 let service svc ch =
17 accept svc ch @@ fun svc ep →
18 deleg from svc ep @@ fun cus ep →
19 recv cus ep String @@ fun address →

20 send cus ep
21 String .< ”2020−04−01” >. @@
22 finish
23

24 let customer ch =
25 request ch @@ fun ep →
26 loop [ep] @@ fun continue →
27 select ep ”quote” @@
28 send ep String
29 .< ”Tokyo to Akita” >. @@
30 recv ep Int @@ fun cost →
31 ifte .< .̃ cost < 400 >. ˜then : begin
32 select ep ”accept” @@
33 send ep String
34 .< ”Tokyo, JP” >. @@
35 recv ep String @@ fun date →
36 finish
37 end
38 ˜else : continue

Fig. 4. Example: Travel Agency

Example with Delegation. Delegation allows one to pass a session-typed channel
to another peer, enabling dynamic change of the communication topology in a
system9. Figure 4 is the Travel Agency example from [21] (originally in [18]). The
scenario is played by three participants: customer, agency and service. Process

9 Ours deleg from and deleg to are called throw and catch in [51] (we changed the
names to avoid association with exceptions)

customer knows agency while customer and service initially do not know each
other, and agency mediates a deal between customer and service by delegation.
We use accumulator-less loop combinator in this example. Upon quote request
from customer, agency replies a rate (fixed to 350 for simplicity) and re-starts
from the beginning, and if customer agrees on the price (label ”accept”), agency
delegates the rest of the session to service in Line 12 using deleg to. Process
service accepts the delegation in Line 18 using deleg from, and consumes the rest
of session by receiving the delivery address (of type string) and then sending the
delivery date (”2020−04−01”). Note that the original OCaml implementation in
[21] uses lenses to convey delegated (linear) variables in types, while we use an
ordinary, term-level variables, resulting in less complication in (OCaml) types.

Note also that there is a subtle difference in ownership control of session type
systems [14, 51] from usual notion of linearity. That is, some primitives assume
implicit presence of End types in continuation — for example, send ep 350 finish
has Send(Int,End) in ep — while the delegation requires absence of a session in
continuation, as in the end of agency above. To avoid such ambiguity, implemen-
tations (e.g. [23, 32, 39]) usually require the channel to be explicitly closed in
the end of a session, while <session> does not demand such annotation.

4 Notable Implementation Techniques

4.1 Staging

We now describe and justify staged embedded DSLs as an implementation tech-
nique of supporting session- and other advanced type systems in an existing
(staged) language.

Session types with no safety or usability compromises call for a language
system designed for them, e.g., Links [5], which offers session types natively.
Achieving this golden standard, and implementing and supporting a program-
ming language requires time, effort and investment beyond the reach of many.
Not only one has to implement a type checker, but also the whole compiler –
as well as libraries, tools, build systems. One has to maintain them, write doc-
umentation, advertise and build community.

DSLs embedded in a mature, well supported host language are an attractive
alternative. The host language provides the compilation, infrastructure, commu-
nity – letting the DSL author concentrate on expressing domain-specific con-
structs and types as terms and types of the host language. The first problem
comes when the DSL type system significantly differs from that of the host lan-
guage – which is the case of session types, the form of type-state [46]. It requires
advanced, modal or substructural type systems [7, 19, 49], rarely offered by a
host language. One has to resort to emulation, whose problems we detailed in
the Introduction. The main problem, for the implementor, is that type systems
are rarely designed for writing code. Using a host type system as a programming
language in which to emulate an advanced DSL type system is excruciating.

Staging helps, by letting the DSL implementor map DSL constructs and DSL
types to host language terms. Whatever the DSL type checking and inference is

needed, can be programmed in the host language itself (rather than in its type
system). That seems inadequate as DSL type errors will be reported too late:
not when compiling a DSL program but when running it. One has to remember,
however, that with staging, there are two (potentially more) run-times: the run-
time of the code generator and the run-time of the generated code. It is the
latter that corresponds to the traditional run-time, and which “should do no
wrong”. The run-time of the generator, from the point of view of the generated
program, is a sort of “compile-time”. Run-time errors in the generator are akin to
the traditional type-error and compiler diagnostics: an indication that a compiler
gave up on the source program and produced no object code. On the other hand,
when the code is generated, one has the confidence it has passed the checks of
both the host and the DSL type systems.

We now show a concrete illustration of the approach. Since <session> is
rather advanced, we use a similar but simpler example, also featuring type-
state: a DSL with operations to open, write to and close an arbitrary number
of communication channels – and the type system that prevents using a chan-
nel after it has been closed. The manual closing of channels allows for more
accurate and timely management of scarce resources than achievable with, say,
region discipline. This is the example described in [29, §6]. Although seemingly
simple, embedding this DSL in Haskell required heavy and unwieldy type-level
programming, with the predictable result of large inferred types, fragile inference
and confusing error messages [29, §6.2].

Let us see if we can do better with staging. Fig. 5 presents the interface, sam-
ple code, and most of the implementation (see the accompanying source code for
full details and more examples.)10 Most operations should be self-explanatory.
The left-associative // is the “semicolon”, to compose DSL expressions. The
main assumption is the factoring of the DSL into communication (channel oper-
ations) and computations. The latter are represented as string code whereas the
former are as values of the type comm. Such a factoring is common: monadic IO
in Haskell, Lwt and Async libraries in OCaml are just a few other examples.

The sample DSL expression p, when evaluated, produces the expected code
of opening, writing to, and closing output channels. If instead of ch1 we close
ch2, the evaluation of p ends with a UsedAfterClose exception mentioning the
offending channel – and produces no code.

The key is the realization of comm as an “annotated code”: a record carrying
the code generated for the DSL expression. The field c chan of the record is
the annotation: the DSL type associated with the code. As in <session>, it is
a finite map (implemented with OCaml’s Stdlib.Map) of channel ids ch id and
their statuses Closed or Active. The close operation generates code to close the
channel – and the annotation that the channel, which should be active before,
becomes Closed. Likewise, the write operation annotates the channel writing
code with the fact that the channel was and to remain Active. The composition
c1 // c2 merges not only the code but also the annotations, thus inferring the

10 The language is quite like the STATE language in [27, §7]: the imperative part of
Reynolds’ Idealized Algol, as pointed out by Bob Atkey. Instead of var we write ch.

Interface

type comm type ch

val (//) : comm → comm → comm
val skip : comm

val close : ch → comm
val write : ch → string code → comm
val open :

string → (ch → comm) → comm
val if : bool code → then :comm → else :comm → comm

Sample code

let p =
open ”/tmp/a1” @@ fun ch1 →
open ”/tmp/a2” @@ fun ch2 →
write ch1 .<”s1”>. //
close ch1 //
write ch2 .<string of int 5>. //
close ch2

Implementation: types

type ch id = string
type ch status = Closed | Active
type ch =
{chch: out channel code; chid: ch id}

module M =
Map.Make(struct type t = ch id let compare = compare end)

type styp = ch status M.t
type comm = {c code: unit code; c chan: styp}

“Type” errors

exception NotClosed of ch id
exception UsedAfterClosed of ch id
exception ClosedOnlyInOneBranch of

bool ∗ ch id

let skip =
{c code = .<()>.;
c chan = M.empty}

let close = fun {chch;chid} →
{c code = .<close out .̃ chch>.;
c chan = M.singleton chid Closed}

let write = fun {chch;chid} str →
{c code = .<output string .̃ chch .̃ str>.;
c chan = M.singleton chid Active}

let (//) = fun c1 c2 →
let c code =

.< .̃ (c1.c code); .̃ (c2.c code) >. in
let merger chid c1t c2t =
match (c1t,c2t) with
| (None,ct) | (ct,None) → ct
| (Some Active, ct) → ct
| (Some Closed, Some) →

raise (UsedAfterClosed chid) in
let c chan =

M.merge merger c1.c chan c2.c chan
in {c code;c chan}

Fig. 5. The writeDSL: interface, sample code, implementation

DSL type (channel statuses) for the composed expression. The merging is done
by Stdlib.Map.merge operation, with merger determining which associations from
the input maps get to the output map, and how to deal with merge conflicts.
If a channel remains active after c1, its status in c1 // c2 is determined by its
status in c2. On the other hand, if the channel is Closed in c1 and yet appears
in c2’s annotation, it is the “use after close” error, and reported by throwing an
exception.

4.2 Canonical Structures

To put it simply, Canonical Structures is a facility to obtain a value of a given
type – for example, a value of the type int→string, that is, the function to

“show” an integer. Since there are many such functions, the user has to reg-
ister the “canonical” value of this type. In the simplest case, searching for a
canonical instance is a mere look up in the database of registered values. Instead
of a canonical value itself, however, the database may provide a rule how to
make it, from some other registered values (e.g., how to “show” a pair if we can
show its components). Querying this database of facts and rules is quite like the
evaluation of a Prolog/Datalog query.

From the point of view of the Curry-Howard correspondence, finding a term
of a given type is finding a proof of a proposition. This is how this facility was
developed in Coq, as a programmable unification technique for proof search, as
expounded in [34].11 Our implementation, inspired by that remarkable paper, is
an attempt to explain it in plain OCaml, experiment with and use beyond Coq.

The rudiment of canonical structures is already present in OCaml, in the
form of the registry of printers for user-defined types. It is available only at the
top-level, however, and deeply intertwined with it. We have implemented this
facility for all programs, as a plain, small, self-contained library, with no com-
piler or other magic. It can be used independently from <session>. Unlike the
OCaml top-level–printer or Haskell type-class resolution, searching for a canoni-
cal instance is fully user-programmable. One may allow “overlapping instances”,
or prohibit them, insisting on uniqueness. One may allow for backtracking, fully
or in part.

In <session> the canonical structures are used to look up the code for seri-
alizers and deserializers, to print types, and to implement infer to infer session
types of process fragments with an arbitrary number of free endpoint variables.

Our implementation of Canonical Structures is user-level. Therefore, the look
up of canonical values happens at run-time – rather than at compile time, as
in type-class resolution. The look-up failures are also reported at run-time. It
should be stressed, however, that in <session>, Canonical Structures are used
only during code generation. The run-time errors at that point are run-time
errors in the generator. From the point of view of the generated code, these are
“compile-time” errors. Therefore, Canonical Structures in metaprograms roughly
correspond to type classes in ordinary programs.

Since our Canonical Structures are implemented completely outside the com-
piler, the types of values to look up have to be explicitly specified as values
of the α trep data type, which represents types at the value level. For exam-
ple, a value Fun(Int,Bool) represents the type int→bool (and itself has the type
(int→bool) trep). The data type can be easily extended with representations of
user-defined data types (the <session> code shows a few examples). The trep
values may be regarded as type annotations; in particular, as with other type
annotations, if the user sets them wrong, the type error is imminent. Therefore,
they are not an additional source of mistakes, but still cumbersome. If a com-
piler could somehow “reflect” an inferred type of an expression and synthesize
a trep value, these annotations could be eliminated. We are contemplating how

11 That tutorial paper also compares canonical structures to related approaches, in
particular, implicits and type classes.

such reflection facility could be supported by OCaml, taking inspiration from
the run-time-type proposal [13] and type-level implicits proposals [10, 50].

5 Related Work

The session type system employed in <session> is essentially the same as the
liberal system [51, §3]. However, we distinguish threads th and endpoint-closed
top-level processes. Only the latter may be parallel-composed. The reason is
not of principle but practicality: web application and other such services do not
spawn processes at will but rely on a worker pool, for better control of resources.

Links [5, 33] has session types on top of linear types and row polymorphism.
Its core calculus GV [31, 48] has stronger properties like global progress, deter-
minism, and termination, while [51] can lead to a deadlock with two or more
sessions. We chose [51] as it has more liberal form of parallel composition. Adopt-
ing our approach to GV (and extending to exception handling [9]) is future work.

Several implementations have been done in Haskell [22, 32, 35, 37, 41, 42]
and compared in [38] in detail. They are also established in Rust [23] (using its
substructural types) and Scala [43] (based on dynamic linearity checking).

Implementation of session types in OCaml, firstly done by Padovani [39]
and then Imai et al. [20, 21], seems a touchstone to spread into wider range of
programming languages since it does not have substructural types nor any fancy
features like type classes or implicits. The key issues are (1) static checking of
linearity, (2) inference of dual session types and (3) encoding of branching labels.
For (1), static checking of linearity in [39] is based on a parameterised monad of
[41]. Imai et al. [21] provides a handy way to operate on multiple sessions using
type-level indexes encoded by polymorphic lenses [8, 40], based on the idea by
Garrigue [11, 20]. However, it requires much elaboration on types; for example,
the type signature of the send primitive involves six type variables because of
index-based manipulation for linearity and partially due to polarity encoding,
which we will explain in the following (2).

For duality (2), there is a subtle tension between type inference, readability
of types, and type compatibility. Pucella and Tov [41] showed a manual con-
struction of duality witness in various languages including OCaml, while it can
be automatically generated by type classes (and type functions [28]) in Haskell.
On the other hand, Padovani adopts an encoding into i/o types by Dardha et
al [6], achieving duality inference by OCaml’s typechecker, which is also applied
by Scalas et al. in Scala [43]. Dardha et al’s encoding, however, is quite verbose,
to the point that the resulting session types are hard to understand for humans
(for details, see [21, § 6.2]). To mitigate it, the implementation of [39] provides
the type decoder. Imai et al. resolved it by having polarities in types, however,
it introduces complication on types, as we mentioned above. Furthermore, the
polarity-based encoding has a type compatibility issue in delegations [21, in the
end of § 3.3]. Summarizing the above, duality encoding in types has problems of
(a) manual construction, as in [20, 41], (b) type decoder [39] or (c) compatibility
problem [21], while our <session> does not have such problems at all.

Furthermore, duality is not just a swapping of output and input when a
recursion variable occurs in a carried type, as pointed out independently by
Bernardi et al. [2] and Bono et al. [3] which is usually overlooked (see [38,
§ 10.3.1]). Instead, we use µα.T = µα.T [α/α] in the Links language [33, § 12.4.1].

Type-level branching labels (3) are another obstacle for having session types
in languages like Rust and Scala (e.g. [23, 43]) from which our approach does
not suffer, as we have labels at the ordinary, term-level.

Hu et al. [18] showed a binary session extension to Java, SessionJava, in-
cluding syntax extensions for protocols and session-based control structures. By
contrast, <session> implements binary session types as a library on top of Meta-
OCaml, using only standard staging features like brackets and escape. Their work
also includes session delegation protocol over distributed environment, which is
orthogonal to the syntax and can possibly be added to <session>.

Scribble [44] is an implementation of multiparty session types [15] in various
programming languages via code generation, including Java [16, 17], Go [4], and
F# [36]. Multiparty session types take a top-down approach to generate session
types from a global description of protocol called global type. On the other hand,
Lange et al. [30] directly verifies session types via model checking. Extending
<session> to the multiparty setting is future work.

6 Conclusions

We have presented the session-typed DSL <session> for service-oriented pro-
gramming embedded in MetaOCaml. It was an experiment to see how the “type
checking as staging” idea really works in practice, for a non-trivial, type-state–
based type system and a non-trivial DSL. Overall, we are satisfied with our
implementation experience: we have provided the same or even stronger guar-
antees than the other, mainstream implementations; we emit helpful error di-
agnostics; and we enjoyed programming in a mature implementation language
rather than in a bare Post system. There is room for improvement (such as the
trep annotations discussed in §4.2), and we are considering proposals to OCaml
developers.

We have not yet implemented session-type annotations – that is, define the
protocol as a session type, and then check that a process satisfies it. However,
this is easy to add. We also want to extend our approach to group communication
and multiparty session types.

The topic of this paper has been implementing session-type DSLs rather than
developing session type systems themselves. Nevertheless, <session> turns out
a good tool to prototype variations and extensions of session types. In the future
work we plan to investigate one such extension: cancellation and failure modes.

Acknowledgments We thank anonymous reviewers for many, helpful comments
and suggestions. This work was partially supported by JSPS KAKENHI Grant
Number 18H03218 and 17K12662.

Bibliography

[1] Bernardi, G., Dardha, O., Gay, S.J., Kouzapas, D.: On duality relations
for session types. In: Trustworthy Global Computing - 9th International
Symposium, TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected
Papers. pp. 51–66 (2014), https://doi.org/10.1007/978-3-662-45917-
1_4

[2] Bernardi, G., Hennessy, M.: Using higher-order contracts to model session
types. Logical Methods in Computer Science 12(2) (2016), https://doi.
org/10.2168/LMCS-12(2:10)2016

[3] Bono, V., Messa, C., Padovani, L.: Typing copyless message passing. In:
Programming Languages and Systems - 20th European Symposium on
Programming, ESOP 2011, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings. pp. 57–76 (2011), https:
//doi.org/10.1007/978-3-642-19718-5_4

[4] Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed Pro-
gramming Using Role Parametric Session Types in Go. In: 46th ACM
SIGPLAN Symposium on Principles of Programming Languages. vol. 3,
pp. 29:1–29:30. ACM (2019), https://doi.org/10.1145/3290342

[5] Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming
without tiers. In: Formal Methods for Components and Objects, 5th Inter-
national Symposium, FMCO 2006, Amsterdam, The Netherlands, Novem-
ber 7-10, 2006, Revised Lectures. pp. 266–296 (2006)

[6] Dardha, O., Giachino, E., Sangiorgi, D.: Session Types Revisited. In: PPDP
’12: Proceedings of the 14th Symposium on Principles and Practice of
Declarative Programming. pp. 139–150. ACM, New York, NY, USA (2012)

[7] Fluet, M., Morrisett, G., Ahmed, A.J.: Linear regions are all you need.
In: Sestoft, P. (ed.) Programming Languages and Systems, 15th European
Symposium on Programming, ESOP 2006, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2006, Vi-
enna, Austria, March 27-28, 2006, Proceedings. Lecture Notes in Computer
Science, vol. 3924, pp. 7–21. Springer (2006)

[8] Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Com-
binators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007),
https://doi.org/10.1145/1232420.1232424

[9] Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous
session types: session types without tiers. PACMPL 3(POPL), 28:1–28:29
(2019)

[10] Furuse, J.: Typeful PPX and Value Implicits. In: OCaml 2015: The OCaml
Users and Developers Workshop (2015), implementation available at https:
//bitbucket.org/camlspotter/ppx_implicits

https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1007/978-3-642-19718-5_4
https://doi.org/10.1007/978-3-642-19718-5_4
https://doi.org/10.1145/3290342
https://doi.org/10.1145/1232420.1232424
https://bitbucket.org/camlspotter/ppx_implicits
https://bitbucket.org/camlspotter/ppx_implicits

[11] Garrigue, J.: Safeio (a mailing-list post) (2006), available at https://

github.com/garrigue/safeio
[12] Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta

Informatica 42(2/3), 191–225 (2005), https://doi.org/10.1007/s00236-
005-0177-z

[13] Henry, G., Garrigue, J.: Runtime types in OCaml. In: OCaml 2013:
The OCaml Users and Developers Workshop (2013), available at https:

//ocaml.org/meetings/ocaml/2013/proposals/runtime-types.pdf
[14] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type

disciplines for structured communication-based programming. In: ESOP’98.
Lecture Notes in Computer Science, vol. 1381, pp. 22–138. Springer (1998),
https://doi.org/10.1007/BFb0053567

[15] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. J. ACM 63(1), 9:1–9:67 (2016), http://doi.acm.org/10.1145/

2827695
[16] Hu, R., Yoshida, N.: Hybrid session verification through endpoint API

generation. In: FASE. LNCS, vol. 9633, pp. 401–418. Springer (2016),
http://dx.doi.org/10.1007/978-3-662-49665-7_24

[17] Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types.
In: FASE. LNCS, vol. 10202, pp. 116–133 (2017), https://doi.org/10.
1007/978-3-662-54494-5_7

[18] Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming
in Java. In: ECOOP’08. LNCS, vol. 5142, pp. 516–541. Springer (2008)

[19] Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program.
Lang. Syst. 27(2), 264–313 (2005)

[20] Imai, K., Garrigue, J.: Lightweight linearly-typed programming with lenses
and monads. Journal of Information Processing 27, 431–444 (2019), https:
//doi.org/10.2197/ipsjjip.27.431

[21] Imai, K., Yoshida, N., Yuen, S.: Session-ocaml: a Session-based Library
with Polarities and Lenses. Sci. Comput. Program. 172, 135–159 (2018),
https://doi.org/10.1016/j.scico.2018.08.005

[22] Imai, K., Yuen, S., Agusa, K.: Session Type Inference in Haskell. In:
Proceedings Third Workshop on Programming Language Approaches to
Concurrency and communication-cEntric Software, PLACES 2010, Paphos,
Cyprus, 21st March 2010. pp. 74–91 (2010), https://doi.org/10.4204/
EPTCS.69.6

[23] Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session Types for Rust.
In: WGP 2015: Proceedings of the 11th ACM SIGPLAN Workshop on
Generic Programming. pp. 13–22. ACM (2015), https://doi.org/10.

1145/2808098.2808100
[24] Kiselyov, O.: Typed tagless final interpreters. In: Generic and Indexed Pro-

gramming - International Spring School, SSGIP 2010, Oxford, UK, March
22-26, 2010, Revised Lectures. LNCS, vol. 7470, pp. 130–174. Springer
(2010), https://doi.org/10.1007/978-3-642-32202-0_3

[25] Kiselyov, O.: The design and implementation of BER MetaOCaml - system
description. In: FLOPS. pp. 86–102. No. 8475 in Lecture Notes in Computer
Science, Springer (2014)

https://github.com/garrigue/safeio
https://github.com/garrigue/safeio
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://ocaml.org/meetings/ocaml/2013/proposals/runtime-types.pdf
https://ocaml.org/meetings/ocaml/2013/proposals/runtime-types.pdf
https://doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/2827695
http://doi.acm.org/10.1145/2827695
http://dx.doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.2197/ipsjjip.27.431
https://doi.org/10.2197/ipsjjip.27.431
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1007/978-3-642-32202-0_3

[26] Kiselyov, O.: Reconciling Abstraction with High Performance: A Meta-
OCaml approach. Foundations and Trends in Programming Languages,
Now Publishers (2018)

[27] Kiselyov, O.: Effects without monads: Non-determinism – back to the Meta
Language. Electronic Proceedings in Theor. Comp. Sci. 294, 15–40 (2019),
https://arxiv.org/abs/1905.06544

[28] Kiselyov, O., Peyton Jones, S., Shan, C.: Fun with Type Functions. In:
Roscoe, A.W., Jones, C.B., Wood, K. (eds.) Reflections on the Work of C.
A. R. Hoare, pp. 301–331. Springer (2010)

[29] Kiselyov, O., Shan, C.c.: Lightweight monadic regions. In: Gill, A. (ed.)
Haskell ’08: Proceedings of the first ACM SIGPLAN symposium on Haskell.
pp. 1–12. ACM Press, New York (25 Sep 2008)

[30] Lange, J., Yoshida, N.: Verifying asynchronous interactions via communi-
cating session automata. In: Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I. pp. 97–117 (2019)

[31] Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Pro-
gramming Languages and Systems - 24th European Symposium on Pro-
gramming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. pp. 560–584 (2015)

[32] Lindley, S., Morris, J.G.: Embedding Session Types in Haskell. In: Haskell
2016: Proceedings of the 9th International Symposium on Haskell. pp. 133–
145. ACM (2016), https://doi.org/10.1145/2976002.2976018

[33] Lindley, S., Morris, J.G.: Lightweight Functional Session Types (2017), In
[45, § 12].

[34] Mahboubi, A., Tassi, E.: Canonical structures for the working coq user.
In: Interactive Theorem Proving - 4th International Conference. Lecture
Notes in Computer Science, vol. 7998, pp. 19–34. Springer (2013), https:
//hal.inria.fr/hal-00816703

[35] Neubauer, M., Thiemann, P.: An Implementation of Session Types. In:
Practical Aspects of Declarative Languages, 6th International Symposium,
PADL 2004, Dallas, TX, USA, June 18-19, 2004, Proceedings. pp. 56–70
(2004), https://doi.org/10.1007/978-3-540-24836-1_5

[36] Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider:
compile-time API generation of distributed protocols with refinements in
f#. In: Proceedings of the 27th International Conference on Compiler Con-
struction, CC 2018, February 24-25, 2018, Vienna, Austria. pp. 128–138.
ACM (2018), https://doi.org/10.1145/3178372.3179495

[37] Orchard, D., Yoshida, N.: Effects as sessions, sessions as effects. In: POPL
2016: 43th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 568–581. ACM (2016), https://doi.org/

10.1145/2837614.2837634

[38] Orchard, D., Yoshida, N.: Session Types with Linearity in Haskell (2017),
In [45, § 10].

https://arxiv.org/abs/1905.06544
https://doi.org/10.1145/2976002.2976018
https://hal.inria.fr/hal-00816703
https://hal.inria.fr/hal-00816703
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/2837614.2837634

[39] Padovani, L.: A Simple Library Implementation of Binary Sessions. Journal
of Functional Programming 27, e4 (2016)

[40] Pickering, M., Gibbons, J., Wu, N.: Profunctor Optics: Modular Data Ac-
cessors. The Art, Science, and Engineering of Programming 1(2), Article
7 (2017), https://doi.org/10.22152/programming-journal.org/2017/
1/7

[41] Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Gill,
A. (ed.) Proceedings of the 1st ACM SIGPLAN Symposium on Haskell. pp.
25–36. ACM Press, New York (25 Sep 2008)

[42] Sackman, M., Eisenbach, S.: Session Types in Haskell: Updating Message
Passing for the 21st Century. Tech. rep., Imperial College London (June
2008), http://pubs.doc.ic.ac.uk/session-types-in-haskell/

[43] Scalas, A., Yoshida, N.: Lightweight Session Programming in Scala. In:
ECOOP 2016: 30th European Conference on Object-Oriented Program-
ming. LIPIcs, vol. 56, pp. 21:1–21:28. Dagstuhl (2016), https://10.4230/
LIPIcs.ECOOP.2016.21

[44] Scribble: Scribble home page (2019), http://www.scribble.org
[45] Simon Gay, A.R. (ed.): Behavioural Types: from Theory to Tools.

River Publisher (2017), https://www.riverpublishers.com/research_

details.php?book_id=439

[46] Strom, R.E., Yellin, D.M.: Extending typestate checking using conditional
liveness analysis. IEEE Transactions on Software Engineering 19(5), 478–
485 (May 1993)

[47] Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and
its typing system. In: PARLE’94 - Parallel Architectures and Languages
Europe. Lecture Notes in Computer Science, vol. 817, pp. 398–413. Springer
(1994), https://doi.org/10.1007/3-540-58184-7_118

[48] Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418
(2014)

[49] Walker, D., Crary, K., Morrisett, J.G.: Typed memory management via
static capabilities. ACM Trans. Program. Lang. Syst. 22(4), 701–771 (2000)

[50] White, L., Bour, F., Yallop, J.: Modular implicits. In: ML’14: ACM SIG-
PLAN ML Family Workshop 2014. Electronic Proceedings in Theoretical
Computer Science, vol. 198, pp. 22–63 (2015), https://doi.org/10.4204/
EPTCS.198.2

[51] Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline
for structured communication-based programming revisited: Two systems
for higher-order session communication. Electr. Notes Theor. Comput. Sci
171(4), 73–93 (2007)

https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
http://pubs.doc.ic.ac.uk/session-types-in-haskell/
https://10.4230/LIPIcs.ECOOP.2016.21
https://10.4230/LIPIcs.ECOOP.2016.21
http://www.scribble.org
https://www.riverpublishers.com/research_details.php?book_id=439
https://www.riverpublishers.com/research_details.php?book_id=439
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.4204/EPTCS.198.2

	Session Types without Sophistry

