
The Design and Implementation of
BER MetaOCaml

System Description

http://okmij.org/ftp/ML/MetaOCaml.html

FLOPS 2014
June 4, 2014

MetaOCaml is a superset of OCaml extending it with the data type
for program code and operations for constructing and executing such
typed code values. It has been used for compiling domain-specific
languages and automating tedious and error-prone specializations of
high-performance computational kernels. By statically ensuring that
the generated code compiles and letting us quickly run it, MetaOCaml
makes writing generators less daunting and more productive.
The current BER MetaOCaml is a complete re-implementation of the
original MetaOCaml by Taha, Calcagno and collaborators. Besides
the new organization, new algorithms, new code, BER MetaOCaml
adds a scope extrusion check superseding environment classifiers.
Attempting to build code values with unbound or mistakenly bound
variables (liable to occur due to mutation or other effects) is now
caught early, raising an exception with good diagnostics. The
guarantee that the generated code always compiles becomes
unconditional, no matter what effects were used in generating the
code.

We describe BER MetaOCaml stressing the design decisions that

made the new code modular and maintainable. We explain the

implementation of the scope extrusion check.

1

The Death and Resurrection of MetaOCaml
System Description

http://okmij.org/ftp/ML/MetaOCaml.html

FLOPS 2014
June 4, 2014

The title of this talk should’ve been ‘The death and resurrection of

MetaOCaml’. I’ve been using MetaOCaml since 2003 and can talk a

lot about its evolution from personal experience. Alas, I don’t have

time for that. Therefore, to save time I’ll have to skip death and move

straight to resurrection.

2

Outline

I Introduction to BER MetaOCaml

I Showing off the scope extrusion check

I Implementation

Thus I’ll be talking about the new MetaOCaml, or BER MetaOCaml

N101. I will be talking about its most distinguished feature: the scope

extrusion check. It is a complex feature and takes some time to

explain. I will start with a simpler introduction to MetaOCaml.

3

MetaOCaml look and feel

MetaOCaml is a superset of OCaml for writing code generators

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run !. code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

BER MetaOCaml is a conservative extension of OCaml with staging
annotations to construct and run typed code values. MetaOCaml
code without staging annotations is regular OCaml 4.

MetaOCaml adds to OCaml brackets and escapes to construct code

values, and run (or, eval) to execute them. Brackets and escapes look

quite like Lisp’s quasi-quotation. There is another feature: the ability

to use within brackets identifiers bound outside brackets. This is

called cross-stage persistence, CSP for short. Lisp also has something

like that, but not quite. The next talk is specifically about CSP, so I

skip CSP.

3

MetaOCaml look and feel

MetaOCaml is a superset of OCaml for writing code generators

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run !. code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

〈fun x → ∼ (let body = 〈x〉 in 〈fun x → ∼body〉)〉
 〈fun x 1 → fun x 2 → x 1〉

‘(lambda (x) ,(let ((body ‘x)) ‘(lambda (x) , body)))
 ‘(lambda (x) (lambda (x) x))

The MetaOCaml-generated code is well-typed and well-scoped

Here is a small example, which also shows that the generated code
can be printed, even the code of functions. The expression .<x>. is a
code value that represents a free variable, to be bound later on. So,
MetaOCaml can manipulate open code and deal with variables so to
speak symbolically.
The example is meant to illustrate hygiene, and the crucial difference
between brackets and antiquotation in Lisp. MetaOCaml respects
lexical scoping!

If we write the example in Lisp and use antiquotation and

unquotation, the generated code would have two instances of x,

indistinguishable. The generated code will mean quite a different

thing though. MetaOCaml maintains the distinction between the

variables that although named identically like x but bound at different

places. So, a variable in MetaOCaml is not just a symbol.

3

MetaOCaml look and feel

MetaOCaml is a superset of OCaml for writing code generators

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run !. code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

‘(lambda (x) ,(let ((body ‘(+ x 1)))
‘(lambda (x) (string −append ,body x))))

 (lambda (x) (lambda (x) (string −append (+ x 1) x)))

(((lambda (x) (lambda (x) (string −append (+ x 1) x))) 1) ”a”)
 Error in + : ”a” is not a number.

Let’s look again at the slightly changed Scheme generator, which

produces the shown code. The generated code can be successfully

evaluated and applied. It is only we submit the second argument that

we see a problem. By that time, the original generator has long

finished. It is very hard now to tell which part of the generator is

responsible for the problem and how to fix it.

3

MetaOCaml look and feel

MetaOCaml is a superset of OCaml for writing code generators

MetaOCaml is not quite like Lisp

bracket 〈x + y〉 quasiquote ‘(+ x y)

escape ∼body unquote ,body

run !. code eval (eval code)

persist 〈 pi 〉 ‘(’,pi)

〈fun x → ∼ (let body = 〈x+ 1〉 in 〈fun x → x ˆ ∼body〉)〉

〈fun x → ∼ (let body = 〈x+ 1〉 in 〈fun x → x ˆ ∼body〉)〉

ˆˆˆˆ
Error : This expression has type int code

but an expression was expected of type string code
Type int is not compatible with type string

The MetaOCaml-generated code is well-typed and well-scoped

MetaOCaml is typed, and so typing problems with the generated code
are reported right away, when type checking the generator, before
even running it. The error is hence reported in terms of the generator.
We see from the error message that code values have their own types
like int code. Although the generated code is compiled later, it is type
checked now.
MetaOCaml is distinguished from Camlp4 and other such
macro-processors by: hygiene (maintaining lexical scope); generating
assuredly well-typed code; and the integration with higher-order
functions, modules and other abstraction facilities of ML, hence
promoting modularity and reuse of code generators. A well-typed
BER MetaOCaml program generates only well-typed programs: The
generated code shall compile without type errors. There are no longer
problems of puzzling out a compilation error in the generated code
(which is typically large, obfuscated and with unhelpful variable
names).

The above benefits all come about because MetaOCaml is typed.

Types, staged types in particular, help write the code.

4

BER MetaOCaml N101

I A clean-slate re-implementation

I Different algorithms, different data structures

I Different design decisions

I Extensive comments, regression test suite

I Modular structure: easier to maintain, easier to contribute

I The operation to run the code: user-definable, no longer a
built-in

I No environment classifiers

I Generated code is always well-typed and well-scoped, even
in the presence of effects

BER N101 is the current (and the only) version MetaOCaml. It is a
complete re-implementation of MetaOCaml. It has not only new code
and new algorithms, but also new design decisions. I stress the main
differences: modular structure, making it easier to maintain and
contribute to – and especially the highlighted ones. The highlighted
features are new, and I’ll talk about them next.
BER MetaOCaml is a re-implementation of MetaOCaml. It has not
only new code and new algorithms, but also new design decisions. It
also has comments in the code, and a regression test suite! There only
small piece inherited from the old MetaOCaml are the changes to
OCaml parser and lexer to recognize brackets, escape, and run.

The goal of the BER MetaOCaml project is to reduce as much as

possible the differences between MetaOCaml and the mainline

OCaml, to make it easier to keep MetaOCaml up-to-date and ensure

its long-term viability. We aim to find the most harmonious way of

integrating staging with OCaml, with the remote hope that some of

the changes would make it to the main OCaml branch.

5

Outline

I Introduction to BER MetaOCaml

I Showing off the scope extrusion check
I larger example of code generation
I abstracting code generators: building DSLs
I effects in code generation (let-insertion)
I danger of scope extrusion
I scope extrusion check
I convenient and safe let-insertion

for the first time

I Implementation

Here is the more detailed outline for the rest of the talk. We use a

larger example to show off the code generation with effects, the

danger of scope extrusion and how BER MetaOCaml prevents it.

6

Matrix-matrix multiplication

cij =
∑
k

aikbkj

Many variations

I single, double-precision FP numbers, integers, . . .

I different matrix representations: row-major, column-major,
tiled, sparse

I unrolling loops, fully or partly

I let-insertion

I loop interchange

I loop tiling

all have to be efficient

Need DSL

Everyone knows how to multiply two matrices A and B with the
result in C (assumed zeroed out), so I don’t have to explain it. The
example is real – an incredible amount of effort in HPC is spent
optimizing matrix-matrix multiplication.

The example is simple, but with many variations: the matrix may be

represented in many ways, etc. All the variants must be utmost

efficient. To increase performance, we may need to unroll the loops,

by an architecture-specific amount. Code generation is inevitable. We

concentrate on let-insertion (loop interchange and tiling with

MetaOCaml has been described elsewhere).

7

Small Linear Algebra DSL

module type LINALG = sig
type tdom
type tind
type tunit
type tmatrix
val (+) : tdom →tdom →tdom
val (∗) : tdom →tdom →tdom
val mat dim: tmatrix → tind ∗ tind
val mat get: tmatrix → tind → tind → tdom
val mat incr: tmatrix → tind → tind → tdom →tunit
val loop: tind → (tind → tunit) → tunit

end

To handle the many variations of the matrix-matrix multiplication,

let’s make a DSL. We abstract out the type of the scalars, tdom, the

type of the index tind, the unit type and of course the matrix type.

We define arithmetic on scalars, getting the dimensions of the matrix,

accessing an element of the matrix given its indices, and increment it.

And we need an operation to do loops.

8

Generic matrix-matrix multiplication

cij =
∑
k

aikbkj

module MMUL(S: LINALG) = struct
open S
let mmul a b c =
loop (fst (mat dim a)) @@ fun i →

loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →

mat incr c i j @@ mat get a i k ∗ mat get b k j
end

9

Meta-circular implementation

module LAint = struct
type tdom = int
type tind = int
type tunit = unit
type tmatrix = int array array
let (+) = Pervasives.(+)
...

The first implementation of our DSL is metacircular. It is makes

matrix multiplication very slow, but is useful for testing.

10

Code-generating implementation

module LAintcode = struct
type tdom = int code
type tind = int code
type tunit = unit code
type tmatrix = int array array code
let (+) = fun x y → 〈∼x +∼y〉
let mat get a i j = 〈(∼a).(∼ i).(∼ j)〉
...
let loop n body =
〈for i = 0 to ∼n−1 do ∼(body 〈i〉) done〉

end

〈fun a b c →
∼ (let module M = MMUL(LAintcode) in

M.mmul 〈a〉 〈b〉 〈c〉)
〉

The second implementation of the signature LINALG uses MetaOCaml
to generate code. The domain of scalars is integer code expressions;
the operation plus now generates the code of addition rather than
adding the numbers.

Using the same DSL code with the code-generating interpretation

gives us the following code.

11

Generated code

val smmul1 :
(int array array → int array array → int array array → unit) code =
〈fun a 1 b 2 c 3 →

for i 4 = 0 to (Array. length a 1) − 1 do
for i 5 = 0 to (Array. length b 2) − 1 do
for i 6 = 0 to (Array. length (b 2.(0))) − 1 do

c 3.(i 4).(i 6) ←
c 3.(i 4).(i 6) + a 1.(i 4).(i 5) ∗ b 2.(i 5).(i 6)

done
done
done〉

The generated code looks how we expected it to look: three nested

loops. We can save the code in a file and compile to build a library of

various matrix-matrix multiplications.

12

Loop-unrolling

module LAintcode unroll (S:sig val unroll factor : int end) =
struct
include LAintcode
let loop n body = ...

...
end

〈fun a b c →
∼ (let module M =

MMUL(LAintcode unroll(struct let unroll factor = 2 end)) in
M.mmul 〈a〉 〈b〉 〈c〉)

〉

We can also partially unroll loops by the given factor – using the
same generic code MMUL code. We include the LAintcode
implementation and redefine the loop combinator to do unrolling.
The generated code, with partially unrolled loops, is the complete
mess – as expected. If the code generation is done right, we never
have to look at the generated code.

We can do further code transformations like that. We concentrate on

a different one.

13

Moving loop-invariant code?

module MMUL(S: LINALG) = struct
open S
let mmul a b c =
loop (fst (mat dim a)) @@ fun i →

loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →

mat incr c i j @@ mat get a i k ∗ mat get b k j
end

Goal

I implement the moving mat get a i k out of the loop

I do not modify MMUL

I program this optimization by writing a different
implementation of LINALG

Let’s look again at the generic matrix-matrix multiplication code. We
notice the expression of accessing aik in the inner loop that does not
depend on the loop variable j. It ought to be moved out. Can we
program this optimization, again without modifying this code, using a
different interpretation of LINALG?

Of course in real-file, the compiler may notice that a.(i).(k) does not

depend on the index j and automatically move the code. But for

matrices with the complex layouts, the access operation may be a

function call. The compiler cannot (and ought not) to move the code,

unless it can see the access function is pure. Sometimes it is not, if a

matrix is too large and has to be stored on disk. Here the compiler

really cannot move the code, without any domain-specific knowledge.

14

Let-insertion

val genlet : ω code prompt →α code → α code
val with prompt : (ω prompt →ω) → ω

with prompt (fun p →
〈1 +∼(genlet p 〈2+ 3〉)〉)
 〈let t 1 = 2 + 3 in 1 + t 1〉

with prompt (fun p →
〈fun x → x +∼(genlet p 〈2+ 3〉)〉)
 〈let t 5 = 2 + 3 in fun x 4 → x 4 + t 5〉

So, we need so-called let-insertion. Let’s talk about it a bit on a

simple example. Let-insertion is accomplished by these two functions:

genlet takes a code expression to bind and inserts let somewhere up.

The function with prompt marks the place where to insert this let.

These two functions communicate via so-called prompt. In the first

example, genlet took expression 2+3 and let-bound it where

with prompt was. The binding place can be arbitrarily away from

genlet, as the second example shows. This is of course very desirable:

in the second example, we generate code in which 2+3 is computed

only once rather than on each call to the function. But this also can

be very dangerous.

15

Problematic let-insertion

Up to two years ago:

with prompt (fun p →
〈fun x → x +∼(genlet p 〈x+ 3〉)〉)

 〈let t 5 = x 4 + 3 in fun x 4 → x 4 + t 5〉

Scope extrusion!
Environment classifiers do not help!

Consider the example on the slide. We attempt to move out the
expression that contains x outside the binding of x! Before, this
attempt was successful. We could truly generate the shown code,
which exhibits so-called scope extrusion.

Some of you may have heard of environment classifiers in the old

MetaOCaml. Alas, they do not help with scope extrusion. That’s why

they have been removed.

15

Problematic let-insertion

Now:

with prompt (fun p →
〈fun x → x +∼(genlet p 〈x+ 3〉)〉)

 propagating exc Exception: Failure
Scope extrusion detected at Characters 89−117 for code built at:
〈fun x → x +∼(genlet p 〈x+ 3〉)〉);;

ˆˆˆ
for the identifier x 6 bound at Characters 39−40:
〈fun x → x +∼(genlet p 〈x+ 3〉)〉);;

ˆ

In the current version of BER MetaOCaml, the example type checks

as before. However, running it no longer succeeds. Rather, running

the generator throws the exception with a rather informative message.

16

Implementing let-insertion

open Delimcc

let genlet : ω code prompt →α code → α code = fun p cde →
shift p (fun k → 〈let t = ∼cde in ∼ (k 〈t〉)〉)

let with prompt : (ω prompt →ω) → ω = fun thunk →
let p = new prompt () in
push prompt p (fun () → thunk p)

Let-insertion is user-defined, not a primitive

Importantly, genlet is not a primitive in MetaOCaml. It is an ordinary

library function written with the Delimcc library of delimited control.

17

Let-insertion: summary

I Generating code with (control) effects

I Let-insertion: powerful and needed, but dangerous

I Safety guarantee, finally:
if the code is successfully generated, it is well-scoped (and
well-typed)

Now, let-insertion is safe. But is it convenient?

We have just seen how to generate code with control effects, that

let-insertion is highly desirable and highly dangerous, and that in the

present MetaOCaml, it is finally safe. It is safe in the following sense:

if the generator successfully finished generating the code, the result is

well-typed and well-scoped.

17

Let-insertion: summary

I Generating code with (control) effects

I Let-insertion: powerful and needed, but dangerous

I Safety guarantee, finally:
if the code is successfully generated, it is well-scoped (and
well-typed)

Now, let-insertion is safe. But is it convenient?

We have seen that let-insertion is safe. But is it convenient? We have

to explicitly mark the place where to insert. If there are multiple

prompts in scope, that is, locations to insert, we, or the user, have to

choose. Although we can accomplish let-insertion for our

matrix-matrix multiplication, we cannot move out the

matrix-indexing expression without modifying the generic code. At

least, without complex logic. Complexities snowball...

18

Safe and convenient let-insertion

Can’t you just insert let where it causes no exceptions?!

val genlet : α code → α code
val let locus : (unit → ω code) → ω code

I Library functions, not primitives

I Convenient, and safe
for the first time

The programmer is tempted to shout to the program: can’t you just

insert let where it causes no exceptions? Come to think of it, if we get

an exception when inserting let at a wrong place, can’t we just try

inserting at a higher and higher place, where it is still safe?

18

Safe and convenient let-insertion

Can’t you just insert let where it causes no exceptions?!

val genlet : α code → α code
val let locus : (unit → ω code) → ω code

I Library functions, not primitives

I Convenient, and safe
for the first time

The answer is yes, and the following two library functions do exactly
this. They are safe since they are not MetaOCaml primitives and
don’t modify MetaOCaml. We rely on the existing guarantee: so long
as no exception is raised, the code is well-typed and well-scoped.

For the first time, we show off self-adjusting, safe and convenient

let-insertion with static guarantees. This part is not in the paper.

19

Safe and convenient let-insertion

module LAintcode opt = struct
include LAintcode
let mat get a i j = genlet @@ LAintcode.mat get a i j
let loop n body =

let locus (fun () →
LAintcode.loop n

(fun i → let locus (fun () → body i)))
end

〈fun a b c →
∼ (let module M = MMUL(LAintcode opt) in

M.mmul 〈a〉 〈b〉 〈c〉)
〉

(Convenient let-insertion is not in the paper)

What is shown are all the changes. Fully re-using the earlier

implementation LAintcode, we ask to let-bind all matrix access

operations and indicate that the places before and after the loop are

good locations to insert the code at.

20

Generating code with let-insertion

val smmul3 :
(int array array → int array array → int array array → unit) code =
〈fun a 124 b 125 c 126 →

for i 127 = 0 to (Array. length a 124) − 1 do
for i 128 = 0 to (Array. length b 125) − 1 do

let t 131 = (a 124.(i 127)).(i 128) in
for i 129 = 0 to (Array. length (b 125.(0))) − 1 do
let t 130 = (b 125.(i 128)).(i 129) in
c 126.(i 127).(i 129) ←
c 126.(i 127).(i 129) + t 131 ∗ t 130

done
done

done〉

now, the same generic code produces the shown code. Matrix access

operations are indeed let-bound, at the appropriate places, ‘as high’

as possible.

21

Implementation

The most useful part of MetaOCaml is OCaml

A patch to OCaml

I using abstraction facilities of OCaml

I back-ends for free

I source compatible with OCaml (familiarity)

I binary compatible with OCaml (reuse of libraries, tools,
etc)

I part of the OCaml community

However . . .

The upside of using OCaml, mature language: code generator and

backends, tools, libraries, familiarity, community. It will take a long

time to re-implement OCaml from scratch.

22

The downside of a language dialect

There is quite a difference between an academic paper
presenting a simple calculus with a few expression forms – and
the real system, with the huge amount of code with lots and
lots of details and edge cases.

The other side: show typing/typecore.ml in small font, and scroll and
scroll. This is just one filel unification is in a separate file, dealing
with typing environment is in another file, type checking of modules is
another file, etc. The total lines of code in the type checker: do “wc -l
*.ml” Let me zoom-in on the code: typecore.ml (in a larger font):
code, code, code. Hardly any comments, except for this. But this
comment is mine. This is an important place in the type checker for
the MetaOCaml interface. There are other places in this typecore.ml
file with MetaOCaml changes. To make the changes, one has to have
a good idea what all these 27000+ code lines are doing (and it some
places, one has to have a very good idea).
Let me also show what was involved with re-writing MetaOCaml: old
trx.ml; code, code, hardly any comments. Here is the new, re-written.
From the distribution of color you can see my style is different. There
are many comments, in blue color. I hope my successor will have
easier time understanding what’s going on.

I hope I demonstrated that there is quite a difference between an

academic paper presenting a simple calculus with 3-4-7 expression

forms and the real system, with the huge amount of code with lots

and lots of details and edge cases. Dealing with the real system

motivated the split into kernel and user-level in MetaOCaml.

23

MetaOCaml

MetaOCaml is a superset of OCaml for writing code generators
(and generators of code generators, etc.)

I A conservative extension of OCaml

I Pure generative: no examination of the generated code

I Generators and the generated code are typed

I Guaranteeing the generation of . . .
I the well-formed code
I the well-typed code
I code with no unbound or unexpectedly bound identifiers

I Reporting errors in terms of the generator rather than the
generated code

I Generators take advantage of all abstraction facilities of
ML (higher-order functions, modules, objects, etc)

BER MetaOCaml is a conservative extension of OCaml with staging
annotations to construct and run typed code values. MetaOCaml
code without staging annotations is regular OCaml 4.
First, the generated code is assuredly well-formed: all parentheses
match. This is better than using printf to generate C (cf. ATLAS).
MetaOCaml is distinguished from Camlp4 and other such
macro-processors by: hygiene (maintaining lexical scope); generating
assuredly well-typed code; and the integration with higher-order
functions, modules and other abstraction facilities of ML, hence
promoting modularity and reuse of code generators. A well-typed
BER MetaOCaml program generates only well-typed programs: The
generated code shall compile without type errors. There are no longer
problems of puzzling out a compilation error in the generated code
(which is typically large, obfuscated and with unhelpful variable
names).
The generated code is well-scoped: there are no unbound variables in
the generated code and no insidious surprisingly bound variables.

The above benefits all come about because MetaOCaml is typed.

Types, staged types in particular, help write the code.

24

Parting thoughts

The successfully generated code is well-typed and
well-scoped, and always compiles

. . . unconditionally, no matter what effects were used when
generating the code.

Scope extrusion check: not only prevents but also enables

