
Refined Environment Classifiers
Type- and Scope-safe Code Generation with Mutable Cells

Oleg Kiselyov Yukiyoshi Kameyama Yuto Sudo

Tohoku University

University of Tsukuba

APLAS 2016
November 22, 2016

2

Region Memory Management for
Free Variables

Type- and Scope-safe Code Generation with Mutable Cells

Oleg Kiselyov Yukiyoshi Kameyama Yuto Sudo

Tohoku University

University of Tsukuba

APLAS 2016
November 22, 2016

3

Summary
First stage calculus <NJ> for imperative code generators
without ad hoc restrictions

▶ Store open code and retrieve in a different binding
environment

▶ Proven sound type system: generated code is always
well-typed and well-scoped

▶ Distillation of StagedHaskell

Practical

▶ Justification of (of a part of) StagedHaskell

▶ Easily embeddable (in OCaml) and can actually be used

Insightful

4

Insights

▶ Region-based memory management

▶ Contextual Modal Type Theory

▶ MLF

▶ Overcoming the bureaucracy of syntax for names

▶ What is lexical scope, after all

5

Why code generation
Program like

yk =

N−1∑
j=0

xje
−2πijk/N k = 0..N − 1

but run like

fun x 35 →
let t 36 = x 35.(0) +. x 35.(4) in
let t 37 = x 35.(1) +. x 35.(5) in
let t 38 = x 35.(0) −. x 35.(4) in
let t 39 = x 35.(1) −. x 35.(5) in
let t 40 = x 35.(2) +. x 35.(6) in
let t 41 = x 35.(3) +. x 35.(7) in
let t 42 = x 35.(2) −. x 35.(6) in
let t 43 = x 35.(3) −. x 35.(7) in
let t 44 = t 36 +. t 40 in
let t 45 = t 37 +. t 41 in
let t 46 = t 36 −. t 40 in
let t 47 = t 37 −. t 41 in

. . .

5

Why code generation

fun x 35 →
let t 36 = x 35.(0) +. x 35.(4) in
let t 37 = x 35.(1) +. x 35.(5) in
let t 38 = x 35.(0) −. x 35.(4) in
let t 39 = x 35.(1) −. x 35.(5) in
let t 40 = x 35.(2) +. x 35.(6) in
let t 41 = x 35.(3) +. x 35.(7) in
let t 42 = x 35.(2) −. x 35.(6) in
let t 43 = x 35.(3) −. x 35.(7) in
let t 44 = t 36 +. t 40 in
let t 45 = t 37 +. t 41 in
let t 46 = t 36 −. t 40 in
let t 47 = t 37 −. t 41 in

. . .

▶ write – and re-write, and re-write,. . . generators

▶ some degree of correctness is needed: well-typedness and
well-boundness

6

Is well-scopedness so important?
The re-factor solved performance issues in our use

case of LMS which appeared due to the huge size of
code we tend to generate. While we were able to
resolve the performance issues, we introduced new bugs
. . . [that] would manifest in errors such as:

forward reference extends over definition of value

x1620 [error] val x1343 = x1232(x1123, x1124, x1180,

x1181, x1223, x1224, x1223, x1229, x1216, x1120, x1122,

x1121)

Note that variables are indexed in ascending order
starting at zero, meaning that a large piece of code is
processed before we hit this error. The root cause of
bugs such as this one often proved to be very simple
but heavily obfuscated in the code it manifested in. The
concrete example was triggered by the code motion. . .

RandIR: Differential Testing for Embedded Compilers.
Ofenbeck, Rompf, Püschel. Scala Symposium 2016.

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ No effects

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ Only closed code can be stored

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ So complex it is not even implemented

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

7

Calculi for Code generation

▶ λ◦ (1996), λα (2003),. . .

▶ MiniMLmeta
ref (2000), Mint (2010),. . .

▶ pure freshML (2007),. . .

▶ Can emulate mutation/control effects with state-passing,
CPS?

▶ Yes, but we can’t do code movement across binders

8

<NJ> by Example
<NJ> is the standard CBV λ-calculus with constants for
code-generation

power x n = xn

let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩
⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩
⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩
⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩
⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:
▶ Generate a variable name
▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

8

<NJ> by Example
let body = λf n x. if n=0 then cint 1 else x ∗ f (n−1) x in
let power = λn. λx. (fix body) n x in power 2

⇝∗ let body = . . . in λx. (fix body) 2 x

⇝ let body = . . . in λy.(fix body) 2 ⟨y⟩

⇝ let body = . . . in
λy. if 2=0 then cint 1 else ⟨y⟩ ∗ (fix body) 1 ⟨y⟩

⇝∗ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ cint 1

⇝ λy. ⟨y⟩ ∗ ⟨y⟩ ∗ ⟨1⟩

⇝ λy. ⟨y⟩ ∗ ⟨y ∗ 1⟩
⇝∗ λy. ⟨y ∗ y ∗ 1⟩

⇝ ⟨λy. y ∗ y ∗ 1⟩
Generating a function takes two steps:

▶ Generate a variable name

▶ eventually, generate a binder for it

9

State Power

let body = λn.λx. let r = ref (cint 1) in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r in

let power = λn. λx. body n x in power 2

⇝∗ let r = ref ⟨1⟩ in
λy. (if 2 = 0 then 0 else (r := !r ∗ ⟨y⟩ ; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y⟩ in
λy. (if 1 = 0 then 0 else (r := !r ∗ ⟨y⟩; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y ∗ y⟩ in λy. ! r

⇝ λy. ⟨1 ∗ y ∗ y⟩ ⇝ ⟨λy. 1 ∗ y ∗ y⟩

9

State Power

let body = λn.λx. let r = ref (cint 1) in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r in

let power = λn. λx. body n x in power 2

⇝∗ let r = ref ⟨1⟩ in
λy. (if 2 = 0 then 0 else (r := !r ∗ ⟨y⟩ ; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y⟩ in
λy. (if 1 = 0 then 0 else (r := !r ∗ ⟨y⟩; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y ∗ y⟩ in λy. ! r

⇝ λy. ⟨1 ∗ y ∗ y⟩ ⇝ ⟨λy. 1 ∗ y ∗ y⟩

9

State Power

let body = λn.λx. let r = ref (cint 1) in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r in

let power = λn. λx. body n x in power 2

⇝∗ let r = ref ⟨1⟩ in
λy. (if 2 = 0 then 0 else (r := !r ∗ ⟨y⟩ ; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y⟩ in
λy. (if 1 = 0 then 0 else (r := !r ∗ ⟨y⟩; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y ∗ y⟩ in λy. ! r

⇝ λy. ⟨1 ∗ y ∗ y⟩ ⇝ ⟨λy. 1 ∗ y ∗ y⟩

9

State Power

let body = λn.λx. let r = ref (cint 1) in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r in

let power = λn. λx. body n x in power 2

⇝∗ let r = ref ⟨1⟩ in
λy. (if 2 = 0 then 0 else (r := !r ∗ ⟨y⟩ ; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y⟩ in
λy. (if 1 = 0 then 0 else (r := !r ∗ ⟨y⟩; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y ∗ y⟩ in λy. ! r

⇝ λy. ⟨1 ∗ y ∗ y⟩ ⇝ ⟨λy. 1 ∗ y ∗ y⟩

9

State Power

let body = λn.λx. let r = ref (cint 1) in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r in

let power = λn. λx. body n x in power 2

⇝∗ let r = ref ⟨1⟩ in
λy. (if 2 = 0 then 0 else (r := !r ∗ ⟨y⟩ ; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y⟩ in
λy. (if 1 = 0 then 0 else (r := !r ∗ ⟨y⟩; fix f 1); ! r)

⇝∗ let r = ref ⟨1 ∗ y ∗ y⟩ in λy. ! r

⇝ λy. ⟨1 ∗ y ∗ y⟩ ⇝ ⟨λy. 1 ∗ y ∗ y⟩

10

Too much of the State Power

let r = ref cint 0 in (λx. r := x); ! r

⇝ let r = ref cint 0 in (λy. r := ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in (λy. ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in ! r

⇝ let r = ref ⟨y⟩ in ⟨y⟩

10

Too much of the State Power

let r = ref cint 0 in (λx. r := x); ! r

⇝ let r = ref cint 0 in (λy. r := ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in (λy. ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in ! r

⇝ let r = ref ⟨y⟩ in ⟨y⟩

10

Too much of the State Power

let r = ref cint 0 in (λx. r := x); ! r

⇝ let r = ref cint 0 in (λy. r := ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in (λy. ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in ! r

⇝ let r = ref ⟨y⟩ in ⟨y⟩

10

Too much of the State Power

let r = ref cint 0 in (λx. r := x); ! r

⇝ let r = ref cint 0 in (λy. r := ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in (λy. ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in ! r

⇝ let r = ref ⟨y⟩ in ⟨y⟩

10

Too much of the State Power

let r = ref cint 0 in (λx. r := x); ! r

⇝ let r = ref cint 0 in (λy. r := ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in (λy. ⟨y⟩); ! r

⇝ let r = ref ⟨y⟩ in ! r

⇝ let r = ref ⟨y⟩ in ⟨y⟩

11

Type System (outline)

⊢ ⟨y⟩ : ??

11

Type System (outline)

Γ ⊢ ⟨y⟩ : ⟨ int ⟩?? where y:int ∈ Γ

We are manipulating open code: cf. “Open CBV” yesterday

Annotate the type of a code value with some form of Γ

▶ size of Γ

▶ Γ itself (CMTT)

▶ Γ (without names, just a sequence of types)

12

Annotated code types by example

let r = ref cint 0 in (λz. λx. r := x); ! r : <int>(int,(bool,()))

Γ ⊢ z: <bool>(bool,())

Γ ⊢ x: <int>(int,(bool,()))

Γ ⊢ r: <int>(int,(bool,())) ref

However,

let r = ref cint 0 in (λz. λx. r := x); (λy. λu. ! r)

⇝∗ ⟨λy. λu. x⟩ : <int→int→int>()

According to the type system, the result is closed.

12

Annotated code types by example

let r = ref cint 0 in (λz. λx. r := x); ! r : <int>(int,(bool,()))

Γ ⊢ z: <bool>(bool,())

Γ ⊢ x: <int>(int,(bool,()))

Γ ⊢ r: <int>(int,(bool,())) ref

However,

let r = ref cint 0 in (λz. λx. r := x); (λy. λu. ! r)

⇝∗ ⟨λy. λu. x⟩ : <int→int→int>()

According to the type system, the result is closed.

13

Taste of a Type System

γ ∈ Γ γ1 ̸∈ Γ Γ, γ1, (γ1≻γ), (x:⟨t1⟩γ1) ⊢ e: ⟨t2⟩γ1

CAbs
Γ ⊢ λx.e: ⟨t1→t2⟩γ

14

Taste of a Type System

Γ2 ⊢ x1: ⟨int⟩γ1 Γ2 |= γ2≻γ1

Γ2 ⊢ x1: ⟨int⟩γ2 Γ2 ⊢ x2: ⟨int⟩γ2

Γ2 ⊢ x1 + x2: ⟨int⟩γ2

γ1, (γ1≻γ0), (x1:⟨int⟩γ1) ⊢ λx2. x1 + x2: ⟨int→int⟩γ1

[] ⊢ λx1.λx2. x1 + x2 : ⟨int→int→int⟩γ0

15

Taste of a Type System

r : ⟨ int⟩γ1 , γ2,γ2≻γ, x:⟨int⟩γ2 ⊢ r := x: ⟨ int⟩γ2

r : ⟨ int⟩γ1 ref ⊢ (λx. r := x) : ⟨ int→int⟩γ

[] ⊢ let r = ref cint 0 in (λx. r := x) : ⟨ int→int⟩γ

Region memory management

16

Summary
First stage calculus <NJ> for imperative code generators
without ad hoc restrictions

▶ Store open code and retrieve in a different binding
environment

▶ Sound type system: generated code is always well-typed
and well-scoped

▶ Distillation of StagedHaskell

Practical

▶ Justification of (of a part of) StagedHaskell

▶ Easily embeddable (in OCaml) and can actually be used

Insightful

