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Code generation is the leading approach to making high-performance
software reusable. Using a set of realistic examples, we demonstrate
that side effects are indispensable in composable code generators,
especially side effects that move open code past generated binders.
We challenge the audience to implement these examples in their
favorite code-generation framework.
We implemented the examples ourselves using a prototype library of
code-generating combinators in Haskell. This library statically assures
not only that all generated code is well-formed and well-typed but
also that all generated variables are bound lexically as expected. Such
assurances are crucial for code generators to be written by domain
experts rather than compiler writers, because the most profitable
optimizations are domain-specific ones.
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Outline

I Problems

Requirements for the solution

Solutions



The talk is to motivate code generation with effects. We will present
several motivating examples, which are all based on real code. Please
regard them as challenges. You are welcome to try to solve them in
your favorite code generation framework. Not just any solution will do
however! We will talk about the requirements a bit later in the talk.
We will concentrate on effects that, informally, cross the future-stage
binders. Our first example will illustrate what that means.
The first example is simplistic, as befits the first example. Its goal to
familiarize ourselves with the notation and terminology.
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Power

val power : int → int → int
let rec power n x = match n with
| 0 → 1
| n → x ∗ power (n−1) x

val spower : int → (’ a, int ) code → (’ a, int ) code
let rec spower n x = match n with
| 0 → 〈1〉
| n → 〈∼x ∗ ∼ (spower (n−1) x)〉

let spowern n = 〈fun x → ∼ (spower n 〈x〉 )〉

spowern 5;;
 − : (’ a, int → int ) code =
〈fun x 1 → (x 1 ∗ (x 1 ∗ (x 1 ∗ (x 1 ∗ (x 1 ∗ 1))))) 〉

spowern (−1);;
 Stack overflow during evaluation (looping recursion ?).



Here is the standard power function, raising x to the power n.
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This is the staged power, to generate code to raise a statically
unknown quantity to the statically known power. Here n is still int
but the variable x has the type (’a, int) code: the code that will
produce at run-time an int value. This is also the type of spower.
Here .< >. are ‘brackets’ (think of List quasi-quote) and ∼ is the
‘escape’ or splice (think of Lisp anti-quotation).
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We are not done yet: whence x will come from? We need another
definition: spowern to specialize power to the statically-known
exponent. Here is the example: The loop in spower is executed at the
generation time; the result is the fully unrolled code.
We see in spowern the binding of a future-stage variable; That
variable can be turned into a piece of code .<x>. and manipulated by
the generator (spliced into code templates). The future-stage variable
is being manipulated ‘symbolically’, so to speak.
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The power function is such a cliche! It so easy to overlook the
problem: the function is partial. I submit that overflowing the stack
(which may lead to the segmentation fault on some platforms) is not
the friendliest way to report problems.
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Faulty Power
Code generation with exceptions

exception BadArg
let rec spowerE n x = match n with
| 0 → 〈1〉
| n when n >0 →〈∼x ∗ ∼ (spowerE (n−1) x)〉
| → raise BadArg

let spowernE n = 〈fun x →∼ (spowerE n 〈x〉 )〉

let rec gpower () =
print endline ”Enter n: ”;
let n = read int () in
try spowernE n
with BadArg →
print endline ”Bad n!”;
gpower ()



We wish to throw exceptions and being able to recover from them.
We coin a new benchmark: Faulty Power.
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The function gpower demonstrates interactive code generation with
exception handling. We ask the user for the exponent and generate
the specialized power. If the code generator spowernE throws an
exception, the user is scolded and asked to re-enter the exponent.
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We stress: the exception is thrown in spowerE and is caught in
gpower. In-between there is a future-stage binder, in spowernE. The
simplest, cliche example of staging already demonstrates the need for
effects, which cross future-stage binders.
If we write this in Haskell and use the Error monad, we see the
problem right away: the escape requires a code value but spowerE n

.<x>. is a computation.
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Guard Insertion
The need to move open code

〈fun y → ∼complex code + 10 / y〉



The previous example was very simple: an effect (exception) was
indeed propagating through the future-stage binder, but no values
were carried along in the exception. Such effects, involving values of
base types (not code and not functions!) are unproblematic and can
easily be accommodated in existing frameworks, perhaps after ad hoc
extensions. Mint can do it, and so can our PEPM09 calculus. Now
we show how to move open code. Take a look at the expression on the
slide, which could be the output of a program generator. Division is a
partial operation. We wish to assure that it always succeeds, so we
insert the run-time y non-zero test.
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Guard Insertion
The need to move open code

let guarded div x y =
〈(assert (∼y 6= 0); ∼x / ∼y)〉 in

〈fun y → ∼complex code +∼(guarded div 〈10〉 〈y〉 )〉

 − : (’ a, int → int ) code =
〈fun y 15 → the complex code +

begin assert (y 15 6= 0); (10 / y 15) end〉



We re-write our expression using a generator for guarded division,
which assures that the divisor is non-zero. In the first approximation,
guarded div could be defined as shown on the slide. The result is not
satisfactory: if y does turn out zero, we waste time computing the
complex expression before throwing an exception. One would say that
the new code is not better than the partial division. Run-time
assurance tests ought to be executed as soon as possible, to avoid
wasting time computing the results that would be thrown away. In
our case, the assert has to be moved right after the binder, which is
the earliest possible moment to test y. We are moving the open code!
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Guard Insertion
Now really moving open code, across binders

〈fun y →
∼ (new ctx (fun () →
〈∼complex code +∼(guarded div 0 〈10〉 〈y〉 )〉 )) 〉

 〈fun y 4 →
assert (y 4 6= 0);
the complex code + 10 / y 4〉



Here is what we want: we write the generator as shown on the slide,
and get the result like the one below. The non-zero assertion is done
right after the binder, where we want it. (The mysterious first
argument 0 of guarded div is to be discussed later.) We have moved
the open code across the addition expression. But we want more.
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Guard Insertion
Now really moving open code, across binders

〈fun y → ∼ (new ctx (fun () →
〈fun x → ∼ (new ctx (fun () →
〈∼complex code +∼(guarded div 1 〈x〉 〈y〉 )〉 )) 〉 )) 〉

 〈fun y 5 →
assert (y 5 6= 0);
fun x 6 → the complex code + x 6 / y 5〉



Here we generate code with two binders, x and y. The test for y being
non-zero should be performed as early as possible, that is, right after
the y binder. Thus we have to move open code across future-stage
binders (the binder for x, in our case).
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Guard Insertion
Now really moving open code, across binders

〈fun y → ∼ (new ctx (fun () →
〈(fun x → ∼ (new ctx (fun () →
〈∼complex code +∼(guarded div 1 〈x〉 〈y〉 )〉 )))

(∼complex code +∼(guarded div 0 〈5〉 〈y−1〉 )) 〉 )) 〉

 〈fun y 7 →
assert (y 7 6= 0); assert (( y 7 − 1) 6= 0);
(( fun x 8 → the complex code + x 8 / y 7)
(the complex code + 5 / (y 7 − 1)))〉



We can even move from several places, from several contexts. Here,
one guarded division is under the x binder (inside the function) and
the other is in the argument expression to which the function applies.
The assertions move up and collect under the binder. One can
imagine general constraint posting and solving.
One has probably noticed a bit of scaffolding, like mysterious first
argument to guarded div. It betrays the real solution. Apparently
we should know the nesting level of an expression, or the length of its
future-stage environment. MetaOCaml can give us that information,
in principle. In our Haskell solution, this information is available for
free. We also get the hint that we need a more involved combinator to
create binders.
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Loop Tiling
Introduction

v′
i =

∑
j

aijvj

let mvmul0 n m a v v’ =
Array. fill v’ 0 n 0;
for j = 0 to m−1 do

for i = 0 to n−1 do
v’.( i ) ← v’.( i ) + a.( i ).( j ) ∗ v.( j )

done done



The most advanced is loop tiling, which we describe on the example
of vector-matrix multiplication: here how it looks in Math and in
code. The matrix a has n rows and m columns; v is the input vector
and v’ is the output one. We assume that the input vector v is long,
that is m is much greater than n.
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Loop Tiling
Introduction

v′
i =

∑
j

aijvj

let mvmul1 b n m a v v’ =
Array. fill v’ 0 n 0;
sloop 0 (m−1) b (fun jj →

sloop 0 (n−1) b (fun ii →
for j = jj to min (jj + b−1) (m−1) do

for i = ii to min (ii + b−1) (n−1) do
v’.( i ) ← v’.( i ) + a.( i ).( j ) ∗ v.( j )

done done))



Here is the same matrix-vector multiplication implemented in tiled
loops, with the square tile of size b. The function sloop is the
for-loop with the step (step b in our case). We see that tiling is
converting a single loop into a nested loop and exchange, pulling the
ii loop right after the jj loop. The body of the loops remains exactly
the same as before; it is executed the same number of times – but in a
different pattern.
The array v is traversed repeatedly. By assumption, it is long and so
won’t fit in cache. A tiled program deals with the array a chunk (of
size b) at a time. A jj-th chunk will be loaded into cache, used
several times. When we are finished with the chunk, it won’t be
needed again and can safely be replaced in cache with another chunk.
Tiling improves locality taking advantage of cache, and is one of the
basic optimizations in high-performance computing. Obviously tiling
is not a general-purpose optimization: our loop rearrangement heavily
relied on the fact evaluations of loop bodies are uncorrelated.
The tiled code looks more complex; it seems quite easy to make a
mistake when tiling by hand. We need automation. We need
automation even more when we will be combining loop tiling with
scalar promotion, partial unrolling and other optimizations.
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Loop Tiling Puzzle
Moving open code with binders across binders

let gmvmul1 loop1 loop2 n m = 〈fun a v v’ →
Array. fill v’ 0 n 0;
∼ (loop1 0 (m−1) (fun j →

loop2 0 (n−1) (fun i →
〈v’.( ∼ i ) ← v’.( ∼ i ) + a.(∼ i ).( ∼ j ) ∗ v.(∼ j )〉 )))
〉



Here is the puzzle to build ordinary and tiled loop nests by
composition. For example, we may write the vector-matrix
multiplication as shown. The code is the straightforward staging of
the naive computation, assuming statically known dimensions. The
code is ‘obviously’ correct. We have abstracted the loop as
combinators.
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Loop Tiling Puzzle
Moving open code with binders across binders

let gmvmul1 loop1 loop2 n m = 〈fun a v v’ →
Array. fill v’ 0 n 0;
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If we instantiate both loop arguments as gen regular loop, we get
the naive code seen earlier, with two nested loops.
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Loop Tiling Puzzle
Moving open code with binders across binders

let gen nested loop b lb ub body =
〈sloop lb ub b (fun ii →

for i = ii to min (ii + b−1) ub do ∼(body 〈i〉) done)〉

gmvmul1 (gen nested loop 2) (gen nested loop 2) 5 10
 〈fun a 19 v 20 v’ 21 → Array. fill v’ 21 0 5 0;

for jj 22 = 0 to 9 step 2 do
for j 23 = jj 22 to min ((jj 22 + 2) − 1) 9 do

for ii 24 = 0 to 4 step 2 do
for i 25 = ii 24 to min ((ii 24 + 2) − 1) 4 do ...



Choosing a different combinator, we split each loop with the factor of
2 (so-called strip mining). (We have abused the notation and
introduced the for-loop with a step. In OCaml, it is implemented as a
combinator.)
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Finally, if we instantiate the loop argument differently still, we
exchange two loops and obtain the tiled code that we have seen on
the previous slide. We write loop body once, and apply various
transformations (strip-mining, unrolling, etc) many times. In
particular, we exchange loop bodies, moving open code with binders
across other binders. (Exercise to the reader: what happens if we
move insert here over gmvmul1?)
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Outline

Problems

I Requirements for the solution

Solutions



You might have noticed that all the shown problem examples had an
implementation. I indeed have the solution for all these examples in
MetaOCaml. I do not like it.
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Scope extrusion
We want to move open code, but not too far

let r = ref 〈0〉 in
〈fun y → ∼ (r : = 〈y〉; 〈1〉 )〉 ;
! r

 − : (’ a, int ) code = 〈y 6〉



Effects crossing binders a liable to cause scope extrusion. Here is an
example: the mutation effect (similar to the one we’ve seen earlier)
crosses the binder. The result is the code with an unbound variable.
We do not wish that to happen! The generated code should be
assuredly well-formed.
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Scope extrusion
We want to move open code, but not too far

〈fun y → ∼ (new ctx (fun () →
〈fun x → ∼ (new ctx (fun () →

〈∼complex code +∼(guarded div 1 〈y〉 〈x〉 )〉 )) 〉 )) 〉

 〈fun y 34 →
assert (x 35 6= 0);
fun x 35 → the complex code + (y 34 / x 35)〉



The problem is real. For example, if we make a simple mistake in the
assertion-insertion code, we may generate the following code. Anyone
can tell what is wrong with it?
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Unacceptable

I Tree hacking

I Need to look at the generated code
I Post-validation
I Treating the generated code as white-box



Tree hacking is the term from linguistics, which means rewriting ASTs
as first-order data structures (treating the generated code as free term
algebra.) We do not reject tree hacking: it is fully appropriate and
even necessary in compiler construction, when used by an expert (who
will then prove the code generator correct: an example is the work of
Thiemann and Dussart, 1996-1999). Assembly is a good language,
say, for embedded systems, when written by an expert and
verified/proved. Most programmers should avoid assembly, and tree
hacking. This is especially true for people who build applications and
solve ‘real’ problems, rather than write programming tools.
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Unacceptable
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I Treating the generated code as white-box



Users of a code generator may not even know the target language.
Even if they do, they may have trouble understanding it since the
generated code is often too large, too complex, too obfuscated.
Therefore, we require that the generated code compile without errors.
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Unacceptable

I Tree hacking
I Need to look at the generated code
I Post-validation

I Treating the generated code as white-box



One way to assure that the generated code is well-formed is to try to
compile it at the end, rejecting it if the compilation fails. Template
Haskell uses this approach. Alas, the errors, if any, will be reported
too late and in terms of the generated code. We want errors to be
reported early, and in terms of the generators. We want the generated
code to be well-formed and well-typed all the time, as it is being
generated.
The post-validation does not help with accidental variable capture
errors.



10

Unacceptable

I Tree hacking
I Need to look at the generated code
I Post-validation
I Treating the generated code as white-box



We pursue the pure generative approach: the generated code is
treated as black-box and cannot be examined. The generative
approach has the strongest equational theory. (For the challenge, we
might relax this criterion and allow looking at the generated code,
provided that well-formedness and well-typedness are still statically
ensured, at all times.)



11

The Goal

Generate code
I with compositional combinators
I statically assure well-formed and well-typed code
I even for the intermediate, open results



Our goal is to generate code with compositional combinators that
statically assure the results (even intermediate, open results) are
well-formed and well-typed.
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CPS/monadic style no longer helps

Simple let-insertion

let genlet e k = 〈let t = ∼e in ∼ (k 〈t〉 )〉

genlet e1 (fun t1 → ... genlet e2 k)
 〈let t1 = ∼e1 in ... let t2 = ∼e2 ... 〉

Inner genlet, inner let-expression

Even nested CPS cannot insert let beyond the closest
binding

because abstractions are always pure values

We need a new CPS hierarchy



As it was known in Partial Evaluation community, we can use
CPS/monadic style to insert let. We easily see that nesting genlet

leads to the corresponding nesting of let-statements. We cannot insert
let beyond the closest binder! Even nesting of CPS transform does
not help. Hint: in the ordinary CPS hierarchy, abstractions are pure
values. We need a new CPS hierarchy.
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Outline

Problems

Requirements for the solution

I Solutions



The code shown in the section about problems was in MetaOCaml.
We can indeed solve all the posed problems. Alas, the MetaOCaml
solution was not safe: scope extrusion was easily possible. Now, we
show the safe code, using safe Template Haskell.
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MetaHaskell
Matrix-vector multiplication, textbook

v′
i =

∑
j

aijvj

mvmul0 n m a v v’ =
clear vec (int n) v’ ;;
loop (int 0) (int (m−1)) (int 1) (lam $ \j →
loop (int 0) (int (n −1)) (int 1) (lam $ \i →
(vec set � weakens v’ � weakens (var i )) �
(vec get � weakens v’ � weakens (var i )) ⊕
(mat get � weakens a � weakens (var i ) � weakens (var j )) ⊗
(vec get � weakens v � weakens (var j ))

))



This is the code using our library, safe code generator embedded in
Haskell. The syntax could be better, there is lots of room to design
nicer-looking combinators.



15

MetaHaskell
Matrix-matrix addition, tiled

mvmul2 b n m a v v’ =
clear vec (int n) v’ ;;
(resetJ $
loop nested exch b 0 (m−1) (lam $ \j →
loop nested exch b 0 (n−1) (lam $ \i →
(vec set � weakens v’ � weakens (var i )) �
(vec get � weakens v’ � weakens (var i )) ⊕
(mat get � weakens a � weakens (var i ) � weakens (var j )) ⊗
(vec get � weakens v � weakens (var j ))

)))



Here is the same matrix-matrix addition with the tiled loops. The
loop bodies remain the same, the loop combinator is different. The
function mvmul2, depending on the type instantiation, could either
give the code to run at the present stage, or give the code to print
(and run later). The produced tiled code is the same as we have seen
earlier (modulo the syntactic differences between Haskell and OCaml).
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The function resetJ marks the spot where to move the loops.
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MetaHaskell
Loop combinators

Strip-mining

loop nested b lb ub body =
loop (int lb ) (int ub) (int b) (lam $ \ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))

Tiling: strip-mining + exchange

loop nested exch b lb ub body =
let (insloop (int lb ) (int ub) (int b)) (\ii →
loop (var ii ) (min (var ii +: int (b−1)) (int ub)) (int 1)
(weakens body))
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Conclusions

Effectful code generation

I Effects are desirable to write good-looking generators
I Effects are necessary for loop tiling, loop-invariant code

motion, assertion-insertion and the movement of open code
across binders

Prototype of MetaHaskell

I Like MetaOCaml: generation of assuredly well-typed and
well-scoped code

I Unlike MetaOCaml: safety guarantees in the presence of
arbitrary effects
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