
Sun Java System Message Queue
4.1 Technical Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–7759
September 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

071113@19028

Contents

Preface ...7

1 Messaging Systems: An Introduction ..15
Message-Oriented Middleware (MOM) ... 15
JMS as a MOM Standard .. 20

JMS Messaging Objects and Patterns .. 21
Administered Objects .. 22

▼ To Use Administered Objects as Destinations .. 23
Message Queue: Elements and Features ... 24

The Message Queue Service .. 24
Connecting to the Broker .. 25
The Broker .. 26
Client Runtime Support .. 27
Administration ... 28
Scaling the Message Queue Service .. 28

Message Queue as an Enabling Technology ... 30
Message Queue Feature Summary .. 30

2 Client Programming Model ...31
Design and Performance .. 31
Messaging Domains .. 32

Point-To-Point Messaging .. 32
Publish/Subscribe Messaging ... 34
Domain-Specific and Unified APIs .. 36

Programming Objects ... 37
Connection Factories and Connections .. 38
Sessions ... 39

3

Messages .. 40
Producing a Message ... 42
Consuming a Message .. 43

Synchronous and Asynchronous Consumers .. 43
Using Selectors to Filter Messages ... 43
Using Durable Subscribers ... 44

The Request-Reply Pattern ... 44
Reliable Messaging .. 46

Acknowledgements ... 46
Transactions ... 47
Persistent Storage ... 48

A Message’s Journey Through the System .. 48
Message Production ... 49
Message Handling and Routing ... 50
Message Consumption .. 50
Message End-of-Life .. 50

Working with SOAP Messages .. 51
▼ To Get Reliable SOAP Messaging .. 51

Java and C Clients .. 52

3 Message Queue Service ..53
Component Services ... 53

Connection Services .. 55
Destinations and Routing Services .. 56
Persistence Services .. 59
Security Services ... 60
Monitoring Services ... 63

Administration Tools and Tasks ... 65
Administration Tools .. 65
JMX-Based Administration .. 67
Supporting a Development Environment .. 68
Supporting a Production Environment .. 68

Scaling Messaging Operations ... 70

Contents

Sun Java System Message Queue 4.1 Technical Overview • September 20074

4 Broker Clusters ...71
Cluster Models ... 71

Conventional Clusters ... 72
High Availability Clusters ... 73

Message Delivery ... 74
Destination Attributes ... 75
Clustering and Destinations ... 76

Cluster Configuration ... 80
Cluster Synchronization ... 81
Choosing a Clustering Model .. 82

5 Message Queue and J2EE ...83
JMS/J2EE Programming: Message-Driven Beans ... 83
J2EE Application Server Support ... 85

JMS Resource Adapter ... 85

A Message Queue Implementation of Optional JMS Functionality ... 87
Optional Features .. 87

B Message Queue Features ...89
Feature List ... 91

Glossary .. 109

Index ... 113

Contents

5

6

Preface

This book, the Sun Java System Message Queue 3.7 UR1Technical Overview, provides an
introduction to the technology, concepts, architecture, capabilities, and features of the Message
Queue messaging service.

As such, this book provides the foundation for other books within the Message Queue
documentation set, and should be read first.

Who Should Use This Book
This guide is meant for application developers, administrators, and other parties who plan to
use the Message Queue product or who wish to understand the technology, concepts,
architecture, capabilities, and features of the product.

■ An application developer is responsible for writing Message Queue client applications that
use the Message Queue service to exchange messages with other client applications.

■ An administrator is responsible for setting up and managing a Message Queue messaging
service. This book does not assume any knowledge or understanding of messaging systems.

This book does not assume any knowledge of the Java Message Service (JMS) specification,
which is implemented by the Message Queue service.

Before You Read This Book
There are no prerequisites to this book. You should read this book to gain an understanding of
basic Message Queue concepts before reading the Message Queue developer and
administration guides.

7

How This Book Is Organized
This guide is designed to be read from beginning to end; each chapter builds on information
contained in earlier chapters. The following table briefly describes the contents of each chapter.

TABLE P–1 Book Contents and Organization

Chapter Description

Chapter 1, “Messaging Systems: An Introduction,” Introduces messaging middleware technology,
discusses the JMS standard, and describes the
Message Queue service implementation of that
standard.

Chapter 2, “Client Programming Model,” Describes the JMS programming model and
how you can use the Message Queue client
runtime to create JMS clients. Describes
runtime support for C++ clients and for the
transport of SOAP messages.

Chapter 3, “Message Queue Service,” Discusses administrative tasks and tools and
describes broker services used to configure
connections, routing, persistence, security, and
monitoring.

Chapter 4, “Broker Clusters,” Discusses the architecture and use of Message
Queue broker clusters.

Chapter 5, “Message Queue and J2EE,” Explores the ramifications of implementing JMS
support in a J2EE platform environment

Appendix A, “Message Queue Implementation of Optional
JMS Functionality”

Describes how the Message Queue product
handles JMS optional items

Appendix B, “Message Queue Features” Lists Message Queue features, summarizes steps
needed to implement these, and provides
reference for further information

Glossary Provides information about terms and concepts
you might encounter while using Message
Queue

Related Documentation
The documents that comprise the Message Queue documentation set are listed in the following
table in the order in which you would normally use them.

Preface

Sun Java System Message Queue 4.1 Technical Overview • September 20078

TABLE P–2 Message Queue Documentation Set

Document Audience Description

Sun Java System Message
Queue 4.1 Installation Guide

Developers and administrators Explains how to install Message Queue
software on Solaris, Linux, and Windows
platforms.

Sun Java System Message
Queue 4.1 Release Notes

Developers and administrators Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Sun Java System Message
Queue 4.1 Technical
Overview

Developers and administrators Describes Message Queue concepts,
features, and components.

Sun Java System Message
Queue 4.1 Developer’s Guide
for Java Clients

Developers Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message
Queue implementation of the JMS or
SOAP/JAXM APIs.

Sun Java System Message
Queue 4.1 Administration
Guide

Administrators, also
recommended for developers

Provides background and information
needed to perform administration tasks
using Message Queue administration tools.

Sun Java System Message
Queue 4.1 Developer’s Guide
for C Clients

Developers Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Online Help
Message Queue 4.1 includes command-line utilities for performing Message Queue message
service administration tasks.

Message Queue 4.1 also includes a graphical user interface (GUI) administration tool, the
Administration Console (imqadmin). Context-sensitive help is included in the Administration
Console; see “Administration Console Online Help” in Sun Java System Message Queue 4.1
Administration Guide.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is provided at the following
location:

Preface

9

Platform Location

Solaris /usr/share/javadoc/imq/index.html

Linux /opt/sun/mq/javadoc/index.html

Windows IMQ_HOME/javadoc/index.html

This documentation can be viewed in any HTML browser. It includes standard JMS API
documentation, as well as Message Queue-specific APIs for Message Queue administered
objects, which are of value to developers of messaging applications.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are located in the following directories, depending on
platform. See the README file located in these directories and in each of their subdirectories.

Platform Location

Solaris /usr/demo/imq/

Linux /opt/sun/mq/examples

Windows IMQ_HOME/demo/

Example C Client Programs
Example C client applications are located in the following directories, depending on platform.
See the README file located in these directories.

Platform Location

Solaris /opt/SUNWimq/demo/C/

Linux /opt/sun/mq/examples/C/

Windows IMQ_HOME/demo/C/

Preface

Sun Java System Message Queue 4.1 Technical Overview • September 200710

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

(http://java.sun.com/products/jms/docs.html)

The specification includes sample client code.

Directory Variable Conventions
Message Queue makes use of three directory variables; how they are set varies from platform to
platform. Table P–3 describes these variables and how they are used on the Solaris, Linux, and
Windows platforms.

Note – The information in Table P–3 applies only to the standalone installation of Message
Queue. When Message Queue is installed and run as part of an Application Server installation,
the values of the directory variables are set differently: IMQ_HOME is set to
appServer_install_dir/imq (where appServer_install_dir is the Application Server installation
directory), and IMQ_VARHOME is set to appServer_domainName_dir/imq (where
appServer_domainName_dir is the domain directory for the domain starting the Message
Queue broker).

TABLE P–3 Directory Variable Conventions

Variable Description

IMQ_HOME Used in Message Queue documentation to refer to the Message Queue base
directory (root installation directory):
■ On Solaris and Linux, there is no root Message Queue installation directory.

Therefore IMQ_HOME is not used in Message Queue documentation to refer to
file locations in Solaris and Linux.

■ On Windows, the root Message Queue installation directory is set to the
directory in which you unzip the Message Queue bundle.

IMQ_VARHOME The /var directory in which Message Queue temporary or dynamically-created
configuration and data files are stored. It can be set as an environment variable to
point to any directory.
■ On Solaris, IMQ_VARHOME defaults to the /var/imq directory.

■ On Solaris, for Sun Java System Application Server, Evaluation Edition,
IMQ_VARHOME defaults to the IMQ_HOME/var directory.

■ On Linux, IMQ_VARHOME defaults to the /var/opt/sun/mq directory.

■ On Windows, IMQ_VARHOME defaults to the IMQ_HOME/var directory.

Preface

11

http://java.sun.com/products/jms/docs.html

TABLE P–3 Directory Variable Conventions (Continued)
Variable Description

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executables:
■ On Solaris, IMQ_JAVAHOME looks for the latest JDK, but a user can optionally set

the value to wherever the preferred JRE resides.

■ On Linux, Message Queue first looks for the latest JDK, but a user can
optionally set the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

■ On Windows, IMQ_JAVAHOME will be set to point to an existing Java runtime if a
supported version is found on the system. If a supported version is not found,
one will be installed.

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without platform-specific
environment variable notation or syntax (for example, $IMQ_HOME on UNIX). Path names
generally use UNIX directory separator notation (/).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Sun Java System Message Queue 4.1 Technical Overview • September 200712

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, Korn shell, and Windows operating system.

TABLE P–5 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Windows C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–6 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

13

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-7759.

Preface

Sun Java System Message Queue 4.1 Technical Overview • September 200714

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

Messaging Systems: An Introduction

Sun JavaTM System Message Queue is a messaging middleware product that implements and
extends the Java Message Service (JMS) standard. If this statement makes perfect and deep sense
to you, you should start by reading the section “Message Queue: Elements and Features” on
page 24. Otherwise, you should begin at the beginning.

This chapter describes the messaging technology that underlies products like Message Queue
and explains how Message Queue implements and extends the JMS specification, which
standardizes this technology. It covers the following topics:

■ “Message-Oriented Middleware (MOM)” on page 15
■ “JMS as a MOM Standard” on page 20
■ “Message Queue: Elements and Features” on page 24
■ “Scaling the Message Queue Service” on page 28
■ “Message Queue as an Enabling Technology” on page 30

Message-Oriented Middleware (MOM)
Because businesses, institutions, and technologies change continually, the software systems that
serve them must be able to accommodate such changes. Following a merger, the addition of a
service, or the expansion of available services, a business can ill afford to recreate its information
systems. It is at this most critical point that it needs to integrate new components or to scale
existing ones as efficiently as possible. The easiest way to integrate heterogeneous components
is not to recreate them as homogeneous elements but to provide a layer that allows them to
communicate despite their differences. This layer, called middleware, allows software
components (applications, enterprise java beans, servlets, and other components) that have
been developed independently and that run on different networked platforms to interact with
one another. It is when this interaction is possible that the network can become the computer.

As shown in Figure 1–1, conceptually, middleware resides between the application layer and the
platform layer (the operating system and underlying network services).

1C H A P T E R 1

15

Applications distributed on different network nodes use the application interface to
communicate without having to be concerned with the details of the operating environments
that host other applications nor with the services that connect them to these applications. In
addition, by providing an administrative interface, this new, virtual system of interconnected
applications can be made reliable and secure. Its performance can be measured and tuned, and
it can be scaled without losing function.

Middleware can be grouped into the following categories:

■ Remote Procedure Call or RPC-based middleware, which allows procedures in one
application to call procedures in remote applications as if they were local calls. The
middleware implements a linking mechanism that locates remote procedures and makes
these transparently available to a caller. Traditionally, this type of middleware handled
procedure-based programs; it now also includes object-based components.

■ Object Request Broker or ORB-based middleware, which enables an application’s objects to
be distributed and shared across heterogeneous networks.

ComponentApplication 1

Platform1

Application 2

Application Programming Interface

Middleware — Distributed
System Services

Admin

Platform
Interface

Platform2

Platform
Interface

Platform3

Platform
Interface

FIGURE 1–1 Middleware

Message-Oriented Middleware (MOM)

Sun Java System Message Queue 4.1 Technical Overview • September 200716

■ Message Oriented Middleware or MOM-based middleware, which allows distributed
applications to communicate and exchange data by sending and receiving messages.

All these models make it possible for one software component to affect the behavior of another
component over a network. They are different in that RPC- and ORB-based middleware create
systems of tightly-coupled components, whereas MOM-based systems allow for a looser
coupling of components. In an RPC- or ORB-based system, when one procedure calls another,
it must wait for the called procedure to return before it can do anything else. As mentioned
before, in these models, the middleware functions partly as a super-linker, locating the called
procedure on a network and using network services to pass function or method parameters to
the procedure and then to return results.

MOM-based systems allows communication to happen through the asynchronous exchange of
messages, as shown in Figure 1–2.

Message Oriented Middleware makes use of messaging provider to mediate messaging
operations. The basic elements of a MOM system are clients, messages, and the MOM provider,
which includes an API and administrative tools. The MOM provider uses different
architectures to route and deliver messages: it can use a centralized message server or it can
distribute routing and delivery functions to each client machine. Some MOM products
combine these two approaches.

Using a MOM system, a client makes an API call to send a message to a destination managed by
the provider. The call invokes provider services to route and deliver the message. Once it has
sent the message, the client can continue to do other work, confident that the provider retains
the message until a receiving client retrieves it. The message-based model, coupled with the
mediation of the provider, makes it possible to create a system of loosely-coupled components.
Such a system can continue to function reliably, without downtime, even when individual
components or connections fail.

One other advantage of having a messaging provider mediate messaging between clients is that
by adding an administrative interface, you can monitor and tune performance. Client
applications are thus effectively relieved of every problem except that of sending, receiving, and

Client Client

Messaging
Provider

DestinationMsg1

Send

Msg1

Receive

A
P
I

A
P
I

FIGURE 1–2 MOM-Based System

Message-Oriented Middleware (MOM)

Chapter 1 • Messaging Systems: An Introduction 17

processing messages. It is up to the code that implements the MOM system and up to the
administrator to resolve issues like interoperability, reliability, security, scalability, and
performance.

So far we have described the advantages of connecting distributed components using
message-oriented middleware. There are also disadvantages: one of them results from the loose
coupling itself. With an RPC system, the calling function does not return until the called
function has finished its task. In an asynchronous system, the calling client can continue to load
work upon the recipient until the resources need to handle this work are depleted and the called
component fails. Of course, these conditions can be minimized or avoided by monitoring
performance and adjusting message flow, but this is work that is not needed with an RPC
system. The important thing is to understand the advantages and liabilities of each kind of
system. Each system is appropriate for different tasks. Sometimes, you will need to combine the
two kinds of systems to obtain the exact behavior you need.

Figure 1–3 shows the way a MOM system can enable communication between two RPC-based
systems. The left side of the figure shows an application that distributes client, server, and data
store components on different networked nodes for improved performance. This is a discount
airline reservation system: an end user pays a fee to use this service, which allows it to find the
lowest available fare for given destinations and times. The data store holds information about
registered users and about airlines that participate in this program. Based on the user’s request,
logic on the server queries participating airlines for prices, sorts through the information, and
presents the three lowest bids to the user. The right side of the picture shows an RPC-based
system that represents the ticket/reservation system for any one of the participating airlines.
The right side of the picture would be replicated for as many airlines as the discounter is
connected to. For each such airline, the data store would hold information about available
flights (seating, flight times, and prices). The server component would update that information
in response to data input by the end user. The airline server also subscribes to the MOM service,
accepting requests for information from the discount reservation system and returning seating
and pricing information. If a customer decides to purchase a discounted ticket on a PanWorld
flight, the server component for that system would update the information in the data store and
then either generate a ticket for the requester or send a message to the discounting service to
generate the ticket.

Message-Oriented Middleware (MOM)

Sun Java System Message Queue 4.1 Technical Overview • September 200718

This example illustrates some of the differences between RPC and MOM systems. The
difference in the way in which distributed components are coupled has already been
mentioned. Another difference is that while RPC systems are often used to distribute and
connect client and server components in which the client is often an end-user, with MOM
systems, clients are often heterogeneous software components that can only interoperate by
means of messaging.

A more serious problem with MOM systems arises from the fact that MOMs are implemented
as proprietary products. What happens when your company, which depends on SuperMOM-X
acquires a company that uses SuperMOM-Y? To resolve this problem, a standard messaging
interface is needed. If both SuperMOM-X and SuperMOM-Y implemented this interface, then
applications developed to run on one system could also run on the other. Such an interface
should be simple to learn but provide enough features to support sophisticated messaging
applications. The Java Message Service (JMS) specification, introduced in 1998, aimed to do just
that. The next section describes the basic features of JMS and explains how the standard was
developed to embrace common elements of existing proprietary MOM products as well as to
allow for differences and further growth.

Messaging
Provider

RPC System MOM System

DestinationMsg1 Msg1Server Server

End
User

Discount Airline
Tickets Application

RPC System

End
User

PanWorld
Airlines

Data
Store

Data
Store

FIGURE 1–3 Combining RPC and MOM Systems

Message-Oriented Middleware (MOM)

Chapter 1 • Messaging Systems: An Introduction 19

JMS as a MOM Standard
The Java Messaging Service specification was originally developed to allow Java applications
access to existing MOM systems. Since its introduction, it has been adopted by many existing
MOM vendors and it has been implemented as an asynchronous messaging system in its own
right.

In creating the JMS specification, its designers wanted to capture the essential elements of
existing messaging systems. These included

■ The concept of a messaging provider that routes and delivers messages
■ Distinct messaging patterns or domains such as point-to-point messaging and

publish/subscribe messaging
■ Facilities for synchronous and asynchronous message receipt
■ Support for reliable message delivery
■ Common message formats such as stream, text, and byte

Vendors implement the JMS specification by supplying a JMS provider consisting of libraries
that implement the JMS interfaces, of functionality for routing and delivering messages, and of
administrative tools that manage, monitor, and tune the messaging service. Routing and
delivery functions can be performed by a centralized message server or broker, or they could be
implemented through functionality that is part of each client’s runtime.

Equally, a JMS provider can play a variety of roles: it can be created as a stand-alone product or
as an embedded component in a larger distributed runtime system. As a standalone product, it
could be used to define the backbone of an enterprise application integration system; embedded
in an application server, it could support inter-component messaging. For example, J2EE uses a
JMS provider to implement message-driven beans and to allow EJB components to send and
receive messages.

To have created a standard that included all features of existing systems would have resulted in
system that was hard to learn and difficult to implement. Instead, JMS defined a least common
denominator of messaging concepts and features. This resulted in a standard that is easy to
learn and that maximizes the portability of JMS applications across JMS providers. It’s
important to note that JMS is an API standard, not a protocol standard. It is easy to move a JMS
client from one vendor to another. But different JMS vendors typically cannot communicate
directly with one another.

The next section describes the basic objects and messaging patterns defined by the JMS
specification.

JMS as a MOM Standard

Sun Java System Message Queue 4.1 Technical Overview • September 200720

JMS Messaging Objects and Patterns
In order to send or receive messages, a JMS client must first connect to a JMS provider which is
often implemented as a message broker: the connection opens a channel of communication
between the client and the broker. Next, the client must set up a session for creating, producing,
and consuming messages. You can think of the session as a stream of messages defining a
particular conversation between the client and the broker. The client itself is a message producer
and/or a message consumer. The message producer sends a message to a destination that the
broker manages. The message consumer accesses that destination to consume the message. The
message includes a header, optional properties, and a body. The body holds the data; the header
contains information the broker needs to route and manage the message; and the properties can
be defined by client applications or by a provider to serve their own needs in processing
messages. Connections, sessions, destinations, messages, producers, and consumers are the
basic objects that make up a JMS application.

Using these basic objects, a client application can use two messaging patterns (or domains) to
send and receive messages. These are shown in Figure 1–4.

Clients A and B are message producers, sending messages to clients C, D, and E by way of two
different kinds of destinations.

■ Messaging between clients A, C, and D illustrates the point-to-point pattern. Using this
pattern, a client sends a message to a queue destination from which only one receiver may
get it. No other receiver accessing that destination can get that message.

■ Messaging between clients B, E, and F illustrates the publish/subscribe pattern. Using this
broadcast pattern, a client sends a message to a topic destination from which any number of
consuming subscribers can retrieve it. Each subscriber gets its own copy of the message.

Broker

ClientA Queue

Topic

Message
Producers

ClientC

ClientD

ClientE

ClientF

Message
Consumers

Msg1

Msg2 Msg1 Msg2

Msg3

Msg3

ClientB Msg3

FIGURE 1–4 JMS Messaging Patterns

JMS as a MOM Standard

Chapter 1 • Messaging Systems: An Introduction 21

Message consumers in either domain can choose to get messages synchronously or
asynchronously. Synchronous consumers make an explicit call to retrieve a message;
asynchronous consumers specify a callback method that is invoked to pass a pending message.
Consumers can also filter out messages by specifying selection criteria for incoming messages.

Administered Objects
The JMS specification created a standard that combined many elements of existing MOM
systems without attempting to exhaust all possibilities. Rather, it sought to set up an extensible
scheme that could accommodate differences and future growth. JMS leaves a number of
messaging elements up to the individual providers to define and implement. These include load
balancing, standard error messages, administrative APIs, security, the underlying wire
protocols, and message stores. The next section, “Message Queue: Elements and Features” on
page 24 describes how Message Queue implements many of these elements and how it extends
the JMS specification.

Two messaging elements that JMS does not completely define are connection factories and
destinations. Although these are fundamental elements in the JMS programming model, there
were so many existing and anticipated differences in the ways providers define and manage
these objects, that it was neither possible nor desirable to create a common definition.
Therefore, these two objects, rather than being created programmatically, are normally created
and configured using administration tools. They are then stored in an object store, and accessed
by a JMS client through standard JNDI lookups.
■ Connection factory administered objects are used to generate a client’s connections to the

broker. They encapsulate provider-specific information that governs certain aspects of
messaging behavior: connection handling, client identification, message header overrides,
reliability, and flow control, and so on. Every connection derived from a given connection
factory exhibits the behavior configured for that factory.

■ Destination administered objects are used to reference physical destinations on the broker.
They encapsulate provider-specific naming (address-syntax) conventions and they specify
the messaging domain within which the destination is used: queue or topic.

JMS clients are not required to look up administered objects; they can create these objects
programmatically (which are then stored in the broker’s memory). For quick prototyping,
creating these objects programmatically might be easiest. But for deployment in a production
environment, looking up administered objects in a central repository makes it much easier to
control and manage messaging behavior:
■ By using administered objects for connection factory objects, administrators can tune

messaging performance by reconfiguring these objects. Performance can be improved
without having to recode.

■ By using administered objects for physical destinations, administrators can control the
proliferation of these destinations on the broker by requiring clients to access these
preconfigured objects.

JMS as a MOM Standard

Sun Java System Message Queue 4.1 Technical Overview • September 200722

■ Administered objects shield developers from provider-specific implementation details and
allow the code they develop for one provider to be portable to other providers with little or
no change.

The use of administered objects adds a final wrinkle to the picture of the basic JMS application,
which is shown in Figure 1–5.

Figure 1–5 shows how a message producer and a message consumer use a destination
administered object to access the physical destination to which it corresponds. The marked
steps denote the actions that need to be taken by the administrator and by the client
applications to send and receive messages using this mechanism.

▼ To Use Administered Objects as Destinations

The administrator creates a physical destination on the broker.

Broker

Physical
Destinations

Message
Consumer

Destination
Administered Object

Msg1 Msg1
JNDI

JMS
API

1

2

4 6

ClientC

5

Admin

Object
Store

Message
Producer

ClientA

JNDI

JMS
API

3

FIGURE 1–5 Basic Elements of a JMS Application

1

JMS as a MOM Standard

Chapter 1 • Messaging Systems: An Introduction 23

The administrator creates a destination administered object and configures it by specifying the
name of the physical destination to which it corresponds and its type: queue or topic.

The message producer looks up the destination administered object using a JNDI lookup call.

The message producer sends a message to the destination.

The message consumer looks up the destination administered object where it expects to get
messages.

The message consumer gets the message from the destination.
The process of using connection factory administered objects is similar. The administrator
creates and configures a connection factory administered object using administration tools.
The client looks up the connection factory object and uses it to create a connection.

Although the use of administered objects adds a couple of steps to the messaging process, it also
adds robustness and portability to messaging applications.

Message Queue: Elements and Features
So far we have described the elements of message-oriented middleware and the use of JMS as a
way of adding portability to MOM applications. It now remains to describe how Message Queue
implements the JMS specification and to introduce the features and tools it uses to provide
reliable, secure, and scalable messaging service.

First, like many JMS provider, Message Queue can be used as a stand-alone product or it can be
used as an enabling technology, embedded in a J2EE application server to provide
asynchronous messaging. Chapter 5, “Message Queue and J2EE,” describes the role Message
Queue plays in J2EE in greater detail. Unlike other JMS providers, Message Queue has been
designated as the JMS reference implementation. This designation attests to the fact that
Message Queue is a correct and complete JMS implementation. It also guarantees that the
Message Queue product will remain current with any future JMS revisions and extensions.

The Message Queue Service
As a JMS provider, Message Queue offers a messaging service that implements the JMS
interfaces and that provides administrative services and control. So far, in illustrating JMS
providers, the focus has been mainly on the role of the broker in relaying messages. But in fact, a
JMS provider must include many elements in addition to the broker to provide reliable, secure,
scalable messaging. Figure 1–6 shows the elements that make up the Message Queue message
service. These include a variety of connection services (supporting different protocols),
administrative tools, and data stores for messaging, monitoring, and user information. The
Message Queue service itself includes all elements marked in gray in the figure.

2

3

4

5

6

Message Queue: Elements and Features

Sun Java System Message Queue 4.1 Technical Overview • September 200724

As you can see, a full-featured JMS provider is more complex than the basic JMS model would
lead one to suspect. The following sections describe the elements of the Message Queue service
shown above. These elements can be divided into three categories: the broker, client runtime
support, and administration.

Connecting to the Broker
As shown in Figure 1–6 both application clients and administration clients can connect to the
broker. The JMS specification does not dictate that providers implement any specific wire

Broker

C
Client

C Client
Runtime

Java
Client

Java
Client

Runtime

JNDI

Configuration
Files and

Logs

Persisted
Messages and
Broker State

User
Repository

Administered
Objects

(TLS)
ssljms

jms
(TCP)

httpjms
(HTTP)admin

(TCP) (RMI)

(TCP)

Web
Server

Java
Client

JNDI

Java
Client

Runtime

HTTP
Tunnel
Servlet

Message Queue
Message Service

MQ/JMX
Runtime

JMX
Client

Firewall
Physical

Destinations

Admin

FIGURE 1–6 Message Queue Service

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 25

protocols. Message Queue services, used by application clients and administration clients to
connect to the broker, are currently layered on top of TCP, TLS, HTTP, or HTTPS protocols.
(Services layered on top of HTTP allow messages to pass through firewalls.)

■ Services that provide JMS support and allow clients to connect to the broker (jms, ssljms,
http, or https) have a service type of NORMAL and are layered on top of TCP, TLS, HTTP, or
HTTPS protocols.

■ Services that allow administrators to connect to the broker (admin, ssladmin) have a service
type of ADMIN and are layered on top of TCP or TLS protocols.

By default, when you start the broker, jms and admin services are up and running. Additionally,
you can configure a broker to run any or all of these connection services. Each service supports
specific authentication and authorization (access control) features and each service is
multi-threaded, supporting multiple connections.

Should a connection fail, the Message Queue service can automatically retry connecting the
client to the same broker or to a different broker if this feature is enabled. For more information,
see the description of the automatic reconnect feature in Appendix B, “Message Queue
Features”

Clients can configure connection runtime support when they create the connection factory
from which they obtain their connections. Options allow you to specify which brokers to
connect to, how to handle reconnection, message flow control, and so on. For additional
information about how connections can be configured, see “Connection Factories and
Connections” on page 38.

The Broker
At the heart of the message service is the broker, which routes and delivers messages reliably,
authenticates users, and gathers data for monitoring performance.

■ To route and deliver messages, the broker places incoming messages in their respective
destinations and manages message flow into and out of these destinations.

■ To provide reliable delivery, the broker uses a persistent store to save state information and
persistent messages until they are received. Should the broker or the connection fail, the
saved information allows the broker to restore the broker’s state and to retry operations.

■ To provide security for the data being exchanged the broker uses authenticated connections.
Optionally data may be encrypted by running over a secure protocol like SSL. The broker
also uses and manages a repository that holds information about users and the data or
operations they can access. The broker authenticates users requesting services and
authorizes the operations they want to carry out by looking up information in this
repository.

Message Queue: Elements and Features

Sun Java System Message Queue 4.1 Technical Overview • September 200726

■ To monitor the system, the broker generates metrics and diagnostic information that an
administrator can access to measure performance and to tune the broker. Metrics
information is also available programmatically to allow applications to adjust message flow
and patterns to improve performance.

The Message Queue service provides a variety of administrative tools that the administrator can
use to configure broker support. For more information, see “Administration” on page 28.

Client Runtime Support
Client runtime support is provided in libraries that you link with when building Message Queue
clients. You can think of the client runtime as the bit of the Message Queue service that becomes
part of the client. For example, when client code makes an API call to send a message, code in
these libraries is invoked that packages the message bits appropriately for the protocol that will
be used to relay the message to the physical destination on the broker.

Java and C Client Support
A JMS provider is only required to support Java clients; however, as Figure 1–6 shows, a
Message Queue client can use either the Java or a provider-specific C API to send or receive a
message. These interfaces are implemented in Java or C runtime libraries, which do the actual
work of creating connections to the broker and packaging the bits appropriately for the
connection service requested.

■ The Java client runtime supplies Java clients with the objects needed to interact with the
broker. These objects include connections, sessions, messages, message producers, and
message consumers.

■ The C client runtime supplies C clients with the functions and structures needed to interact
with the broker. It supports a procedural version of the JMS programming model. C clients
cannot use JNDI to access administered objects, but can create connection factories and
destinations programmatically.

The Message Queue service provides a C API to enable legacy C and C++ applications to
participate in JMS-based messaging. There are a number of differences in the functionality
provided by these two APIs; these are documented in “Java and C Clients” on page 52.

It is important to remember that the JMS specification is a standard for Java clients only. C
support is specific to the Message Queue provider and should not be used in client applications
that you plan to port to other providers.

SOAP Support for Java Clients
Message Queue Java clients are also able to send and receive SOAP messages, wrapped as JMS
messages. SOAP (Simple Object Access Protocol) allows the exchange of structured data
between two peers in a distributed environment. The data exchanged is specified by an XML
scheme.

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 27

Sun SOAP processing is currently limited to using a point-to-point model and does not
guarantee reliability. By wrapping a SOAP message in a JMS message and routing it using the
broker, you can take advantage of full featured Message Queue messaging which guarantees
reliable delivery and allows you to use the topic as well as the point-to-point domain. Message
Queue provides utility routines that a message producer can use to wrap a SOAP message into a
JMS message and that a message consumer can use to extract a SOAP message from the JMS
message.

“Working with SOAP Messages” on page 51 gives you a more detailed view of SOAP message
processing.

Administration
The Message Queue service offers command line tools that you can use to do the following:

■ Start and configure the broker.
■ Create and manage destinations, manage broker connections, and manage broker

resources.
■ Add, list, update, and deleted administered objects in a JNDI object store.
■ Populate and manage a file-based user repository.
■ Create and manage a JDBC compliant database for persistent storage.

You can also use a GUI-based administration console to perform the following command-line
functions:

■ Connect to a broker and manage it.
■ Create and manage physical destinations.
■ Connect to an object store, add objects to the store, and manage them.

Scaling the Message Queue Service
As the number of clients or the number of connections grows, you may need to scale the
message service to eliminate bottlenecks or to improve performance. The Message Queue
message service offers a number of scaling options, depending on your needs. These may be
conveniently sorted into the following categories:

■ Vertical scaling is achieved by adding more processing power and by expanding available
resources. You can do this by adding more processors or memory, by switching to a shared
thread model, or by running the Java VM in 64 bit mode.
If you are using the point-to-point domain, you can scale the consumer side by allowing
multiple consumers to access a queue. Using this approach, you can specify the maximum
number of active and backup consumers. The load-balancing mechanism also takes into
account a consumer’s current capacity and message processing rate. This is a Message

Message Queue: Elements and Features

Sun Java System Message Queue 4.1 Technical Overview • September 200728

Queue feature. (The JMS specification defines messaging behavior if only one consumer is
accessing a queue; behavior for queues allowing more than one consumer is
provider-specific. The Message Queue developer guides provide more information about
this scaling option.)

■ Stateless horizontal scaling is achieved by using additional brokers and redistributing
existing clients to these brokers. This approach is easy to implement, but it is appropriate
only if your messaging operations can be divided into independent work groups.

■ Stateful horizontal scaling is achieved by connecting brokers into a cluster. In a broker
cluster, each broker is connected to every other broker in the cluster as well as to its local
application clients. Brokers can be on the same host or distributed across a network.
Information about destinations and consumers is replicated on all the brokers in the cluster.
Updates to destinations or subscribers is also propagated Each broker can therefore route
messages from producers to which it is directly connected to consumers that are connected
to other brokers in the cluster. In situations where backup consumers are used, if one broker
or connection fails, messages sent to inaccessible consumers can be forwarded to a backup
consumers on another broker.
In the event of broker or connection failure, state information about persistent entities
(destinations and durable subscriptions) can get out of sync. For example, if a clustered
broker goes down and a destination is created on another broker in the cluster, when the
first broker restarts, it will not know about the new destination. Message Queue uses two
different models to resolve this problem: conventional clustering and high availability
clustering.
■ Using conventional clustering, you set broker properties to designate one broker in the

cluster to be the master broker. This broker is responsible for tracking all changes to
destinations and durable subscriptions in a master configuration file and for updating
brokers in the cluster that are temporarily offline.
When using a master broker, Message Queue only provides service availability, not data
availability in the case of broker or connection failure. For example, if a clustered broker
becomes unavailable, any persistent messages held by that broker become unavailable
until that broker recovers. To get data availability you can use a SunCluster Message
Queue agent or you can use high availability clustering, described next. (In the
SunCluster case, a persistent store is kept on a shared file system. If a broker fails the
Message Queue agent on a second node starts a broker that takes over the shared store.
Clients are reconnected to that broker, thereby getting both continuous service and
access to persistent data.)

■ Using high availability clustering, you set broker properties to specify a highly available
database that is shared by all brokers in the cluster. The shared store holds updated
information about the state of each broker in the cluster. If one broker fails, another
broker assumes ownership of the failed broker's persistent state (in the shared store) and
provides uninterrupted service to the failed broker's clients.

For additional information, see Chapter 4, “Broker Clusters,”

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 29

Message Queue as an Enabling Technology
The Java 2 Platform, Enterprise Edition (J2EE platform) is a specification for a distributed
component model in a Java programming environment. One of the requirements of the J2EE
platform is that distributed components be able to interact with one another through reliable,
asynchronous message exchange. This capacity is furnished by a JMS provider, which can play
two roles: it can be used to provide a service and it can support message-driven beans (MDB), a
specialized type of Enterprise Java Bean (EJB) component that can consume JMS message.

A J2EE-compliant application server must use a resource adapter furnished by a given JMS
provider to use the functionality of that provider. Message Queue provides such a resource
adapter. Using the support of a plugged in JMS provider, J2EE components, including MDBs,
deployed and running in the application server environment can exchange JMS messages
among themselves and with external JMS components. This provides a powerful integration
capability for distributed components.

For information on the Message Queue resource adapter, see Chapter 5, “Message Queue and
J2EE,”

Message Queue Feature Summary
Message Queue has capabilities and features that go far beyond the requirements of the JMS
specification. These features enable Message Queue to integrate systems consisting of large
numbers of distributed components exchanging many thousands of messages in
round-the-clock, mission-critical operations. For a summary of these features, see Appendix B,
“Message Queue Features”

Message Queue as an Enabling Technology

Sun Java System Message Queue 4.1 Technical Overview • September 200730

Client Programming Model

This chapter describes the basics of Message Queue client programming. It covers the following
topics:

■ “Messaging Domains” on page 32
■ “Programming Objects” on page 37
■ “Producing a Message” on page 42
■ “Consuming a Message” on page 43
■ “The Request-Reply Pattern” on page 44
■ “Reliable Messaging” on page 46
■ “A Message’s Journey Through the System” on page 48
■ “Java and C Clients” on page 52

This chapter focuses on the design and implementation of Java clients. By and large, C client
design roughly parallels Java client design. The final section of this chapter summarizes the
differences between Java and C clients. For a detailed discussion of programming Message
Queue clients, see Sun Java System Message Queue 4.1 Developer’s Guide for Java Clients and Sun
Java System Message Queue 4.1 Developer’s Guide for C Clients.

Chapter 3, “Message Queue Service,” explains how you can use the Message Queue service to
support, manage, and tune messaging performance.

Design and Performance
The behavior of a Message Queue application depends on many factors: client design,
connection configuration, broker configuration, broker tuning, and resource management.
Some of these are the responsibility of the developer; others are the concern of the
administrator. But in the best of possible worlds the developer should be aware of how the
Message Queue service can support and scale the application design, and the administrator
should be aware of the design goals when it comes time to tune the application. Messaging
behavior can be optimized through redesign as well as through careful monitoring and tuning.
Thus, a key aspect of creating a good Message Queue application is for the developer and the

2C H A P T E R 2

31

administrator to understand what can be realized at each stage of the application life cycle and
to share information about desired and observed behavior.

Messaging Domains
Messaging middleware allows components and applications to communicate by producing and
consuming messages. The JMS API defines two patterns or messaging domains that govern this
communication: point-to-point messaging and publish/subscribe messaging. The JMS API is
organized to support these patterns. The basic JMS objects: connections, sessions, producers,
consumers, destinations, and messages are used to specify messaging behavior in both domains.

Point-To-Point Messaging
In the point-to-point domain, message producers are called senders and consumers are called
receivers. They exchange messages by means of a destination called a queue: senders produce
messages to a queue; receivers consume messages from a queue.

Figure 2–1 shows the simplest messaging operation in the point-to-point domain.
MyQueueSender sends Msg1 to the queue destination MyQueue1. Then, MyQueueReceiver
obtains the message from MyQueue1.

Figure 2–2 shows a more complex picture of point-to-point messaging to illustrate the
possibilities in this domain. Two senders, MyQSender1 and MyQSender2, use the same
connection to send messages to MyQueue1. MyQSender3 uses an additional connection to send
messages to MyQueue1. On the receiving side, MyQReceiver1 consumes messages from
MyQueue1, and MyQReceiver2 and MyQReceiver3, share a connection in order to consume
messages from MyQueue1.

Broker

MyQueue1

MyQueueSender MyQueueReceiver

Msg1 Msg1

FIGURE 2–1 Simple Point-to-Point Messaging

Messaging Domains

Sun Java System Message Queue 4.1 Technical Overview • September 200732

This more complex picture illustrates a number of additional points about point-to-point
messaging.
■ More than one producer can send messages to a queue. Producers can share a connection or

use different connections, but they can all access the same queue.
■ More than one receiver can consume messages from a queue, but each message can only be

consumed by one receiver. Thus Msg1, Msg2, and Msg3 are consumed by different receivers.
(This is a Message Queue extension.)

■ Receivers can share a connection or use different connections, but they can all access the
same queue. (This is a Message Queue extension.)

■ Senders and receivers have no timing dependencies: the receiver can fetch a message
whether or not it was running when the client sent the message.

■ Senders and receivers can be added and deleted dynamically at runtime, thus allowing the
messaging system to expand or contract as needed.

■ Messages are placed on the queue in the order sent, but the order in which they are
consumed depends on factors such as message expiration date, message priority, and
whether a selector is used in consuming messages.

The point-to-point model offers a number of advantages:
■ The fact that multiple receivers can consume messages from the same queue allows you to

load-balance message consumption if the order in which messages are received is not
important. (This is a Message Queue extension.)

Broker

MyQueue1

MyQReceiver2

MyQSender1

MyQSender2

MyQSender3

Msg1

Msg2

Msg2

MyQReceiver1

MyQReceiver3

Msg2

Msg3

Msg1

FIGURE 2–2 Complex Point-to-Point Messaging

Messaging Domains

Chapter 2 • Client Programming Model 33

■ Messages destined for a queue are always retained, even if there are no receivers.
■ Java clients can use a queue browser object to inspect the contents of a queue. They can then

consume messages based on the information gained from this inspection. That is, although
the consumption model is normally FIFO (first in, first out), consumers can consume
messages that are not at the head of the queue if they know what messages they want by
using message selectors. Administrative clients can also use the queue browser to monitor
the contents of a queue.

Publish/Subscribe Messaging
In the publish/subscribe domain, message producers are called publishers and message
consumers are called subscribers. They exchange messages by means of a destination called a
topic: publishers produce messages to a topic; subscribers subscribe to a topic and consume
messages from a topic.

Figure 2–3 shows a simple messaging operation in the publish/subscribe domain.
MyTopicPublisher publishes Msg1 to the destination MyTopic. Then, MyTopicSubscriber1 and
MyTopicSubscriber2 each receive a copy of Msg1 from MyTopic.

While the publish/subscribe model does not require that there be more than one subscriber,
two subscribers are shown in the figure to emphasize the fact that this domain allows you to
broadcast messages. All subscribers to a topic get a copy of any message published to that topic.

Subscribers can be non-durable or durable. The broker retains messages for all active
subscribers, but it only retains messages for inactive subscribers if these subscribers are durable.

Msg1

Msg1

Broker

MyTopic

MyTopicPublisher

MyTopicSubscriber1

MyTopicSubscriber2

Msg1

FIGURE 2–3 Simple Publish/Subscribe Messaging

Messaging Domains

Sun Java System Message Queue 4.1 Technical Overview • September 200734

Figure 2–4 shows a more complex picture of publish/subscribe messaging to illustrate the
possibilities offered by this pattern. Several producers publish messages to the Topic1
destination. Several subscribers consume messages from the Topic1 destination. Unless, a
subscriber is using a selector to filter messages, each subscriber gets all the messages published
to the topic of choice. In Figure 2–4, MyTSubscriber2 has filtered out Msg2.

This more complex picture illustrates a number of additional points about publish/subscribe
messaging.
■ More than one producer can publish messages to a topic. Producers can share a connection

or use different connections, but they can all access the same topic.
■ More than one subscriber can consume messages from a topic. Subscribers retrieve all

messages published to a topic unless they use selectors to filter out messages or the messages
expire before they are consumed.

■ Subscribers can share a connection or use different connections, but they can all access the
same topic.

■ Durable subscribers can be active or inactive. The broker retains messages for them while
they are inactive.

■ Publishers and subscribers can be added and deleted dynamically at runtime, thus allowing
the messaging system to expand or contract as needed.

Broker

Topic1

MyTPublisher1

MyTPublisher2

Msg1

Msg2

Msg3

MyTSubscriber1

MyTSubscriber2MyTPublisher3

MyTSubscriber3

Msg1

Msg2

Msg3

Msg1
Msg3

Msg1

Msg2

Msg3

FIGURE 2–4 Complex Publish/Subscribe Messaging

Messaging Domains

Chapter 2 • Client Programming Model 35

■ Messages are published to a topic in the order sent, but the order in which they are
consumed depends on factors such as message expiration date, message priority, and
whether a selector is used in consuming messages.

■ Publishers and subscribers have a timing dependency: a topic subscriber can consume only
messages published after it has created the subscription.

The main advantage of the publish/subscribe model is that it allows messages to be broadcast to
subscribers.

Domain-Specific and Unified APIs
The JMS API defines interfaces and classes that you can use to implement either of the
point-to-point or the publish/subscribe domains. These are the domain-specific API’s shown in
columns 2 and 3 of Table 2–1. The JMS API defines an additional unified domain, which allows
you to program a generic messaging client. The behavior of such a client is determined by the
type of the destination to which it produces messages and from which it consumes messages. If
the destination is a queue, messaging will behave according to the point-to-point pattern; if the
destination is a topic, messaging will behave according to the publish/subscribe pattern.

TABLE 2–1 JMS Programming Domains and Objects

Base Type(Unified Domain) Point-to-Point Domain Publish/Subscribe Domain

Destination (Queue or Topic) Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

The unified domain was introduced with JMS version 1.1. If you need to conform to the earlier
1.02b specification, you can use the domain-specific API. Using the domain-specific API also
provides a clean programming interface that prevents certain types of programming errors: for
example, creating a durable subscriber for a queue destination. However, the domain-specific
APIs have the disadvantage that you cannot combine point-to-point and publish/subscribe
operations in the same transaction or in the same session. If you need to do that, you should
choose the unified domain API. See “The Request-Reply Pattern” on page 44 for an example of
combining the two domains.

Messaging Domains

Sun Java System Message Queue 4.1 Technical Overview • September 200736

Programming Objects
The objects used to implement JMS messaging remain essentially the same across
programming domains: connection factories, connections, sessions, producers, consumers,
messages, and destinations. These objects are shown in Figure 2–5. The figure shows, from the
top down, how objects are derived, starting with the connection factory object.

Two of the objects, connection factories and destinations, are shown to reside in an object store.
This is to underline the fact that these objects are normally created, configured, and managed as
administered objects. We assume that connection factories and destinations are created
administratively (rather than programmatically) throughout this chapter.

Message
Producers

Connection
Factory

Creates

Connections

Consumes
from

Message

Sessions

Message
Consumers

DestinationDestination

Creates

CreatesCreates

Produces
to

FIGURE 2–5 JMS Programming Objects

Programming Objects

Chapter 2 • Client Programming Model 37

Table 2–2 summarizes the steps required to send and receive messages. Note that steps 1
through 6 are the same for senders and receivers.

TABLE 2–2 Producing and Consuming Messages.

Producing a Message Consuming a Message

1. The administrator creates a connection factory administered object.

2. The administrator creates a physical destination and the administered object that refers to it.

3. The client obtains a connection factory object through a JNDI lookup.

4. The client obtains a destination object through a JNDI lookup.

5. The client creates a connection and sets any properties that are specific to this connection.

6. The client creates a session and sets the properties that govern messaging reliability.

7. The client creates a message producer The client creates a message consumer

8. The client creates a message. The client starts the connection.

9. The client sends a message. The client receives a message.

The following sections describe the objects used by producers and consumers: connections,
sessions, messages, and destinations. We will then complete the discussion of JMS objects by
describing the production and consumption of messages.

Connection Factories and Connections
A client uses a connection factory object (ConnectionFactory) to create a connection. A
connection object (Connection) represents a client’s active connection to the broker. It uses the
underlying connection service that is either started by default or is explicitly started by the
administrator for this client.

Both allocation of communication resources and authentication of the client take place when a
connection is created. It is a relatively heavyweight object, and most clients do all their
messaging with a single connection. Connections support concurrent use: any number of
producers and consumers can share a connection.

When you create a connection factory, you can configure the behavior of all connections
derived from it by setting its properties. For Message Queue, these specify the following
information:

■ The name of the host on which the broker resides, the connection service desired, and the
port through which the client wants to access that service.

Programming Objects

Sun Java System Message Queue 4.1 Technical Overview • September 200738

■ How automatic reconnection to the broker should be handled if the connection fails. (This
feature reconnects the client to the same (or to a different broker) if a connection is lost.
Data failover is not guaranteed: persistent messages and other state information can be lost
when reconnecting to a different broker.)

■ The ID of a client that needs the broker to track its durable subscription.
■ The default name and password of the user attempting the connection. This information is

used to authenticate the user and authorize operations if a password is not specified at
connection time.

■ Whether broker acknowledgements should be suppressed for those clients who are not
concerned with reliability.

■ How to manage the flow of control and payload messages between the broker and the client
runtime.

■ How queue browsing should be handled. (Java clients only.)
■ Whether certain message header fields should be overridden.

It is possible to override connection factory properties from the command line used to start the
client application. It is also possible to override properties for any given connection by setting
properties for that connection.

You can use a connection object to create session objects, to set up an exception listener, or to
obtain JMS version and provider information.

Sessions
If the connection represents a communication channel between the client and the broker, a
session marks a single conversation between them. Mainly, you use a session object to create
messages, message producers, and message consumers. When you create a session, you
configure reliable delivery through a number of acknowledgement options or through
transactions. For more information, see “Reliable Messaging” on page 46.

According to the JMS specification, a session is a single-threaded context for producing and
consuming messages. You can create multiple message producers and consumers for a single
session, but you are restricted to using them serially. The threading implementation varies
slightly for Java and C clients. Consult the appropriate developer’s guide for additional
information about threading implementation and restrictions.

You can also use a session object to do the following:

■ Create and configure destinations for those clients that do not use administered objects to
define destinations.

■ Create and configure temporary topics and queues; these are used as part of the
request-reply pattern. See “The Request-Reply Pattern” on page 44.

■ Support transaction processing.

Programming Objects

Chapter 2 • Client Programming Model 39

■ Define a serial order for producing or consuming messages.
■ Serialize the execution of message listeners for asynchronous consumers.
■ Create queue browsers. (Java clients only.)

Messages
A message is composed of three parts: a header, properties, and a body. You must understand
this structure in order to compose a message properly and to configure certain messaging
behaviors.

Message Header
A header is required of every JMS message. The header contains ten predefined fields, which are
listed and described in Table 2–3.

TABLE 2–3 JMS-Defined Message Header

Header Field Description

JMSDestination Specifies the name of the destination object to which the message is sent. (Set by the
provider.)

JMSDeliveryMode Specifies whether the message is persistent. (Set by default by the provider or
explicitly by the client for a producer or for an individual message.)

JMSExpiration Specifies the time when the message will expire. (Set by default by the provider or by
the client for a producer or for an individual message.)

JMSPriority Specifies the priority of the message within a 0 (low) to 9 (high) range. (Set by
default by the provider or set explicitly by the client for a producer or for an
individual message.)

JMSMessageID Specifies a unique ID for the message within the context of a provider installation.
(Set by the provider.)

JMSTimestamp Specifies the time when the provider received the message. (Set by the provider.)

JMSCorrelationID A value that allows a client to define a correspondence between two messages. (Set
by the client if needed.)

JMSReplyTo Specifies a destination where the consumer should send a reply. (Set by the client if
needed.)

JMSType A value that can be evaluated by a message selector. (Set by the client if needed.)

JMSRedelivered Specifies whether the message has already been delivered but not acknowledged.
(Set by the provider.)

Programming Objects

Sun Java System Message Queue 4.1 Technical Overview • September 200740

As you can see from reading through this table, message header fields serve a variety of
purposes: identifying a message, configuring the routing of messages, providing information
about message handling, and so on.

One of the most important fields, JMSDeliveryMode, determines the reliability of message
delivery. This field indicates whether a message is persistent.
■ Persistent messages. are guaranteed to be delivered and successfully consumed exactly once.

Persistent messages are not lost if the message service fails.
■ Non-persistent messages are guaranteed to be delivered at most once. Non-persistent

messages can be lost if the message service fails.

Some message header fields are set by the provider (either the broker or the client runtime) and
others are set by the client. Message producers may need to configure header values to obtain
certain messaging behaviors; message consumers may need to read header values in order to
understand how the message was routed and what further processing it might need.

The header fields (JMSDeliveryMode, JMSExpiration, and JMSPriority) can be set at three
different levels:
■ For messages issuing from every connection derived from a connection factory.
■ For each message produced.
■ For all messages issued by a specific message producer.

If these fields are set at more than one level, values set for the connection factory override those
set for the individual message; values set for a given message override those set for the message’s
producer.

Constant names for message header fields vary with the language implementation. See Sun Java
System Message Queue 4.1 Developer’s Guide for Java Clients or Sun Java System Message
Queue 4.1 Developer’s Guide for C Clients for more information.

Message Properties
A message can also include optional header fields, called properties, specified as property name
and property value pairs. Properties allow clients and providers to extend the message header
and can contain any information that the client or the provider finds useful to identify and
process a message. Message properties allow a receiving client to ask that only those messages
be delivered which fit a given criteria. For instance, a consuming client might indicate an
interest for payroll messages concerning part-time employees located in New Jersey. The
provider will not deliver messages that do not meet the specified criteria.

The JMS specification defines nine standard properties. Some of these are set by the client and
some by the provider. Their names begin with the reserved characters “JMSX.” The client or the
provider can use these properties to determine who sent a message, the state of the message,
how often and when it was delivered. These properties are useful to the provider in routing
messages and in providing diagnostic information.

Programming Objects

Chapter 2 • Client Programming Model 41

Message Queue also defines message properties, these are used to identify compressed messages
and how messages should be handled if they cannot be delivered. For more information see
“Managing Message Size” in Sun Java System Message Queue 4.1 Developer’s Guide for Java
Clients.

Message Body
The message body contains the data that clients want to exchange.

The type of a JMS message determines what the body may contain and how it should be
processed by the consumer, as specified in Table 2–4. The Session object includes a create
method for each type of message body.

TABLE 2–4 Message Body Types

Type Description

StreamMessage A message whose body contains a stream of Java primitive values. It is filled
and read sequentially.

MapMessage A message whose body contains a set of name-value pairs. The order of
entries is not defined.

TextMessage A message whose body contains a Java string, for example an XML message.

ObjectMessage A message whose body contains a serialized Java object.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

Message A message that contains a header and properties but no body.

Java clients can set a property to have the client runtime compress the body of a message being
sent. The Message Queue runtime on the consumer side decompresses the message before
delivering it.

Producing a Message
Messages are sent or published by a message producer, within the context of a connection and
session. Producing a message is fairly straightforward: a client uses a message producer object
(MessageProducer) to send messages to a physical destination, represented in the API by a
destination object.

When you create the producer, you can specify a default destination that all the producer’s
messages are sent to. You can also specify default values for the message header fields that
govern persistence, priority, and time-to-live. These defaults are then used by all messages
issuing from that producer unless you override them by specifying an alternate destination
when sending the message or by setting alternate values for the header fields for a given
message.

Producing a Message

Sun Java System Message Queue 4.1 Technical Overview • September 200742

The message producer can also implement a request-reply pattern by setting the JMSReplyTo
message header field. For more information, see “The Request-Reply Pattern” on page 44.

Consuming a Message
Messages are received by a message consumer, within the context of a connection and session.
A client uses a message consumer object (MessageConsumer) to receive messages from a
specified physical destination, represented in the API as a destination object.

Three factors affect how the broker delivers messages to a consumer:

■ Whether consumption is synchronous or asynchronous
■ Whether a selector is used to filter incoming messages
■ If messages are consumed from a topic destination, whether the subscriber is durable

The other major factor that affects message delivery and client design is the degree of reliability
needed for the consumer. See “Reliable Messaging” on page 46.

Synchronous and Asynchronous Consumers
A message consumer can support either synchronous or asynchronous consumption of
messages.

■ Synchronous consumption means the consumer explicitly requests that a message be
delivered and then consumes it.
Depending on the method used to request messages, a synchronous consumer can choose to
wait (indefinitely) until a message arrives, to wait a specified amount of time for a message,
or to return immediately if there is no message ready to be consumed. (“Consumed” means
the object is immediately available to the client. Messages that were successfully sent but
which the broker has not finished processing are not ready to be consumed.)

■ Asynchronous consumption means that the message is automatically delivered to a message
listener object (MessageListener) that has been registered for the consumer. The client
consumes the message when a session thread invokes the onMessage() method of the
message listener object.

Using Selectors to Filter Messages
A message consumer can use a message selector to have the message service deliver only those
messages whose properties match specific selection criteria. You specify this criteria when you
create the consumer.

Selectors use an SQL-like syntax to match against message properties. For example,

Consuming a Message

Chapter 2 • Client Programming Model 43

color = ”red’
size > 10

Java clients can also specify selectors when browsing a queue; this allows you to see which
selected messages are waiting to be consumed.

Using Durable Subscribers
You can use a session object to create a durable subscriber to a topic. The broker retains
messages for these kinds of subscribers even when the subscriber becomes inactive.

Because the broker must maintain state for the subscriber and resume delivery of messages
when the subscriber is reactivated, the broker must be able to identify a given subscriber
throughout its comings and goings. The subscriber’s identity is constructed from the ClientID
property of the connection that created it and the subscriber name specified when you create
the subscriber.

The Request-Reply Pattern
You can combine producers and consumers in the same connection (or even session when
using the unified API). In addition, the JMS API allows you to implement a request-reply
pattern for your messaging operations by using temporary destinations.

To set up the request-reply pattern you need to do the following:

1. Create a temporary destination where the consumer can send replies.

2. In the message to be sent, set the JMSReplyTo field of the message header to that temporary
destination.

When the message consumer processes the message, it examines the JMSReplyTo field of the
message to determine if a reply is required and sends the reply to the specified destination.

The request-reply mechanism saves the producer the trouble of setting up an administered
object for the reply destination and makes it easy for the consumer to respond to the request.
This pattern is useful when the producer must be sure that a request has been handled before
proceeding.

Figure 2–6 illustrates a request-reply pattern that sends messages to a topic and receives replies
in a temporary queue.

The Request-Reply Pattern

Sun Java System Message Queue 4.1 Technical Overview • September 200744

As the figure shows, MyTopicPublisher produces Msg1 to the destination MyTopic.
MyTopicSubsriber1 and MyTopicSubscriber2 receive the message and send a reply to
MyTempQueue, from where MyTQReceiver retrieves it. This pattern might be useful for an
application that published pricing information to a large number of clients and which queued
their (reply) orders for sequential processing.

Temporary destinations last only as long as the connection that created them. Any producer
can send to a temporary destination, but the only consumers that can access temporary
destinations are those created by the same connection that created the destination.

Since the request/reply pattern depends on creating temporary destinations, you should not use
this pattern in the following cases:

■ If you anticipate that the connection creating the temporary destination might terminate
before the reply is sent.

■ If you need to send a persistent message to a temporary destination.

Broker

MyTopic

MyTempQueue

MyTopicPublisher MyTopicSubscriber1

MyTopicSubscriber2

MyTQReceiver

Msg1

Msg1

Rply1

Rply1

Rply2

Msg1

Rply2

One
Connection

FIGURE 2–6 Request/Reply Pattern

The Request-Reply Pattern

Chapter 2 • Client Programming Model 45

Reliable Messaging
Message delivery occurs in two hops: the first hop takes the message from the producer to a
physical destination on the broker; the second hop takes the message from that destination to
the consumer. Thus, a message can be lost in one of three ways: on its hop to the broker, while
it’s in broker memory if the broker fails, and on its hop from the broker to the consumer.
Reliable delivery guarantees that delivery will not fail at any of these stages. Because
non-persistent messages can always be lost if the broker fails, reliable delivery only applies to
persistent messages.

Two mechanisms are used to ensure reliable delivery:

■ The client can use acknowledgments or transactions to make sure that message production
and consumption is successful.

■ The broker can store messages in a persistent store so that if the broker fails before the
message is consumed, it can retrieve the stored copy of the message and retry the operation.

The following sections describe these two aspects of ensuring reliability.

Acknowledgements
Acknowledgements are messages sent between the client and the message service to ensure
reliable delivery of messages. Acknowledgements are used differently for producers and for
consumers.

In the case of message production, the broker acknowledges that it has received the message,
placed it in its destination and stored it persistently. The producer’s send() method blocks until
it receives this acknowledgement. These acknowledgements are transparent to the client when
persistent messages are sent.

In the case of message consumption, the client acknowledges that it has received delivery of a
message from a destination and consumed it, before the broker can delete the message from
that destination. JMS specifies different acknowledgement modes that represent different
degrees of reliability.

■ In the AUTO_ACKNOWLEDGE mode, the session automatically acknowledges each message
consumed by the client. The session thread blocks, waiting for the broker to confirm that it
has processed the client acknowledgement for each consumed message.

■ In the CLIENT_ACKNOWLEDGE mode, the client explicitly acknowledges after one or more
messages have been consumed by calling the acknowledge() method of a message object.
This causes the session to acknowledge all messages that have been consumed by the session
since the previous invocation of the method. The session thread blocks, waiting for the
broker to confirm that it has processed the client acknowledgement.
Message Queue extends this mode by providing a method that allows a client to
acknowledge receipt of one message only.

Reliable Messaging

Sun Java System Message Queue 4.1 Technical Overview • September 200746

■ In DUPS_OK_ACKNOWLEDGE mode, the session acknowledges after ten messages have been
consumed. The session thread does not block waiting for a broker acknowledgement,
because no broker acknowledgement is required in this mode. Although this mode
guarantees that no message will be lost, it does not guarantee that no duplicate messages will
be received, hence its name: DUPS_OK.

For clients that are more concerned with performance than reliability, the Message Queue
service extends the JMS API by providing a NO_ACKNOWLEDGE mode. In this mode, the broker
does not track client acknowledgements, so there is no guarantee that a message has been
successfully processed by the consuming client. Choosing this mode may give you better
performance for non persistent messages that are sent to non-durable subscribers.

Transactions
A transaction is a way of grouping the production and/or consumption of one or more
messages into an atomic unit. The client and broker acknowledgement process described above
applies, as well, to transactions. In this case, client runtime and broker acknowledgements
operate implicitly on the level of the transaction. When a transaction commits, a broker
acknowledgement is sent automatically.

A session can be configured as transacted, and the JMS API provides methods for initiating,
committing, or rolling back a transaction.

As messages are produced or consumed within a transaction, the message service tracks the
various sends and receives, completing these operations only when the JMS client issues a call to
commit the transaction. If a particular send or receive operation within the transaction fails, an
exception is raised. The client code can handle the exception by ignoring it, retrying the
operation, or rolling back the entire transaction. When a transaction is committed, all its
operations are completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a transaction is always a single session. That is, one or more producer or consumer
operations performed in the context of a single session can be grouped into a single transaction.
Since transactions span only a single session, you cannot have an end-to-end transaction
encompassing both the production and consumption of a message.

The JMS specification also supports distributed transactions. That is, the production and
consumption of messages can be part of a larger, distributed transaction that includes
operations involving other resource managers, such as database systems. A transaction
manager, like the one supplied by the Java Systems Application Server, must be available to
support distributed transactions.

In distributed transactions, a distributed transaction manager tracks and manages operations
performed by multiple resource managers (such as a message service and a database manager)
using a two-phase commit protocol defined in the Java Transaction API (JTA), XA Resource

Reliable Messaging

Chapter 2 • Client Programming Model 47

API Specification. In the Java world, interaction between resource managers and a distributed
transaction manager are described in the JTA specification.

Support for distributed transactions means that messaging clients can participate in distributed
transactions through the XAResource interface defined by JTA. This interface defines a number
of methods for implementing two-phase commit. While the API calls are made on the client
side, the JMS message service tracks the various send and receive operations within the
distributed transaction, tracks the transactional state, and completes the messaging operations
only in coordination with a distributed transaction manager—provided by a Java Transaction
Service (JTS). As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

Note – Message Queue supports distributed transactions only when it is used as a JMS provider
in a Java Enterprise Edition platform. For additional information on how to use distributed
transactions, please consult the documentation furnished by your Application Server provider.

Persistent Storage
The other aspect of reliability is ensuring that the broker does not lose persistent messages
before they are delivered to consumers. This means that when a message reaches its physical
destination, the broker must place it in a persistent data store. If the broker goes down for any
reason, it can recover the message later and deliver it to the appropriate consumers.

The broker must also persistently store durable subscriptions. Otherwise, in case of failure, it
would not be able to deliver messages to durable subscribers who become active after a message
has arrived in a topic destination.

Messaging applications that want to guarantee message delivery must specify messages as
persistent and deliver them either to topic destinations with durable subscriptions or to queue
destinations.

Chapter 3, “Message Queue Service,” describes the default message store supplied by the
Message Queue service and how an administrator can set up and configure an alternate store.

A Message’s Journey Through the System
By way of summarizing the material presented so far, this section describes how a message is
delivered using the Message Queue service, from a producer to a consumer. In order to paint a
complete picture, a further detail is needed: The messages handled by the system in the course
of delivery fall into two categories:

■ Payload messages, which are the messages sent by producers to consumers.

A Message’s Journey Through the System

Sun Java System Message Queue 4.1 Technical Overview • September 200748

■ Control messages, which are private messages passed between the broker and the client
runtime to ensure that payload messages are successfully delivered and to control the flow of
messages across a connection.

Message delivery is illustrated in Figure 2–7.

Message delivery steps for a persistent, reliably delivered message are as follows:

Message Production
1. The client runtime delivers the message over the connection from the message producer to
the broker.

Consuming
Client

Client
Runtime

Producing
Client

Client
Runtime

Broker

MyQDest

1

10

2

3

4

5

79

Data
Store

8

Payload messages

Control messages

6

FIGURE 2–7 Message Delivery Steps

A Message’s Journey Through the System

Chapter 2 • Client Programming Model 49

Message Handling and Routing
2. The broker reads the message from the connection and places it in the appropriate
destination.

3. The broker places the (persistent) message in the data store.

4. The broker acknowledges receipt of the message to the client runtime of the message
producer.

5. The broker determines the routing for the message.

6. The broker writes out the message from its destination to the appropriate connection,
tagging it with a unique identifier for the consumer.

Message Consumption
7. The message consumer’s client runtime delivers the message from the connection to the
message consumer.

8. The message consumer’s client runtime acknowledges consumption of the message to the
broker.

Message End-of-Life
9. The broker processes the client acknowledgement, and deletes the (persistent) message when
all acknowledgements have been received.

10. The broker confirms to the consumer’s client runtime that the client acknowledgement has
been processed.

The broker can discard a message before it is consumed if the administrator deletes the message
from a destination or if the administrator removes or redefines a durable subscription, thereby
causing a message in a topic destination to be removed without it being delivered. In other
situations, you might want the broker to store the messages in a special destination called the
dead message queue rather than discard them. A message is placed on the dead message queue
when it expires, when it is removed due to memory limits, or when delivery fails due to the
client’s throwing an exception. Storing messages in the dead message queue allows you to
troubleshoot the system and recover messages in certain situations.

A Message’s Journey Through the System

Sun Java System Message Queue 4.1 Technical Overview • September 200750

Working with SOAP Messages
SOAP (see “SOAP Support for Java Clients” on page 27) allows for the exchange of structured
data (specified by an XML scheme) between two peers in a distributed environment. Sun’s
implementation of SOAP does not currently support reliable SOAP messaging nor does it
support publishing SOAP messages. However, you can use the Message Queue service to obtain
reliable SOAP messaging and, if desired, to publish SOAP messages. The Message Queue
service does not deliver SOAP messages directly, but it allows you to wrap SOAP messages into
JMS messages, to produce and consume these messages like normal JMS messages, and to
extract the SOAP message from the JMS message.

Message Queue provides SOAP support through two packages: javax.xml.messaging and
com.sun.messaging.xml. You can use classes implemented in these libraries to receive a SOAP
message, to wrap a SOAP message into a JMS message, and to extract a SOAP message from a
JMS message. The J2EE platform provides the package java.xml.soap, which you can use to
assemble and disassemble a SOAP message.

▼ To Get Reliable SOAP Messaging
Use the objects defined in the java.xml.soappackage to construct a SOAP message, or use the
servlet defined in thejavax.xml.messaging package to receive a SOAP message, or use a web
service like JAX-RPC to receive a SOAP message.

Use the Message Transformer utility to convert the SOAP message into a JMS message.

Send the JMS message to the desired destination.

Consume the JMS message asynchronously or synchronously.

After the JMS message is consumed, use the Message Transformer utility to convert it into a
SOAP message.

Use the SAAJ API (defined in the java.xml.soappackage) to disassemble the SOAP message.
For detailed information about SOAP messages and their processing, see Chapter 5, “Working
with SOAP Messages,” in Sun Java System Message Queue 4.1 Developer’s Guide for Java Clients.

1

2

3

4

5

6

Working with SOAP Messages

Chapter 2 • Client Programming Model 51

Java and C Clients
Message Queue provides a C API to its messaging services to enable legacy C applications and
C++ applications to participate in JMS-based messaging.

The JMS programming model is the foundation for the design of a Message Queue C client. Sun
Java System Message Queue 4.1 Developer’s Guide for C Clients explains how this model is
implemented by the C data types and functions.

Like the Java interface, the C interface supports the following features:

■ Publish/subscribe and point-to-point connections
■ Synchronous and asynchronous receives
■ CLIENT, AUTO, and DUPS_OK acknowledgement modes
■ Local transactions
■ Session recover
■ Temporary topics and queues
■ Message selectors

However, it is important to understand that the Java Message Service specification is a standard
for Java clients only; thus the C Message Queue API is specific to the Message Queue provider
and cannot be used with other JMS providers. A messaging application that includes a C client
cannot be handled by another JMS provider.

The C interface, does not support the following features:

■ The use of administered objects
■ Map, stream, or object message types
■ Consumer-based flow control
■ Queue browsers
■ JMS application server facilities (Connection Consumer, distributed transactions)
■ Receiving or sending SOAP messages
■ Receiving or sending compressed JMS messages
■ Auto-reconnect or failover, which allows the client runtime to automatically reconnect to a

broker if a connection fails
■ The NO_ACKNOWLEDGE mode

Java and C Clients

Sun Java System Message Queue 4.1 Technical Overview • September 200752

Message Queue Service

Message Queue client performance depends on client design and on how you configure and
manage the Message Queue service. This chapter provides a more detailed view of the Message
Queue service, which was introduced in Chapter 1. It examines its components, it introduces
the tools you use to configure these components, and it summarizes the tasks required to
manage the message service in different environments. It includes the following sections

■ “Component Services” on page 53
■ “Administration Tools and Tasks” on page 65
■ “Scaling Messaging Operations” on page 70

Component Services
Figure 3–1 shows the Message Queue service. Chapter 2, “Client Programming Model,”
described the programming model and how clients use the Java and C APIs to interact with the
client runtime, the part of the message service that is accessible to client applications. This
chapter focuses on the components and services of the message service that are accessible to the
administrator.

3C H A P T E R 3

53

You control the Message Queue service by setting broker properties. These are divided among a
number of categories, depending on the services or broker component that is affected by a
particular property. Broker services include:

■ Connection services that manage the physical connections between a broker and its clients
that provide transport for incoming and outgoing messages.

■ Routing services that route and deliver JMS messages as well as control messages used by
the message service to support reliable delivery.

■ Persistence services that manage the writing of data to persistent storage and its retrieval
from persistent storage.

Broker

C
Client

C Client
Runtime

Java
Client

Java
Client

Runtime

JNDI

Configuration
Files and

Logs

Persisted
Messages and
Broker State

User
Repository

Administered
Objects

(TLS)
ssljms

jms
(TCP)

httpjms
(HTTP)admin

(TCP) (RMI)

(TCP)

Web
Server

Java
Client

JNDI

Java
Client

Runtime

HTTP
Tunnel
Servlet

Message Queue
Message Service

MQ/JMX
Runtime

JMX
Client

Firewall
Physical

Destinations

Admin

FIGURE 3–1 Message Queue Service

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200754

■ Security services that authenticate users connecting to the broker and authorize their
actions.

■ Monitoring services that generate metrics and diagnostic information and write this
information to a specified output channel.

The following sections describe each of these services and summarize the properties that you
use to customize that service for your particular needs.

Broker properties are defined in different configuration files and can also be defined on the
command line used to start the broker. The Chapter 4, “Broker Configuration,” in Sun Java
System Message Queue 4.1 Administration Guide describes these configuration files and explains
the order of precedence by which property values in one file can be used to override values set in
a different file. Properties set with the startup command override all other settings.

Connection Services
You use connection-related properties to configure and manage the physical connections
between a broker and its clients. Connection services available for Message Queue clients are
introduced in “Connecting to the Broker” on page 25, which describes available connection
services: their name, type, and underlying protocol. Connection services are multithreaded and
available through dedicated ports that can be dynamically assigned by the broker’s port mapper
or statically assigned by the administrator. By default, when you start the broker, the jms and
admin services are up and running.

Because there are two parties to every connection, connection configuration occurs on both
sides and needs to be coordinated:

■ The client must configure certain attributes of the connection factory object to ask for
non-default connection services, hosts, and ports; to specify a list of brokers to connect to in
case reconnection to a different broker is required; and to configure reconnection behavior.
The client can also specify a ping interval to test for failed connections.

■ The administrator, in turn, uses broker properties to activate non-default connection
services, to assign static ports if required, to configure threading, and to specify a host to
connect to if multiple network cards are used. The administrator can also specify a ping
interval to test whether the client is accessible; this is useful in managing resources.

A client can connect to the Message Queue service through a firewall. This can be done either by
having the firewall administrator open a specific port and then connecting to that (static) port
or by using the HTTP or HTTPS service as summarized in Appendix B, “Message Queue
Features”.

Each connection service also supports specific authentication and authorization features. See
“Security Services” on page 60 for more information.

Component Services

Chapter 3 • Message Queue Service 55

Port Mapper
Connection services are dynamically assigned a port by a common Port Mapper that resides at a
the broker’s main port, 7676. When the Message Queue client runtime sets up a connection
with the broker, it first contacts the Port Mapper, requesting a port number for the connection
service it has chosen.

You can override the Port Mapper by assigning a static port number for the jms, ssljms, admin
and ssladmin connection services when configuring these services. However, static ports are
generally used only in special situations, such as in making connections through a firewall and
are not generally recommended.

Thread Pool Management
Each connection service is multithreaded, supporting multiple connections. The threads
needed for these connections are maintained by the broker in a pool. How they are allocated
depends on the values you specify for the minimum and maximum thread values, and on the
threading model you choose.

You can set broker properties to specify a minimum number and maximum number of threads
As threads are needed by connections, they are added to the thread pool for the service
supporting that connection. The minimum specifies the number of threads available to be
allocated. When the available threads exceeds this minimum threshold, the system will shut
down threads as they become free until the minimum is reached again, thereby saving on
memory resources. Under heavy loads, the number of threads might increase until the pool’s
maximum number is reached; at this point, new connections are rejected until a thread
becomes available.

The threading model you choose specifies whether threads are dedicated to a single connection
or shared by multiple connections:

■ In the dedicated model, each connection to the broker requires two threads: one for
incoming messages and one for outgoing messages. This limits the number of possible
connections but provides high performance.

■ In the shared model, connections are processed by a shared thread when sending or
receiving messages. Because each connection does not require dedicated threads, this model
increases the number of possible connections, but adds some overhead for thread
management and thereby impacts performance.

Destinations and Routing Services
Once clients are connected to the broker, the routing and delivery of messages can proceed. In
this phase, the broker is responsible for creating and managing different types of physical
destinations, for ensuring a smooth flow of messages, and for using resources efficiently. The
broker properties related to routing and destinations are used by the broker to manage these
tasks in a way that suits your application’s needs.

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200756

Remember that a physical destination on the broker is a memory location where messages are
stored before being delivered to a message consumer. There are four kinds of physical
destinations:

■ Admin-created destinations are created by the administrator using the GUI (imqadmin) or
the imqcmd utility. These correspond either to a logical destination created
programmatically or to a destination administered object that is created by the
administrator and looked up by the client. You use the imqcmd utility to set or update
properties for each admin-created destination.

■ Auto-created destinations are automatically created by the broker whenever a message
consumer or producer attempts to access a nonexistent destination. These are typically used
during development. You can set a broker property to disallow the creation of such
destinations. You set broker properties to configure all auto-create destinations on a
particular broker.
An auto-created destination is automatically destroyed by the broker when it is no longer
being used: that is, when it has no consumer clients and no longer contains any messages. If
a broker restarts, it only recreates this kind of destination if it contains persistent messages.

■ Temporary destinations are explicitly created and destroyed programmatically by clients
who need a destination where to receive replies to messages. As their name implies, these
destinations are temporary and maintained by the broker only for the duration of the
connection for which they are created.
Temporary destinations are not stored persistently and are never recreated when a broker is
restarted, but they are visible to administration tools.

■ The dead message queue is a specialized destination, created automatically at broker startup
and used to store dead messages for diagnostic purposes. You can set properties for the dead
message queue using the imqcmd utility.

Managing Destinations
You use the imqcmd utility to manage destinations. Managing a destination involves one or
more of the following tasks:

■ Creating, pausing, resuming, or destroying a destination
■ Listing all destinations on a broker
■ Displaying information about the state and properties of a destination
■ Displaying metrics information for a destination
■ Compacting disk space used to persist messages for a destination
■ Updating a physical destination’s properties

Management tasks vary with the kind of destination being managed: admin-created,
auto-created, temporary, or dead message queue. For example, temporary destinations do not
need to be explicitly destroyed; auto created properties are configured using broker
configuration properties which apply to all auto-created destinations on that broker.

Component Services

Chapter 3 • Message Queue Service 57

Configuring Physical Destinations
For optimal performance, you can set properties when creating or updating physical
destinations. Properties that can be set include the following:

■ The type and name of the destination.
■ Individual and aggregate limits for destinations (the maximum number of messages, the

maximum number of total bytes, the maximum number of bytes per message, the
maximum number of producers).

■ What the broker should do when individual or aggregate limits are exceeded.
■ The maximum number of messages to be delivered in a single batch.
■ Whether dead messages for a destination should be sent to the dead message queue.
■ Whether (in the case of a clustered broker) a destination should be replicated to other

brokers in the cluster.

For a queue destination you can also configure the maximum number of back up consumers
and you can specify (for clustered brokers) whether delivery to a local queue is preferred.

You can also configure the limits and behavior of the dead message queue. Note, however, that
default properties for this queue differ from those of a standard queue.

Managing Memory
Destinations can consume significant resources, depending on the number and size of messages
they handle and on the number and durability of the consumers that register; therefore, they
need to be managed closely to guarantee good messaging service performance and reliability.

You can set properties to prevent a broker from being overwhelmed by incoming messages and
to prevent the broker from running out of memory. The broker uses three levels of memory
protection to keep the message service operating as resources become scarce: destination limits,
system-wide limits, and system memory thresholds. Ideally, if destination limits and
system-wide limits are set appropriately, critical system-memory thresholds should never be
breached.

Destination Message Limits

You can set destination attributes to manage memory and message flow for each destination.
For example, you can specify the maximum number of producers allowed for a destination, the
maximum number (or size) of messages allowed in a destination, and the maximum size of any
single message.

You can also specify how to broker should respond when any such limits are reached: to slow
producers, to throw out the oldest messages, to throw out the lowest-priority messages, or to
reject the newest messages.

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200758

System-Wide Message Limits

You can also use properties to set limits that apply to all destinations on a broker: you can
specify the total number of messages and the memory consumed by all messages. If any of the
system-wide message limits are reached, the broker rejects new messages.

System Memory Thresholds

Finally, you can use properties to set thresholds at which the broker takes increasingly serious
action to prevent memory overload. The action taken depends on the state of memory
resources: green (plenty of memory is available), yellow (broker memory is running low),
orange (broker is low on memory), red (broker is out of memory). As the broker’s memory
state progresses from green to red, the broker takes increasingly serious actions:

■ It throws out in-memory copies of persistent messages in the data store.
■ It throttles back producers of non-persistent messages, eventually stopping the flow of

messages into the broker. Persistent message flow is automatically limited by the
requirement that each message be acknowledged by the broker.

Persistence Services
For a broker to recover in case of failure, it needs to recreate the state of its message delivery
operations. In order to do this, it must save state information to a data store. When the broker
restarts, it uses the saved data to recreate destinations and durable subscriptions, to recover
persistent messages, to roll back open transactions, and to recreate its routing table for
undelivered messages. It can then resume message delivery.

The Message Queue service supports both file-based and JDBC compliant persistence modules
(see Figure 3–2), and uses file-based persistence by default.

Broker

File-based
Data Store

Physical
Destinations JDBC-compliant

Data Store

FIGURE 3–2 Persistence Support

Component Services

Chapter 3 • Message Queue Service 59

File-Based Persistence
File-based persistence is a mechanism that uses individual files to store persistent data. If you
use file-based persistence you can set broker properties to do the following:

■ Compact the data store to alleviate fragmentation as messages are added and removed.
■ Synchronize the in-memory state with the physical storage device on every write. This helps

eliminate data loss due to system crashes.
■ Manage the allocation of messages to data store files and manage the resources needed for

file management and storage.

File-based persistence is generally faster that JDBC-based persistence; however, some users
prefer the redundancy and administrative control provided by a JDBC-compliant store.

JDBC-Based Persistence
JDBC-Based persistence uses a Java Database Connectivity (JDBCTM) interface to connect the
broker to a JDBC-compliant data store. To have the broker access a data store through a JDBC
driver you must do the following:

■ Set JDBC-related broker configuration properties. You use these to specify the JDBC driver
used, to authenticate the broker as a JDBC user, to create needed tables, and so on.

■ Use the imqdbmgr utility to create a data store with the proper schema.

Complete procedures for completing these tasks and related configuration properties are
detailed in the Chapter 4, “Broker Configuration,” in Sun Java System Message Queue 4.1
Administration Guide.

Security Services
The Message Queue service supports authentication and authorization (access control) for each
broker instance, and also supports encryption:

■ Authentication ensures that only verified users can establish a connection to the broker.
■ Authorization specifies which users or groups have the right to access resources and to

perform specific operations.
■ Encryption protects messages from being tampered with during delivery over a connection.

Authentication and authorization depend upon a repository that contains information about
the users of the messaging system—their names, passwords, and group memberships. In
addition, to authorize specific operations for a user or group, the broker must check an access
control properties file that specifies which operations a user or group can perform. You are
responsible for setting up the information the broker needs to authenticate users and authorize
their actions.

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200760

Figure 3–3 shows the components needed by the broker to provide authentication and
authorization.

As Figure 3–3 shows, you can store user data in a flat file user repository that is provided with
the Message Queue service or you can plug in a pre-existing LDAP repository. You set a broker
property to indicate your choice.

■ If you choose a flat-file repository, you must use the imqusermgr utility to manage the
repository. This option is easy to use and built-in.

■ If you want to use an existing LDAP server, you use the tools provided by the LDAP vendor
to populate and manage the user repository. You must also set properties in the broker
instance configuration file to enable to broker to query the LDAP server for information
about users and groups.
The LDAP option is better if scalability is important or if you need the repository to be
shared by different brokers. This might be the case if you are using broker clusters.

Authentication and Authorization
When a client requests a connection, the client must supply a user name and password. The
broker compares the specified name and password to those stored in the user repository. On
transmitting the password from client to broker, the passwords are encoded using either base 64
encoding or message digest (MD5) hashing. MD5 is used for a flat file repository; base 64 is
required for LDAP repositories. If using LDAP you may want to use the secure TLS protocol.

Broker

Access Control
Properties File

Two User
Repository Options

Physical
Destinations

accesscontrol.properties

LDAP
Server User
Repository

Flat File User
Repository

Authentication

Authorization

imqusermgr

FIGURE 3–3 Security Manager Support

Component Services

Chapter 3 • Message Queue Service 61

You can set broker properties to configure the type of encoding used by each connection service
separately or to set the encoding on a broker-wide basis.

When a user attempts to perform an operation, the broker checks the user’s name and group
membership (from the user repository) against those specified for access to that operation (in
the access control properties file). The access control properties file specifies permissions to
users or groups for the following operations:
■ Connecting to a broker
■ Accessing destinations: creating a consumer, a producer, or a queue browser for any given

destination or all destinations
■ Auto-creating destinations

You set broker properties to specify the following information:
■ Whether access control is enabled
■ The name of the access control file
■ How passwords should be encoded
■ How long the system should wait for a client to respond to an authentication request from

the broker
■ Information required by secure connections

JAAS-Based Authentication
In addition to the file-based and LDAP-based built-in authentication mechanisms, Message
Queue also supports the Java Authentication and Authorization Service (JAAS), which allows
you to plug a variety of services into the broker to authenticate Message Queue clients.

JAAS defines an abstraction layer between an application and an authentication mechanism,
allowing the desired mechanism to be plugged in with no disruption or change to application
code. For the Message Queue service, the abstraction layer lies between the broker and the
authentication provider. By setting a few broker properties, it is possible to plug in any
JAAS-compliant authentication service and to upgrade or change this service with no
disruption or change to broker code.

The service to be plugged in consists of a LoginModule and of logic that performs the
authentication. A JAAS configuration file contains the location of the LoginModule. When the
broker starts up it locates this file and uses information in the file to determine which
LoginModules it will use to perform the authentication. The fact that the broker plugs in an
authentication service is transparent to the client; the client continues to pass authentication
information to the broker as before and gains access to broker services if the identifying
information (user name, password) is authenticated by the plugged in service.

For complete information about JAAS-based authentication, see Chapter 9, “Security,” in Sun
Java System Message Queue 4.1 Administration Guide.

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200762

Encryption
To encrypt messages sent between clients and broker, you need to use a connection service
based on the Secure Socket Layer (SSL) standard. SSL provides security at a connection level by
establishing an encrypted connection between an SSL-enabled broker and an SSL-enabled
client.

You can set broker properties to specify the security properties of the SSL keystore to be used
and the name and location of a password file.

Monitoring Services
The broker includes components for monitoring and diagnosing application and broker
performance. These include the following:

■ Components that generate data, a metrics generator and broker code that logs events.
■ A logger component that writes out information to a number of output channels.
■ A message producer that sends JMS messages containing metric information to topic

destinations for consumption by JMS monitoring clients.

The general scheme is illustrated in Figure 3–4.

Metrics Generator
The metrics generator provides information about broker activity, such as message flow in and
out of the broker, the number of messages in broker memory and the memory they consume,
the number of open connections, and the number of threads being used.

You can set broker properties to turn the generation of metric data on and off, and to specify
how frequently metrics reports are generated.

Broker
Code

Metrics
Generator

Logger

ERROR
WARNING

INFO

Output Channels

log file

console

syslog (Solaris)

topic destinations
Metrics

Message
Producer

FIGURE 3–4 Monitoring Service Support

Component Services

Chapter 3 • Message Queue Service 63

Logger
The Message Queue logger takes information generated by broker code and the metrics
generator and writes that information to standard output (the console), to a log file, and, on
SolarisTM platforms, to the syslog daemon process in case of errors.

You can set broker properties to specify the type of information gathered by the logger as well as
the type written to each of the output channels. In the case of a log file, you can also specify the
point at which the log file is closed and output is rolled over to a new file. Once the log file
reaches a specified size or age, it is saved and a new log file created.

For details about how to configure the logger and how to use it to obtain performance
information, see “Configuring and Using Broker Logging” in Sun Java System Message
Queue 4.1 Administration Guide.

Metrics Message Producer
The metrics message producer shown in Figure 3–4 receives information from the metrics
generator at regular intervals and writes the information into messages, which it then sends to
one of a number of metric topic destinations, depending on the type of metric information
contained in the message.

Message Queue clients subscribed to these metric topic destinations can consume the messages
and process the metric data contained in the messages. This allows developers to create custom
monitoring tools to support messaging applications. For details of the metric quantities
reported in each type of metrics message, see Chapter 18, “Metrics Reference,” in Sun Java
System Message Queue 4.1 Administration Guide. For information about how to configure the
production of metrics messages, see Chapter 4, “Using the Metrics Monitoring API,” in Sun
Java System Message Queue 4.1 Developer’s Guide for Java Clients and “Writing an Application
to Monitor Brokers” in Sun Java System Message Queue 4.1 Administration Guide.

JES Monitoring Framework Support
Message Queue supports the Sun Java Enterprise System (JES) Monitoring Framework, which
allows Java Enterprise System components to be monitored using a common graphical
interface. This interface is implemented by a web-based console called the Sun Java System
Monitoring Console. If you are running Message Queue along with other JES components, you
might find it more convenient to use a single interface to manage all these components.

The JES monitoring framework defines a common data model (CMM) to be used by all JES
component products. This model enables a centralized and uniform view of all JES
components. Message Queue exposes the following objects to the JES monitoring framework:
■ the installed product
■ the broker instance name
■ the broker port mapper
■ each connection service

Component Services

Sun Java System Message Queue 4.1 Technical Overview • September 200764

■ each physical destination
■ the persistent store
■ the user repository

Each one of these objects is mapped to a CMM object whose attributes can be monitored using
the JES monitoring console. At runtime, administrators can use the console to view
performance statistics, create rules to monitor automatically, and acknowledge alarms. For
detailed information about the mapping of Message Queue objects to CMM objects, see the Sun
Java Enterprise System Monitoring Guide.

To enable JES monitoring, you must do the following

1. Install and configure all the components in your deployment (Message Queue and other
components) according to instructions given in the Sun Java Enterprise System Installation
Guide.

2. Enable and configure the Monitoring Framework for all of your monitored components, as
described in the Sun Java Enterprise System Monitoring Guide.

3. Install the Monitoring Console on a separate host, start the master agent, and then start the
web server, as described in the Sun Java Enterprise System Monitoring Guide.

Using the JES Monitoring Framework will not impact broker performance because all the work
of gathering metrics is done by the monitoring framework, which pulls data from the broker's
existing monitoring data infrastructure.

Administration Tools and Tasks
This section describes the tools you use to configure Message Queue services and the tasks that
you need to complete to support a development or a production environment.

Administration Tools
Figure 3–5 shows a view of the message service that excludes the client connections and focuses
on the broker components and on the tools used to manage these.

Administration Tools and Tasks

Chapter 3 • Message Queue Service 65

You can use the following command-line tools to configure and manage the Message Queue
service.

■ Use the imqbrokerd utility to start the broker. You can use options to the imqbrokerd
command to specify whether brokers should be connected in a cluster and to specify
additional startup configuration information.

Broker

Physical
Destinations

Configuration
Files and

Logs

Persisted
Messages and
Broker State

Admin

Administered
Objects

Certificate
Store

User
Repository

imqkeytool
imqobjmgr

imqsvacadmin
(Windows)

imqbrokered

imqcmd

imqusermgr

imqdbmgr

FIGURE 3–5 Administration Tools

Administration Tools and Tasks

Sun Java System Message Queue 4.1 Technical Overview • September 200766

■ After starting the broker, use the imqcmd utility to create, update, and delete physical
destinations; to control the broker and its connection services, and to manage the broker’s
resources.

■ Use the imqobjmgr utility to add, list, update, and delete administered objects in a JNDI
object store.

■ Use the imqusermgr utility to populate a file-based user repository for user authentication
and authorization.

■ Use the imqdbmgr utility to create and manage a JDBC-compliant database used for
persistent storage. (The built-in file store requires no external management.)

■ Use the imqkeytool utility to generate self-signed certificates used for SSL authentication.
■ Use the imqsvcadmin utility to install, query, and remove the broker as a Windows service.

A GUI-based administration console combines some of the capabilities of the imqcmd and
imqobjmgr utilities. You can use it to do the following:

■ Connect to a broker and manage it.
■ Create and manage physical destinations.
■ Connect to an object store, add objects to the store, and manage them.

JMX-Based Administration
To serve clients who need a standard programmatic means to monitor and access the broker,
Message Queue also supports the Java Management Extensions (JMX) architecture, which
allows a client application to manage resources programmatically.

■ Resources can include applications, services, or devices. In the case of Message Queue,
resources include everything that you can manipulate using imqcmd: the broker, services,
connections, destinations, consumers, producers, and so on.

■ Management includes the ability to dynamically configure and monitor resources, and the
ability to obtain notifications about state changes and error conditions.

JMX-based administration provides dynamic, fine grained, programmatic access to the broker.
You can use this kind of administration in a number of ways.

■ You can include JMX code in your JMS client application to monitor application
performance and, based on the results, to reconfigure the JMS objects you use to improve
performance.

■ You can write JMX clients that monitor the broker to identify use patterns and performance
problems, and you can use the JMX API to reconfigure the broker to optimize performance.

■ You can write a JMX client to automate regular maintenance tasks, rolling upgrades, and so
on.

■ You can write a JMX application that constitutes your own version of imqcmd, and you can
use it instead of imqcmd.

Administration Tools and Tasks

Chapter 3 • Message Queue Service 67

In addition to offering expanded functionality (compared to the JMS API), JMX is also the Java
standard for building management applications and is widely used for managing J2EE
infrastructure. If your Message Queue client is a part of a larger J2EE deployment, JMX support
allows you to use a standard programmatic management framework throughout your J2EE
application.

The JMX specification defines an architecture that enables the programmatic management of
any distributed resource. This architecture is defined by design patterns, APIs, and various
services. Message Queue relies on the implementation of the JMX 1.2 specification, which is
part of JDK 1.5.

To manage a Message Queue broker using this architecture, you create an MBean (a managed
Java object) that represents the resource to be managed. You manage the underlying resource
by configuring the MBean, invoking its operations, or listening for notifications. For complete
information about using JMX to manage the Message Queue broker, see Sun Java System
Message Queue 4.1 Developer’s Guide for JMX Clients.

Supporting a Development Environment
In developing a client component, it’s best to keep administrative work to a minimum. The
Message Queue product is designed to help you do this and can be used out of the box. It should
be enough just to start the broker. The following practices allow you to focus on development:

■ Use default implementations of the data store (built-in file persistence), the user repository
(file-based), and access control properties file. These are adequate for developmental testing.
The default user repository is created with default entries that allow you to use the broker
immediately after installation. You can use the default user name (guest) and password
(guest) to authenticate a client.

■ Use a simple file-system object store by creating a directory for that purpose, and store
administered objects there. You can also instantiate administered objects directly in code if
you prefer not to create a store at all.

■ Use auto-created physical destinations rather than explicitly creating them on the broker.
See the appropriate developer’s guide for information.

Supporting a Production Environment
In a production environment, message service management plays a key role in application
performance and in meeting the enterprise requirements for scaling, availability, and security.
In this environment, the administrator has many more tasks to perform. These can be roughly
divided into setup and maintenance operations.

Administration Tools and Tasks

Sun Java System Message Queue 4.1 Technical Overview • September 200768

Setup Operations
Typically, you have to perform the following setup operations:

■ Secure administrative access

Whether you use a file-based or LDAP user repository, make sure that the administrator is
in the admin group and has a secure password. If necessary, create a secure connection to the
broker for the administrator.

■ Secure client access

Whether you use a file-based or LDAP user repository, populate the user repository with the
names of users who can access the message service and edit the access control properties file
to give them appropriate authorization. If necessary set up SSL-based connection services.
To prevent unauthenticated connections, be sure to change the “guest” user’s password.

■ Create and configure physical destinations

Set destination attributes so that the number of messages and the amount of memory
allocated for messages can be supported by broker resources.

■ Create and configure administered objects.

If you want to use an LDAP object store, configure and set up the store. Create and configure
connection factory and destination administered objects.

■ If stateful horizontal scaling is required, create a broker cluster.

Create a central configuration file and designate a master broker.

Maintenance Operations
To monitor and control broker resources and to tune application performance, you must do the
following after an application has been deployed:

■ Support and manage application clients
■ Monitor and manage destinations, durable subscriptions, and transactions
■ Disable auto-create capability
■ Monitor and manage the dead message queue

■ Monitor and tune the broker
■ Recover failed brokers
■ Monitor, tune, and reconfigure the broker
■ Manage broker memory resources
■ Expand clusters if necessary

■ Manage administered objects

Create additional administered objects as needed and adjust connection factory attributes to
improve performance and throughput.

Administration Tools and Tasks

Chapter 3 • Message Queue Service 69

Scaling Messaging Operations
The Message Queue service can be scaled horizontally by connecting brokers and allowing
them to share state information. This allows any single broker to access remote destinations and
to serve a greater number of clients. See Chapter 4, “Broker Clusters,” for additional
information.

Scaling Messaging Operations

Sun Java System Message Queue 4.1 Technical Overview • September 200770

Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working together to
provide message delivery services to clients. Clusters enable an administrator to scale messaging
operations with the volume of message traffic by distributing client connections among
multiple brokers.

This chapter discusses the architecture and internal functioning of such broker clusters. It
covers the following topics:
■ “Cluster Models” on page 71
■ “Message Delivery” on page 74
■ “Cluster Configuration” on page 80
■ “Cluster Synchronization” on page 81
■ “Choosing a Clustering Model” on page 82

For complete information about administering broker clusters, see Chapter 8, “Broker
Clusters,” in Sun Java System Message Queue 4.1 Administration Guide. For information about
the effect of reconnection on the client, see “Connection Event Notification” in Sun Java System
Message Queue 4.1 Developer’s Guide for Java Clients and “Client Connection Failover
(Auto-Reconnect)” in Sun Java System Message Queue 4.1 Developer’s Guide for Java Clients.

Cluster Models
Message Queue offers two cluster architectures, depending on the degree of availability desired.
■ Conventional clusters provide service availability but not data availability. If one broker in a

cluster fails, clients connected to that broker can reconnect to another broker in the cluster
but may be unable to access some data while they are reconnected to the alternate broker.

■ High availability clusters provide both service availability and data availability. If one broker
in a cluster fails, clients connected to that broker are automatically reconnected to that
broker in the cluster which takes over the failed broker's store. Clients continue to operate
with all persistent data available to the new broker at all times.

4C H A P T E R 4

71

The ability of brokers to work together in a cluster is provided by a cluster connection service.
This service is configured using broker properties; which properties you configure depend on
the model you want to use.

Each cluster model is described next and the sections that follow describe additional concerns
and tasks that you need to consider when working with clusters. The chapter ends with a
summary of the differences between the two models.

Conventional Clusters
Figure 4–1 shows Message Queue’s architecture for conventional broker clusters. Each broker
within a cluster is directly connected to all the others. Each client (message producer or
consumer) has a single home broker with which it communicates directly, sending and receiving
messages as if that broker were the only one in the cluster. Behind the scenes, the home broker
works in concert with the other brokers to provide delivery services for all connected clients.

In a cluster, service availability depends on brokers being able to share information about
destinations and durable subscribers. If a clustered broker fails, it is possible that this state
information gets out of sync. To guard against this possibility, you can designate one broker
within the cluster as the master broker. The master broker maintains a configuration change
record to track changes to the cluster’s persistent entities (destinations and durable
subscriptions). This record is used to propagate such change information to brokers that were
offline when the changes occurred.

Cluster Models

Sun Java System Message Queue 4.1 Technical Overview • September 200772

Following a discussion of the high availability model, this chapter explains how message
delivery takes place within a cluster and how the brokers are configured and synchronized.

High Availability Clusters
High availability clusters provide both service and data availability.

Each broker within a cluster is directly connected to all the others. Each client (message
producer or consumer) has a single home broker with which it communicates directly, sending
and receiving messages as if that broker were the only one in the cluster. Behind the scenes, the
home broker works in concert with the other brokers to provide delivery services for all
connected clients.

All brokers in a high availability cluster share a common JDBC-based persistent data store that
holds dynamic state information (destinations, persistent messages, durable subscriptions,
open transactions, and so on) for each broker. If a broker in the cluster fails, another broker
takes over the failed broker's lock in the persistent store. Clients connected to the failed broker
are reconnected to the broker that has taken over the failed broker's store. The broker that takes
over the connection becomes the client's new home broker.

Message Queue Broker Cluster

ClientsClients

Broker1

Destinations

Configuration
Change
Record

Broker3
Master Broker

Broker2

Clients

FIGURE 4–1 Cluster Architecture

Cluster Models

Chapter 4 • Broker Clusters 73

Figure 4–2 shows three brokers connected into a high availability cluster. The dotted line
represents the cluster service. In the event that Broker 1 fails or the connection (C1) between
clients at Broker 1 is broken, clients are reconnected to Broker 3 using a new connection (C2).
Note that all brokers belonging to the high availability cluster are connected to the same highly
available database.

To configure a high availability cluster you set cluster configuration properties for each broker
in the cluster. These specify the cluster id and the broker id in the cluster and they configure the
protocol governing the failover process.

Message Delivery
In a cluster configuration using either model, brokers share information about destinations and
message consumers: each broker knows the following information.

■ The name, type, and attributes of all physical destinations in the cluster
■ The name, location, and interests of each message consumer
■ Updates (deletions, additions, or reconfiguration) to the above

This allows each broker to route messages from its own directly connected message producers
to remote message consumers. The home broker of a producer has different responsibilities
from the home broker of the consumer:

Message Queue Broker Cluster
High Availibility Model

Broker 1
C1

C2

Broker 2

Broker 3

Clients

Clients Clients

Highly
Available
Database

FIGURE 4–2 High Availability Cluster

Message Delivery

Sun Java System Message Queue 4.1 Technical Overview • September 200774

■ The producer’s home broker is responsible for persisting and routing messages originating
from that producer, for logging, for managing transactions, and for processing
acknowledgements from consuming clients.

■ The consumer’s home broker is responsible for persisting information about consumers, for
forwarding the message to the consumer, and for letting the producer’s broker know
whether the consumer is still available and whether the message was successfully consumed.

Clustered brokers work together to minimize message traffic within the cluster; for example, if a
remote broker has two identical subscriptions for the same topic destination, the message is
sent over the wire only once. You can further reduce traffic by setting a destination property
specifying that delivery to local consumers has priority over delivery to remote consumers.

If secure, encrypted message delivery between client and broker is required, you can configure a
cluster to provide secure delivery of messages between brokers.

Destination Attributes
Attributes set for a physical destination on a clustered broker apply to all instances of that
destination in the cluster; however, some limits specified by these attributes apply to the cluster
as a whole and others to individual destination instances. This behavior is the same for both
clustering models. Table 4–1 lists the attributes you can set for a physical destination and
specifies their scope.

TABLE 4–1 Properties for Physical Destinations on Clustered Brokers

Property Name Scope

maxNumMsgs Per broker. Thus, distributing producers across a cluster,
allows you to raise the limit on total unconsumed messages.

maxTotalMsgBytes Per broker. Thus, distributing producers across a cluster,
allows you to raise the limit on total memory reserved for
unconsumed messages.

lmitBehavior Global

maxBytesPerMsg Global

maxNumProducers Per broker

maxNumActiveConsumers Global

maxNumBackupConsumers Global

consumerFlowLimit Global

localDeliveryPreferred Global

Message Delivery

Chapter 4 • Broker Clusters 75

TABLE 4–1 Properties for Physical Destinations on Clustered Brokers (Continued)
Property Name Scope

isLocalOnly Global

useDMQ Per broker

Clustering and Destinations
How a destination is created (by an administrator, automatically, or as a temporary destination)
determines how the destination is propagated in a cluster and how it is handled in the event of
connection or broker failure. This behavior is the same for both cluster models. The following
subsections examine a few use cases to determine when a destination is created and how it's
replicated. These include the following.

■ “Producing to a Queue Using the Reply-To Model” on page 76
■ “Producing to an Auto-Created Destination” on page 77
■ “Publishing to a Topic Destination” on page 78
■ “Handling Destinations in the Event of Connection or Broker Failure” on page 79

Producing to a Queue Using the Reply-To Model
The figure below shows how destinations are created and replicated when a client produces to a
queue and uses the reply-to model.

Message Delivery

Sun Java System Message Queue 4.1 Technical Overview • September 200776

1. The administrator creates the physical destination QW. The queue is replicated throughout
the cluster at creation time.

2. Producer ProdQW sends a message to queue QW and uses the reply-to model, directing replies
to temporary queue TempQ1W. (The temporary queue is created and replicated when an
application creates a temporary destination and adds a consumer.)

3. The home broker, BrokerW, persists the message sent to QW and routes the message to the
first active consumer that meets the selection criteria for this message. Depending on which
consumer is ready to receive the message, the message is delivered either to consumer C1QW
(on BrokerX) or to consumer C2QW (on BrokerZ). The consumer receiving the message,
sends a reply to the destination TempQ1W.

Producing to an Auto-Created Destination
The next figure shows how destinations are created and replicated in the case of a producer that
sends a message to a destination that does not exist and has to be automatically created.

BrokerW

Temp
Q1WQW

C2QW

C1QW

ProdQW

BrokerX

Temp
Q1WQW

BrokerY

Temp
Q1WQW

BrokerZ

Temp
Q1WQW

Persisted
Messages

Persisted
Messages

FIGURE 4–3 Replication of Destinations in a Cluster: Queue with Reply-To

Message Delivery

Chapter 4 • Broker Clusters 77

1. Producer ProdAutoQY sends a message to a destination AutoQY that does not exist on the
broker.

2. The broker persists the message and creates destination AutoQY.
Auto-created destinations are not automatically replicated across the cluster. Only when a
consumer elects to receive messages from a queue AutoQY, would that consumer’s home
broker create the destination AutoQY and convey the message to the consumer. At the point
where one consumer creates the autocreated destination, the destination is replicated across
the cluster. In this example, when the consumer CAutoQY, creates the destination, the
replication takes place.

Publishing to a Topic Destination
The following figure shows how destinations are created and replicated in a cluster when a
client publishes a message to a topic destination that is created by the administrator.

BrokerW

AutoQY

Persisted
Messages

Persisted
Messages

BrokerX

AutoQY

BrokerY

AutoQY

ProdAutoQY CAutoQY
BrokerZ

AutoQY

FIGURE 4–4 Replication of Destinations in a Cluster: Auto-Created Destinations

Message Delivery

Sun Java System Message Queue 4.1 Technical Overview • September 200778

1. The administrator creates the physical topic destination TY. The admin-created destination
TY is replicated throughout the broker cluster (before the destination is used).

2. Publisher PubTY, sends a message to topicTY.

3. The home broker, BrokerY, persists any messages published to TY and routes the messages
to all topic subscribers that match the selection criteria for this message. In this example
C1TY and C2TY are subscribed to topicTY.

Handling Destinations in the Event of Connection or Broker Failure
Table 4–2 explains how different kinds of destinations are replicated and deleted in a cluster.

BrokerW

TY

BrokerX

BrokerY
C2TY

C1TY

PubTY
BrokerZ

TY

TY TY

Persisted
Messages

Persisted
Messages

FIGURE 4–5 Replication of Destinations in a Cluster: Publishing to a Topic

Message Delivery

Chapter 4 • Broker Clusters 79

TABLE 4–2 Handling Destinations in a Cluster

Destination Propagation, and Deletion

Admin-created When the destination is created it is propagated in the cluster, and each
broker stores information about the destination persistently.

The destination is destroyed when the administrator explicitly deletes it.

Using the conventional cluster model, if there is a master broker, a record of
the creation and deletion is stored in the master broker to allow brokers in
the cluster to synchronize state information.

Using the high availability cluster model, information synchronized using
the shared persistent store.

Temporary When the destination is created, it is propagated around the cluster.

If the consumer associated with the temporary destination is allowed to
reconnect, the destination is persistently stored on the consumer’s home
broker. Otherwise, the destination is never stored. In this case, if the
consumer loses its connection, the destination is deleted on all brokers.

If the consumer’s home broker crashes and the consumer is allowed to
reconnect, temporary destinations associated with this consumer are
monitored. If the consuming client does not reconnect within a specific
period of time, it is assumed that the client has failed and the destination is
deleted.

Auto-created When a producer is created and a destination does not exist, the destination
is created on the producer’s home broker.

When a consumer is created for a destination that does not exist,
information about the consumer and the destination is propagated across
the cluster.

An auto-created destination can be explicitly deleted by an administrator,
or it can be automatically deleted
■ By each broker when there have been no consumers or messages for a

given period of time.

■ By each broker, when the broker restarts and there are no messages for
that destination.

Cluster Configuration
Depending on the clustering model used, you must specify appropriate broker properties to
enable the Message Queue service to manage the cluster. This information is specified by a set of
cluster configuration properties,. Some of these properties must have the same value for all
brokers in the cluster; others must be specified for each broker individually. It is recommended
that you place all configuration properties that must be the same for all brokers in one central

Cluster Configuration

Sun Java System Message Queue 4.1 Technical Overview • September 200780

cluster configuration file that is referenced by each broker at startup time. This ensures that all
brokers share the same common cluster configuration information.

See “Configuring Clusters” in Sun Java System Message Queue 4.1 Administration Guidefor
detailed information on cluster configuration properties.

Note – Although the cluster configuration file was originally intended for configuring clusters, it
is also a convenient place to store other (non-cluster-related) properties that are shared by all
brokers in a cluster.

Cluster Synchronization
Whenever a cluster’s configuration is changed, information about the change is automatically
propagated to all brokers in the cluster. A cluster configuration changes when one of the
following events occurs:
■ A destination on one of the cluster’s brokers is created or destroyed.
■ The properties of a destination are changed.
■ A message consumer is registered with its home broker.
■ A message consumer is disconnected from its home broker (whether explicitly or through

failure of the client, the broker, or the network).
■ A message consumer establishes a durable subscription to a topic.

Information about these changes is propagated immediately to all brokers in the cluster that are
online at the time of the change. However, a broker that is offline (one that has crashed, for
example) will not receive notice of the change when it occurs. How such a broker is
resynchronized with the cluster depends on the clustering model used.

Using high availability clustering, synchronization is enabled by the shared persistent store.
When a broker that has been offline rejoins the cluster (or when a new broker is added to the
cluster) it is able to access the most current information simply by accessing the shared
persistent database.

Using conventional clustering, to accommodate offline brokers, the Message Queue service
maintains a configuration change record for the cluster, recording all persistent entities
(destinations and durable subscriptions) that have been created or destroyed. When an offline
broker comes back online (or when a new broker is added to the cluster), it consults this record
for information about destinations and durable subscribers, then exchanges information with
other brokers about currently active message consumers.

One broker in the cluster, designated as the master broker, is responsible for maintaining the
configuration change record. Because other brokers cannot complete their initialization
without the master broker, it should always be the first broker started within the cluster. If the

Cluster Synchronization

Chapter 4 • Broker Clusters 81

master broker goes offline, configuration information cannot be propagated throughout the
cluster, because other brokers cannot access the configuration change record. Under these
conditions, you will get an exception if you try to create, reconfigure, or destroy a destination or
a durable subscription or attempt a related operation such as reactivating a durable
subscription. (Non-administrative message delivery continues to work normally, however.)
The use of a master broker and a configuration change record is optional. They are only
required if you are concerned with cluster synchronization after cluster configuration changes
or a broker failure.

Choosing a Clustering Model
The following table summarizes the differences between the two models. Use this information
in deciding which model to use or in switching from one model to another.

TABLE 4–3 Clustering Model Differences

Functionality Conventional High Availability

Performance Slightly faster than high availability
model.

Slightly slower than conventional
model

Service availability Yes, but some operations are not
possible when master broker is
down.

Yes.

Data availability No, when a broker in the cluster id
down.

Yes at all times.

Transparent failover recovery May not be possible if failover
occurs during a commit. Rare.

May not be possible if failover
occurs during a commit and the
client cannot reconnect to any
other broker in the cluster.
Extremely rare.

Configuration Done by setting appropriate cluster
configuration broker properties.

Done by setting appropriate cluster
configuration broker properties.

Additional requirements None. Highly available database.

Choosing a Clustering Model

Sun Java System Message Queue 4.1 Technical Overview • September 200782

Message Queue and J2EE

The Java 2 Platform, Enterprise Edition (J2EE platform) is a specification for a standard server
platform hosting multi-tier and thin client enterprise applications. One of the requirements of
the J2EE platform is that distributed components be able to interact through reliable,
asynchronous messaging. This interaction is enabled through the use of a JMS provider. In fact,
Message Queue is the reference JMS implementation for the J2EE platform.

This chapter explores the ramifications of implementing JMS support in a J2EE platform
environment. The chapter covers the following topics:

■ “JMS/J2EE Programming: Message-Driven Beans” on page 83
■ “J2EE Application Server Support” on page 85

For additional information about using Message Queue as a JMS provider for J2EE compliant
application servers, see Chapter 17, “JMS Resource Adapter Property Reference,” in Sun Java
System Message Queue 4.1 Administration Guide.

JMS/J2EE Programming: Message-Driven Beans
In addition to the general JMS client programming model introduced in Chapter 2, “Client
Programming Model,” there is a more specialized adaptation of a JMS client used in the context
of J2EE platform applications. This specialized client is called a message-driven bean and is one
of a family of Enterprise JavaBeans (EJB) components described in the EJB 2.0 (and later)
Specification (http://java.sun.com/products/ejb/docs.html).

Message-driven beans provide asynchronous messaging; other EJB components (session beans
and entity beans) can only be called synchronously, through standard EJB interfaces. However,
enterprise applications often need asynchronous messaging, to allow server-side components
to communicate without tying up server resources. Any application whose server-side
components must respond to application events needs an EJB component that can receive and
consume messages without being tightly coupled to the message producer. In enterprise
applications, this capability must also scale under increasing load.

5C H A P T E R 5

83

http://java.sun.com/products/ejb/docs.html

A message-driven bean (MDB) is an EJB component supported by a specialized EJB container,
that provides distributed services for the components it supports.

■ A JMS message driven bean is an EJB that implements the JMS MessageListener interface.
The onMessage method (written by the MDB developer) is invoked when the MDB
container receives a message. The onMessage() method consumes the message, just as the
onMessage() method of a standard MessageListener object would. You do not remotely
invoke methods on MDBs—as you do on other EJB components: therefore there are no
home or remote interfaces associated with them. The MDB can consume messages from a
single destination. The messages can be produced by standalone JMS applications, JMS
components, EJB components, or Web components, as shown in Figure 5–1.

■ A specialized EJB container supports the MDB. It creates instances of the MDB and sets
them up for asynchronous consumption of messages. The container sets up a connection
with the message service (including authentication), creates a pool of sessions associated
with a given destination, and manages the distribution of messages among the pooled
sessions. Since the container controls the life cycle of MDB instances, it manages the pool of
MDB instances to accommodate incoming message loads.
Associated with an MDB is a deployment descriptor that specifies the attributes for the
connection factory and destinations used by the container in setting up message
consumption. The deployment descriptor can also include other information needed by
deployment tools to configure the container. Each such container supports instances of a
single MDB.

EJB Container

MDB Container

JMS
Component

or
Application

EJB
Instance

Broker

JMS Message
Service

JMS Message
Consumers

JMS Message
Producers

MDB
Instance

onMessage()
Destinations

FIGURE 5–1 Messaging with MDBs

JMS/J2EE Programming: Message-Driven Beans

Sun Java System Message Queue 4.1 Technical Overview • September 200784

J2EE Application Server Support
In J2EE architecture, EJB containers are hosted by J2EE application servers. An application
server provides resources needed by the various containers: transaction managers, persistence
managers, name services, and, in the case of messaging and MDBs, a JMS provider.

In the Sun Java System Application Server, JMS messaging resources are provided by Sun Java
System Message Queue:

■ For Sun Java System Application Server 7.0, a Message Queue messaging system is
integrated into the application server as its native JMS provider.

■ For the Sun J2EE 1.4 Application Server, Message Queue is plugged into the application
server as an embedded JMS resource adapter.

For future releases of the Application Server, Message Queue will be plugged into the
application server using standard resource adapter deployment and configuration methods.

For information about J2EE architecture, see the J2EE Platform Specification located at
http://java.sun.com/javaee/downloads/index.jsp.

JMS Resource Adapter
A resource adapter is a standardized way of plugging additional functionality into an
application server that complies with J2EE 1.4. The standard, defined by the J2EE Connector
Architecture (J2EECA) 1.5 specification, allows an application server to interact with external
systems in a standard way. External systems can include enterprise information systems (EIS),
as well as messaging systems: for example, a JMS provider. Message Queue includes a JMS
resource adapter that allows application servers to use Message Queue as a JMS provider.

Plugging a JMS resource adapter into an application server allows J2EE components deployed
and running in the application server to exchange JMS messages. The JMS connection factory
and destination administered objects needed by these components can be created and
configured using J2EE application server administration tools.

Other administrative operations, however, such as managing a broker and physical
destinations, are not included in the J2EECA specification and can be performed only through
provider specific tools.

The Message Queue resource adapter is integrated in the Sun J2EE 1.4 application server.
However, it has not yet been certified with any other J2EE 1.4 application servers.

The Message Queue resource adapter is a single file (imqjmsra.rar) located in a directory that
depends on the operating system (see Chapter 17, “JMS Resource Adapter Property Reference,”
in Sun Java System Message Queue 4.1 Administration Guide). The imqjmsra.rar file contains
the resource adapter deployment descriptor (ra.xml) as well as the JAR files needed by the
application server in order to use the adapter.

J2EE Application Server Support

Chapter 5 • Message Queue and J2EE 85

http://java.sun.com/javaee/downloads/index.jsp

You can use the Message Queue resource adapter in any J2EE-1.4-compliant application server
by following the resource adapter deployment and configuration instructions that come with
that application server. As commercial J2EE 1.4 application servers become available and the
Message Queue resource adapter is certified for those application servers, Message Queue
documentation will provide specific information on the relevant deployment and configuration
procedures.

J2EE Application Server Support

Sun Java System Message Queue 4.1 Technical Overview • September 200786

Message Queue Implementation of Optional
JMS Functionality

The JMS specification indicates certain items that are optional: each JMS provider (vendor)
chooses whether to implement them. This appendix describes how the Message Queue product
handles JMS optional items.

Table A–1 describes how the Message Queue service handles JMS optional items.

Optional Features
TABLE A–1 Optional JMS Functionality

Section in JMS Specification Description and Message Queue Implementation

3.4.3 JMSMessageID “Since message IDs take some effort to create and increase a message’s
size, some JMS providers may be able to optimize message overhead if
they are given a hint that message ID is not used by an application. JMS
Message Producer provides a hint to disable message ID.”

Message Queue implementation: Product does not disable Message ID
generation (any setDisableMessageID() call in MessageProducer is
ignored). All messages will contain a valid MessageID value.

3.4.12 Overriding Message Header
Fields

“JMS does not define specifically how an administrator overrides these
header field values. A JMS provider is not required to support this
administrative option.”

Message Queue implementation: The Message Queue product
supports administrative override of the values in message header fields
through configuration of the client runtime (see “Message Header” on
page 40).

AA P P E N D I X A

87

TABLE A–1 Optional JMS Functionality (Continued)
Section in JMS Specification Description and Message Queue Implementation

3.5.9 JMS Defined Properties “JMS Reserves the ’JMSX’ Property name prefix for JMS defined
properties.”“Unless noted otherwise, support for these properties is
optional.”

Message Queue implementation: The JMSX properties defined by the
JMS 1.1 specification are supported in the Message Queue product (see
Appendix B, “Stability of Message Queue Interfaces,” in Sun Java System
Message Queue 4.1 Administration Guide).

3.5.10 Provider-specific Properties “JMS reserves the ’JMS_<vendor_name >’ property name prefix for
provider-specific properties.”

Message Queue implementation: The purpose of the provider-specific
properties is to provide special features needed to support JMS use with
provider-native clients. They should not be used for JMS to JMS
messaging.

4.4.8 Distributed Transactions “JMS does not require that a provider support distributed transactions.”

Message Queue implementation: Distributed transactions are
supported in this release of the Message Queue product (see
“Transactions” on page 47).

4.4.9 Multiple Sessions “For PTP <point-to-point distribution model>, JMS does not specify the
semantics of concurrent QueueReceivers for the same queue; however,
JMS does not prohibit a provider from supporting this.” See section 5.8
of the JMS specification for more information.

Message Queue implementation: The Message Queue implementation
supports queue delivery to multiple consumers. For more information,
see “Point-To-Point Messaging” on page 32.

Optional Features

Sun Java System Message Queue 4.1 Technical Overview • September 200788

Message Queue Features

The Message Queue service fully implements the JMS 1.1 specification for reliable,
asynchronous, flexible message delivery For information about JMS compliance-related issues,
see Appendix A, “Message Queue Implementation of Optional JMS Functionality” However,
Message Queue has capabilities and features that exceed JMS requirements. You can use these
features to integrate and monitor systems consisting of large numbers of distributed
components exchanging many thousands of messages in round-the-clock, mission-critical
operations.

This book has introduced these features in the process of describing the Message Queue service.
For your convenience, this appendix provides a summary of Message Queue features: each
feature is briefly described, the work required to use the feature is summarized, and references
are provided to sections in this book that introduce these features and to the specific documents
in the Message Queue documentation set that describe these features in detail.

Message Queue’s features, listed alphabetically in Appendix B, “Message Queue Features”, can
be roughly divided into the categories shown below.

■ Integration Support
■ HTTP connections
■ Secure connections
■ C client support
■ SOAP support
■ JES Monitoring Framework support
■ J2EE resource adapters

■ Security
■ Authentication
■ Authorization
■ JAAS-based authentication (see Authentication)
■ Encryption (see Secure connections)

■ Scalability

BA P P E N D I X B

89

■ Thread management
■ Broker clusters
■ Queue delivery to multiple consumers

■ Availability
■ Memory resource management
■ Message flow control to clients
■ Automatic reconnect
■ Reliable data persistence
■ Connection ping
■ Event Notification

■ Manageability
■ Administration tools
■ Message-based monitoring API
■ JES Monitoring Framework support
■ Tunable performance
■ Configurable physical destinations
■ Broker configurations
■ Dead message queue
■ Client runtime logging
■ JMX-based administration

■ Performance
■ Message compression
■ Tunable performance
■ Configurable physical destinations

■ Flexible Server Configuration
■ Configurable persistence
■ LDAP server support
■ JNDI server support

Message Queue Features

Sun Java System Message Queue 4.1 Technical Overview • September 200790

Feature List
TABLE B–1 Message Queue Features

Feature Description and Reference

Administration tools The Message Queue service includes GUI and
command line tools for managing destinations,
transactions, durable subscriptions, administered
object stores, user repositories, JDBC-compliant
data stores, and server certificates.

Reference

“Administration Tools” on page 65.

Chapter 1, “Administrative Tasks and Tools,” in
Sun Java System Message Queue 4.1 Administration
Guide

Feature List

Appendix B • Message Queue Features 91

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Authentication Authenticate users seeking a connection to the
broker.

The Message Queue service allows users to connect
to the broker by validating their name and
password against values stored in a user repository.
The repository can be a flat-file repository shipped
with Message Queue or an LDAP repository (LDAP
v2 or v3 protocol).

To Use
1. Create a user repository or use the default

instance.
2. Use the imqusermgr tool to populate the

repository.

JAAS-Based Authentication

Application clients can also use authentication
services based on the Java Authentication and
Authorization Service (JAAS), which allows you to
plug in a variety of services into the broker to
authenticate Message Queue clients. The JAAS API
is a core API in J2SE and therefore it is an integral
part of Message Queue's runtime environment.

To Use
1. The JAAS provider supplies a login module

class that implements the authentication
service.

2. Obtain JAAS configuration file and specify its
location using a system property.

3. Configure broker properties that relate to JAAS
support.

Reference

“Authentication and Authorization” on page 61.

Chapter 9, “Security,” in Sun Java System Message
Queue 4.1 Administration Guide.

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 200792

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Authorization Authorize users to perform specific operations.

The Message Queue service allows you to create an
access control properties file that specifies the
operations users and groups of users can perform.
The broker checks this file when a client seeks to
create a connection, create a producer, create a
consumer, or browse a queue.

To Use

Edit the access control properties file that is
automatically created for the broker instance.

Reference

“Authentication and Authorization” on page 61

Chapter 9, “Security,” in Sun Java System Message
Queue 4.1 Administration Guide.

Automatic reconnect The administrator sets connection attributes on the
connection factory administered object to enable
automatic reconnection in the event of connection
failure. Reconnection can be to the same broker or
to another broker in a cluster if a cluster is used.
You can specify how many times to try
reconnection and the interval between attempts.
For clustered brokers, you can also specify how
often to iterate through a list of brokers and
whether to iterate through the list in a specific
order.

Reference

“Connection Services” on page 55.

Chapter 7, “Administered Objects,” in Sun Java
System Message Queue 4.1 Administration Guide.

Feature List

Appendix B • Message Queue Features 93

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Broker clusters The administrator can balance client connections
and message delivery across a number of broker
instances by grouping those instances into a broker
cluster. The Message Queue service supports two
kinds of clusters: conventional clusters and high
availability clusters

To Use Conventional Clusters
1. Specify cluster configuration properties for

each broker in the cluster. Specify properties
that are the same for all brokers using a cluster
configuration file.

2. If there is a master broker, start the master
broker

3. Start the other brokers in the cluster.

To Use High Availability Clusters
1. Specify cluster configuration properties for

each broker in the cluster (including
JDBC-related properties). Specify properties
that are the same for all brokers using a cluster
configuration file.

2. Install your JDBC driver's .jar file in the
appropriate directory location.

3. Use the imqdbmgr tool to create the database
schema for the highly available data store.

4. Start the brokers in the cluster.

Reference

Chapter 4, “Broker Clusters,”

Chapter 8, “Broker Clusters,” in Sun Java System
Message Queue 4.1 Administration Guide.

Broker configuration The administrator can set broker properties to tune
Message Queue service performance. This includes
routing services, persistence services, security,
monitoring, and administered object management.

Reference

Chapter 3, “Message Queue Service,”

Chapter 4, “Broker Configuration,” in Sun Java
System Message Queue 4.1 Administration Guide

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 200794

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

C client support C clients can use Message Queue messaging
services to send and receive messages. The C API
enables legacy C applications and C++ applications
to participate in JMS-based messaging.

Message Queue’s C API is supported by a C client
runtime that supports most of the standard JMS
functionality, with the exception of the following:
the use of administered objects; map, stream, or
object message body types; distributed
transactions; and queue browsers. The C client
runtime also does not support most of Message
Queue’s enterprise features.

Reference

“Java and C Clients” on page 52.

Sun Java System Message Queue 4.1 Developer’s
Guide for C Clients

Client runtime logging Java clients can use all the J2SE 1.4 logging facilities
to configure how the Message Queue client runtime
outputs its logging information. Clients can choose
to log the following events: changes in connection
state and miscellaneous connection activities,
session-related events, the creation of producers,
consumers, and destinations, and the consumption
and production of messages.

Java clients can configure logging
programmatically or by using configuration files.

Reference

“Client Runtime Logging” in Sun Java System
Message Queue 4.1 Developer’s Guide for Java
Clients

Feature List

Appendix B • Message Queue Features 95

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Compressed messages Java clients can set a message property to have the
client runtime compress a message being sent. The
runtime on the consumer side decompresses the
message before it delivers it to the consumer.
Additional properties are provided that you can use
to determine whether compressing messages would
actually improve performance.

Reference

“Message Body” on page 42.

“Managing Message Size” in Sun Java System
Message Queue 4.1 Developer’s Guide for Java
Clients.

Configurable persistence The administrator can configure the broker to use
the file-based persistent store provided with
Message Queue or a JDBC-compliant database,
such as Oracle 8i.

To Use

Set broker properties that relate to file-system
persistent storage or JDBC-compliant storage.

Reference

“Persistence Services” on page 59.

“Configuring a Persistent Data Store” in Sun Java
System Message Queue 4.1 Administration Guide.

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 200796

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Configurable physical destinations The administrator can define some messaging
behavior by setting physical destination properties
when creating destinations. The following behavior
can be configured for any destination: the
maximum number of unconsumed messages or the
maximum amount of memory allowed for such
messages, which messages the broker should reject
when memory limits are reached, the maximum
number of producers and consumers, the
maximum message size, the maximum number of
messages delivered in a single batch, whether the
destination can deliver only to local consumers,
and whether dead messages on the destination can
be moved to the dead message queue.

Reference

“Destinations and Routing Services” on page 56.

Chapter 6, “Physical Destinations,” in Sun Java
System Message Queue 4.1 Administration Guide.

Connection ping The administrator can set a connection factory
attribute to specify the frequency of a ping
operation from the client runtime to the broker.
This allows the client to preemptively detect a failed
connection.

Reference

“Connection Services” on page 55.

“Connection Services” in Sun Java System Message
Queue 4.1 Administration Guide.

Dead message queue The Message Queue message service creates the
dead message queue to hold messages that have
expired or that the broker could not process. You
can examine the contents of the queue to monitor,
tune, or troubleshoot system performance.

Reference

“Destinations and Routing Services” on page 56.

Chapter 6, “Physical Destinations,” in Sun Java
System Message Queue 4.1 Administration Guide.

Feature List

Appendix B • Message Queue Features 97

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Event Notification Java clients can listen for connection events (like
closure or reconnection) and take appropriate
action based on the notification type and the
connection state.

To Use
1. Use the event notification API to create an

event listener.

2. Add code to the client application that will take
appropriate action depending on the events
captured by the event listener.

Reference

“Connection Event Notification” in Sun Java
System Message Queue 4.1 Developer’s Guide for
Java Clients

HTTP connections Java clients can create HTTP connections to the
broker.

HTTP transport allows messages to be delivered
through firewalls. Message Queue implements
HTTP support using an HTTP tunnel servlet that
runs in a web server environment. Messages
produced by a client are wrapped by the client
runtime as HTTP requests and delivered over
HTTP through a firewall to the tunnel servlet. The
tunnel servlet extracts the JMS message from the
HTTP request and delivers the message over
TCP/IP to the broker.

To Use
1. Deploy HTTP tunnel servlet on a web server.
2. Configure broker’s httpjms connection service

and start the broker.
3. Configure HTTP connection.
4. Obtain an HTTP connection to the broker.

(Java clients only.)

Reference

“Connecting to the Broker” on page 25.

Appendix C, “HTTP/HTTPS Support,” in Sun Java
System Message Queue 4.1 Administration Guide

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 200798

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Interactive monitoring The administrator can use the imqcmd metrics
command to monitor a broker remotely.
Monitored data includes JVM metrics, broker
message flow, connections, connection resources,
messages, destination message flow, destination
consumers, destination resource use.

Reference

“Monitoring Services” on page 63.

Chapter 10, “Monitoring Broker Operations,” in
Sun Java System Message Queue 4.1 Administration
Guide

J2EE resource adapters Message Queue provides a resource adapter that
can be plugged into a J2EE-compliant application
server. By using Message Queue as a JMS provider,
an application server meets the J2EE requirement
that distributed components running in the
application server be able to interact using reliable,
asynchronous message.

To Use

Configure the adapter by setting adapter attributes.

Reference

“J2EE Application Server Support” on page 85.

Chapter 17, “JMS Resource Adapter Property
Reference,” in Sun Java System Message Queue 4.1
Administration Guide.

Feature List

Appendix B • Message Queue Features 99

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

JES Monitoring Framework support The JES Monitoring Framework allows
administrators to use the same interface to manage
any and all JES components. If you are using
Message Queue with other JES components, it
might be more convenient to manage these from a
single console. Administrators can use the Sun Java
System Monitoring Console to view performance
statistics, create rules to monitor automatically, and
acknowledge alarms. To enable JES monitoring,
you must do the following:
■ Install and configure the components in your

deployment; for example, Message Queue and
the Application Server.

■ Enable and configure the Monitoring
Framework for all your monitored
components.

■ Install the Monitoring Console on a separate
host, start the master agent, and then start the
web server.

For information, see the Sun Java Enterprise System
Monitoring Guide.

JMX-Based Administration Java clients can use the JMX API to monitor and
manage broker resources: the broker, services,
connections, destinations, consumers, producers,
and so on. You can use JMX-based management in
different ways to monitor application performance,
to monitor the broker, to automate tasks, or to
write custom tools.

Reference

Sun Java System Message Queue 4.1 Developer’s
Guide for JMX Clients

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 2007100

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

JNDI service provider support Clients can look up administered objects using the
JNDI API.

Administrators can use the imqobjmgr utility to
add, list, update, and delete administered objects in
an object store accessible using JNDI.

Reference

“Administration Tools” on page 65

Chapter 7, “Administered Objects,” in Sun Java
System Message Queue 4.1 Administration Guide

LDAP Server support The administrator can use LDAP servers for
administered object store and for storing user
information needed for authentication and
authorization. By default Message Queue provides
file-based storage for this data.

To Use for Administered Objects
1. Use the tools provided by the vendor to

populate and manage the user repository.

2. Set the LDAP-related broker properties.

3. Set up access control for administrative users.

Reference

“Security Services” on page 60.

Chapter 9, “Security,” in Sun Java System Message
Queue 4.1 Administration Guide

To Use for User Repository
1. Use the tools provided by the vendor to set up

the LDAP server.

2. Set the LDAP-related broker properties to
define the initial context and the location of the
store.

3. Set the LDAP-related broker properties that
relate to securing the LDAP server operations.

Reference

Chapter 9, “Security,” in Sun Java System Message
Queue 4.1 Administration Guide

Feature List

Appendix B • Message Queue Features 101

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Memory resource management The administrator can configure the following
behavior:
1. Set properties on a destination to specify the

maximum number of producers, the maximum
number of messages, and the maximum size of
any one message.

2. Set properties on a destination to control
message flow.

3. Set properties on a destination to manage
message flow for each destination.

4. Set properties on the broker to specify message
limits on all destinations for that broker.

5. Set properties on the broker to specify
thresholds of available system memory at
which the broker takes action to prevent
memory overload. The action taken depends
on the state of memory resources.

Reference

“Destinations and Routing Services” on page 56.

Chapter 4, “Broker Configuration,” in Sun Java
System Message Queue 4.1 Administration Guide

Message compression The developer can set a message header property to
have the client runtime compress a message before
sending it. The client runtime on the consumer side
decompresses the message before delivering it to
the consumer.

Reference

“Message Properties” on page 41.

“Message Compression” in Sun Java System
Message Queue 4.1 Developer’s Guide for Java
Clients

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 2007102

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Message flow control to clients The administrator or the developer can configure a
connection to specify various flow limits and
metering schemes to minimize the collision of
payload and control messages, and thereby to
maximize message throughput.

To Use

Set the flow-control attributes for the connection
factory administered object (administrator), or set
the flow-control properties for the connection
factory (developer).

Reference

“Connection Factories and Connections” on
page 38.

“Connection Services” in Sun Java System Message
Queue 4.1 Administration Guide.

“Connection Factory Attributes” in Sun Java
System Message Queue 4.1 Administration Guide

Message-based monitoring API Java clients can use a monitoring API to create
custom monitoring applications. A monitoring
application is a consumer that retrieves metrics
messages from special metrics topic destinations.

To Use
1. Write a metrics monitoring client.
2. Set broker properties to configure the broker’s

metrics message producer.
3. Set access controls on metrics topic

destinations.
4. Start the monitoring client.

Reference

“Monitoring Services” on page 63.

Chapter 4, “Using the Metrics Monitoring API,” in
Sun Java System Message Queue 4.1 Developer’s
Guide for Java Clients.

Chapter 10, “Monitoring Broker Operations,” in
Sun Java System Message Queue 4.1 Administration
Guide.

Feature List

Appendix B • Message Queue Features 103

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Queue delivery to multiple consumers Clients can register more than one consumer for a
given queue.

The administrator can specify the maximum
number of active consumers and the maximum
number of backup consumers for the queue. The
broker distributes messages to the registered
consumers, balancing the load among them in
order to allow the system to scale.

To Use

Set physical destination properties
maxNumActiveConsumers and
maxNumBackupConsumers.

Reference

“Point-To-Point Messaging” on page 32.

Chapter 15, “Physical Destination Property
Reference,” in Sun Java System Message Queue 4.1
Administration Guide.

Reliable data persistence To obtain absolute reliability you can require that
the operating system write the data synchronously
to the persistent store by setting the
imq.persist.file.sync.enabled property to
true. This eliminates possible data loss due to
system crashes, but at the expense of performance.
Note that although the data is not lost, it is not
available to any other broker (in a cluster) because
data is not currently shared by clustered brokers.
When the system comes back up, the broker can
reliably resume operations.

Reference

“Persistence Services” on page 59.

“Persistence Properties” in Sun Java System
Message Queue 4.1 Administration Guide

.

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 2007104

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Secure connections Clients can secure transmission of messages using
the Secure Socket Layer (SSL) standard over
TCP/IP and HTTP transports. These SSL-based
connection services allow for the encryption of
messages sent between clients and broker.

SSL support is based on self-signed server
certificates. Message Queue provides a utility that
generates a private/public key pair and embeds the
public key in a self-signed certificate. This
certificate is passed to any client requesting a
connection to the broker, and the client uses the
certificate to set up an encrypted connection.

To Use
1. Generate a self-signed or signed certificate.
2. Enable the secure service.
3. Start the broker.
4. Configure client security connection properties

and run the client.

Reference

“Connecting to the Broker” on page 25.

“Security Services” on page 60.

Chapter 9, “Security,” in Sun Java System Message
Queue 4.1 Administration Guide.

“Working With Secure Connections” in Sun Java
System Message Queue 4.1 Developer’s Guide for C
Clients

Feature List

Appendix B • Message Queue Features 105

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

SOAP support Clients can receive SOAP (XML) messages and they
can wrap them as JMS messages and use Message
Queue to exchange them as they would a JMS
message.

Clients can use a special servlet to receive SOAP
messages; they can use a utility class to wrap a
SOAP message as a JMS message; they can use
another utility class to extract the SOAP message
from the JMS message. Clients can use standard
SAAJ libraries to assemble and disassemble a SOAP
message.

Reference

“Working with SOAP Messages” on page 51.

“Working With SOAP Message,” Chapter 5,
“Working with SOAP Messages,” in Sun Java
System Message Queue 4.1 Developer’s Guide for
Java Clients.

Thread management The administrator can specify the maximum and
minimum number of threads assigned to any
specific connection service. The administrator can
also determine whether a connection service could
increase throughput by using a shared thread
model, which allows threads dedicated to idle
connections to be used by other connections.

To Use

Set connection service thread-related properties.

Reference

“Thread Pool Management” on page 56.

Chapter 4, “Broker Configuration,” in Sun Java
System Message Queue 4.1 Administration Guide.

Feature List

Sun Java System Message Queue 4.1 Technical Overview • September 2007106

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Tunable performance The administrator can set broker properties to
adjust memory usage, threading resources, message
flow, connection services, reliability parameters,
and other elements that affect message throughput
and system performance.

Reference

“Monitoring Services” on page 63.

“Monitoring Services” in Sun Java System Message
Queue 4.1 Administration Guide

Chapter 11, “Analyzing and Tuning a Message
Service,” in Sun Java System Message Queue 4.1
Administration Guide

Feature List

Appendix B • Message Queue Features 107

108

Glossary

This glossary provides information about terms and concepts you might encounter while using
Message Queue.

acknowledgement Control messages exchanged between clients and broker to ensure reliable delivery. There are two general
types of acknowledgement: client acknowledgements and broker acknowledgements.

administered
objects

A pre-configured object—a connection factory or a destination—that encapsulates provider-specific
implementation details, and is created by an administrator for use by one or more JMS clients. The use of
administered objects allows JMS clients to be provider-independent. Administered objects are placed in a
JNDI name space by and are accessed by JMS clients using JNDI lookups.

asynchronous
messaging

An exchange of messages in which the sending of a message does not depend upon the readiness of the
consumer to receive it. In other words, the sender of a message need not wait for the sending method to
return before it continues with other work. If a message consumer is busy or offline, the message is sent
and subsequently received when the consumer is ready.

authentication The process by which only verified users are allowed to set up a connection to a broker.

authorization The process by which a message service determines whether a user can access message service resources,
such as connection services or destinations, to perform specific operations supported by the message
service.

broker The Message Queue entity that manages message routing, delivery, persistence, security, and logging, and
that provides an interface for monitoring and tuning performance and resource use.

client An application (or software component) that interacts with other clients using a message service to
exchange messages. The client can be a producing client, a consuming client, or both.

client identifier An identifier that associates a connection and its objects with a state maintained by the Message Queue
broker on behalf of the client.

client runtime Message Queue software that provides messaging clients with an interface to the Message Queue message
service. The client runtime supports all operations needed for clients to send messages to destinations and
to receive messages from destinations.

cluster Two or more interconnected brokers that work in concert to provide scalable messaging services. In the
event of failover and reconnection, conventional clusters provide service availability; high availability
clusters provide service and data availability.

109

cluster connection
service

A private protocol that enables brokers in a cluster to provide reliable, synchronized service.

connection A communication channel between a client and a broker used to pass both payload messages and control
messages.

connection factory The administered object the client uses to create a connection to a broker. This can be a
ConnectionFactory object, a QueueConnectionFactory object or a TopicConnectionFactory object.

consumer An object (MessageConsumer) created by a session that is used for receiving messages sent from a
destination. In the point-to-point delivery model, the consumer is a receiver or browser (QueueReceiver
or QueueBrowser); in the publish/subscribe delivery model, the consumer is a subscriber
(TopicSubscriber).

data store A database where information (durable subscriptions, data about destinations, persistent messages,
auditing data) needed by the broker is permanently stored.

dead message A message that is removed from the system for a reason other than normal processing or explicit
administrator action. A message might be considered dead because it has expired, because it has been
removed from a destination due to memory limit overruns, or because of failed delivery attempts. You can
choose to store dead messages on the dead message queue.

dead message
queue

A specialized destination created automatically at broker startup that is used to store dead messages for
diagnostic purposes.

delivery mode An indicator of the reliability of messaging: whether messages are guaranteed to be delivered and
successfully consumed once and only once (persistent delivery mode) or guaranteed to be delivered at
most once (non-persistent delivery mode).

delivery model The model by which messages are delivered: either point-to-point or publish/subscribe. In JMS there are
separate programming domains for each, using specific client runtime objects and specific destination
types (queue or topic), as well as a unified programming domain.

destination The physical destination in a Message Queue broker to which produced messages are delivered for routing
and subsequent delivery to consumers. This physical destination is identified and encapsulated by an
administered object that a client uses to specify the destination for which it is producing messages and/or
from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging operations. There are two programming
domains: one for the point-to-point delivery model and one for the publish/subscribe delivery model.

encryption A mechanism for protecting messages from being tampered with during delivery over a connection.

group The group to which the user of a Message Queue client belongs for purposes of authorizing access to
connections, destinations, and specific operations.

JMS provider A product that implements the JMS interfaces for a messaging system and adds the administrative and
control functions needed to configure and manage that system.

cluster connection service

Sun Java System Message Queue 4.1 Technical Overview • September 2007110

message service A middleware service that provides asynchronous, reliable exchange of messages between distributed
components or applications. It includes a broker, the client runtime, the several data stores needed by the
broker to carry out its functions, and the administrative tools needed to configure and monitor the broker
and to tune performance.

messages Asynchronous requests, reports, or events that are consumed by messaging clients. A message has a
header (to which additional fields can be added) and a body. The message header specifies standard fields
and optional properties. The message body contains the data that is being transmitted.

messaging A system of asynchronous requests, reports, or events used by enterprise applications that allows loosely
coupled applications to transfer information reliably and securely.

producer An object (MessageProducer) created by a session that is used for sending messages to a destination. In
the point-to-point delivery model, a producer is a sender (QueueSender); in the publish/subscribe delivery
model, a producer is a publisher (TopicPublisher).

queue An object created by an administrator to implement the point-to-point delivery model. A queue is always
available to hold messages even when the client that consumes its messages is inactive. A queue is used as
an intermediary holding place between producers and consumers.

selector A message header property used to sort and route messages. A message service performs message filtering
and routing based on criteria placed in message selectors.

session A single threaded context for sending and receiving messages. This can be a queue session or a topic
session.

topic An object created by an administrator to implement the publish/subscribe delivery model. A topic may be
viewed as node in a content hierarchy that is responsible for gathering and distributing messages
addressed to it. By using a topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction An atomic unit of work that must either be completed or entirely rolled back.

transaction

111

112

Index

A
access control, 62
access control file, 60
admin-created destinations, 57
administered objects

introduced, 22
managing, 67
use of, 23

administration tools, 28
application servers, and Message Queue, 85-86
authentication

about, 61-62
components needed for, 61
JAAS-based, 62
use and reference, 92

authorization
See also access control file
about, 61-62
components needed for, 61
use and reference, 93

AUTO_ACKNOWLEDGE mode, 46
auto-created destinations, 57, 77

B
broker acknowledgements

message consumption, and, 46
suppression of, 39

broker clusters
architecture of conventional, 72
architecture of high availability, 73

broker clusters (Continued)
cluster configuration file, 81
cluster configuration properties, 81
comparing models for, 82
configuration change record, 81
connection service for, 72
conventional, 71
destination handling in, 79
high availability, 71
master broker, 81, 82
message delivery in, 74
message traffic in, 75
models for, 71
producing to auto-created destinations, 77
propagation of information in, 81
replication of topic destination in, 78
request-reply implementation of, 76
scope of destinations in, 75
synchronization of information in, 81
use and reference, 94

brokers
administration of, 68
automatic reconnection to, 39, 93
connecting to, 26
development environment, 68
firewalls, connecting through, 55
GUI-based administration of, 67
interconnected

See broker clusters
introduced, 26
JMX, and, 67
limit behaviors, 59

113

brokers (Continued)
logging

See logger
maintenance, 69
master broker, 81, 82
memory management, 58, 59
metrics

See broker metrics
monitoring, 99
monitoring APIs, 103
performance of, tuning, 107
production environment, 68
programmatic management of, 67
properties, 55
recovery from failure, 59
restarting, 59
services used by, 55
starting, 66
tools for administering, 65
windows service, as, 67

built-in persistence, 60
BytesMessage type, 42

C
C clients, 27, 52, 95
CLIENT_ACKNOWLEDGE mode, 46
client acknowledgements, 46
client authentication, 38
clients

C and C++, 27, 52, 95
Java, 27, 52
runtime support for, 27

cluster configuration file, 81
cluster configuration properties, 81
components

EJB, 83
MDB, 84

connection factory administered objects
as JMS programming object, 38
defined, 22

connection objects, 38
connection services, 26

about, 54

connection services (Continued)
automatic reconnection, 93
configuring, 55
HTTP support, 98
managing, 67
message flow, 103
pinging service, 97
port mapper

See port mapper
secure, 105
thread management, 106

consumers
as JMS clients, 21
as JMS programming object, 43
asynchronous, 43
delivery to, 43
durable, 39
load balancing consumption, 34
multiple for a queue, 104
synchronous, 43

containers
EJB, 84
MDB, 84

control messages, 49

D
data store, 48

about, 59
flat-file, 60
JDBC-accessible, 60

dead message queue
about, 57
use and reference, 97

delivery, reliable, See reliable delivery
delivery mode, 40
design and performance, 32
destination administered objects

as JMS programming object, 43
defined, 22

destinations
configuring, 58
creating, 39
handling of in clusters, 79

Index

Sun Java System Message Queue 4.1 Technical Overview • September 2007114

destinations (Continued)
kinds of, 57
limits for, 58
managing, 57
scope of in clusters, 75
temporary, 39, 44

distributed transactions
See also XA connection factories
about, 47
JMS requirements, and, 88
XA resource manager, 48

DUPS_OK_ACKNOWLEDGE mode, 47
durable subscriptions, 48

E
EJB containers, 84
encryption, 63

F
firewalls, 55, 56

H
HTTP connections, 98

I
imqbrokerd utility, 66
imqcmd utility, 67
imqdbmgr utility, 67
imqkeytool utility, 67
imqobjmgr utility, 67
imqsvcadmin utility, 67
imqusermgr utility, 61, 67

J
J2EE applications

EJB specification, 83
JMS, and, 20, 83
message-driven beans

See message-driven beans
Message Queue and, 30

J2EE resource adapters, 99
JAAS-based authentication, 62
Java clients, 27, 52
JDBC support

about, 60
managing, 67

JES Monitoring Framework, 64, 100
JMS

domains and APIs, 36
message properties, standard, 41
messaging objects, 21
messaging patterns, 21
optional features in Message Queue, 87
provider, 20
reserved properties, 88
runtime support for, 27
specification, 20

JMS applications, 37
JMS clients, 52
JMSCorrelationID message header field, 40
JMSDeliveryMode message header field, 41
JMSDeliveryMode message header field, 40
JMSDestination message header field, 40
JMSExpiration message header field, 41
JMSExpiration message header field, 40
JMSMessageID, 87
JMSMessageID message header field, 40
JMSPriority message header field, 41
JMSPriority message header field, 40
JMSRedelivered message header field, 40
JMSReplyTo message header field, 43
JMSReplyTo message header field, 40
JMSTimestamp message header field, 40
JMSType message header field, 40
JMX-based administration, 67
JNDI support, 101

Index

115

L
LDAP repository, 61
LDAP server support, 101
listeners

as JMS programming object, 43
MDBs, and, 84
serializing, 40

logger
about, 64
output channels, 64

logging, See logger

M
MapMessage type, 42
master broker, 81, 82
MDB, See message-driven beans
MDB containers, 84
memory management, 58, 102
message consumers, See consumers
message-driven beans

about, 84
application server support, 85-86
deployment descriptor, 84
MDB container, 84

message header fields
JMS message, 40-41
overriding, 39, 87

message listeners, See listeners
message-oriented middleware, 15, 16
message producers, See producers
Message Queue

application servers, and, 85-86
development environment, 68
features summary, 89
JMS optional features, 87
production environment, 68

message service
administration, 28
components of, 53
introduced, 24
memory management, 102
scaling, 28

Message type, 42

messages
body of, 42
body types, 42
broadcasting, 36
compressing, 96, 102
compression of, 42
consumption of, 43
control, 49
correspondence, establishing, 40
delivery mode, 40
destination of, 40
expiration of, 40
headers

See message header fields
ID of, 40
JMS, 40
JMS properties of, 41-42
JMSReplyTo header field, 44
listeners for, 43
load balancing consumption of, 34
payload, 48
persistent, 41
priority of, 40
processing of, 49
producing and consuming, 38
properties, 41
publishing, 34
redelivery flag, 40
reliable delivery of, 46
reply-to destination, 40
selecting, 40, 43
SOAP, 51
storage of, 48
timestamp for, 40

messaging domains
APIs and, 36
introduced, 32
point-to-point, 32
publish/subscribe, 34

messaging provider, 18
metrics

data
See broker metrics

message producer, 64

Index

Sun Java System Message Queue 4.1 Technical Overview • September 2007116

metrics (Continued)
messages, 64
reports, 63

middleware, 15, 16
monitoring, support for JES, 64, 100
monitoring APIs, 103
monitoring services, 55

O
object request broker, 16
ObjectMessage type, 42

P
payload messages, 48
performance, 107
performance and design, 32
permissions

access control properties file, 62
Message Queue operations, 62

persistence
built-in, 60
configurable, 96
data, of, 104
plugged-in

See plugged-in persistence
persistence services, 54
persistent data store, 48
physical destinations

configuring, 58
creating, 39
kinds of, 57
limits for, 58
managing, 57, 67
temporary, 39, 44

plugged-in persistence, 60
point-to-point messaging, 32
port mapper, 56
ports, dynamic allocation of, 56
producers

as JMS clients, 21
as JMS programming object, 42

producers (Continued)
creating, 42

publish/subscribe messaging, 34
publishing, 34

Q
queue browser, 34, 39, 40
queues, 39

R
reliable delivery

data persistence, 104
JMS specification, 46-48

request-reply pattern, 44, 76
resource adapters, 30, 85, 99
routing services, 54

S
Secure Socket Layer standard, See SSL
security, 60, 105
security services, 55
selectors, 43
self-signed certificates, 67
sessions

as JMS programming object, 39
JMS client acknowledgements, 46
threading and, 39
transacted, 46

SOAP messages, 51
SOAP support, 27, 106
SSL

about, 63
feature description, 105
self-signed certificates, 67

StreamMessage type, 42
subscribers

durable, 35, 44, 48
introduced, 34

Index

117

T
temporary destinations, 44, 57
TextMessage type, 42
thread management, 106
threading model, 56
timestamps, 40
TLS protocol, 61
topic destinations, 78
topics, 39
transactions

distributed
See distributed transactions

processing of, 47

U
unified APIs, 36
user data, 61
users, managing, 67

X
XA resource manager, See distributed transactions

Index

Sun Java System Message Queue 4.1 Technical Overview • September 2007118

	Sun Java System Message Queue 4.1 Technical Overview
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Documentation
	Online Help
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs

	The Java Message Service (JMS) Specification

	Directory Variable Conventions
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Messaging Systems: An Introduction
	Message-Oriented Middleware (MOM)
	JMS as a MOM Standard
	JMS Messaging Objects and Patterns
	Administered Objects
	To Use Administered Objects as Destinations

	Message Queue: Elements and Features
	The Message Queue Service
	Connecting to the Broker
	The Broker
	Client Runtime Support
	Java and C Client Support
	SOAP Support for Java Clients

	Administration
	Scaling the Message Queue Service

	Message Queue as an Enabling Technology
	Message Queue Feature Summary

	Client Programming Model
	Design and Performance
	Messaging Domains
	Point-To-Point Messaging
	Publish/Subscribe Messaging
	Domain-Specific and Unified APIs

	Programming Objects
	Connection Factories and Connections
	Sessions
	Messages
	Message Header
	Message Properties
	Message Body

	Producing a Message
	Consuming a Message
	Synchronous and Asynchronous Consumers
	Using Selectors to Filter Messages
	Using Durable Subscribers

	The Request-Reply Pattern
	Reliable Messaging
	Acknowledgements
	Transactions
	Persistent Storage

	A Message’s Journey Through the System
	Message Production
	Message Handling and Routing
	Message Consumption
	Message End-of-Life

	Working with SOAP Messages
	To Get Reliable SOAP Messaging

	Java and C Clients

	Message Queue Service
	Component Services
	Connection Services
	Port Mapper
	Thread Pool Management

	Destinations and Routing Services
	Managing Destinations
	Configuring Physical Destinations
	Managing Memory
	Destination Message Limits
	System-Wide Message Limits
	System Memory Thresholds

	Persistence Services
	File-Based Persistence
	JDBC-Based Persistence

	Security Services
	Authentication and Authorization
	JAAS-Based Authentication
	Encryption

	Monitoring Services
	Metrics Generator
	Logger
	Metrics Message Producer
	JES Monitoring Framework Support

	Administration Tools and Tasks
	Administration Tools
	JMX-Based Administration
	Supporting a Development Environment
	Supporting a Production Environment
	Setup Operations
	Maintenance Operations

	Scaling Messaging Operations

	Broker Clusters
	Cluster Models
	Conventional Clusters
	High Availability Clusters

	Message Delivery
	Destination Attributes
	Clustering and Destinations
	Producing to a Queue Using the Reply-To Model
	Producing to an Auto-Created Destination
	Publishing to a Topic Destination
	Handling Destinations in the Event of Connection or Broker Failure

	Cluster Configuration
	Cluster Synchronization
	Choosing a Clustering Model

	Message Queue and J2EE
	JMS/J2EE Programming: Message-Driven Beans
	J2EE Application Server Support
	JMS Resource Adapter

	Message Queue Implementation of Optional JMS Functionality
	Optional Features

	Message Queue Features
	Feature List

	Glossary
	Index

