

Time Topic

9.30-10am Speakers introduction and industry update panel

10.30-11am Overview of OpenFlow/SDN concepts

11am - 12pm OpenFlow/SDN in the service provider WAN

12.30-1pm Lunch Break

1-2pm OpenFlow/SDN in the campus LAN environment

2-2.30pm OpenFlow/SDN for IaaS providers

2.30-3.30pm OpenFlow/SDN in the enterprise data center

3.30-4pm Wrap-up and closing comments

GOT QUESTIONS?!
Please submit your questions via twitter using the hashtag #ONS2011T2

ABOUT YOU!!
A quick set of stats about the audience

88 people registered

57 companies

67% vendors, 22% customers,
11% research

78% technical-ish (by title)

ABOUT US!!
Speakers for today in (rough) order of appearance

Chris Liljenstolpe, Big Switch Networks, formerly Dir Cross-Domain
Architecture at Telstra, Chief Arch at Woven, CTO of IP & Data at Alcatel, Chief
Arch at Cable & Wireless, Co-Chair Operations WG at IETF

Matt Davy, Chief Architect Indiana University, Director InCNTRE, OpenFlow
Evangelist at Internet2 / NDDI

Paul Lappas, Formerly VP of Engineering and Co-Founder at GoGrid, Eng
and Ops Lead at ServePath, Sr Engineer at Epicentric, Application Engineer at
Motorola (Iridium)

Peter Krey, Founder & President at Krey Associates, MD and Chief Architect /
CTO at Deutsche Bank Asset Mgmt, VP BD at Storage Apps, (various) at
Morgan Stanley and JP Morgan

Industry Update Panel

Flash Break

OpenFlow/SDN
Concepts

OpenFlow fundamentals!
A few tech notes!
Implications!

Today’s talk:

THE BASICS OF OPENFLOW!
Overview!

Protocol that allows an external server to control the data path of a switch!
• Vendor Independent, works with today’s networking chipsets!
• Protocol is open source, core technologies are IP-clear!
• Allows wide range of operations!

OpenFlow!

Controller is (usually) a
data center-class Linux
Server running a controller
application. Open Source
implementations exist.!

OpenFlow client is added
to switch software. Existing
switches can be OpenFlow
enabled via software
upgrade.!

OpenFlow Protocol!

…! …! …!

Data Path (Hardware)!

Control Path! OpenFlow!

Data Path (Hardware)!

Control Path! OpenFlow!

AN OPENFLOW SWITCH SIMPLIFIED!
Core of the OpenFlow switch: the flow table abstraction

Flow Table!

Generic primitive that sits
on top of switch TCAM,
designed to match well with
common switch ASICs.!

Example actions:!
1.  Switching and routing

(port),!
2.  Firewalling (drop),!
3.  Using to switch’s non-

OpenFlow logic (local),!
4.  Send to controller for

processing (controller)!

Foundation network
functions are split between
per-packet rules on the
switch and high-level
decisions at the server!

Controller	 (Server	 So,ware)	

…	 …	 …	

Flow Table
MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
dport … Action Count

****10:20:.* port 1 250
5.6.7.8* port 2 300
*25**** drop 892
192.** local 120

OpenFlow-enabled Switch

****** controller 11

OPENFLOW PROTOCOL, ARCHITECTURES AND SDN!
An architecture of switches, controllers and software applications

THE PROTOCOL!

THE ARCHITECTURE!

Minimal and powerful, like the
x86 instruction set!

Rich variety of uses and
applications, like x86 + Linux

+ applications + perl!

THREE TIER MODEL OF OPENFLOW!
A switch hardware layer, a controller layer and an application layer

3 Tier Model!

Many of the new
networking functions can
be built as server-side
applications on this
framework with line-rate
performance.!

Network functions are
decoupled from underlying
hardware (and location).!

Integration of applications
with external services
(LDAP, Virtual Center) is
vastly simplified.!

Switch
hardware!

Controller (Server Software)!

Forwarding
application(s)!

Switch
hardware!

Switch !
hardware!

Switch
hardware!

Switch
hardware!

Basic firewall
application!

… …Access/auth
application!

PRO-ACTIVE VERSUS REACTIVE MODELS!
Performance versus a priori knowledge in app software + network design

Pro-Active Model!

…! …! …!

Data Path (Hardware)!

Control Path! OpenFlo
w!

Data Path (Hardware)!

Control Path! OpenFlo
w!

Reactive Model!

…! …! …!

Data Path (Hardware)!

Control Path! OpenFlo
w!

Data Path (Hardware)!

Control Path! OpenFlo
w!

OPENFLOW IN PRACTICE!
Still a distributed system, but less distributed (and less problematic)

OpenFlow  
Controller!

OpenFlow  
Controller!

OpenFlow  
Controller!

OpenFlow  
Controller!

OpenFlow  
Controller!

OpenFlow  
Controller!

+ = …

(server)! (switches)! (switching, routing,
firewalling, load

balancing, spanning, and
more…)!

NETWORK SLICING!
Virtualization of both data and control in the network

OpenFlow Protocol!

A centralized virtualization
layer allows to divide the
network in “slices”.!

Traffic and control of slices
are isolated. Administrators
for each slice can configure
applications for the slice.!

Slices can be very
different, for example one
slice can use a switch as
an L2 switch, while another
uses the same hardware
concurrently as an L3
router.!

Switch
hardware!

Switch
hardware!

Switch !
hardware!

Switch
hardware!

Switch
hardware!

Network Virtualization Layer!

Controller!

App!

App!

App!

Controller!

App!

App!

App!

Controller!

App!

App!

App!

Controller!

App!

App!

App!

Slice 1 Slice 3 Slice 2 Slice 4

try {!

 //update state of a network slice!
 //double-check it is working as intended!
 //now start to allow traffic!

} catch(Exception e) {!

 //roll back to previous known-good state!

}!

NETWORK AUTOMATION!
There is rarely a business case to justify solving these (hard) problems

Questions

EVERY SEGMENT SEES SOMETHING DIFFERENT!
OpenFlow has many potential propositions

Service
Provider WAN

Campus LAN IaaS Provider Enterprise
Datacenter

Virtualization Multi-tenancy Multi-team Delegated admin The “new stackable”

Advanced
Forwarding

Fat Trees for Big
Data apps

Larger L2
domains, VM
mobility

No more spanning
tree failures

No more spanning
tree failures

Programmability Integration with
proprietary
systems

Vendor choice

+ = …

(server)! (switches)! (switching, routing,
firewalling, load

balancing, spanning, and
more…)!

