
Consistent Updates in
Software-De!ned Networks

Nate Foster
Mark Reitblatt

Cole Schlesinger
Jennifer Rexford

David Walker

Network Updates

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Network Updates
• Routine maintenance
• Unexpected failures
• Traffic engineering
• Updated ACL

Network Updates

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Desired Invariants
• No lost packets
• No broken connections
• No forwarding loops
• No security holes

Network Updates
• Routine maintenance
• Unexpected failures
• Traffic engineering
• Updated ACL

At 12:47 AM PDT on April 21st, a network change
was performed as part of our normal scaling
activities...

During the change, one of the steps is to shift
traffic off of one of the redundant routers...

The traffic shift was executed incorrectly and the
traffic was routed onto the lower capacity
redundant network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of
connection attempts was extremely high and nodes
began to fail, resulting in more volumes left
needing to re-mirror. This added more requests to
the re-mirroring storm...

The trigger for this event was a network
configuration change.

At 12:47 AM PDT on April 21st, a network change
was performed as part of our normal scaling
activities...

During the change, one of the steps is to shift
traffic off of one of the redundant routers...

The traffic shift was executed incorrectly and the
traffic was routed onto the lower capacity
redundant network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of
connection attempts was extremely high and nodes
began to fail, resulting in more volumes left
needing to re-mirror. This added more requests to
the re-mirroring storm...

The trigger for this event was a network
configuration change.

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Prior Work

Controller

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Software Abstractions

Controller

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Software Abstractions

PL Abstractions

By designing the right software abstractions, we can
solve the network update problem once and for all!

Controller

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Software Abstractions

PL Abstractions

D
iscovery

M
onitoring

R
outing

By designing the right software abstractions, we can
solve the network update problem once and for all!

OpenFlow Switch

Example: Distributed Access Control

Controller

Application

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

F2

F3

Src Traffic Action
Web Allow

Non-web Drop
Any Allow

Security Policy

F1

I

Traffic

OpenFlow Switch

Example: Distributed Access Control

Controller

Application

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

F2

F3

Src Traffic Action
Web Allow

Non-web Drop
Any Allow

Security Policy

Con"guration A
Process black-hat traffic on F1

Process white-hat traffic on {F2,F3}

F1

I

Traffic

OpenFlow Switch

Example: Distributed Access Control

Controller

Application

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

F2

F3

Src Traffic Action
Web Allow

Non-web Drop
Any Allow

Security Policy

Con"guration A
Process black-hat traffic on F1

Process white-hat traffic on {F2,F3}

F1

I

Traffic

OpenFlow Switch

Example: Distributed Access Control

Controller

Application

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

F2

F3

Src Traffic Action
Web Allow

Non-web Drop
Any Allow

Security Policy

Con"guration A
Process black-hat traffic on F1

Process white-hat traffic on {F2,F3}

Con"guration B
Process black-hat traffic on {F1,F2}

Process white-hat traffic on F3

?

F1

I

Traffic

Abstractions for Network Update

Challenge
•The network is a distributed system
•Can only update one element at a time

Our Approach
•Provide programmers with constructs for

updating the entire network at once

•Design semantics to ensure “reasonable” behavior
•Engineer efficient implementation mechanisms

- Compiler constructs low-level update protocols
- Automatically applies optimizations

update(config,	 topo)

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Consistent Updates in Action

#	 Configuration	 A
I_configA	 =	 [Rule({IN_PORT:1},[forward(5)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:2},[forward(5)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:3},[forward(6)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:4},[forward(7)])])
F1_configA	 =	 [Rule({TP_DST:80},	 [forward(2)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({TP_DST:22},	 [])])
F2_configA	 =	 [Rule({},[forward(2)])]
F3_configA	 =	 [Rule({},[forward(2)])]
configA	 =	 {I:SwitchConfiguration(I_configA),
	 	 	 	 	 	 	 	 	 	 	 F1:SwitchConfiguration(F1_configA),
	 	 	 	 	 	 	 	 	 	 	 F2:SwitchConfiguration(F2_configA),
	 	 	 	 	 	 	 	 	 	 	 F3:SwitchConfiguration(F3_configA)}

#	 Configuration	 B
I_configB	 =	 [Rule({IN_PORT:1},[forward(5)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:2},[forward(6)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:3},[forward(7)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({IN_PORT:4},[forward(7)])])
F1_configB	 =	 [Rule({TP_DST:80},	 [forward(2)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({TP_DST:22},	 [])])
F2_configB	 =	 [Rule({TP_DST:80},	 [forward(2)]),
	 	 	 	 	 	 	 	 	 	 	 	 	 	 Rule({TP_DST:22},	 [])])
F3_configB	 =	 [Rule({},[forward(2)])]
configB	 =	 {I:SwitchConfiguration(I_configB),
	 	 	 	 	 	 	 	 	 	 	 F1:SwitchConfiguration(F1_configB),
	 	 	 	 	 	 	 	 	 	 	 F2:SwitchConfiguration(F2_configB),
	 	 	 	 	 	 	 	 	 	 	 F3:SwitchConfiguration(F3_configB)}

#	 Main	 Function
topo	 =	 Topo(...)
update(configA,	 topo)
...wait	 for	 traffic	 load	 to	 shift...
update(configB,	 topo)

Src Traffic Action
Web Allow

Non-web Drop
Any Allow

Security Policy

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Semantics of Network Updates

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Atomic Updates
• Seem sensible...
• but costly to implement
• and difficult to reason about effects on

packets already in-#ight

Semantics of Network Updates

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Atomic Updates
• Seem sensible...
• but costly to implement
• and difficult to reason about effects on

packets already in-#ight

Per-Packet Consistent Updates
Every packet processed with old or new
con$guration, but not a mixture of the two

Implementation Mechanisms

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

NOX Controller

Frenetic Run-Time System

Frenetic Application

update(con"g,topo)

Calculate rules,
generate messsages

Raw OpenFlow
control messages

Two-phase commit
• Construct versioned internal and edge

con$gurations
• Phase 1: Install internal con$guration
• Phase 2: Install edge con$guration

Pure Extension
• Update strictly adds paths

Pure Retraction
• Update strictly removes paths

Slice Update
• Update affects a small number of switches

(Ask me for a demo!)

(Ask me for a demo!)

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

(Ask me for a demo!)

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Formal Veri!cation

Global
Con"g

Packet
Queue

Update

hC,Qi u�! hC 0, Q0i

Theorem

An update u C1 to C2 is per-packet consistent if and only if it
preserves all properties satis$ed by C1 and C2.

Formal Veri!cation

Global
Con"g

Packet
Queue

Update

hC,Qi u�! hC 0, Q0i

Theorem

An update u C1 to C2 is per-packet consistent if and only if it
preserves all properties satis$ed by C1 and C2.

Formal Veri!cation

Global
Con"g

Packet
Queue

Update

hC,Qi u�! hC 0, Q0i

 Veri"ed

Formal Veri!cation

Corollary
To verify that a property is invariant, simply check
that the old and new con$gurations satisfy it

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Formal Veri!cation

Corollary
To verify that a property is invariant, simply check
that the old and new con$gurations satisfy it

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Kripke Structure

Formal Veri!cation

Corollary
To verify that a property is invariant, simply check
that the old and new con$gurations satisfy it

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Model Checker

Kripke Structure

CTL Property

Formal Veri!cation

Corollary
To verify that a property is invariant, simply check
that the old and new con$gurations satisfy it

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Model Checker ✓

Kripke Structure

CTL Property
✘

Formal Veri!cation

Corollary
To verify that a property is invariant, simply check
that the old and new con$gurations satisfy it

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Model Checker ✓

Kripke Structure

CTL Property

Properties
• Connectivity
• Loop freedom
• Blackhole freedom
• Access control
• Waypointing
• Totality

✘

Per-Flow Consistency

Use Cases
• Load balancer
• Flow affinity
• In-order delivery

Per-#ow consistent updates
Every set of related packets processed
with old or new con$guration, but not
a mixture of the two.

Implementation mechanisms
• Need to identify active #ows
• Rules with soft timeouts
• DevoFlow wildcard cloning
• End-host feedback

OpenFlow Switch

OpenFlow Switch

Ongoing Work

Other abstractions
• Loop-freedom
• Affinity preserving

Update Synthesis
• Programmer speci$es an invariant
• Compiler constructs an update protocol

Enhanced fault tolerance
• Rapid response when failures occur
• Compiler “hardens” con$gurations
• Pre-loads backup policy

Leverage end hosts
• Help identify active #ows

Thank You!

Collaborators
Shrutarshi Basu (Cornell)
Mike Freedman (Princeton)
Rob Harrison (West Point)
Chris Monsanto (Princeton)
Mark Reitblatt (Cornell)
Gün Sirer (Cornell)
Cole Schlesinger (Princeton)
Alec Story (Cornell)
Jen Rexford (Princeton)
Dave Walker (Princeton)

Funding

http://frenetic-lang.org

http://frenetic-lang.org
http://frenetic-lang.org

