

Enterprise Data Center Networks

Isabelle Guis – Big Switch Networks – Vice President of Outbound Marketing

ONF Market Education Committee Chair

This Session Objectives

Leave with an understanding of...

Enterprise Data Center Networks

Definition

Trends In The Data Center

Changes in traffic patterns

Potential Market Opportunity & Budget Impact

By 2014, 80% of traffic will be East/West

2010 Data Center Network Infrastructure Sales

	Rankings	Y-Y Change
DC Ethernet Switching	1	41.1%
DC SAN	2	11.6%
DC Routers	3	1.2%
DC Application Delivery Controllers	4	22.0%
DC Network Security	5	15.9%
DC WAN Optimization Appliances	6	8.0%

Fluctuations will be 90 times higher than traffic peaks experienced today

In 2010 Data Center Infrastructure \$13B

Trends In The Data Center

Server, Storage, Network Infrastructure: Modernization Agenda

Enabling The Cloud

Compute, Storage and Network Are Not Equal

Typical Data Center Network Topology

- Between 20 to 40 servers per rack
- Mix of bare metal and virtualized servers
- Mix of physical and hypervisor-based switches
 - ToR deployment (access, aggregation, core)
 - Multiple data centers connected via L3

SDN Introduction in Data Center

Virtual switch 🗾 Virtual Machine

- Introduction of SDN based on OpenFlow
- OpenFlow
 Controller Software
 connected over IP
 to virtual and
 physical switches

Logical Architecture

Use Case #I: Resource Optimization

Network Segmentation

Implication

Use Case #1: Resource Optimization

30%

12

Traditional Solution

Static Design Takes Days/ Weeks and Leads to Overprovisioning of Resources

- **Expensive Equipment**
- **Time Consuming**
- **Upfront Spending**

SDN Solution

Reuse Existing Resources With Dynamic Software Optimization

- Increased Scalability and Efficiency
- Automation for Easier Integration with Compute

Use Case #2: Complete Network Visibility

Po	olicy Consistency across
	hosts connected to
	Virtual Switches
	Physical Switches
	(Access, Aggregation)

- Simplify Troubleshooting
- Reduce Downtime
- Allow For Better Traffic
 - Engineering
 - Ease Policy Enforcement

Q&A THANK YOU

