
The	
 Beacon	
 OpenFlow	
 Controller	

David	
 Erickson	

Stanford	
 PhD	
 Candidate	

Agenda	

•  Mo?va?on	

•  Design	
 Space	

•  Beacon	

•  Ques?ons	

Mo?va?on	

•  Back	
 to	
 circa	
 2008-­‐2009	

•  The	
 controller	
 world	
 ==	
 NOX	

–  Single	
 threaded	
 event	
 based	
 C++	
 with	
 SWIG	
 glue	
 to	
 Python	

–  Enabled	
 great	
 research	
 and	
 demos	
 (Thanks	
 Nicira!)	

•  Python	
 apps	
 interes?ng	
 with	
 <1k	
 LOC	

–  But	
 could	
 have	
 language	
 level	
 run?me	
 errors	

–  SWIG	
 hard	
 to	
 use,	
 needed	
 to	
 expose	
 C++	
 code	
 to	
 Python	

–  Much	
 slower	
 than	
 C++	

•  C++	
 only	
 apps	

–  Solved	
 the	
 Python	
 app	
 problems	

–  Cryp?c	
 compila?on	
 errors	
 (STL,	
 templates,	
 etc)	

–  Run?me	
 segfaults	
 and	
 other	
 memory	
 related	
 issues	

•  I	
 wanted	
 to	
 spend	
 more	
 .me	
 on	
 interes.ng	
 new	
 features	
 and	

less	
 .me	
 figh.ng	
 pla6orm	
 and/or	
 language	
 related	
 challenges	

Mo?va?on	
 cont…	

•  Was	
 it	
 possible	
 to	
 build	
 a	
 controller	
 with	

–  Rapid	
 or	
 no	
 compila?on	
 ?me	

•  Human	
 readable	
 errors/warnings	

–  Reduced	
 scope	
 of	
 run?me	
 errors	

•  Managed	
 code	

•  Sta?c	
 type	
 checking	

– High	
 developer	
 produc?vity	

•  Mature	
 toolchains	

•  Code	
 genera?on/auto	
 complete	

–  Cross	
 pla]orm	

–  Performant	

•  Within	
 50%	
 of	
 a	
 fast	
 C++	
 implementa?on	

•  Note,	
 these	
 were	
 primarily	
 language	
 ques?ons	

Design	
 space	

•  Candidate	
 language:	
 Java	

– No	
 exis?ng	
 OpenFlow	
 protocol	
 bindings	

–  Performance?	

•  Early	
 basic	
 tests	
 with	
 OpenFlowJ	

– Object	
 Oriented	
 OpenFlow	
 1.0	
 protocol	
 library	

–  Simple	
 sample	
 hub/switch	
 controller	

•  NOX	
 pyswitch	
 	
 	
 9369	

•  Simple	
 Python	
 Controller 	
 21019	

•  NOX	
 hub	
 (C++) 	
 	
 124,897	

•  Reference	
 Hub	
 (C++) 	
 	
 214,591	

•  Java	
 (1	
 thread) 	
 	
 252,246	

•  Java	
 (2	
 threads) 	
 	
 287,567	

•  Java	
 (4	
 threads) 	
 	
 348,762	

Design	
 space	
 cont…	

•  Other	
 desirable	
 controller	
 features	

– Fully	
 mul?-­‐threaded	

– Build	
 ?me	
 modular	

– Run	
 ?me	
 modular	

– Easy	
 to	
 use	
 and	
 understand	
 abstrac?ons	

– Use	
 exis?ng	
 familiar	
 and	
 well	
 documented	

frameworks	

– Extensible	
 Web	
 UI	
 and	
 REST	
 capabili?es	

•  Possible	
 to	
 modify	
 exis?ng	
 sokware?	

– Considered	
 Tomcat	

Beacon	

•  “Die	
 Shot”	

*Size	
 not	
 indica?ve	
 of	
 anything	

Core	

Device	

Manager	

Topology	
 Rou.ng	

Learning	

Switch	

Web	
 UI	

OSGi	
 Spring	
 JeHy	
 OpenFlowJ	

How	
 does	
 the	
 core	
 work?	

•  Connects	
 to	
 switches	

•  Publishes	
 IBeaconProvider	
 service	

•  Other	
 bundles	
 use	
 IBP	

•  Creates	
 a	
 pipeline…	

 protected IBeaconProvider beaconProvider;

 public void startUp() {
 beaconProvider.addOFMessageListener(OFType.PACKET_IN, this);
 }

Core	

Learning	

Switch	

IBeaconProvider	

“PacketIns	
 Please!”	

public Command receive(IOFSwitch sw, OFMessage msg) {
 OFPacketIn pi = (OFPacketIn) msg;
 …

 return Command.CONTINUE;
}

Pipeline	

Core	
 PacketIn	

Decode	

Stats	

ETC	

Device	

Manager	

Topology	
 Rou?ng	

Applica?ons	

PacketIn	

PacketIn	

Fully	
 Mul?threaded	

Core	

PacketIn	

Decode	

Device	

Manager	

Topology	
 Rou?ng	

Thread	

Thread	

Thread	

Applica?ons	

•  Each	
 app	
 gets	
 OFMessages	
 from	
 all	
 threads	

How	
 do	
 Bundles	
 interact?	

•  Service	
 abstrac?on	

•  Create	
 an	
 interface	
 for	
 service	
 contract	

•  Export	
 an	
 object	
 instance	
 that	
 implements	
 the	

interface	
 to	
 the	
 service	
 registry	

•  Other	
 bundles’	
 objects	
 import	
 and	
 use	
 services	

•  Enables	
 easy	
 service	
 extension	

public	
 interface	
 ITopology	
 {	

	
 	
 	
 	
 /**	

	
 	
 	
 	
 	
 *	
 Retrieves	
 a	
 map	
 of	
 all	
 known	
 link	
 connec5ons	
 between	
 OpenFlow	
 switches	

	
 	
 	
 	
 	
 *	
 and	
 the	
 last	
 5me	
 each	
 link	
 was	
 known	
 to	
 be	
 func5oning	

	
 	
 	
 	
 	
 *	
 @return	

	
 	
 	
 	
 	
 */	

	
 	
 	
 	
 public	
 Map<LinkTuple,	
 Long>	
 getLinks();	

}	

Service	
 Registry	
 Example	

Topology	

Service	
 Registry	

ITopology	
 TopologyImpl	

Publishes	
 Consumes	

IBeaconProvider	

IDeviceManager	

IRou?ngEngine	

Device	

Manager	

Core	

Rou?ng	

APSP	

DeviceManagerImpl	

Controller	

APSPRou.ngEngineImpl	

Topology	

Device	

Manager	

Rou?ng	

Service	
 Examples	

•  Queryable	

–  “Give	
 me	
 a	
 list	
 of	
 all	
 connected	
 switches”	

•  Explicit	
 Event	
 Registra?on	

–  “Add	
 me	
 as	
 a	
 listener	
 for	
 OFPacketIn	
 messages”	

–  “No?fy	
 me	
 when	
 switches	
 connect/disconnect”	

•  Implicit	
 Event	
 Registra?on	

–  Export	
 an	
 *Aware	
 service	
 interface,	
 consuming	

services	
 post	
 relevant	
 events	
 to	
 all	
 implementers	

–  ITopologyAware,	
 all	
 implementers	
 receive	
 link	

updates	

What	
 Bundles	
 are	
 available?	

•  Beacon	
 centric	

–  OpenFlowJ	
 (OF	
 1.0	
 Protocol)	

–  Packet	
 encoder/decoder	
 (Ethernet,	
 ARP,	
 IPv4,	
 LLDP,	
 TCP,	
 UDP)	

–  Core,	
 Learning	
 Switch,	
 Hub,	
 Device	
 Manager	

–  Topology,	
 Layer	
 2	
 Shortest	
 Path	
 Rou?ng	

–  ARP	
 Proxy,	
 DHCP	
 Proxy,	
 Mul?cast	
 eliminator	

–  Declara?ve	
 rou?ng	
 (upload	
 a	
 text	
 file)	

–  Web	
 UI	

•  Third	
 party,	
 basically	
 anything	

–  Just	
 a	
 JAR	
 file	
 with	
 Metadata	

–  Some	
 may	
 need	
 YOU	
 to	
 generate	
 the	
 Metadata	

–  Logging,	
 Web	
 Server,	
 JSON	
 parsing,	
 Web	
 framework,	
 etc	

Is	
 there	
 a	
 NIB?	

•  Decentralized	

– Relevant	
 bundles	
 store	
 the	
 data	
 and	
 export	

query	
 and	
 event	
 interfaces	

•  Currently	
 sok-­‐state	
 only	

– Persistence	
 engines	
 can	
 be	
 added	
 to	
 extend	

exis?ng	
 capabili?es	

Why	
 Bundles?	

•  Unit	
 of	
 modularity	
 in	
 OSGi	

•  Basic	
 Building	
 Block	

•  JAR	
 (zipfile)	

•  May	
 Contain	

– Metadata*	

•  META-­‐INF/MANIFEST.MF	

–  Java	
 Classes	

– Resources	
 (xml,	
 etc)	

– Other	
 JAR	
 files	

Bundle	

*	
 Required	

What	
 can	
 Bundles	
 do?	

•  Share	
 code	
 with	
 other	
 packages	

–  Export-­‐Package:	
 net.beaconcontroller.core	

•  Consume	
 other	
 Java	
 Packages	

–  Import-­‐Package:	
 org.openflow.protocol	

•  Extend	
 other	
 Bundles	

– Fragments	

•  Run	
 Code	

 public void start() {
 listenSock = ServerSocketChannel.open();
 new Thread(...)
 ...
 }

Advanced	
 Bundles	

•  Dynamic	

–  Stop,	
 Start,	
 Install,	
 Replace	
 while	
 running	

•  Versioned	

–  Can	
 have	
 mul?ple	
 versions	
 live	
 simultaneously	

•  Explicit	
 Dependencies	

–  State	
 which	
 version(s)	
 you	
 need	

Performance	

•  Measured	
 June	
 2011	

Cbench	
 Test,	
 part	
 of	
 Oflops	
 suite	

–  PacketIn	
 to	
 PacketOut/FlowMod	

throughput	
 test,	
 fills	
 controller	
 input	

buffers	

–  10	
 loops,	
 32	
 switches,	
 10s	
 per	
 loop	
 	

Test	
 Machine	

–  CPU:	
 1	
 x	
 Intel	
 Core	
 i7	
 930	
 @	
 3.33ghz,	

9GB	
 RAM,	
 Ubuntu	
 10.04.1	
 x64	

Controllers	

–  Beacon,	
 NOX	
 (Des?ny	
 branch),	
 Maestro	

h{p://www.openflow.org/wk/index.php/Controller_Performance_Comparisons	

Web	
 UI	

Web	
 UI	

Status	

•  2010	
 April	
 –	
 2011	
 September	

–  Incuba?on	
 and	
 internal	
 use	

–  Limited	
 external	
 releases	

•  2011	
 September	
 12	

–  v1.0.0	
 Release	

•  Since	

– Ongoing	
 ac?ve	
 development	

– Accep?ng	
 feature	
 requests/sugges?ons/bug	

reports!	

•  Ac?ve	
 user	
 forum	

•  Many	
 screencasts	
 and	
 guides	
 available	

Users?	

•  My	
 research	

– Full	
 ?me	
 cluster	
 of	
 80	
 machines	

– 97	
 switches	
 (including	
 vSwitches)	

•  Inside	
 Big	
 Switch	
 Controller	

– Basis	
 for	
 Floodlight	

•  CS244	
 Stanford	
 Graduate	
 Networking	

course	
 2011	

•  FlowScale	
 –	
 load	
 balancing	

Lessons	
 learned	

•  Met	
 design	
 goals	

– Produc?vity++	

•  Run?me	
 dynamism	
 does	
 have	
 a	
 cost	

•  Seemingly	
 minor	
 changes	
 can	
 kill	

performance	

– 32	
 vs	
 64	
 bit	

– Spring	
 proxies	
 in	
 the	
 fast	
 path	

•  Wide	
 variety	
 of	
 I/O	
 loop	
 designs	

– With	
 a	
 correspondingly	
 wide	
 variety	
 of	
 fairness	

and	
 performance	
 consequences	

Tutorial	

•  Unzip	
 tutorial	
 archive	

•  Launch	
 Eclipse	
 (eclipse	
 subfolder)	

– File	
 -­‐>	
 Import	
 -­‐>	
 General	
 -­‐>	
 Exis?ng	
 Projects	

into	
 Workspace,	
 Next	

– Point	
 it	
 to	
 the	
 src/	
 directory,	
 Select	
 All,	
 Finish	

•  Follow	
 tutorial	
 instruc?ons	

– h{p://goo.gl/Isuks	
 :)	

Agenda	

•  Mo?va?on	

•  Design	
 Space	

•  Beacon	

•  Ques?ons	

Thanks!	

daviderickson@cs.stanford.edu	

h{p://www.beaconcontroller.net/	

