
NOSIX
A Lightweight Portability Layer for the SDN OS

Andreas Wundsam (Big Switch Networks) · Minlan Yu (USC)·

Muruganantham Raju (USC)

ONS 2013 - Research Track

mix + match switches

reuse your SDN application

Motivation

Freedom from

Vendor Lock-In

Core SDN promise:

Motivation

(*) correct and efficient forwarding

over a wide range of switches

Switch Diversity

• Data Plane:

• Hardware vs. software

• # Flow Tables, Flow Table

sizes

• Supported matches +

actions

Heterogenous Switch landscape!

•Control Plane:OpenFlow version +

vendor extensions

•Rule updates (consistency, churn

rate)Counters

Diversity is intrinsic:

Usage Scenarios, Price Points, Diversification

The Gap
Application

Switch

switch feature-sets and

performance characteristics

Expectations of the application

Switch
Switch

?

NOSIX

NOSIX

Application
Applications

express

expectations

leverage

application

knowledge

Switch Drivers

Drivers map

to available

features

leverage

vendor

knowledge

a lightweight portability API

in the controller

Core Concepts: Top Down

•Pipeline of VFTs

Virtualized Flow Tables

•Created by the Application

•Pipelined

•Default setting: ‘portability’

• Full Feature Set

• No resource constraints

•Annotations describe application

expectations

VFT 3

rule 1

rule 2

rule3

VFT 2

rule 1

rule 2

rule3

VFT 1

rule 1

rule 2

rule3
...

NOSIX

Switch Driver

Switchlight

Switch Driver

OVS

SwitchLight Switch

ACL Table L2 Table

OVS

Wildcard Exact

Core Concepts: Top Down
•VFT Annotations

•Requirements

•throughput

• ≥ 500 Mbit/s

•churn

• ≥ 1000 flows/s

•Promises

•only L2 matches

•<= 100 Flows/s

•Consistency

VFT 3

rule 1

rule 2

rule3

VFT 2

rule 1

rule 2

rule3

VFT 1

rule 1

rule 2

rule3
...

NOSIX

Switch Driver

Switchlight

Switch Driver

OVS

SwitchLight Switch

ACL Table L2 Table

OVS

Wildcard Exact

Core Concepts: Bottom Up

•Switch Drivers

•Map the annotated VFTs to the

physical flow tables in the switch

•Use the annotations for optimized

placement

SwitchLight Switch

VFT 3

rule 1

rule 2

rule3

VFT 2

rule 1

rule 2

rule3

ACL Table

VFT 1

rule 1

rule 2

rule3
...

NOSIX

Switch Driver

Switchlight

Switch Driver

OVS

L2 Table

OVS

Wildcard Exact

Intuition

• Flows fall in natural groups

• Apps have information about the characteristics /

allowable tradeoffs

VFT1:

VM migration

flows

VFT2:

Layer 2/3

Control Plane

(ARP, DNS)

rare

high throughput

low churn

frequent

low throughput

high churn

Case Study:
Flow Table Size Limit in a Simulated P-Switch

Access Control ➞ Microflows

80% small flows, 20 % large flows

grow # flows > flow table size

NOSIX

Vft 1:

Large

Vft 1:

Small

high throughput

low churn

frequent

small flows

high churn

Case Study:
Flow Table Size Limit in a Simulated P-Switch

Access Control ➞ Microflows

80% small flows, 20 % large flows

grow # flows > flow table size

Baseline:

Best effort

vs.

NOSIX

Vft 1:

Large

Vft 1:

Small

Case Study: Simulation

Results

Summary

• Lightweight portability API in the

controller

• Applications express expectations

• Switch drivers implement them

• Addresses portability challenges in SDN

• Building block for higher abstraction level

controllers

NOSIX

Application

Switch

Thank you.

Summary

• Lightweight portability API in the

controller

• Applications express expectations

• Switch drivers implement them

• Addresses portability challenges in SDN

• Building block for higher abstraction level

controllers

NOSIX

Application

Switch

Summary

• lightweight portability API in the controller

• addresses portability challenges in SDN

• rendevous-point between

• Application knowledges and Switch-Vendor

Knowledge

Backup

Implementation

•NOSIX

Generic Layer

•Matches Annotations and

Requirements to Switch Offerings

•Can virtualize resource

constraints

•E.g., rule paging to map 50k rules

to 2k table entries

•Switch Drivers

Vendor providedProvide Vendor/Switch

Specific Knowledge Optimize for switch

specificsE.g., knowledge of exact BARRIER

Semantics

•Vendor extensions

Architecture

Architecture

Usage

Building block for higher

level controller frameworks

Enables direct, portable

development of low-level

apps

Benefits

• Application-specific and switch-specific performance optimizations

• Enable protocol innovations by the vendors, e.g.,

• built-in transactions for updates

• efficient ruleset reconciliation after disconnect

• Annotations

• provide a knob to choose between portability and performance

Use Case: Middlebox

Loadbalancing
• 1 Switch, 2 Middleboxdes

• Reconfigure:

• Consistency: Each (Pkt|Flow) handled by exactly 1

MB

• How to?

• JRex (Overhead!)

• Switch-specific (requires knowledge of BARRIER

sem)

• Vendor Extension?

Use Case: Middlebox

Loadbalancing

vft = nosix.create_vft(requirements: { churn: >=10k },

promises: { rate <= 100k/s })

vft2 = nosix.create_vft(requirements: { churn: >=10k },

promises: { rate <= 100k/s })

nosix.transaction_mode(pkt_consistent)

vft.clear_flows()

for match, device in recalculate_flows():

vft.add_flow(match, output: device)

nosix.commit()

Use Case: Middlebox

Loadbalancing

Rule versioning

à la JREX

Rule Reordering +

Barriers
Shadow Flow Tables

Optimization Options

JVM MySQL simple.c

POSIX

HW1 HW2 ...

OS Kernel

ONIX Frenetic SimpleApp

NOSIX

HP OVS ...

OS NOS vs.

That is the idea. Start the

flame throwers :)

Background

• OpenFlow enables control plane programmability...

Mismatch between

Application Expectations Reality

Expectations

• Homogeneous forwarding model

• Sufficiently large flow tables

• Predictable feature set and performance

• Switch state known / deltas efficiently reconcilable

• Support for fail-over

Reality

• Data Plane:

• Hardware vs. software

• Supported matches +

actions

• Table count and sizes

Heterogenous Switch landscape!

•Control Plane:Rule updates (consistency,

churn rate)CountersOpenFlow version +

vendor extensions

Also: OF idiosyncracies

•With switch-side flow-expirations, flow table state is

unknown

•Spurious PACKET_INs

•Barrier semantics switch dependent

•No efficient reconciliation of changes after disconnect

So far: Onix, POX, Frenetic...

• Manage the entire network

• Provide a simplified network-wide programming model, controller

distribution, consistent updates, composability,...

• This requires making assumptions ➞ optimize for a particular

programming model

• All have to be adapted for each individual switch [class]

• Duplication of effort

Principles

• Applications expose expectations to the switch

• Vendors provide switch drivers in the controller

A Missing Piece

in the Stack?

