Protocol Independence

Nick McKeown
Stanford University

Where did SDN ideas start?

Stanford gets too much credit
Roots are in 4D and RCP

— Rexford, Greenberg, Zhang, Maltz, ...
SANE/Ethane from Stanford + Berkeley

Many concepts from Nicira

— Network OS: NOX
— OpenFlow

— Distributed OS: ONIX

New concepts all the time

— Berkeley, Berlin, Cornell, Gatech
— Princeton, Stanford, Urbana, ...

Is SDN any network device with
behavior defined in software?

Is SDN anything with an
OpenFlow interface?

—

s, & !
- e~

e o

it

e s Hundreds of protocols
aCCICICERN 6 500 RFCs

< » a0y m
PR e ld et ot e "‘

Spgginat::;ed Tens of millions of lines of code.
Closed, proprietary, outdated.

Plane

i 'ivsERmivie =

Slcerlr2- M Billions of gates.
2=CUEICHN Power hungry and bloated.

What SDN isn’t

Ram in even more lines of code...

“My box now has an
OpenFlow interface too!”

)
(!
W/
i
3
&
-
——

-
"
A
CIg
Ty
i
i1l
A

o e e 2 T[] - |
R e R 5
o) : i £
i xo

i
u
g

Control
Plane

Al AN imNEe

Custom
Hardware

SN
\ﬁ

What SDN isn’t

Management

Software

Control
Plane

Al AN L. eEe

Custom
Hardware

-.4 ~
\\

Control
Plane

el AN NS

Custom
Hardware

' \‘;‘ § &5
e 2
.,

A network in which the control plane is
physically separate from the forwarding plane.

and

A single control plane controls
several forwarding devices.

It’s just an idea and a starting point.

Technical Consequences

Makes crystal clear the distributed systems
problem.

Tells us to solve the distributed systems
problem once, rather than multiple times.

Makes it easier to control diverse switches.

Particularly if they are protocol independent.

Where is OpenFlow headed?

OpenFlow Goals

1. Protocol-independent forwarding.

2. That can be controlled and repurposed in the
field by a remote control plane.

3. [And can be implemented by really fast, low
power, switching chips]

Currently OpenFlow v1.x

It is protocol dependent because...

1. Constraints of traditional switching chips.
— Each table tied to a specific protocol
— Fixed sequence processing pipeline

2. Maps to existing switching chips.
— For quick adoption

Match-Action Forwarding Abstraction

Action Primitives
. “Forward to ports 4 & 5”
. “Push header Y after bit 12”

1

2

3. “Pop header bits 8-12”

4. “Decrement bits 13-18”

5

6 /

. “Drop packet”
Match Action

F Action(F)

G Action(G)

o H Action(H)

Multiple Table Match-Action

Match Action Match Action

F, Action(F) F, Action(F)

G, Action(G) | G, Action(G)

—> H Action(H) _______:; H, Action(H)

What would an “OpenFlow-optimized”
switching chip look like?

Parse any existing header
Parse any custom header
Match:

— Huge protocol independent tables
(Millions of entries)

— Many tables in a pipeline (8 or more)
— Tables can be used efficiently

Action:

— Protocol independent
— Instruction primitives for processing headers

Design Exercise
with Texas Instruments

64 x 10GE OpenFlow-optimized ASIC
Industry-standard 28nm design process
Parse existing + custom packet headers
32 stages of “Match + Action”

Large tables
— 1M x 40b TCAM
— 370Mb SRAM (hash table & statistics counters)

VLIW action processing

Taken as given

* Fastinterface to local CPU
 Usual features: buffers, counters, etc.
* Open interface, not hidden behind NDA.

Question

How much extra area and power
compared to a traditional, fixed
function switch chip?

DATA

A

RISC-like architecture

Stage 1

Action

Stage 32

Action

-
—
S
—> Output
; Queues
—> 2
—2 3 Data i Out
— E I
o)
O
Q
o
>

TCAM

HASH

Match Tables

Physical Physical
Stage 1 Stage 2
Logical
Table 1 Logical
Table 2

Logical Table 3

Physical
Stage 32

Logical Table 8

TCAM

HASH

Physical
Stage 1

Physical
Stage 2

Physical
Stage 32

Stage 32

Stage 1

Output
Queues

9UIqUWOJ3Y

[T

Match
Table

vivd

|

Action Processor

Field

Field

Match result - :
----------- > VLIW Instructions

100s of VLIW CPUs

=

_
—

_—
—_—
—

S

----------- > VLIW Instructions

Stage 32

Stage 1

Output
Queues

9UIqUWOJ3Y

[T

Match
Table

vivd

|

HEADER

I

DATA

VLIW
Instructions

VLIW
Instructions

Recombine

Output
Queues

Takeaways

Extreme flexibility
— Custom packet formats
— Repurpose in the field

Large TCAM no longer a problem
— 1M+ entries
— Used very efficiently

All for < 15% extra area

What does this tell us about
OpenFlow?

What is possible

Protocol-independent processing
Pipeline: Parse + Multiple “Match-Action” Stages

Field configurable pipeline

But walit....

Won’t OpenFlow
commoditize my business?

Codeword for:

Is it going to erode my
enormous profit margins?

Competition based on

1. Swicity, power, price

2. Differentiating features in addition to

Enabling great software.

CPU business is healthy, profitable, innovative.

The switch chip business can be too.

<end>

