

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey University of Illinois at Urbana-Champaign (UIUC)

April 16, 2013

ONS 2013

Open Networking Summit

Challenges in Network Debugging

http://groups.geni.net/geni/chrome/site/thumbnails/wiki /TangoGENI/OF-VLAN3715_1000.jpg

4/22/2013

Complex interactions

Misconfigurations

Unforeseen bugs

Difficult to test the entire network state space before deployment

Effects of Network Errors

- Allow unauthorized packets to enter a secured zone in a network
- Make services and the infrastructure prone to attacks
- Make critical services unavailable
- Affect network performance

Network Debugging Techniques

Traffic/Flow Monitoring

Bidin	ectional 👻 Hosts	1	- Source	▼ Bits	▼ 1m	▼ 10	▼ Line ▼ Sh	ow Other	DNS	#	3
	150 100 - 50 - 	Ann	-f-gl	nalis		II (Perce	ne)	Ah	M	Mul	mat
Custo	-100 2009-08-12 11:30 2009-8-12 11: m (Top) [1.54 Mb/s Host(s)	30] Results Flows	2009-08 to 2009 to 2009 to 2009 to 2009 to 2009 to 2009	-12 12:30 -8-12 15:30 31 (2.08s) Total	Percent	2009-08 • • A Outbo	-12 13:30 pply Dates sund (Bottom) [1.5 Rost(s)	2009-0 4 Mb/s] Re Flows	8-12 14:27 esults 1 - 10 Rate	of 360 (1.68s Total	;) Percent
4	00 24 44 02	5 00 K	20.65 Kb/a	442.22 Mb	7.91.9/	4	51 126 184 2	260.00	100 57 Kb/a	1.45 Ch	E1 29 9/
2	17 136 70 92	2.75 K	25 15 Kb/e	363.66 Mb	6.41 %	3	51 136 184 193	42 44 K	65 58 Kh/e	948 23 Mb	33 44 %
3	213 219 115 51	259.00	18 11 Kb/s	261.84 Mb	4 61 %	3	51 136 184 196	994 00	8.88 Kb/s	128 37 Mb	4 53 %
4	213 115 216 37	182.00	14.61 Kh/s	211.26 Mb	3.72 %	4	51 136 184 199	2 28 K	8.82 Kh/s	127.60 Mb	4.50 %
5	126 85 41 35	14.00	13.36 Kb/s	193 15 Mb	3 40 %	5	51 136 184 202	6.63 K	3.39 Kb/s	48.96 Mb	1 73 %
6	126 85 41 36	11.00	10.64 Kh/s	153.87 Mb	2 71 %	6	51 136 184 2	16 97 K	1.72 Kh/s	24 88 Mb	0.88 %
7	65 136 140 3	2 42 K	10.41 Kb/s	150.50 Mb	2.65 %	7	51 136 184 195	7 93 K	1.42 Kb/s	20.58 Mb	0.73 %
8	24 39 1 172	3.29 K	9.84 Kh/s	142 26 Mb	2 51 %	8	51 136 189 103	345.00	536.00 b/s	7 75 Mb	0.27 %
9	22 37 255 1	237 00	9.39 Kb/s	135 73 Mb	2 39 %	9	51 126 108 44	126.00	485 81 b/s	7 02 Mb	0.25 %
10	2 23 51 126	925.00	9.37 Kb/s	135 55 Mb	2 39 %	10	51 136 184 21	41.00	421 61 b/s	6 10 Mb	0.21 %
Other				3.48 Gb	61.40 %	Other				61.99 Mb	2.19 %
Total				5.68 Gb	100 %	Total				2.84 Gb	100 %
Prev Next	1234	5 6	7 8 9	10	989	Prev Next	1 2 3 4	5 6	7 8 9	10	36

Software using Cisco NetFlow http://snmp.co.uk/scrutinizer/

Configuration Verification

hostname bgpdA password zébra router bgp 8000 bap router-id 10.1.4.2 ! for the link between A and B neighbor 10.1.2.3 remote-as 8000 neighbor 10.1.2.3 update-source lo0 network 10.0.0/7 ! for the link between A and C neighbor 10.1.3.3 remote-as 7000 neighbor 10.1.3.3 ebgp-multihop neighbor 10.1.3.3 next-hop-self neighbor 10.1.3.3 route-map PP out for link between A and D neighbor 10.1.4.3 remote-as 6000 neighbor 10.1.4.3 ebgp-multihop neighbor 10.1.4.3 next-hop-self neighbor 10.1.4.3 route-map TagD in route update filtering ip community-list 1 permit 8000:1000

4/22/2013

Configuration

Control plane

Data-plane state

Network behavior

Department of Computer Science, UIUC

Input

Limitations of Configuration Verification

- Prediction is difficult
 - Various configuration languages
 - Dynamic distributed protocols
- Predicted
 Prediction misses
 implementation bugs in
 control plane

Our Approach: Data-plane Verification

- Less prediction
- Closer to actual network
 behavior
- Unified analysis for multiple control-plane protocols
- Can catch control-plane implementation bugs

Data Plane Verification in Action

- Our first tool, Anteater*, uses data plane verification technique to debug network operations
- We evaluated Anteater with UIUC campus network
 - 178 routers
 - 1,627 FIB entries per router (mean)
- It revealed 23 real bugs in 2 hours

Finds problems after they occur and (potentially) cause damage

* Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel T. King, "Debugging the Data Plane with Anteater", ACM SIGCOMM, August 2011.

Can we run verification in real time?

Need to verify new updates at high speeds

Block dangerous changes

Provide immediate warning

Challenges in Real-Time Verification

- <u>Challenge 1</u>: Obtaining real-time view of network
 - Solution: Utilize the centralized data-plane view available in an SDN (Software-Defined Network)
- <u>Challenge 2</u>: Verification speed
 - Solution: Off-the-shelf techniques?

Our Tool: VeriFlow

- VeriFlow checks network-wide invariants in real time using data-plane state
 - Absence of routing loops and black holes, access control violations, etc.
- Provides a set of functions to write custom query algorithms
 - Check forwarding behavior of specific packet sets
 - Verify effects of potential changes

VeriFlow Operation

Limit the Search Space

Equivalence class:

Packets experiencing the same forwarding actions throughout the

Experiment

- Simulated an IP network using a Rocketfuel topology – 172 routers
- Replayed Route Views BGP traces
 - 5 million RIB entries
 - 90K BGP updates
- Checked for loops and black holes
- Microbenchmarked each phase of VeriFlow's operation

Performance Result

Experiment (cont.)

- Mininet OpenFlow network
 - Rocketfuel topology with 172 switches, one host per switch
- NOX controller, learning switch application
- TCP connections between random pairs of hosts

Effect on Flow Table Update Throughput

Conclusion

- VeriFlow achieves real-time verification
 - A layer between SDN controller and network devices
 - Handles multiple packet header fields efficiently
 - Runs queries within hundreds of microseconds
 - Exposes an API for writing custom invariants
- Future work
 - Handling packet transformations efficiently
 - Dealing with multiple controllers

Thank you

<u>khurshi1@illinois.edu</u> <u>http://www.cs.illinois.edu/~khurshi1</u>

Backup Slides

Data Plane Verification in Action

- FlowChecker [Al-Shaer et al., SafeConfig 2010]
 - Uses BDD-based model checker
- Anteater [Mai et al., SIGCOMM 2011]
 - Uses SAT-based model checking
 - Revealed 23 real bugs in the UIUC campus network
- Header Space Analysis [Kazemian et al., NSDI 2012]
 - Uses set-based custom algorithm
 - Found multiple loops in the Stanford backbone network
 Running time: Several seconds to a few hours

they occur and (potentially) cause damage npus network

Find problems after

2. Represent Forwarding Behavior

3. Run Query to Check Invariants

API to write custom invariants

- VeriFlow provides a set of functions to write custom query algorithms
 - Gives access to the affected set of equivalence classes and their forwarding graphs
 - Verification becomes a standard graph traversal algorithm
- Can be used to
 - Check forwarding behavior of specific packet sets
 - Verify effects of potential changes

Effect of Equivalence Class Count

Related Work

- Header space analysis: Static checking for networks, NSDI 2012
- A NICE way to test OpenFlow applications, NSDI 2012
- Abstractions for network update, SIGCOMM 2012
- Debugging the data plane with Anteater, SIGCOMM 2011
- Can the production network be the testbed?, OSDI 2010
- FlowChecker: Configuration analysis and verification of federated OpenFlow infrastructures, SafeConfig 2010
- Network configuration in a box: Towards end-to-end verification of network reachability and security, ICNP 2009

Demo Network

