

OPEN-XCHANGE™ Whitepaper

Open-Xchange™ Server High Availability

High Availability Concept for OX

Example Configuration

v1.00

© Copyright 2005, OPEN-XCHANGE Inc. - 2 -

© Copyright 2005, OPEN-XCHANGE Inc.

This document is the intellectual property of Open-Xchange Inc., Tarrytown, NY,

USA

The document may be copied in whole or in part, provided that each copy

contains this copyright notice.

The information contained in this book was compiled with the utmost care.

Nevertheless, erroneous statements cannot be excluded altogether.

Open-Xchange Inc., the authors and the translators are not liable for possible

errors and their consequences.

The names of software and hardware used in this book may be registered

trademarks; they are used without guarantee of free usability. Open-Xchange

Inc. generally follows the spelling conventions of the manufacturers. The

reproduction of brand names, trade names, logos etc. in this book (even without

special marking) does not justify the assumption that such names can be

considered free (for the purposes of trademark and brand name regulations).

Please direct any recommendations or comments to

documentation@openexchange.com

Author: Stephan Martin

Editors: Stephan Martin, Robert Colombara, David Cuthbert

Layout: Robert Colombara

 - 3 - OPEN-XCHANGE High Availability Whitepaper v1.00

Contents

1. Overview .. 4

2. Basic Concepts: Potential and Limitations .. 5

2.1. Cold Standby Failover... 5
2.2. Hot Standby Failover.. 6

3. OX Services and Data Storage .. 8

3.1. Directory Service ... 8
3.2. Database .. 9
3.3. File System..10

4. Implementation.. 11

4.1. Installation ..11
4.2. Preparation of the Failover Configuration ...11
4.3. Preparation of the Data Replication ...11
4.3.1. Configuration of the Failover ..11
4.3.2. Configuration Files ..12

© Copyright 2005, OPEN-XCHANGE Inc. - 4 -

1. Overview

This whitepaper describes how an Open-Xchange Server (OX Server) can be set

up to achieve best possible high availability without the need to purchase any

extra software. Only free Open Source software is used in the examples. For

more sophisticated setups commercially available software may help to fulfill

additional requirements.

This document is meant to be used as a guide, a whitepaper that describes the

concepts, and not as a complete How-To. Nevertheless some simple configura-

tion examples are given at the end of the document.

 - 5 - OPEN-XCHANGE High Availability Whitepaper v1.00

2. Basic Concepts: Potential and Limitations

This chapter describes the basic concepts, their advantages, their limitations and

some potential pitfalls.

2.1. Cold Standby Failover

The easiest way to achieve high availability is to install all services on two

separate machines. The provided services are only running actively on one

machine, that machine is called 'Master'. The second machine is called 'Slave'

and is running in standby mode. That means the Slave machine is monitoring

the Master server by using a 'Heartbeat' sent periodically by the Master. If a

time comes when the Slave machine is not able to detect the Master's Heartbeat,

it will become the new Master and provide the services itself.

This process of switching the running services from the active machine to

another machine is called Failover.

Figure 1: Schema Cold Standby Failover

Configuring the Failover mechanism itself is quite simple using the Open Source

solution Heartbeat http://www.linux-ha.org/ Heartbeat is included in the

underlying Enterprise Linux distributions that run the OX Server.

The more complex part of the setup is to keep the necessary data in sync on

both machines. There are two requirements for this setup:

1. The relevant data needs to be up to date on the Slave when it takes over

2. The relevant data must not be corrupted during the takeover or during the

possible crash of the failed master

To fulfill the first requirement, there are two simple solutions:

1. Hardware based Solution

External Fiber Channel or Shared SCSI disks can be used to mount the same

volume on both machines

• Advantage: very reliable and fast solution without impact on the running

server’s performance

© Copyright 2005, OPEN-XCHANGE Inc. - 6 -

• Disadvantage: Depending on the circumstances, sometimes too costly

2. Software based Solution:

Hard disk volumes can be mirrored over the network with several network

based replication mechanisms, one of which is called Distributed Replicated

Block Devices (DRBD) http://www.drbd.org/ DRBD is included in the

underlying Linux distributions.

• Advantage: There are no additional costs except a dedicated network

connection between both machines.

• Disadvantage: In some circumstances this solution might not be as

stable as a hardware based solution. Depending on the configuration of

the write mechanism it is possible to tune the system to provide very

reliable or very fast writes.

The second requirement can be met with the STONITH mechanism. There are

several cases to be accounted for. One is the case where only the Heartbeat

mechanism is broken, and not the Master server itself. When this happens the

Slave becomes Master, takes over the services, takes over the data, and mounts

the external volume read-write. Unfortunately if only some of the processes are

down, the original Master would stay alive and the external volume could remain

mounted read-write on the former Master system. Under such circumstances the

file system on the shared external volume may suffer serious harm; in the worst

case it could be destroyed completely.

To avoid such situations, the new Master needs to ensure, that the former

Master can't write to the volume any more. The best solution for ensure that

outcome is to take away the Master’s power source. This can be achieved by

switching of the Master system with a so called network power switch. This

mechanism is called the "Shoot The Other Node In The Head" mechanism

(STONITH) and is supported by Heartbeat.

For this Failover concept to work is it necessary to have at least 3 IP addresses

available- one for the administration of each machine in direct connection, and

one virtual IP address which is always bound to the active machine. This is the

IP address that is used by clients to access the services.

2.2. Hot Standby Failover

In the case described above, a dedicated machine is waiting idly and hopefully

never does any work. This can be considered a waste of hardware resources.

When the service load becomes so high that one machine cannot cover it all,

High Availability and Scalability issues can be addressed in combination. This

leads to the next possible solution, the so called "Hot Standby" or "Active -

Active" Cluster. In this case normally both machines provide services and in the

case of a failure on one machine the other machine takes over all services.

 - 7 - OPEN-XCHANGE High Availability Whitepaper v1.00

During normal operation maximum performance can be achieved by distributing

services to different machines. In the case of a failure the machine that is still

running takes over provision of the services that had been running on the

machine which failed. It is important to note, that each machine must be

powerful enough to provide all services satisfactorily for at least a short period

after a failure.

Figure 2: Schema Hot Standby Failover

If a higher degree of scalability is necessary, a given service can be configured

to run on multiple machines simultaneously and client requests for the service

can be distributed through load balancing. This can be achieved through either

hardware load balancers or through Linux machines with Linux Virtual Server

(LVS) which is known to be very stable and contains a good service monitoring

framework.

Nevertheless it is not trivial to run the same services on several machines in a

load balanced environment, as the services need to access the same data at the

same time on both machines. This possibility, for example, would require the use

of (commercial) cluster file system and is not covered in this paper.

Obviously this distributed setup is much more complex and therefore may be

more error prone than the simple setup described above.

The implementation of a Hot Standby solution requires deep knowledge and

experience with the services involved. Therefore Hot Standby Failover solutions

should only be selected, if scalability is really required and not if only high

availability needs to be achieved.

© Copyright 2005, OPEN-XCHANGE Inc. - 8 -

3. OX Services and Data Storage

This chapter describes which services are parts of a typical OX server, how these

services store their data and how this data can be replicated to several

machines.

Figure 3: Storage Subsystems inside of the OX Server

3.1. Directory Service

Storage of the OX user information needed for authentication and authorization

is handled by a directory service. The standard installation of OX makes use of

the free and stable OpenLDAP server, which is included in the underlying Linux

distributions. This is the only LDAP server which will be discussed in this paper.

OpenLDAP stores all information in Berkley Database (bdb) binary files on the

hard disk under the /var/lib/ldap directory. These files can be placed on a

storage volume which is available on both machines (Shared SCSI, DRBD). This

is the easiest solution, as it is sufficient to start the service on the new Master

machine in case of a Failover. The disadvantage of this design is, that there is

some risk that ther might be corruption of these database files, e.g. if there is a

hard hardware failure during a write operation.

There are several ways to reduce that risk:

• Backup

It is possible to keep an ASCII dump of the database in LDIF format. This

dump can be made with a simple call to the program slapcat. The dump can

be replicated to the other machine and can be used to rebuild the LDAP

database in case of a failure. If a dump were written to file, say, every half

 - 9 - OPEN-XCHANGE High Availability Whitepaper v1.00

hour, some data could be lost, but the mechanism is simple and reliable.

• LDAP replication

Another possibility is to run a slave OpenLDAP server on the standby machine

and to use one of the OpenLDAP replication mechanisms to keep the data in

sync (slurpd or syncrepl). The advantage of this design is that every operation

is written directly to an independent database on the standby machine when

the write operation happens. The disadvantage of this design is the

complexity of the configuration. The scripts that handle the startup of the

Failover services need to be adapted to change the OpenLDAP server from a

slave configuration to a master configuration during Failover.

Nevertheless, this method seems to be the most reliable one if additionally

backed up by a regular LDIF dump.

3.2. Database

All groupware data, appointments, tasks, etc. are stored in a database. The

standard installation of OX makes use of the free and stable database

PostgreSQL, which is included in the underlying Linux distributions. This is the

only database which will be discussed in this paper.

The situation with the database is very similar to the one regarding OpenLDAP,

described above. PostgreSQL stores its data in binary files under the

/var/lib/pgsql directory. These files can be placed on a shared volume that is

available on both machines (Shared SCSI, DRBD). This is the easiest solution, as

it is sufficient to start the service on the new Master machine in case of a

Failover. The disadvantage of this design is similar to the problem with the

OpenLDAP configuration described above; there is some risk of corruption of the

database files, e.g. in case of a hard hardware failure during a write operation.

There are several ways to reduce that risk:

� Backup

It is possible to keep an ASCII dump of the database. This dump can be made

with a simple call to the program pg-dump. The dump can be replicated to the

other machine and can be used to rebuild the database in case of a failure.

When the dump is written e.g. every hour, some data may be lost, but on the

other hand the mechanism is simple and reliable.

• Replication

Another possibility is to run a slave PostgreSQL server on the standby

machine and to use the PostgreSQL replication mechanism to keep the data in

sync. The advantage of this design is that every operation is written to an

independent database on the standby machine directly whenever a write

operation occurs. The disadvantage of this design is the complexity of the

configuration: the scripts, which handle the startup of the Failover services,

need to be adapted to change the PostgreSQL server from a Slave

© Copyright 2005, OPEN-XCHANGE Inc. - 10 -

configuration to a Master configuration during Failover. Nevertheless, this

method seems to be the most reliable one if the database is also backed up

by an ASCII dump every hour.

The replication mechanism is not part of the installed version of PostgreSQL,

but needs to be obtained separately:
http://gborg.postgresql.org/project/slony1/projdisplay.php

Other commercial solutions supporting replication for PostgreSQL are

available as well.

3.3. File System

All kinds of documents from the document management facility as well as

attachments to appointments are stored as files in the file system.

Emails are stored as plain text files as well. The indexes for the email folders are

binary files in the file system. Theoretically, it is possible that these indices could

be corrupted during a Failover like the files mentioned above. There are some

reasons why that risk is low enough to be acceptable: It will never be the whole

email system that is affected but rather single mail boxes. Such indexes can

(automatically) be recreated without any loss of the actual email data.

All these files can be placed on a volume, which is available to both machines

(Shared SCSI, DRBD). In the worst case, perhaps one document or email would

be corrupted after a hard breakdown. Compared to the other data stores this

seems to be an acceptable risk and no further complexity should be necessary.

• Fencing with STONITH (included in Heartbeat) should be used to ensure,

that the master node is really dead when the Slave takes over the data

partitions

• As mentioned above other replication mechanisms for the database and

for OpenLDAP can be used to improve the reliability

• Only the data is replicated, configuration changes need to be kept in

sync manually

• External shared storage could be used

 - 11 - OPEN-XCHANGE High Availability Whitepaper v1.00

4. Implementation

4.1. Installation

Both machines are installed and configured completely identically. Only the

network configuration for the administration interfaces differs.

4.2. Preparation of the Failover Configuration

All services that will be handled by heartbeat are switched off and deactivated

permanently with chkconfig <service> off.

(ldap, postgresql, saslauthd, cyrus, postfix, openexchange)

4.3. Preparation of the Data Replication

At least four special partitions are necessary to replicate the data with drbd:

• cyrus /var/lib/imap

 /var/spool/imap

• OpenLDAP /var/lib/ldap

• PostgreSQL /var/lib/pgsql

These four partitions are created on both machines, configured in drbd,

temporarily activated, synced and formatted.

The data that is stored on these partitions is backed up in tar files.

The four partitions are mounted to their destination directories and the backed

up data is copied into these directories.

All four partitions are then unmounted once they contain the backed up data.

4.3.1. Configuration of the Failover

Heartbeat is configured to monitor the other machine through a dedicated

interface. In addition it is recommended that a serial connection is used to

monitor the state of the other machine.

The services that were switched off in the step above need to be handled by

Heartbeat in a specific order:

1. Assign the virtual IP-address

2. Activate the drbd partition for OpenLDAP

3. Mount the drbd partition for OpenLDAP

4. Start OpenLDAP

5. Start the SASLAuthD

6. Activate the drbd partition for PostgreSQL

© Copyright 2005, OPEN-XCHANGE Inc. - 12 -

7. Mount the drbd partition for PostgreSQL

8. Start PostgreSQL

9. Activate the drbd partitions for Cyrus-Imapd

10. Mount the drbd partition for Cyrus-Imapd

11. Start Cyrus-Imapd

12. Start Postfix

13. Start Open-Xchange

4.3.2. Configuration Files

Example Configuration File for drbd (/etc/drbd.conf):

drbd.conf example

parameters you _need_ to change are the hostname, device, disk,

meta-disk, address and port in the "on <hostname> {}" sections.

you ought to know about the protocol, and the various timeouts.

At most ONE global section is allowed.

It must precede any resource section.

global {

 # minor-count 5;

 # dialog-refresh 5; # 5 seconds

}

this need not be r#, you may use phony resource names,

like "resource web" or "resource mail", too

resource r0 {

 protocol C;

 incon-degr-cmd "echo '!DRBD! pri on incon-degr' | wall ; sleep 60 ; halt -
f";

 startup {

 degr-wfc-timeout 120; # 2 minutes.

 }

 disk {

 on-io-error detach;

 }

 net {

 - 13 - OPEN-XCHANGE High Availability Whitepaper v1.00

 # sndbuf-size 512k;

 # timeout 60; # 6 seconds (unit = 0.1 seconds)

 # connect-int 10; # 10 seconds (unit = 1 second)

 # ping-int 10; # 10 seconds (unit = 1 second)

 # max-buffers 2048;

 # max-epoch-size 2048;

 # ko-count 4;

 # on-disconnect reconnect;

 }

 syncer {

 rate 5M;

 group 1;

 al-extents 257;

 }

 on ox1 {

 device /dev/drbd0;

 disk /dev/sdb1;

 address 192.168.180.20:7788;

 meta-disk internal;

 }

 on ox2 {

 device /dev/drbd0;

 disk /dev/sdb1;

 address 192.168.180.10:7788;

 meta-disk internal;

 }

}

resource "r1" {

 protocol C;

 incon-degr-cmd "echo '!DRBD! pri on incon-degr' | wall ; sleep 60 ; halt -
f";

 startup {

 wfc-timeout 0; ## Infinite!

 degr-wfc-timeout 120; ## 2 minutes.

 }

 disk {

 on-io-error detach;

 }

 net {

 # timeout 60;

 # connect-int 10;

 # ping-int 10;

 # max-buffers 2048;

 # max-epoch-size 2048;

 }

© Copyright 2005, OPEN-XCHANGE Inc. - 14 -

 syncer {

 rate 5M;

 group 1; # sync concurrently with r0

 }

 on ox1 {

 device /dev/drbd1;

 disk /dev/sdb2;

 address 192.168.180.20:7789;

 meta-disk internal;

 }

 on ox2 {

 device /dev/drbd1;

 disk /dev/sdb2;

 address 192.168.180.10:7789;

 meta-disk internal;

 }

}

resource "r2" {

 protocol C;

 incon-degr-cmd "echo '!DRBD! pri on incon-degr' | wall ; sleep 60 ; halt -
f";

 startup {

 wfc-timeout 0; ## Infinite!

 degr-wfc-timeout 120; ## 2 minutes.

 }

 disk {

 on-io-error detach;

 }

 net {

 # timeout 60;

 # connect-int 10;

 # ping-int 10;

 # max-buffers 2048;

 # max-epoch-size 2048;

 }

 syncer {

 rate 5M;

 group 1; # sync concurrently with r0

 }

 on ox1 {

 device /dev/drbd2;

 disk /dev/sdb3;

 address 192.168.180.20:7790;

 meta-disk internal;

 }

 - 15 - OPEN-XCHANGE High Availability Whitepaper v1.00

 on ox2 {

 device /dev/drbd2;

 disk /dev/sdb3;

 address 192.168.180.10:7790;

 meta-disk internal;

 }

}

resource "r3" {

 protocol C;

 incon-degr-cmd "echo '!DRBD! pri on incon-degr' | wall ; sleep 60 ; halt -
f";

 startup {

 wfc-timeout 0; ## Infinite!

 degr-wfc-timeout 120; ## 2 minutes.

 }

 disk {

 on-io-error detach;

 }

 net {

 # timeout 60;

 # connect-int 10;

 # ping-int 10;

 # max-buffers 2048;

 # max-epoch-size 2048;

 }

 syncer {

 rate 5M;

 group 1; # sync concurrently with r0

 }

 on ox1 {

 device /dev/drbd3;

 disk /dev/sdb4;

 address 192.168.180.20:7791;

 meta-disk internal;

 }

 on ox2 {

 device /dev/drbd3;

 disk /dev/sdb4;

 address 192.168.180.10:7791;

 meta-disk internal;

 }

}

© Copyright 2005, OPEN-XCHANGE Inc. - 16 -

Example Configuration Files for Heartbeat:

/etc/ha.d/ha.cf (on master):

auto_failback off

ucast eth1 192.168.180.10

node ox1

node ox2

/etc/ha.d/haresources (identical on both machines):

ox1 IPaddr::192.168.1.160 \

 datadisk::r1 \

 Filesystem::/dev/drbd1::/var/lib/ldap::reiserfs \

 ldap \

 saslauthd \

 datadisk::r0 \

 Filesystem::/dev/drbd0::/var/lib/pgsql::reiserfs \

 postgresql \

 datadisk::r2 \

 datadisk::r3 \

 Filesystem::/dev/drbd2::/var/lib/imap::reiserfs \

 Filesystem::/dev/drbd3::/var/spool/imap::reiserfs \

 cyrus \

 postfix \

 openexchange

