
OPEN-XCHANGE™ Whitepaper

Open-Xchange™ Server

Scalability and Tuning

Whitepaper

v1.01

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 2 -

© Copyright 2005-2006, OPEN-XCHANGE Inc.

This document is the intellectual property of Open-Xchange Inc., Tarrytown, NY,

USA

The document may be copied in whole or in part, provided that each copy

contains this copyright notice.

The information contained in this book was compiled with the utmost care.

Nevertheless, erroneous statements cannot be excluded altogether.

Open-Xchange Inc., the authors and the translators are not liable for possible

errors and their consequences.

The names of software and hardware used in this book may be registered

trademarks; they are used without guarantee of free usability. Open-Xchange

Inc. generally follows the spelling conventions of the manufacturers. The

reproduction of brand names, trade names, logos etc. in this book (even without

special marking) does not justify the assumption that such names can be

considered free (for the purposes of trademark and brand name regulations).

Please direct any recommendations or comments to

documentation@open-xchange.com

Author: Stephan Martin

Editors: Martin Kauss, Robert Colombara, David Cuthbert

Layout: Robert Colombara

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 3 - Introduction

Contents

1. Introduction ... 5

2. Architecture Overview.. 7

2.1. Email ... 8
2.1.1. Postfix.. 8
2.1.2. Cyrus-imapd ... 9
2.2. Web services... 9
2.2.1. Apache ... 9
2.2.2. Tomcat... 9
2.3. Directory – OpenLDAP .. 9
2.4. Database – PostgreSQL ...10
2.5. Operating System...10

3. Installation Concepts – Clustering.. 11

3.1. Separating Services ..11
3.2. Load Balancing ...12

4. Service Tuning – Details ... 14

4.1. Open-Xchange Services ...14
4.1.1. RAM Usage ..14
4.1.2. Further Information ..14
4.1.3. Initial Configuration/Connection Pooling...14
4.1.4. Internal Encryption ...15
4.1.5. Internal HTML Caching ..15
4.1.6. Web Mail Tuning ...16
4.1.7. Roadmap ...16
4.2. OpenLDAP..17
4.2.1. RAM Usage/Caching ..17
4.2.2. File Handles ...18
4.2.3. General ...18
4.2.4. Further information:..19
4.3. Apache ..19
4.4. Tomcat..20
4.4.1. catalina.sh ...21
4.4.2. server.xml ...21
4.4.3. Further information...22
4.5. PostgreSQL ..22
4.5.1. Database Maintenance...24
4.5.2. Further Information ..24
4.6. cyrus-imapd...24
4.7. Spam Assassin ...25
4.8. Operating System...25
4.8.1. File System..25

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 4 -

4.8.2. Network Stack..27
4.8.3. General Limits ..27

5. Analysis Tools... 29

5.1. System Overview Monitoring – Nagios, Munin, sar29
5.2. iostat ..29
5.3. vmstat ..30
5.4. mpstat ..31

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 5 - Introduction

1. Introduction

The Open-Xchange Server 5 is an Open Source-based, full featured Messaging

and Collaboration solution that runs on the Linux enterprise distributions Red Hat

Enterprise Linux 4 and SUSE Linux Enterprise Server 9.

The architecture of Open-Xchange Server 5 is completely based on open

standards and open protocols and makes use of well known open source

services, which are included in the Linux enterprise distributions, as back ends.

This whitepaper assumes a standard Open-Xchange Server 5 installation with the

standard back end services.

This whitepaper describes several concepts how to scale and how to tune an

Open-Xchange Server 5 installation.

This whitepaper will not provide specific recommendations as to which

parameters should be set to what values since actual usage and system setup

have a huge impact on the required system resources and the potential

performance bottlenecks. This paper will, however, give some guidelines on how

to find these bottlenecks and on which parts of the system can be tuned in which

way.

As an example: encryption is very CPU intensive, so it may be possible under

some circumstances to switch internal encryption off, while it is very important

to use encryption in other situations despite the increased CPU usage.

Performance tuning is always a process of finding the right mix of available

system resource utilization to gain maximum performance for the whole system

at all.

If performance issues are encountered, it is most important to find the

"bottleneck". A bottleneck is caused by a process which inhibits the overall

performance of the server because other processes which could otherwise run

unhindered are limited by that process. This situation may occur through a waste

of available resources, or simply through slow data delivery to waiting processes.

One more theoretical example: even if the CPU is always under high load that

does not necessarily mean that it is doing real work. The relevant process may

also be waiting for data from other subsystems. For a performance analysis to be

effective it is very important to have a look at the whole system with all services

running to avoid missing cascading effects between the services which are

causing performance issues.

The resources we have mainly to deal with are the following:

� CPU

� RAM

� File Handles

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 6 -

� TCP/IP Sockets

� File System I/O

Sometimes tuning can not only be achieved by increasing values, but also by

limiting, for specific processes, the resource usage to make that resource

available for other services.

This whitepaper addresses different levels of scalability and tuning:

� Overview about the architecture and the back end services

� Installation concepts, clustering

� Tuning of back end and front end services

� Tuning of Open-Xchange services

� Tuning of the Operating System

� Tools to analyze the system

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 7 - Architecture Overview

2. Architecture Overview

This chapter gives a brief overview of the architecture of the Open-Xchange

Server and its back end services.

At the highest level the Open-Xchange Server 5 consists of the Open-Xchange

Application server which contains the application logic and which does the main

processing work.

All data storage is handled by back end services which are specially designed to

store exactly these types of data.

Mainly there are four types of data storage:

� Directory Service (LDAP)

� Database (SQL)

� Email(IMAP/SMTP)

� File System

Figure 1: Subsystems inside of the Open-Xchange Server

The overall performance of the Open-Xchange server is obviously dependent on

the performance of the back end services.

Additionally there are some other standard Linux services involved in the

operation of the Open-Xchange server which can have a huge impact on the

server’s performance.

The following figure shows all involved services separated into standard Linux

services in the left column and Open-Xchange services on the right hand side.

Not all services have an equal impact on performance, so this paper will only

describe the really important ones.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 8 -

Figure 2: Services required for Open-Xchange Server operation

2.1. Email

The email subsystem consists of two parts:

� Email transfer (postfix)

� Email storage and user access (cyrus-imapd)

2.1.1. Postfix

Postfix is used as the standard MTA, Mail Transfer Agent, and is responsible for

receiving and sending email from/to the Internet.

It is very unlikely that postfix will cause any performance bottlenecks. The only

potential performance bottleneck which is likely to be caused by postfix is related

to LDAP. All mail routing information for postfix is read from the LDAP server.

This may lead up to more than 10 LDAP queries for the delivery of one e-mail.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 9 - Architecture Overview

2.1.2. Cyrus-imapd

Cyrus-imapd is responsible for the storage of email. This means that every user

access to email goes through cyrus-imapd and that the overall performance

impact of cyrus-imapd on the Open-Xchange server is very high.

The main factors for cyrus-imapd performance are:

� I/O performance to read and write from the file system

� LDAP Performance for authentication

2.2. Web services

The web services are responsible for processing user requests to the Open-

Xchange application server and for returning the generated results (HTML) back

to the user.

The web services consist of two parts:

� Web Server (Apache)

� JAVA Servlet engine (Tomcat)

For both services the challenge is to provide the right number of processes to

get a good balance between the ability handle a given number of concurrent

connections quickly and the RAM consumption needed for those processes.

2.2.1. Apache

Apache is the web server itself. It is responsible for the data connection between

the Open-Xchange server and the user's browser. Apache handles the incoming

connections and the encryption of the http/s stream. If Apache is not able to

accept the incoming connections fast enough, this will appear to the user as if

the whole system is extremely slow, because the user will have to wait for every

request until it can be served by apache.

2.2.2. Tomcat

Tomcat is a Java Servlet engine which sits between Apache and the Open-

Xchange application server. The servlets are used to preprocess the requests

from the users before they are passed to the Open-Xchange application server.

2.3. Directory – OpenLDAP

OpenLDAP is used as directory service for:

� Authentication

� User/Group information and address book access

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 10 -

OpenLDAP is accessed by postfix, cyrus-imapd and the Open-Xchange

application server.

The main factors for OpenLDAP performance are:

� RAM: if OpenLDAP needs to access database files on the hard disk to resolve a

query or look up an index value, it will respond extremely slowly.

� Indices: if special attributes are queried very often, creating an index will

improve response time for these queries tremendously.

� Open connections: OpenLDAP on Linux is not able to handle more than 1024

concurrent file handles which obviously has some impact on its ability to

respond to many requests.

2.4. Database – PostgreSQL

PostgreSQL is used as database for the storage of all the groupware data,

information like appointments, tasks, etc.

The main factors for PostgreSQL performance are:

� Indices: if special tables/columns are queried very often, an internal index will

improve the response time for these queries tremendously.

� Number of connections/processes: The same point applies here as for apache.

Fine tuning the balance between the system’s ability to respond quickly and

its consumption of resources is very important

2.5. Operating System

The Operating System with its file system and network stack is tightly bound to

the performance of the individual services, so operating system details will also

be discussed within the chapters for the relevant services.

The main features which can be tweaked in the Operating system are:

� Files system access

� Network socket handling

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 11 - Installation Concepts – Clustering

3. Installation Concepts – Clustering

This chapter discusses how to distribute the load of the Open-Xchange service to

several machines.

There are two principal methods of clustering possible:

� Separating the back end services on different machines

� Running several Open-Xchange servers in parallel for load balancing

3.1. Separating Services

To illustrate the separation of the services we recall the figure, we have already

seen above:

Figure 3: Separate Open-Xchange back end services

Every one of these three back end services can be moved to a separate server.

On the one hand this introduces the flexibility to run the complete Open-Xchange

service in a cluster of several machines to balance the overall load to different

machines delivering the different services.

On the other hand it can also be used in extremely large installations to allow

use of non standard back ends to achieve a higher quality service level than is

possible with the standard Linux services. For example eDirectory could replace

OpenLDAP or Oracle could replace PostgreSQL. In several cases the relevant

interface module of the Open-Xchange server would have to be modified to

make this possible, so that's no trivial task.

It is much easier and in most cases absolutely sufficient, to use the standard

Linux services and to distribute them among several machines to balance the

load between more servers.

This can easily be done in a few simple steps:

1. Install the machines with identical setup (domain, base dn, ...)

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 12 -

2. deactivate the unnecessary services on each machine

3. configure machine A to access the back end services on machine B

4. (if necessary) grant access for machine A on machine B

5. (if necessary) replicate data from machine A to machine B

The most important scenario is one which moves the Email services to a second

machine. In this situation the Open-Xchange server setup will consist of two

machines:

� Machine A:

• Groupware

• Web services

• Database

• Master LDAP

• File System

� Machine B:

• Email (postfix, cyrus)

• Slave LDAP

This is the most important alternate configuration, because it solves several

important performance bottlenecks with one solution. One is, obviously, that all

load which is generated by the email services, which is mainly CPU and I/O load,

is moved to a second processor. Equally interesting is the fact, that machine B

will hold a read-only replica of the LDAP directory stored on the primary

machine. The email services, postfix, and cyrus-imapd, only need read access to

LDAP, but they need to access the directory very often (there are several

requests for every email transmitted and at least one request for every reload in

the web mail front end). If they can access their own, local LDAP replica, their

accesses won't adversely influence the performance of the rest of the system

any more.

3.2. Load Balancing

Another way to make use of the clustering capabilities of Open-Xchange is in fact

an extension of the idea behind the separation of services. It provides a method

to run several Open-Xchange application servers in parallel to make use of the

concept of load balancing.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 13 - Installation Concepts – Clustering

Figure 4: Load Balancing the OX Application Server

This concept makes use of two prerequisites, which were mentioned above:

� Data storage is handled by back end services, the application server itself

does not need to hold any data

� The application server does not need session stability if the temporary file

system is made available for all machines in the cluster through a network file

system.

With these underpinnings, using load balancing it is possible to scale up to

several thousand concurrent users if the back end servers are also able to scale

up appropriately.

Using this setup automatically brings high availability for the Open-Xchange

application servers as the load balancer will notice if one Open-Xchange Server

machine is broken and will distribute the requests to the working machines.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 14 -

4. Service Tuning – Details

This chapter will describe the tuning parameters for the services in more detail.

It is assumed that the reader has reasonable knowledge about the configuration

of Linux servers in general and especially the following described services. This

paper only covers the performance related parameters and will not describe the

whole configuration of the service.

4.1. Open-Xchange Services

Starting with the Open-Xchange services themselves, we will see that it is

possible to tweak some important parameters directly. However, the Open-

Xchange services don't store any data, so they are dependent on the

performance of the back end services which will be described as well.

The design of the groupware service and of the web mail service is based on the

same assumptions for the application server setup, so the configuration of the

main parameters is very similar for both services.

4.1.1. RAM Usage

Both Services are Java based processes, so the startup parameters for the Java

VM can be tweaked to allocate more memory for the services or to limit the

maximum usage of system RAM. This is done in the startup scripts

openexchange-groupware and openexchange-webmail.

The relevant options for the Java VM are e.g.:
" -Xms128M -Xmx512M "

� -Xms

The memory which will be allocated by Java during process startup

� -Xmx

The maximum amount of memory which will be available for the process

4.1.2. Further Information

Java VM options:

man 1 java

4.1.3. Initial Configuration/Connection Pooling

In the file server.conf it is possible to configure some start up parameters

which influence the number of servers started, thread pooling and the usage of

database connection pooling.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 15 - Service Tuning – Details

� START_SERVERS:

The number of initially started server threads. This number affects the initial

response time for new connections as it is an expensive task to start a new

thread when a new user connects to the system. Due to the overhead of

keeping the threads running in memory a number higher than 50 may

decrease the performance.

� THREAD_POOL:

The number of threads that are stored in a pool. Such threads will not be

destroyed and are kept running in the memory of the machine. This number

should be roughly ¼ of the estimated concurrent connections and should not

be higher than the number of maximum concurrent connections. On small

systems a higher value can slow down the system due to the overhead.

� POOL_SIZE:

Number of parallel database connections which are stored in the connection

pool. To establish a new database connection is a CPU and time consuming

process and can be avoided through pre-initialization of connections which are

stored in a database connection pool. However, every database connection

uses a huge amount of memory and so higher values are may be

counterproductive.

A very useful option for debugging purposes can be set in the file

system.properties:

� LOGLEVEL:

If the log level is set to 10, then the duration of queries e.g. to the IMAP

subsystem are written to the log file. This information is very useful to find

bottlenecks, e.g. to see if the web mail application is responsible for slow

performance or if the IMAP back end is the problem.

4.1.4. Internal Encryption

Another interesting topic is internal encryption. By default all Open-Xchange

processes communicate internally through encrypted connections.

If the system is considered to be secured sufficiently, then it may be useful to

switch off this internal encryption between the several services to save CPU load.

4.1.5. Internal HTML Caching

The Open-Xchange server output which is delivered to the user through the web

front ends is always a HTML page. These HTML pages are created on the fly by

the application server using HTML templates which are filled with the dynamic

content.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 16 -

These HTML template pages need to be read from the hard disk for every

request. This behavior can be changed so that the application server caches

these HTML templates. Once cached, it is not necessary to access these files

from disk all the time. On the other hand, the application has to be restarted if

one of the templates is changed to load the changes into the cache. This

functionality is activated in the files system.properties for both web mail and

groupware. The language tags need to be edited according to the language used

in your installation:

� Web mail:
HTML_CACHE:EN/top,EN/main,EN/refresh,EN/left_top,EN/folder,EN/load

main,EN/smail,EN/loadnmail,EN/loading,EN/loading_work,EN/nmail_mai

n,EN/loadall

4.1.6. Web Mail Tuning

There are several additional parameters that can be used to increase the overall

system performance in the interaction between the web mail application server

and the IMAP server. These options can be found in the file system.cfg:

� USE-SERVER-SEARCH

This option defines whether the search for email should be done by the Open-

Xchange application server or by the IMAP server itself. Using the search

implemented in the IMAP server may increase the performance tremendously.

On the other hand, depending on the implementation of the IMAP server, it

may cause problems e.g. with the search for special characters like German

umlauts or French accents.

� USE-SERVER-SORT

This option defines whether the sorting of mailbox listings should be done by

the Open-Xchange application server or by the IMAP server itself. Like the

option mentioned above, this may increase performance a lot, but it may

cause strange results with special characters.

� ENTRIES_ON_PAGE_SELECTION

This option defines how many emails a user can display on one page.

Reducing the maximum value may result in a lower load on the system, as

the application server will read less email headers per request. This option is

mainly useful if there are many users with really huge mailboxes on the

server.

4.1.7. Roadmap

With the upcoming SP1/FP1 versions of the Open-Xchange Server, there will be

some more options which, for example, will allow caching the folder tree

structure and other information.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 17 - Service Tuning – Details

4.2. OpenLDAP

As nearly every other service depends on OpenLDAP, this is one of the most

likely bottlenecks in an Open-Xchange server installation.

As mentioned above, there are three major topics to look at when focusing on

OpenLDAP performance:

� RAM usage vs. Disk access

� Open file handles

� Indices

The indices are quite easy to discuss: the standard installation should contain

every necessary index, so no action should be necessary as long as the directory

is not used by another application which needs additional attributes of its own.

If the following tweaks are not sufficient, there are two more options. But these

should only be used in really huge implementations:

� use a different LDAP implementation, like e.g. eDirectory

� use several instances of OpenLDAP and use slave directory replicas for the

services which only need read access (nss for cyrus, postfix, cyrus)

Additionally it is possible to deactivate the storage of the private and the global

address books in LDAP if that functionality is not used with external clients. This

will avoid the overhead of LDAP access for every write to private or global

address books. For more details please refer to the comments in the

configuration file ldap.properties

4.2.1. RAM Usage/Caching

RAM usage and caching are very important topics, at least for large installations:

OpenLDAP is only able to perform fast enough if slapd, the main server process,

is able to hold all necessary data in the RAM. If disk accesses are necessary to

answer client requests, the performance will decrease immensely.

Assuming that the standard database format bdb is in use, the following

parameters are of interest:

� cachesize (entries)

The number of entries which are maintained in the in-memory cache. This

number should be high enough to hold a reasonable number of frequent

searched attributes.

� idlcachesize (index slots)

This value specifies how many index entries can be kept in the memory.

Should be set to at least 3x the value of cachesize.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 18 -

As the back end for the database files is bdb, the file DB_CONFIG in the LDAP

directory is important as well. The values in slapd.conf can be overwritten with

the values in this file. So it is important to keep the cache size parameter in this

file large enough to hold the cache specified in slapd.conf.

� set_cachesize (GB, Byte, Number of Caches)

4.2.2. File Handles

OpenLDAP on Linux is only able to use 1024 network sockets at the same time.

This is due to the usage of the select(2) system call in glibc. In theory it is

possible to override that value during compile time, but this may cause severe

harm to stability. Newer implementations of OpenLDAP will use the system call

poll(2), which does not have this limitation anymore.

If slapd runs into that limit, the response times for the client will increase

dramatically, as slapd has to wait for another connection to be closed. As there

is no default limit for open connections, it may take some time until the open

connections are closed and reusable. This process can be speed up on the kernel

level with setting the relevant sysctl parameters:

� net.ipv4.tcp_fin_timeout = 15

� net.ipv4.tcp_tw_recycle = 1

� net.ipv4.tcp_tw_reuse = 1

These parameters are described in detail in the section about tuning the network

stack.

Attention:

In general using the parameter idletimeout in slapd.conf is a

good idea to address the issue mentioned. But it might cause

problems in combination with the tcp_tw_reuse parameter

which may be already set for other services.

4.2.3. General

On machines with sufficient RAM it may also help to increase the number of

maximum concurrent threads. This has to be tested thoroughly on the target

machine as it will result in a performance decrease if the value is set too high.

� threads

Maximum number of threads in pool. Higher values than 64 often lead to a

decrease of performance. Increase this value carefully, step by step and

watch what happens.

� sizelimit

Maximum number of entries which are returned by one query. If more than

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 19 - Service Tuning – Details

500 users are in the system, the default is no longer sufficient and the value

should be increased to at least the real number of users.

4.2.4. Further information:

BDB backend documentation:

man 5 slapd-bdb

Complete OpenLDAP documentation:

http://www.openldap.org/doc/admin22/

Berkley DB documentation (chapter "The Berkeley DB Environment)

http://www.sleepycat.com/docs/ref/toc.html

4.3. Apache

Apache provides front end service to the user. That means that if apache slows

down, every access to the system will be slow as far as the user is concerned

because apache has to broker every request between each subsystem and the

user.

To ensure sufficient performance from apache it is important to find a good

balance between memory usage and the number of running processes which are

able to answer the users' requests.

Apache will start a separate server process for every connection. The behavior of

these sub processes is regulated with the following parameters:

� StartServers

The number of servers, which are initially started during server boot up

� MinSpareServers

The minimal number of servers which are started in advance to be available

for new connections without the need to fork a new process when the

connection is accepted

� MaxSpareServers

The maximum number of servers which are waiting for new connections. This

limit is to avoid the waste of memory and resources if many connections are

closed without termination of the corresponding server process.

� ServerLimit

Maximum number of servers. In fact this is the limit of the maximum number

of parallel client connections. It is possible to set this value too high: For

example, if 500 new requests arrive at once, it is possible, depending on the

hardware and the kind of the requests, that it will take much more time to

start these 500 processes, than it would to simply answer the 500 requests

with 200 existing servers.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 20 -

� MaxClients

Maximum number of parallel client connections. This value can't be higher

than ServerLimit. The value of ServerLimit is a good choice.

� MaxRequestsPerChild

This value determines whether a server is closed after processing a certain

amount of client requests. This is to avoid potential memory leaks in apache

modules. Stopping and starting a process is an expensive task, so this limit

should not be set to a too low value.

Other parameters that are of interest:

� EnableSendFile

Ensure that this parameter is set to On (default). Then the "sendfile"

functionality of the kernel is used to deliver static files which reduces the cost

of this operation.

� HostNameLookups

Ensure that this parameter is set to Off (default). If set to On, every client

access will cause a reverse lookup for the client’s name in order to write it to

the log file. This wastes a lot of time and resources.

� KeepAlive

Ensure that this parameter is set to On. This allows clients to request more

than one file per network connection, e.g. one HTML page and all related

images.

� MaxKeepAliveRequests

The maximum number of files, which may be requested from the client in one

connection. This value should be quite high to avoid unnecessary socket

operations.

� KeepAliveTimeout

The length of time before the server closes an open connection when no

further requests come from the client.

Further information

Apache documentation:

http://httpd.apache.org/docs/2.0/

4.4. Tomcat

Tomcat forwards the requests between Apache and the groupware/web mail

application servers. Tomcat can be a bottleneck between these two services and

can reduce the performance of the complete system even if both of the other

services can work with sufficient speed.

It is important to have Tomcat configured in a way that it can efficiently deliver

everything to Apache that Tomcat gets from the application servers.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 21 - Service Tuning – Details

There are two places where parameters can be set to improve Tomcat’s

performance: catalina.sh (the start script for Tomcat, in which some

parameters can be given to the JVM) and server.xml (the configuration file

responsible for the behavior of the Tomcat threads):

4.4.1. catalina.sh

In this file a variable with options for the Java VM can be set, e.g.:
JAVA_OPTS=" -server -Xms256M -Xmx1024M "

The parameters are described above in the chapter about the Open-Xchange

services.

4.4.2. server.xml

Within the definition of the connector used to talk to the web server there are

some parameters which are very similar like the ones for Apache, mentioned

above. The connector which is in use in Open-Xchange is the AJP/1.3 connector,

listening on port 8009 (You can disable the other Tomcat connectors e.g. on port

8080 to save resources). It is useful to use numbers which correlate to the

values used for the Apache configuration. For example it is nonsense to allow

1000 parallel connections from clients to Apache, if only 10 are processed by

Tomcat:

� maxThreads

The number of maximum parallel threads, in fact the maximum number of

parallel connections. Increase this value to allow more parallel connections,

limit this value to save RAM. Default is 200.

� minSpareThreads

As discussed above for Apache, it is important to avoid the need to start a

new thread when a request comes. Instead, have the thread started in

advance. Default is 4.

� maxSpareThreads

Default is 50.

� acceptCount

Queue for incoming TCP connections when all possible threads are busy. Any

connection that does not fit into the queue will be refused.

� bufferSize

Size of the input buffer for this connector. Default is 2048; it may be useful to

increase this value.

� socketBuffer

Size of the output buffer for this connector. Default is 9000; it may be useful

to increase this value.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 22 -

4.4.3. Further information

Complete Tomcat documentation:

http://tomcat.apache.org/tomcat-5.0-doc/index.html

Special documentation for configuration:

http://tomcat.apache.org/tomcat-5.0-doc/config/index.html

http://tomcat.apache.org/tomcat-5.0-doc/config/http.html

Java VM options:

man 1 java

4.5. PostgreSQL

All relevant data for the groupware is stored in the PostgreSQL database.

Therefore the performance of the database has very serious implications for the

overall performance of the whole Open-Xchange system.

The most important area to tweak for the database to work correctly is the

indices. If a table within PostgreSQL contains more than a hundred entries or so,

it is very important to have a good index initialized for this table to allow

PostgreSQL to perform effectively. Depending on the Open-Xchange Server

version, some indices are not available at install time. In the Open-Xchange

maintenance portal some information can be found on how the necessary indices

can be created post install.

For very high load Open-Xchange systems it is useful to move the PostgreSQL

database to another machine which is dedicated to running the database.

Other possibilities in extreme high load scenarios are to split the tables to

several disks etc. But this topic is too far afield for this paper.

There are very good methods available to debug the performance of PostgreSQL.

In the configuration file postgresql.conf the following options may of use:

� log_min_duration_statement

This option (given in milliseconds) asserts that queries which take longer than

the given value are written to the log file. Placing the value 1500 in this

option will cause every SQL statement which takes more than 1.5 seconds to

be written to the log file. This is a very useful first step to determine if you

really have an issue with PostgreSQL performance. In the second step you

can analyze these statements using PostgreSQL functionality to discover the

cause of the long response time. This can be done through the SQL

statement, which helps, among other things, to define the correct indices:
EXPLAIN ANALYZE <sql statement>

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 23 - Service Tuning – Details

Other important options affect the number of parallel connections and the RAM

usage, the same considerations of memory and speed that applied for the other

services applies here as well:

� max_connections:

The maximum number of parallel connections. It is also the maximum number

of parallel running processes.

� shared_buffers (blocks of 8kB size):

Maybe the most important parameter at all. This value defines the size of the

memory segment, which will be available for PostgreSQL do its real work. If

this parameter is set too low, PostgreSQL will need to write to a temporary

file, which obviously will result in a decrease of performance. But attention:

setting the value too high may cause a decrease again due to high

organizational overhead. The value should be at least 2x max_connections. A

good value for most servers under high load may be between 4096 and

16384.

� effective_cache (blocks of 8kB size):

This value sets the size of the memory that may be used by PostgreSQL to

cache disk data. PostgreSQL will base its optimization methods on this

parameter. Take care, when setting this value, that enough RAM is left for

other applications as well.

� commit_delay:

With this option set to a value higher than 0, PostgreSQL will wait for the

given amount of milliseconds to see if other processes will commit data as

well. Then all committed actions are combined to reduce the number of write

accesses to the disk. This can reduce the overall load of the system if many

write operations are scheduled to happen at the same time.

� commit_siblings:

The number of processes to take into consideration if commit actions should

be combined

� fsync:

This option can be set to false if you want to return a commit statement

before the data is written actually to disk. This can improve the application’s

performance under high load immensely. On the other hand, the risk of

loosing data during a crash, caused by a power failure or other problem, will

increase. Only use this option with very good hardware and a reliable power

supply and always use it with care.

Attention:

Several of these parameters can also be specified on the

command line. E.g. the parameters for shared buffers and

maximum connections are specified on the command line,

overriding the values from the configuration file. In this case,

the command line options in the Linux distribution’s

configuration files need to be edited rather than the

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 24 -

parameters in the PostgreSQL configuration file. Of course,

any command line changes made in a terminal window will be

lost upon a restart.

4.5.1. Database Maintenance

PostgreSQL requires regular database maintenance. This is done with two

operations called VACUUM and ANALYZE. These operations have two effects:

Reducing the amount of disk space used and generating statistics for the

PostgreSQL internal engine to better handle requests in an agile manner.

The best way to ensure regular maintenance is to add a cron job to the system

which calls the command vacuumdb every night during at a low system load

time.

4.5.2. Further Information

Complete PostgreSQL Documentation:

http://www.postgresql.org/docs/7.4/interactive/index.html

http://pgsqld.active-venture.com/

4.6. cyrus-imapd

cyrus-imapd is responsible for storage of the emails and for the delivery of the

emails to the user. This means that poor performance of cyrus-imapd will always

lead to poor, overall email performance, independent of the performance of the

web mail application server.

Most tuning options for cyrus-imapd are of conceptual nature and are quite

complex. One possible option is like those already mentioned above, to move

cyrus-imapd to a separate machine (including a replicated LDAP server). Other

possibilities are more complex, like partitioning the file spool of cyrus-imapd to

allow the usage of several disk subsystems in parallel. In this paper we will focus

on the basic possibilities and bottlenecks.

There are normally two potential bottlenecks for cyrus-imapd performance: LDAP

authentication and the I/O (disk) subsystem.

The I/O disk subsystem will be explained in the file system section.

LDAP authentication leads us to a cascaded performance bottleneck:

� Every connection and login to the IMAP server causes an authentication

against LDAP in the background.

� Every refresh of the view in the web mail front end causes a new connection

to the IMAP server.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 25 - Service Tuning – Details

� Every other service on the machine is dependent on the LDAP server’s

performance as well and will see a decrease in performance as the load on the

LDAP server increases.

Saturating the LDAP server through cyrus-imapd will not only reduce the IMAP

performance, but will lead to an overall decrease of system performance as well.

Furthermore, it should be noted, that OpenLDAP is only able to handle 1024

concurrent sockets.

However, this potentially serious issue can be solved, for example, with an IMAP

proxy. An IMAP proxy is a program, which accepts the IMAP connection from the

web mail front end and forwards it to the real IMAP server. After the first

successful authentication it keeps the connection to the IMAP server for a

configured amount of time and uses internally hashed information to

authenticate the client. Implementing this concept can reduce the amount of

new connections tremendously and therefore not only the load on the IMAP

server, but on the LDAP service as well.

Two well known IMAP proxies are:

� UP-Imapproxy:

http://www.imapproxy.org/

� IMAPProxy from the Horde web mailer project:

http://www.horde.org/

4.7. Spam Assassin

Spamassassin/spamd is not an actual Open-Xchange service, but a service from

the underlying operating system, which is only activated through the Open-

Xchange web admin interface.

Scanning large and complex emails can be a very CPU intensive task. Therefore,

for large installations it is recommended to place this functionality onto a

separate machine in the DMZ.

4.8. Operating System

Each of the services mentioned above runs on the Linux operation system and

makes use of many different system resources. So it is necessary to have a look

at the tuning possibilities of the operating system itself.

4.8.1. File System

Perhaps the main influence on the overall system performance is the file system.

In particular, cyrus-imapd performance is extremely dependent on file system

performance. It will never be possible to keep all the email stored on the system

in the cache, so each access to an email leads automatically to a file access on

the disk. Similarly, for OpenLDAP and the PostgreSQL database, every write

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 26 -

access will lead to a write access on the file system as well. For large

installations, PostgreSQL read requests will probably lead to read access on the

disk as well.

There are several methods which can improve I/O performance:

Hardware

Obviously the installed hardware has a high influence of I/O performance – slow

hardware can never be adequately tuned with software.

� RAID:

To gain the best performance it is a good idea to use RAID 1+0. RAID 5 adds

a very large overhead, so it always delivers lower write performance than the

pure disks

� Separated file systems:

In large installations with external disk subsystems (External SCSI, SAN,

iSCSI ...) it makes sense to use different disk spindles for different services.

It can be very useful to have cyrus-imapd, the Postfix spool, the PostgreSQL

database and the log file directory mounted on different I/O subsystems.

If there are no different disk subsystems available, it is at least recommended

to separate the /var file system from the other system partitions.

File system

Modern journaling Linux file systems like ReiserFS, EXT3 or XFS should not differ

too much regarding performance. For a spool directory like the one from cyrus-

imapd, maybe ReiserFS has some advantages, as it can handle a huge amount

of small files very efficiently due it’s the tree model as opposed to the standard

table model for file allocation.

In many cases, what can improve the performance of every Linux file system

tremendously, are mount options which differ from the default:

� noatime

With the default mount options, every access to a file leads to an update of

the last access time in the file’s metadata. This means, that every read access

will also cause a write access to the inode metadata. Setting the mount option

noatime will increase the read performance for the cyrus-imapd spool volume

and/or the PostgreSQL database files tremendously.

� data=writeback:

Setting this option changes how the file system writes its data with regards to

its journal, with an improvement of the overall write performance. The option

writeback will separate the journaling of the data from the journaling of the

metadata, which will always be journaled. This means that the file system will

always stay internally consistent, but some smaller file inconsistencies can

occur if the system has a hard crash.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 27 - Service Tuning – Details

Further Information

ReiserFS mount options:

http://www.namesys.com/mount-options.html

Linux Kernel file system documentation:

/usr/src/linux/Documentation/filesystems/

4.8.2. Network Stack

As mentioned above, it may be necessary on systems with many concurrent

network connections to tune the behavior of the network stack of the operating

system. Taking into consideration how many services have to communicate on

an Open-Xchange server, you can nearly always define it as a system with many

concurrent connections.

The goal of network stack tuning is to avoid wasted open connections and to

allow very fast creation of new sockets.

This is achieved by changing some settings in the /proc file system, which can

be set via sysctl:

� net.ipv4.tcp_fin_timeout = 15

This option defines how many seconds a half closed socket will wait until it

gets closed completely without acknowledgment from the opening application.

In fact this is a violation of the RFC, but it is useful to avoid wasted sockets.

� net.ipv4.tcp_tw_recycle = 1

Allows the fast recycling of closed sockets in the TIME_WAIT state.

� net.ipv4.tcp_tw_reuse = 1

Allows the reuse of closed sockets in TIME_WAIT state by the same

application. This helps to increase performance tremendously, if many

connections are opened and closed between the same machines, as

information about the hosts does not need to be renegotiated. The new

connection can just reuse the unused socket which is already open.

Further Information

Linux documentation for the /proc file system:

/usr/src/linux/Documentation/filesystems/proc.txt

4.8.3. General Limits

Underlying the services already mentioned, there are several limits in the

operating system which may need to be tuned as well. For example, it will not

help to start Tomcat with the parameter set to allocate 2048 MB of RAM if the

operating system will only grant a maximum of 1024 MB for one process.

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 28 -

One limit, which is hit quite often, is the number of maximum open files in the

complete system. Keep in mind that every network socket is also an open file

handle. This value can be set in the /proc file system with sysctl and is preset

by the kernel dynamically based on the amount of physical RAM in the machine.

� fs.file-max

Other limits can be set or verified with the command ulimit. Depending on the

distribution there may be files available to define global limits (e.g.

/etc/security/limits.conf); otherwise it may help to increase the limits for

one single service directly in the startup script.

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 29 - Analysis Tools

5. Analysis Tools

This chapter gives a brief overview about some tools which are useful to analyze

the system and which can highlight where the potential performance issues may

be located. As mentioned above, it is very important to find out what causes the

performance issue. For example, if the overall system lacks performance due to

a slow disk subsystem for cyrus-imapd, it will not help to increase the RAM of

the machine in an attempt to improve the performance of the web mail service.

5.1. System Overview Monitoring – Nagios, Munin, sar

A very good first step for every day analysis is, to have a monitoring system,

which keeps easy to interpret statistics about several basic system parameters

like CPU or memory saturation, number of open files, fork rates, etc...

Nagios and Munin are projects which deliver this functionality via web front ends.

Munin provides nice graphics of the relevant factors for the local machine and is

very easy to install. Nagios is a very powerful and complex system to monitor

complete networks and includes functionality to warn of possible problems.

sar is a tool from the sysstat package, which records system information in

binary log files, which can be visualized by a graphical tool called isag to get an

overview about the system.

Further information

Munin homepage:

http://munin.projects.linpro.no/

 Sysstat homepage:

http://perso.wanadoo.fr/sebastien.godard/

5.2. iostat

iostat is a command line tool from the sysstat package which displays system

information related to disk I/O.

Started with the right parameters, it will print out system I/O information at

regular intervals. Written to a file, this information can help to find I/O

bottlenecks after system slowdowns.

The output looks like this:

© Copyright 2005-2006, OPEN-XCHANGE Inc. - 30 -

ox1:~ # iostat -t 1

Linux 2.6.5-7.244-default (ox1) 01/03/06

Time: 10:05:47

avg-cpu: %user %nice %sys %iowait %idle

 4.63 0.99 11.61 0.58 82.19

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

fd0 0.00 0.00 0.00 4 0

sda 11.13 172.08 176.64 239926 246296

sdb 6.74 43.04 140.85 60008 196392

iostat displays all activity for every disk device in the system, as well as some

interesting information about the CPU usage, e.g. how much of the CPU time

was spent waiting for pending I/O requests.

Further information

The documentation for iostat:

man 1 iostat

5.3. vmstat

vmstat is the next tool from the sysstat package. It is able to log regular

information about wide range of system resources, RAM, CPU, SWAP, Processes,

I/O subsystem ...

This data gives a good overview of the system resources. Written to a file it can

be used to analyze the reason for system slowdowns after they happened:

ox1:~ # vmstat 1

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 1 0 0 83312 50768 176724 0 0 105 168 1019 336 6 11 83 1

 3 0 0 76624 50780 176724 0 0 0 0 1089 441 15 59 26 0

 0 0 0 78132 50952 177052 0 0 156 88 1013 868 33 34 24 8

 6 0 0 75084 51028 177316 0 0 216 12 1184 1441 49 43 1 7

 2 0 0 56980 51028 177340 0 0 0 0 1026 388 56 44 0 0

Further information

The documentation for vmstat:

man 8 vmstat

 Open-Xchange Scalability and Tuning Whitepaper v1.01 - 31 - Analysis Tools

5.4. mpstat

mpstat is another tool from the sysstat package. It displays information about

the CPU usage. The main advantage of mpstat is that each CPU can be analyzed

separately.

Writing the information for each CPU to a file can help to analyze situations

where the system load may not be distributed correctly to all existing CPUs:

ox1:~ # mpstat -P 0 1

Linux 2.6.5-7.244-default (ox1) 01/03/06

10:10:34 CPU %user %nice %system %iowait %irq %soft %idle intr/s

10:10:35 0 2.02 0.00 5.05 0.00 0.00 1.01 91.92 994.95

10:10:36 0 0.00 0.00 2.02 0.00 0.00 0.00 97.98 1003.03

10:10:37 0 1.01 0.00 3.03 1.01 0.00 1.01 93.94 1041.41

10:10:38 0 13.40 0.00 17.53 0.00 1.03 3.09 64.95 1132.99

Further information

The documentation for mpstat:

man 1 mpstat

