
1 © 2006-2010 openmdx.org
openMDX Modeling Guide

Modeling with openMDX
Part 2

2 © 2006-2010 openmdx.org
openMDX Modeling Guide

openMDX - Overview

• openMDX implements the PIM-only
approach.

• As a consequence, openMDX does not
require PSM modeling.

3 © 2006-2010 openmdx.org
openMDX Modeling Guide

Supported Model Types
Structure Diagrams Supported by openMDX

- Class Diagram
- Object Diagram
- Component Diagram
- Composite Structure Diagram
- Package Diagram
- Deployment Diagram

 (MOF compliant models only)

Behavior Diagrams

- Use Case Diagram
- Activity Diagram
- State Machine Diagram

Could be supported by a plugin executing activity
diagrams and state machines. Plugin is not
implemented yet. The recently adopted Business
Process Modeling Specification (dtc/06-02-01)
seems to be more promising.

Interaction Diagrams

- Sequence Diagram
- Communication Diagram
- Timing Diagram
- Interaction Overview Diagram

4 © 2006-2010 openmdx.org
openMDX Modeling Guide

MOF compliant Class Diagrams [1]

• Although MOF is designed as repository standard, all MOF
mappings can be applied to business object models if they are
MOF compliant.

MOF
compliant

Business
Object
Model

Java,
C++, C# (*)

DTD,
XSD

MOF to Java Mapping (JMI)
(JSR-40)

MOF to XML (XMI)
(omg/05-09-01)

(*) C++ and C# mapping is not defined yet. They can be easily derived from the JMI mapping.
(**) WSDL mapping not defined yet. It can be derived from the MOF-to-IDL and IDL-to-WSDL mapping.

WSDL (**)MOF to WSDL

5 © 2006-2010 openmdx.org
openMDX Modeling Guide

MOF compliant Class Diagrams [2]

UML Element MOF Element Supported by
openMDX

Model «metamodel» Package 

ElementImport Import 

Class Class 

Attribute Attribute 

Attribute «reference» Reference 

Operation Operation 

Parameter Parameter 

Exception Exception 

Attribute (within Exception) Parameter 

Association Association 

AssociationEnd AssociationEnd 

DataType DataType 

DataValue Constant ---

Constraint Constraint ---

Generalization Generalizes 

Tagged Value Tag 

Qualifier -- 

6 © 2006-2010 openmdx.org
openMDX Modeling Guide

Business Process Modeling [1]
Implementation Approach #1

• Models are stored in a business process repository.
• They are executed by the business process executor (which is

implemented as openMDX plugin).
• Most of the business logic can be expressed as platform-

independent business proces model.

Business
Process

Repository

openMDX

Business
Process
Executor

openMDX

Business
Component

#1

openMDX

Business
Component

#2

openMDX

MOF compliant
interface

7 © 2006-2010 openmdx.org
openMDX Modeling Guide

Business Process Modeling [2]
Implementation Approach #2

• External business process engine executes
workflows and invokes functions of openMDX-based
coomponents.

External
Business
Process
Engine

Business
Component

#1

openMDX

Business
Component

#2

openMDX

MOF compliant
interface

8 © 2006-2010 openmdx.org
openMDX Modeling Guide

Modeling Class Diagrams

9 © 2006-2010 openmdx.org
openMDX Modeling Guide

Primitive Types
CORBA IDL Types string

short
int
long
boolean

float
double
decimal
byte

W3C primitive and derived
DataTypes
(http://www.w3.org/TR/xmlschema-2/)

string
integer
long
short
byte
boolean
binary

decimal
float
double
duration
dateTime
anyURI

• openMDX supports the W3C DataTypes:
– W3C types better known than IDL types
– more platform independent
– easier mapping to XML

10 © 2006-2010 openmdx.org
openMDX Modeling Guide

Alias Types

• Alias types allow to define
user-defined datatypes.

• This allows to define a user-
defined data type system.

11 © 2006-2010 openmdx.org
openMDX Modeling Guide

Classes

• Classes define object
types.

• Implicit setters for
read/write and getters for
all attributes.

• Support for behaviour
(operations and derived
attributes)

• Support for associations
• Support for multiple

inheritance.

12 © 2006-2010 openmdx.org
openMDX Modeling Guide

Structure Types

• Structures are
value objects.
Fields are
read-only.

• No support for
behaviour.

• No composite
and shared
associations.

• No inheritance.

openMDX 1 openMDX 2

Can be used as operation
parameters

YES YES

Can be used as attribute
types

NO YES

Can be nested NO YES

13 © 2006-2010 openmdx.org
openMDX Modeling Guide

Attributes, Fields

• Attributes are
features of
classifier types

• Fields are features
of structure types

• Attributes / Fields
have a type,
multiplicity,
changeability and
visibility.

• Define attributes
and fields instead
of defining setter /
getter operations.

Multiplicities 0..1: optional
1..1: required
0..*, «list»: multi-valued, ordered
«set»: multi-valued, unordered
«sparsearray»: multi-valued, ordered, sparsly set array
«stream»: multi-valued, stream

Type Primitive type
Structure type (only with openMDX 2)

Changeability changeable
non-changeable

Visibility public: features visible on interface and value objects.
private: features visible on value objects only.

14 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations

• Associations allow to ‚connect‘ classes /
objects.

• The aggregation kind defines the semantics
of the connection (from MOF and UML spec):
– None: Coupling with no life-cylce semantics.
– Composite: Coupling with life-cylce semantics.
– Shared: Not supported by MOF. According to the

UML specification the precise semantics varies by
application area and modeler. openMDX supports
shared associations and defines a semantics.

15 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – Composite [1]

• Strong coupling:
– A composite relationship is asymmetrical, with one end

denoting the “composite” or “whole” in the relationship and
the other one denoting the “components” or “parts.”

– An instance cannot be a component of more than one
composite at a time, under any composite relationship.

– An instance cannot be a component of itself, its
components, its components’ components and so on under
any composite relationship.

– When a “composite” instance is deleted, all of its
components under any composite relationship are also
deleted, and all of the components’ components are deleted
and so on.

– The Composition Closure Rule: an instance cannot be a
component of an instance from a different package extent.

16 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – Composite [2]

• openMDX specific:
– “An instance cannot be a component of more than one

composite at a time, under any composite relationship”.
• openMDX enforces this rule at class-level: every class must

have exactly one composite parent. The only exception are
classes with stereotype «root». All other parent relationships
must be modeled as ‘shared’ associations.

• This rule allows to derive non-changeable, well-defined object
identities from the model and vice versa.

– A composite association must define a uniquely defining
qualifier. This allows direct navigation from the composite
object to a specific part.

17 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – Composite [3]

• A part must have exactly one
composite

• A part can not be part of its
composite

• A part must be uniquely
referenced

• Instances have unique object
identities (XRI), e.g.

0..1
container

Class openMDX XRI pattern

ContactContainer xri:@openmdx:<model>/.../container/<id>

Contact xri:@openmdx:<model>/.../container/<id>/contact/<id>

Address xri:@openmdx:<model>/.../container/<id>/contact/<id>/address/<id>

18 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – None [1]

• Loose coupling:
– There are no special restrictions on the multiplicity

of the relationships.
– There are no special restrictions on the origin of

the instances in the relationships.

– The relationships do not impact on the lifecycle
semantics of related instances. In particular,
deletion of an instance does not cause the
deletion of related instances.

19 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – None [2]

• Multi-valued relationship

• Optional-value relationship

• Removal of a contact does
not remove referenced
contacts.

• Removal of a referenced
object can lead to dangling
references. With
openMDX, referential
integrity can be enforced
by application logic.

20 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – None [3]

• Associations can also be navigable in both directions.

• Navigation of one end requires the index to navigate to the
referenced object.

• Navigation of the other end requires the composite parent of the
referenced object. The result is a collection of contacts which are
referenced by the current contact.

21 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – Shared [1]

• Semantics defined by openMDX:
– A shared relationship is asymmetrical, with one end

denoting the “parent” in the relationship and the other one
denoting the “components” or “parts.”

– The „parent“ may or may not be the „composite“ of the part.
– An instance can be a component of more than one parent

at a time.
– An instance cannot be a parent of itself, its components, its

components’ components and so on under any shared
relationship.

– The life-cycle semantics is user-defined when a “shared”
instance is deleted.

– Composition Closure: an instance can be a parent of an
instance from a different package extent.

22 © 2006-2010 openmdx.org
openMDX Modeling Guide

Associations – Shared [2]

• Semantic of shared
association
‚ContactHasAssignedTask‘ is
user-defined.

• In this case the set of
referenced objects are all
tasks which are assigned (by
ContactAssignments) to the
exposing contact. This
semantic should be
documented.

23 © 2006-2010 openmdx.org
openMDX Modeling Guide

Operations [1]

• An operation defines a dynamic feature that offers a
service. The behavior of an operation is activated
through the invocation of the operation.

• Defining an isQuery operation denotes that the
behavior of the operation will not alter the state of the
object. The state is the set of values of all of the
object’s class-scope and instance-scope structural
features.

• An Operation, upon encountering an error or other
abnormal condition, may raise exceptions.

• openMDX restrictions:
– class-level operations

24 © 2006-2010 openmdx.org
openMDX Modeling Guide

Operations [2]

• openMDX specifics:
– parameters must be modeled as structure types

– isQuery=false operations require an active unit of
work before invocation

25 © 2006-2010 openmdx.org
openMDX Modeling Guide

Model Constraints [1]

• The MOF constraints apply to all openMDX
models. For a complete list of the MOF
model constraints see MOF Specification 1.4,
Section 3.9 (formal/02-04-03).

• For implementation reasons openMDX adds
a few more constraints.

26 © 2006-2010 openmdx.org
openMDX Modeling Guide

MOF Constraints [2]
ID Description

MOF

C-1 A ModelElement that is not a Package must have a container.

C-2 The attribute values of a ModelElement which is frozen cannot be changed.

C-6 A Generalizable Element cannot be its own direct or indirect supertype.

C-8 The names of the contents of a GeneralizableElement should not collide with the names
of the contents of any direct or indirect supertype.

C-9 Multiple inheritance must obey the “Diamond Rule.”

C-10 If a Generalizable Element is marked as a “root,” it cannot have any supertypes.

C-19 Inheritance / generalization is not applicable to DataTypes.

C-59 A StructureType must contain at least one StructureField.

openMDX

C-1004 Parameters must be structure types.

C-1011 Association end with aggregation not equal [none] requires a primitive type qualifier and
multiplicity [0..1|1..1].

C-1013 Association end with aggregation [none] requires no qualifier or a qualifier [primitive with
multiplicity 0..1|class with multiplicity 0..n].

C-1015 Association end1 with qualifier type class requires end2 with none or primitive qualifier.

27 © 2006-2010 openmdx.org
openMDX Modeling Guide

openMDX Specifics

28 © 2006-2010 openmdx.org
openMDX Modeling Guide

Overview

• Object identity and access path

• org:openmdx:base Package

• Object management (by providers)

29 © 2006-2010 openmdx.org
openMDX Modeling Guide

Object identity and access path [1]

• Objects are accessed by their access paths.
Valid access paths are:
– object identities, i.e. the XRI which can be

constructed from the composite assocations.

– shared access paths, i.e. the XRIs which can be
constructed from the shared associations.

30 © 2006-2010 openmdx.org
openMDX Modeling Guide

Object identity and access path [2]

• Identity of Task objects:
– xri:@openmdx:<model>/.../container/<id>/task/<id>

• Access Paths of Task objects:
– xri:@openmdx:<model>/.../container/<id>/task/<id>
– xri:@openmdx:<model>/.../container/<id>/contact/<id>/task/<id>

31 © 2006-2010 openmdx.org
openMDX Modeling Guide

org:openmdx:base Package [1]

• The package solves the modeling
bootstrap problem: each class must have
a composite parent. The class Authority
is the only class which is not required to
have a composite parent.

• For implementation reasons the object
space must be partitioned:
– partioning by providers
– partitioning by segments

• User-defined models should use as
starting point the class
org:openmdx:base:Segment.

32 © 2006-2010 openmdx.org
openMDX Modeling Guide

org:openmdx:base Package [2]

• All user-defined business object classes should extend BasicObject.
• BasicObject adds features which are common to all business objects:

– creation information
– modification information
– possibility to add contexts

33 © 2006-2010 openmdx.org
openMDX Modeling Guide

Modeling best practices

34 © 2006-2010 openmdx.org
openMDX Modeling Guide

Best practices [1]

• openMDX class models represent the
business object model provided by the API of
a business component. Good API design
patterns are also valid for openMDX models:
– model from the clients perspective

– apply reusable patterns

35 © 2006-2010 openmdx.org
openMDX Modeling Guide

Best practices [2]

• Models from third parties should be extended
and not modified. Extensions which do not
modify the original model are:
– add subclasses in new model packages

– existing classes can be references without
modifying the orginal class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

