
OpenNA RPM HOWTO

Version: 1.2
Issue Date: 2004-03-07

Written by Gerhard Mourani <gmourani@openna.com>
Edited by Joe Rodriguez Jr. <jrodriguez@mypcbox.com>

Open Network Architecture, Inc.
11090 Drouart
Montreal, Quebec
H3M 2S3
Canada

This document is distributed AS IS in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is available at http://www.gnu.org/copyleft/fdl.html.

Table of Contents
Abstract..3
Install the software...3
Building RPM from an existing source RPM...4
Inside the SPEC file..5

The Header section:..6
The Prep section:..9
The Build section:..10
The Install section:..10
The Clean section:...11
The Files section:..13
The Changelog section:...14

The build...14
Testing your RPM...14
Send your work...14
Building RPM from source code...15

Downloading the source code...15
Putting the source code in the right directory................................15
Checking the source code...15

Building the SPEC file...16
The header section:...17
The Prep section:..18
The Build section:..19
The Install section:..19
The Clean section:...19
The Files section:..20
The Changelog section:...20
Reviewing your SPEC file:...20
Build it:...21
Adding patches to the SPEC file:..23

Other useful resources related to RPM...24

Abstract
In the effort to produce a quality product and corresponding documentation, this document was
constructed by Open Network Architecture, Inc, its affiliates, partners, and general user
community to serve as step-by-step instruction on how to compile a RPM package that will
integrate well with the OpenNA Linux distribution of GNU/Linux. The document assumes that code
being compiled is either from a previous RPM source or from the original tar source.

It is important to note that RPM itself is a software package build and deployment tool which is
used to encapsulate all aspects of program package into a single resultant RPM package for
deployment. This resultant RPM File contains all the necessary information need to install the
compiled program(s) on a given system along with the necessary pre and post operational
instruction needed by the program on the system.

For sake in understanding this document, it is important to distinguish the difference between
source (.src.rpm) and binary (.i686.rpm) packages. The first contains the complete original source
tree from the programmer, plus all the information the packager has added in order to configure,
compile, and install the program. This information generally consists of a SPEC file (the file used
to tell rpm what operations to perform in order to create the package) along with patches, if
needed.

The second contains the compiled binary and all the files that will be installed on the target
system. It also contains the procedures used to put the files in their correct location on the system
and the necessary actions/procedures to perform in order to have the program operational.

In addition, this documents takes you through a detailed procedure for building a binary package
for source using RPM however does not address the extensibility of RPM build and deployment
tool itself. The task of learning the inner workings of the RPM tool itself is left to the reader and is
not openly addressed in this document.

Install the software
Although RPM was originally designed to work with RedHat Linux, it also works on other rpm-
based distributions: OpenNA Linux, Mandrake, Suse, Caldera, etc; RPM is already installed on
these systems. In any instance please be aware that the binary RPM you will build for OpenNA
Linux may not work across the distributions, although OpenNA makes every effort possible to stay
compatible with Red Hat.

In order to compile RPM packages from source code, you will first need to install the OpenNA
Linux Workstation type install. This particular installation type takes care of providing all the
required compiler packages and other important development libraries and headers that are
needed to compile source code on your system. Please note that if you also want to build RPM for
Graphical User Interface (GUI), then just say "Yes" to GUI during the setup of your OpenNA Linux
Workstation to have the additional GUI development packages installed on to your system.

As previously mentioned, the OpenNA Linux Workstation installation type will have all the required
development packages and compilers installed for you. At this point everything related to RPM
building will be located under the “/usr/src/openna/” directory path on your Workstation. The
following provides a brief description about what each subdirectory under the
“/usr/src/openna/” directory path is used for.

In order for you to successfully build complete software packages using RPM you must know the
RPM build structure. This structure is defined as follows:

/usr/src/openna/
BUILD/
RPMS/i686/
SOURCE/
SRPMS/
SPECS/

• The "BUILD" directory is used to unpack the source code and build it.

• The "RPMS" directory is used to keep successfully built RPM packages. This is where the
result of your built RPMS will be stored once successfully compiled.

• The "SOURCE" directory is where the source code and any possible patches, files, etc you will
need to build the package will be located.

• The "SRPMS" directory is used to keep a successful build of SRPMS packages. This is where
the result of your SRPMS build will be stored once successfully compiled.

• The "SPECS" directory as its name implies is used to store all SPEC files used to build RPM
packages. This is also the directory under which you should move in before starting to
configure the SPEC file and build it with the appropriated rpm command as shown further
down in this document.

Building RPM from an existing source RPM
This is generally the case for building software packages which are already included in the
distribution. When you find the source RPM you wish to modify for OpenNA Linux distribution ,
locate the RPM source file and install it by issuing the following command: “rpm -Uvh
packagename-version.src.rpm”. The resultant effect for issuing this command will be the
installation of all source files into the RPM directory "/usr/src/openna/".

At this point, all that is needed is to modify its SPEC file and then rebuild the package.

Inside the SPEC file
The SPEC file contains all the information needed by RPM to:

1. Compile a program and build source and binary RPMs,
2. Install and uninstall the program on the user's machine.

The fact that these two types of information are merged into a single file may be quite confusing
for most beginners. Actually, this is due to the source tar tree, which already contains this
information. As the installation procedure is extracted from the installation process generally run
by “make install” into the source tree, both parts are tightly linked.

As you build more and more RPMs, you will find that there are some options that have not
addressed in this document. As mentioned in the Abstract section of this document, RPM is an
extremely versatile tool, so it is the reader’s responsibility in discovering how to use these
additional options. In addition, when first building an RPM from source it is always good practice to
open up the SPEC files to look at them and see how they work.

As you will discover about most OpenNA source RPM packages, the OpenNA Linux SPEC files
are divided into 7 distinct sections. Each section is responsible for specifically doing or providing
something during the build process of the RPM package. The following provides a listing of all
sections of an OpenNA Linux SPEC file:

• The Header section
• The Prep section
• The Build section
• The Install section
• The Clean section
• The Files section
• The Changelog section

Every OpenNA Linux SPEC files that you expect to build should have the above sections defined
and used to be compatible with the way OpenNA writes and builds RPM packages. Many other
Linux distributions use the same method in building packages for their particular distribution,
however the order by which these sections are structured may be different. Therefore if you wish
to build or update new RPM packages for compatibility with the OpenNA Linux distribution, you
should adhere to these guidelines as closely as possible and respect any tabs and/or space
characters OpenNA puts and uses in their respective SPEC files.

To understand the OpenNA structure of a SPEC file, the following provides a detailed look at each
of the sections briefly mentioned above along with a detailed explanation of the data elements
contained within each section.

The Header section:
The Header section is used to define all information required by RPM to build, store, manage,
and list the future package. Most information contained in this section will be used to display the
RPM package information when it is queried by the RPM command "rpm -qi softwarename"
on your system. Some of this information is used by the RPM database to store and manage
updates, removal, etc. Other information is necessary to get the name of the software source
being built and also where and how other information is used to integrate external patches and
files.

Summary: Small description of the software
Name: softwarename
Version: 1.0
Release: 1
License: GPL

Summary: This line is used to put a small description of the software. For example, if Exim is the
software you want to build as RPM package, then you can use a small description for Exim as
follows: A Mail Transfer Agent (MTA).

Name: This line is used to define the name of the package we are going to compile. For example
if you are going to download the Exim source code (.tar.gz) and compile it into a RPM package for
use, then exim which is the name of the software will be the name to use here. This will be used
later in package's name and package database on the user's machine too.

Version: This line is used to define the version number of the software we want to compile as
RPM package. For example, if we have downloaded Eject and the Eject version is 4.24, then this
will be the version number to define and use here.

Release: This line is used to define the release number for the package we want to build. It's
always a good practice to start from 1 and increment the number every time we provide a new
RPM version of the same software. For example if this is the first time that we compile Exim to
provide RPM package, then we can put 1 here for Exim version 4.24 and increment it to 2 if we
provide a new RPM package for Exim version 4.24. Now what happens if the Exim version
changes from version 4.24 to 4.30. In this case we can start again from 1 since it is a new version
number different from the previous version.

License: This line is used to define the type of license associated with the software you want to
build. Please take special attention to copyright and license, check inside the source code to get
the correct license associated with the software and put it here.

Group: SERVER/System Environment/Base
Source0: %{name}-%{version}.tar.gz
URL: http://www.domain.org/

Group: This line is used to define in which part of the general package tree to place this package.
With OpenNA Linux we have two main distinctive group which are GUI and SERVER, GUI relates
to every software running under GUI environment and SERVER to every software running under
SERVER environment. After that, we use subgroup like "System Environment" and "Base". It is
mandatory to follow it, otherwise your package will mess with the other ones, in the package tree
selection of OpenNA Linux installer, or in package manager front-ends.

Source0: This line is used to define what source file to use for building the package. To resume, it
is the name of the source code to use and compile but as you can see it is defined and listed as
macro "%{name}-%{version}.tar.gz" which mean according to what we have defined
previously under the "Name:" and "Version:" tags as softwarename and 1.0. Therefore translating
"%{name}-%{version}.tar.gz" will become "softwarename-1.0.tar.gz" which is the
source code we want to compile here.

URL: This line is used to define the home page of the program as people will know where to find
new sources should they take a liking to upgrading the source and do a recompilation.

Distribution: OpenNA Linux
Vendor: OpenNA, Inc.
Packager: Open Network Architecture Inc.

Distribution: This line is used to define the name of the distribution under which the RPM
package applies. It is an optional tag that you can use into your SPEC file if you want.

Vendor: This line is used to define the vendor name. In our example, it is set to OpenNA, Inc. but
you are free to put what you want here or to not use it at all. It is an optional tag that you can use
into your SPEC file if you want.

Packager: This line is used to define the name of the organization that make the package or the
name of the person that make it. It is an optional tag that you can use into your SPEC file if you
want.

ExclusiveArch: i686
ExclusiveOS: Linux
BuildRoot: %{_tmppath}/%{name}-%{version}-root

ExclusiveArch: This line is used to define the CPU architecture under which the package will
been compiled to run on. In other term, it can only build on the specific arch specified. It is also
used for the extension of the RPM package (.i686.rpm). Please note that if you put i686 here,
then the build RPM package will only install on a i686 and above CPU architecture. This is what
with use with OpenNA Linux.

ExclusiveOS: This line is used to define the OS under which the RPM package has been made
to run on. This excludes a piece of software from a particular operating system. In our example,
we build RPM for Linux only.

BuildRoot: This line is used to define the temporally path (directory) under which all compiled
binaries, libraries, files, etc will be keep before being packaged into RPM once everything was
properly build. You should not have to change the default path which is to put everything under
“/var/tmp/softwarename-version-root/”.

BuildRequires: db4-devel, openssl-devel
Requires: openssl, db4

BuildRequires: This line is used to define the list of required RPM packages that should already
be installed on your system for the package to properly build. In other words, this is where we list
all development packages (x-devel packages) our software may need to properly compile and
build. This also helps a developer to know what packages are required to already be installed on
the system for the package to compile.

Requires: This line is used to define the list of required RPM packages that should be installed on
your system for the software to run. In other words, this is where you list here all RPM packages
from which your compiled software depend on to run once installed into the OS. Be advised that
RPM will compute the dependencies on dynamic libs automatically. In our example, OpenSSL and
db4 RPM packages should already be installed into the OS before installing this new RPM or you
will get dependencies problem.

Conflicts: sendmail, postfix, qmail
Provides: smtpdaemon

Conflicts: This line is used to define names of similar software packages doing and providing the
same service which conflict with the software we want to build as RPM package here. In other
words, what other packages does this conflict with. In our example, Exim provides mail service
like Sendmail, Postfix, and Qmail and to avoid possible problem of software doing the same thing
to be installed on the same server, we define here the name of all software making the same job
as Exim does.

In this way, if during install of the new RPM package, any of the name services listed in the
"Conflics" tag is already available on the system, then RPM will remove it before installing the new
RPM for Exim. It is rare that you have to use this tag into your SPEC file.

Provides: This line is used to define what service is provided by the RPM you are going to build.
For example, Apache provides a webserver server, by the same token vsFTPd provides ftpserver
capabilies. In our example, we are going to provide a RPM package for Exim, therefore here we
define "smtpdaemon" as the service to inform the system that this RPM will provides an smtp
service. It is rare that you have to use this tag in your SPEC file and the only time that you could
potentially use it would be when the software you are going to build as RPM package is made to
provide service on Unix.

Source1: software-pamd
Patch0: OpenNA-patch0

Source1: This line is used to define external files you want to include in the build. The external
files defined here should exist and be located under the “/usr/src/openna/SOURCE/“
directory for the SPEC file to find and use it. For example, you may have a PAM (Plugable
Authentication Module) file to include with your software. This PAM file is called "software-pamd"
in our example and handle PAM parameters for the software we want to build here.

Therefore, we include the file into the SPEC file with the "Source1:" tag in order for the build to
add it into the package. If you have more than one file to include, then just define them as
"Source2:", "Source3:", etc. Again, it could be rare that you have to use this tag into your SPEC
file and the only reason you would use it would be when you have multiple external files to add to
your build.

Patch0: This line is used to define patches you want to include in the build. This tag is used often
when we patch the source code of the original software, however only when we have to patch the
source code. This tag is particularly important when you find bugs or whenever you have changed
something into the original source code, you have to produce a patch of your changes for other
people to know what you have made/changed in the code. This is where we list and define them.

If you have more than one patch to include into the build, then just define them as "Patch1:",
"Patch2:", etc. Remember that you have to use this tag only if you have made changes to the
original source code of the software and have provided your change through a patch file. With
OpenNA Linux, we identify patches as "OpenNA-patch0", "OpenNA-patch1", etc.

%description
This is a description....

%description: This is a special tag used inside the header section of the SPEC file to give a
more complete description of the software being installed in order to help the user to decide
whether he wants to install the package or not.

Take a note that sometime, you have to include more than one "%description" tag into your SPEC
file and this could happen when you have to separate the build package into two or more
packages like "name-devel.i686.rpm" and/or "name-tools.i686.rpm", etc.

The Prep section:
The Prep section is used by RPM to create the top-level build directory
(/usr/src/openna/BUILD), unpack the original sources into the build directory, and apply
optional patches (if available) to the source. It may be then followed by any command wanted by
the packager to get the sources into a ready-to-build state.

%setup -q
%patch0 -p1

%setup -q: This is a built-in script macro used in the "%prep" section to cd (change directory) into
the build tree, extract the source(s), change ownership and permissions information of source
files. This macro should always be present into the SPEC file for RPM to build.

%patch0 -p1: This is a built-in script macro responsible for applying the patch to the source; its
parameter "-p" is passed to the patch program. Imagine if you had another patch declared
Patch1: .. in the header section, you would add another line: %patch1 -px here to use it as
another patch for the software. This macro should be present only if you have some patches to
apply to the original source code of the software you want to build with RPM.

This macro is directly related to the one available in the Header section of the SPEC file "Patch0:".
Therefore, if nothing is defined in the Header section for the patch, you cannot define and use it
here. In addition, each defined patch in the Header section should have its own corresponding
macro patch defined here (in the Prep section).

The Build section:
The Build section contains the built-in script macro responsible for the actual build of the software.
It consists of the commands being issued when building a package from an un-tarred source tree.
What we often see here is the "%configure" and "%make" macros.

%configure
%make

%configure: This built-in script macro is used for configuring the source. It works in the same
way as when you issue a simple "./configure" command, however some differences exist. "%
configure" also issues a "./configure" with many add-ons such as export
CFLAGS="$RPM_OPT_FLAGS" before the configure, and options such as i686-openna-linux --
prefix=/usr --datadir=/usr/share etc. Therefore when using this macro in your SPEC
file you don't have to add any --prefix=/usr, --bindir=/usr/bin, etc lines because it will
automatically do it for you.

What you still can add are option like --enable-something, etc if required or available
depending on the source code your are going to configure. Sometimes these arguments are not
supported by the configure script. In such case, you would have to discover the reason, and issue
the "./configure" with the appropriate parameters. This macro should be present only if the
source code you are trying to configure supports the "./configure" command. Some software
only need "make" to build and don’t provide any "configure" scripts in their source code.

%make: This built-in script macro basically performs a make with the appropriate multiprocessor
parameter -j num (if available). It works in the same way as when you issue a simple "make"
command to build a source code. In many (but not all) cases a simple make will do here. This
macro should be present only if the source code you are trying to build support the "make"
command (again most support it).

The Install section:
The Install section contain the scripts responsible for the actual installation of the package into
the simulation installation directory.: $RPM_BUILD_ROOT. This section will contain all commands
necessary to have the software ready to run on the user's system. Usually a "%makeinstall"
built-in script macro command will be enough for the compiled software to properly be packaged
and installed but many other commands can be added to this section. Use of this script macro will
depend of how the original source code is made and which part of the installation should be made
manually (if necessary). Again, this will highly depend on the way the original source code install.

%makeinstall
mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/pam.d
install %{SOURCE1} $RPM_BUILD_ROOT%{_sysconfdir}/pam.d/mysoftware

%makeinstall: This built-in script macro installs the software into the simulation installation
directory. It works in the same way as when you issue a simple "make install" command to
install a source code. In some cases the configure script in the original source code of the
software is partially broken or incomplete and you may need to lurk in the Makefiles to guess the
additional parameters to have it install correctly.

This is where you can place into some SPEC file, additional command in this section. One of the
most common ones is when you have to use "make DESTDIR=$RPM_BUILD_ROOT install"
instead of just "%makeinstall". This macro should always be present in the SPEC file for RPM
to build.

mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/pam.d: This line is used to create a directory
called "/etc/pam.d/" under the simulation installation directory "$RPM_BUILD_ROOT" to handle
the "mysoftware" file which is going to be installed (as outlined in the next paragraph). We
manually create it here because the software source code doesn't do it automatically for us.

install %{SOURCE1} $RPM_BUILD_ROOT%{_sysconfdir}/pam.d/mysoftware: This line is
used to manually install the external file called "software-pamd" as previously defined into the
Header section of the SPEC file under the "Source1:" heading. Since "software-pamd" is an
external file (added by us into the build) which doesn't come from the original source code of the
software, the rpm build doesn't know what to do with it and we have to manually inform it about
what we want it to do with this file.

Here we instruct rpm to install the file "%{SOURCE1}" into the simulation installation directory
"$RPM_BUILD_ROOT" under the "%{_sysconfdir}/pam.d" subdirectory and call it
"mysoftware".

The Clean section:
The Clean section of the SPEC file contains the script responsible for cleaning the build directory
tree, $RPM_BUILD_ROOT, which is used to handle the simulation installation. Additionally, this
section also provides optional %pre, %post, %preun, and %postun macros that are used and
required only when you have library files and/or user accounts to automatically add and configure
onto the system. These predefined macros allow the package builder to write a piece of code
which will execute on the client machine during install or un-install of a package.

%clean
%post
%pre
%preun
%postun

%clean: This built-in script macro is meant to clean the build directory tree, $RPM_BUILD_ROOT
before packaging the RPM. The command "rm -rf $RPM_BUILD_ROOT" always appears after
the "%clean" macro and it is the one responsible for removal of the $RPM_BUILD_ROOT
directory.

If you want to keep the simulation installation directory "$RPM_BUILD_ROOT", then you can add a
comment "#" before the line and the $RPM_BUILD_ROOT directory will not be removed before
packaging the RPM. In this way, you can check inside this directory for installed files, binaries,
and library locations which are required under the Files section of the SPEC file that list all the
files that you want to include and package in the RPM.

%pre: This built-in script macro is executed just before the package is installed on the system. It
is often used when you build software providing services on the system that need user account to
be created. This is true for software like Apache, vsFTPd, BIND, Samba, Exim, SQL, etc. In this
case, we will use the "%prep" macro to create the user account.

Here is an example for Apache, you can see that we first create a group account and then the
user account with the appropriated number and name. Remember that this is just an example,
and depending on the service you want to build as RPM package, the group number ID and user
account name will change.

/usr/sbin/groupadd -g 48 www > /dev/null 2>&1 || :
/usr/sbin/useradd -c "Web Server" -d /home/httpd -g 48 \

-s /sbin/nologin -u 48 www > /dev/null 2>&1 || :

%post: This built-in script macro is executed just after the package is installed on the system. It
can appears into different sentence depending of if the package you are building contains libraries
or initialization script files.

Sometime we use it to automatically update libraries path like "/usr/lib/",
"/usr/X11R6/lib/", etc inside the "/etc/ld.so.conf" file. The command used to do it is "%
post -p /sbin/ldconfig". This is just a example for the use of this macro and you have to
note that many other command can be used and this will depend of what the developer want to do
with the software to package.

%preun: This built-in script macro is executed just before the package is uninstalled from the
system. It is the opposite of the "%prep" macro and we (often) use it to stop running service and
to remove initialization files.

Here is an example for Apache, firstly we stop the running process, then uninstall the initialization
script file. Again, this is a example and depending of what you want to build with RPM, this will
change.

if [$1 = 0]; then
 /sbin/service httpd stop > /dev/null 2>&1 || :
 /sbin/chkconfig --del httpd > /dev/null 2>&1 || :
fi

%postun: This built-in script macro is executed just after the package is uninstalled on the
system. It is the opposite of the "%post" macro and we (often) use it to remove group and user
account from the system or libraries path.

Here is an example for Apache, firstly we update the "/etc/ld.so.conf" file, then remove the
user account and the group ID. Again, this is a example and depending of what you want to build
with RPM, this will change.

/sbin/ldconfig
if [$1 = 0]; then
 /usr/sbin/userdel www > /dev/null 2>&1 || :
 /usr/sbin/groupdel www > /dev/null 2>&1 || :
fi

The scope of such scripts may be very large. One have to remember that these scripts will be run
as root... They correspond to the tasks a system administrator would have to accomplish when
installing a new program on a system.

The Files section:
The Files section consists of a list of all files created by RPM in the build directory tree
"/var/tmp/softwarename/". The file list must be written by hand in the SPEC file to be
packed into the package. Usually, files section start as follow:

%files
%defattr(-,root,root)

Here the "%defattr(-,root,root)" buit-in script macro (which should always appears in the
SPEC file) defines the attributes to be applied to each file being copied to the user's system. The
three arguments given means:

- : all the attributes for regular files are remained unchanged,
root : the owner of the file is root,
root : the group of the file is root.

Other buit-in script macros referring to pre defined path are also used like %{_mandir}, %
{_bindir}, %{_sbindir}, etc. You have buit-in script macros for every kind of path you need
and all pre defined buit-in script macros for path are listed inside the "/usr/lib/rpm/macros"
file. Look inside this file to get a list of all available buit-in script macros for pre defined path.

Some examples:
If you want to list all binaries that will install under “/usr/bin/” directory, then use the following
macro: %attr(0511,root,root) %{_sbindir}/*

Here the macro "%attr(0511,root,root)" mean that all files inside "/usr/sbin/" will have
permission set to 0511 owned by the root user and group set to the root user. The "%
{_sbindir}/*" macro is the path for "/usr/sbin/" and "*" means to list and pack all files
available under this directory.

If you want to add to the list a configuration file available under the “/etc/” directory, then use
something like the following macro: %attr(0644,root,root) %config(noreplace) %
{_sysconfdir}/myconfig.conf

Here the macro "%attr(0644,root,root)" means that file called "myconfig.conf" will have
permission set to 644 owned by the root user and group set to the root user.

The "%config(noreplace)" macro means that if previous installed file into the same directory
exist, then no dot replace it with the new one coming from the new RPM package we are going to
build. The "%{_sysconfdir}/myconfig.conf" macro means that we want to add in the list the
file called "myconfig.conf" and located under the “/etc/” directory (%{_sysconfdir}).

The Changelog section:
The Changelog section is used to keep track of different changes made to the package. Every
new release build of the package must correspond to a paragraph in this section. The structure of
this section have to be respected as following:

* Mon Dec 01 2003 Gerhard Mourani gmourani@openna.com
- Initial build for mysoftware.

The first line of the paragraph begins with * and separated by a space; three letters for the day of
the week; three letters for the month; two figures for the day of the month; four figures for the year;
First name of the packager; Last name of the packager; e-mail of the packager between bracket,
then follow one line per modification applied to the package beginning by a -.

The build
Our SPEC file is finally complete. Take a long breathe, sit down and type: rpm -ba
mypackage.spec to build the RPM package. There are then two possibilities for the last line of
your process:

exit 1: There is a problem in your build.
exit 0: Everything is ok and the rpm successfully build.

Testing your RPM
When the build process of your rpm has been successfully completed, you next step will be to
perform some test to verify if everything is correct. The proper way to do it will be to install the rpm
in question into a machine different from the compilation one if possible and check for the
following:

1. Is the rpm installs in the corresponding directories with the correct name? If yes, then is the
rpm completely uninstalls from the system without letting some empty directory or file name?

2. Are all the expected files created at their expected place with the expected rights and owners?

3. Are all the installation modifications (if any) effective?

4. Is the rpm software is functional and run fine?

5. Try various different installs and uninstalls to check whether all expected features are well
implemented, for example without required packages.

Send your work
Just upload your rpm and source rpm (package.i686.rpm and package.src.rpm) to
ftp://ftp.openna.org/incoming/ Then send an e-mail to Mathieu Masseboeuf and/or
Dougal Ballantyne (Testers) in order to warn them (www.openna.org).

Building RPM from source code
In this part of the documentation, I'm going to explain you how to build a RPM package from
source code. I will guide you from the beginning where we will download the source code to the
end where the corresponding code will be build and available as RPM package to install on
different computers.

This is just an example and everything as explained for the software code we are going to
download and build also apply to any other source code.

In our example, we will download, compile, and build source code for Eject as RPM package.
Eject is a small Linux program that ejects removable media.

Downloading the source code
Your first step, will be to point your browser to the Eject website and download a copy of the latest
version of Eject (2.0.13). The site URL is : http://members.rogers.com/jefftranter/.
Download the latest copy of the software (eject-2.0.13.tar.gz) and transfer it into your OpenNA
Linux Workstation. The above is true for any software source code your want to build as RPM
package. You have to download and transfer it into your OpenNA Linux Workstation.

Putting the source code in the right directory
Once Eject (or any source code you want to build as RPM package) has been transfered on your
OpenNA Linux Workstation, you have to move it into the RPM build directory before starting to
work on it. Remember that any actions for building RPM packages should be made under the
"/usr/src/openna/" directory and any source code (software-version.tar.gz or .bz2) should be
placed into the "/usr/src/openna/SOURCE/" directory for RPM to find and build it.

• To put the code source into the SOURCE directory, use the command:
[root@deep /tmp]# cp eject-2.0.13.tar.gz /usr/src/openna/SOURCES/

Checking the source code
Now, we have to move into the SOURCE directory and decompress (unzip) the source code, then
move inside the code and read the README file accompanying the software to get important
information (if available) about how to properly compile this software. We also have to issue a
"./configure --help" command to see if personalized or specific options are available with
the software before creating the SPEC file to build it as RPM package.

• To move into the SOURCE directory, use the command:
[root@deep /tmp]# cd /usr/src/openna/SOURCES/

• To decompress the source code, use the command:
[root@deep SOURCES]# tar xzpf eject-2.0.13.tar.gz

• To move into the source code, use the command:
[root@deep SOURCES]# cd eject-2.0.13/

Most source code today provide a README file that should be the first file to read every time you
want to build source code software.

• To read the REAME file, use the command:
[root@deep eject-2.0.13]# less README

From the REAME file accompanying this software, we can see that we satisfy any requirement for
the software to properly build. Nothing else (like an additional software to be installed) is require.
We have everything and can continue our work.

Before starting to write a SPEC file for the software, you have to run a "./configure --help"
command into its source code directory to get additional information about specific options that
could be available with this program. This will allow us to how if we will have to add some special
option into its SPEC file or not.

• Run the configure command to see what options are available:
[root@deep eject-2.0.13]# ./configure --help

From the above running command, you can see that everything is standard (there is no specific
options) with this software and for this reason we don't have to include any additional options into
its SPEC file.

Building the SPEC file
Ok, the Eject source code is available under the SOURCE directory and nothing special is
required to build it (it should build without any problem with commands like ./configure, make
and make install as many other software compile. Therefore, we can start to create the
appropriated SPEC file for this software.

To do so, we have to move into the “/usr/src/openna/SPECS/” directory before creating the
file (SPEC) because this directory is where RPM look for available SPEC file and where we will
issue the RPM build command to build the RPM package.

• To move into the SPECS directory, use the command:
[root@deep eject-2.0.13]# cd /usr/src/openna/SPECS/

Now we have to create the SPEC file for the software. Any SPEC files are created based on the
initial name of the software you want to build as RPM package followed by the extension ".spec".
This means that for Eject, we have to create a file called "eject.spec" (name + .spec).

• To create the Eject SPEC file, use the command:
[root@vslc SPECS]# touch eject.spec

Once the above file is created, we can edit it and start to fill it with all the required information and
tags for RPM to build. If you need more information about what should be filled inside this empty
file and which tags to use, then refer to the previous section of this article.

Here we start from an empty file and we have to cup and past any required tags from the example
SPEC file (as shown as the beginning of this article) and change information as requested. We
start from the header section through the latest section (Changelog).

The header section:
Summary:
Name:
Version:
Release:
License:

Related to the software we want to build here, we will logically fill the above information tags as
follow:

Summary: A program that ejects removable media
Name: eject
Version: 2.0.13
Release: 1
License: GPL

The "Summary" tag can be filled with anything that you want, in my example I give a brief and
clear summary for the software. The "Name" tag should absolutely be the name of the source
code software. The "Version" tag should also be the version of the source code. The "Release"
tag can be what you want and it is a good idea to start with 1 for the first RPM build of the
software. The "License" tag relates to the original license of the software, usually GPL but verify
inside the source code to get the correct license information.

Group:
Source0:
URL:

Related to the software we want to build here, we will logically fill the above information tags as
follow:

Group: SERVER/System Environment/Base
Source0: %{name}-%{version}.tar.gz
URL: http://members.rogers.com/jefftranter/eject.html

The "Group" tag here is defined as "SERVER/System Environment/Base", "SERVER" because
this software is made to run under SERVER, "System Environment" because it is a system
software, and "Base" because it relate to a base install. The "Source0" tag is defined as macro
meaning that the real name will be "eject-2.0.13.tar.gz" (the source code archive name
located under the SOURCE directory). The "URL" tag defines the location (website) of the
software.

Distribution:
Vendor:
Packager:

ExclusiveArch:
ExclusiveOS:
BuildRoot:

Related to the software we want to build here, we will logically fill the above information tags as
follow:

Distribution: OpenNA Linux
Vendor: OpenNA, Inc.
Packager: Open Network Architecture Inc. <noc@openna.com>

ExclusiveArch: i686
ExclusiveOS: Linux
BuildRoot: %{_tmppath}/%{name}-%{version}-root

The "Distribution" tag is used to define the distribution from which this RPM package is going to
be compiled, in our case "OpenNA Linux" and you should not have to change it as long as you are
building RPM packages for OpenNA Linux. The "Vendor" tag can be replaced by what you want,
here I use OpenNA, Inc. because I'm working for OpenNA, Inc. The "Packager" tag can be your
name and email address.

The "ExclusiveArch", "ExclusiveOS", and "BuildRoot" tags should never be changed, see at
the beginning of this article for more information about each one.

%description

Related to the software we want to build here, we will logically fill the above information tag as
follow:

%description
Eject allows removable media (typically a CD-ROM, floppy disk, tape, or
JAZ or ZIP disk) to be ejected under software control. The command can
also control some multi-disc CD-ROM changers, the auto-eject feature
supported by some devices, and more.

From here you can see that most of all informations as shown above come from README,
INSTALL files of the software source code. From these files (README, INSTALL), I know the
description of the software, the name of the software, the version number, summary, License, and
URL.

The Prep section:
%prep
%setup -q

Here there is nothing special, I use the %prep and %setup -q macros for RPM to automatically
move into the source code of the software before starting to compile it as defined into the next
section of the SPEC file.

The Build section:
%build
CFLAGS="$RPM_OPT_FLAGS -fomit-frame-pointer"
%configure
%{__make}

Remember, the Build section is where RPM start to configure and compile the software. From the
above tags, I've defined a flag into the SPEC file for RPM to add it into the default flag to be used
during the compile process. Here the "CFLAGS="$RPM_OPT_FLAGS -fomit-frame-pointer"
line means that RPM have to get optimization flags information as defined into the
"/usr/lib/rpm/i686-linux/macros" file and add to this information, the "-fomit-frame-
pointer" option.

Someone may say, Why you do it in this way? Because it is not all software that need or compile
with this option (-fomit-frame-pointer), some need it where other will fail to compile if it is
defined. Therefore adding this option into the SPEC file give me the freedom to define general
optimization flags into the "/usr/lib/rpm/i686-linux/macros" file and keep special one for
specific software. In this example I've used the "-fomit-frame-pointer" flag but you can
replace it with any other specific flags that you may have to add to your SPEC file.

The "%configure" and "%{__make}" macros as defined above will be used by RPM to configure
and build the software. Here I don't define any additional options with "configure" because we
have see during the "./configure --help" command used previously that nothing special is
available (with this software) to be added here. This program configures and installs in the
standard way as many other do.

The Install section:
%install
rm -rf $RPM_BUILD_ROOT
%makeinstall

As usually, I'm firstly use the “rm -rf $RPM_BUILD_ROOT” macro command to remove any
previous “RPM_BUILD_ROOT” directory that could exist (it is always a good idea to add this
command into the Install section of your SPEC file), then issue the “%makeinstall” macro
command to install the compiled files into the simulation directory before RPM packs them to
produce a RPM package.

The Clean section:
%clean
rm -rf $RPM_BUILD_ROOT

Here we just use the “rm -rf $RPM_BUILD_ROOT” command to inform the builder to remove
the simulation directory (where all compiled files reside) once RPM successfully build. At this time
of our reading, we will add a “#” at the beginning of the command line to avoid RPM to run it (#rm
-rf $RPM_BUILD_ROOT) and remove the simulation directory.

We do this because it is the first time that we compile this software and we don't know what files,
binaries, libraries, headers, etc will be installed and where. Therefore if you add a “#” sign at the
beginning of the “rm -rf $RPM_BUILD_ROOT” command, RPM will not remove the simulation
directory even if the software compiles and builds successfully.

In this way, we can move into the simulation directory (/var/tmp/software-version-root)
and see what will be installed with this software and where. The information will be very important
to fill the next section (The Files section) of our SPEC file.

The Files section:
%files
%defattr(-,root,root)

As you are supposed to know now, the Files section of the SPEC file is where we manually define
and list all files that will be installed (related to the software we are going to build). RPM doesn't
have a way to know this information and this is why we have to manually list them here. Since we
have previously commented out the command line to remove the simulation directory (rm -rf
$RPM_BUILD_ROOT) under the Clean section, we can get the list of files that should be installed.

To do so, we have to move into the simulation directory of the software and fill this section (The
Files section) according to what is available into this directory (the simulation directory). But at this
time, we will use the above macros for the Files section.

The Changelog section:
%changelog
* Tue Dec 09 2003 Gerhard Mourani <gmourani@openna.com>
- Initial build for Eject.

This section is the last one of our SPEC file. We use it to list any changes that are made into the
software. Since this is the first time that we build this program as RPM package, we can use the
above information.

Reviewing your SPEC file:
Ok, before going to build the RPM package, we will review the SPEC file to be sure that
everything is correct. Here is how the file should look after filling all the information as described
above. Remember, the SPEC file is not complete but this is enough for starting the build to get
additional information in order to complete it.

Summary: A program that ejects removable media
Name: eject
Version: 2.0.13
Release: 1
License: GPL

Group: SERVER/System Environment/Base
Source0: %{name}-%{version}.tar.gz
URL: http://members.rogers.com/jefftranter/

Distribution: OpenNA Linux
Vendor: OpenNA, Inc.
Packager: Open Network Architecture Inc. <noc@openna.com>

ExclusiveArch: i686
ExclusiveOS: Linux
BuildRoot: %{_tmppath}/%{name}-%{version}-root

%description

Eject allows removable media (typically a CD-ROM, floppy disk, tape, or
JAZ or ZIP disk) to be ejected under software control. The command can
also control some multi-disc CD-ROM changers, the auto-eject feature
supported by some devices, and more.

%prep
%setup -q

%build
CFLAGS="$RPM_OPT_FLAGS -fomit-frame-pointer"
%configure
%{__make}

%install
rm -rf $RPM_BUILD_ROOT
%makeinstall

%clean
#rm -rf $RPM_BUILD_ROOT

%files
%defattr(-,root,root)

%changelog
* Tue Dec 09 2003 Gerhard Mourani <gmourani@openna.com>
- Initial build for Eject.

What is missing into our SPEC file as shown above? Of course, the list of installed files (under the
Files section), any external patches that we may need (under the Header and Prep sections) and
any possible additional commands like “strip” to strip binaries, or “rm” to remove unneeded
files, etc (under the Install and clean sections).

Build it:
Now it's time to build and get some result, errors, etc... The command to build a RPM package is
“rpmbuild -ba software.spec”. Based on our example software, the command will be as
follow.

• To build RPM for Eject, use the command:
[root@deep SPECS]# rpmbuild -ba eject.spec

The above command will starts the build process for the software and depending of the
complexity and size of the program, as well as the speed of your processor, this will take few
seconds, minutes or hours.

RPM build errors:
 Installed (but unpackaged) file(s) found:
 /usr/bin/eject
 /usr/bin/volname
 /usr/share/man/man1/eject.1.gz
 /usr/share/man/man1/volname.1.gz

Once your RPM finished to build, you will get the above error. This is normal because we have not
defined the list of installed files under the File section of our SPEC file. Now we know what to add
into the Files section and if you want to get a better perceptive on what should be added, then just
move into the simulation directory of the software (cd /var/tmp/eject-2.0.13-root/) and
see how the tree structure is made.

According to the new information, we can rewrite our SPEC file and add the missing parts as
follow. By the way, we can strip the resulting installed binaries by adding a strip command into the
Install section.

Summary: A program that ejects removable media
Name: eject
Version: 2.0.13
Release: 1
License: GPL

Group: SERVER/System Environment/Base
Source0: %{name}-%{version}.tar.gz
URL: http://members.rogers.com/jefftranter/

Distribution: OpenNA Linux
Vendor: OpenNA, Inc.
Packager: Open Network Architecture Inc. <noc@openna.com>

ExclusiveArch: i686
ExclusiveOS: Linux
BuildRoot: %{_tmppath}/%{name}-%{version}-root

%description
Eject allows removable media (typically a CD-ROM, floppy disk, tape, or
JAZ or ZIP disk) to be ejected under software control. The command can
also control some multi-disc CD-ROM changers, the auto-eject feature
supported by some devices, and more.

%prep
%setup -q

%build
CFLAGS="$RPM_OPT_FLAGS -fomit-frame-pointer"
%configure
%{__make}

%install
rm -rf $RPM_BUILD_ROOT
%makeinstall

strip $RPM_BUILD_ROOT%{_bindir}/* || :

%clean
rm -rf $RPM_BUILD_ROOT

%files
%defattr(-,root,root)
%attr(0511,root,root) %{_bindir}/*
%attr(0440,root,man) %{_mandir}/*/*

%changelog
* Tue Dec 09 2003 Gerhard Mourani <gmourani@openna.com>
- Initial build for Eject.

So, what have been changed into this SPEC file related to our previous one? We can see that we
have added the missing list files into the Files section, removed the “#” comment from the “rm
-rf $RPM_BUILD_ROOT” command line into the Clean section (because we no longer need it
now), and added a new line into the Install section to strip all installed binaries.

Lets build the package again to see what will happen now.

• To build RPM for Eject, use the command:
[root@deep SPECS]# rpmbuild -ba eject.spec

The above command will starts the build process again and will (this time) success to build the
package. We can see this with the following lines at the end of the build process.

+ umask 022
+ cd /usr/src/openna/BUILD
+ cd eject-2.0.13
+ rm -rf /var/tmp/eject-2.0.13-root
+ exit 0

Here we know that the build successfully complete with the exit code 0. Remember that code
“exit 0” means everything was successfully made where code “exit 1” means that something
failed during the build time and you have to reedit your SPEC file and fix the problem.

Congratulation! Your first RPM package is built and you can distribute and install it. RPM
packages are stored under “/usr/src/openna/RPMS/i686/” directory where SRPMS
packages are stored under “/usr/src/openna/SRPMS/” directory. You can remove everything
under the “/usr/src/openna/SOURSES/” and “/usr/src/openna/BUILD/” directories.

Adding patches to the SPEC file:
From version to version, sometime you have to add patches to the original code source of the
software to fix bug, security, etc. The way to add patch into the SPEC file is as follow.

Name your patch as OpenNA-patch0 for the first patch, OpenNA-patch1 for the second, etc and
put them into your SOURCES directory, then edit the corresponding SPEC file and add the
following lines for each patch that you have.

Under the Header section:
Patch0: OpenNA-patch0

Under the Prep section:
%patch0 -p1

That all you have to do, RPM will automatically find the patch and will apply it to the source code
during the build process. The name of the patch can be what you want but with OpenNA Linux,
we like to have them defined as OpenNA-patchx.

If you don't know how to create patches, then here is an example to help you quickly understand
the way to do it. To create a patch, we use the Linux “diff” command under the source code of
the software we want to patch. This means that we have to make a copy of the original source
code before using the “diff” command.

In the following example, I suppose that we want to create a patch for the Eject software available
under the SOURCES directory. Therefore we move under the SOURCES directory, decompress
the source code, make a full copy of the original source code, modify codes that we want to patch,
then use the “diff” command to produce the patch.

• To create a patch, use the commands:
[root@deep /]# cd /usr/src/openna/SOURCES/
[root@deep SOURCES]# tar xjpf eject-2.0.13.tar.gz
[root@deep SOURCES]# cp -a eject-2.0.13 eject-2.0.13.orig
[root@deep SOURCES]# cd eject-2.0.13
[root@deep eject-2.0.13]# vi eject.c
[root@deep eject-2.0.13]# cd ..
[root@deep SOURCES]# diff -ur eject-2.0.13.orig/ eject-2.0.13 > OpenNA-

patch0

In the above example, I made a full copy of the source code (eject-2.0.13) and name it
eject-2.0.13.orig then move inside the source code and modify what I have to modify then
come back into the SOURCES directory (cd ..) to finally use the “diff” command to produce
the patch.

Other useful resources related to RPM
There are a number of external resources available to help you with RPM, over and above the
RPM man page, and this article.

RPM HOWTO by Donnie Barnes (http://www.rpm.org/RPM-HOWTO/)
Maximum RPM by Edward C. Bailey (http://www.rpm.org/max-rpm/)

