
an introduction

� � � ��� � � � �

OpenNMS is an enterprise ready Network Management System written in
Java that runs as an Apache Tomcat application.

� Configuration via XML� Automated network discovery� Capability discovery and polling for most common services� Oracle, SNMP, ICMP, HTTP, PostgreSQL, Informix, Sybase, SMTP,
IMAP, Citrix, DHCP, M$-SQL, HTTPS, DominoIIOP, DNS, SSH,
LDAP, POP3, FTP, MySQL� Additional services can usually be discovered and monitored with only
a little additional configuration.� Multi-user, including support of shift schedules.� Downtime model and scheduled outage support� Event logging and notification, including notice escalation� SNMP Performance monitoring� Flexible Reporting

 Java Virtual Machine
Version 1.4 or greater

 Perl 5
DBD & DBD:Pg

 Fast Processor
300MHz or greater

 Available RAM
Minimum of 192Mb
256Mb minimum recommended

 Available Disk Space
Installation is ~25Mb
8Mb per managed device
~25Mb in /tmp
Ample space for log files

These get very large very fast, use logrotated
 RedHat Linux is recommended

perl -MCPAN -e shell
install DBI
install DBD::Pg

Advice:
Get a good XML editor, don't try and
manage the XML configuration files
with your old text editor. I recommend:

http://www.nongnu.org/mlview/

postgresql.conf
tcpip_socket = true
max_connections = 256
shared_buffers = 1024

OpenNMS requires PostgreSQL 7.1.x or
greater. If PostgreSQL is not already installed
the OpenNMS download site provides
packages of a version known to work with
OpenNMS.

You also should have the complete set of
PostgreSQL compantion packages installed
including JDBC and Perl support.

OpenNMS' extremely threaded nature results in many conncurrent
connections, and to maintain integrity exploits PostrgreSQL's full
RDMS feature support. This may require the default parameters
provided with most PostgreSQL packages to be adjusted.

� � � �	
 � � � � �� � �� � � �	
 � � � � � � � �
OpenNMS is implemented as a
collection of daemon processes.

Each daemon handles a specific task
and may spawn multiple working
threads, this allows OpenNMS to
manage large networks which may
have many silumtaneous events
occuring.

The deamons (and threads)
communicate via a virtual bus to
which they may submit “events” and
on which they listen for the type of
events that concern them.

OpenNMS.Eventd : running
OpenNMS.Trapd : running
OpenNMS.Dhcpd : running
OpenNMS.Actiond : running
OpenNMS.Capsd : running
OpenNMS.Notifd : running
OpenNMS.Outaged : running
OpenNMS.Rtcd : running
OpenNMS.Pollerd : running
OpenNMS.Collectd : running
OpenNMS.Threshd : running
OpenNMS.Discovery : running

�The first process that OpenNMS is referred to as “discovery”� During discovery ICMP packets are used to locate hosts and
devices on the network.� The parameters for discovery can be adjusted based upon the

power of your OpenNMS and the size and latency of your
network. threads (default: 1), packets-per-second (default: 1), initial-sleep-time

(default: 300000, 5 minutes), restart-sleep-time (default: 86400000, 24
hours), timeout (default: 800), and retries (default: 3)� The range of addresses scanned must be configured before

OpenNMS is started.� If discovery locates a responsive address it places a NewSuspect
event on the bus for processing by the other deamons.� The status of the discovery process is recorded in discovery.log

��� � �� � �� ���� � �� � �� �

/opt/OpenNMS/etc/discovery-configuration.xml
<discovery-configuration threads="1" packets-per-second="1"
 initial-sleep-time="300000" restart-sleep-time="86400000"
 retries="3" timeout="800">
 <include-range retries="2" timeout="3000">
 <begin>192.168.0.1</begin>
 <end>192.168.0.254</end>
 </include-range>
 <include-url>file:/opt/OpenNMS/etc/include</include-url>
</discovery-configuration>

192.168.26.1
192.168.21.1
192.168.10.1
192.168.10.56
192.168.10.18

The first task in setting up OpenNMS itself
is to define what addresses should be
included in the discovery process.

� � ��� ��� �� � ��� ��� �

� Capabilities are services available from a device or host httpd, DNS, DHCP, PostgreSQL, etc....� The capsd daemon lists on OpenNMS's virtual bus for NewSuspect events
and queues appropriate addresses for investigation.� The process of capability scanning can be tuned. rescan-frequency (default: 24 hours), initial-sleep-time (default: 5 minutes),

management-policy (managed or unmanaged), max-suspect-thread-pool-size
(default:6), max-rescan-thread-pool-size (default: 3), abort-protocol-scans-if-no-route
(default: false) � Various protocols are supported via plugins defined in the capsd

daemon's configuration so that additional protocols may be easily
defined.� Services are then attached to protocols, possibly with additional
paramaters. For example: A server speaking HTTP protocol on port 80 is an HTTP server, while a

server speaking HTTP protocol on port 3128 may be a web cache server.

/opt/OpenNMS/etc/capsd-configuration.xml:
<capsd-configuration rescan-frequency="86400000"
 initial-sleep-time="300000"
 management-policy="managed"
 max-suspect-thread-pool-size = "6"
 max-rescan-thread-pool-size = "3"
 abort-protocol-scans-if-no-route = "false">
 <protocol-plugin protocol="ICMP"

class-name="org.opennms.netmgt.capsd.IcmpPlugin"
scan="on" user-defined="false">

 <property key="timeout" value="2000"/>
 <property key="retry" value="2"/>
 </protocol-plugin>
. . .

� � � ! " # $! �� � � ! " # $! �
/opt/OpenNMS/etc/capsd-configuration.xml: (continued)

. . .
<smb-config>

<smb-auth user="pcnet" password="pcnet" type="domain">BACKBONE</smb-auth>
 </smb-config>
 <ip-management policy="managed">
 <range begin="192.0.0.0" end="192.255.255.255"/>
 <include-url>file:/opt/OpenNMS/etc/include</include-url>
 </ip-management>
 <ip-management policy="unmanaged">
 <specific>0.0.0.0</specific>
 <range begin="127.0.0.0" end="127.255.255.255"/>
 <range begin="10.0.0.0" end="10.255.255.255"/>
 </ip-management>
</capsd-configuration>

Capability scanning
CIFS/SMB services
requires valid
credentials.

Capability scans can
be disabled based upon
address ranges.

Actually, the managed policy is assumed,
it is defined here only for clarity.

PostgreSQL opennms database:
insert into service(serviceid,servicename) values (28,'Squid');

/opt/OpenNMS/etc/capsd-configuration.xml:
. . .
 <protocol-plugin protocol="Squid"

class-name="org.opennms.netmgt.capsd.HttpPlugin"
scan="on" user-defined="true">

 <property key="ports" value="3128"/>
 <property key="timeout" value="30000"/>
 <property key="retry" value="2"/>
 </protocol-plugin>
. . .

The services table
defines available servies
in tandem with the
capsd configuration file
and also associates each
service with a integer
primary key for use in
the database.

2002-08-01 12:12:09,797 DEBUG [Capsd Rescan Pool-fiber2] IfCollector: 192.168.1.5
testing plugin Squid
2002-08-01 12:12:09,798 DEBUG [Capsd Rescan Pool-fiber2] HttpPlugin:
org.opennms.netmgt.capsd.HttpPlugin.isServer: attempt 0 to connect 192.168.1.5:3128,
timeout=30000
2002-08-01 12:12:09,808 DEBUG [Capsd Rescan Pool-fiber2] IfCollector: 192.168.1.5
protocol Squid supported? true
2002-08-01 12:12:09,809 DEBUG [Capsd Rescan Pool-fiber2] IfCollector: 192.168.1.5
plugin Squid completed!

The progress of capability scans can be monitored via the log file.

scan=”on” user-defined=”false”>
 <property key=”force version” value=”SNMPv1”/>
 <property key=”timeout” value=”2000”/>
 <property key=”retry” value=”3”/>
</protocol-plugin>

�If a device or host supports SNMP OpenNMS will proceed with gather
performance data.� The capabilities test uses SNMPv1 (see above) as both SNMPv1 and

SNMPv2 provides will respond to SNMPv1 queries. This DOES NOT EFFECT the method used to collect SNMP data; SNMPv2 will be
used with SNMPv2 capable provides, including support of GET-BULK commands.� Management of SNMP is also controlled via the snmp-config.xml

configuration file.� Some SNMP providers can produce false positive; they appear to be
willing to provide information to the OpenNMS host when they actually
are not.

% & %�'% & %'

<snmp-config retry=” 3” timeout=” 800” read-community=” public” write-
community=” private” >
 <definition version=” v2c” >
 <specification>192.168.0.5</specific>
 </definition>
 <definition retry=” 4” timeout=” 2000” >
 <range begin=” 192.168.1.1” end=” 192.168.1.254” />
 <range begin=” 192.168.3.1” end=” 192.168.3.254” />
 </definition>
 <definition read-community=” bubba” write-community=” zeke” >
 <range begin=” 192.168.2.1” write=” 192.168.2.254” >
 </definition>
 <definition port=” 1161” >
 <specific>192.168.5.50</specific>
 </definition>
</snmp-config>

Version 1 is “v1” , while
version two is “v2c” .

(() *(() *

� Polling is how OpenNMS provides status information for the discovered
services on a host or devices.� A poll of a service starts with an attempt to establish communication

with that service, and if it failes a given number of retries seperated by
some interval. retry, timeout� A poll itself is repeated after some interval. interval� When a service does not respond a NodeLostService event is generated.� If all the services on an interface are lost a InterfaceDown event is

generated instead of the NodeLostService events.� If all the interfaces on a node down a NodeDown event is generated.� If note-outage status=” on” in the poller configuration then
NodeDown suppresses NodeLostService and InterfaceDown
events.� Once a node is down only the critical-service is polled (by

default ICMP) until that service is restored, then polling of all
services is resumed.

+, - . ./ ++, - . ./ +

� Polling is broken into “ packages” . � If you create no poller packages you are using the default package
“ example1” .� Packages may include diffrent services to monitor, intervals to montior,
outage calendars, downtime models, etc...� An outage calendar is a predefined period where the services on a

particular interface are anticipated to be down, and OpenNMS should
manage notifications accordingly. <outage name=” maintenance” type=”monthly” >

 <time day=” 1” begins=” 23:30:00” ends=” 23:45:00” />
 <time day=” 15” begins=” 23:30:00” ends=” 23:45:00” />
 <time day=” 30” begins=” 23:30:00” ends=” 23:45:00” />
 <interface address=”192.168.1.12” />
 <interface address=”192.168.1.5/>
 </outage>� A downtime model determines how OpenNMS manages the frequency

of polling when a service goes down; often polling rapidly at first
expecting return of service and polling less frequency as time goes on.

There is support for
weekly, monthly, and
specific (date) outage
calendars.

 <poller-configuration threads="30" serviceUnresponsiveEnabled="false">
 <node-outage status="on"
 pollAllIfNoCriticalServiceDefined="true">
 <critical-service name="ICMP"/>
 </node-outage>
 <package name="example1">
 <filter>IPADDR IPLIKE *.*.*.*</filter>
 <specific>0.0.0.0</specific>
 <include-range begin="0.0.0.0" end="255.255.255.255"/>
 <include-url>file:/opt/OpenNMS/etc/include</include-url>
 <service name="DominoIIOP" interval="300000" user-defined="false" status="on">
 <parameter key="retry" value="3"/>
 <parameter key="timeout" value="3000"/>
 <parameter key="ior-port" value="80"/>
 <parameter key="port" value="63148"/>
 </service>

. . .
 </package>
 <monitor service="DominoIIOP" class-name="org.opennms.netmgt.poller.DominoIIOPMonitor"/>

. . . </poller-configuration>

Polled
service

definitionMore Service Definitions

Poller Package Name

Applies To . . .

/opt/OpenNMS/etc/poller-configuration.xml
<poller-configuration threads="30" serviceUnresponsiveEnabled="false">
 <node-outage status="on" pollAllIfNoCriticalServiceDefined="true">
 <critical-service name="ICMP"/>
 </node-outage>
 <package name="example1">

. . .
+ <service name="Squid" interval="300000" user-defined="true" status="on">
+ <parameter key="timeout" value="3000"/>
+ <parameter key="retry" value="3"/>
+ <parameter key="ports" value="3128"/>
+ <parameter key="url" value="/"/>
+ </service>
 . . .
 </package>
 . . .
+ <monitor service="Squid" class-name="org.opennms.netmgt.poller.HttpMonitor"/>

. . .
</poller-configuration>

0�1 2 243 3 5 0�6 3 7 8 00�1 2 243 3 5 06 3 7 8 0

How often to poll
300000ms = 5 minutes

How long without the
response constitutes a

failure.

Failure this number of
times consitures a

failure

9 : ; < < =4>9 : ; < < =4>

<downtime interval=” 30000” begin=” 0” end=” 300000” />
<downtime interval=” 300000” begin=” 300000” end=” 43200000” />
<downtime interval=” 600000” begin=” 43200000” end=” 432000000” />
<downtime begin=” 432000000” delete=” true” />

A poller packages downtime model determines the frequency for which
it polls services with outages, the above downtime model results in the
following behaviour -� Outage begins until five minutes later.� Poll every 30 seconds� After five minutes until twelve hours� Poll every five minutes� After twelve hours until five days� Poll every ten minutes� After five days mark the service as unmanaged and stop polling.

?@ A ??@ A ?

<ns37:user>
 <ns37:user-id>adam</ns37:user-id>
 <ns37:full-name>Adam Tauno Williams</ns37:full-name>
 <ns37:user-comments></ns37:user-comments>
 <ns37:password>6407D7E05568D44BFB0886E52E171B28</ns37:password>
 <ns37:contact type="email" info="adam@morrison-ind.com"/>
 <ns37:contact type="pagerEmail" info="9999999999@vtext.com"/>
 <ns37:contact type="numericPage" info="" serviceProvider=""/>
 <ns37:contact type="textPage" info="" serviceProvider=""/>
 <ns37:duty-schedule>MoTuWeThFrSaSu0-2359</ns37:duty-schedule>
</ns37:user>

<ns46:group>
 <ns46:name>Admin</ns46:name>
 <ns46:comments>The administrators</ns46:comments>
 <ns46:user>admin</ns46:user>
 <ns46:user>adam</ns46:user>
</ns46:group

OpenNMS supports the
common concept of users &
groups, information provided
here is used later for delivery
of notices.

users.xml

groups.xml

B C D C�E FGB C D C�E F G

� OpenNMS can send notifications of events to users via a variety of means� Numeric Pagers� Mobile Phones� User Defined� WinPop� SMS<command>
 <name>email</name>
 <execute>/bin/mail</execute>
 <comment>Sending via email</comment>
 <argument streamed="false">
 <substitution>-s</substitution>
 <switch>-subject</switch>
 </argument>
 <argument streamed="false">
 <switch>-email</switch>
 </argument>
 <argument streamed="true">
 <switch>-tm</switch>
 </argument>
</command>

 <command>
 <name>windowsPopup</name>
 <execute>/usr/bin/smbclient</execute>
 <comment>Sending via WinPop</comment>
 <argument streamed="false">
 <substitution>-U OpenNMS</substitution>
 </argument>
 <argument streamed="false">
 <substitution>-M</substitution>
 <switch>-pemail</switch>
 </argument>
 <argument streamed="true">
 <switch>-tm</switch>
 </argument>
 </command>

H I J I�K H I LMH I J I�K H I LM

<ns16:notification name="Node sagbcm1 DNS lost" status="on">
 <ns16:uei>http://uei.opennms.org/products/bluebird/nodes/nodeLostService</ns16:uei>
 <ns16:description>Node sagbcm1 DNS lost</ns16:description>
 <ns16:rule>IPADDR IPLIKE 192.168.19.18& (isDNS)</ns16:rule>
 <ns16:destinationPath>Email-CIS</ns16:destinationPath>
 <ns16:text-message>Node sagbcm1 lost DNS service
 Time: %time%</ns16:text-message>
 <ns16:subject>Notice #%noticeid%</ns16:subject>
</ns16:notification>� OpenNMS can generate notifications from events.� Every notice generated has a unique id.� Notification generation rules can be created from the Web UI
for simple rules.� Notices have body (message) and subject very much like an E-
mail message.

N O N P�Q RQN O N P�Q RQ

$ service tomcat4 start
$ service opennms start
. . .
$ service opennms status
OpenNMS.Poller : running
OpenNMS.Eventd : running
OpenNMS.OutageManager : running
OpenNMS.Discovery : running
OpenNMS.Actiond : running
OpenNMS.Capsd : running
OpenNMS.Dhcpd : running
OpenNMS.Notifd : running
OpenNMS.RTCViewCategoryManager : running
OpenNMS.Trapd : running

PostgreSQL must already be running,
and receiving connections via TCP/IP.

TIPS

A Perl script is provided for generating newSuspect messages. This
allows for automated or scripted processes to notify OpenNMS that it
needs to inspect a given host.

/opt/OpenNMS/bin/send-event.pl --interface ip-address \
 http://uei.opennms.org/products/bluebird/internal/discovery/newSuspect

This script requires the Perl module Getopt::Mixed

S4T U V U WS4T U V U W

OpenNMS uses Castor for XML parsing and reading and writing the files to
disk. One result of this is that XML files modified via the web interface are
rewritten to disk as one long line - hardly friendly to editing/viewing with a
tool like vi.

OpenNMS provides a Perl utility to reformat XML files with nice indention,
etc...

/opt/OpenNMS/bin/xml.reader.pl -w /opt/OpenNMS/etc/capsd-configuration.xml

This will replace (-w) the XML file capsd-configuration.xml with a nicely
formatted version of itself.

For more information on Castor see -
http://castor.exolab.org/

The UCD SNMP packages that ship with most Linux distributions, by
default, make available the system tree to the public community.

This causes OpenNMS to correctly detect the presence of the SNMP
service on that host, but for no performance data to be collected, confusing
many initial users.

Add the following line to /etc/snmp/snmpd.conf -
view all included .1 80

and service restart snmpd. Performance data should now begin to be
collected.

Of course, you just openened your system up to SNMP queiries, potentially
to the whole world, so go back and do some reading.

