
embeddedMIND
OpenSAFfire Integrated Solution

Tomasz Mikolajczyk
GoAhead Software

OpenSAFfire Integrated Solution

• embeddedMIND (eM) is a Management Infrastructure for
Networked Devices.

• Providing a Management Layer for a cluster.

• Operating on the cluster through the standard management
protocols:

– CLI

– NETCONF

– WEB/XML

– SNMP

• Creating a cluster's model using MINDConstructor Modeling
GUI tool (Eclipse-based IDE).

• Integration with the forthcoming OpenSAFfire 6.0 (GoAhead
distributed version of OpenSAF 4.0).

Integrated Services

• AMF Service

• LOG Service

• NTF Service

• IMM Service

Demo Cluster Structure

eM component working in the 2N-redundancy model.

5
5

MINDObjects (MO)
Mgmt Layer Proxies for the

actual managed objects.

MINDFramework
Unified request and event processing.
Transaction, access and presentation

handling

MINDAgents
Makes MO available via

corresponding management
protocol

Access Control
External AAA service

usage.

Database
Configuration Storage

Managed Objects
Implementation

[Validation]

Transport Layer
Socket-based / shared-memory /

messaging

System Architecture

Integration Architecture Diagram

Integration with AMF

• Providing eM as a highly available management layer
component.

• Working as a local SA-aware component.

• Using 2-N redundancy model as a default environment.

• Providing the IMM model part describing the eM component.

NOTE: eM does not preserve the state of managed applications.

Integration with LOG Service (1/4)

Integration with LOG Service (2/4)

Making meaningful information about the operation of eM available
in the SA Log service.

Achieved by writing eM log messages to various SA Log Streams:

• SA System Log Stream:

/var/log/opensaf/saflog/saLogSystem_* files.

• A dedicated eM SA Application Log Stream:

/var/log/opensaf/saflog/eMIND_* files.

A SA-aware implementation of the eM LogSink:

• SASystemLogSink

• SAApplicationLogSink

Integration with LOG Service (3/4)

 eM Log Data Priority SA Log Data Severity
 prioCritical SA LOG SEV CRITICAL
 prioError SA LOG SEV ERROR
 prioWarning SA LOG SEV WARNING
 prioInfo SA LOG SEV INFO
 prioDebug SA LOG SEV NOTICE

eM log data priorities:

eM log filtering mechanism:

• Filtering log data using different filtering criteria (adjustable at
runtime), for instance:

– Priority filter

– Module filter

– Custom filter

Integration with LOG Service (4/4)

Example usage:

'cat /var/log/opensaf/saflog/saLogSystem_20100517_174850.log'

Integration with NTF Service (1/5)

Integration with NTF Service (2/5)

Making SA notifications available through the standard
management interfaces (NETCONF, SNMP, CLI, WEB/XML).

Support for all SA Notification types:

• SA NTF TYPE OBJECT CREATE DELETE

• SA NTF TYPE ATTRIBUTE CHANGE

• SA NTF TYPE STATE CHANGE

• SA NTF TYPE ALARM

• SA NTF TYPE SECURITY ALARM

Integration with NTF Service (3/5)

Notification's flow:

eM Event filtering mechanism:

• Filtering an Event based on listener's filtering criteria
(adjustable at runtime).

Integration with NTF Service (4/5)

CLI Agent Session:
– Processing and decorating an event based on a session's event formatter.

– Sending formatted event to a client's remote console (telnet/SSH).

NETCONF Agent Session:
– Processing and decorating an event based on filtering criteria passed in the

<create-subscription/> command.

WEB Agent:
– Polling from a Web browser for an event.

– Decorating the received event (XML document) based on a customizable
JavaScript code.

SNMP Agent:
– Event transformation to either SNMP trap or inform.

– Sending trap/inform to all registered trap hosts (for instance, running Net-
SNMP trap daemon).

Integration with NTF Service (5/5)

Support for SNMP traps/informs:

• Lack of the SNMP-related information in the NTF service, such
as trap OIDs or varbind list.

• Assigning predefined trap OID values to all SA Notification
types.

• Event to trap/inform transformation in the SNMP Agent based
on the trap's OID.

• Possibility to send SA Notification as the SNMP trap/inform to
the SNMP trap host using eM integrated solution.

Integration with IMM Service (1/9)

Integration with IMM Service (2/9)

OpenSAFfire integrated solution as a management application for
the IMM service.

Visibility into the configuration and state information for the objects
in the IMM model through the standard management protocols:

• CLI

• NETCONF

• WEB/XML

• SNMP

Integration with IMM Service (3/9)

• Translation of the SA IMM model into the eM internal model.

• Implementation of a dedicated IMM MINDObject (IMMMO)
communicating with the IMM service.

• Loading the IMM model to eM at runtime.

• YANG IMM model.

• Support for SNMP.

• Standalone IMM management application (AMF independent
component).

Integration with IMM Service (4/9)

Processing the IMM model:

• IMM model as an input for the eM internal model.

• Creating eM model by reading the cluster's imm.xml model file.

• Processing IMM class definition only (/IMM-contents/class).

Integration with IMM Service (5/9)

Mapping SA IMM types to eM BaseTypes:

SA type
SaInt32T Integer
SaUint32T Unsigned
SaInt64T Integer64
SaUint64T Unsigned64

Time64
String<0, 255>
Float
Double

eM BaseType

SaTimeT
SaNameT
SaFloatT
SaDoubleT
SaStringT RawString
SaAnyT RawData

Mapping an IMM attribute with the MULTI_VALUE flag as a
sequence of an appropriate BaseType.

Integration with IMM Service (6/9)

IMM MINDObject implementation:

• Basic operations:

– Getting objects list (instances list) for an IMM class.

– Getting attribute values of an IMM class' object.

– Setting attributes of an IMM class' object.

– Creating/deleting IMM class' objects.

• Operating on the IMM service using SA IMM-OM API only.

• A one-to-one mapping between CCB and a MINDObject’s
modifying operation.

Note: eM does not caches any data of managed applications.

Integration with IMM Service (7/9)

 Loading IMM Model at eM runtime:

• Auto-loading at eM startup.

• Explicit loading.

Integration with IMM Service (8/9)

Representation of the IMM Model in YANG:

Loading IMM YANG model at eM runtime:

'xsltproc imm_xml2yang.xsl /etc/opensaf/imm.xml > /etc/opensaf/imm.yang'

Integration with IMM Service (9/9)

Support for SNMP:

• Lack of the SNMP-related information in the IMM model, i.e.
OIDs for the IMM classes and attributes.

• Generating OID values for each IMM class and attribute from
the IMM model representation (XML/YANG file).

• Possibility to use an SNMP manager to operate on the IMM
service using eM integrated solution.

• Example: snmpwalk through the SaAmfSGBaseType class:

IMM Issues (1/2)

• No definition of the object class hierarchy (in terms of naming,
not inheritance).

• Class instance access through IMM OM:
– No way to directly access instances of a given class

• Search based on the class name attribute value required.

– No way to access instances in a user defined order
• Issue for SNMP walks.

• SNMP MIBs

– IMM OM interface does not map well into published SA Forum
MIBs.

– Issue for the management layer because either the management
layer needs to define custom MIBs or introduce some kind of
mapping.

IMM Issues (2/2)

• No definition of the administrative operations, if any, supported
by each object class.

• Lack of features:

– Non-string keys

• Representing DNs in form of (always) strings makes managing IMM
through SNMP very difficult.

– Multi-value keys.

– Extensible types (lack of IPAddress, MACAddress, Enumeration,
etc.).

MINDConstructor GUI IDE tool (1/2)

MINDConstructor GUI IDE tool (2/2)

Generating hierarchical IMM model using MINDConstructor:

Q&A

Thank you

Tomasz Mikolajczyk
tmikolajczyk@goahead.com

embeddedMIND
embeddedMIND@goahead.com

http://www.goahead.com

mailto:tmikolajczyk@goahead.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Thank you

