Arrays

D permits you to define variables that are integers, as well as other types to represent strings and composite types called structs and unions. If you are familiar with C programming, you'll be happy to know you can use any type in D that you can in C. If you're not a C expert, don't worry: the different kinds of data types are all described in Chapter 2, Types, Operators, and Expressions. D also supports a special kind of variable called an associative array. An associative array is similar to a normal array in that it associates a set of keys with a set of values, but in an associative array the keys are not limited to integers of a fixed range.

D associative arrays can be indexed by a list of one or more values of any type. Together the individual key values form a tuple that is used to index into the array and access or modify the value corresponding to that key. Every tuple used with a given associative array must conform to the same type signature; that is, each tuple key must be of the same length and have the same key types in the same order. The value associated with each element of a given associative array is also of a single fixed type for the entire array. For example, the following D statement defines a new associative array a of value type int with the tuple signature [ string, int ] and stores the integer value 456 in the array:

a["hello", 123] = 456;

Once an array is defined, its elements can be accessed like any other D variable. For example, the following D statement modifies the array element previously stored in a by incrementing the value from 456 to 457:

a["hello", 123]++;

The values of any array elements you have not yet assigned are set to zero. Now let's use an associative array in a D program. Type the following program and save it in a file named rwtime.d:

Example 1.3.  rwtime.d: Time read ( 2 ) and write ( 2 ) Calls

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
	ts[probefunc] = timestamp;
}

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
	printf("%d nsecs", timestamp - ts[probefunc]);
}

As with trussrw.d, specify the ID of shell process when you execute rwtime.d. If you type a few shell commands, you'll see the amount time elapsed during each system call. Type in the following command and then press return a few times in your other shell:

# dtrace -s rwtime.d `pgrep -n ksh`
dtrace: script 'rwtime.d' matched 4 probes
CPU     ID                    FUNCTION:NAME
  0     33                      read:return 22644 nsecs
  0     33                      read:return 3382 nsecs
  0     35                     write:return 25952 nsecs
  0     33                      read:return 916875239 nsecs
  0     35                     write:return 27320 nsecs
  0     33                      read:return 9022 nsecs
  0     33                      read:return 3776 nsecs
  0     35                     write:return 17164 nsecs
...
^C
#

To trace the elapsed time for each system call, you must instrument both the entry to and return from read ( 2 ) and write ( 2 ) and sample the time at each point. Then, on return from a given system call, you must compute the difference between our first and second timestamp. You could use separate variables for each system call, but this would make the program annoying to extend to additional system calls. Instead, it's easier to use an associative array indexed by the probe function name. Here is the first probe clause:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
	ts[probefunc] = timestamp;
}

This clause defines an array named ts and assigns the appropriate member the value of the DTrace variable timestamp. This variable returns the value of an always-incrementing nanosecond counter, similar to the Solaris library routine gethrtime ( 3 ) . Once the entry timestamp is saved, the corresponding return probe samples timestamp again and reports the difference between the current time and the saved value:

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
	printf("%d nsecs", timestamp - ts[probefunc]);
}

The predicate on the return probe requires that DTrace is tracing the appropriate process and that the corresponding entry probe has already fired and assigned ts[probefunc] a non-zero value. This trick eliminates invalid output when DTrace first starts. If your shell is already waiting in a read ( 2 ) system call for input when you execute dtrace, the read:return probe will fire without a preceding read:entry for this first read ( 2 ) and ts[probefunc] will evaluate to zero because it has not yet been assigned.