
UltraSPARC Virtual Machine Specification

(The sun4v architecture and Hypervisor API specification)

Revision 1.0

Please send comments and queries to:
hypervisor@sun.com

A Revision 1.0 Hypervisor API
January 24, 2006

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents
and one or more additional patents or pending patent applications in the U.S. and in other countries.
This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun? Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.
U.S. Government Rights-Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits reserves.
Sun Microsystems, Inc. possede les droits de propriete intellectuels relatifs a la technologie decrite dans ce document. En particulier, et
sans limitation, ces droits de propriete intellectuels peuvent inclure un ou plusieurs des brevets americains listes sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplementaires ainsi que les demandes de brevet en attente aux les Etats-
Unis et dans d'autres pays.
Ce document et le produit auquel il se rapporte sont proteges par un copyright et distribues sous licences, celles-ci en restreignent
l'utilisation, la copie, la distribution, et la decompilation. Aucune partie de ce produit ou document ne peut etre reproduite sous aucune
forme, par quelque moyen que ce soit, sans l'autorisation prealable et ecrite de Sun et de ses bailleurs de licence, s'il y en a.
Tout logiciel tiers, sa technologie relative aux polices de caracteres, comprise, est protege par un copyright et licencie par des
fournisseurs de Sun.
Des parties de ce produit peuvent deriver des systemes Berkeley BSD licencies par l'Universite de Californie. UNIX est une marque
deposee aux Etats-Unis et dans d'autres pays, licenciee exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques deposees
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International,
Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.
L'interface utilisateur graphique OPEN LOOK et Sun? a ete developpee par Sun Microsystems, Inc. pour ses utilisateurs et licencies. Sun
reconnait les efforts de pionniers de Xerox dans la recherche et le developpement du concept des interfaces utilisateur visuelles ou
graphiques pour l'industrie informatique. Sun detient une license non exclusive de Xerox sur l'interface utilisateur graphique Xerox, cette
licence couvrant egalement les licencies de Sun implementant les interfaces utilisateur graphiques OPEN LOOK et se conforment en
outre aux licences ecrites de Sun.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION
PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Page 2 of 126

Hypervisor API Revision 1.0
January 24, 2006

Table of Contents
1 Introduction...5

1.1 Related specifications..5

2 Hypervisor call conventions...6

2.1 Hyper-fast traps.. 6

2.2 Fast traps...6

2.3 Post hypervisor trap processing.............................. 6

3 State definitions... 8

3.1 Guest states...8

3.2 Initial guest environment...8

3.3 Privileged registers..8

3.4 Other initial guest state... 10

4 Addressing Models.. 11

4.1 Background...11

4.2 Address types..11

4.3 Address spaces..11

4.4 Address space identifiers.......................................11

4.5 Translation mappings.. 13

4.6 MMU Demap support...13

4.7 MMU traps... 13

4.8 MMU fault status area.. 14

5 Trap model.. 15

5.1 Privilege mode trap processing............................. 15

5.2 Trap levels...15

5.3 Sun4v privilege mode trap table........................... 15

6 Interrupt model..16

6.1 Definitions...16

6.2 Interrupt reports..16

6.3 Interrupt queues..16

6.4 Interrupt traps... 17

7 Error model... 18

7.1 Definitions...18

7.2 Error classes..18

7.3 Error reports... 18

7.4 Error queues... 19

7.5 Error traps...19

8 Machine description...21

8.1 Requirements.. 21

8.2 Sections...21

8.3 Encoding...21

8.4 Header...22

8.5 Name Block.. 23

8.6 Data Block.. 23

8.7 Node Block...23

8.8 Nodes..25

8.9 Node definitions..26

8.10 Content versions... 26

8.11 Summary of node definitions.............................. 27

8.12 Common data definitions.................................... 27

8.13 Generic nodes... 28

8.14 Memory hierarchy nodes.....................................35

9 API versioning...38

9.1 API call... 38

10 Domain services...41

10.1 API call... 41

11 CPU services... 47

11.1 CPU id and CPU list... 47

11.2 API calls..47

12 MMU services... 52

12.1 Translation Storage Buffer (TSB) specification..52

12.2 MMU flags..54

12.3 Translation table entries...................................... 54

12.4 Translation storage buffer (TSB) configuration..56

12.5 Permanent and non-permanent mappings........... 56

12.6 MMU Fault status area....................................... 56

12.7 API calls..60

13 Cache and Memory services.. 68

13.1 API calls..68

14 Device interrupt services... 70

A Revision 1.0 Hypervisor API
January 24, 2006

14.1 Definitions...70

14.2 API calls..70

15 Time of day services.. 74

15.1 API calls..74

16 Console services.. 75

16.1 API calls..75

17 Core dump services... 76

17.1 API calls..77

18 Trap trace services...78

18.1 Trap trace buffer control structure......................78

18.2 Trap trace buffer entry format............................ 78

18.3 API calls..79

19 Logical Domain Channel services................................82

19.1 Endpoints.. 82

19.2 LDC queues.. 82

19.3 LDC interrupts..83

19.4 API calls..84

20 PCI I/O Services..90

20.1 Introduction.. 90

20.2 IO Data Definitions...90

20.3 PCI IO Data Definitions......................................90

20.4 API calls..93

21 MSI Services... 101

21.1 Message Signaled Interrupt (MSI)....................101

21.2 MSI Event Queue (MSI EQ)............................101

21.3 Definitions...103

21.4 API calls..105

22 UltraSPARC T1 performance counters.....................112

22.1 Introduction.. 112

22.2 Definitions...112

22.3 API calls..112

23 Niagara-1 MMU statistics counters...........................114

23.1 Introduction.. 114

23.2 Hypervisor API for Niagara MMU statistics
collection...114

23.3 API calls..116

24 Appendix A: How to use a machine description........117

24.1 Using the MD as a list.......................................117

24.2 Accelerating string lookups.............................. 118

24.3 Directed Acyclic Graph.....................................118

24.4 DAG construction...119

24.5 Required nodes... 120

24.6 The vanilla MD... 120

24.7 Formation and meaning of a DAG....................120

25 Appendix B: Number Registry.................................. 122

25.1 Hyper-fast Trap numbers.................................. 122

25.2 FAST_TRAP Function numbers.......................122

25.3 CORE_TRAP Function numbers......................122

25.4 Summary of API service trap and function
numbers...122

25.5 Error codes... 125

Page 4 of 126

Hypervisor API Revision 1.0
January 24, 2006

1 Introduction

Sun's UltraSPARC T1 processor has been designed to incorporate hypervisor technology
in order to present a virtualized machine environment to any guest operating system
running upon it. The resulting software model for a guest operating system is referred to as
the “sun4v” architecture. This virtual machine environment is implemented with a thin layer
of firmware software (the “UltraSPARC Hypervisor”) coupled with hardware extensions
providing protection. The UltraSPARC Hypervisor not only provides system services
required by the operating system, but it also enables the separation of platform resources
into self-contained partitions (logical domains) each capable of supporting an independent
operating system image.

This document details the virtual machine environment and the calling conventions of
the APIs provided to a sun4v domain by the underlying UltraSPARC hypervisor. The
intended audience for this document is operating system and firmware engineers porting to
the sun4v architecture.

The API serves two principal purposes:

1. To enable the supervisor to request services and operations to be performed on its
behalf by the hypervisor.

2. To inform the hypervisor of information it expects from the supervisor, for example
the size and location of the interrupt delivery queues.

1.1 Related specifications

The sun4v architecture provides a virtual machine environment through a conjunction of
platform hardware and hypervisor software. This virtual machine environment consists of a
combination of machine registers described by a programmer's reference manual, and a set
of software services provided via the hypervisor APIs described in this document.

The hardware registers available within a virtual machine environment, (described in
the UltraSPARC Architecture 2005 manual), form the basis of the sun4v hardware
architecture. This architecture incorporates the Level-1 SPARC v9 specification. However, it
supersedes and extends the Level-2 SPARC v9 specification in describing the programming
model, register and exception interfaces for privileged mode software.

In addition to the UltraSPARC Architecture 2005 manual, processor specific details for
the UltraSPARC T1 processor are provided in the “UltraSPARC T1TM Supplement” manual.

At the time of writing the latest versions of this specification, the UltraSPARC
Architecture 2005 manual and the UltraSPARC T1TM Supplement are available from the
OpenSPARC website (http://www.opensparc.org). The reader is recommended to visit the
OpenSPARC website on a regular basis for the most recent versions of these specifications.

The names “Niagara” and “Niagara-1” refer to the UltraSPARC T1 processor.

A Revision 1.0 Hypervisor API
January 24, 2006

2 Hypervisor call conventions

Hypervisor API calls are made through the use of a trap (Tcc) instruction using
sw_trap_numbers 0x80 and above. The calling convention has two forms; fast-trap and hyper-
fast-trap. The principle difference between these two forms is whether the function number
is passed in a register or is encoded in the trap instruction itself. The latter is the faster form,
but has a limited number of possible functions, and is therefore reserved for performance
critical operations only.

2.1 Hyper-fast traps

This trap mechanism encodes the API function number (0x80 + a 7bit value) in the Tcc
instruction's sw_trap_number itself, and therefore provides the fastest possible method of
reaching the actual function implementation. The calling convention is as follows:

Register Input Output

%o0 argument 0 return status

%o1 argument 1 return value1

%o2 argument 2 return value2

%o3 argument 3 return value3

%o4 argument 4 return value4

All arguments and return values are 64-bits unless explicitly stated by the description of
a specific API service. Further arguments may be passed in memory, as defined on a per
function basis.

2.2 Fast traps

Fast traps are the preferred mechanism for hypervisor API calls. Fast trap API calls
primarily use sw_trap_number 0x80 in the Tcc instruction, with the required function number
provided as a 64bit value in register %o5. The calling convention is as follows:

Register Input Output

%o5 function number undefined

%o0 argument 0 return status

%o1 argument 1 return value 1

%o2 argument 2 return value 2

%o3 argument 3 return value 3

%o4 argument 4 return value 4

All arguments and return values are 64-bits unless explicitly stated by the description of
a specific API service. Further arguments may be passed in memory, as defined on a per
function call basis.

2.3 Post hypervisor trap processing

The following convention is used, unless explicitly described for a particular API service:

• All API services resume executing at the next logical instruction after the service trap as
with a done instruction.

• All sun4v defined registers are preserved across an API service except as explicitly stated
below;

Page 6 of 126

Hypervisor API Revision 1.0
January 24, 2006

• Registers providing arguments to an API service (including the function number
%o5 for fast traps) should be considered volatile, and their values upon return are
undefined unless they are explicitly specified on a per-service basis. Registers not
used for passing arguments or returning values are preserved across the API
service.

• Upon return from the API service, the returned status is given in register %o0. A
value of zero in %o0 indicates successful execution of the API service, all other
values indicate an error status (as defined in section 25.5).

• If an invalid sw_trap_number is issued, or if an invalid function number is specified, the
hypervisor will return with EBADTRAP (as defined in section 25.5) in %o0.

• All 64 bits of the argument or return values are significant.

A Revision 1.0 Hypervisor API
January 24, 2006

3 State definitions

3.1 Guest states

Each virtual CPU can have one of three different states:

Stopped CPU is stopped, not executing code, and may be started via the cpu_start API service

Running CPU is executing

Error CPU is in error, and no longer executing code

The relationship of these CPU states and hypervisor services may be summarized with
the state diagram below:

3.2 Initial guest environment

The initial state of each sun4v virtual CPU is defined in the Sun4v Architecture
Specification. Initial register state is duplicated here together with initial register
configuration performed by the hypervisor for completeness.

3.3 Privileged registers

Register(s) Initial Value

%cwp 0

%cansave NWIN-2

%cleanwin NWIN-2

%canrestore 0

%otherwin 0

%wstate 0

%pstate all 0 except pstate.priv=1, pstate.mm=tso

%tl MAXPTL (2)

%gl MAXPGL (2)

%pil MAXPIL (0xf)

%tba current rtba

%tt POR

Page 8 of 126

Stopped Running

Error

cpu_stop

cpu_start

cpu_yield

error
indication

reset
mach_exit
mach_sir

Hypervisor API Revision 1.0
January 24, 2006

3.3.1 Non-Privileged Registers

Register(s) Initial Value

%g1-%g7 0

%i0[%cwp] real address of startup memory segment

%i1[%cwp] size of startup memory segment

%i2-%i7[%cwp] 0

%i0-%i7[all other windows] 0

%l0-%l7[all windows] 0

%d0-%d62 Binary 0

%fsr 0

3.3.2 Ancillary State Registers

Register(s) Initial Value

asr0 (%y) 0

asr2 (%ccr) 0

asr3 (%asi) ASI_REAL

asr4 (%tick) >0, npt=0

asr5 (%pc) current pc

asr6 (%fprs) 0

asr19 (%gsr) 0

asr22 (%softint) 0

asr24 (%stick) >0, npt=0

asr25 (%stick_cmpr) 0 with interrupts disabled (bit 63=1)

3.3.3 Internal memory-mapped registers

Register(s) Initial Value

ASI_SCRATCHPAD, VA=0x00 0

ASI_SCRATCHPAD, VA=0x08 0

ASI_SCRATCHPAD, VA=0x10 0

ASI_SCRATCHPAD, VA=0x18 0

ASI_SCRATCHPAD, VA=0x20 0 if implemented

ASI_SCRATCHPAD, VA=0x28 0 if implemented

ASI_SCRATCHPAD, VA=0x30 0

ASI_SCRATCHPAD, VA=0x38 0

ASI_MMU, VA=0x08 (primary ctx) 0

ASI_MMU, VA=0x10 (secondary ctx) 0

ASI_MMU, VA=0xn08 (for valid {n} > 0) 0

ASI_MMU, VA=0xn10 (for valid {n} > 0) 0

ASI_QUEUE, VA=0x3c0 (cpu mondo head) 0

ASI_QUEUE, VA=0x3c8 (cpu mondo tail) 0

ASI_QUEUE, VA=0x3d0 (dev mondo head) 0

A Revision 1.0 Hypervisor API
January 24, 2006

Register(s) Initial Value

ASI_QUEUE, VA=0x3d8 (dev mondo tail) 0

ASI_QUEUE, VA=0x3e0 (res. error head) 0

ASI_QUEUE, VA=0x3e8 (res. error tail) 0

ASI_QUEUE, VA=0x3f0 (nres. error head) 0

ASI_QUEUE, VA=0x3f8 (nres. error tail) 0

3.3.4 CPU-specific Registers

Platform specific performance counters will be configured such that
exceptions/interrupts are disabled.

3.4 Other initial guest state

MMU state is disabled.

MMU fault status area location is undefined.

TSB info is undefined.

All queue base addresses and sizes are undefined.

One CPU is placed into the running state, all other CPUs are in the stopped state.

Initial guest soft state is set to SS_TRANSITION, with an empty (NUL) description
string.

Page 10 of 126

Hypervisor API Revision 1.0
January 24, 2006

4 Addressing Models

4.1 Background

This section defines the sun4v memory management architecture. The intent is to
provide a memory addressing capability for a virtualized architecture at the same time
removing the explicit dependence on hardware mechanisms for virtual memory
management. Mechanisms are provided to privileged mode to manipulate the memory
made available, and in turn to virtualize and make that memory available to non-privileged
mode processes.

4.2 Address types

The sun4v architecture has two address types, as in legacy architectures. The main
difference is that virtual adresses are translated to real addresses, as opposed to being translated
to physical addresses. This change is made in order to enable the segregation of physical
memory into multiple partitions.

Virtual addresses are translated by an MMU in order to locate data in physical memory.
This definition is unchanged from current systems for nonprivileged
and privileged mode addresses.

Real addresses are provided to privileged mode code to describe the underlying
physical memory allocated to it. Translation storage buffers (TSBs)
maintained by privileged mode code are used to translate privileged or
nonprivileged mode virtual addresses into real addresses. MMU bypass
addresses in privileged mode are also real addresses.

4.3 Address spaces

Address spaces are unchanged from UltraSPARC-1. Primary and secondary virtual
addresses are associated with context identifiers that are used by privileged code to create
multiple address spaces.

4.4 Address space identifiers

Instructions can explicitly specify an address space via address space identifiers. All the
SPARC v9 ASI definitions are unchanged for sun4v, and a number of new ASIs are also
defined. ASIs related to memory management are described below:

ASI # ASI Name

0x14 REAL_MEM

0x15 REAL_IO

0x1c REAL_MEM_LITTLE

0x1d REAL_IO_LITTLE

0x21 MMU

4.4.1 ASI 0x14 & 0x1c : REAL_MEM{_LITTLE}

This ASI provides privileged mode access to cached memory using a real rather than
virtual address. For this access the context id is unused. A nonresumable_error trap occurs if
the access cannot be completed.

A Revision 1.0 Hypervisor API
January 24, 2006

4.4.2 ASI 0x15 & 0x1d : REAL_IO{_LITTLE}

This ASI provides privileged mode access to uncached memory addresses using a real
rather than virtual address. For this access the context id is unused. A nonresumable_error trap
occurs if the access cannot be completed.

4.4.3 ASI 0x26 & 0x2E : REAL_QUAD{_LITTLE}

This ASI provides atomic access to 16 bytes of data using real addresses. A
mem_address_not_aligned trap is taken if the address is not 16 byte aligned.

4.4.4 ASI 0x21 : MMU

The sun4v MMU interface consists of the following registers:

Register Address

PRIMARY_CONTEXTn 0xn08

SECONDARY_CONTEXTn 0xn10

These registers are used for the primary and secondary context values utilized by the
processor TLB for distinguishing address space contexts. The number of primary and
secondary context registers provided is implementation dependent subject to the following
rules:

1. The number of primary context registers must be the same as the number of secondary
context registers.

2. The context registers must start with n=0, and be arranged sequentially without gaps. So,
for example with 4 registers, n=0,1,2,3.

3. The number of bits provided must be the same for all context registers.

4. For ease of programming, a write to PRIMARY_CONTEXT0 causes the same context
value to be written to all other PRIMARY_CONTEXT registers. Similarly, a write to
SECONDARY_CONTEXT0 causes the same context value to be written to all other
SECONDARY_CONTEXT registers.

Sun4v provides a minimum of 13 bits of context (bits 0 through 12). Further bits (from 13
and up) may be provided as an implementation dependent feature. The maximum number
of bits for a given hardware platform are given as a property in the guest's machine
description. Privileged code is responsible for honoring the number of bits supported by
hardware.

4.4.4.1 Programming note

The policy of how privileged code chooses to use the primary and secondary context
registers is beyond the scope of this document. However, because sun4v only guarantees the
existence of PRIMARY_CONTEXT0 and SECONDARY_CONTEXT0 it is recommended that
these be used as process private context registers, while any remaining context registers be
used for possibly shared context address spaces.

4.4.4.2 Translation conflicts

For sun4v platforms that implement more than one primary and more than one
secondary context register privileged code must ensure that no more than one page
translation is allowed to match at any time.

Page 12 of 126

Hypervisor API Revision 1.0
January 24, 2006

An illustration of erroneous behavior is as follows: an operating system constructs a
mapping for virtual address A valid for context P, it then constructs a mapping for address
A for context Q. By setting PRIMARY_CONTEXT0 to P and PRIMARY_CONTEXT1 to Q
both mappings would be active simultaneously - potentially with conflicting translations for
address A.

Care must be taken not to construct such scenarios.

To prevent errors/data corruption sun4v processors will detect such conflicts, flush the
TLB, and issue a {data/instruction}_access_exception.

4.4.4.3 Barrier rules

By definition changing either the primary or secondary context registers has side effects
on processor behavior. The following table describes the behavior of a stxa to these
registers.

@ TL = 0 @ TL > 0

PRIMARY_CONTEXT undefined; privileged code should not
change PRIMARY_CONTEXT at TL=0

membar #Sync, DONE or RETRY are
required for effects to be guaranteed

observable, otherwise results are undefined.

SECONDARY_CONTEXT membar #Sync is required for effects
to be guaranteed observable,

otherwise results are undefined

membar #Sync, DONE or RETRY are
required for effects to be guaranteed

observable, otherwise results are undefined.

4.5 Translation mappings

Privileged code describes virtual to real address mappings to manage its virtual address
spaces. These mappings are declared either as translation table entries (TTEs) in a translation
storage buffer (TSB) described in section 12.1, or can be established directly by the use of the
hypervisor API call mmu_map_perm_addr (§12.7.7). This call can also be used to establish a
limited number of “locked” mappings for which privileged code cannot tolerate an MMU
miss trap.

4.6 MMU Demap support

Privileged mode demap operations become hypervisor API calls.

It is important to note that sun4v provides a coherent demap capability for the privileged
mode. The demap API call takes a list of virtual CPUs for which the demap operation is to be
applied.

The following three demap operations are required for sun4v:

Demap Page The translations demapped match the virtual address and context id
designated.

Demap Context the translations demapped match the context id designated.

Demap All this demaps all translations.

4.7 MMU traps

MMU privilege mode traps are a subset of the MMU traps described in the SPARC v9
specification:

{instruction,data}_access_mmu_miss

A Revision 1.0 Hypervisor API
January 24, 2006

shall be generated when a nonprivileged or privileged mode access does
not have a translation in any of the TSBs.

data_access_protection

shall be generated when a nonprivileged or privileged mode access
matches a translation that does not allow the requested action, i.e. store
when TTE write enable field is clear. This also enables software
simulation of a TLB entry modified bit, as well as fast copy-on-write page
processing.

To speed processing of a copy-on-write or modified-bit usage, the
faulting TLB entry is guaranteed flushed from the local CPU's TLB upon
entry of this exception. Thus, in the common case, no flush operation
needs to be generated before enabling write permission in the faulting
TTE.

{instruction,data}_access_exception

shall be generated as the result of a nonprivileged mode access when
TTE privilege field is set, or as the result of an instruction fetch when the
TTE execute permission bit is not set, or as the result of two conflicting
translation matches for the same virtual address.

fast_{instruction,data}_access_MMU_miss

shall be generated when a nonprivileged or privileged mode access does
not have a translation in any TLB and no TSB is specified for the virtual
cpu.

fast_data_access_protection

shall be generated when no TSB is specified for the virtual cpu and a
nonprivileged or privileged mode access matches a TLB translation that
does not allow the requested action, i.e. store when TTE write enable
field is clear. This also enables software simulation of a TLB entry
modified bit, as well as fast copy-on-write page processing.

To speed processing of a copy-on-write or modified-bit usage, the
faulting TLB entry is guaranteed flushed from the local CPU's TLB upon
entry of this exception. Thus, in the common case, no flush operation
needs to be generated before enabling write permission in the faulting
TTE.

4.8 MMU fault status area

MMU related faults have their status and fault address information placed into a
memory region made available by privileged code. Like the TSBs above, the fault status area
for each virtual processor is declared via a hypervisor API call.

The MMU fault area is arranged on an aligned address boundary with instruction and
data fault fields arranged into distinct 64byte blocks. The contents and layout of the MMU
fault status area are currently specified in section12.6 of this specification.

Page 14 of 126

Hypervisor API Revision 1.0
January 24, 2006

5 Trap model

For sun4v, two of the three SPARC v9 trap types: precise and disrupting, behave
according to the SPARC v9 specification. The third, deferred, may behave according to the
UltraSPARC-I specification. The key difference is that UltraSPARC-I deferred traps do not
provide additional information so that uncompleted instructions older than TPC can be
emulated.

In the case of a CPU that implements SPARC v9 deferred traps, the hypervisor will
present a deferred trap to privileged mode, but will also make available enough information
so that privileged code can attempt to emulate any uncompleted instructions. In the case of a
non-resumable error trap, the emulation information will appear in the error report. This is
also the rationale for not including the SPARC v9 FQ register in sun4v, since it is used for
emulation of deferred floating point traps.

A more precise description of the MMU, interrupt and error traps is made below to
clarify behaviors left unspecified by SPARC v9.

5.1 Privilege mode trap processing

As with the SPARC v9 specification, the processor's action during trap processing
depends on the trap type, the current trap level (TL register), and the processor state.

For trap processing from non-privileged or privileged mode to privileged mode the
steps taken are the same as the SPARC v9 specification. Note that if a privileged code lowers
the value of TL, there is no guarantee that the values of TSTATE, TPC, TNPC and TT will
remain consistent for larger values of TL.

5.2 Trap levels

The maximum trap level available to privileged software in sun4v is defined to be 2
(MAXPTL).

5.2.1 Privilege mode TL overflow

When TL = MAXPTL, an additional privileged mode trap results in the delivery of a
watchdog_reset trap to privileged mode with TT set to the type of trap that caused the error.
TL remains at MAXPTL.

5.3 Sun4v privilege mode trap table

The privileged mode trap table is defined in the programmers reference manual for each
specific processor.

A Revision 1.0 Hypervisor API
January 24, 2006

6 Interrupt model

This chapter describes the sun4v architecture for sending and receiving interrupts.

6.1 Definitions

CPU mondo CPU to CPU interrupt message.

Device mondo interrupt sent by an I/O device.

Interrupt report a message describing an interrupt

Interrupt queue a FIFO list of interrupt reports

6.2 Interrupt reports

Interrupts are described by interrupt reports. Each interrupt report is 64 bytes long and
consists of eight 64-bit words. If a report contains less than eight meaningful words it will be
padded with zeros.

6.3 Interrupt queues

Interrupts are indicated to privileged mode via interrupt queues each with its own
associated trap vector. There are 2 interrupt queues, one for device mondos and one other for
CPU mondos. New interrupts are appended to the tail of a queue, and privileged code reads
them from the head of the queue.

Privileged code is responsible for allocating real memory regions for these queues. Each
queue region must be a power of 2 multiple of 64 bytes in size. The base real address must
be aligned to the size of the region. For example, a queue of 128 entries is 8K bytes in size
and must be aligned on an 8K byte real memory address boundary.

The queue configuration is described via hypervisor API calls when the queue region is
created or modified (see section 11.2.6).

6.3.1 Queue support registers

The contents of each queue is described by a head and tail pointer. The head and tail
pointer for each queue are held in registers as offsets from the base of their respective queue
region. These interrupt queue registers are accessed with the QUEUE ASI (0x25). Each of the
registers are addressable and accessible as 64bit quantities. The ASI addresses are as follows:

Register Address Access

CPU_MONDO_QUEUE_HEAD 0c3c0 rw

CPU_MONDO_QUEUE_TAIL 0x3c8 ro

DEV_MONDO_QUEUE_HEAD 0x3d0 rw

DEV_MONDO_QUEUE_TAIL 0x3d8 ro

In privileged mode, the head offset registers are read and write accessible, the tail offset
registers are only readable. Attempting to write the tail register from privileged mode results
in a data_access_exception trap.

6.3.1.1 *_QUEUE_HEAD and *_QUEUE_TAIL

The status of each queue is reflected by its head and tail pointers:

*_QUEUE_HEAD holds the offset to the oldest interrupt report in the queue.

Page 16 of 126

Hypervisor API Revision 1.0
January 24, 2006

*_QUEUE_TAIL holds the offset to the area where the next interrupt report will be
stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be
incremented by 64 bytes. Privileged code is responsible for similarly incrementing the head
pointer to remove an entry from the queue. The queue pointers are updated using modulo
arithmetic based on the size of a queue. A queue is empty when the head is equal to the tail.
A queue is full when the insertion of one more entry would cause the tail pointer to equal the
head pointer.

The format of each of the QUEUE_HEAD and QUEUE_TAIL register is shown in Figure
1. Bits 0 through 5 always read as 0, and attempts to write them are ignored.

The minimum head and tail register size is provided as a property value in the machine
description given to a guest.

6.4 Interrupt traps

The sun4v architecture has an interrupt trap for each of the two interrupt queues:

cpu_mondo this trap informs privileged mode that an interrupt report has been
appended to the CPU mondo queue.

dev_mondo this trap informs privileged mode that an interrupt report has been
appended to the dev mondo queue.

Both traps are disrupting, meaning that the current instruction stream can be restarted
with a retry instruction, and that they can be blocked by setting pstate.ie = 0.

6.4.1 CPU mondo interrupts

CPU to CPU messages are are sent via CPU mondo interrupts. The term mondo refers to
the original UltraSPARC-1 bus transaction where they were first introduced.

6.4.1.1 Sending CPU mondos

CPU mondos are sent via hypervisor API calls. The API allows 64 bytes of data to be sent
to the targeted CPUs. The API call also includes the ability to send mondos to multiple CPUs
in a single call to improve efficiency.

6.4.1.2 Receiving CPU mondos

CPU mondos are received via the CPU mondo queue.. When this queue is non-empty, a
cpu_mondo disrupting trap is pended to the target CPU. The mondo data received is stored
as the interrupt report.

6.4.2 Device mondo interrupts

Device mondo interrupts are received via the device mondo queue. When this queue is
non-empty, a dev_mondo disrupting trap is pended to the target CPU. The interrupt report
contents are device-specific, although a hypervisor API call does exist to allow privileged
code to target device interrupts to specific CPUs.

head/tail 0

63 6 5 0

Figure 1 : Head and Tail register formats

A Revision 1.0 Hypervisor API
January 24, 2006

7 Error model

This section describes the sun4v error handling and reporting architecture. To allow for
a degree of future proofing, this component of sun4v has to be flexible, and robust enough to
gracefully cope with error situations yet to be envisioned by system designers. In particular
it is a design goal of sun4v that an older sun4v OS be able to handle reports from new
hardware - if only via a set of default actions.

7.1 Definitions

Error class a group of errors with common attributes that are handled in a similar
manner.

Error report a message describing an error sent to privileged mode.

Error queue a FIFO list of error reports of the same class.

7.2 Error classes

The sun4v architecture defines two classes of errors: resumable and non-resumable
errors.

7.2.1 Resumable error

A resumable error indicates the delivery of an error notification that leaves the current
instruction stream in a consistent state so that execution can be resumed after the error is
handled. A resumable error does not require any specific action by privileged code; the
error may even be ignored. More sophisticated privileged code may record the error and/or
forward it to a diagnosis agent. While all corrected errors are resumable, it is important to
note that some uncorrectable errors are also resumable, e.g., an uncorrectable writeback error
is resumable since the current instruction stream is not affected, but if the corrupted data is
later fetched, a nonresumable error would occur. Whether or not the error was corrected is
indicated in the error header.

7.2.2 Non-resumable error

A non-resumable error indicates the delivery of an error notification that leaves the
current instruction stream in an inconsistent state. The instruction stream (nonprivileged or
privileged) interrupted by this error cannot be resumed without explicit software
intervention. In addition to possibly recording the error and/or forwarding it to a diagnosis
agent, privileged code must either abort the current instruction stream, or attempt to recover
from the error. The instruction stream may only be repaired if the error caused a precise
trap. If the error caused a deferred trap, it cannot be repaired. The error's trap type is
indicated in the error header.

7.3 Error reports

The sun4v architecture presents error information to privileged mode via error reports.
An error report consists of a common 64 byte header, followed by error-specific data. The
error-specific data will also be a multiple of 64 bytes in length, so the entire length of an
error message will always be a multiple of 64 bytes.

Page 18 of 126

Hypervisor API Revision 1.0
January 24, 2006

7.4 Error queues

Errors are reported to privileged mode via error reports. Error reports are appended to a
FIFO error queue. There are two error queues, one for each error class (resumable and non-
resumable). Privileged code removes errors from the front of the error queue as it handles
them.

The contents of each queue is described by a head and tail pointer. The head and tail
pointer for each queue are held in registers as offsets from the base of their respective queue
region. These interrupt queue registers are accessed with the QUEUE ASI (0x25). Each of the
registers are addressable and accessible as 64bit quantities. The ASI addresses are as follows:

Register Address Access

RESUMABLE_ERROR_QUEUE_HEAD 0x3e0 read & write

RESUMABLE_ERROR_QUEUE_TAIL 0x3e8 read only

NONRESUMABLE_ERROR_QUEUE_HEAD 0x3f0 read and write

NONRESUMABLE_ERROR_QUEUE_TAIL 0x3f8 read only

In privileged mode, the head offset registers are read and write accessible, the tail offset
registers are only readable. Attempting to write the tail register from privileged mode results
in a data_access_exception trap.

7.4.1 *_QUEUE_HEAD and *_QUEUE_TAIL

The status of each queue is reflected by its head and tail pointers:

*_QUEUE_HEAD holds the offset to the oldest error report in the queue.

*_QUEUE_TAIL holds the offset to the area where the next error report will be stored.

An event that results in the insertion of a queue entry causes the tail of that queue to be
incremented by 64 bytes. Privileged code is responsible for similarly incrementing the head
pointer to remove an entry from the queue. The queue pointers are updated using modulo
arithmetic based on the size of a queue. A queue is empty when the head is equal to the tail.
A queue is full when the insertion of one more entry would cause the tail pointer to equal the
head pointer.

The format of each of the QUEUE_HEAD and QUEUE_TAIL register is shown in Figure
. Bits 0 through 5 always read as 0, and attempts to write them are ignored.

The minimum head and tail register size is 16 bits (bits 6 though 21). Unimplemented
bits must read as zero, and be ignored when written.

7.5 Error traps

The sun4v architecture has two error traps:

resumable_error this trap informs privileged code that an error report has been appended
to the resumable error queue. This trap is a disrupting trap, meaning
that the current instruction stream can be restarted with a retry
instruction, and that resumable_error traps can be blocked by setting

head/tail 0

63 6 5 0

Figure 2 : Head and Tail register formats

A Revision 1.0 Hypervisor API
January 24, 2006

pstate.ie = 0.

nonresumable_error this trap informs privileged code that an error report has been appended
to the nonresumable error queue. This trap may be precise or deferred,
as indicated in the error header. A precise trap may be restartable if the
corruption can be repaired, but a deferred trap cannot be restarted even
if the corruption is repaired. Non-resumable errors cannot be blocked, or
nest. Privileged code must update the nonresumable queue head as
quickly as possible to indicate when it is prepared to take another
nonresumable_error trap. If the nonresumable_error queue is not empty
when another nonresumable_error trap occurs, the hypervisor will stop
the current CPU, and send a resumable error to another CPU in the same
partition. If only one CPU has been configured in the partition, the
hypervisor will inform the service processor.

At entry of the trap handler, the processor caches will be enabled and cleared of any
faults. System memory, however, may have uncorrectable errors. If the real address of a
memory error can be determined, this information will appear in the error header.

Page 20 of 126

Hypervisor API Revision 1.0
January 24, 2006

8 Machine description

To describe the resources within a virtual machine (or logical domain), a data structure
called a machine description (MD) is made available to the guest running in each logical
domain / virtual machine environment.

This section describes the transport format for the machine description (MD).

This format is provided for the contract between the producer of the MD (typically the
Service Entity) and the consumers in the logical domains (for example, OBP boot firmware
and the Solaris OS.)

8.1 Requirements

The format of the machine description is designed so that any consumer may either elect
to read and transform it into an internal representation, or merely use it in place. For the
latter, the encoding needs to be easily readable with an efficient decoder. Similarly a simple
encoding requirement also exists for the system software responsible for generating a
particular machine description.

A hypervisor will provide a machine description as a whole to a guest operating system
upon request in response to an API call. The machine description is written into a buffer
owned by the guest, and not shared with any other guest or with the hypervisor. Once
provided it is truly private to the guest. Therefore, there is no requirement that the encoding
format support any form of dynamic update or extension. Updates to a machine description
are indicated by providing a complete new machine description.

8.2 Sections

The machine description is provided in four sections as illustrated below and described
below.

These sections are linearly concatenated together to provide a single machine
description.

8.3 Encoding

Unless otherwise specified, all fields described herein are encoded in network byte order
(big-endian).

Unless otherwise specified, all fields are packed without intervening padding, and have
no required byte alignment.

Figure 3Machine Description sections

Header

Data Block

Name Block

Node Block

A Revision 1.0 Hypervisor API
January 24, 2006

Where alignment is specified, it is defined in relation to the first byte of the machine
description header.

8.4 Header

The format for the machine description header is defined below:

Byte offset Size in bytes Field name Description

0 4 transport_version Transport version number

4 4 node_blk_sz Size in bytes of node block

8 4 name_blk_sz Size in bytes of name block

12 4 data_blk_sz Size in bytes of data block

The header is easily described by the following packed C structure for a big-endian
machine:

struct MD_HEADER {
uint32_t transport_version;
uint32_t node_blk_sz;
uint32_t name_blk_sz;
uint32_t data_blk_sz;

};

The transport_version specifies the version encoding that applies to this MD. The
transport version is a 32bit integer value. The upper 16bits correspond to a major version
number, the lower 16bits correspond to a minor version number change.

8.4.1 Version numbering

The transport_version number for this specification is 0x10000, namely version 1.0.

An increase in the minor number of the transport version corresponds to the compatible
addition or removal of information encoded in the machine description. This includes, but is
not limited to, the removal of certain property types, or the addition of new property types.
Guests can expect to be able to decode some, but not all of the Machine Description, and
must handle this expectation accordingly by ignoring unknown types.

Future specification revisions defining new element types found outside a node
encapsulation (e.g. between NODE_END and NODE) are considered incompatible and
require an increase in the major version number of the MD transport header.

8.4.2 Size fields

• Each size field describes the size in bytes of the remaining three blocks in the machine
description.

• The node block follows immediately after the section header.

• The name block starts at byte offset: 16+ node_blk_sz.

• The data block starts at byte offset: 16 + node_blk_sz + name_blk_sz.

• All sizes are multiples of 16 bytes.

• The total size of the MD is 16 + node_blk_sz + name_blk_sz + data_blk_sz.

• Each section (sizes; node_blk_sz, name_blk_sz, data_blk_sz) may be a maximum of 232-16
bytes in length.

Page 22 of 126

Hypervisor API Revision 1.0
January 24, 2006

Note: The name block and data block sections are described below first, to assist in understanding
of the subsequent node block description.

8.5 Name Block

The name block provides name strings to be used for node entry naming. Legal name
strings are defined as follows:

A name string is a human readable string comprised of an unaligned linear array of
bytes (characters) terminated by a zero byte (nul '\0' character). Null termination enables the
use of C functions such as strcmp(3) for comparison.

Character encoding consists of all human readable letters and symbols from ISO
standard 8859-1 not including: blanks, “/”, “\”, “;”, “[“, “]”, “@”.

Each name string is referenced by its starting byte offset within the name block.

Name string lengths are stored along with the byte offset in the node elements, limiting
name length to 255 bytes, not including the terminating null character.

There may not be duplicate strings in the name block; a given name string may appear
only once in the name block. Thus the offset within the name block becomes a unique
identifier for a given name string within a machine description.

A single name string may be referenced from more than one node element.

The name block is padded with zero bytes to ensure that the subsequent data block is
aligned on a 16 byte boundary relative to the start of the machine description. These pad
bytes are included in the name block size.

Note: The name block contains name strings that are held independently from the data block
section in order to assist with accelerated string lookups. This technique is described later in section
24.2.

8.6 Data Block

The data block provides raw data that may be referenced by nodes in the node block.

Raw data associated with node block elements is simply a linear concatenation of the
raw data itself and has no further intrinsic structure. The size, location and content of each
data element is identified by the referring element in the node block.

Data block contents are unaligned unless specified as part of the referring property's
requirements. When alignment is required it is considered relative to the first byte of the
overall machine description. Alignment is achieved by preceeding a data element with zero
bytes in the data block.

The producer of a machine description is required to arrange that data requiring a
specific alignement in the MD is placed on an appropriate alignment boundary relative to
the start of the MD. The consumer of an MD is required to read the machine description into
a buffer aligned correctly for the largest alignment requirement the consumer may have, or
be prepared to handle unaligned data references correctly.

8.7 Node Block

The node block is comprised of a linear array of 16 byte elements aligned on a 16byte
boundary relative to the first byte of the entire machine description.

A Revision 1.0 Hypervisor API
January 24, 2006

The node block elements have specific types and are grouped as defined below so as to
form “nodes” of data. Each element is of fixed length, and each element may be uniquely
identified by its index within the node block array.

Any element A may refer to another element B simply by using the array index for the
location of element B. For example, the first element of the node block has index value 0, the
second has index 1, and so on.

8.7.1 Element format

Elements within the node block have a fixed 16byte length format comprised of big-
endian fields described below:

Byte offset Size in bytes Field name Description

0 1 tag Type of element

1 1
name_len Length in bytes of element name. Element name is

located in the name block.

2 2 _reserved_field reserved field (contains bytes of value 0)

4 4
name_offset Location offset of name associated with this element

relative to start of name block.

8 8
val 64 bit value for elements of tag type “NODE”,

“PROP_VAL” or “PROP_ARC”

8 4
data_len Length in bytes of data in data block for elements of

type “PROP_STR” and of type “PROP_DATA”

12 4

data_offset Location offset of data associated with this element
relative to start of data block for elements of tag type

“PROP_STR” and “PROP_DATA”

For a big-endian machine this is illustrated by the packed C structure below:
struct MD_ELEMENT {

uint8_t tag;
uint8_t name_len;
uint16_t _reserved_field;
uint32_t name_offset;
union {

struct {
uint32_t data_len;
uint32_t data_offset;

} y;
uint64_t val;

} d;
};

The tag field defines how each element should be interpreted.

The name associated with this element is given by the name_offset and name_len fields
giving the offset within the name block and length of the node name not including the
terminating null character.

The remainder of the node element has two formats depending upon the node tag field.
The node element either contains a 64bit immediate data value, or (for elements requiring an
extended data or string) it consists of two 32bit values providing the size and offset of the
relevant data within the data block.

Page 24 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.7.2 Tag definitions

Note: Element tag enumerations are chosen so that an ASCII dump of the node section will reveal
each element type thus aiding debugging.

The following element tag types are defined:

Tag Value ASCII equiv Name Description Value field

0x0 \0 LIST_END End of element list -

0x4e 'N' NODE Start of node definition 64bit index to next node
in list of nodes

0x45 'E' NODE_END End of node definition -

0x20 ' ' NOOP NOOP list element - to be ignored 0

0x61 'a' PROP_ARC Node property arc'ing to another node 64bit index of node
referenced

0x76 'v' PROP_VAL Node property with an integer value 64bit integer value for
property

0x73 's' PROP_STR Node property with a string value offset and length of
string within data block

0x64 'd' PROP_DATA Node property with a block of data offset and length of
property data with in the

data block

8.8 Nodes

The array of elements in the node block form a sequence of “nodes” terminated by a
single LIST_END element.

• A node is a linear sequence of two or more elements whose first element is NODE and
whose last element is NODE_END.

• Between NODE and NODE_END there are zero or more elements that define properties
for that node. These are PROP_* elements. The ordering of these elements (between
NODE and NODE_END) does not confer meaning.

• The name given to a NODE element is non-unique and defines the binding of property
elements that may be encapsulated within that node.

• The NOOP element is provided so that an entire node may be removed by overwriting all
of its constituent elements with NOOP. A NODE link that arrives at a NOOP element is
equivalent to the next NODE or LIST_END element after the sequence of NOOP
elements.

• The PROP_ARC element is used to denote an arc in a DAG, therefore a PROP_ARC
element may only reference a NODE element.

• Note: A node referenced by any PROP_ARC element cannot be removed by use of NOOP
element unless all the referring PROP_ARC elements are removed. PROP_ARC elements may
be removed by conversion to a NOOP element.

• The element index of a “NODE” element is serves as a unique identification of a complete
node and its encapsulated properties.

• The value field associated with a “NODE” element (elem_ptr->d.val) holds the element
index to the next “NODE” element within the MD.

A Revision 1.0 Hypervisor API
January 24, 2006

• A reader may skip from one node to the next without having to scan within each node for the
“NODE_END” by using this index value to locate the next NODE element in the node block.

8.9 Node definitions

The type of a node is defined by the name string associated with the NODE element
designating the start of the node in the machine description node block. Nodes can be found
by linear search matching on type or by following the PROP_ARCs of a DAG.

8.9.1 Node categories

Nodes in a machine description serve one or two purposes; to provide information about
a virtual machine resource they represent and, optionally to function as a construction node
within a DAG formed within the machine description. A construction node may contain
properties about certain resources, however its primary function is as a container for the arc
links (PROP_ARC properties) that connect to other descriptive nodes.

Nodes belong to one of four categories that determine what walkers must handle within
the MD. A node's category determines whether nodes of that type can be expected to found
within the MD, or whether nodes of that type are optional. The categories are defined below:

core Nodes of this type are always required to be present in the MD.

resource required If the resource described by the node is available within the virtual
machine, an associated node of this type is required to be present in the
MD in order to describe the resource.

required by X If a node of type X is present in the MD, then one (or more) nodes of this
type will be present in the MD and associated with X.

optional A node of this type need not appear as part of the MD, it is entirely
optional, and guest OS code should have a default policy to continue
functioning despite this absence.

8.10 Content versions

The “root” node (section 8.13.1) is unique in the entire machine description. It is; the one
node from which all other nodes can be reached, guaranteed to be the first node defined in
the node block, and is required to be present in a properly formed machine description.

The root node is primarily a construction node, with arc properties connecting to other
nodes in the description. The root node carries a string property “content-version” that
defines the version number of the content of the machine description”.

Content versioning is defined independently of the machine description transport
version. The content version identifies the rules surrounding construction of the DAG
describing the machine.

This specification is for content version “1”.

Minor changes such as the addition of new node types, properties or arc names, or the
removal of optional nodes or properties, do not require a content version number change.

Incompatible changes to the node definitions such that any possible earlier machine
description consumer will encounter problems with the newer content cause a version
change.

Page 26 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.11 Summary of node definitions

The list of currently defined nodes is as follows:

Node Name Defined in section Brief description

cache 8.14.1 Definition of a cache in the memory system hierarchy

cpu 8.13.3 Definition node for a single CPU

cpus 8.13.2 Construction node pointing to all cpu nodes

exec_unit 8.14.2 Node describing an execution unit of processor

mblock 8.13.5 Definition of single block of available memory

memory 8.13.4 Construction node pointing to all available mblock nodes

platform 8.13.6 Node describing intrinsic platform properties

root 8.13.1 The primary node

tlb 8.14.3 Definition of a TLB in the memory system heirarchy

Note: Nodes not defined in this specification must be ignored by system-software.

Each of the above nodes is defined in more detail in the following sections.

8.12 Common data definitions

As defined by the machine description transport, data values for string and data
property elements (PROP_STR and PROP_DATA) are placed in the data block of the
machine description. This section defines commonly used formats of data placed in the data
block of a machine description and referred to using elements with the PROP_DATA tag.

Additional data formats may also be defined explicitly with a specific node definition.

8.12.1 String array

A string array is a commonly used data property that defines a concatenated list of nul
character terminated strings. The PROP_DATA element that refers to this structure carries an
offset (within the MD data block) to the start of the first string. The size field corresponds to
a count of all the string bytes comprising the compound string list.

In this format strings are concatenated one immediately after the next. Thus if p is a
pointer to the first string, then p+strlen(p)+1 is a pointer to the second. The overall size of
this data field is used to determine the last string in the list. Every string in the list must
terminate with the nul character. The string pointed to by p is the last string in the array if
p+strlen(p)+1 equals the address of the property data plus its length. A string array of zero
elements is not possible since the data length of a PROP_DATA element cannot be zero.
Consumers should interpret the absence of the property as indicating an array of zero
elements.

For example; the string list { “data”,”load”,”store” } would be encoded as a PROP_DATA
pointing to a 16byte block of the data section of the MD with the byte values: 0x64 0x61 0x74 0x61
0x00 0x6c 0x6f 0x61 0x64 0x00 0x73 0x74 0x6f 0x72 0x65 0x00.

A Revision 1.0 Hypervisor API
January 24, 2006

8.13 Generic nodes

8.13.1 Root node

Name Category Required subordinates Optional subordinate

root core cpus (§8.13.2)

memory (§8.13.4)

platform (§8.13.6)

8.13.1.1 Description

A node of this type must always be the first node in a machine description.

Only one node in the machine description may be named “root”.

This root node must be the first node defined in the node block of the machine
description.

All other nodes in the forward graph can be reached starting at the root node.

8.13.1.2 Properties

Name Tag Required Description

content-version PROP_STR yes Version string for the content of this machine description.
Currently defined version is “1”

Page 28 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.13.2 Cpus node

Name Category Required subordinates Optional subordinate

cpus required by
root

cpu(§8.13.3)

8.13.2.1 Description

This construction node leads directly to all the virtual CPUs supported within this
virtual machine. The number of cpus is expected to be derived by counting the number of
subordinate cpu nodes.

8.13.2.2 Properties

None defined

A Revision 1.0 Hypervisor API
January 24, 2006

8.13.3 Cpu node

Name Category Required subordinates Optional subordinate

cpu resource
required

exec_unit (§8.14.2)

cache (§8.14.1)

tlb (§8.14.3)

8.13.3.1 Properties

Name Tag Required Description

clock-frequency PROP_VAL yes A 64-bit unsigned integer giving the frequency of the sun4v
virtual CPU in Hertz and thereby the frequency of the

processor's %tick register

compatible PROP_DATA* yes String array of cpu types this virtual cpu is compatible with.
The most specific cpu type must be placed first in the list,

finishing with the least specific.

id PROP_VAL yes A unique 64-bit unsigned integer identifier for the virtual
CPU. This identifier is the one to use for all hypervisor CPU

services for the CPU represented by this node.

isalist PROP_DATA* yes List of the instruction set architectures supported by this
virtual CPU.

mmu-#context-bits PROP_VAL no A 64-bit unsigned integer giving the number of bits forming
a valid context for use in a sun4v TTE and the MMU context

registers for this virtual CPU.

sun4v defines the minimum default value to be 13 if this
property is not specified in a cpu node.

mmu-#shared-contexts PROP_VAL no A 64-bit unsigned integer giving the number of primary and
secondary shared context registers supported by this virtual
CPU's MMU. If not present the default value is assumed to

be 0

mmu-#va-bits PROP_VAL no A 64-bit unsigned integer giving the number of virtual
address bits supported by this virtual CPU. If not present a

default value of 64 is assumed.

Note: It is legal for there to be fewer VA bits than real
address bits.

mmu-compatible PROP_DATA* no String array listing alternate mmu-type values that this
virtual CPU's MMU interface is also compatible with

mmu-max-#tsbs PROP_VAL no A 64-bit unsigned integer giving the maximum number of
TSBs this virtual CPU can simultaneously support. If not

present the default value is assumed to be 1.
Note: sun4v Solaris assumes at least 2 are available.

mmu-page-size-list PROP_VAL no A 64-bit unsigned integer treated as a bit field describing the
page sizes that may be used on this virtual CPU. Page size
encodings are defined according to the sun4v TTE format

(see §12.3.2). A bit N in this field, if set , indicates that sun4v
defined page size with encoding N is available for use. For
example bit 0 corresponds to the availability of 8K pages.

If not present, a default value of 0x9 is assumed, indicating
the sun4v default availability of 8K and 4M pages.

mmu-type PROP_STR yes Name for the kind of MMU in use by this cpu

Currently defined names are: “sun4v”

nwins PROP_VAL yes A 64-bit unsigned integer giving the number of SPARCv9
register windows available on this virtual CPU

Page 30 of 126

Hypervisor API Revision 1.0
January 24, 2006

Name Tag Required Description

q-cpu-mondo-#bits PROP_VAL yes A 64-bit unsigned integer the maximum size (in bits) of the
cpu mondo queue head and tail registers

q-dev-mondo-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the device mondo queue head and tail registers

q-resumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the resumable error queue head and tail registers

q-nonresumable-#bits PROP_VAL yes A 64-bit unsigned integer giving the maximum size (in bits)
of the non-resumable queue head and tail registers

Note: The 'compatible' will have “SUNW,sun4v” as the last element for systems of the sun4v
machine class.

Note: Currently defined ISAs for constructing an 'islist' are: "sparcv9", "sparcv8plus",
"sparcv8", "sparcv8-fsmuld", "sparcv7", "sparc".

A Revision 1.0 Hypervisor API
January 24, 2006

8.13.4 Memory node

Name Category Required subordinates Optional subordinate

memory required by
root

mblock(§8.13.5)

8.13.4.1 Description

This construction node leads directly to all the blocks of real address space backed by
memory within this virtual machine.

8.13.4.2 Properties

None defined

Page 32 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.13.5 Mblock node

Name Category Required subordinates Optional subordinate

mblock resource
required

8.13.5.1 Description

This node represents a single contiguous range of a virtual machine's real address space
that is associated with real memory.

8.13.5.2 Properties

Name Tag Required Description

base PROP_VAL yes A 64-bit unsigned integer giving the base real address of the
memory block represented bythis node

size PROP_VAL yes A 64-bit unsigned integer giving the size in bytes of the
memory block represented by this node

A Revision 1.0 Hypervisor API
January 24, 2006

8.13.6 Platform node

Name Category Required subordinates Optional subordinate

platform core

8.13.6.1 Description

This node holds general properties describing the platform a guest operating system is
running on.

8.13.6.2 Properties

Name Tag Required Description

banner-name PROP_STR yes The banner name of the system.

hostid PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold the
host id assigned to the virtual machine. The upper 32bits

must be zero.

mac-address PROP_VAL no A 64-bit unsigned integer in which the lower 48bits holds the
mac address assigned to the virtual machine. The upper

16bits must be zero.

name PROP_STR yes The platform binding name of the system. May not contain
white space characters.

serial# PROP_VAL no A 64-bit unsigned integer in which the lower 32 bits hold the
serial number assigned to the virtual machine. The upper

32bits must be zero.

stick-frequency PROP_VAL yes A 64-bit unsigned integer giving the frequency in Hertz of
the system (%stick) clock for the virtual machine.

watchdog-
resolution

PROP_VAL no The resolution, in milliseconds, of the watchdog API
service. This property is present if the watchdog timer is

service is available, but is otherwise not required.

watchdog-max-
timeout

PROP_VAL no The largest number of milliseconds that is valid as a
parameter to the watchdog timer service API. This property
is present if the watchdog timer is service is available, but is

otherwise not required.

Note: A platform's banner-name is cosmetic only, typically of the form “Sun Fire T100”, but the
name is part of the platform binding, typically of the form “SUNW,Sun-Fire-T100”.

Page 34 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.14 Memory hierarchy nodes

The following nodes are used to convey information about the host memory system
heirarchy to a guest.

8.14.1 Cache node

Name Category Required subordinates Optional subordinate

cache optional cache (§8.14.1)

8.14.1.1 Description

This node describes a cache in the memory system hierarchy.

8.14.1.2 Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the
cache (number of ways in each set). A value of 0 indicates
fully associative, a value of 1 indicates direct-mapped, a

value of 2 indicates 2-way and so on.

compatible-type PROP_DATA no Holds a string array of “type” field values. In the event that a
precise type match cannot be made using the “type”

property this property may be searched for compatible
types.

level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this
cache in the memory hierarchy.

line-size PROP_VAL yes A 64-bit unsigned integer giving the number of bytes
comprising a single cache line. This is the size of the caches

allocation unit that is matched by a single cache tag

sub-block-size PROP_VAL no A 64-bit unsigned integer giving the number of bytes
comprising a single cache sub-block. This is the size of the
cache's coherence unit size that is matched by a single state

entry. This property may be omitted if it would have the
same value as the line-size property.

size PROP_VAL yes A 64-bit unsigned integer giving the capacity (size) in bytes
of the cache.

type PROP_DATA yes String array listing what may be held in this cache. Generic
types are “instruction” and “data”.

A Revision 1.0 Hypervisor API
January 24, 2006

8.14.2 Exec-unit node

Name Category Required subordinates Optional subordinate

exec-unit optional cache (§8.14.1)

tlb (§8.14.3)

8.14.2.1 Description

This node is describes an execution unit associated with a virtual CPU. Each execution
unit may perform multiple functions/operations, and properties are defined appropriate not
just to the whole execution unit, but also to individual function capabilities.

8.14.2.2 Properties

Name Tag Required Description

compatible-type PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the

“type” property this property may be searched for
compatible types.

type PROP_DATA yes String array listing functional capabilities of this execution
unit. Generic types are:

“ifetch” - instruction fetcher

“integer” - integer instruction execution

“fp” - floating point instruction execution

“vis” - vis instruction execution

“integer-load” - integer load operations

“integer-store” - integer store operations

“fp-load” - floating point load operations

“fp-store” - floating point store operations

Niagara specific types are:

“n1-crypto” - Niagara 1.0 crypto unit

Page 36 of 126

Hypervisor API Revision 1.0
January 24, 2006

8.14.3 TLB node

Name Category Required subordinates Optional subordinate

tlb optional

8.14.3.1 Description

A TLB node describes a Translation Lookaside Buffer (MMU translation cache) in the
memory system hierarchy.

8.14.3.2 Properties

Name Tag Required Description

associativity PROP_VAL yes A 64-bit unsigned integer giving the associativity of the TLB
(number of ways in each set). A value of 0 indicates fully

associative, a value of 1 indicates direct-mapped, a value of 2
indicates 2-way and so on.

compatible-type PROP_DATA no If defined holds a string array of “type” field values. In the
event that a precise type match cannot be made using the

“type” property this property may be searched for
compatible types.

entries PROP_VAL yes A 64-bit unsigned integer giving the number of translation
entries

level PROP_VAL yes A 64-bit unsigned integer giving the notional level of this
translation buffer in the overall page translation hierarchy

page-size-list PROP_VAL yes A 64-bit unsigned integer treated as a bit field describing the
page sizes that may be used in this TLB. Page size encodings

are defined according to the sun4v Architecture
Specification. A bit N in this field, if set , indicates that sun4v

defined page size with encoding N is available for use. For
example bit 0 corresponds to the availability of 8K pages.

type PROP_DATA yes String array listing functional capabilities of this execution
unit. Currently defined types are:

“instruction” - translate instruction fetches

“data” - translates data accesses

A Revision 1.0 Hypervisor API
January 24, 2006

9 API versioning

This section describes the API versioning interface available to all privileged code.

9.1 API call

9.1.1 api_set_version

trap# CORE_TRAP
function# API_SET_VERSION
arg0 api_group
arg1 major_number
arg2 req_minor_number

ret0 status
ret1 act_minor_number

The API service enables a guest to request and check for a version of the Hypervisor
APIs with which it may be compatible. It uses its own trap number to ensure consistency
between future versions of the virtual machine environment. API services are grouped into
sets that are specified by the argument api_group, (defined in the table below). For the
specified group the guest's requested API major version number is given by the argument
major_number and a requested API minor version number is given by the argument
req_minor_number.

If the major_number is supported, the actual minor version implemented by the
Hypervisor is returned in ret1 (act_minor_number). Note that the actual minor version
number may be less than, equal to, or greater than the requested minor version number. (See
Notes, below).

If the major_number is not supported, the Hypervisor returns an error code in ret0, and
ret1 is undefined. (See Errors, below.)

If the major_number requested is zero, the version of the api_group selected is returned to
the initial un-negotiated state, and the call will return with EOK in status, and zero in
act_minor_number.

The version number of a specified API group may be set at any time with this API
service, however;

1. The act of selecting an API version does not reset any previous state associated with
services within a group.

2. Any API calls belonging to the same api_group being made concurrently with this
api_set_version service will have undefined results.

3. Calls to APIs made concurrently with api_set_version that are not in api_group
proceed as normally defined.

4. Simultaneous calls to api_set_version using the same api_group, may succeed but
leave the api_group in an undefined state.

5. Simultaneous calls to api_set_version and api_get_version using the same api_group
have undefined results for api_get_version.

The API groups are defined in Appendix B: Number Registry (on page 122) together
with the approved version numbers for each of the API services defined in this specification.

Page 38 of 126

Hypervisor API Revision 1.0
January 24, 2006

Programming note: Each API group is treated independently of the others from a versioning
perspective, so one group can have its version negotiated while APIs from other groups are actively
being used. However, a guest operating system should take care to ensure that while a api_set_version
is in progress, no APIs from the same api_group are used, and no other calls to api_set_version or
api_get_version are made using the same api_group.

9.1.1.1 Errors

EINVAL If api_group field is invalid or unsupported
ENOTSUPPORTED If major number for that api_group is not

supported
EOK If api_group and major_number match, or

major_number is zero

9.1.1.2 Usage Notes:

This API uses its own trap number, not for performance reasons, but to ensure its
constancy even in the face of new API major versions.

Regardless of version number, the Hypervisor core APIs (CORE_TRAP) defined above
enables any guest to print a message and cleanly exit its virtual machine environment in the
event it is unsuccessful in negotiating an API version with which to communicate with other
hypervisor functions.

The following informative text is provided as a guide to assist the reader in
understanding the hypervisor versioning API.

API functions and returned data structures are categorized into specific groups. Each
group represents an area of hypervisor functionality that may change independently of the
others, and therefore may be versioned independently.

For each API group there is a major and a minor version number. Differences in the
major version number indicate incompatible changes. Differences in the minor number
indicate compatible changes, such that a higher version number espoused by the hypervisor
will be compatible with a lower minor number requested by a guest. If the api_group is not
supported the api_version function will return EINVAL. If the major version number for a
valid api_group is not supported the api_version function will return ENOTSUPPORTED.

The handling of an unsupported API version is purely guest policy, however a guest
may freely attempt a different major version if it is capable of driving that alternate interface.
The suggested minimal behaviour is to print a warning message and exit the virtual
machine.

By way of example consider a guest that requests minor version X, and this API may
return minor version Y for a given major_number and api_group.

If X = Y, then the requested minor version is available.

If Y < X, the guest must be able to determine if the interface with minor version Y offers
the required services and proceed accordingly. (This is a guest policy issue.)

If Y > X, then the guest may assume it can operate compatibly with version Y. Minor
version number increments are defined to be compatible with the preceeding version, so in
general the guest may accept Y when Y > X. In this case, the guest may want to print a
warning, but that is up to the policy of the guest.

Alternatively in the event that Y>X, the hypervisor may elect to emulate version X, thus
returning X.

A Revision 1.0 Hypervisor API
January 24, 2006

9.1.2 api_get_version

trap# CORE_TRAP
function# API_GET_VERSION
arg0 api_group

ret0 status
ret1 major_number
ret2 minor_number

This service is used to determine the major and minor number of the most recently
successfully negotiated API version for the specified group (see section 9.1.1). In the event
that no API version has been successfully negotiated the call returns the error code EINVAL
and ret1 and ret2 are set to 0.

9.1.2.1 Errors

EINVAL - No API version yet successfully negotiated

Page 40 of 126

Hypervisor API Revision 1.0
January 24, 2006

10 Domain services

The following services enable privileged software to request information about or to
affect the entire virtual machine domain.

10.1 API call

10.1.1 mach_exit

trap# FAST_TRAP
function# MACH_EXIT
arg0 exit_code

This service stops all CPUs in the virtual machine domain and places them into the
stopped state. The 64-bit exit_code may be passed to a service entity as the domain's exit status.

On systems without a service entity, the domain will undergo a reset, and the boot
firmware will be reloaded.

This function will never return to the guest that invokes it.

Note: by convention a exit_code of zero denotes successful exit by the guest code. A non-zero
exit_code denotes a guest specific error indication.

10.1.1.1 Errors

This service does not return.

A Revision 1.0 Hypervisor API
January 24, 2006

10.1.2 mach_desc

trap# FAST_TRAP
function# MACH_DESC
arg0 buffer
arg1 length

ret0 status
ret1 length

This service copies the most current machine description into the buffer indicated by the
real address in arg0. The buffer provided must be 16 byte aligned. Upon success or EINVAL
this service returns the actual size of the machine description is provided in the ret1 (length)
return value.

Note: A method of determining the appropriate buffer size for the machine description is to first
call this service with a buffer length of 0 bytes.

10.1.2.1 Errors

EBADALIGN Buffer is badly aligned
ENORADDR Buffer is to an illegal real address.
EINVAL Buffer length is too small for complete machine

description.

Page 42 of 126

Hypervisor API Revision 1.0
January 24, 2006

10.1.3 mach_sir

trap# FAST_TRAP
function# MACH_SIR

This service provides a software initiated reset of a virtual machine domain. All CPUs
are captured as soon as possible, all hardware devices are returned to the entry default state,
and the domain is restarted at the SIR (trap type 0x4) real trap table (rtba) entry point on one
of the CPUs. The single CPU restarted is selected as determined by platform specific policy.
Memory is preserved across this operation.

10.1.3.1 Errors

This service does not return.

A Revision 1.0 Hypervisor API
January 24, 2006

10.1.4 mach_set_soft_state

Trap# FAST_TRAP
function# MACH_SET_SOFT_STATE
arg0 software_state
arg1 software_description_ptr

ret0 error code

This service enables the guest to report its soft state to the hypervisor. The soft state of
the guest consists of two primary components: The first identifies whether the guest software
is running or not. The second contains optional details specific to the software. The current
soft state may be retrieved using the mach_get_soft_state API service.

The software_state argument is a 64-bit value used to indicate whether the guest
software is operating normally or in a transitional state. The states “normal” and “in-
transition” are defined in the Sun Indicator Standard.

SIS_NORMAL 0x1 guest software is operating normally
SIS_TRANSITION 0x2 guest software is in transition

The argument software_description_ptr is a real address of a data buffer of size 32 bytes
aligned on a 32byte boundary. This buffer provides additional details specific to the guest
software its operating state. The contents of this buffer are treated as a NUL terminated and
padded 7-bit ASCII string of up to 31 characters not including the NUL termination.

The initial soft state is set to SIS_TRANSITION with an empty string for the software
description.

10.1.4.1 Errors

EINVAL - software_state is not valid, or
software_description is not NUL terminated

ENORADDR - software_description is not a valid real addr buffer
EBADALIGNED - software_description is not correctly aligned

10.1.4.2 Programming Notes

This service enables a guest operating system, or boot loader, to indicate its state to an
entity external to the guest's virtual machine environment. Two simple states; ”normal” or
“transition” enable a guest to indicate whether it is operating normally, or in a transitional
state such as booting or shutting down. The ability to provide a short message string enables
the guest to supply additional human-readable information to supplement the two basic
states.

Examples of this human readable string could be:
"OpenBoot before boot"
"OpenBoot booting"
"Solaris booting"
"Solaris panicked"

The virtual machine state is initially set to SIS_TRANSITION in the expectation that the
guest operating environment will set the state to SIS_NORMAL once successfully started.

For example, while loading Solaris, OpenBoot may ignore, or set the state to transition
several times (updating the informational string to identify different steps in the boot
process), once booted and running Solaris may set the state to SIS_NORMAL indicating that
it booted successfully. Similarly, when shutting down or panicking, Solaris may set the state
to SIS_TRANSITION.

Page 44 of 126

Hypervisor API Revision 1.0
January 24, 2006

10.1.5 mach_get_soft_state

Trap# FAST_TRAP
function# MACH_GET_SOFT_STATE
arg0 software_description_ptr

ret0 error code
ret1 software_state

This service retrieves the current value of the guest's software state.

The software_description_ptr argument is the real address of a guest provided 32 byte
buffer to be aligned on a 32 byte boundary. The API service will return the current value of
the guest software description in this buffer. The hypervisor is only guaranteed to return up
to and including the first NUL byte of the software description buffer contents (see
mach_set_guest_state).

10.1.5.1 Errors

ENORADDR - software_description is not a valid real addr buffer
EBADALIGNED - software_description is not correctly aligned

A Revision 1.0 Hypervisor API
January 24, 2006

10.1.6 mach_watchdog

trap# FAST_TRAP
function# MACH_WATCHDOG
arg0 timeout

ret0 status
ret1 time_remaining

This API service provides a basic watchdog timer service.

A guest uses this API to set a watchdog timer. Once the guest has set the timer, it must
call the timer service again either to disable or postpone the expiration. If the timer expires
before being reset or disabled, then the hypervisor takes a platform specific action leading to
guest termination within a bounded time period. The platform action may include recovery
actions such as reporting the expiration to a Service Processor, and/or automatically restarting
the guest.

The timeout parameter is specified in milli-seconds, however the implemented granularity
is given by the watchdog-resolution property in the platform node of the guest's machine
description (see §8.13.6). The largest allowed timeout value is specified by the watchdog-max-
timeout property of the platform node.

If the timeout argument is not zero, the watchdog timer is set to expire after a minimum
of timeout milli-seconds.

If the timeout argument is zero, the watchdog timer is disabled.

If the timeout value exceeds the value of the watchdog-max-timeout property, the
hypervisor leaves the watchdog timer state unchanged, and returns a status of EINVAL.

The time_remaining return value is valid regardless of whether the return status is EOK or
EINVAL. A non-zero return value indicates the number of milli-seconds that were remaining
until the timer was to expire. If less than one milli-second remains, the return value is 1. If
the watchdog timer was disabled at the time of the call, the return value is 0.

Programming note: If the hypervisor cannot support the exact timeout value requested, but can
support a larger timeout value, the hypervisor may round the actual timeout to a value larger than the
requested timeout, consequently the time_remaining return value may be larger than the previously
requested timeout value.

Programming note: Any guest OS debugger should be aware that the watchdog service may be in
use. Consequently, it is recommended that the watchdog service is disabled upon debugger entry (e.g.
reaching a breakpoint), and then re-enabled upon returning to normal execution. The API has been
designed with this in mind, and the time_remaining result of the disable call may be used directly as
the timeout argument of the re-enable call.

Page 46 of 126

Hypervisor API Revision 1.0
January 24, 2006

11 CPU services

CPUs represent devices that can execute software threads. A single chip that contains
multiple cores or strands is represented as multiple CPUs with unique CPU identifiers.
CPUs are exported to OBP via the machine description (and to Solaris via the device tree).
CPUs are always in one of three states: stopped, running, or error.

11.1 CPU id and CPU list

A cpu id is a pre-assigned 16bit value that uniquely identifies a CPU within a logical
domain.

Operations that are to be be performed on multiple CPUs specify them via a CPU list. A
CPU list is an array in real memory, of which each 16-bit word is a CPU id.

CPU lists are passed through the API as two arguments: the first is the number of entries
(16-bit words) in the CPU list, and the second is the (real address) pointer to the CPU id list.

11.2 API calls

11.2.1 cpu_start

trap# FAST_TRAP
function# CPU_START
arg0 cpuid
arg1 pc
arg2 rtba
arg3 target_arg0

ret0 status

Start CPU with id cpuid with pc in %pc and with a real trap base address value of rtba.
The indicated CPU must be in the stopped state. The supplied rtba must be aligned on a
256byte boundary. On successful completion, the specified cpu will be in the running state
and will be supplied with target_arg0 in %o0 and rtba in %tba.

11.2.1.1 Errors

ENOCPU Invalid cpuid
EINVAL Target cpuid is not in the stopped state
ENORADDR Invalid pc or rtba real address
EBADALIGN Unaligned pc or unaligned rtba
EWOULDBLOCK if starting resource is not available

A Revision 1.0 Hypervisor API
January 24, 2006

11.2.2 cpu_stop

trap# FAST_TRAP
function# CPU_STOP
arg0 cpu

ret0 status

Stop CPU cpu. The indicated CPU must be in the running state. On completion, it will
be in the stopped state. It is not legal to stop the current CPU.

Note: As this service cannot be used to stop the current cpu, this service may not be used to stop
the last running CPU in a domain. To stop and exit a running domain a guest must use the
mach_exit service.

11.2.2.1 Errors

ENOCPU Invalid cpu
EINVAL target cpu is the current cpu
EINVAL target cpu is not in the running state
EWOULDBLOCK if stopping resource is not available
ENOTSUPPORTED if not supported on the platform

11.2.3 cpu_set_rtba

trap# FAST_TRAP
function# CPU_SET_RTBA
arg0 rtba

ret0 status
ret1 previous_rtba

Set the real trap base address of the local cpu to the value of rtba. The supplied rtba must
be aligned on a 256byte boundary. Upon success the previous value of rtba is returned in
ret1.

Note: the real trap table is described in the sun4v architecture specification.

Note: this service does not affect %tba

11.2.3.1 Errors

ENORADDR Invalid rtba real address
EBADALIGN rtba is incorrectly aligned for a trap table

11.2.4 cpu_get_rtba

trap# FAST_TRAP
function# CPU_GET_RTBA

ret0 status
ret1 previous_rtba

Returns the current value of rtba in ret1.

11.2.4.1 Errors

No possible error

Page 48 of 126

Hypervisor API Revision 1.0
January 24, 2006

11.2.5 cpu_yield

trap# FAST_TRAP
function# CPU_YIELD

ret0 status

Suspend execution on the current CPU. Execution may resume for any reason but is
guaranteed to resume for any event that would generate a disrupting trap if pstate.ie=1.

11.2.5.1 Programming note:

This API may be used to save power and prevent contention on some CPUs by disabling
hardware strands.

The guest is responsible for handling any race conditions that may occur when calling
this service with pstate.ie=1.

Interrupts which are blocked by some mechanism other than pstate.ie (for example %pil)
are not guaranteed to cause a return from this service.

11.2.5.2 Errors

No possible error

11.2.6 cpu_qconf

trap# FAST_TRAP
function# CPU_QCONF
arg0 queue
arg1 base raddr
arg2 nentries

ret0 status

Configure queue queue to be placed at real address base, and of nentries entries. nentries
must be a power of two number of entries. Base must be aligned exactly to match the queue
size. Each queue entry is 64 bytes long, so for example, a 32 entry queue must be aligned on
a 2048 byte real address boundary.

The specified queue is un-configured if nentries is 0.

For the current version of this API service the argument queue is defined as follows:
queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

11.2.6.1 Errors

ENORADDR Invalid base
EINVAL Invalid queue or,

nentries not a power of two in number or,
nentries is less than two or too large.

EBADALIGN baseaddr is not correctly aligned for size

A Revision 1.0 Hypervisor API
January 24, 2006

11.2.7 cpu_qinfo

trap# FAST_TRAP
function# CPU_QINFO
arg0 queue

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for queue queue. The base_raddr is the currently defined
read address base of the defined queue, and nentries is the size of the queue in terms of
number of entries.

For the current version of this API service the argument queue is defined as follows:
queue description
0x3c cpu mondo queue
0x3d device mondo queue
0x3e resumable error queue
0x3f non-resumable error queue

If the specified queue is a valid queue number, but no queue has been defined this
service will return success, but with nentries set to 0 and base_raddr will have an undefined
value.

11.2.7.1 Errors

EINVAL Invalid queue

11.2.8 cpu_mondo_send

trap# FAST_TRAP
function# CPU_MONDO_SEND
arg0-1 cpulist
arg2 data

ret0 status

Send a mondo interrupt to CPU list cpulist with 64 bytes of data pointed to by data. data
must be a 64 byte aligned real address. The mondo data will be delivered to the cpu_mondo
queues of the recipient cpus.

In all cases, (error or no), the cpus in cpulist to which the mondo has been successfully
delivered will be indicated by having their entry in cpulist updated with the value 0xffff.

11.2.8.1 Errors

EBADALIGN Mondo data is not 64byte aligned
or cpulist is not 2byte aligned

ENORADDR Invalid data mondo address, or
invalid cpu list address

ENOCPU Invalid CPU in cpus
EWOULDBLOCK Some or all of the listed cpus did not

receive the mondo
EINVAL cpulist includes caller's cpuid

Page 50 of 126

Hypervisor API Revision 1.0
January 24, 2006

11.2.9 cpu_myid

trap# FAST_TRAP
function# CPU_MYID

ret0 status
ret1 cpuid

Return the hypervisor ID handle for the current CPU. Used by a virtual cpu to discover
its own identity.

11.2.9.1 Errors

No errors defined

11.2.10 cpu_state

trap# FAST_TRAP
function# CPU_STATE
arg0 cpuid

ret0 status
ret1 state

Retrieve the current state of cpu cpuid. The states are:
CPU_STATE_STOPPED 0x1 cpu is in the stopped state
CPU_STATE_RUNNING 0x2 cpu is in the running state
CPU_STATE_ERROR 0x3 cpu is in the error state

11.2.10.1 Errors

ENOCPU Invalid CPU in cpuid

A Revision 1.0 Hypervisor API
January 24, 2006

12 MMU services

These hypervisor services control the behavior of address translations handled by the
hypervisor.

A basic sun4v guest operating system, need not use any of these services at all. The
default/initial operating environment for a guest is with virtual address translation disabled.
In this mode all instructions and data references are made with real addresses.

If a guest operating system enables MMU translations, then virtual to real mappings may
be specified in one of three different ways; either as permanent mappings, or as mappings
that may be evicted and reloaded into system TLBs directly via MMU service functions, or
indirectly via Translation Storage Buffers (TSBs). Moreover, with translations enabled, a
guest Operating System must declare a Fault Status area for the hypervisor to provide
information in the event of a translation fault.

12.1 Translation Storage Buffer (TSB) specification

The TSB functions control two sets of TSBs, one for when the virtual address context is
zero, and one for when it is not zero. The demap functions remove translations from
hardware TLBs.

A TSB description is a memory data structure that defines a single TSB:

offset size contents

0 2 page size to use for index shift in TSB

2 2 associativity of TSB

4 4 size of TSB in TTEs (16 bytes)

8 4 context_index

12 4 page size bitmask

16 8 real address of TSB base

24 8 reserved

The maximum TSB associativity supported is indicated in the guest machine description
(see section 8.13.3).

12.1.1 Page sizes

The sun4v architecture defines value encodings of page size for translation table entries
(TTEs). The page size bitmask indicates which of these encodings may be specified for TTEs
within a given TSB. For each bit in the page size bitmask, if set, the sun4v page size may be
specified. For example, bit 0 corresponds to an 8KByte page size, bit 1 to a 64K page size, and
so on in multiples of 8 of the page size for each bit in the field:

Page 52 of 126

Hypervisor API Revision 1.0
January 24, 2006

Bit Page size

0 8K

1 64K

2 512K

3 4MB

4 32MB

5 256MB

6 2GB

7 16GB

Bits 8 through 15 are reserved and must be set to zero.

The index shift page size indicates the page size to use for computing the TSB index for
TTE retrieval. This value is the same as the page size value that may be specified in an
individual sun4v TTE:

Value Page size assumed for
index computation

0 8K

1 64K

2 512K

3 4MB

4 32MB

5 256MB

6 2GB

7 16GB

Values 8 though 15 are reserved. The index shift value must correspond to the smallest
page size specified in the page size bit mask.

12.1.2 Context index

This TSB description field enables TSBs to be defined where the context value for a page-
translation is supplied within each entry of the TSB, or where a single value applies to the
whole TSB. The latter enables a single TSB to be used for multiple context values (the context
field within each TSB entry (TTE) is required to be zero). The context index field within a
TSB description selects which of these two modes the TSB is defined to use.

If a context index field value of -1 (0xffffffff) is given in the TSB description, the TSB is
defined to use the context field within each TTE.

If a context index field contains a value between 0 and mmu-#shared-contexts, the context
value used for every entry in the TSB (TTE) will be taken from sun4v context register
identified by the context index field at the time the TTE is used. For example, a translation
required for (express or implied) ASI_PRIMARY and matched by a TTE in the TSB, will take
its context value from the register PRIMARY_CONTEXT1 if the context index field of the
TSB description is 1.

Any other value supplied in the context index field is invalid.

A Revision 1.0 Hypervisor API
January 24, 2006

The value of mmu-#shared-contexts is provided in the cpu node (§8.13.3) of the machine
description for each virtual cpu.

12.2 MMU flags

The MMU APIs are designed to function for both instruction and data address
translations. Therefore, many of these interfaces take an MMU 'flags' argument in order to
specify whether the operation is relevant to instruction or data mappings, or both. To ensure
consistency between the MMU services this flags argument is defined here, and as follows:

The flags argument applies the API operation to instruction translations if bit 1 is set,
and in addition applies the API operation to data translation entries if bit 0 is set. For every
API service requiring a flags argument, at least one of bit 0 and/or bit 1 must be set.

It is a programming error to request an instruction mapping (using the mapping flags)
whose TTE's X bit is zero.

Implementation note: For hardware implementations with unified instruction and data
functions (for example; TLBs); Mapping an instruction translation entry may also cause an identical
data translation entry to be mapped, and vice-versa even if not explicitly requests by the flags
argument. Similarly, demapping an instruction translation entry may also cause the data translation
entry to be demaped, and vice-versa even if not explicitly requested by the flags setting.

12.3 Translation table entries

A TTE in a TSB describes virtual addresses to real address mappings.

Sun4v specifies a TSB entry format with the following features:

12.3.1 TSB entry tag word

The 64bit TSB entry tag word has a 16bit context field, and a 42 bit VA field.

All 16-bits of the context field are significant. However, platforms are not required to
support the full range (0 through 65535) of possible context values, thus certain context
values are reserved and should not be used in the context field of the TSB entry tag. Use of a
reserved context value results in a TSB entry miss. The guaranteed minimum range of
supported context values is 0 through 8191. The availability of values between 8192 and
65535 is platform dependent. The maximum context value supported on a specific CPU is
given in the machine description provided to a guest operating system.

The reserved field must be written as 0. Any non-zero values in this field will result in a
TSB miss.

Page 54 of 126

TSB tag word

Context reserved VA[63:22]

63 48 47 42 41 0

TSB data word

V NFO SW RA[NN:13] IE E CP C
V

P X W S
W

S
W

Sz[3:0]

63 62 61 56 55 13 12 11 10 9 8 7 6 5 4 3 0

Figure 4 TSB entry (TTE) format

Hypervisor API Revision 1.0
January 24, 2006

The VA field holds the upper 42bits of the virtual address to be matched for this TSB
entry. All bits of this field are significant. For page sizes larger than 4MB, the appropriate
lower VA address bits must be zero, or a TSB entry miss results.

Platforms are not required to support the full range of 64bit virtual addresses, however
for platforms supporting fewer than 64 VA bits the highest order bit is sign-extended
through bit 63 and compared with the entire VA field of the TTE entry tag word. This sign
extension of virtual addresses results in a “hole” in the supported virtual address spaces.
TSB entries whose VA tag fields fall within the hole will result in a TSB miss for that entry.

The range of virtual address bits supported for a specific CPU is given in the machine
description provided to a guest operating system.

12.3.2 TSB entry data word

The sun4v TTE's range of the real address space is 56bits.

The UltraSPARC-1 TTE's lock bit has been removed from sun4v. Non faulting translation
entries can be specified by privileged code via. a hypervisor API call.

The sun4v TTE data bitfields are as follows:

Bit Field Mnemonic Meaning

63 V Valid. =1 if TTE is a valid entry

62
NFO Non Faulting Only. If set to 1 this TTE is intended to match only loads

using the non-faulting ASIs

61 - 56 SW Software useable bits

55-13 RA Real address bits 55 to 13. For page sizes larger than 8KB, the low order
address bits below the page size are ignored

12 IE Invert endianness

11 E Side effect. If the side-effect bit it set, speculative loads will trap for
addresses within the page, noncacheable memory addresses other than
block loads and stores are strongly ordered against other E-bit accesses

and non-cacheable stores are not merged. This bit should be set for pages
that map I/O devices having side-effects.

Note: the E bit does not prevent normal instruction prefetching. The E bit
has no effect for instruction fetches.

Note: The E bit does not force noncacheable access. It is expected, but not
required that the CP and CV bits are cleared to 0 with the E bit. If both CP

and CV are set ot 1 along with the E bit, the result is undefined

Note: The E bit and the NFO bit are mutually exclusive: both bits should
never be set in any TTE.

9 & 10 CP & CV Cacheable Physical & Cacheable Virtual. These two bits are passed to the
cache memory sub-system on any access and determine the cacheability of

that access as follows:

If CP is set to 1 then the mapped data or instructions may be cached in
any physically indexed cache. If CP and CV are both set to 1 then the

mapped data or instructions may be cached in any physically or virtually
index cache. If CP is cleared to 0 then the contents of the mapped page are

non-cacheable.

8 P Privileged. If P is set to 1 then this mapping will only match in the TLB if
the processor i s in privileged mode (PSTATE.priv = 1)

7 X eXecute. If the X bits is set to 1 instructions may be fetched and executed
from this page.

A Revision 1.0 Hypervisor API
January 24, 2006

Bit Field Mnemonic Meaning

6 W Writeable. If the W bit is set to 1, data mapped by this page may be
written to.

5 & 4 SW Software useable bits

3-0 Sz Size: page size

0 = 8KB, 1=64KB, 2=512KB, 3=4MB, 4=32MB, 5=256MB, 6=2GB, 7=16GB

Sizes 8 through 15 are reserved.

The size field of the sun4v TSB entry format is four bits wide. Page size values 0 through
7 are defined, while values 8 through 15 are reserved and should not be used. Attempts to
specify page sizes in the range 8 through 15 result in an instruction_access_exception or
data_access_exception indicating an invalid page size.

12.4 Translation storage buffer (TSB) configuration

TSBs are configured by privilege mode code via a hypervisor API call.

Each TSB can be configured in one of two different modes; context-match or context-
ignore. The mode determines how a TSB entry is matched when the TSB is searched:

In context-match mode the context field of the TTE tag is matched against one of the
nucleus, primary or secondary context registers (as specified by the actual or implied access
ASI). This mode enables a TSB to be used for caching translation entries belonging to
different contexts. Matching with the context field allows only those translations belonging
to the current contexts to loaded into the TLB.

In context-ignore mode the context field of a TSB entry is ignored when the TSB is
searched. A TSB configured in this mode must have the context field of each translation
entry set to 0. When a valid TSB entry is matched it is loaded into the TLB with a context
value provided from one of the primary or secondary context registers. The choice of
primary or secondary is determined by the actual or implied access ASI, the index of the
context register is specified as part of the TSB configuration. Context-ignore mode enables
TSB entries to be used with more than one context.

Note: please refer to the section above on context registers, and in particular the possibility of
multi-matching TLB entries.

12.5 Permanent and non-permanent mappings

It is an error to attempt to create overlapping permanent mappings. It is an error to
create non-permanent mappings that conflict with permanent mappings. These errors are not
necessarily detected, but may result in undefined behavior.

12.6 MMU Fault status area

MMU related faults have their status and fault address information placed into a
memory region made available by privileged code. Like the TSBs above, the fault status area
for each virtual processor is declared to the hypervisor via a hypervisor API call.

It is possible for MMU related faults to be delivered either by the hypervisor or directly
by processor hardware if so implemented. For this reason, the MMU fault area is arranged
on an aligned address boundary with instruction and data fault fields arranged into distinct
64byte blocks.

The layout of the MMU fault status area is described in the table below:

Page 56 of 126

Hypervisor API Revision 1.0
January 24, 2006

Offset (bytes) Size (bytes) Field

0x00 0x8 Instruction fault type (IFT)

0x08 0x8 Instruction fault address (IFA)

0x10 0x8 Instruction fault context A(IFC)

0x18 0x28 reserved

0x40 0x8 Data fault type (DFT)

0x48 0x8 Data fault address (DFA)

0x50 0x8 Data fault context (DFC)

0x58 0x28 reserved

The reserved fields must not be used. Their contents are undefined, and are not
guaranteed preserved if written.

The definition of the values of the instruction and data fault type fields is as follows:

Code Fault type

1 fast miss

2 fast protection

3 MMU miss

4 invalid RA

5 privileged violation

6 protection violation

7 NFO access

8 so page/NFO side effect

9 invalid VA

10 invalid ASI

11 nc atomic

12 privileged action

13 reserved

14 unaligned access

15 invalid page size

16 to -2 reserved

-1 (0xffffffffffffffff) multiple errors

For each MMU related trap, the fault status area is updated as follows; (a blank entry for
IFT,IFA,IFC,DFT,DFA or DFC indicates the field is not updated for the particular condition
and is therefore undefined, and '●' indicates the field is updated with the relevant fault type,
address or context information for the trap).

A Revision 1.0 Hypervisor API
January 24, 2006

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

instruction_access_exception invalid RA (0x4) ● ● instruction fetch to real
address out of range

privilege violation (0x5)

● ● ●

non privileged
instruction access to

privileged page
(TTE.p=1)

NFO access (0x7)
● ● ●

instruction access to
non-faulting load page

(TTE.nfo=1)

invalid VA (0x9) ● ● ● instruction virtual
access out of range

Invalid TSB entry

● ● ●

Hardware table walk
found an invalid RA in

a TTE loaded from a
TSB

Protection violation (0x6)
● ● ●

Instruction access to
page without execute

permission

Multiple error (-1) ● Hardware encountered
multiple errors

instruction_access_MMU_miss MMU miss (0x3) ● ● ● TSB Miss

data_access_exception invalid RA (0x4) ● ● ● real address out of
range

privilege violation (0x5)
● ● ●

Non-privileged data
access to privileged

page (TTE.p=1)

NFO access (0x7)

● ● ●

Data access to non-
faulting page

(TTE.nfo=1) with ASI
other than a non-

faulting ASI.

so page/NFO side effect
(0x8) ● ● ●

Non-faulting ASI data
access to side-effect

page (TTE.e=1)

invalid VA (0x9) ● ● ● Data or branch virtual
access out of range

invalid ASI (0xa) ● ● ● Invalid ASI for
instruction

nc atomic (0xb)
● ● ●

Atomic access to non-
cacheable page

(TTE.cp=0)

privileged action (0xc)

● ● ●

Data access by non-
privileged software

using a privileged or
hyper-privileged ASI

invalid page size (0xf) ●

Multiple error (-1) ● Hardware encountered
multiple errors

data_access_MMU_miss MMU miss (0x3) ● ● ● TSB Miss

data_access_protection protection violation (0x6) ● ● ● store to non-
writeable ??

Page 58 of 126

Hypervisor API Revision 1.0
January 24, 2006

sun4v trap type Fault type IFT IFA IFC DFT DFA DFC Comments

mem_address_not_aligned
LDDF_mem_address_not_aligned
STDF_mem_address_not_aligned
LDQF_mem_address_not_aligned
STQF_mem_address_not_aligned

unaligned access (0xe)

● ●

● ●

● ●

● ●

● ●

Data access is not
properly aligned

fast_instruction_access_MMU_miss fast miss (0x1) ● ● TLB Miss

fast_data_access_MMU_miss fast miss (0x1) ● ● TLB MIss

fast_data_access_protection fast protection (0x2)
● ●

Store data access to
page without write

permission

privileged_action privileged action (0xc) ● ● Use of privileged ASI
when pstate.priv = 0

A Revision 1.0 Hypervisor API
January 24, 2006

12.7 API calls

12.7.1 mmu_tsb_ctx0

trap# FAST_TRAP
function# MMU_TSB_CTX0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with context zero. tsbdptr
is a pointer to an array of ntsbs TSB descriptions.

Note: the maximum number of TSBs available to a virtual CPU is given by the mmu-
max-#tsbs property of the cpu's corresponding “cpu” node in the machine description.

12.7.1.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

12.7.2 mmu_tsb_ctxnon0

trap# FAST_TRAP
function# MMU_TSB_CTXNON0
arg0 ntsb
arg1 tsbdptr

ret0 status

Configures the TSBs for the current CPU for virtual addresses with non-zero contexts.
tsbdptr is a pointer to an array of ntsbs TSB descriptions.

A maximum of 16 TSBs may be specified in the TSB description list.

12.7.2.1 Errors

ENORADDR Invalid tsbdptr or TSB base in a TSB descriptor
EBADALIGN tsbdptr is not aligned to an 8 byte boundary, or

TSB base in a descriptor is not aligned for a
TSB size

EBADPGSZ Invalid pagesize in a TSB descriptor
EBADTSB Invalid associativity or size in a TSB descriptor
EINVAL Invalid ntsbs, or

invalid context index in a TSB descriptor, or
index page size not equal to smallest page size

in page size bitmask field.

Page 60 of 126

Hypervisor API Revision 1.0
January 24, 2006

12.7.3 mmu_demap_page

trap# FAST_TRAP
function# MMU_DEMAP_PAGE
arg0 reserved
arg1 reserved
arg2 vaddr
arg3 context
arg4 flags

ret0 status

Demaps any page mapping of virtual address vaddr in context context for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 12.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

12.7.3.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

12.7.4 mmu_demap_ctx

trap# FAST_TRAP
function# MMU_DEMAP_CTX
arg0 reserved
arg1 reserved
arg2 context
arg3 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for context
context for the current virtual CPU. Any virtual tagged caches are guaranteed to be kept
consistent. The flags argument is defined according to section 12.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

12.7.4.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid context or flag value
ENOTSUPPORED arg0 or arg1 is non-zero

A Revision 1.0 Hypervisor API
January 24, 2006

12.7.5 mmu_demap_all

trap# FAST_TRAP
function# MMU_DEMAP_ALL
arg0 reserved
arg1 reserved
arg2 flags

ret0 status

Demaps all non-permanent virtual page mappings previously specified for the current
virtual CPU. Any virtual tagged caches are guaranteed to be kept consistent. The flags
argument is defined according to section 12.2; “MMU flags“.

Arguments arg0 and arg1 are reserved and must be set zero.

12.7.5.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid flag value
ENOTSUPPORED arg0 or arg1 is non-zero

12.7.6 mmu_map_addr

trap# MMU_MAP_ADDR
arg0 vaddr
arg1 context
arg2 TTE
arg3 flags

ret0 status

This API service creates a non-permanent mapping using the TTE to virtual address
vaddr for context for the calling virtual CPU. The flags argument is defined according to
section 12.2; “MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Note: This API call is for privileged code to specify temporary translation mappings without the
need to create and manage a TSB.

12.7.6.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE

Page 62 of 126

Hypervisor API Revision 1.0
January 24, 2006

12.7.7 mmu_map_perm_addr

trap# FAST_TRAP
function# MMU_MAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 TTE
arg3 flags

ret0 status

This API service creates a permanent mapping using the TTE to virtual address vaddr for
the calling virtual CPU for context 0. The reserved field must be specified as zero.

A maximum of 8 such permanent mappings may be specified by privileged code.
Mappings may be removed with mmu_unmap_perm_addr below.

This service guarantees an automatic demap of any conflicting non-permanent
mappings.

It is an error to attempt to create overlapping permanent mappings. It is an error to
create non-permanent mappings that conflict with existing permanent mappings.

The flags argument is defined according to section 12.2; “MMU flags“.

Given a TTE specified with the valid bit clear, this service will have undefined behavior.

Programming Notes:

This API call is used to specify address space mappings for which privileged code does
not expect to receive misses. For example, this mechanism can be used to map kernel nucleus
code and data.

 To effect automatic de-map, this service may demap all non-permanent mappings.

12.7.7.1 Errors

EINVAL Invalid vaddr, or flag error
EBADPGSZ Invalid page size value
ENORADDR Invalid real address in TTE
ETOOMANY Too many mappings (maximum of 8 reached)

A Revision 1.0 Hypervisor API
January 24, 2006

12.7.8 mmu_unmap_addr

trap# MMU_UNMAP_ADDR
arg0 vaddr
arg1 context
arg2 flags

ret0 status

Demaps virtual address vaddr in context context on this CPU. This function is intended to
be used to demap pages mapped with mmu_map_addr. This service is equivalent to
invoking mmu_demap_page with only the current CPU in the CPU list.

The flags argument is defined according to section 12.2; “MMU flags“.

Attempting to perform an unmap operation for a previously defined permanent
mapping will have undefined results.

12.7.8.1 Errors

The implementation of this function is not required to check for all possible errors, and
may return the following error codes:

EINVAL Invalid vaddr, context or flag value

Page 64 of 126

Hypervisor API Revision 1.0
January 24, 2006

12.7.9 mmu_unmap_perm_addr

trap# FAST_TRAP
function# MMU_UNMAP_PERM_ADDR
arg0 vaddr
arg1 reserved
arg2 flags

ret0 status

Demaps any permanent page mapping (established via mmu_map_perm_addr) of
virtual address vaddr for context 0 for the current virtual CPU. Any virtual tagged caches are
guaranteed to be kept consistent.

The flags argument is defined according to section 12.2; “MMU flags“.

12.7.9.1 Errors

EINVAL Invalid vaddr or flag value
ENOMAP Specified mapping was not found

12.7.10 mmu_fault_area_conf

trap# FAST_TRAP
function# MMU_FAULT_AREA_CONF
arg0 raddr

ret0 status
ret1 previous mmu fault area raddr

Configure the MMU fault status area for the calling CPU. A 64 byte aligned real address
specifies where MMU fault status information is placed. The return value is the previously
specified area, or 0 for the first invocation. Specifying a fault area at real address 0 is not
allowed.

12.7.10.1 Errors

ENORADDR Invalid real address
EBADALIGN Invalid alignment for fault area

A Revision 1.0 Hypervisor API
January 24, 2006

12.7.11 mmu_enable

trap# FAST_TRAP
function# MMU_ENABLE
arg0 enable_flag
arg1 return_target

ret0 status

This function either enables or disables virtual address translation for the calling CPU
within the virtual machine domain. If the enable_flag is zero, translation is disabled, any non-
zero value will enable translation.

When this function returns, the newly selected translation mode will be active. The
argument return_target is a virtual address if translation is being enabled, or return_target is a
real address in the event that translation is to be disabled.

Upon successful completion, this API service will return control to the return_target
address with the new operating mode. In the event of call failure, the previous operating
mode remains, and the service simply returns to the caller with the appropriate error code in
ret0.

12.7.11.1 Errors

ENORADDR Invalid real address when disabling translation
EBADALIGN return_target is not aligned to an instruction
EINVAL enable_flag requests current operating mode;

(e.g. disable if already disabled).

12.7.12 mmu_tsb_ctx0_info

trap# FAST_TRAP
function# MMU_TSB_CTX0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctx0 into
the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of TSB
description entries.

Upon return, ret1 always contains the number of TSB descriptions previously
configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

12.7.12.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

Page 66 of 126

Hypervisor API Revision 1.0
January 24, 2006

12.7.13 mmu_tsb_ctxnon0_info

trap# FAST_TRAP
function# MMU_TSB_CTXNON0_INFO
arg0 maxtsbs
arg1 bufferptr

ret0 status
ret1 ntsbs

This function returns the TSB configuration as previously defined by mmu_tsb_ctxnon0
into the buffer provided by arg1. The size of the buffer is given in arg1 in terms of number of
TSB description entries.

Upon return ret1 always contains the number of TSB descriptions previously configured.

If zero TSBs were configured, then EOK is returned with ret1 containing 0.

12.7.13.1 Errors

EINVAL supplied buffer (maxtsbs) is too small
EBADALIGN bufferptr is badly aligned
ENORADDR invalid real address for for buffer at bufferptr

12.7.14 mmu_fault_area_info

trap# FAST_TRAP
function# MMU_FAULT_AREA_INFO

ret0 status
ret1 fara

This API service returns the currently defined MMU fault status area for the current
CPU. The real address of the fault status area is returned in ret1, or 0 is returned in ret1 if no
fault status area is defined.

Note: mmu_fault_area_conf may be called with the return value (ret1) from this service if there is
a need to save and restore the fault area for a cpu.

12.7.14.1 Errors

no errors are defined

A Revision 1.0 Hypervisor API
January 24, 2006

13 Cache and Memory services

In general, caches and memory are not exposed to the supervisor, although they are
described to it in the machine description.

13.1 API calls

13.1.1 mem_scrub

trap# FAST_TRAP
function# MEM_SCRUB
arg0 raddr
arg1 length

ret0 status
ret1 length scrubbed

This service zeros the memory contents for the memory address range raddr to
raddr+length-1. It also creates a valid error-checking code for the memory address range
raddr to raddr+length-1.

This service starts scrubbing at raddr, but may scrub less than length bytes of memory.
On success the actual length scrubbed is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary or must
contain the start address and length from a sun4v error report.

Note: There are two uses for this function: The first use is to block clear and initialize memory and
the second is to scrub an uncorrectable error reported via a resumable or non-resumable trap. The
second use requires the arguments to be equal to the raddr and length provided in a sun4v memory
error report.

13.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

Page 68 of 126

Hypervisor API Revision 1.0
January 24, 2006

13.1.2 mem_sync

trap# FAST_TRAP
function# MEM_SYNC
arg0 raddr
arg1 length

ret0 status
ret1 length synced

For the memory address range raddr to raddr+length-1, this service forces the next access
within that range to be fetched from main system memory.

This service starts syncing at raddr, but may sync less than length bytes of memory. On
success the actual length synced is returned in ret1.

The arguments raddr and length must be aligned to an 8K page boundary.

13.1.2.1 Errors

ENORADDR Invalid raddr
EBADALIGN Either the start address or length are

not correctly aligned.
EINVAL length == 0

A Revision 1.0 Hypervisor API
January 24, 2006

14 Device interrupt services

Device interrupts are allocated to system bus bridges by the hypervisor, and described to
the boot firmware in the machine description. OBP then describes them to Solaris via the
device tree. The services described here are the generic interrupt services only, it is expected
that the system bus nexus drivers will have additional APIs for functions that are specific to
that bridge.

14.1 Definitions

These definitions apply to the following services:

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the
sun4v device's "reg" property as defined by the Sun4v Bus Binding to
Open Firmware.

devino Device interrupt number. Specifies the relative interrupt number within
the device. The unique combination of devhandle and devino are used
to identify a specific device interrupt.

Note: The devino value is the same as the values in the "interrupts" property or
"interrupt-map" property in the sun4v device.

 sysino System Interrupt Number. A 64-bit unsigned integer representing a
unique interrupt within a virtual machine.

intr_state A flag representing the interrupt state for a given sysino. The state
values are defined as:

Name Value Definition

INTR_IDLE 0 Nothing Pending

INTR_RECEIVED 1 Interrupt received by hardware

INTR_DELIVERED 2 Interrupt delivered to queue

intr_enabled A flag representing the 'enabled' state for a given sysino. The state
values are defined as:

Name Value Definition

INTR_DISABLED 0 sysino not enabled

INTR_ENABLED 1 sysino enabled

14.2 API calls

Page 70 of 126

Hypervisor API Revision 1.0
January 24, 2006

14.2.1 intr_devino_to_sysino

trap# FAST_TRAP
function# INTR_DEVINO2SYSINO
arg0 devhandle
arg1 devino

ret0 status
ret1 sysino

Converts a device specific interrupt number given by the arguments devhandle and devino
into a system specific ino (sysino).

14.2.1.1 Errors

EINVAL Invalid devhandle/devino

14.2.2 intr_getenabled

trap# FAST_TRAP
function# INTR_GETENABLED
arg0 sysino

ret0 status
ret1 intr_enabled

Returns state in intr_enabled for the interrupt defined by sysino. Return values are:
INTR_ENABLED or INTR_DISABLED

14.2.2.1 Errors

EINVAL Invalid sysino

14.2.3 intr_setenabled

trap# FAST_TRAP
function# INTR_ENABLED
arg0 sysino
arg1 intr_enabled

ret0 status

Sets the 'enabled' state of the interrupt sysino legal values for intr_enabled are:
INTR_ENABLED or INTR_DISABLED

14.2.3.1 Errors

EINVAL Invalid sysino or intr_enabled value

A Revision 1.0 Hypervisor API
January 24, 2006

14.2.4 intr_getstate

trap# FAST_TRAP
function# INTR_GETSTATE
arg0 sysino

ret0 status
ret1 intr_state

Returns the current state of the interrupt given by the sysino argument.

14.2.4.1 Errors

EINVAL Invalid sysino

14.2.5 intr_setstate

trap# FAST_TRAP
function# INTR_SETSTATE
arg0 sysino
arg1 intr_state

ret0 status

Sets the current state of the interrupt given by the sysino argument to the value given in
the argument intr_state.

Note: Setting the state to INTR_IDLE clears any pending interrupt for sysino.

14.2.5.1 Errors

EINVAL Invalid sysino or invalid intr_state

14.2.6 intr_gettarget

trap# FAST_TRAP
function# INTR_GETTARGET
arg0 sysino

ret0 status
ret1 cpuid

Returns the cpuid that is the current target of the interrupt given by the sysino argument.

The cpuid value returned is undefined if the target has not been set via intr_settarget.

14.2.6.1 Errors

EINVAL Invalid sysino

Page 72 of 126

Hypervisor API Revision 1.0
January 24, 2006

14.2.7 intr_settarget

trap# FAST_TRAP
function# INTR_SETTARGET
arg0 sysino
arg1 cpuid

ret0 status

Set the target cpu for the interrupt defined by the argument sysino to the target cpu value
defined by the argument cpuid.

14.2.7.1 Errors

EINVAL Invalid sysino
ENOCPU Invalid cpuid

A Revision 1.0 Hypervisor API
January 24, 2006

15 Time of day services

The time of day (TOD) is maintained by the hypervisor on a per-domain basis. Setting
the TOD in one domain does not affect any other domain.

Time is described by a single unsigned 64-bit word equivalent to a time_t for the POSIX
time(2) system call. The word contains the time since the Epoch (00:00:00 UTC, January 1,
1970), measured in seconds.

15.1 API calls

15.1.1 tod_get

trap# FAST_TRAP
function# TOD_GET

ret0 status
ret1 time-of-day

Returns the current time-of-day. May block if TOD access is temporarily not possible.

15.1.1.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

15.1.2 tod_set

trap# FAST_TRAP
function# TOD_SET
arg0 tod

ret0 status

The current time-of-day is set to the value specified in arg0. May block if TOD access is
temporarily not possible.

15.1.2.1 Errors

EWOULDBLOCK TOD resource is temporarily unavailable
ENOTSUPPORTED If TOD not supported

Page 74 of 126

Hypervisor API Revision 1.0
January 24, 2006

16 Console services

This section describes the API services provided for a guest console.

16.1 API calls

16.1.1 cons_getchar

trap# FAST_TRAP
function# CONS_GETCHAR

ret0 status
ret1 character

Returns a character from the console device. If no character is available then an
EWOULDBLOCK error is returned. If a character is available, then the returned status is
EOK and the character value is in ret1.

A virtual BREAK is represented by the 64-bit value -1.

A virtual HUP signal is represented by the 64-bit value -2.

16.1.1.1 Errors

EWOULDBLOCK No character available

16.1.2 cons_putchar

trap# FAST_TRAP
function# CONS_PUTCHAR
arg0 char

ret0 status

This service sends a character to the console device. Only character values between 0 and
255 may be used. Values outside this range are invalid except as follows:

A virtual BREAK may be sent using the 64-bit value -1.

16.1.2.1 Errors

EINVAL Illegal character
EWOULDBLOCK Output buffer currently full, would block

A Revision 1.0 Hypervisor API
January 24, 2006

17 Core dump services

When privileged code in a domain crashes/panics it may provide a capability to dump
its internal state for later debugging. Such “core dumps” can be provided from the field to
help diagnose field problems. However the hypervisor virtualizes much of the platform
hardware, thus obscuring information about the physical resources that can be useful in
diagnosing configuration related bugs.

Instead of adding a core dumping capability to the hypervisor, this API allows the
domain's privileged code to dump platform and hypervisor-specific information as part of
its own core dumping procedure. Privileged code allocates a section of its own memory
space and informs the hypervisor that this may be used as a “dump buffer” for the
hypervisor to place hypervisor specific debug/dump information.

Once declared, a dump buffer can be used at any time by the hypervisor to record
private debug information, thus avoiding having such logs within the hypervisor itself.

The required size of the dump buffer is provided to the domain as part of the initial
machine description.

During a core-dump operation, a guest requests that the hypervisor update any
information in the dump buffer in preparation to being dumped as part of the domain's
memory image.

Dump buffer information is highly platform and hypervisor specific. The format and
content of the buffer are hypervisor private and should not be considered useable by sun4v
code. Some platform hypervisors may provide no dump buffer information for security
reasons.

Page 76 of 126

Hypervisor API Revision 1.0
January 24, 2006

17.1 API calls

17.1.1 dump_buf_update

trap# FAST_TRAP
function# DUMP_BUF_UPDATE
arg0 raddr
arg1 size

ret0 status
ret1 required size of dump buffer

This function declares a domain dump buffer to the hypervisor. The raddr supplies the
real base address of the dump-buffer and must be 64-byte aligned.

The size field specifies the size of the dump buffer allocated, and may be larger than the
minimum size specified in the machine description.

The hypervisor will fill the dump buffer with opaque data.

Note: a guest may elect to include dump buffer contents as part of a crash dump to assist with
debugging. This function may be called any number of times so that a guest may relocate a dump
buffer, or create “snapshots” of any dump-buffer information. Each call to dump_buf_update
atomically declares the new dump buffer to the hypervisor.

A specified size of 0 unconfigures the dump buffer.

If raddr is an illegal or badly aligned real address, then any currently active dump buffer
is disabled (equivalent to passing a size of 0) and an error is returned.

In the event that the call fails with EINVAL, ret1 contains the minimum size required by
the hypervisor for a valid dump buffer.

17.1.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on 64byte boundary
EINVAL size is non-zero but less than minimum

size required
ENOTSUPPORTED If not supported for current logical domain

17.1.2 dump_buf_info

trap# FAST_TRAP
function# DUMP_BUF_INFO

ret0 status
ret1 real address of current dump buffer
ret2 size of current dump buffer

This service returns the currently configured dump buffer description.

A returned size of 0 bytes indicates an undefined dump buffer. In this case the return
address (ret1) is undefined.

17.1.2.1 Errors

No errors defined

A Revision 1.0 Hypervisor API
January 24, 2006

18 Trap trace services

The hypervisor provides a trap tracing capability for privileged code running on each
virtual CPU.

Privileged code provides a round-robin trap trace queue within which the hypervisor
writes 64 byte entries detailing hyperprivileged traps taken on behalf of privileged code.
This is provided as a debugging capability for privileged code.

18.1 Trap trace buffer control structure

The trap trace control structure is 64 bytes long and placed at the start (offset 0) of the
trap trace buffer.

The format of the control structure is as follows:
Offset Size Field definition

0x00 8 Head offset
0x08 8 Tail offset
0x10 0x30 Reserved

The head offset is the offset of the most recently completed entry in the trap-trace buffer.
The tail offset is the offset of the next entry to be written.

The control structure is owned and modified by the hypervisor. A guest may not modify
the control structure contents. Attempts to do so will result in undefined behavior for the
guest.

18.2 Trap trace buffer entry format

Trap trace entries all have the following format:

Offset Size Name Description

0 x0 1 TTRACE_ENTRY_TYPE Indicates hypervisor or guest entry

0x01 1 TTRACE_ENTRY_HPSTATE Hyper-privileged state

0x02 1 TTRACE_ENTRY_TL Trap level

0x03 1 TTRACE_ENTRY_GL Global register level

0x04 2 TTRACE_ENTRY_TT Trap type

0x06 2 TTRACE_ENTRY_TAG Extended trap identifier

0x08 8 TTRACE_ENTRY_TSTATE Trap state

0x10 8 TTRACE_ENTRY_TICK Tick

0x18 8 TTRACE_ENTRY_TPC Trap PC

0x20 8 TTRACE_ENTRY_F1 Entry specific

0x28 8 TTRACE_ENTRY_F2 Entry specific

0x30 8 TTRACE_ENTRY_F3 Entry specific

0x38 8 TTRACE_ENTRY_F4 Entry specific

Page 78 of 126

Hypervisor API Revision 1.0
January 24, 2006

For each entry the TTRACE_ENTRY_TYPE field value is defined as follows:

Value Name Description

0x00 TTRACE_TYPE_UNDEF Entry content undefined

0x01 TTRACE_TYPE_HV Hypervisor trap entry

0xff TTRACE_TYPE_GUEST Guest entry via ttrace_addentry service

18.3 API calls

18.3.1 ttrace_buf_conf

trap# FAST_TRAP
function# TTRACE_BUF_CONF
arg0 raddr
arg1 nentries

ret0 status
ret1 nentries

This function requests hypervisor trap tracing and declares a virtual cpu's trap trace
buffer to the hypervisor. The raddr supplies the real base address of the trap trace queue and
must be 64byte aligned.

The nentries field specifies the size in 64-byte entries of the buffer allocated. Specifying a
value of zero for nentries disables trap tracing for the calling virtual cpu. The buffer allocated
must be sized for a power of two number of 64 byte trap trace entries plus an initial 64 byte
control structure.

This function may be called any number of times so that a virtual cpu may relocate a
trap trace buffer, or create “snapshots” of information.

If raddr is an illegal or badly aligned real address, then trap tracing is disabled
(equivalent to passing a nentries value of 0) and an error is returned.

Upon success ret1 is nentries.

Upon failure with EINVAL this service call returns in ret1 (nentries) the minimum
number of buffer entries required.

Upon other failure ret1 is undefined.

18.3.1.1 Errors

ENORADDR Invalid raddr
EINVAL if size too small
EBADALIGN raddr not aligned on 64byte boundary

A Revision 1.0 Hypervisor API
January 24, 2006

18.3.2 ttrace_buf_info

trap# FAST_TRAP
function# TTRACE_BUF_INFO

ret0 status
ret1 raddr
ret2 size

This function returns the size and location of the previously declared trap-trace buffer. In
the event that no buffer was previously declared, or the buffer disabled (e.g. via a
ttrace_bufconf call with a size of zero), this call will return a size of zero (0) bytes.

18.3.2.1 Errors

none defined

18.3.3 ttrace_enable

trap# FAST_TRAP
function# TTRACE_ENABLE
arg0 enable

ret0 status
ret1 previous enable state

This function enables (or disables) trap tracing, returning the previously enabled state in
ret1. Future systems may define various flags for the enable argument (arg0), for the moment
a guest should pass (uint64_t)-1 to enable, and (uint64_t)0 to disable all tracing - which will
ensure future compatibility.

18.3.3.1 Errors

EINVAL No buffer currently defined

18.3.4 ttrace_freeze

trap# FAST_TRAP
function# TTRACE_FREEZE
arg0 freeze

ret0 status
ret1 previous_state

This function freezes (or unfreezes) trap tracing, returning the previous freeze state in
ret1. A guest should pass a non-zero value to freeze and a zero value to un-freeze all tracing.

The returned previous_state is 0 for not frozen, and 1 for frozen.

18.3.4.1 Errors

EINVAL No buffer currently defined

Page 80 of 126

Hypervisor API Revision 1.0
January 24, 2006

18.3.5 ttrace_addentry

trap# TTRACE_ADDENTRY
arg0 tag (16-bits)
arg1 data word 0
arg2 data word 1
arg3 data word 2
arg4 data word 3

ret0 status

This function adds and entry to the trap trace buffer. Upon return only arg0/ret0 is
modified - none of the other registers holding arguments are volatile across this hypervisor
service.

18.3.5.1 Errors

EINVAL No buffer currently defined

A Revision 1.0 Hypervisor API
January 24, 2006

19 Logical Domain Channel services

The hypervisor provides communication channels to services and other domains. These
channels are created by the Logical Domain Manager, and manifest themselves within a
domain as an endpoint. Two endpoints are connected together and traffic is transferred by
the hypervisor thus forming a logical domain channel (LDC).

19.1 Endpoints

Endpoints available within a domain are described within the Machine Description
available via the MACH_DESC hypervisor API call. This API specification makes no
assumptions about the peer on the other end of a LDC - the LDC APIs serve simply as a link
communications layer with which higher level protocols are used for communication in and
out of a logical domain. The details of these higher level protocols are usage specific and
outside the scope of this link-layer specification.

Communication via an LDC occurs in the form of short fixed-length (64byte) message
packets. Logical Domain Channels form bi-directional point-to-point links so all traffic sent
to a local endpoint will arrive only at the corresponding endpoint at the other end of the
channel. This fixed-length point-to-point nature means there is no address header or
switching/routing operation performed by the hypervisor as part of packet delivery.

LDCs are not guaranteed as reliable link level communication channels. If a reliable or
larger packet communication mechanism is required it must be provided as a protocol on top
of this basic link-level communication mechanism.

19.2 LDC queues

LDC packets are delivered to an endpoint and deposited by the hypervisor into a queue
provided by a guest operating system from its real address space. Only one receive queue
may be allocated for each endpoint, and a channel direction is considered “down” while no
receive queue is provided. Messages from a channel are deposited by the hypervisor at the
“tail” of a queue, and the receiving guest indicates receipt by moving the corresponding
“head” pointer for the queue.

A receive queue is defined to be consistent with other sun4v architecture queues, i.e.
with the same restrictions as the cpu/device and error mondo queues. The guest identifies
the queue to the hypervisor using an API call (LDC_RXQ_CONF) that is consistent with other
queue API calls (for example CPU_QCONF). The head and tail pointers for an endpoint's
receive queue are held by the hypervisor. Both the head and tail pointers are available via a
hypervisor API call, but only the head pointer may be modified by a guest – also using a
hypervisor API call.

To send LDC messages a guest operating system uses a transmit queue allocated from its
own real address space. Only one transmit queue may be defined per-endpoint, undefined
behavior for the sending guest occurs if the same memory is used for two or more different
endpoint transmit queues. Like the receive queue, the transmit queue is defined to be
consistent with other sun4v architecture queues such as the device and cpu mondo queues.
The transmit queue's head and tail pointers are accessed via hypervisor API call.

To send a packet down an LDC, a guest deposits the packet into its transmit queue for
the local endpoint, and then uses a hypervisor API call to update the tail pointer for the
transmit queue. If an LDC is “up”, then from the point at which a transmit queue becomes
non-empty (a guest updates the tail pointer for its transmit queue), LDC packets are
transferred from the transmit queue to the receive queue of the corresponding endpoint.

Page 82 of 126

Hypervisor API Revision 1.0
January 24, 2006

The assignment of a transmit queue does not affect whether an LDC is up or down.

19.3 LDC interrupts

To avoid the need for polling, LDC endpoints may be enabled to deliver interrupts to a
guest domain indicating a change of endpoint state. Interrupts appear as mondos on the
device mondo queue, with the mondo payload indicating the local LDC endpoint who's
status has changed. The following endpoint states may be enabled to cause an interrupt;

LDC is down, LDC is up, receive queue is non-empty, receive queue is full, transmit
queue is empty, transmit queue is not-full.

A Revision 1.0 Hypervisor API
January 24, 2006

19.4 API calls

The following API calls are provided for LDC usage.

19.4.1 ldc_tx_qconf

trap# FAST_TRAP
function# LDC_TX_QCONF
arg0 ldc_id
arg1 base raddr
arg2 nentries

ret0 status

Configure transmit queue for LDC endpoint ldc_id to be placed at real address base, and
of nentries entries. nentries must be a power of two number of entries. Base_raddr must be
aligned exactly to match the queue size. Each queue entry is 64 bytes long, so for example, a
32 entry queue must be aligned on a 2048 byte real address boundary.

Upon configuration of a valid transmit queue the head and tail pointers are set to an
hypervisor specific indentical value indicating that the queue initially is empty.

The endpoint's transmit queue is un-configured if nentries is 0.

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

Programming note: A transmit queue may be specified even in the event that the LDC is down
(peer endpoint has no receive queue specified). Transmission will begin as soon as the peer endpoint
defines a receive queue.

Programming note: It is recommended that a guest wait for a transmit queue to empty prior to
reconfiguring it, or un-configuring it. Re or un-configuration of a non-empty transmit queue behaves
exactly as defined above, however it is undefined as to how many of the pending entries in the original
queue will be delivered prior to the re-configuration taking effect. Furthermore, as the queue
configuration causes a reset of the head and tail pointers there is no way for a guest to determine how
many entries have been sent after the configuration operation.

19.4.1.1 Errors

ENORADDR Invalid base_raddr
ECHANNEL Invalid ldc_id
EINVAL nentries not a power of two in number or,

nentries is less than two or too large.
EBADALIGN base_raddr is not correctly aligned for size

Page 84 of 126

Hypervisor API Revision 1.0
January 24, 2006

19.4.2 ldc_tx_qinfo

trap# FAST_TRAP
function# LDC_TX_QINFO
arg0 ldc_id

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for the transmit queue of LDC endpoint ldc_id. The
base_raddr is the currently defined real address base of the defined queue, and nentries is the
size of the queue in terms of number of entries.

If the specified ldc_id is a valid endpoint number, but no transmit queue has been
defined this service will return success, but with nentries set to 0 and base_raddr will have an
undefined value.

19.4.2.1 Errors

ECHANNEL Invalid ldc_id

19.4.3 ldc_tx_get_state

trap# FAST_TRAP
function# LDC_TX_GET_STATE
arg0 ldc_id

ret0 status
ret1 head_offset
ret2 tail_offset
ret3 channel_state

Return the transmit state, and the head and tail queue pointers for the transmit queue of
LDC endpoint ldc_id. The head and tail values are the byte offset of the head and tail
positions of the transmit queue for the specified endpoint.

The channel_state has the following defined values:
LDC_CHANNEL_DOWN 0
LDC_CHANNEL_UP 1

19.4.3.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No transmit queue defined
EWOULDBLOCK Operation would block

A Revision 1.0 Hypervisor API
January 24, 2006

19.4.4 ldc_tx_set_qtail

trap# FAST_TRAP
function# LDC_TX_SET_QTAIL
arg0 ldc_id
arg1 tail_offset

ret0 status

Update the tail pointer for the transmit queue associated with the LDC endpoint ldc_id.
The tail offset specified must be aligned on a 64byte boundary, and calculated so as to
increase the number of pending entries on the transmit queue. Any attempt to decrease the
number of pending transmit queue entries is considered an invalid tail offset and will result
in an EINVAL error.

Programming note: Since the tail of the transmit queue may not be moved “backwards”, the
transmit queue may be “flushed” by configuring a new transmit queue, whereupon the hypervisor will
configure the initial transmit head and tail pointers to be equal (queue empty).

19.4.4.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No transmit queue defined, or

invalid tail_offset value
EBADALIGN tail_offset not correctly aligned
EWOULDBLOCK Operation would block

Page 86 of 126

Hypervisor API Revision 1.0
January 24, 2006

19.4.5 ldc_rx_qconf

trap# FAST_TRAP
function# LDC_RX_QCONF
arg0 ldc_id
arg1 base raddr
arg2 nentries

ret0 status

Configure receive queue for LDC endpoint ldc_id to be placed at real address base, and of
nentries entries. nentries must be a power of two number of entries. Base_raddr must be
aligned exactly to match the queue size. Each queue entry is 64 bytes long, so for example, a
32 entry queue must be aligned on a 2048 byte real address boundary.

The endpoint's receive queue is un-configured if nentries is 0.

If a valid receive queue is specified for a local endpoint the LDC is in the up state for the
purpose of transmission to this endpoint.

Programming note: The maximum number of entries for each queue for a specific cpu may be
determined from the machine description.

Programming note: As receive queue configuration causes a reset of the queue's head and tail
pointers there is no way for a guest to determine how many entries may have been received between a
preceeding ldc_get_rx_state API call and the completion of the configuration operation. It should be
noted that datagram delivery is not guaranteed via domain channels anyway, and therefore any higher
protocol should be resilient to datagram loss if necessary. However, to overcome this specific race
potential it is recommended, for example, that a higher level protocol be employed to ensure either re-
transmission, or ensure that no datagrams are pending on the peer endpoint's transmit queue prior to
the configuration operation.

19.4.5.1 Errors

ENORADDR Invalid base_raddr
ECHANNEL Invalid ldc_id
EINVAL nentries not a power of two in number or,

nentries is less than two or too large.
EBADALIGN base_raddr is not correctly aligned for size

A Revision 1.0 Hypervisor API
January 24, 2006

19.4.6 ldc_rx_qinfo

trap# FAST_TRAP
function# LDC_RX_QINFO
arg0 ldc_id

ret0 status
ret1 base raddr
ret2 nentries

Return the configuration info for the receive queue of LDC endpoint ldc_id. The
base_raddr is the currently defined real address base of the defined queue, and nentries is the
size of the queue in terms of number of entries.

If the specified ldc_id is a valid endpoint number, but no receive queue has been defined
this service will return success, but with nentries set to 0 and base_raddr will have an
undefined value.

19.4.6.1 Errors

ECHANNEL Invalid ldc_id

19.4.7 ldc_rx_get_state

trap# FAST_TRAP
function# LDC_RX_GET_STATE
arg0 ldc_id

ret0 status
ret1 head_offset
ret2 tail_offset
ret3 channel_state

Return the receive state, and the head and tail queue pointers of the receive queue for
LDC endpoint ldc_id. The head and tail values are the byte offset of the head and tail
positions of the receive queue for the specified endpoint.

The channel_state has the following defined values:
LDC_CHANNEL_DOWN 0
LDC_CHANNEL_UP 1

19.4.7.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No receive queue defined
EWOULDBLOCK Operation would block

Page 88 of 126

Hypervisor API Revision 1.0
January 24, 2006

19.4.8 ldc_rx_set_qhead

trap# FAST_TRAP
function# LDC_RX_SET_QHEAD
arg0 ldc_id
arg1 head_offset

ret0 status

Update the head pointer for the receive queue associated with the LDC endpoint ldc_id.
The head offset specified must be aligned on a 64byte boundary, and calculated so as to
decrease the number of pending entries on the receive queue. Any attempt to increase the
number of pending receive queue entries is considered an invalid head offset and will result
in an EINVAL error.

Programming note: The receive queue may be“flushed” by setting the head offset equal to the
current tail offset.

19.4.8.1 Errors

ECHANNEL Invalid ldc_id
EINVAL No receive queue defined, or

invalid head_offset value
EBADALIGN head_offset not correctly aligned
EWOULDBLOCK Operation would block

A Revision 1.0 Hypervisor API
January 24, 2006

20 PCI I/O Services

20.1 Introduction.

This section details Hypervisor services in support of PCI, PCI-X and PCI_Express
interfaces.

20.1.1 External documents

The following documents are either referenced in this section, or should be consulted in
together with this section

[1] sun4v Bus Binding to Open Firmware

[2] VPCI Bus Binding to Open Firmware

[3] PCI Express Base Specification 1.0a

20.2 IO Data Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the
sun4v device's "reg" property as defined by the Sun4v Bus Binding to
Open Firmware.

devino Device Interrupt Number. An unsigned integer representing an
interrupt within a specific device.

sysino System Interrupt Number. A 64-bit unsigned integer representing a
unique interrupt within a "system".

20.3 PCI IO Data Definitions

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the
sun4v device's "reg" property as defined by the Sun4v Bus Binding to
Open Firmware.

tsbnum TSB Number. Identifies which io-tsb is used. For this version of the spec,
tsbnum must be zero.

tsbindex TSB Index. Identifies which entry in the tsb is is used. The first entry is
zero.

tsbid A 64-bit aligned data structure which contains a tsbnum and a tsbindex.
bits 63:32 contain the tsbnum. bits 31:00 contain the tsbindex.

io_attributes IO Attributes for iommu mappings. Attributes for iommu mappings.
One or more of the following attribute bits stored in a 64-bit unsigned
int.

PCI_MAP_ATTR_READ 0x01 - xfr direction is from memory
PCI_MAP_ATTR_WRITE 0x02 - xfr direction is to memory

Bits 63:2 are unused and must be set to zero for this version of the
specification.

Page 90 of 126

Hypervisor API Revision 1.0
January 24, 2006

Note: For compatibility with future versions of this specification, the
caller must set 63:2 to zero. The implementation shall ignore bits 63:2

r_addr 64-bit Real Address.

pci_device PCI device address. A PCI device address identifies a specific device on
a specific PCI bus segment. A PCI device address is a 32-bit unsigned
integer with the following format:

00000000.bbbbbbbb.dddddfff.00000000

Where:

bbbbbbbb is the 8-bit pci bus number

ddddd is the 5-bit pci device number

fff is the 3-bit pci function number

00000000 is the 8-bit literal zero.

pci_config_offset PCI Configuration Space offset.

For conventional PCI, an unsigned integer in the range 0 .. 255
representing the offset of the field in pci config space.

For PCI implementations with extended configuration space, an
unsigned integer in the range 0 .. 4095, representing the offset of the
field in configuration space. Conventional PCI config space is offset 0 ..
255. Extended config space is offset 256 .. 4095

Note: For pci config space accesses, the offset must be 'size' aligned.

error_flag Error flag

A return value specifies if the action succeeded or failed, where:

 0 - No error occurred while performing the service.

 non-zero - Error occurred while performing the service.

io_sync_direction "direction" definition for pci_dma_sync

A value specifying the direction for a memory/io sync operation, The
direction value is a flag, one or both directions may be specified by the
caller.

 0x01 - For device (device read from memory)
 0x02 - For cpu (device write to memory)

io_page_list A list of io_page_addresses. An io_page_address is an r_addr.

io_page_list_p A pointer to an io_page_list.

"size based byte swap" - Some functions do size based byte swapping
which allows sw to access pointers and counters in native form when the
processor operates in a different endianness than the io bus. Size-based
byte swapping converts a multi-byte field between big-endian format
and little endian format as follows:

A Revision 1.0 Hypervisor API
January 24, 2006

Size Original value Swapped value

2 0x0102 0x0201

4 0x01020304 0x04030201

8 0x0102030405060708 0x0807060504030201

Page 92 of 126

Hypervisor API Revision 1.0
January 24, 2006

20.4 API calls

The following APIs are provided for PCI services.

20.4.1 pci_iommu_map

trap# FAST_TRAP
function# PCI_IOMMU_MAP
arg0 devhandle
arg1 tsbid
arg2 #ttes
arg3 io_attributes
arg4 io_page_list_p

ret0 status
ret1 #ttes_mapped

Create iommu mappings in the sun4v device defined by the argument devhandle.

The mappings are created in the tsb defined by the tsbnum component of the tsbid
argument. The first mapping is created in the tsb index defined by the tsbindex component of
the tsbid argument. The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
the second at tsbnum, tsbindex +1, etc.

All mappings are created with the attributes defined by the io_attributes argument.

The page mapping addresses are described in the io_page_list defined by the argument
io_page_list_p, which is a pointer to the io_page_list. The first entry in the io_page_list is the
address for the first iotte, the 2nd entry for the 2nd iotte, and so on.

Each io_page_address in the io_page_list must be appropriately aligned.

#ttes must be greater than zero.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.
Returns the actual number of mappings created, which may be less than or equal to the
argument #ttes. If the function returns a value which is less than the #ttes, the caller may
continue to call the function with an updated tsbid, #ttes, io_page_list_p arguments until all
pages are mapped.

Note: This function does not imply an iotte cache flush. The guest must demap an entry
before re-mapping it.

20.4.1.1 Errors

EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes
EBADALIGN Improperly aligned r_addr
ENORADDR Invalid r_addr

A Revision 1.0 Hypervisor API
January 24, 2006

20.4.2 pci_iommu_demap

trap# FAST_TRAP
function# PCI_IOMMU_DEMAP
arg0 devhandle
arg1 tsbid
arg2 #ttes

ret0 status
ret1 #ttes_demapped

Demap and flush iommu mappings in the device defined by the argument devhandle.

Demaps up to #ttes entries in the tsb defined by the tsbnum component of the tsbid
argument, starting at the tsb index defined by the tsbindex component of the tsbid argument.

For this version of the spec, the tsbnum component of the tsbid argument must be zero.

#ttes must be greater than zero.

Returns the actual number of ttes demapped in the return value #ttes_demapped, which
may be less than or equal to the argument #ttes. If #ttes_dempapped is less than #ttes, the
caller may continue to call this function with updated tsbid and #ttes arguments until all
pages are demapped.

Note: Entries do not have to be mapped to be demapped. A demap of an unmapped
page will flush the entry from the tte cache.

20.4.2.1 Errors

EINVAL invalid devhandle/tsbnum/tsbindex

20.4.3 pci_iommu_getmap

trap# FAST_TRAP
function# PCI_IOMMU_GETMAP
arg0 devhandle
arg1 tsbid

ret0 status
ret1 io_attributes
ret2 r_addr

Read and return the mapping in the device given by the argument devhandle and tsbid. If
successful, the io_attributes shall be returned in ret1, the page address of the mapping shall be
returned in ret2.

For this version of the spec, the tsbnum component of tsbid must be zero.

20.4.3.1 Errors

EINVAL invalid devhandle/tsbnum/tsbindex
ENOMAP Mapping is not valid - no translation exists

Page 94 of 126

Hypervisor API Revision 1.0
January 24, 2006

20.4.4 pci_iommu_getbypass

trap# FAST_TRAP
function# PCI_IOMMU_GETBYPASS
arg0 devhandle
arg1 r_addr
arg2 io_attributes

ret0 status
ret1 io_addr

Create a "special" mapping in the device given by the argument devhandle for the
arguments given by r_addr and io_attributes. Return the io address in ret1 if successful.

Note: The error code ENOTSUPPORTED indicates that the function exists, but is not
supported by the implementation.

20.4.4.1 Errors

EINVAL Invalid devhandle/tsbnum/attributes
ENORADDR Invalid real Address
ENOTSUPPORTED Function not supported in this implementation.

A Revision 1.0 Hypervisor API
January 24, 2006

20.4.5 pci_config_get

trap# FAST_TRAP
function# PCI_CONFIG_GET
arg0 devhandle
arg1 pci_device
arg2 pci_config_offset
arg3 size

ret0 status
ret1 error_flag
ret2 data

Read PCI configuration space for the pci adaptor defined by the argument devhandle.

Read size (1, 2 or 4) bytes of data for the PCI device defined by the argument pci_device,
from the offset from the beginning of the configuration space defined by the argument
pci_config_offset. If there was no error during the read access, set ret1 (error_flag) to zero and
set ret2 to the data read. Insignificant bits in ret2 are not guaranteed to have any specific
value and therefore must be ignored.

The data returned in ret2 is size based byte swapped.

If an error occurs during the read, set ret1 (error_flag) to a non-zero value.

pci_config_offset must be 'size' aligned.

20.4.5.1 Errors

EINVAL invalid devhandle/pci_device/offset/size
EBADALIGN pci_config_offset not size aligned
ENOACCESS Access to this offset is not permitted

Page 96 of 126

Hypervisor API Revision 1.0
January 24, 2006

20.4.6 pci_config_put

trap# FAST_TRAP
function# PCI_CONFIG_PUT
arg0 devhandle
arg1 pci_device
arg2 pci_config_offset
arg3 size
arg4 data

ret0 status
ret1 error_flag

Write PCI config space for the pci adaptor defined by the argument devhandle.

Write 'size' bytes of data in a single operation. The argument 'size' must be 1, 2 or 4. The
configuration space address is described by the arguments pci_device and pci_config_offset.
pci_config_offset is the offset from the beginning of the configuration space given by the
argument pci_device. The argument 'data' contains the data to be written to configuration
space. Prior to writing the data is size based byte swapped.

If an error occurs during the write access, do not generate an error report, do set ret1
(error_flag) to a non-zero value. Otherwise, set ret1 to zero.

pci_config_offset must be 'size' aligned.

This function is permitted to read from offset zero in the configuration space described by
the argument pci_device if necessary to ensure that the write access to config space
completes.

20.4.6.1 Errors

EINVAL invalid devhandle/pci_device/offset/size
EBADALIGN pci_config_offset not size aligned
ENOACCESS Access to this offset is not permitted

A Revision 1.0 Hypervisor API
January 24, 2006

20.4.7 pci_peek

trap# FAST_TRAP
function# PCI_PEEK
arg0 devhandle
arg1 r_addr
arg2 size

ret0 status
ret1 error_flag
ret2 data

Attempt to read the io-address given by the arguments devhandle, r_addr and size. size
must be 1, 2, 4 or 8. The read is performed as a single access operation using the given size. If
an error occurs when reading from the given location, do not generate an error report, but
return a non-zero value in ret1 (error_flag). If the read was successful, return zero in ret1
(error_flag) and return the actual data read in ret2 (data). The data returned in ret2 is size
based byte swapped.

Non-significant bits in ret2 (data) are not guaranteed to have any specific value and
therefore must be ignored. If ret1 (error_flag) is returned as non-zero, the data value is not
guaranteed to have any specific value and should be ignored.

The caller must have permission to read from the given devhandle, r_addr, which must
be an io address. The argument r_addr must be a size-aligned address.

The hypervisor implementation of this function must block access to any io address
that the guest does not have explicit permission to access.

20.4.7.1 Errors

EINVAL invalid size or devhandle
EBADALIGN improperly aligned r_addr
ENORADDR bad r_addr
ENOACCESS guest access prohibited

Page 98 of 126

Hypervisor API Revision 1.0
January 24, 2006

20.4.8 pci_poke

trap# FAST_TRAP
function# PCI_POKE
arg0 devhandle
arg1 r_addr
arg2 size
arg3 data
arg4 pci_device

ret0 status
ret1 error_flag

Attempt to write data to the io-address described by the arguments devhandle, r_addr.
The argument size defines the size of the 'write' in bytes and must be 1, 2 4 or 8.

The write is performed as a single operation using the given size. Prior to writing, the
data is size based byte swapped.

If an error occurs when writing the data to the given location, do not generate an error
report, but return a non-zero value in ret1 (error_flag). If the write operation was successful,
return the value zero in ret1 (error_flag).

pci_device describes the configuration address of the device being written to. The
implementation may safely read from offset 0 with the configuration space of the device
described by devhandle and pci_device in order to guarantee that the write portion of the
operation completes.

Any error that occurs due to the read shall be reported using the normal error reporting
mechanisms .. the read error is not suppressed.

The caller must have permission to write to the given devhandle, r_addr, which must be
an io address. The argument r_addr must be a size aligned address. The caller must have
permission to read from the given devhandle, pci_device configuration space offset 0.

The hypervisor implementation of this function must block access to any io address that
the guest does not have explicit permission to access.

20.4.8.1 Errors

EINVAL invalid size, devhandle or pci_device
EBADALIGN improperly aligned address
ENORADDR bad address
ENOACESS guest access prohibited
ENOTSUPPORTED function is not supported by this implementation.

A Revision 1.0 Hypervisor API
January 24, 2006

20.4.9 pci_dma_sync

trap# FAST_TRAP
function# PCI_DMA_SYNC
arg0 devhandle
arg1 r_adddr
arg2 size
arg3 io_sync_direction

ret0 status
ret1 #synced

Synchronize a memory region described by the arguments r_addr, size for the device
defined by the argument devhandle using the direction(s) defined by the argument
io_sync_direction. The argument size is the size of the memory region in bytes.

Return the actual number of bytes synchronized in the return value #synced, which may
be less than or equal to the argument size. If the return value #synced is less than size, the
caller must continue to call this function with updated r_addr and size arguments until the
entire memory region is synchronized.

20.4.9.1 Errors

EINVAL invalid devhandle or io_sync_direction
ENORADDR bad r_addr

Page 100 of 126

Hypervisor API Revision 1.0
January 24, 2006

21 MSI Services

MSI services are effectively part of PCI, however, they are logically grouped into a
separate set of services defined in this section.

21.1 Message Signaled Interrupt (MSI)

Message Signaled Interrupt as defined in the PCI Local Bus Specification and the PCI
Express Base Specification. A device signals an interrupt via MSI using a posted write cycle
to an address specified by system software using a data value specified by system software.
The MSI capability data structure contains fields for the PCI address and data values the
device uses when sending an MSI message on the bus. MSI-X is an extended form of MSI,
but uses the same mechanism for signaling the interrupt as MSI. For the purposes of this
document, the term "MSI" refers to MSI or MSI-X.

Root complexes that support MSI define an address range and set of data values that can
be used to signal MSIs.

sun4v/pci requirements for MSI:

The root complex defines two address ranges. One in the 32-bit pci memory space and
one in the 64-bit pci memory address space used as the target of a posted write to signal an
MSI.

The root complex treats any write to these address ranges as signaling an MSI, however,
only the data value used in the posted write signals the MSI.

21.2 MSI Event Queue (MSI EQ)

The MSI Event Queue is a page-aligned main memory data structure used to store MSI
data records.

Each root port supports several MSI EQs, and each EQ has a system interrupt associated
with it, and can be targeted (individually) to any cpu. The number of MSI EQs supported by
a root complex is described by a property defined in [2]. Each MSI EQ must be large enough
to contain all possible MSI data records generated by any one PCI root port. The number of
entries in each MSI EQ is described by a property defined in [2].

Each MSI EQ is compliant with the definition of interrupt queues described in [4],
however, instead of accessing the queue head/tail registers via ASI-based registers, an API is
provided to access the head/tail registers.

The sun4v/pci compliant root complex has the ability to generate a system interrupt
when the MSI EQ is non-empty.

MSI/Message/INTx Data Record format

Each data record consists of 64 bytes of data, aligned on a 64-byte boundary.

The data record is defined as follows:

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

0x00:
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVxxxxxxxxxxxxxxxxxxxxxxxxTTTTTTTT

0x08:
II

A Revision 1.0 Hypervisor API
January 24, 2006

0x10:
xx

0x18:
SS

0x20:
xxRRRRRRRRRRRRRRRR

0x28:
AA

0x30:
DD

0x38:
xx

Where,

 xx..xx are unused bits and must be ignored by sw.

 VV..VV is the version number of this data record

For this release of the spec, the version number

field must be zero.

 TTTTTTTT is the data record type:

Upper 4 bits are reserved, and must be zero
0000 - Not an MSI data record - reserved for sw use.
0001 - MSG
0010 - MSI32
0011 - MSI64
0010 - Reserved
...
0111 - Reserved
1000 - INTx
1001 - Reserved

...
1110 - Reserved
1111 - Not an MSI data record - reserved for sw use.

All other encodings are reserved.

II..II is the sysino for INTx (sw defined value), otherwise zero.

SS..SS is the message timestamp if available.

If supported by the implementation, a non-zero value in this field is a copy
of the %stick register at the time the message is created. If unsupported, this field will
contain zero.

 RR..RR is the requester ID of the device that initiated the MSI/MSG and has the
following format:

bbbbbbbb.dddddfff

Where bb..bb is the bus number, dd..dd is the device number and fff is the
function number.

Page 102 of 126

Hypervisor API Revision 1.0
January 24, 2006

Note that for PCI devices or any message where the requester is unknown,
this may be zero, or the device-id of an intermediate bridge.

For intx messages, this field should be ignored.

 AA..AA is the MSI address. For MSI32, the upper 32-bits must be zero. (for data
record type MSG or INTx, this field is ignored)

 DD..DD is the MSI/MSG data or INTx number

For MSI-X, bits 31..0 contain the data from the MSI packet which is the msi-
number. bits 63..32 shall be zero.

For MSI, bits 15..0 contain the data from the MSI message which is the msi-
number. bits 63..16 shall be zero

For MSG data, the message code and message routing code are encoded as
follows:

63:32 - 0000.0000.0000.0000.0000.0000.GGGG.GGGG
32:00 - 0000.0000.0000.0CCC.0000.0000.MMMM.MMMM

Where,

GG..GG is the target-id of the message in the

following form:

bbbbbbbb.dddddfff

where bb..bb is the target bus number.

ddddd is the target deviceid

fff is the target function number.

CCC is the message routing code as defined by [3]

MM..MM is the message code as defined by [3]

For INTx data, bits 63:2 must be zero and the low order 2 bits are defined as
follows:

00 - INTA
01 - INTB
10 - INTC
11 - INTD

21.3 Definitions

cpuid A unique opaque value which represents a target cpu.

devhandle Device handle. The device handle uniquely identifies a sun4v device. It
consists of the the lower 28-bits of the hi-cell of the first entry of the
sun4v device's "reg" property as defined by the Sun4v Bus Binding to
Open Firmware.

msinum A value defining which MSI is being used.

msiqhead The offset value of a given MSI-EQ head.

msiqtail The offset value of a given MSI-EQ tail.

A Revision 1.0 Hypervisor API
January 24, 2006

msitype Type specifier for MSI32 or MSI64
0 - type is MSI32
1 - type is MSI64

msiqid A number from 0 .. 'number of MSI-EQs - 1', defining which MSI EQ
within the device is being used.

msiqstate An unsigned integer containing one of the following values:
PCI_MSIQSTATE_IDLE 0 # idle (non-error) state
PCI_MSIQSTATE_ERROR 1 # error state

msiqvalid An unsigned integer containing one of the following values:
PCI_MSIQ_INVALID 0 # disabled/invalid
PCI_MSIQ_VALID 1 # enabled/valid

msistate An unsigned integer containing one of the following values:
PCI_MSISTATE_IDLE 0 # idle/not enabled
PCI_MSISTATE_DELIVERED 1 # MSI Delivered

msivalid An unsigned integer containing one of the following values:
PCI_MSI_INVALID 0 # disabled/invalid
PCI_MSI_VALID 1 # enabled/valid

msgtype A value defining which MSG type is being used. An unsigned integer
containing one of the following values: (as per PCIe spec 1.0a)

PCIE_PME_MSG 0x18 PME message
PCIE_PME_ACK_MSG 0x1b PME ACK message
PCIE_CORR_MSG 0x30 Correctable message
PCIE_NONFATAL_MSG 0x31 Non fatal message
PCIE_FATAL_MSG 0x33 Fatal message

msgvalid An unsigned integer containing one of the following values:
PCIE_MSG_INVALID 0 # disabled/invalid
PCIE_MSG_VALID 1 # enabled/valid

Page 104 of 126

Hypervisor API Revision 1.0
January 24, 2006

21.4 API calls

21.4.1 pci_msiq_conf

trap# FAST_TRAP
function# PCI_MSIQ_CONF
arg0 devhandle
arg1 msiqid
arg2 r_addr
arg3 nentries

ret0 status

Configure the MSI queue given by the arguments devhandle, msiqid for use and to be
placed at real address r_addr, and of nentries entries. nentries must be a power of two number
of entries.

r_addr must be aligned exactly to match the queue size. Each queue entry is 64 bytes long,
so for example, a 32 entry queue must be aligned on a 2048 byte real address boundary.

The MSI-EQ Head and Tail are initialized so that the MSI-EQ is 'empty'.

Implementation Note: Certain implementations have fixed sized queues. In that case
nentries must contain the correct value.

21.4.1.1 Errors

EINVAL Invalid devhandle, msiqid or nentries
EBADALIGN improperly aligned r_addr
ENORADDR bad r_addr

21.4.2 pci_msiq_info

trap# FAST_TRAP
function# PCI_MSIQ_CONF
arg0 devhandle
arg1 msiqid

ret0 status
ret1 r_addr
ret2 nentries

Return configuration information for the MSI queue given by the arguments devhandle,
msiqid.

The base address of the queue is returned in r_addr. The number of entries in the queue is
returned in nentries.

If the queue is unconfigured r_addr is undefined and returns zero in nentries.

21.4.2.1 Errors

EINVAL Invalid devhandle or msiqid

A Revision 1.0 Hypervisor API
January 24, 2006

21.4.3 pci_msiq_getvalid

trap# FAST_TRAP
function# PCI_MSIQ_GETVALID
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqvalid

Get the valid state of the MSI-EQ defined by the arguments devhandle and msiqid.

21.4.3.1 Errors

EINVAL bad devhandle or msiqid

21.4.4 pci_msiq_setvalid

trap# FAST_TRAP
function# PCI_MSIQ_SETVALID
arg0 devhandle
arg1 msiqid
arg2 msiqvalid

ret0 status

Set the valid state of the MSI-EQ defined by the arguments devhandle and msiqid to the
state described by the argument msiqvalid. msiqvalid must be PCI_MSIQ_VALID or
PCI_MSIQ_INVALID.

21.4.4.1 Errors

EINVAL bad devhandle or msiqid or msiqvalid value or MSI EQ is uninitialized.

21.4.5 pci_msiq_getstate

trap# FAST_TRAP
function# PCI_MSIQ_GETSTATE
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqstate

Get the state of the MSI-EQ defined by the arguments devhandle and msiqid.

21.4.5.1 Errors

EINVAL bad devhandle or msiqid

Page 106 of 126

Hypervisor API Revision 1.0
January 24, 2006

21.4.6 pci_msiq_setstate

trap# FAST_TRAP
function# PCI_MSIQ_SETSTATE
arg0 devhandle
arg1 msiqid
arg2 msiqstate

ret0 status

Set the state of the MSI-EQ defined by the arguments devhandle and msiqid to the state
described by the argument msiqstate. msiqstate must be PCI_MSIQSTATE_IDLE or
PCI_MSIQSTATE_ERROR.

21.4.6.1 Errors

EINVAL bad devhandle, msiqid or msiqstate or
MSI EQ is uninitialized.

21.4.7 pci_msiq_gethead

trap# FAST_TRAP
function# PCI_MSIQ_GETHEAD
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqhead

Return the current msiqhead for the MSI-EQ described by the argument devhandle, msiqid.

21.4.7.1 Errors

EINVAL Invalid devhandle or msiqid or
MSI EQ uninitialized

21.4.8 pci_msiq_sethead

trap# FAST_TRAP
function# PCI_MSIQ_GETHEAD
arg0 devhandle
arg1 msiqid
arg2 msiqhead

ret0 status

Set the MSI EQ queue head in the MSI EQ described by the arguments devhandle, msiqid to
the value given by the msiqhead argument.

21.4.8.1 Errors

EINVAL Invalid devhandle, msiqid or msiqhead
or MSI EQ is uninitialized

A Revision 1.0 Hypervisor API
January 24, 2006

21.4.9 pci_msiq_gettail

trap# FAST_TRAP
function# PCI_MSIQ_GETTAIL
arg0 devhandle
arg1 msiqid

ret0 status
ret1 msiqtail

Return the current msiqtail for the MSI-EQ described by the argument devhandle, msiqid.

21.4.9.1 Errors

EINVAL Invalid devhandle or msiqid or
uninitialized MSI EQ

21.4.10 pci_msi_getvalid

trap# FAST_TRAP
function# PCI_MSI_GETVALID
arg0 devhandle
arg1 msinum

ret0 status
ret1 msivalidstate

Return in msivalidstate, the current valid/enabled state for the MSI defined by the
arguments devhandle, msinum.

21.4.10.1 Errors

EINVAL Invalid devhandle or msinum

21.4.11 pci_msi_setvalid

trap# FAST_TRAP
function# PCI_MSI_SETVALID
arg0 devhandle
arg1 msinum
arg2 msivalidstate

ret0 status

Set the valid/enabled state of the MSI described by the arguments devhandle, msinum
to the valid/enabled state defined by the argument msivalidstate

21.4.11.1 Errors

EINVAL Invalid devhandle, msinum or msivalidstate

Page 108 of 126

Hypervisor API Revision 1.0
January 24, 2006

21.4.12 pci_msi_getmsiq

trap# FAST_TRAP
function# PCI_MSI_GETMSIQ
arg0 devhandle
arg1 msinum

ret0 status
ret1 msiqid

For the MSI defined by the arguments devhandle, msinum return the MSI EQ that this MSI
is bound to in the return value msiqid.

21.4.12.1 Errors

EINVAL Invalid devhandle or msinum or msi unbound.

21.4.13 pci_msi_setmsiq

trap# FAST_TRAP
function# PCI_MSI_SETMSIQ
arg0 devhandle
arg1 msinum
arg2 msitype
arg3 msiqid

ret0 status

Set the target msiq of the MSI defined by the arguments devhandle, msinum to the MSI EQ
id defined by the argument msiqid.

21.4.13.1 Errors

EINVAL Invalid devhandle, msinum or msiqid

21.4.14 pci_msi_getstate

trap# FAST_TRAP
function# PCI_MSI_GETSTATE
arg0 devhandle
arg1 msinum

ret0 status
ret1 msistate

Return the state of the MSI defined by the arguments devhandle, msinum. If the MSI is not
initialized, returns the state PCI_MSISTATE_IDLE.

21.4.14.1 Errors

EINVAL Invalid devhandle or msinum

A Revision 1.0 Hypervisor API
January 24, 2006

21.4.15 pci_msi_setstate

trap# FAST_TRAP
function# PCI_MSI_SETSTATE
arg0 devhandle
arg1 msinum
arg2 msistate

ret0 status

Set the state of the MSI defined by the arguments devhandle, msinum to the state defined
by the argument msistate.

21.4.15.1 Errors

EINVAL Invalid devhandle or msinum or msistate

21.4.16 pci_msg_getmsiq

trap# FAST_TRAP
function# PCI_MSG_GETMSIQ
arg0 devhandle
arg1 msgtype

ret0 status
ret1 msiqid

For the msg defined by the arguments devhandle, msgtype return the MSI EQ that this msg
is bound to in the return value msiqid.

21.4.16.1 Errors

EINVAL Invalid devhandle or msgtype.

21.4.17 pci_msg_setmsiq

trap# FAST_TRAP
function# PCI_MSG_SETMSIQ
arg0 devhandle
arg1 msg
arg2 msiqid

ret0 status

Set the target msiq of the msg defined by the arguments devhandle, msgtype to the MSI EQ
id defined by the argument msiqid.

21.4.17.1 Errors

EINVAL Invalid devhandle, msgtype or msiqid

Page 110 of 126

Hypervisor API Revision 1.0
January 24, 2006

21.4.18 pci_msg_getvalid

trap# FAST_TRAP
function# PCI_MSG_GETVALID
arg0 devhandle
arg1 msgtype

ret0 status
ret1 msgvalidstate

Return in msgvalidstate, the current valid/enabled state for the msg defined by the
arguments devhandle, msgtype.

21.4.18.1 Errors

EINVAL Invalid devhandle or msgtype

21.4.19 pci_msg_setvalid

trap# FAST_TRAP
function# PCI_MSG_SETVALID
arg0 devhandle
arg1 msgtype
arg2 msgvalidstate

ret0 status

Set the valid/enabled state of the msg described by the arguments devhandle, msg to the
valid/enabled state defined by the argument msgvalidstate

21.4.19.1 Errors

EINVAL Invalid devhandle, msgtype or msgvalidstate

A Revision 1.0 Hypervisor API
January 24, 2006

22 UltraSPARC T1 performance counters

22.1 Introduction

An UltraSPARC T1 processor has one JBus, and four DRAM controllers integrated onto
the same circuit. Each of these components contains counters that may be programmed to
monitor and count specific events. A complete description of the UltraSPARC T1
performance counters is given in the UltraSPARC T1 Supplement to UltraSPARC
Architecture 2005 manual.

Access the memory (DRAM) controller and JBus performance counters of a UltraSPARC
T1 processor system is provided via an hypervisor API service. In a system configured with
more than one guest domain, only one guest is allowed access to these performance counters.
A machine description property ("perfctraccess") indicates that a guest is allowed access to
the performance registers and this is enforced by the hypervisor.

22.2 Definitions

Each DRAM and JBus performance register is assigned a unique performance register
(PerfReg) number for reading/writing purposes as follows:

PerfReg Description

0 JBus Performance control register

1 JBus Performance counter register

2 DRAM Performance control register 0

3 DRAM Performance counter register 0

4 DRAM Performance control register 1

5 DRAM Performance counter register 1

6 DRAM Performance control register 2

7 DRAM Performance counter register 2

8 DRAM Performance control register 3

9 DRAM Performance counter register 3

22.3 API calls

22.3.1 niagara_get_perfreg

trap# FAST_TRAP
function# NIAGARA_GET_PERFREG
arg0 perfreg

ret0 status
ret1 value

This service reads the value of the DRAM/JBus performance register,as selected by the
perfreg argument. Upon successful completion, it returns an EOK status and the performance
register value.

22.3.1.1 Errors

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

Page 112 of 126

Hypervisor API Revision 1.0
January 24, 2006

22.3.2 niagara_set_perfreg

trap# FAST_TRAP
function# NIAGARA_SET_PERFREG
arg0 perfreg
arg1 value

ret0 status

This service sets the DRAM/JBus performance register, as specified by the perfreg, to
value. Upon successful completion, it updates the specified performance register value and
returns EOK status.

22.3.2.1 Errors:

EINVAL Invalid performance register number
ENOACCESS No access allowed to performance registers

A Revision 1.0 Hypervisor API
January 24, 2006

23 Niagara-1 MMU statistics counters

23.1 Introduction

This section describes the hypervisor API to support MMU statistics collection on a
Niagara-based system. This API is intended for UltraSPARC T1-specific performance
measurement.

23.2 Hypervisor API for Niagara MMU statistics collection

On Niagara, hypervisor maintains MMU statistics. Privileged code provides Hypervisor
a buffer wherein these statistics can be collected. After the successful configuration of the
buffer, it is continuously updated (hits increased and ticks updated).

23.2.1 MMU statistic buffer format

The MMU statistics buffer has a fixed size, format and content as defined below:

offset (bytes) size (bytes) field

0x0 0x8 IMMU TSB hits ctx0, 8KByte TTE

0x8 0x8 IMMU TSB ticks ctx0, 8KByte TTE

0x10 0x8 IMMU TSB hits ctx0, 64KByte TTE

0x18 0x8 IMMU TSB ticks ctx0, 64KByte TTE

0x20 0x10 reserved

0x30 0x8 IMMU TSB hits ctx0, 4MByte TTE

0x38 0x8 IMMU TSB ticks ctx0, 4MByte TTE

0x40 0x10 reserved

0x50 0x8 IMMU TSB hits ctx0, 256MByte TTE

0x58 0x8 IMMU TSB ticks ctx0, 256MByte TTE

0x60 0x20 reserved

0x80 0x8 IMMU TSB hits ctxnon0, 8KByte TTE

0x88 0x8 IMMU TSB ticks ctxnon0, 8KByte TTE

0x90 0x8 IMMU TSB hits ctxnon0, 64KByte TTE

0x98 0x8 IMMU TSB ticks ctxnon0, 64KByte TTE

0xA0 0x10 reserved

0xB0 0x8 IMMU TSB hits ctxnon0, 4MByte TTE

0xB8 0x8 IMMU TSB ticks ctxnon0, 4MByte TTE

0xC0 0x10 reserved

0xD0 0x8 IMMU TSB hits ctxnon0, 256MByte TTE

0xD8 0x8 IMMU TSB ticks ctxnon0, 256MByte TTE

0xE0 0x20 reserved

0x100 0x8 DMMU TSB hits ctx0, 8KByte TTE

0x108 0x8 DMMU TSB ticks ctx0, 8KByte TTE

0x110 0x8 DMMU TSB hits ctx0, 64KByte TTE

0x118 0x8 DMMU TSB ticks ctx0, 64KByte TTE

0x120 0x10 reserved

Page 114 of 126

Hypervisor API Revision 1.0
January 24, 2006

offset (bytes) size (bytes) field

0x130 0x8 DMMU TSB hits ctx0, 4MByte TTE

0x138 0x8 DMMU TSB ticks ctx0, 4MByte TTE

0x140 0x10 reserved

0x150 0x8 DMMU TSB hits ctx0, 256MByte TTE

0x158 0x8 DMMU TSB ticks ctx0, 256MByte TTE

0x160 0x20 reserved

0x180 0x8 DMMU TSB hits ctxnon0, 8KByte TTE

0x188 0x8 DMMU TSB ticks ctxnon0, 8KByte TTE

0x190 0x8 DMMU TSB hits ctxnon0, 64KByte TTE

0x198 0x8 DMMU TSB ticks ctxnon0, 64KByte TTE

0x1A0 0x10 reserved

0x1B0 0x8 DMMU TSB hits ctxnon0, 4MByte TTE

0x1B8 0x8 DMMU TSB ticks ctxnon0, 4MByte TTE

0x1C0 0x10 reserved

0x1D0 0x8 DMMU TSB hits ctxnon0, 256MByte TTE

0x1D8 0x8 DMMU TSB ticks ctxnon0, 256MByte TTE

0x1E0 0x20 reserved

Note: "ticks" is the cumulative time spend handling the specified hit measured via deltas
in the %tick register

A Revision 1.0 Hypervisor API
January 24, 2006

23.3 API calls

23.3.1 niagara_mmustat_conf

trap# FAST_TRAP
function# NIAGARA_MMUSTAT_CONF
arg0 raddr

ret0 status
ret1 prev_raddr

This function enables MMU statistic collection and supplies the buffer to deposit the
results for the current virtual CPU. The real address of the buffer, raddr, is supplied in arg0.
The return value, ret1, is the previously specified buffer (prev_raddr), or zero for the first
invocation.

 If raddr is zero MMU statistic collection is disabled for the current virtual CPU and any
previously supplied buffer is no longer accessed.

 If an error is returned no statistics are collected (equivalent to passing an raddr of zero).

 The initial contents of the buffer should be zero otherwise the collected statistics will be
meaningless.

23.3.1.1 Errors

ENORADDR Invalid raddr
EBADALIGN raddr not aligned on 64-byte boundary
EBADTRAP API not supported (all non-Niagara1 architectures)

23.3.2 niagara_mmustat_info

trap# FAST_TRAP
function# NIAGARA_MMUSTAT_INFO

ret0 status
ret1 raddr

 This function provides an idempotent mechanism to query the state and real address of
the currently configured buffer.

 The real address of the current buffer, raddr, or zero, if no buffer is defined, is returned
in ret1.

23.3.2.1 Errors

EBADTRAP API not supported (all non-Niagara1 architectures)

Page 116 of 126

Hypervisor API Revision 1.0
January 24, 2006

24 Appendix A: How to use a machine description

A machine description (“MD”) contains both explicit information about resources within
a machine - detailed by specific nodes within the MD, and implicit information about the
relationship of those resources - detailed by how nodes are interconnected into a relationship
graph. We detail the relationship properties later in this section.

24.1 Using the MD as a list

For the simplest of sun4v guest operating environments, details of memory system
hierarchy or even cache sizes are of little to no importance. Rather, basic information such as
available memory regions and numbers of virtual CPUs are sufficient for the environment to
function.

Therefore the MD is designed to enable the extraction of basic information without the
need to parse any of the inter-relational information also provided.

For example, a simple guest may wish to simply determine the number of CPUs
available in the machine. Within the MD each CPU is represented by a node of type “cpu”
(please see section 8.9 for the definition of node types).

A guest may then, starting at the first node in the MD, simply linearly walk the list of
nodes from one to the next in the list looking for nodes of a specific type. As each specific
node is found properties may then be read from within that node. Pseudo code for this is
illustrated in figure 5 below.

int find_node_idx(uint_t *bufferp, char *namep)
{

struct MD_HEADER *hdrp;
struct MD_ELEMENT * nodep;
int i, nelems;
char *strp;

hdrp = (void*)bufferp;
nodep = (void*) (bufferp+16);
nelems = hdrp->node_blk_sz / 16;
strp = buffer + 16 + hdrp->node_blk_sz;

for (i=0; i<nelems; i=nodep[i].d.val) {
char *sp;
if (strcmp(strp+node[i].name_offset,

namep)==0) return i;
}

return (-1); /* failed */
}

Figure 5Pseduo C-code for walking the list of nodes

A Revision 1.0 Hypervisor API
January 24, 2006

24.2 Accelerating string lookups

To search for specific nodes or properties within a node, list element names need to be
matched against known strings. The name for each list element is indirectly referenced in the
name block of the machine description.

The basic method of searching for nodes or properties implies that for each tagged
element in the machine description list, the name string must be found (using the offset in
the element) and then the string compared against the desired string value.

While providing correct results these numerous string compares slow searching of the
machine description.

The string match process may be short circuited due to the property of uniqueness of
strings in the name block. The name block is constructed to guarantee that each string
appears only once in the name block regardless of the number of times it is referenced by
different elements. Since a desired string (e.g. “cpu”) can appear at most once in the name
block, the index to that string in the name block becomes as unique as the string itself.

With this knowledge a more trivial method of searching the MD, is to first find the
strings of interest in the name block - thus identifying the unique index for each string name.
Then the MD itself can be seached by trivially matching the first 64 bytes of each element.

For example, suppose we wish to count the number of cpus represented in the MD. We
first identify the string “cpu” in the name block; for our example it might appear at index
0x123. Thus any element uniquely identify the start of a cpu node will have the tag value 'N',
name length of 4 (3 plus the nul string terminator) and name offset of 0x123. So then in the
binary image of our example MD the first 64bits of any “cpu” node element will have the
unique value of 0x4e0300000123.

A trivial linear search of the MD for this pattern enables nodes of type “cpu” to be
counted;

Similarly, sought elements within a node can be matched using the same method of
testing the first 64bits of the element structure.

Elements describing the start of a node have the specific property that the value field
(elem_ptr->d.val) holds the index of the element for the next node in the machine
description. So when searching specifically for node elements, other elements in the MD are
trivially skipped thus speeding the search;

It is recommended that guests using the MD initially search and cache the indices of
desired strings from the MD name block to avoid even the cost of finding the matching
string index for each new MD search.

It should noted however, that the name block is unique to a particular MD. If the guest
requests a new copy of a MD from the hypervisor, there is no guarantee that strings will
have the same indices in the name block of the new MD as they have in the name block of
the old MD.

24.3 Directed Acyclic Graph

The intrinsic Machine Description (MD) is a directed acyclic graph (DAG) of nodes
describing resources or information available within a machine. This information is
provided upon request to a guest operating system via the machine description request API.

Page 118 of 126

Hypervisor API Revision 1.0
January 24, 2006

24.3.1 Graph nodes

The DAG nodes are defined by the “NODE” element within the element list, and contain
all the properties and arcs described until the subsequent NODE_END element. DAG node
names form a well defined name space such that a particular name describes the type of a
well defined entity. A different type of entity must be described by a node of a different
name. For example, a CPU may be described by of type “cpu”, while a cache is described by
a node of type “cache”.

Each node is a specific instance of the entity it describes. Properties or named values
held within that node provide relevant details of the corresponding entity. For example, a
cache node will hold a list of properties describing attributes of that cache.

As a node is defined by a specific “NODE” element within the element list, then for a
specific MD, we can uniquely refer to that node by the index of its starting node element
withing the element list. Thus if a “cpu” node starts at list element number 27, then a unique
reference to that “cpu” node is the index value 27.

Using these index values for node start list elements, we can now provide pointers or
“arcs” to point to other nodes. In the construction of the MD element list, we define the 64bit
data payload of a “NODE” element to contain the index to the next “NODE” element in the
element list. Thus a simple linear list of nodes is formed within the MD element list that
enables searching for nodes of specific types without having to scan every list element
looking for “NODE” and “NODE_END” tags.

Simlarly, using the PROP_ARC, type we can build a link or arc from one node to
another. The value field of a PROP_ARC element is the 64bit element index of the “NODE”
element pointed to. It is illegal for a PROP_ARC element to point to anything other than a
NODE element, or a NOOP element (outside a node).

24.4 DAG construction

A DAG is constructed as described above by arcs that link the nodes together. The
interconnection of these arcs explicitly defines the relationship between the nodes. For
example, if node A has an arc to node C and node B has an arc to node C then the
relationship exposed is that within the graph both nodes A and B share node C and any
nodes that C arcs to. In the example illustration shown in the figure below we can see an
instruction cache that is shared by two cpu nodes. The sharing is indicated by the existence
of arcs from each cpu node to the same cache node.

The default DAG described within the MD is defined by arcs (element type PROP_ARC)
with a name of “fwd”. For convenience in walking this DAG, arcs named “back” are also
provided that define the inverse DAG. Thus for every node A that has a “fwd” arc pointing
to another node B, there is a corresponding “back” arc for node B pointing back to A.

Figure 6Sharing relationship between nodes

cpu B
id = 1

cpu B
id = 1

cache
level=1

A Revision 1.0 Hypervisor API
January 24, 2006

The use of named arcs enables other DAGs to be built and contained within the same
MD, however none other than the DAGs defined by the “fwd” and “back” arcs are currently
defined.

24.5 Required nodes

The MD DAG will vary according to the resources available within a machine, and
certain nodes may be present in a machine on one machine architecture, but not on a
different machine architecture.

The MD concept is designed to allow for certain nodes to be “optional”, however, to
allow for the MD to be useable at all certain nodes must be defined and present in the
description. These are “required” nodes and are guaranteed to be present if the resource they
describe is present within the machine.

Nodes not defined in this specification must be ignored by system software.

24.6 The vanilla MD

Normally a MD is a full description of the resources available to specific logical domain.
However, it is a requirement for any sun4v guest operating system that it be able to handle
any machine description capable of being defined by this document and its subsequent
revisions. To this end, a Guest operating system must be able to ignore / skip over nodes
whose type and definitions the OS has never seen before, and most importantly that same
Guest must follow some default fall-back behavior when information is not available.

To test the requirement for a default fall-back behavior, we define a “vanilla” description
that contains only the core and required nodes for a given platform. This guarantees that a
Guest OS is given no information about the platform upon which it is running, and to test
that it continues to boot and execute - though optimal performance is no longer required.

The nodes in the vanilla MD are therefore required and sufficient to describe a guest
environment for a basic sun4v compatible Operating System.

24.7 Formation and meaning of a DAG

As mentioned above a machine description currently contains only one DAG, and this is
defined by all arcs with the name “fwd”. As a courtesy, in order to speed certain searches,
the MD also contains the inverse of this DAG built using arcs of name “back”. Clearly the
“back” DAG could be built by a guest from the “fwd” DAG, however the basic MD contains
both to help lower the burden on the Guest.

Future revisions of this spec. may include new nodes, and importantly new DAGs
within the same MD. Current software should be designed to ignore arcs with names other
than “fwd” and “back” in order to remain future proof. Future MD will be implemented so
as not to have conflicts with the vanilla fwd and back DAGs.

To understand how to use the DAGs in a MD consider the DAG built using the “fwd”
arcs.

The root of the “fwd” DAG is a node of type “root”. This is by definition the very first
node in the MD. It can be found very simply by scanning the MD element list for the first
NODE definition (though unfortunately, due to the existence of NOOP elements, this need
not be at element index 0).

From the root node, “fwd” arcs lead to nodes describing the various components within
the logical domain a guest is using.

Page 120 of 126

Hypervisor API Revision 1.0
January 24, 2006

The root node in turn contains “fwd” arcs to collective nodes for cpus, memory and
various forms of I/O, as well as nodes targeted to specific consumers such as OpenBoot.

A Revision 1.0 Hypervisor API
January 24, 2006

25 Appendix B: Number Registry

This appendix provides a registry of API services, their assigned trap and function
numbers, and currently defined version groups and version numbers.

The definitions of the API groupings for the versioning API (§9) are as follows:

Group Number

(api_group)

Group Definition

Common 0x0 sun4v platform

0x1 core APIs

Technology 0x100 PCI

0x101 Logical Domain Channels

0x102 Service Channels (*)

Performance
measurement

0x200 UltraSPARC T1 performance counters

(*) These calls have now been deprecated, and are described only for compatibility with
old platform firmware.

25.1 Hyper-fast Trap numbers

For hyper-fast traps, the sw_trap_numbers are encoded in the Tcc instruction that enters
the hypervisor:

Un-assigned trap numbers result in EBADTRAP being returned in %o0 as described in
section 2.3.

25.2 FAST_TRAP Function numbers

Function numbers for fast-traps are provided in %o5 as a 64-bit value.

Un-assigned function numbers used for fast-traps result in EBADTRAP being returned
in %o0 as described in section 2.3.

25.3 CORE_TRAP Function numbers

CORE_TRAP APIs are defined and guaranteed present for all sun4v hypervisor versions.
These APIs follow the same calling conventions as FAST_TRAP API services. Four
CORE_TRAP functions are currently defined as follows;

API_VERSION defined in section 9.1.1.

API_PUTCHAR an alias for FAST_TRAP function CONS_PUTCHAR .

API_EXIT an alias for FAST_TRAP function MACH_EXIT.

API_GET_VERSION defined in section 9.1.2.

25.4 Summary of API service trap and function numbers

Page 122 of 126

Hypervisor API Revision 1.0
January 24, 2006

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 -- N/A N/A FAST_TRAP -

0x83 -- 0x001 1.0 MMU_MAP_ADDR 12.7.6

0x84 -- 0x001 1.0 MMU_UNMAP_ADDR 12.7.8

0x85 -- 0x001 1.0 TTRACE_ADDENTRY 18.3.5

0xff -- N/A N/A CORE_TRAP -

0x80 0x00 0x001 1.0 MACH_EXIT 10.1.1

0x80 0x01 0x001 1.0 MACH_DESC 10.1.2

0x80 0x02 0x001 1.0 MACH_SIR 10.1.3

0x80 0x03 0x001 1.1 * MACH_SET_SOFT_STATE 10.1.4

0x80 0x04 0x001 1.1 * MACH_GET_SOFT_STATE 10.1.5

0x80 0x05 0x001 1.1 * MACH_SET_WATCHDOG 10.1.6

0x80 0x10 0x001 1.0 CPU_START 11.2.1

0x80 0x11 0x001 1.1 * CPU_STOP 11.2.2

0x80 0x12 0x001 1.0 CPU_YIELD 11.2.5

0x80 0x14 0x001 1.0 CPU_QCONF 11.2.6

0x80 0x15 0x001 1.0 CPU_QINFO 11.2.7

0x80 0x16 0x001 1.0 CPU_MYID 11.2.9

0x80 0x17 0x001 1.0 CPU_STATE 11.2.10

0x80 0x18 0x001 1.0 CPU_SET_RTBA 11.2.3

0x80 0x19 0x001 1.0 CPU_GET_RTBA 11.2.4

0x80 0x20 0x001 1.0 MMU_TSB_CTX0 12.7.1

0x80 0x21 0x001 1.0 MMU_TSB_CTXNON0 12.7.2

0x80 0x22 0x001 1.0 MMU_DEMAP_PAGE 12.7.3

0x80 0x23 0x001 1.0 MMU_DEMAP_CTX 12.7.4

0x80 0x24 0x001 1.0 MMU_DEMAP_ALL 12.7.5

0x80 0x25 0x001 1.0 MMU_MAP_PERM_ADDR 12.7.7

0x80 0x26 0x001 1.0 MMU_FAULT_AREA_CONF 12.7.10

0x80 0x27 0x001 1.0 MMU_ENABLE 12.7.11

0x80 0x28 0x001 1.0 MMU_UNMAP_PERM_ADDR 12.7.9

0x80 0x29 0x001 1.0 MMU_TSB_CTX0_INFO 12.7.12

0x80 0x2a 0x001 1.0 MMU_TSB_CTXNON0_INFO 12.7.13

0x80 0x2b 0x001 1.0 MMU_FAULT_AREA_INFO 12.7.14

0x80 0x31 0x001 1.0 MEM_SCRUB 13.1.1

0x80 0x32 0x001 1.0 MEM_SYNC 13.1.2

0x80 0x42 0x001 1.0 CPU_MONDO_SEND 11.2.8

0x80 0x50 0x001 1.0 TOD_GET 15.1.1

0x80 0x51 0x001 1.0 TOD_SET 15.1.2

0x80 0x60 0x001 1.0 CONS_GETCHAR 16.1.1

0x80 0x61 0x001 1.0 CONS_PUTCHAR 16.1.2

A Revision 1.0 Hypervisor API
January 24, 2006

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0x80 0x102 1.0 SVC_SEND (*)

0x80 0x81 0x102 1.0 SVC_RCV (*)

0x80 0x82 0x102 1.0 SVC_GETSTATUS (*)

0x80 0x83 0x102 1.0 SVC_SETSTATUS (*)

0x80 0x84 0x102 1.0 SVC_CLRSTATUS (*)

0x80 0x90 0x001 1.0 TTRACE_BUF_CONF 18.3.1

0x80 0x91 0x001 1.0 TTRACE_BUF_INFO 18.3.2

0x80 0x92 0x001 1.0 TTRACE_ENABLE 18.3.3

0x80 0x93 0x001 1.0 TTRACE_FREEZE 18.3.4

0x80 0x94 0x001 1.0 DUMP_BUF_UPDATE 17.1.1

0x80 0x95 0x001 1.0 DUMP_BUF_INFO 17.1.2

0x80 0xa0 0x001 1.0 INTR_DEVINO2SYSINO 14.2.1

0x80 0xa1 0x001 1.0 INTR_GETENABLED 14.2.2

0x80 0xa2 0x001 1.0 INTR_SETENABLED 14.2.3

0x80 0xa3 0x001 1.0 INTR_GETSTATE 14.2.4

0x80 0xa4 0x001 1.0 INTR_SETSTATE 14.2.5

0x80 0xa5 0x001 1.0 INTR_GETTARGET 14.2.6

0x80 0xa6 0x001 1.0 INTR_SETTARGET 14.2.7

0x80 0xb0 0x100 1.0 PCI_IOMMU_MAP 20.4.1

0x80 0xb1 0x100 1.0 PCI_IOMMU_DEMAP 20.4.2

0x80 0xb2 0x100 1.0 PCI_IOMMU_GETMAP 20.4.3

0x80 0xb3 0x100 1.0 PCI_IOMMU_GETBYPASS 20.4.4

0x80 0xb4 0x100 1.0 PCI_CONFIG_GET 20.4.5

0x80 0xb5 0x100 1.0 PCI_CONFIG_PUT 20.4.6

0x80 0xb6 0x100 1.0 PCI_PEEK 20.4.7

0x80 0xb7 0x100 1.0 PCI_POKE 20.4.8

0x80 0xb8 0x100 1.0 PCI_DMA_SYNC 20.4.9

0x80 0xc0 0x100 1.0 PCI_MSIQ_CONF 21.4.1

0x80 0xc1 0x100 1.0 PCI_MSIQ_INFO 21.4.2

0x80 0xc2 0x100 1.0 PCI_MSIQ_GETVALID 21.4.3

0x80 0xc3 0x100 1.0 PCI_MSIQ_SETVALID 21.4.4

0x80 0xc4 0x100 1.0 PCI_MSIQ_GETSTATE 21.4.5

0x80 0xc5 0x100 1.0 PCI_MSIQ_SETSTATE 21.4.6

0x80 0xc6 0x100 1.0 PCI_MSIQ_GETHEAD 21.4.7

0x80 0xc7 0x100 1.0 PCI_MSIQ_SETHEAD 21.4.8

0x80 0xc8 0x100 1.0 PCI_MSIQ_GETTAIL 21.4.9

0x80 0xc9 0x100 1.0 PCI_MSI_GETVALID 21.4.10

0x80 0xca 0x100 1.0 PCI_MSI_SETVALID 21.4.11

0x80 0xcb 0x100 1.0 PCI_MSI_GETMSIQ 21.4.12

Page 124 of 126

Hypervisor API Revision 1.0
January 24, 2006

Trap# Func# Versioning
Group#

Vers# Name Defined in
section

0x80 0xcc 0x100 1.0 PCI_MSI_SETMSIQ 21.4.13

0x80 0xcd 0x100 1.0 PCI_MSI_GETSTATE 21.4.14

0x80 0xce 0x100 1.0 PCI_MSI_SETSTATE 21.4.15

0x80 0xd0 0x100 1.0 PCI_MSG_GETMSIQ 21.4.16

0x80 0xd1 0x100 1.0 PCI_MSG_SETMSIQ 21.4.17

0x80 0xd2 0x100 1.0 PCI_MSG_GETVALID 21.4.18

0x80 0xd3 0x100 1.0 PCI_MSG_SETVALID 21.4.19

0x80 0xe0 0x101 1.0 LDC_TX_QCONF 19.4.1

0x80 0xe1 0x101 1.0 LDC_TX_QINFO 19.4.2

0x80 0xe2 0x101 1.0 LDC_TX_GET_STATE 19.4.3

0x80 0xe3 0x101 1.0 LDC_TX_SET_QTAIL 19.4.4

0x80 0xe4 0x101 1.0 LDC_RX_QCONF 19.4.5

0x80 0xe5 0x101 1.0 LDC_RX_QINFO 19.4.6

0x80 0xe6 0x101 1.0 LDC_RX_GET_STATE 19.4.7

0x80 0xe7 0x101 1.0 LDC_RX_SET_QHEAD 19.4.7

0x80 0x100 0x200 1.0 NIAGARA_GET_PERFREG 22.3.1

0x80 0x101 0x200 1.0 NIAGARA_SET_PERFREG 22.3.2

0x80 0x102 0x200 1.0 NIAGARA_MMUSTAT_CONF 23.3.1

0x80 0x103 0x200 1.0 NIAGARA_MMUSTAT_INFO 23.3.2

0xff 0x00 N/A N/A API_SET_VERSION 9.1.1

0xff 0x01 N/A N/A API_PUTCHAR 16.1.2

0xff 0x02 N/A N/A API_EXIT 10.1.1

0xff 0x03 N/A N/A API_GET_VERSION 9.1.2

* These version numbers are provisional

25.5 Error codes

When a hypervisor API returns, unless explicitly described by the API service, the 64-bit
value in %o0 will be one of the following error identification values.

A Revision 1.0 Hypervisor API
January 24, 2006

Value Mnemonic Comment

0 EOK Successful return

1 ENOCPU Invalid CPU id

2 ENORADDR Invalid real address

3 ENOINTR Invalid interrupt id

4 EBADPGSZ Invalid pagesize encoding

5 EBADTSB Invalid TSB description

6 EINVAL Invalid argument

7 EBADTRAP Invalid function number

8 EBADALIGN Invalid address alignment

9 EWOULDBLOCK Cannot complete operation without blocking

10 ENOACCESS No access to specified resource

11 EIO I/O Error

12 ECPUERROR CPU is in error state

13 ENOTSUPPORTED Function not supported

14 ENOMAP No mapping found

15 ETOOMANY Too many items specified / limit reached

16 ECHANNEL Invalid LDC channel

Page 126 of 126

	1 Introduction
	1.1 Related specifications

	2 Hypervisor call conventions
	2.1 Hyper-fast traps
	2.2 Fast traps
	2.3 Post hypervisor trap processing

	3 State definitions
	3.1 Guest states
	3.2 Initial guest environment
	3.3 Privileged registers
	3.3.1 Non-Privileged Registers
	3.3.2 Ancillary State Registers
	3.3.3 Internal memory-mapped registers
	3.3.4 CPU-specific Registers

	3.4 Other initial guest state

	4 Addressing Models
	4.1 Background
	4.2 Address types
	4.3 Address spaces
	4.4 Address space identifiers
	4.4.1 ASI 0x14 & 0x1c : REAL_MEM{_LITTLE}
	4.4.2 ASI 0x15 & 0x1d : REAL_IO{_LITTLE}
	4.4.3 ASI 0x26 & 0x2E : REAL_QUAD{_LITTLE}
	4.4.4 ASI 0x21 : MMU
	4.4.4.1 Programming note
	4.4.4.2 Translation conflicts
	4.4.4.3 Barrier rules

	4.5 Translation mappings
	4.6 MMU Demap support
	4.7 MMU traps
	4.8 MMU fault status area

	5 Trap model
	5.1 Privilege mode trap processing
	5.2 Trap levels
	5.2.1 Privilege mode TL overflow

	5.3 Sun4v privilege mode trap table

	6 Interrupt model
	6.1 Definitions
	6.2 Interrupt reports
	6.3 Interrupt queues
	6.3.1 Queue support registers
	6.3.1.1 *_QUEUE_HEAD and *_QUEUE_TAIL

	6.4 Interrupt traps
	6.4.1 CPU mondo interrupts
	6.4.1.1 Sending CPU mondos
	6.4.1.2 Receiving CPU mondos

	6.4.2 Device mondo interrupts

	7 Error model
	7.1 Definitions
	7.2 Error classes
	7.2.1 Resumable error
	7.2.2 Non-resumable error

	7.3 Error reports
	7.4 Error queues
	7.4.1 *_QUEUE_HEAD and *_QUEUE_TAIL

	7.5 Error traps

	8 Machine description
	8.1 Requirements
	8.2 Sections
	8.3 Encoding
	8.4 Header
	8.4.1 Version numbering
	8.4.2 Size fields

	8.5 Name Block
	8.6 Data Block
	8.7 Node Block
	8.7.1 Element format
	8.7.2 Tag definitions

	8.8 Nodes
	8.9 Node definitions
	8.9.1 Node categories

	8.10 Content versions
	8.11 Summary of node definitions
	8.12 Common data definitions
	8.12.1 String array

	8.13 Generic nodes
	8.13.1 Root node
	8.13.1.1 Description
	8.13.1.2 Properties

	8.13.2 Cpus node
	8.13.2.1 Description
	8.13.2.2 Properties

	8.13.3 Cpu node
	8.13.3.1 Properties

	8.13.4 Memory node
	8.13.4.1 Description
	8.13.4.2 Properties

	8.13.5 Mblock node
	8.13.5.1 Description
	8.13.5.2 Properties

	8.13.6 Platform node
	8.13.6.1 Description
	8.13.6.2 Properties

	8.14 Memory hierarchy nodes
	8.14.1 Cache node
	8.14.1.1 Description
	8.14.1.2 Properties

	8.14.2 Exec-unit node
	8.14.2.1 Description
	8.14.2.2 Properties

	8.14.3 TLB node
	8.14.3.1 Description
	8.14.3.2 Properties

	9 API versioning
	9.1 API call
	9.1.1 api_set_version
	9.1.1.1 Errors
	9.1.1.2 Usage Notes:

	9.1.2 api_get_version
	9.1.2.1 Errors

	10 Domain services
	10.1 API call
	10.1.1 mach_exit
	10.1.1.1 Errors

	10.1.2 mach_desc
	10.1.2.1 Errors

	10.1.3 mach_sir
	10.1.3.1 Errors

	10.1.4 mach_set_soft_state
	10.1.4.1 Errors
	10.1.4.2 Programming Notes

	10.1.5 mach_get_soft_state
	10.1.5.1 Errors

	10.1.6 mach_watchdog

	11 CPU services
	11.1 CPU id and CPU list
	11.2 API calls
	11.2.1 cpu_start
	11.2.1.1 Errors

	11.2.2 cpu_stop
	11.2.2.1 Errors

	11.2.3 cpu_set_rtba
	11.2.3.1 Errors

	11.2.4 cpu_get_rtba
	11.2.4.1 Errors

	11.2.5 cpu_yield
	11.2.5.1 Programming note:
	11.2.5.2 Errors

	11.2.6 cpu_qconf
	11.2.6.1 Errors

	11.2.7 cpu_qinfo
	11.2.7.1 Errors

	11.2.8 cpu_mondo_send
	11.2.8.1 Errors

	11.2.9 cpu_myid
	11.2.9.1 Errors

	11.2.10 cpu_state
	11.2.10.1 Errors

	12 MMU services
	12.1 Translation Storage Buffer (TSB) specification
	12.1.1 Page sizes
	12.1.2 Context index

	12.2 MMU flags
	12.3 Translation table entries
	12.3.1 TSB entry tag word
	12.3.2 TSB entry data word

	12.4 Translation storage buffer (TSB) configuration
	12.5 Permanent and non-permanent mappings
	12.6 MMU Fault status area
	12.7 API calls
	12.7.1 mmu_tsb_ctx0
	12.7.1.1 Errors

	12.7.2 mmu_tsb_ctxnon0
	12.7.2.1 Errors

	12.7.3 mmu_demap_page
	12.7.3.1 Errors

	12.7.4 mmu_demap_ctx
	12.7.4.1 Errors

	12.7.5 mmu_demap_all
	12.7.5.1 Errors

	12.7.6 mmu_map_addr
	12.7.6.1 Errors

	12.7.7 mmu_map_perm_addr
	12.7.7.1 Errors

	12.7.8 mmu_unmap_addr
	12.7.8.1 Errors

	12.7.9 mmu_unmap_perm_addr
	12.7.9.1 Errors

	12.7.10 mmu_fault_area_conf
	12.7.10.1 Errors

	12.7.11 mmu_enable
	12.7.11.1 Errors

	12.7.12 mmu_tsb_ctx0_info
	12.7.12.1 Errors

	12.7.13 mmu_tsb_ctxnon0_info
	12.7.13.1 Errors

	12.7.14 mmu_fault_area_info
	12.7.14.1 Errors

	13 Cache and Memory services
	13.1 API calls
	13.1.1 mem_scrub
	13.1.1.1 Errors

	13.1.2 mem_sync
	13.1.2.1 Errors

	14 Device interrupt services
	14.1 Definitions
	14.2 API calls
	14.2.1 intr_devino_to_sysino
	14.2.1.1 Errors

	14.2.2 intr_getenabled
	14.2.2.1 Errors

	14.2.3 intr_setenabled
	14.2.3.1 Errors

	14.2.4 intr_getstate
	14.2.4.1 Errors

	14.2.5 intr_setstate
	14.2.5.1 Errors

	14.2.6 intr_gettarget
	14.2.6.1 Errors

	14.2.7 intr_settarget
	14.2.7.1 Errors

	15 Time of day services
	15.1 API calls
	15.1.1 tod_get
	15.1.1.1 Errors

	15.1.2 tod_set
	15.1.2.1 Errors

	16 Console services
	16.1 API calls
	16.1.1 cons_getchar
	16.1.1.1 Errors

	16.1.2 cons_putchar
	16.1.2.1 Errors

	17 Core dump services
	17.1 API calls
	17.1.1 dump_buf_update
	17.1.1.1 Errors

	17.1.2 dump_buf_info
	17.1.2.1 Errors

	18 Trap trace services
	18.1 Trap trace buffer control structure
	18.2 Trap trace buffer entry format
	18.3 API calls
	18.3.1 ttrace_buf_conf
	18.3.1.1 Errors

	18.3.2 ttrace_buf_info
	18.3.2.1 Errors

	18.3.3 ttrace_enable
	18.3.3.1 Errors

	18.3.4 ttrace_freeze
	18.3.4.1 Errors

	18.3.5 ttrace_addentry
	18.3.5.1 Errors

	19 Logical Domain Channel services
	19.1 Endpoints
	19.2 LDC queues
	19.3 LDC interrupts
	19.4 API calls
	19.4.1 ldc_tx_qconf
	19.4.1.1 Errors

	19.4.2 ldc_tx_qinfo
	19.4.2.1 Errors

	19.4.3 ldc_tx_get_state
	19.4.3.1 Errors

	19.4.4 ldc_tx_set_qtail
	19.4.4.1 Errors

	19.4.5 ldc_rx_qconf
	19.4.5.1 Errors

	19.4.6 ldc_rx_qinfo
	19.4.6.1 Errors

	19.4.7 ldc_rx_get_state
	19.4.7.1 Errors

	19.4.8 ldc_rx_set_qhead
	19.4.8.1 Errors

	20 PCI I/O Services
	20.1 Introduction.
	20.1.1 External documents

	20.2 IO Data Definitions
	20.3 PCI IO Data Definitions
	20.4 API calls
	20.4.1 pci_iommu_map
	20.4.1.1 Errors

	20.4.2 pci_iommu_demap
	20.4.2.1 Errors

	20.4.3 pci_iommu_getmap
	20.4.3.1 Errors

	20.4.4 pci_iommu_getbypass
	20.4.4.1 Errors

	20.4.5 pci_config_get
	20.4.5.1 Errors

	20.4.6 pci_config_put
	20.4.6.1 Errors

	20.4.7 pci_peek
	20.4.7.1 Errors

	20.4.8 pci_poke
	20.4.8.1 Errors

	20.4.9 pci_dma_sync
	20.4.9.1 Errors

	21 MSI Services
	21.1 Message Signaled Interrupt (MSI)
	21.2 MSI Event Queue (MSI EQ)
	21.3 Definitions
	21.4 API calls
	21.4.1 pci_msiq_conf
	21.4.1.1 Errors

	21.4.2 pci_msiq_info
	21.4.2.1 Errors

	21.4.3 pci_msiq_getvalid
	21.4.3.1 Errors

	21.4.4 pci_msiq_setvalid
	21.4.4.1 Errors

	21.4.5 pci_msiq_getstate
	21.4.5.1 Errors

	21.4.6 pci_msiq_setstate
	21.4.6.1 Errors

	21.4.7 pci_msiq_gethead
	21.4.7.1 Errors

	21.4.8 pci_msiq_sethead
	21.4.8.1 Errors

	21.4.9 pci_msiq_gettail
	21.4.9.1 Errors

	21.4.10 pci_msi_getvalid
	21.4.10.1 Errors

	21.4.11 pci_msi_setvalid
	21.4.11.1 Errors

	21.4.12 pci_msi_getmsiq
	21.4.12.1 Errors

	21.4.13 pci_msi_setmsiq
	21.4.13.1 Errors

	21.4.14 pci_msi_getstate
	21.4.14.1 Errors

	21.4.15 pci_msi_setstate
	21.4.15.1 Errors

	21.4.16 pci_msg_getmsiq
	21.4.16.1 Errors

	21.4.17 pci_msg_setmsiq
	21.4.17.1 Errors

	21.4.18 pci_msg_getvalid
	21.4.18.1 Errors

	21.4.19 pci_msg_setvalid
	21.4.19.1 Errors

	22 UltraSPARC T1 performance counters
	22.1 Introduction
	22.2 Definitions
	22.3 API calls
	22.3.1 niagara_get_perfreg
	22.3.1.1 Errors

	22.3.2 niagara_set_perfreg
	22.3.2.1 Errors:

	23 Niagara-1 MMU statistics counters
	23.1 Introduction
	23.2 Hypervisor API for Niagara MMU statistics collection
	23.2.1 MMU statistic buffer format

	23.3 API calls
	23.3.1 niagara_mmustat_conf
	23.3.1.1 Errors

	23.3.2 niagara_mmustat_info
	23.3.2.1 Errors

	24 Appendix A: How to use a machine description
	24.1 Using the MD as a list
	24.2 Accelerating string lookups
	24.3 Directed Acyclic Graph
	24.3.1 Graph nodes

	24.4 DAG construction
	24.5 Required nodes
	24.6 The vanilla MD
	24.7 Formation and meaning of a DAG

	25 Appendix B: Number Registry
	25.1 Hyper-fast Trap numbers
	25.2 FAST_TRAP Function numbers
	25.3 CORE_TRAP Function numbers
	25.4 Summary of API service trap and function numbers
	25.5 Error codes

