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CHAPTER 1

Preface

1.1

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987.
Shortly after, the SPARC V8 architecture was announced and published in book
form. The 64-bit SPARC V9 architecture was released in 1994. Now, the
UltraSPARC Architecture specification provides the first significant update in over
10 years to Sun’s SPARC processor architecture.

What’s New?

For the first time, UltraSPARC Architecture 2005 pulls together in one document all
parts of the architecture:

= the nonprivilged (Level 1) architecture from SPARC V9
= most of the privileged (Level 2) architecture from SPARC V9
= more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions:
= the VISO 1 and VIS 2 instruction sets and GSR register

= multiple levels of global registers, controlled by the GL register
= MMU architecture

Plus, now architectural features are tagged with Software Classes and
Implementation Classes!. Software Classes provide a new, high-level view of the
expected architectural longevity and portability of software that references those
features. Implementation Classes give an indication of how efficiently each feature
is likely to be implemented across current and future UltraSPARC Architecture
processor implementations. This information provides guidance that should be

1 although most features in this specification are already tagged with Software Classes, the full description of
those Classes does not appear in this version of the specification. Please check back
(htt p: // openspar c. sunsour ce. net/ nonav/ openspar ct 1. ht n ) for a later release of this
document, which will include that description



particularly helpful to programmers who write in assembly language or those who
write tools that generate SPARC instructions. It also provides the infrastructure for
defining clear procedures for adding and removing features from the architecture
over time, with minimal software disruption.

1.2 Acknowledgements

This specification builds upon all previous SPARC specifications — SPARC V7, V8,
and especially, SPARC V9. It therefore owes a debt to all the pioneers who
developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun
Microsystems, with special assistance from Professor David Patterson of University
of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member
companies of the SPARC International Architecture Committee: Amdahl
Corporation, Fujitsu Limited, ICL, LSI Logic, Matsushita, Philips International, Ross
Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee,
with key contributions from the individuals named in the Editor’s Notes section of
The SPARC Architecture Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC
Architecture 2005 specification are the result of years of deliberation, review, and
feedback from readers of earlier Sun-internal revisions. I would particularly like to
acknowledge the following people for their key contributions:

» The UltraSPARC Architecture working group, who reviewed dozens of drafts of
this specification and strived for the highest standards of accuracy and
completeness; its active members included: Hendrik-Jan Agterkamp, Paul
Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (J]) Johnson, Paul
Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onulfer,
Seongbae Park, Joel Storm, David Weaver, and Tom Webber.

= Robert (Bob) Maier, for expansion of exception descriptions in every page of the
Instructions chapter, major re-writes of several chapters and appendices
(including Memory, Memory Management, Performance Instrumentation, and
Interrupt Handling), significant updates to 5 other chapters, and tireless efforts to
infuse commonality wherever possible across implementations.

= Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more
typographical errors and small inconsistencies than all other reviewers combined
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» Jim Laudon (an UltraSPARC T1 architect and author of that processor’s
implementation specification), for numerous descriptions of new features which
were merged into this specicification

» The working group responsible for developing the system of Software Classes
and Implementation Classes, comprising: Steve Chessin, Yuan Chou, Peter
Damron, Q. Jacobson, Nicolai Kosche, Bob Maier, Ashley Saulsbury, Lawrence
Spracklen, and David Weaver.

= Lawrence Spracklen, for his advice and numerous contributions regarding
descriptions of VIS instructions

I hope you find the UltraSPARC Architecture 2005 specification more complete,
accurate, and readable than its predecessors.

—  David Weaver
UltraSPARC Architecture coordinator and specification editor

Corrections and other comments regarding this specification can be emailed to:
UA- edi t or @un. com
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CHAPTER 2

Document Overview

This chapter discusses:

Navigating UltraSPARC Architecture 2005 on page 1.
= Fonts and Notational Conventions on page 2.
Reporting Errors in this Specification on page 5.

2.1 Navigating UltraSPARC Architecture
2005

If you are new to the SPARC architecture, read Chapter 4, Architecture Overview,
study the definitions in Chapter 3, Definitions, then look into the subsequent sections
and appendixes for more details in areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture
2005, note that UltraSPARC Architecture 2005 conforms to the SPARC V9 Level 1
architecture (and most of Level 2), with numerous extensions — particularly with
respect toVIS instructions. For additional details, see the following;:

= Chapter 3, Definitions

» Chapter 5, Data Formats, for a description of the supported data formats

= Chapter 6, Registers, for a description of the register set

= Chapter 7, Instruction Set Overview, for a description of the new instructions
» Chapter 8, Instructions, for descriptions of instruction set extensions

» Chapter 9, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005, for a
description of the trap model

= Chapter 9, Memory
= Chapter 10, Address Space Identifiers (ASIs), for a complete list of supported ASIs

» Chapter 11, Performance Instrumentation



Chapter 12, Traps, for a description of the trap model
Chapter 13, Interrupt Handling, for information on how interrupts are handled
Chapter 14, Memory Management

Appendix A, Opcode Maps, to see the overall pictures of how the instruction
opcodes are mapped

Appendix B, Implementation Dependencies, for descriptions of resolutions of all
implementation dependencies

Appendix C, Assembly Language Syntax, to see extensions to the assembly
language syntax; in particular, synthetic instructions are documented in this
appendix

Appendix D, Formal Specification of the Memory Models

2.2 Fonts and Notational Conventions

Fonts are used as follows:

Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

Italic font is also used for terms where substitution is expected, for example,
“f ccn”, “virtual processor n”, or “reg_plus_imm”.

Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”

UPPERCASE HELVETICA font is used for register names; for example, FSR.

TYPEWRI TER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: % O,
ASI _PRI MARY, execut e_st ate.

When a register field is shown along with its containing register name, they are
separated by a period ('."), for example, “FSR.cexc”.

UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary in Chapter 3, Definitions. Note: Names of some instructions
contain both upper- and lower-case letters.

An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:
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The left arrow symbol ( ) is the assignment operator. For example, “PC ~ PC +
1”7 means that the Program Counter (PC) is incremented by 1.

Square brackets ( [ ]) are used in two different ways, distinguishable by the
context in which they are used:

= Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

= Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,Q]JF” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI _PRI MARY[_LI TTLE] indicates two
related address space identifiers, ASI _PRI MARY and ASI _PRI MARY_LI TTLE.
(Contrast with the use of angle brackets, below)

Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names.
For example, “ST<D | Q>F" expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

Curly braces ( { } ) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon ( : ), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

A double period ( .. ) indicates any single intermediate value between two given
end values is possible. For example, NAME][2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAMEQ; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAMEOQ. (Contrast with the use of
the colon, above)

A vertical bar ( | ) separates mutually exclusive alternatives inside square
brackets ([ ] ), angle brackets ( < > ), or curly braces ( { } ). For example,
“NAMEJ[A | B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A | B>”
expands to "NAMEA, NAMEB".

The asterisk ( * ) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|g> and FCMPE<s |d | q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.

The slash ( /) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKEF instruction pair ....”

The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.
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2.2.2

2.2.3

Implementation Dependencies

Implementors of UltraSPARC Architecture 2005 processors are allowed to resolve
some aspects of the architecture in machine-dependent ways. Each possible
implementation dependency is indicated by the notation “IMPL. DEP. #1n: Some
descriptive text.” In this specification, the number nn enumerates the dependencies
in . References to implementation dependencies are indicated by the notation
“(impl. dep. #nn)”.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 1001,, FFFF 0000;4). Long binary and hexadecimal numbers
within the text have spaces inserted every four characters to improve readability.
Within C language or assembly language examples, numbers may be preceded by
“0x” to indicate base-16 (hexadecimal) notation (for example, 0XFFFF0000).

Informational Notes

This guide provides several different types of information in notes, as follows:

Note | General notes contain incidental information relevant to the
paragraph preceding the note.

Programming | Programming notes contain incidental information about how
Note | software can use an architectural feature.

Implementation | An Implementation Note contains incidental information,
Note | describing how an UltraSPARC Architecture 2005 processor
might implement an architectural feature.

V9 Compatibility | Note containing information about possible differences between

Note | UltraSPARC Architecture 2005 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2005
implementations and might not apply to other SPARC V9
implementations.

Forward | Note containing information about how the UltraSPARC
Compatibility | Architecture is expected to evolve in the future. Such notes are
Note | not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.
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2.3

Reporting Errors in this Specification

This specification has been reviewed for completeness and accuracy. Nonetheless, as
with any document this size, errors and omissions may occur, and reports of such
are welcome. Please send “bug reports” and other comments on this document to
email address: UA- edi t or @un. com

CHAPTER 2 « Document Overview 5



6 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



CHAPTER 3

TTTTIITITIITIITIITIITIITITITIITIITITIITITIITITITIITITIITITIIIIIrS

/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Definitions

This chapter defines concepts and terminology common to all implementations of
UltraSPARC Architecture 2005.

aliased

address space identifier
(ASD)

application program

ASI
ASR

big-endian

BLD
BST

byte

Said of each of two virtual addresses that refer to the same underlying memory
location.

An 8-bit value that identifies an address space. For each instruction or data
access, an ASI is associated withthe address. See also implicit ASI.

A program executed with the virtual processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged virtual processor state (for example, as stored in a memory-image
dump).

Address space identifier.
Ancillary State register.

An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

(Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKEF.
(Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKE.

Eight consecutive bits of data, aligned on an 8-bit boundary.



clean window

coherence

completed (memory
operation)

consistency

context

context ID

copyback

CPI

cross-call
CTI

current window

data access
(instruction)

DCTI

denormalized
number

deprecated

A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

Said of a memory transaction when an idealized memory has executed the
transaction with respect to all processors. A load is considered completed
when no subsequent memory transaction can affect the value returned by the
load. A store is considered completed when no subsequent load can return the
value that was overwritten by the store.

See coherence.

A set of translations that defines a particular address space. See also Memory
Management Unit (MMU).

A numeric value that uniquely identifies a particular context.

The process of sending a copy of the data from a cache line owned by a
physical processor core, in response to a snoop request from another device.

Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

An interprocessor call in a system containting multiple virtual processors.
Abbreviation for control-transfer instruction.

The block of 24 R registers that is presently in use. The Current Window
Pointer (CWP) register points to the current window.

A load, store, load-store, or FLUSH instruction.

Delayed control transfer instruction.

A nonzero floating-point number, the exponent of which has a value of zero. A
more complete definition is provided in IEEE Standard 754-1985.

The term applied to an architectural feature (such as an instruction or register)
for which an UltraSPARC Architecture implementation provides support only
for compatibility with previous versions of the architecture. Use of a
deprecated feature must generate correct results but may compromise software
performance.

Deprecated features should not be used in new UltraSPARC Architecture
software and may not be supported in future versions of the architecture.
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dispatch

doublet

doubleword

even parity

exception

explicit ASI

extended word

fcen

floating-point
exception

F register

floating-point operate
(FPop) instructions

floating-point trap
type

floating-point unit

FPop

FPRS

To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the this specification attempts to use dispatch consistently as
defined here). See also issued.

Two bytes (16 bits) of data.

An 8-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of ‘1" bits.

A condition that makes it impossible for the processor to continue executing
the current instruction stream. Some exceptions may be masked (that is, trap
generation disabled — for example, floating-point exceptions masked by
FSR.tem) so that the decision on whether or not to apply special processing
can be deferred and made by software at a later time. See also trap.

An ASI that that is provided by a load, store, or load-store alternate instruction
(either from its imm_asi field or from the ASI register).

An 8-byte datum, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

One of the floating-point condition code fields fccO, fccl, fcc2, or fee3.

An exception that occurs during the execution of a floating-point operate
(FPop) instruction. The exceptions are unfinished_FPop, unimplemented_FPop,
sequence_error, hardware_error, invalid_fp_register, or IEEE_754_exception.

A floating-point register. The SPARC V9 architecture includes single-, double-,
and quad-precision F registers.

Instructions that perform floating-point calculations, as defined in Floating-
Point Operate (FPop) Instructions on page 119. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the F registers, or
non-floating-point operations that read or write F registers.

The specific type of a floating-point exception, encoded in the FSRfit field.

A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

See floating-point operate (FPop) instructions.

Floating-Point Register State register.
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FGU

FPU

FSR

GL

GSR
halfword

IEEE 754

IEEE-754 exception

implementation

implementation
dependent

implicit ASI

initiated
instruction field

instruction group

instruction set
architecture

integer unit

interrupt request

Floating-point and Graphics Unit (which, in most implementations, is a
synonym for FPU).

Floating-Point Unit.
Floating-Point Status register.
Global Level register.
General Status register.

A 2-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point
Arithmetic.

A floating-point exception, as specified by IEEE Std 754-1985. Listed within
this specification as IEEE_754_exception.

Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

An aspect of the UltraSPARC Architecture that can legitimately vary among
implementations. In many cases, the permitted range of variation is specified.
When a range is specified, compliant implementations must not deviate from
that range.

An address space identifier that is implicitly supplied by the virtual processor
on all instruction accesses and on data accesses that do not explicitly provide
an ASI value (from either an imm_asi instruction field or the ASI register).

Synonym for issued.
A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous
execution.

A set that defines instructions, registers, instruction and data memory, the
effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the UltraSPARC
Architecture 2005 instruction set architecture.

A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and virtual processor state registers,
as defined by this specification.

A request for service presented to a virtual processor by an external device.
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inter-strand

intra-strand

invalid
(ASI or address)

ISA

issued

IU

little-endian

load

load-store

may

Memory Management
Unit

MMU

Describes an operation that crosses virtual processor (strand) boundaries.

Describes an operation that occurs entirely within one virtual processor
(strand).

Undefined, reserved, or illegal.
Instruction set architecture.

(1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a virtual processor has sent the transaction to the memory
subsystem and the completion of the request is out of the virtual processor’s
control. Synonym for initiated.

(2) An instruction (or sequence of instructions) is said to be issued when
released from the virtual processor's instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but this
specification attempts to use "issued" consistently as defined here.)

See also dispatched.

Integer Unit.

An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Some examples of Load
includes loads into integer or floating-point registers, block loads, and
alternate address space variants of those instructions. See also load-store and
store, the definitions of which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.

A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

The address translation hardware in an UltraSPARC Architecture
implementation that translates 64-bit virtual address into physical addresses.
The MMU is composed of the ASRs and ASI registers used to manage address
translation. See also context and virtual address.

Memory Management Unit.
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multiprocessor
system

must

next program counter
(NPC)

NFO

nonfaulting load

nonprivileged

nonprivileged mode

nontranslating ASI

NPC

npt

nucleus software
NUMA
N_REG_WINDOWS

octlet

A system containing more than one processor.

A keyword indicating a mandatory requirement. Designers must implement
all such mandatory requirements to ensure interoperability with other
UltraSPARC Architecture-compliant products. Synonym: shall.

Conceptually, a register that contains the address of the instruction to be
executed next if a trap does not occur.

Nonfault access only.

A load operation that behaves identically to a normal load operation, except
when supplied an invalid effective address by software. In that case, a regular
load triggers an exception whereas a nonfaulting load appears to ignore the
exception and loads its destination register with a value of zero (on an
UltraSPARC Architecture processor, hardware treats regular and nonfaulting
loads identically; the distinction is made in trap handler software). Contrast
with speculative load.

An adjective that describes

(1) the state of the virtual processor when PSTATE.priv = 0, that is,
nonprivileged mode;

(2) virtual processor state information that is accessible to software while the
virtual processor is in either privileged mode or nonprivileged mode; for
example, nonprivileged registers, nonprivileged ASRs, or, in general,
nonprivileged state;

(3) an instruction that can be executed when the virtual processor is in either
privileged mode or nonprivileged mode.

The mode in which a virtual processor is operating when executing application
software (at the lowest privilege level). Nonprivileged mode is defined by
PSTATE.priv = 0. See also privileged.

An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

Next program counter.

Nonprivileged trap.

Privileged software running at a trap level greater than 0 (TL> 0).
Nonuniform memory access.

The number of register windows present in a particular implementation.

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.
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odd parity

opcode
optional
PC

PCR
PIC

PIL

pipeline

POR

prefetchable

privileged

privileged mode

processor

processor core

The mode of parity checking in which each combination of data bits plus a
parity bit together contain an odd number of ‘1" bits.

A bit pattern that identifies a particular instruction.

A feature not required for UltraSPARC Architecture 2005 compliance.
Program counter.

Performance Control register.

Performance Instrumentation Counter.

Processor Interrupt Level register.

Refers to an execution pipeline. It is a loose term for the basic collection of
hardware needed to execute instructions. A pipeline may be used by one or
more strands to execute instructions from one or more threads. Synonym for
microcore. See also processor, strand, thread, and virtual processor.

Power-on reset.

(1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.

(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

An adjective that describes:

(1) the state of the processor when PSTATE.priv = 1, that is, privileged mode;
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;

(3) an instruction that can be executed only when the processor is in privileged
mode.

The mode in which a processor is operating when PSTATE.priv = 1. See also
nonprivileged.

The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.
Synonym for processor module. See also pipeline, strand, thread, and virtual
processor.

See virtual processor.
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processor module  Synonym for processor.
program counter (PC) A register that contains the address of the instruction currently being executed.

quadword A 16-byte datum. Note: The definition of this term is architecture dependent
and may be different from that used in other processor architectures.

R register An integer register. Also called a general-purpose register or working register.
RA Real address.

RAS (1) Return Address Stack
(2) Reliability, Availability, and Serviceability

RAW Read After Write (hazard)
rd Rounding direction.
RDPR Read Privileged Register instruction.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

A reserved instruction field must read as 0, unless the implementation supports
extended instructions within the field. The behavior of an UltraSPARC
Architecture 2005 virtual processor when it encounters a nonzero value in a
reserved instruction field is as defined in Reserved Opcodes and Instruction Fields
on page 120.

A reserved bit combination within an instruction field is defined in Chapter 8,
Instructions. In all cases, an UltraSPARC Architecture 2005 processor must
decode and trap on such reserved bit combinations.

A reserved field within a register reads as 0 in current implementations and, when
written by software, should always be written with values of that field
previously read from that register or with the value zero (as described in
Reserved Register Fields on page 46).

Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

restricted  Describes an address space identifier (ASI) that may be accessed only while the
virtual processor is operating in a privileged mode.

retired An instruction is said to be “retired” when one of (instruction) the following
two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's
address (the instruction has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural
state affected by the instruction has been updated such that all three of the
following are true:

= The PC has advanced beyond the instruction.
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RMO

rsi,rs2, rd

RTO
RTS

shall
should

side effect

SIMD

speculative load

store

strand

= Except for deferred trap handlers, no consumer in the same instruction
stream can see the old values and all consumers in the same instruction
stream will see the new values.

= Stores are visible to all loads in the same instruction stream, including
stores to noncacheable locations.

Relaxed memory order.

The integer or floating-point register operands of an instruction. rs1 and rs2
are source registers; rd is the destination register.

Read to Own (a type of transaction, used to request ownership of a cache line).

Read to Share (a type of transaction, used to request read-only access to a
cache line).

Synonym for must.

A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym for it is recommended.

The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

Single Instruction/Multiple Data; a class of instructions that perform identical
operations on multiple data contained (or “packed”) in each source operand.

A load operation that is issued by a virtual processor speculatively, that is,
before it is known whether the load will be executed in the flow of the
program. Speculative accesses are used by hardware to speed program
execution and are transparent to code. An implementation, through a
combination of hardware and system software, must nullify speculative loads
on memory locations that have side effects; otherwise, such accesses produce
unpredictable results. Contrast with nonfaulting load.

An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Some
examples of Store includes stores from either integer or floating-point registers,
block stores, Partial Store, and alternate address space variants of those
instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

Identifies the hardware state used to hold a software thread in order to execute
it. Strand is specifically the software-visible architected state (program counter
(PC), next program counter (NPC), general-purpose registers, floating-point
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subnormal number

superscalar

supervisor software

synchronization

system

taken

TBA
TEE
thread

TPC

trap

TSB

TSO
TTE

UA-2005

registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. See also
pipeline, processor, thread, and virtual processor.

Synonym for denormalized number.

An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

Software that executes when the virtual processor is in privileged mode.

An operation that causes the processor to wait until the effects of all previous
instructions are completely visible before any subsequent instructions are
executed.

A set of virtual processors that share a physical address space.

A control-transfer instruction (CTI) is taken when the CTT alters the control
flow by writing a value into NPC other than the default value NPC = 4.

A trap is taken when the control flow changes in response to an exception,
reset, Tec instruction, or interrupt. An exception must be detected and
recognized before it can cause a trap to be taken.

Trap base address.
Thread Execution Engine. Synonym for virtual processor and strand.

A software entity that can be run on hardware. A thread is scheduled, may or
may not be actively running on hardware at any given time, and may migrate
around the hardware of a system. See also pipeline, processor, strand, and
virtual processor.

Trap—saved program counter.

The action taken by a virtual processor when it changes the instruction flow in
response to the presence of an exception, reset, a Tcc instruction, or an
interrupt. The action is a vectored transfer of control to supervisor software
through a table, the address of which is specified by the privileged Trap Base
Address (TBA) register. See also exception.

Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

Total store order.

Translation Table Entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the page table. In some cases, the term is
explicitly used for the entries in the TSB.

UltraSPARC Architecture 2005
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unassigned

undefined

unimplemented

unpredictable
uniprocessor system

unrestricted

user application
program

VA

virtual address

virtual core,
virtual processor,
virtual processor core

virtual processor

VIS
Strand

word

A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as changing the privilege state or allowing
circumvention of normal restrictions imposed by the privilege state), put a
virtual processor into privileged mode, or put the virtual processor into an
unrecoverable state.

An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

Synonym for undefined.
A system containing a single virtual processor.

Describes an address space identifier (ASI) that can be used in all privileged
modes; that is, regardless of the value of PSTATE.priv.

Synonym for application program.
Virtual address.

An address produced by a virtual processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a
combination of hardware and software to physical addresses, which can be
used to access physical memory.

Synonyms: virtual processor.

The term virtual processor, or virtual processor core, is used to identify each
strand in a processor. A processor contains one or more physical cores, each of
which contains one or more virtual processors (strands). Each virtual
processor (strand) has its own interrupt ID. At any given time, an operating
system can have a different thread scheduled on each virtual processor. See also
pipeline, processor, strand, and thread.

VIS™ Instruction Set.
Abbreviation for Virtual Processor.

A 4-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.
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WRPR  Write Privileged Register instruction.
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CHAPTER 4

Architecture Overview

The UltraSPARC Architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The architecture defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 26*-byte virtual address space.

The UltraSPARC Architecture 2005 specification describes a processor architecture to
which Sun Microsystem’s SPARC processor implementations (beginning with
UltraSPARC T1) comply. Future implementations are expected to comply with either
this document or a later revision of this document.

The UltraSPARC Architecture 2005 is a descendant of the SPARC V9 architecture and
complies fully with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all
SPARC V9 processors should be written to adhere to The SPARC Architecture Manual-
Version 9.

Material in this document specific to UltraSPARC Architecture 2005 processors may
not apply to SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are
visible to an assembly language programmer or to a compiler code generator. It does
not include details of the implementation that are not visible or easily observable by
software, nor those that only affect timing (performance).
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4.1 The UltraSPARC Architecture 2005

This section briefly describes features, attributes, and components of the
UltraSPARC Architecture 2005 and, further, describes correct implementation of the
architecture specification and SPARC V9-compliance levels.

4.1.1 Features

The UltraSPARC Architecture 2005, like its ancestor SPARC V9, includes the
following principal features:

= A linear 64-bit address space with 64-bit addressing.

= 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform I/0O.

= Few addressing modes — A memory address is given as either “register +
register” or “register + immediate”.

= Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

= A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

= Floating point — The architecture provides an IEEE 754-compatible floating-
point instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

= Fast trap handlers — Traps are vectored through a table.

= Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by virtual processors.

» Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

= Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
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4.1.2

= Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

In addition, UltraSPARC Architecture 2005 includes the following features that were
not present in the SPARC V9 specification:

= Hyperprivileged mode, which simplifies porting of operating systems, supports
far greater portability of operating system (privileged) software, and supports the
ability to run multiple simultaneous guest operating systems. (hyperprivileged
mode is described in detail in the Hyperprivileged version of this specification)

= Multiple levels of global registers — Instead of the two 8-register sets of global
registers specified in the SPARC V9 architecture, UltraSPARC Architecture 2005
provides multiple sets; typically, one set is used at each trap level.

= Extended instruction set — UltraSPARC Architecture 2005 provides many
instruction set extensions, including the VIS instruction set for "vector" (SIMD)
data operations.

= More detailed, specific instruction descriptions — UltraSPARC Architecture
2005 provides many more details regarding what exceptions can be generated by
each instruction and the specific conditions under which those exceptions can
occur. Also, detailed lists of valid ASIs are provided for each load/store
instruction from/to alternate space.

= Detailed MMU architecture — UltraSPARC Architecture 2005 provides a
blueprint for the software view of the UltraSPARC MMU (TTEs and TSBs).

Attributes

UltraSPARC Architecture 2005 is a processor instruction set architecture (ISA) derived
from SPARC V8 and SPARC V9, which in turn come from a reduced instruction set
computer (RISC) lineage. As an architecture, UltraSPARC Architecture 2005 allows
for a spectrum of processor and system implementations at a variety of price/
performance points for a range of applications, including scientific/engineering,
programming, real-time, and commercial applications.

4121 Design Goals

The UltraSPARC Architecture 2005 architecture is designed to be a target for
optimizing compilers and high-performance hardware implementations. This
specification documents the UltraSPARC Architecture 2005 and provides a design
spec against which an implementation can be verified, using appropriate verification
software.
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4.1.3

4.1.2.2 Register Windows

The UltraSPARC Architecture 2005 architecture is derived from the SPARC
architecture, which was formulated at Sun Microsystems in 1984 through1987. The
SPARC architecture is, in turn, based on the RISC I and II designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

System Components

The UltraSPARC Architecture 2005 allows for a spectrum of subarchitectures, such
as cache system.

4.1.3.1 Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 9, Memory, for more information.

Additionally, the SPARC V9 architecture is binary upward-compatible from SPARC
V8 for applications running in nonprivileged mode that conform to the SPARC V8
ABL

4.1.3.2 UltraSPARC Architecture 2005 MMU

Although the SPARC V9 architecture allows its implementations freedom in their
MMU designs, UltraSPARC Architecture 2005 defines a common MMU architecture
(see Chapter 14, Memory Management) with some specifics left to implementations
(see processor implementation documents).
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4.1.4

4.1.5

4.1.6

4.1.3.3 Privileged Software

UltraSPARC Architecture 2005 does not assume that all implementations must
execute identical privileged software (operating systems). Thus, certain traits that
are visible to privileged software may be tailored to the requirements of the system.

Architectural Definition

The UltraSPARC Architecture 2005 is defined by the chapters and normative
appendixes of this specification. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the
chapters and normative appendixes.

UltraSPARC  Architecture 2005 defines a set of implementations that conform to the
SPARC V9 architecture, Level 1.

UltraSPARC Architecture 2005 Compliance with
SPARC V9 Architecture

UltraSPARC Architecture 2005 fully complies with SPARC V9 Level 1
(nonprivileged). It partially complies with SPARC V9 Level 2 (privileged).

Implementation Compliance with UltraSPARC
Architecture 2005

Compliant implementations must not add to or deviate from this standard except in
aspects described as implementation dependent. Appendix B, Implementation
Dependencies lists all UltraSPARC Architecture 2005, SPARC V8, and SPARC V9
implementation dependencies. Documents for specific UltraSPARC Architecture
2005 processor implementations describe the manner in which implementation
dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture
2005 by being implemented directly by hardware, simulated by software, or
emulated by firmware is implementation dependent.

CHAPTER 4 « Architecture Overview 23



4.2

4.2.1

422

Processor Architecture

An UltraSPARC Architecture processor logically consists of an integer unit (IU) and
a floating-point unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode,
privileged mode, or in mode(s) of greater privilege. In privileged mode, the processor
can execute nonprivileged and privileged instructions. In nonprivileged mode, the
processor can only execute nonprivileged instructions. In nonprivileged or
privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap.

Integer Unit (IU)

The integer unit contains the general-purpose registers and controls the overall
operation of the virtual processor. The IU executes the integer arithmetic
instructions and computes memory addresses for loads and stores. It also maintains
the program counters and controls instruction execution for the FPU.

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from
72 to 640 general-purpose 64-bit R registers. This corresponds to a grouping of the
registers into MAXPGL + 1 sets of global R registers plus a circular stack of
N_REG_WINDOWS sets of 16 registers each, known as register windows. The number
of register windows present (N_REG_WINDOWS) is implementation dependent, within
the range of 3 to 32 (inclusive).

Floating-Point Unit (FPU)

The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision registers , and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If no FPU is present, then it appears to software as if the FPU is permanently
disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction
generates an fp_disabled trap and the fp_disabled trap handler software must either
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= Enable the FPU (if present) and reexecute the trapping instruction, or
« Emulate the trapping instruction in software.

4.3

4.3.1

Instructions

Instructions fall into the following basic categories:

= Memory access

» Integer arithmetic / logical / shift
= Control transfer

= State register access

= Floating-point operate

= Conditional move

= Register window management

These classes are discussed in the following subsections.

Memory Access

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two R registers or an R register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R
registers or one, two, or four F registers that supply the data for a store or that
receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword! memory accesses.

CASA, CASXA, SWAP, and LDSTUB are special atomic memory access instructions
that concurrent processes use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that
is important in certain system software applications.

1- No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates
an exception and is emulated in supervisor software.
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43.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be
aligned on an address boundary greater than or equal to the size of the datum being
accessed. An improperly aligned address in a load, store, or load-store in instruction
may trigger an exception and cause a subsequent trap. For details, see Memory
Alignment Restrictions on page 102.

43.1.2 Addressing Conventions

The SPARC V9 architecture uses big-endian byte order by default: the address of a
quadword, doubleword, word, or halfword is the address of its most significant
byte. Increasing the address means decreasing the significance of the unit being
accessed. All instruction accesses are performed using big-endian byte order.

The SPARC V9 architecture also supports little-endian byte order for data accesses
only: the address of a quadword, doubleword, word, or halfword is the address of
its least significant byte. Increasing the address means increasing the significance of
the data unit being accessed. See Processor State (PSTATEL) Register (PR 6) on page 90
for information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 7-2 on page 105 and FIGURE 7-3 on
page 107.

4.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a
full 64-bit virtual address space or a more limited range of virtual addresses. In an
implementation that does support a full 64-bit virtual address space, the supported
range of virtual addresses is restricted to two equal-sized ranges at the extreme
upper and lower ends of 64-bit addresses; that is, for n-bit virtual addresses, the
valid address ranges are 0 to 2" =1 and 26% - 271 to0 264 - 1.

4.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0014—7F4 is restricted to privileged code, and access to alternate
spaces 801—FFy4 is unrestricted. Some of the ASIs are available for implementation-
dependent uses. Supervisor software can use the implementation-dependent ASIs to
access special protected registers, such as MMU, cache control, and virtual processor
state registers, and other processor- or system-dependent values. See Address Space
Identifiers (ASIs) on page 108 for more information.
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Alternate space addressing is also provided for the atomic memory access
instructions LDSTUBA, CASA, and CASXA.

Note | SWAPA is also available, but it is deprecated and should not be
used in newly developed software.

43.1.5 Separate I and D Memories

The interpretation of addresses can be unified, in which case the same translations
and caching are applied to both instructions and data. Alternatively, addresses can
be split, in which case instruction references use one translation mechanism and

cache and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write
into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent

instruction and data caches. Even if it does, a FLUSH instruction is required for self-
modifying code — not for cache coherency, but to flush pipeline instruction buffers
that contain unmodified instructions which may have been subsequently modified.

43.1.6 Input/Output (I/0)

The UltraSPARC Architecture assumes that input/output registers are accessed
through load/store alternate instructions, normal load/store instructions, or read/
write Ancillary State Register instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations
is implementation dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code
is implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation
dependent.
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4.3.2

4.3.3

431.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 174 and
Memory Barrier on page 258, respectively.

Note | STBAR is also available, but it is deprecated and should not be

used in newly developed software.

Arithmetic / Logical / Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI, can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an R
register.

Shift instructions shift the contents of an R register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an R
register.

The integer multiply instruction performs a 64 x 64 — 64-bit operation. The integer
division instructions perform 64 + 64 — 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (icc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc)
arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero, icc is
set. The xcc overflow bit is not affected by the tag bits.

Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.
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4.3.4

The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).

Note | The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address.
They compute their target addresses either as the sum of two R registers or as the
sum of an R register and a 13-bit signed immediate value. The “branch on condition
codes without prediction” instruction provides a displacement of +8 Mbytes; the
“branch on condition codes with prediction” instruction provides a displacement of
*1 Mbyte; the “branch on register contents” instruction provides a displacement of
+128 Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within * 2 gigabytes (+ 2! bytes).

Note | The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.

State Register Access

The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA,
PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN,
WSTATE, and VER).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0-27 that are
not defined in UltraSPARC Architecture 2005 are reserved for future architectural
use. ASRs in the range 28-31 are available to be used for implementation-dependent
purposes.

IMPL. DEP. #9-V8-Cs20: Whether each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28-31) is privileged is
implementation dependent.
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4.3.5

4.3.6

4.3.7

Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
FPops compute a result that is a function of one or two source operands. The groups
of instructions that are considered FPops are listed in Floating-Point Operate (FPop)
Instructions on page 119.

Conditional Move

Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

Register Window Management

Register window instructions manage the register windows. SAVE and RESTORE
are nonprivileged and cause a register window to be pushed or popped. FLUSHW is
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

4.4

Traps

A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each
trap handler. The base address of the table is established by software in a state
register (the Trap Base Address register, TBA. The displacement within the table is
encoded in the type number of each trap and the level of the trap. Part of the trap
table is reserved for hardware traps, and part of it is reserved for software traps
generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers.
It also causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE.
TPC, TNPC, and TSTATE are entries in a hardware trap stack, where the number of
entries in the trap stack is equal to the number of supported trap levels. A trap also
sets bits in the PSTATE register and typically increments the GL register. Normally,
the CWP is not changed by a trap; on a window spill or fill trap, however, the CWP
is changed to point to the register window to be saved or restored.
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A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular
instruction. Before executing each instruction, a virtual processor determines if there
are any pending exceptions or interrupt requests. If any are pending, the virtual
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 12, Traps, for a complete description of traps.
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CHAPTER 5

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:

= Signed integer: 8, 16, 32, and 64 bits

= Unsigned integer: 8, 16, 32, and 64 bits

= SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD
(64 bits)

= Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

= Byte: 8 bits

= Halfword: 16 bits

= Word: 32 bits

» Tagged word: 32 bits (30-bit value plus 2-bit tag)
= Doubleword/Extended-word: 64 bits

= Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:

= Integer Data Formats on page 34.
= Floating-Point Data Formats on page 38.
= SIMD Data Formats on page 41.

Names are assigned to individual subwords of the multiword data formats as
described in these sections:

= Signed Integer Doubleword (64 bits) on page 35.

= Unsigned Integer Doubleword (64 bits) on page 37.

= Floating Point, Double Precision (64 bits) on page 39.

= Floating Point, Quad Precision (128 bits) on page 40.
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5.1 Integer Data Formats

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLES5-1  Signed Integer, Unsigned Integer, and Tagged Format Ranges

Width
Data Type (bits) Range
Signed integer byte 8 27027 -1
Signed integer halfword 16 20215 -1
Signed integer word 32 2310231 -1
Signed integer doubleword /extended-word 64 -2%3 t0 203 -1
Unsigned integer byte 8 0to28 -1
Unsigned integer halfword 16 0to2'-1
Unsigned integer word 32 0to2%2 -1
Unsigned integer doubleword/extended-word 64 0to2% -1
Integer tagged word 32 0to2%0 -1

TABLE 5-2 describes the memory and register alignment for multiword integer data.
All registers in the integer register file are 64 bits wide, but can be used to contain
smaller (narrower) data sizes. Note that there is no difference between integer
extended-words and doublewords in memory; the only difference is how they are
represented in registers.

TABLE 5-2 Integer Doubleword /Extended-word Alignment

Memory Address Register Number

Subformat Required Address Required Register
Name Subformat Field Alignment (big—endian)1 Alignment Number
SD-0 signed_dbl_integer{63:32} nmod 8=0 n rmod2 =0 r

SD-1 signed_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
SX signed_ext_integer{63:0} nmod 8 =0 n — r

UD-0 unsigned_dbl_integer{63:32} nmod 8 =0 n rmod2 =0 r

UD-1 unsigned_dbl_integer{31:0} m+4)mod8=4 n+4 r+1)mod2=1 r+1
UX unsigned_ext_integer{63:0} nmod 8 =0 n — r

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.
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The data types are illustrated in the following subsections.

51.1 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

Signed integer byte

Signed integer halfword
Signed integer word

Signed integer doubleword
Signed integer extended-word

5.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 5-1 illustrates the signed integer byte, halfword, and word data formats.

SB S
76 0
SH |S
1514 0
SW |[S
3130 0

FIGURE 5-1 Signed Integer Byte, Halfword, and Word Data Formats

51.1.2 Signed Integer Doubleword (64 bits)

FIGURE 5-2 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

SD-0 |s signed_int_doubleword{62:32}

3130 0

SD-1 signed_int_doubleword{31:0}

31 0

FIGURE 5-2 Signed Integer Double Data Format
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5.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 5-3 illustrates the signed integer extended-word (SX) data format.

SX |s signed_int_extended

63 62

FIGURE 5-3 Signed Integer Extended-Word Data Format

5.1.2 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

Unsigned integer byte

Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword
Unsigned integer extended-word

5.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 5-4 illustrates the unsigned integer byte data format.

uB

UH

15 0

uw

31 0

FIGURE 5-4 Unsigned Integer Byte, Halfword, and Word Data Formats
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5.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 5-5 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

UD-0 unsigned_int_doubleword{ 63:32}

31 0

ub-1 unsigned_int_doubleword{31:0}

31 0

FIGURE 5-5 Unsigned Integer Double Data Format

5.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 5-6 illustrates the unsigned extended integer (UX) data format.

Uux unsigned_int_extended

63 0

FIGURE 5-6 Unsigned Extended Integer Data Format

5.1.3 Tagged Word (32 bits)

FIGURE 5-7 illustrates the tagged word data format.

T™W tag

31 21 0

FIGURE 5-7 Tagged Word Data Format
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5.2 Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are
described below.

521 Floating Point, Single Precision (32 bits)

FIGURE 5-8 illustrates the floating-point single-precision data format, and TABLE 5-3
describes the formats.

FS | exp{7:0} fraction{22:0}

3130 2322 0

FIGURE 5-8 Floating-Point Single-Precision Data Format

TABLES5-3  Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255): (-1)° x 267127 x 1.f

Subnormal value (e = 0): (-1)s x 27126 x .f
Zero (e =0,f =0) (-1)®*x0
Signalling NaN s =u; e =255 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f =.1luu--uu
- o (negative infinity) s =1; e =255 (max); f =.000--00
+ o (positive infinity) s =0; e =255 (max); f =.000--00
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522

Floating Point, Double Precision (64 bits)

FIGURE 5-9 illustrates both components (FD-0 and FD-1) of the floating-point double-
precision data format, and TABLE 5-4 describes the formats.

FD-0 |s|  exp{10:0} fraction{51:32}

3130 2019 0
FD-1 fraction{31:0}

31 0

FIGURE 5-9 Floating-Point Double-Precision Data Format

TABLES5-4  Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e =biased exponent (11 bits)
f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047): (=1)8 x 2671023 1 ¢
Subnormal value (e =0): (1) x 271022 x 0 £
Zero (e =0,f =0) (-1)®x0
Signalling NaN s =u; e =2047 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =.luu--uu
- o (negative infinity) s =1; e =2047 (max); f =.000--00
+ o (positive infinity) s =0; e =2047 (max); f =.000--00

CHAPTER 5 « Data Formats 39



5.2.3 Floating Point, Quad Precision (128 bits)

FIGURE 5-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-5 describes the formats.

FQ-0 S exp{14:0} fraction{111:96}

3130 1615 0
FO-1 fraction{95:64}

31 0
FQ-2 fraction{63:32}

31 0
FQ-3 fraction{31:0}

31 0

FIGURE 5-10 Floating-Point Quad-Precision Data Format

TABLES-5  Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e =biased exponent (15 bits)
f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767): (-1)® x 26716383 » 1 £
Subnormal value (e =0): (-1)3 x 2716382 0 £
Zero (e =0,f =0) (-1)*x0
Signalling NaN s =u; e =32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =32767 (max); f =.luu--uu
— o (negative infinity) s =1; e =32767 (max); f =.000--00
+ o (positive infinity) s =0; e =32767 (max); f =.000--00
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524

Floating-Point Data Alignment in Memory and

Registers

TABLE 5-6 describes the address and memory alignment for floating-point data.

TABLE 5-6 Floating-Point Doubleword and Quadword Alignment

Memory Address Register Number
Subformat Required Address Required Register
Name Subformat Field Alignment (big-endian)*  |Alignment Number
FD-0 s:exp{10:0}:fraction{51:32} Omod 47 n 0 mod 2 f
FD-1 fraction{31:0} Omod4®™  n+4 Tmod2  f+1°
FQ-0 s:exp{14:0}:fraction{111:96} Omod 41 n 0 mod 4 f
FQ-1 fraction{95:64} Omod4t n+4 Tmod4  f+1°
FQ-2 fraction{63:32} Omod4t n+8 2 mod 4 f+2
FQ-3 fraction{31:0} Omod4t  n+12 3mod4  f+3°

accesses are used.

-+

The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian

Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-

word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

++

aligned (that is, the address of its FQ-0 word should be 0 mod 16).

o

number is < 31).

5.3

SIMD Data Formats

SIMD (single instruction/multiple data) instructions perform identical operations on
multiple data contained (“packed”) in each source operand. This section describes

the data formats used by SIMD instructions.

Conversion between the different SIMD data formats can be achieved through SIMD

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-

Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register

multiplication or by the use of the SIMD data formatting instructions.
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53.1

5.3.2

Int1l6
SIMD

5.3.3

Int32
SIMD

Programming | The SIMD data formats can be used in graphics calculations to
Note | represent intensity values for an image (e.g., a, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

» Band interleaved images, with the various color components
of a point in the image stored together, and

= Band sequential images, with all of the values for one color
component stored together.

Uint8 SIMD Data Format

The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a
32-bit word (see FIGURE 5-11).

Uint8 SIMD valueg value, value, valueg

31 24 23 16 15 87 0

FIGURE 5-11 Uint8 SIMD Data Format

Intl6 SIMD Data Formats

The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-
bit word (see FIGURE 5-12).

Sg valueg Sy value, S5 value, S3 values
63 62 48 47 46 32 31 30 16 15 14 0
FIGURE 5-12 Int16 SIMD Data Format
Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-
bit word (see FIGURE 5-13).
Sp valueg S value,
63 62 32 31 30 0

FIGURE 5-13 Int32 SIMD Data Format
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Programming | The integer SIMD data formats can be used to hold fixed-point
Note | data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.
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CHAPTER 6

Registers

The following registers are described in this chapter:

General-Purpose R Registers on page 46.

Floating-Point Registers on page 52.

Floating-Point State Register (FSR) on page 58.

Ancillary State Registers on page 67. The following registers are included in this
category:

= 32-bit Multiply/Divide Register (Y) (ASR 0) on page 69.

= Integer Condition Codes Register (CCR) (ASR 2) on page 69.

= Address Space Identifier (ASI) Register (ASR 3) on page 71.

= Tick (TICK) Register (ASR 4) on page 71.

= Program Counters (PC, NPC) (ASR 5) on page 72.

= Floating-Point Registers State (FPRS) Register (ASR 6) on page 73.

« Performance Control Register (PCRY) (ASR 16) on page 74.

= Performance Instrumentation Counter (PIC) Register (ASR 17) on page 75.
= General Status Register (GSR) (ASR 19) on page 76.

« SOFTINTP Register (ASRs 20, 21, 22) on page 77.

« SOFTINT_SET? Pseudo-Register (ASR 20) on page 78.

« SOFTINT_CLRY Pseudo-Register (ASR 21) on page 79.

» Tick Compare (TICK_CMPR?Y) Register (ASR 23) on page 79.

= System Tick (STICK) Register (ASR 24) on page 80.

« System Tick Compare (STICK_CMPRPF) Register (ASR 25) on page 81.

Register-Window PR State Registers on page 81. The following registers are
included in this subcategory:

» Current Window Pointer (CWPF) Register (PR 9) on page 82.

» Savable Windows (CANSAVE?) Register (PR 10) on page 83.

» Restorable Windows (CANRESTORE?Y) Register (PR 11) on page 83.

« Clean Windows (CLEANWINF) Register (PR 12) on page 83.

« Other Windows (OTHERWINP) Register (PR 13) on page 84.

«» Window State (WSTATEP) Register (PR 14) on page 84.

Non-Register-Window PR State Registers on page 86. The following registers are
included in this subcategory:

« Trap Program Counter (TPCF) Register (PR 0) on page 86.

« Trap Next PC (TNPCF) Register (PR 1) on page 87.
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« Trap State (TSTATE?) Register (PR 2) on page 88.

« Trap Type (TTF) Register (PR 3) on page 89.

. Trap Base Address (TBAF) Register (PR 5) on page 89.

« Processor State (PSTATE") Register (PR 6) on page 90.

» Trap Level Register (TLY) (PR 7) on page 94.

= Processor Interrupt Level (PILP) Register (PR 8) on page 95.
« Global Level Register (GL?) (PR 16) on page 96.

There are additional registers that may be accessed through ASIs; those registers are
described in Chapter 10, Address Space Identifiers (ASIs).

6.1

Reserved Register Fields

For convenience, some registers in this chapter are illustrated as fewer than 64 bits
wide. Any bits not shown (or explicitly marked as reserved) are reserved for future
extensions to the architecture.

Such a reserved field within a register reads as zero in current implementations and,
when written by software, should only be written with the value of that field
previously read from that register or with the value zero.

Programming | Software intended to run on future versions of the UltraSPARC
Note | Architecture should not assume that reserved register fields will
read as 0 or any other particular value.

6.2

General-Purpose R Registers

An UltraSPARC Architecture virtual processor contains an array of general-purpose
64-bit R registers. The array is partitioned into MAXPGL + 1 sets of eight global
registers, plus N_REG_WINDOWS groups of 16 registers each. The value of
N_REG_WINDOWS in an UltraSPARC Architecture implementation falls within the
range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24
registers, known as a register window, is also visible. A register window comprises
the 16 registers from the current 16-register group (referred to as 8 in registers and 8
local registers), plus half of the registers from the next 16-register group (referred to
as 8 out registers). See FIGURE 5-1.
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SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are
visible to software at any moment. Which 32 out of the full set of R registers are
visible is described in the following sections. The visible 32 R registers are named
R[0] through R[31], illustrated in FIGURE 6-1.

R[31] i7
R[30] i6
R[29] i5
R[28] i4 .
R[27] 3 ns
R[26] i2
R[25] i1
R[24] i0
R[23] 7 T T T T
R[22] 16
R[21] 15
R[20] ”
locals
R[19] 13
R[18] 12
R[17] 11
R[16] )
R[15] Y
R[14] 06
R[13] 05
R[12] 04
R[] p outs
R[10] 02
R[9] ol
R[8] 00
R[7] o |
R[6] g6
R[5] g5
R4 g4 globals
R[3] 93
R[2] 92
R[1] gl
R[0] g0

FIGURE 6-1 General-Purpose Registers (as Visible at Any Given Time)
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6.2.1 Global R Registers

Registers R[0]-R[7] refer to a set of eight registers called the global registers (labeled
g0 through g7). At any time, one of MAXPGL +1 sets of eight registers is enabled and
can be accessed as the current set of global registers. The currently enabled set of
global registers is selected by the GL register. See Global Level Register (GLY) (PR 16)
on page 96.

Global register zero (GO) always reads as zero; writes to it have no software-visible
effect.

6.2.2 Windowed R Registers @p

A set of 24 R registers that is visible as R[8]-R[31] at any given time is called a
“register window”. The registers that become R[8]-R[15] in a register window are
called the out registers of the window. Note that the in registers of a register window
become the out registers of an adjacent register window. See TABLE 6-1 and

FIGURE 6-2.

The names in, local, and out originate from the fact that the out registers are typically
used to pass parameters from (out of) a calling routine and that the called routine
receives those parameters as its in registers.

TABLE6-1  Window Addressing

Windowed Register Address R Register Address
in[0] — in[7] R[24] - R[31]
local[0] - local[7] R[16] - R[23]
out[0] — out[7] R[ 8] - R[15]
global[0] — global[7] R[ 0] -R[ 7]

V9 Compatibility | In the SPARC V9 architecture, the number of 16-register
Note | windowed register sets, N_REG_WINDOWS, ranges from 3 to 32

(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXPGL, ranges from 2 to 15. The
number of implemented global register sets is MAXPGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS X% 16) + (( MAXPGL + 1) x 8)
Therefore, an UltraSPARC Architecture processor may contain
from 72 to 640 R registers.
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The current window in the windowed portion of R registers is indicated by the
current window pointer (CWP) register. The CWP is decremented by the RESTORE
instruction and incremented by the SAVE instruction.

Window (CWP — 1)

R[31]
. ins
R[24]
R[23]
. locals
R[16] Window (CWP)
R[15] R[31]
. outs : ins
R[ 8] R[24]
R[23]
: locals
R[16] Window (CWP + 1)
R[15] R[31]
: outs : ins
R 8] R[24]
R[23]
: locals
R[16]
R[15]
: outs
R 8]
R[ 7]
. globals
RI 1]
EEE
63 0

FIGURE 6-2 Three Overlapping Windows and Eight Global Registers

Overlapping Windows. Each window shares its ins with one adjacent window
and its outs with another. The outs of the CWP — 1 (modulo N_REG_WINDOWS)
window are addressable as the ins of the current window, and the outs in the current
window are the ins of the CWP + 1 (modulo N_REG_WINDOWS) window. The locals
are unique to each window.

Register address o, where 8 < 0 < 15, refers to exactly the same out register before the
register window is advanced by a SAVE instruction (CWP is incremented by 1

(modulo N_REG_WINDOWS)) as does register address 0+16 after the register window
is advanced. Likewise, register address i, where 24 <i < 31, refers to exactly the same
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in register before the register window is restored by a RESTORE instruction (CWP is
decremented by 1 (modulo N_REG_WINDOWS)) as does register address i—16 after the
window is restored. See FIGURE 6-2 on page 49 and FIGURE 6-3 on page 51.

To application software, the virtual processor appears to provide an infinitely-deep
stack of register windows.

Programming | Since the procedure call instructions (CALL and JMPL) do not
Note | change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered
implemented window overlaps with window 0. The outs of window
N_REG_WINDOWS — 1 are the ins of window 0. Implemented windows are numbered
contiguously from 0 through N_REG_wINDOWS —1.

Because the windows overlap, the number of windows available to software is 1 less
than the number of implemented windows; that is, N_REG_WINDOWS — 1. When the
register file is full, the outs of the newest window are the ins of the oldest window,
which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is
detected by the CANRESTORE register, both of which are controlled by privileged
software. A window overflow (underflow) condition causes a window spill (fill)
trap.

When a new register window is made visible through use of a SAVE instruction, the
local and out registers are guaranteed to contain either zeroes or valid data from the
current context. If software executes a RESTORE and later executes a SAVE, then the
contents of the resulting window’s local and out registers are not guaranteed to be
preserved between the RESTORE and the SAVE!. Those registers may even have
been written with “dirty” data, that is, data created by software running in a
different context. However, if the clean_window protocol is being used, system
software must guarantee that registers in the current window after a SAVE always
contains only zeroes or valid data from that context. See Clean Windows
(CLEANWINP) Register (PR 12) on page 83, Savable Windows (CANSAVEP) Register
(PR 10) on page 83, and Restorable Windows (CANRESTORE?Y) Register (PR 11) on
page 83.

Implementation | An UltraSPARC Architecture virtual processor supports the
Note | guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.

1 For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE
and the SAVE, or might be altered during the RESTORE operation due to the way that register windows are
implemented. After a RESTORE instruction executes, software must assume that the values of the affected 16
registers from before the RESTORE are unrecoverable.
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Register Window Management Instructions on page 116 describes how the windowed
integer registers are managed.

CWP =0
(CURRENT WINDOW POINTER)

\

wO locals

CANSAVE =4

w0 outs

SAVE RESTORE

i w6 locals
CANRESTORE =1

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

w4 outs

w5 locals

(Overlap)

w5 outs

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

FIGURE 6-3 Windowed R Registers for N_REG_WINDOWS = 8

CHAPTER 6 * Registers 51



6.2.3

In FIGURE 6-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated.
CWP =0, CANSAVE =4, OTHERWIN =1, and CANRESTORE = 1. If the procedure
using window WO executes a RESTORE, then window W7 becomes the current
window. If the procedure using window wO executes a SAVE, then window w1l
becomes the current window.

Special R Registers

The use of two of the R registers is fixed, in whole or in part, by the architecture:
» The value of R[0] is always zero; writes to it have no program-visible effect.

» The CALL instruction writes its own address into register R[15] (out register 7).

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access
a pair of words (“twin words”) in adjacent R registers and require even-odd register
alignment. The least significant bit of an R register number in these instructions is
unused and must always be supplied as 0 by software.

When the R[0]-R[1] register pair is used as a destination in LDTW or LDTWA, only
R[1] is modified. When the R[0]-R[1] register pair is used as a source in STTW or
STTWA, 0 is read from R[0], so 0 is written to the 32-bit word at the lowest address,
and the least significant 32 bits of R[1] are written to the 32-bit word at the highest
address.

An attempt to execute anLDTW, LDTWA, STTW, or STTWA instruction that refers
to a misaligned (odd) destination register number causes an illegal_instruction trap.

6.3

Floating-Point Registers

The floating-point register set consists of sixty-four 32-bit registers, which may be
accessed as follows:

= Sixteen 128-bit quad-precision registers, referenced as Fq[0], Fg[4], ..., Fg[60]
» Thirty-two 64-bit double-precision registers, referenced as Fp[0], Fp[2], ..., Fp[62]

» Thirty-two 32-bit single-precision registers, referenced as Fg[0], Fg[1], ..., Fg[31]
(only the lower half of the floating-point register file can be accessed as single-
precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
TABLE 6-2. Unlike the windowed R registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by
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floating-point operate (FPopl/FPop2 format) instructions, by load/store single/
double/quad floating-point instructions, by VIS™ instructions, and by block load
and block store instructions.

TABLE6-2  Floating-Point Registers, with Aliasing (I of 3)

Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fgl0] %0 63:32
Fpl0] %0 127:64
Fs[1] % 1 31:0
Folo] %0
Fsl2] %2 63:32
Fpl2] %2 63:0
Fsl3] %3 31:0
Fgl4] %4 63:32
Fol4] %4 127:64
Fsl5] %5 31:0
Fol4] 4
Fsl6] %6 63:32
Fpl6] %6 63:0
Fsl7] %7 31:0
Fgl8]] %8 63:32
Fpl8] %8 127:64
Fgl9] %9 31:0
Fol8] %8

F[10] %10  [63:32
Fsll1] %11  |31:0
Fsl12] %12  |63:32

Fpl10] %10  |63:0

Fpll12] %12  |127:64
Fg[13] %13  [31:0

Fol14] %14  |63:32
Fs[15] %15  |31:0
Fsll6] %16  |63:32

Foll2] %12

Fpl14] %14  |63:0

Fpll6] %16  |127:64
Fl17] %17  |31:0

Fol18] %18  [63:32
Fs[19] %19  |31:0
Fs[20] %20  |63:32

Foll6] %16

Fpl18] %18  |63:0

Fpl20] %20  |127:64
Fgl21] %21  [310

Fgl22] %22  |63:32
Fsl23] %23  |31:0

Fol20] %20

Fpl22] 22  |63:0
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TABLE6-2  Floating-Point Registers, with Aliasing (2 of 3)

Single Precision

Double Precision

Quad Precision

(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
Fs[24] % 24 63:32
Fp[24] %24 127:64
Fs[25] % 25 31:0
FQ[24] %924
Fs[26] %26  [63:32
Fpl26] %26 63:0
Fs[27] % 27 31:0
Fs[28] 9% 28 63:32
Fp[28] %128 127:64
Fs[29] % 29 31:0
FQ[28] %928
Fs[30] 9% 30 63:32
Fp[30] %30 63:0
Fs[31] % 31
Fp[32] %32 127:64
2 FQ[32] %932
——Fpl34] %34 [63:0
63:32
Fp[36] %136 127:64
FQ[36] %36
63:32
Fp[38] %38 63:0
63:32
Fp[40] %40 127:64
FQ[40] %940
63:32
Fpl42] %42 63:0
Fpl44] %44 127:64
2 FQ[44] %944
——Fpl46] %46  [63:0
63:32
Fpl48] %148 127:64
FQ[48] %948
63:32
Fp[50] %50 63:0
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6.3.1

TABLE 6-3

TABLE6-2  Floating-Point Registers, with Aliasing (3 of 3)
Single Precision Double Precision Quad Precision
(32-bit) (64-bit) (128-bit)
Assembly Assembly Assembly
Register Language |Bits Register Language |Bits Register Language
63:32
Fp[52] %52 127:64
FQ[52] %952
63:32
Fp[54] %54 63:0
63:32
Fp[56] %156 127:64
FQ[56] %956
63:32
Fp[58] %58 63:0
Fpl60] %60 127:64
= FQ[60] %960
Fpl62] %62 63:0

Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in
the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b{4} ... b{0} (where b{4} is the most significant bit of the
register number), the encoding of floating-point register numbers into 5-bit

instruction fields is as given in TABLE 6-3.

Floating-Point Register Number Encoding

Register Operand
Type

Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single
Double
Quad

0 b{4} b{3}
b{5} b{4} b{3}
b{5} b{4} b{3}

b{2} b{1} b{0}
b{2} b{1} 0
b{2} 0

bi{4} b{3} bi{2} bi{1} b{0}
bi{4} b{3} b{2} b(1} b{5}
bi{4} bi{3} bi{2} 0 bi{5}
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SPARC V8 | In the SPARC V8§ architecture, bit 0 of double and quad register
Compatibility | numbers encoded in instruction fields was required to be zero.
Note | Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.

6.3.2 Double and Quad Floating-Point Operands

A single 32-bit F register can hold one single-precision operand; a double-precision
operand requires an aligned pair of F registers, and a quad-precision operand
requires an aligned quadruple of F registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.
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Programming
Note

Programming
Note

Implementation
Note

The upper 16 double-precision (upper 8 quad-precision)
floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned

in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
= Load the datum into an upper register by using multiple
LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half

= Use an LDDF[A] or LDQF[A] instruction to perform the
load directly into the upper floating-point register,
understanding that use of these instructions on poorly
aligned data can cause a trap (LDDF_mem_not_aligned) on
some implementations, possibly slowing down program
execution significantly.

If an UltraSPARC Architecture 2005 implementation does not
implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
per FSR.fit priorities in TABLE 6-7, the fp_exception_other
exception occurs with FSR.ftt = 3 (unimplemented_FPop)
instead of with FSRfit = 6 (invalid_fp_register).

UltraSPARC Architecture 2005 implementations do not
implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the fp_exception_other exception with FSR.ftt =3
(unimplemented_FPop).
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6.4

Floating-Point State Register (FSR)

The Floating-Point State register (FSR) fields, illustrated in FIGURE 6-4, contain FPU
mode and status information. The lower 32 bits of the FSR are read and written by
the STFSR and LDFSR instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR instructions, respectively. FSR.ver, FSRftt, and the reserved
(“—") fields of FSR are not modified by LDFSR or LDXFSR.

RW RW RW

— fce3 | fec2 | fecl
63 38 37 36 35 34 33 32
FSR
RW RW RW R R R RW RW RW
rd — tem ns| — ver ftt gne| — | fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 54 0

6.4.1

FIGURE 6-4 FSR Fields

Bits 63-38, 29-28, 21-20, and 12 are reserved. When read by an STXFSR instruction,
these bits always read as zero.

Programming | For future compatibility, software should issue LDXFSR
Note | instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

The subsections on pages 58 through 67 describe the remaining fields in the FSR.

Floating-Point Condition Codes (fccO, fccl, fcc2,
fccl)

The four sets of floating-point condition code fields are labeled fccO, fccl, fcc2, and
fce3 (feen refers to any of the floating-point condition code fields).

The fccO field consists of bits 11 and 10 of the FSR, fccl consists of bits 33 and 32,
fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields
in the FSR, as selected by the compare instruction. The fccn fields are read and
written by STXFSR and LDXFSR instructions, respectively. The fccO field can also be
read and written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions
base their control transfers on the content of these fields. The MOVcc and FMOVcc
instructions can conditionally copy a register, based on the contents of these fields.
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6.4.2

6.4.3

In TABLE 6-5, f151 and f;s» correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s rs1 and
rs2 fields. The question mark (?) indicates an unordered relation, which is true if
either fig1 or fi5o is a signalling NaN or a quiet NaN. If FCMP or FCMPE generates
an fp_exception_ieee_754 exception, then fccn is unchanged.

TABLE 6-4  Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 F[rs1] =F[rs2]

1 Flrs1] < F[rs2]

2 F[rs1] > F[rs2]

3 Flrs1] ? F[rs2] (unordered)

TABLE6-5  Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3
Indicated Relation  F[rs1] = F[rs2] Flrs1] < F[rs2] F[rs1] > F[rs2] Flrs1] ? F[rs2]
(FCMP*, FCMPE*) (unordered)

Rounding Direction (rd)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-6 shows the encodings.

TABLE 6-6 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)
1 0

2 + 00

3 )

If the interval mode bit of the General Status register has a value of 1 (GSR.im =1),
then the value of FSRu.rd is ignored and floating-point results are instead rounded
according to GSR.irnd. See General Status Register (GSR) (ASR 19) on page 76 for
further details.

Trap Enable Mask (tem)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 6-5
on page 66. If a floating-point instruction generates one or more exceptions and the
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6.4.4

6.4.5

6.4.6

tem bit corresponding to any of the exceptions is 1, then this condition causes an
fp_exception_ieee_754 trap. A tem bit value of 0 prevents the corresponding IEEE
754 exception type from generating a trap.

Nonstandard Floating-Point (ns)

On an UltraSPARC Architecture 2005 processor, FSR.ns is a reserved bit; it always
reads as 0 and writes to it are ignored. (impl. dep. #18-V8)

FPU Version (ver)

IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular
implementations of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER.impl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR.ver.

FSR.ver =7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

Floating-Point Trap Type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the
“floating-point trap type.” After a floating-point exception occurs, FSR.ftt encodes
the type of the floating-point exception until it is cleared (set to 0) by execution of an
STFSR, STXFSR, or FPop that does not cause a trap due to a floating-point exception.

The FSR.fit field can be read by a STFSR or STXFSR instruction. The LDFSR and
LDXFSR instructions do not affect FSR.ftt.
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Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero fit
after the store completes without error. If the store generates an error and does not
complete, ftt remains unchanged.

Programming | Neither LDFSR nor LDXFSR can be used for the purpose of
Note | clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “f novs % 0, % 0” prior to returning to
nonprivileged mode will zero FSR.fit. The ftt field remains zero
until the next FPop instruction completes execution.

FSR.fit encodes the primary condition (“floating-point trap type”) that caused the
generation of an fp_exception_other or fp_exception_ieee_754 exception. It is
possible for more than one such condition to occur simultaneously; in such a case,
only the highest-priority condition will be encoded in FSR.ftt. The conditions
leading to fp_exception_other and fp_exception_ieee_754 exceptions, their relative
priorities, and the corresponding FSR.ftt values are listed in TABLE 6-7. Note that the
FSR.ftt values 4 and 5 were defined in the SPARC V9 architecture but are not
currently in use, and that the value 7 is reserved for future architectural use.

TABLE 6-7 FSR Floating-Point Trap Type (ftt) Field

. Result

Relative
Condition Detected During Priority FSR.ftt Set
Execution of an FPop (1 = highest) to Value Exception Generated
unimplemented_FPop 10 3 fp_exception_other
invalid_fp_register 20 6 fp_exception_other
unfinished _FPop 30 2 fp_exception_other
IEEE_754_exception 40 1 fp_exception_ieee_754
Reserved — 4,5,7 —
(none detected) — 0 —

IEEE_754_exception, unimplemented_FPop, and unfinished_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping
exception is set in cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fcen is unchanged.
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The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an fp_exception_ieee_754 exception or after
recovery from an unfinished_FPop or unimplemented_FPop. In either case, cexc as
seen by the trap handler reflects the exception causing the trap.

In the cases of an fp_exception_other exception with a floating-point trap type of
unfinished_FPop or unimplemented_FPop that does not subsequently generate an
IEEE trap, the recovery software should set cexc, aexc, and the destination register
or fcen, as appropriate.

ftt =1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The IEEE 754 exception type (overflow, inexact, etc.) is set in the cexc field. The
aexc and fccn fields and the destination F register are unchanged.

ftt =2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates
that the virtual processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. In cases where exceptions have
occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception
with floating-point trap type of unfinished_FPop can occur are implementation
dependent. An implementation may cause fp_exception_other with

FSR.ftt = unfinished_FPop under a different (but specified) set of conditions.

ftt = 3 (unimplemented_FPop) . The unimplemented_FPop floating-point trap
type indicates that the virtual processor decoded an FPop that it does not implement
in hardware. In this case, the cexc field is unchanged.

For example, all quad-precision FPop variations in an UltraSPARC Architecture 2005
virtual processor cause an fp_exception_other exception, setting
FSR.fit = unimplemented_FPop.

Forward | The next revision of the UltraSPARC Architecture is expected to
Compatibility | eliminate “unimplemented_FPop”, to simplify handling of
Note | unimplemented instructions. At that point, all conditions which
currently cause cause fp_exception_other with FSR.fit = 3 will
cause an illegal_instruction exception, instead. FSR.ftt =3 and
the trap type associated with fp_exception_other will become
reserved for other possible future uses.
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6.4.7

6.4.8

ftt = 4 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
Compatibility | "sequence_error", for use with certain error conditions
Note | associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

ftt = 5 (Reserved).

SPARC V9 | In the SPARC V9 architecture, FSR.ftt = 5 was defined to be

Compatibility | "hardware_error", for use with hardware error conditions
Note | associated with an external floating-point unit (FPU) operating

asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register
operands of an FPop are misaligned; that is, a quad-precision register number is not
0 mod 4. An implementation generates an fp_exception_other trap with FSR.ftt =
invalid_fp_register in this case.

Implementation | Per FSR.ftt priorities in TABLE 6-7, if an UltraSPARC Architecture
Note | 2005 processor does not implement a particular quad FPop in
hardware, that FPop generates an fp_exception_other exception
with FSR.ftt = 3 (unimplemented_FPop) instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

FQ Not Empty (gne)

Since UltraSPARC Architecture virtual processors do not implement a floating-point
queue, FSR.gne always reads as zero and writes to FSR.qne are ignored.

Accrued Exceptions (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the tem field. See FIGURE 6-6 on page 66.
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6.4.9

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded
together. If the result is nonzero, aexc is left unchanged and an
fp_exception_ieee_754 trap is generated; otherwise, the new cexc field is ored into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

FSR.aexc is written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

Current Exception (cexc)

FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point
exceptions were generated by the most recently executed FPop instruction. The
absence of an exception causes the corresponding bit to be cleared (set to 0). See
FIGURE 6-5 on page 66.

Programming | If the FPop traps and software emulate or finish the instruction,
Note | the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.

The cexc bits are set as described in Floating-Point Exception Fields on page 65, by the
execution of an FPop that either does not cause a trap or causes an
fp_exception_ieee_754 exception with FSR.ftt = IEEE_754_exception. An IEEE 754
exception that traps shall cause exactly one bit in FSR.cexc to be set, corresponding
to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an “inexact” condition. For overflow and underflow conditions, FSR.cexc bits
are set and trapping occurs as follows:

» If an IEEE 754 overflow condition occurs:

« if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits
are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

« if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other
four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does
occur.

« if FSR.tem.ofm =1, the FSR.cexc.ofc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

» If an IEEE 754 underflow condition occurs:

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc
bits are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.
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6.4.10

« if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the
other four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap
does occur.

« if FSR.tem.ufm =1, the FSR.cexc.ufc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 6-8 (wWhere “0” indicates “exception was
detected” and “x” indicates “don’t care”):

TABLE 6-8  Setting of FSR.cexc Bits

Conditions Results
Exception(s) Current
Detected Trap Enable Exception
in F.p. Mask bits ) bits (in
operation (in FSR.tem) fp_exception_ FSR.cexc)
ieee_754
of uf nx ofm ufm nxm | Trap Occurs? ofc ufc nxc
- - - X X X no 0 0 0
- - 0 X X 0 no 0 0 1
- ol ol «x 0 0 no 0o 1 1
02 - 0z o X 0 no 1 0 1
- - ad X X 1 yes 0 0 1
- ol ot X 0 1 yes 0 0 1
- O - X 1 X yes 0 1 0
- O O X 1 X yes 0 1 0
02 - 02 1 X X yes 1 0 0
02 - 02 0 X 1 yes 0 0 1

Notes: ' When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.
2 Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR.cexc is left unchanged.

Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):
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RW _RW __RW __RW __ RW
FSR.tem I nvm | ofm | ufm | dzm | nxm I
27 26 25 24 23

FIGURE 6-5 Trap Enable Mask (tem) Fields of FSR

RW RW __RW __RW __ RW
FSR.aexc I nva | ofa | ufa | dza | nxa I
9 8 7 6 5

FIGURE 6-6 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW RW _ RW
FSR.cexc I nvc | ofc | ufc | dzc | nxc I

4 3 2 1 0

FIGURE 6-7 Current Exception Bits (aexc) Fields of FSR

Invalid (nvc, nva). An operand is improper for the operation to be performed.
For example, 0.0 + 0.0 and  — o are invalid; 1 = invalid operand(s), 0 = valid
operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of
accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after
rounding. However, in all cases and regardless of the setting of FSR.tem.ufm, an
UltraSPARC Architecture strand detects tininess before rounding (impl. dep. #55-V8-
Cs10). See Trapped Underflow Definition (ufm = 1) on page 362 and Untrapped
Underflow Definition (ufm = 0) on page 362 for additional details.

Division by zero (dzc, dza). X + 0.0, where X is subnormal or normalized;
1 = division by zero, 0 = no division by zero.
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Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely
precise unrounded result; 1 = inexact result, 0 = exact result.

FSR Conformance

An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields of FSR in hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

Programming | Privileged software (or a combination of privileged and

Note | nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop or unimplemented_FPop) and
IEEE_754_exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully
compliant with IEEE Std 754-1985.

6.5

Ancillary State Registers

The SPARC V9 architecture defines several optional ancillary state registers (ASRs)
and allows for additional ones. Access to a particular ASR may be privileged or
nonprivileged.

An ASR is read and written with the Read State Register and Write State Register
instructions, respectively. These instructions are privileged if the accessed register is
privileged.

The SPARC V9 architecture left ASRs numbered 16-31 available for implementation-
dependent uses. UltraSPARC Architecture virtual processors implement the ASRs
summarized in TABLE 6-9 and defined in the following subsections.

Each virtual processor contains its own set of ASRs; ASRs are not shared among
virtual processors.

TABLE 6-9 ASR Register Summary
ASR Read by Written by
number ASR name Register Instruction(s) Instruction(s)
0o YP Y register (deprecated) RDYP WRYP
1 — Reserved — —
2 CCR Condition Codes register RDCCR WRCCR
3 ASI ASI register RDASI WRASI
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TABLE 6-9 ASR Register Summary (Continued)

ASR Read by Written by
number ASR name Register Instruction(s) Instruction(s)
4 TICKPMRt TICK register RDTICKPnt, WRPR? (TICK)
RDPR? (TICK)
5 PC Program Counter (PC) RDPC (all instructions)
6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS
7-14 — Reserved — —
15 — Reserved — —
16-31 non-SPARC V9 ASRs — —
16 PCRFP Performance Control registers (PCR) RDPCRF WRPCRF
17 PICP Performance Instrumentation Counters RDPICF7Ic WRPICFPie
(PIC)
18 — Implementation dependent (impl. dep. — —
#8-V8-Cs20, 9-V8-Cs20)
19 GSR General Status register (GSR) RDGSR, WRGSR,
FALIGNDATA, BMASK, SIAM

many VIS and
floating-point
instructions
20 SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to —
SOFTINT register, ASR 22)

21 SOFTINT_SETP (pseudo-register, for "Write 1s Set" to ~ —
SOFTINT register, ASR 22)

22 SOFTINTP per-virtual processor Soft Interrupt RDSOFTINTY
register
23 TICK_CMPRP Tick Compare register RDTICK_CMPR?
24 STICKPNPt System Tick register RDSTICK mt
25 STICK_CMPRP System Tick Compare register RDSTICK_CMPRP
26-31 — Implementation dependent (impl. dep. —

#8-V8-Cs20, 9-V8-Cs20)

WRSOFTINT_CLRP
WRSOFTINT_SET?
WRSOFTINT?

WRTICK_CMPR?

WRSTICK_CMPRP
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6.5.1

6.5.2

32-bit Multiply /Divide Register (Y) (ASR 0)

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVce, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see page 351; for the multiply
step instruction, see page 268; for division instructions, see page 348; for the

read instruction, see page 286; and for the write instruction, see page 354.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-8, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an
integer multiply step (MULScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDIV, SDIVcc,
UDIV, UDIVcc) instruction.

R RW

product{63:32} or dividend{63:32}

63

32 a1 0
FIGURE 6-8 Y Register
Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions,
respectively.

Integer Condition Codes Register (CCR)
(ASR 2)

The Condition Codes Register (CCR), shown in FIGURE 6-9, contains the integer
condition codes. The CCR register may be explicitly read and written by the RDCCR
and WRCCR instructions, respectively.

RW RW
CCR I xcc | icc I
7 4 3 0

FIGURE 6-9 Condition Codes Register
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6.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The icc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value

0000 0000 FFFF FFFF;g4, the 32-bit result is negative (icc.n is set to 1) but the 64-bit
result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 6-10.

Lrnfzlvi el
xcc: 7 6 5 4
icc. 3 2 1 0

FIGURE 6-10 Integer Condition Codes (CCR.icc and CCR.xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the
last instruction that modified the integer condition codes; 1 = negative, 0 = not
negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (icc) two’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is
a borrow into bit 63 (xcc) or bit 31 (icc); 1 = borrow, 0 = no borrow (see TABLE 6-10).

TABLE6-10  Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} = R[rs2]{31:0} CCR.icc.c « 0
R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c < 1
R[rs1]{63:0} = R[rs2]{63:0} CCR.xcc.c « 0
R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.Cc « 1

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions,
the names of which end with the letters “cc” (for example, ANDcc), and by the
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which
replaces these bits with the contents of TSTATE.ccr. The behavior of the following
instructions are conditioned by the contents of CCR.icc or CCR.xcc:

= BPcc and Tcc instructions (conditional transfer of control)

70 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



6.5.3

6.5.4

= Bicc (conditional transfer of control, based on CCR.icc only)
= MOVcc instruction (conditionally move the contents of an integer register)

= FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU
condition codes, which indicate the results of an integer operation, with both of the
operands and the result considered to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the
result considered to be 32 bits wide.

Address Space Identifier (ASI) Register
(ASR 3)

The Address Space Identifier register (FIGURE 6-11) specifies the address space
identifier to be used for load and store alternate instructions that use the “rsl +
simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI
instructions, respectively.

Software (executing in any privilege mode) may write any value into the ASI
register. However, values in the range 0014 to 7F;4 are “restricted” ASIs; an attempt
to perform an access using an ASI in that range is restricted to software executing in
a mode with sufficient privileges for the ASI. When an instruction executing in
nonprivileged mode attempts an access using an ASI in the range 0074 to 7F;4 or an
instruction executing in privileged mode attempts an access using an ASI the range
3014 to 7Fy4, a privileged_action exception is generated. See Chapter 10, Address Space
Identifiers (ASIs) for details.

RW
Ast | |
7 0

FIGURE 6-11 Address Space Identifier Register

Tick (TICK) Register (ASR 4)

FIGURE 6-12 illustrates the TICK register.
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TICKPnPt

6.5.5

R R

npt counter

63 62 0
FIGURE 6-12 TICK Register

The counter field of the TICK register is a 63-bit counter that counts strand clock
cycles. Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls
access to the TICK register by nonprivileged software.

Privileged software can always read the TICK register with either the RDPR or
RDTICK instruction.

Privileged software cannot write to the TICK register.

Nonprivileged software can read the TICK register by using the RDTICK instruction,
but only when nonprivileged access to TICK is enabled by hyperprivileged software.
If nonprivileged access is disabled, an attempt by nonprivileged software to read the
TICK register causes a privileged_action exception. Nonprivileged software cannot
write the TICK register. An attempt by nonprivileged software to read the TICK
register using the privileged RDPR instruction causes a privileged_opcode exception.

The difference between the values read from the TICK register on two reads is
intended to reflect the number of strand cycles executed between the reads.

Programming | If a single TICK register is shared among multiple virtual
Note | processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK
is read, any inaccuracy should be small, bounded, and documented.

(b) An implementation may implement fewer than 63 bits in TICK.counter; however,
the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as zero.

Programming | TICK.npt may be used by a secure operating system to control
Note | access by user software to high-accuracy timing information.
The operation of the timer might be emulated by the trap
handler, which could read TICK.counter and “fuzz” the value to
lower accuracy.

Program Counters (PC, NPC) (ASR 5)

The PC contains the address of the instruction currently being executed. The least-
significant two bits of PC always contain zeroes.
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6.5.6

The PC can be read directly with the RDPC instruction. PC cannot be explicitly
written by any instruction (including Write State Register), but is implicitly written
by control transfer instructions. A WRasr to ASR 5 causes an illegal_instruction
exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of
the next instruction to be executed if a trap does not occur. The least-significant two
bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be
read or written explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL]
and/or TNPC[TL] and executes a RETRY instruction.

See Chapter 7, Instruction Set Overview, for details on how PC and NPC are used.

Floating-Point Registers State (FPRS) Register
(ASR 6)

The Floating-Point Registers State (FPRS) register, shown in FIGURE 6-13, contains
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

RW RW _RW

FPRS [l [au ] a ]
2 1 0
FIGURE 6-13 Floating-Point Registers State Register

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS
instructions, respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is
disabled, executing a floating-point instruction causes an fp_disabled trap. If this bit
is set (FPRS.fef = 1) but the PSTATE.pef bit is not set (PSTATE.pef = 0), then
executing a floating-point instruction causes an fp_disabled exception; that is, both
FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point operations.

Programming | FPRS.fef can be used by application software to notify system

Note | software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).
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Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the
floating-point registers; that is, F[32]-F[62]. It is set to 1 whenever any of the upper
floating-point registers is modified. The du bit is cleared only by software.

IMPL. DEP. #403-S10(a): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.du pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point
registers; that is, F[0]-F[31]. It is set to 1 whenever any of the lower floating-point
registers is modified. The dl bit is cleared only by software.

IMPL. DEP. #403-S10(b): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.dI pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Implementation | If an instruction that normally writes to the F registers is

Note | executed and causes an fp_disabled exception, an UltraSPARC
Architecture 2005 implementation still sets the “dirty” bit
(FPRS.du or FPRS.dI) corresponding to the destination register
to "1".

Forward | It is expected that in future revisions to the UltraSPARC
Compatibility | Architecture, if an instruction that normally writes to the F
Note | registers is executed and causes an fp_disabled exception the
“dirty” bit (FPRS.du or FPRS.dI) corresponding to the
destination register will be left unchanged.

Performance Control Register (PCRF) (ASR 16)

The PCR is used to control performance monitoring events collected in counter
pairs, which are accessed via the Performance Instrumentation Counter (PIC)
register (ASR 17) (see page 75). Unused PCR bits read as zero; they should be
written only with zeroes or with values previously read from them.

When the virtual processor is operating in privileged mode (PSTATE.priv = 1), PCR
may be freely read and written by software.

When the virtual processor is operating in nonprivileged mode (PSTATE.priv = 0), an
attempt to access PCR (using a RDPCR or WRPCR instruction) results in a
privileged_opcode exception (impl. dep. #250-U3-Cs10).

The PCR is illustrated in FIGURE 6-14 and described in TABLE 6-11.
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RW RW RW RW _RW

PCRP — impl. dep — impl. dep. su |—| sl Idn;FF))I ut | st |priv
63 48 47 32 31 27 26 17 16 11 10 9 4 3 2 1 0
FIGURE 6-14 Performance Control Register (PCR) (ASR 16)
IMPL. DEP. #207-U3: The values and semantics of bits 47:32, 26:17, and bit 3 of the
PCR are implementation dependent.
TABLE6-11  PCR Bit Description
Bit Field Description
47:32 — These bits are implementation dependent (impl. dep #207-U3).
26:17 — These bits are implementation dependent (impl. dep. #207-U3).
16:11 su Six-bit field selecting 1 of 64 event counts in the upper half (bits {63:32}) of the PIC.
9:4 sl Six-bit field selecting 1 of 64 event counts in the lower half (bits {31:0}) of the PIC.
3 — This bit is implementation dependent (impl. dep. #207-U3).
2 ut User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.
1 st System Trace Enable. If set to 1, events in privileged (system) mode are counted.
Notes:
If both PCR.ut and PCR.st are set to 1, all selected events are counted.
If both PCR.ut and PCR st are zero, counting is disabled.
PCR.ut and PCR.st are global fields which apply to all PIC pairs.
0 priv Privileged. Controls access to the PIC register (via RDPIC or WRPIC instructions). If

PCR.priv = 0, an attempt to access PIC will succeed regardless of the privilege state
(PSTATE.priv). If PCR.priv = 1, access to PIC is restricted to privileged software; that is, an
attempt to access PIC while PSTATE.priv = 1 will succeed, but an attempt to access PIC while
PSTATE.priv = 0 will result in a privileged_action exception.

6.5.8

Performance Instrumentation Counter (PIC)
Register (ASR 17)

PIC contains two 32-bit counters that count performance-related events (such as
instruction counts, cache misses, TLB misses, and pipeline stalls). Which events are
actively counted at any given time is selected by the PCR register.

The difference between the values read from the PIC register at two different times
reflects the number of events that occurred between register reads. Software can only
rely on the difference in counts between two PIC reads to get an accurate count, not
on the difference in counts between a PIC write and a PIC read.

PIC is normally a nonprivileged-access, read/write register. However, if the priv bit
of the PCR (ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.
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Multiple PICs may be implemented. Each is accessed through ASR 17, using an
implementation-dependent PIC pair selection field in PCR (ASR 16) (impl. dep.
#207-U3). Read /write access to the PIC will access the picu/picl counter pair selected
by PCR.

The PIC is described below and illustrated in FIGURE 6-15.

Bit Field Description

63:32 picu 32-bit counter representing the count of an event selected by the su field of the
Performance Control Register (PCR) (ASR 16).

31:0 picl 32-bit counter representing the count of an event selected by the sl field of the Performance
Control Register (PCR) (ASR 16).

RW RW
PICP picu picl
63 32 31 0

6.5.9

FIGURE 6-15 Performance Instrumentation Counter (PIC) (ASR 17)

Counter Overflow. On overflow, the effective counter wraps to 0, SOFTINT
register bit 15 is set to 1, and an interrupt level 15 trap is generated if not masked by
PSTATE.ie and PIL. The counter overflow trap is triggered on the transition from
value FFFF FFFF4 to value 0.

General Status Register (GSR) (ASR 19)

The General Status Register! (GSR) is a nonprivileged read /write register that is
implicitly referenced by many VIS instructions. The GSR can be read by the RDGSR
instruction (see Read Ancillary State Register on page 285) and written by the WRGSR
instruction (see Write Ancillary State Register on page 353).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this
register using an otherwise-valid RDGSR or WRGSR instruction causes an
fp_disabled trap.

The GSR is illustrated in FIGURE 6-16 and described in TABLE 6-12.

GSRP

RW RW _RW RW RW
mask — |im]irnd — scale |align
63 32 31 28 27 26 2524 8 7 32 0

FIGURE 6-16 General Status Register (GSR) (ASR 19)

1 This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC
implementations

76 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006




TABLE6-12  GSR Bit Description

Bit Field Description
63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.
31:28 — Reserved.
27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im =1, rounding is performed according to GSR.irnd.
26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:
irnd Round toward ...
0 Nearest (even, if tie)
1 0
2 + 00
3 — 00
24:8 — Reserved.
7:3 scale 5-bit shift count in the range 0-31, used by the FPACK instructions for formatting.
2:0 align Least three significant bits of the address computed by the last-executed

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

6.5.10

SOFTINTY Register (ASRs 20 @, 21 @, 22 @)

Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule
interrupts (via interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State
Register on page 285) and written with a WRSOFTINT, WRSOFTINT_SET, or
WRSOFTINT_CLR instruction (see Write Ancillary State Register on page 353). An
attempt to access to this register in nonprivileged mode causes a privileged_opcode
exception.

Programming | To atomically modify the set of pending software interrupts, use
Note | of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

The SOFTINT register is illustrated in FIGURE 6-17 and described in TABLE 6-13.

RW RW RW
SOFTINTP — sm int_level tm
63 17 16 15 1 0

FIGURE 6-17 SOFTINT Register (ASR 22)
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TABLE6-13 ~ SOFTINT Bit Description
Bit Field Description
16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPRP) Register (ASR
25) on page 81 for details. SOFTINT.sm can also be directly written to 1 by software.
15:1  int_level When SOFTINT.int_level{n—1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.
Notes: |A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).
A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.
An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1.
0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,

Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRY?) Register (ASR 23) on
page 79 for details. SOFTINT.tm can also be directly written to 1 by software.

Setting any of SOFTINT.sm, SOFTINT.int_level{13} (SOFTINT{14}), or SOFTINT.tm
to 1 causes a level-14 interrupt (interrupt_level_14). However, those three bits are
independent; setting any one of them does not affect the other two.

See Software Interrupt Register (SOFTINT) on page 442 for additional information
regarding the SOFTINT register.

6.5.10.1 SOFTINT_SETF Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets

selected bits in the privileged SOFTINT Register (ASR 22) (see page 77). That is, bits
16:0 of the write data are ored into SOFTINT; any ‘1’ bit in the write data causes the
corresponding bit of SOFTINT to be set to 1. Bits 63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 20 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1" in the SOFTINT register, ASR 22.
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FIGURE 6-18 illustrates the SOFTINT_SET pseudo-register.

Wi1s

SOFTINT_SETP — ASR 22 bits to be set

63 17 16 0
FIGURE 6-18 SOFTINT_SET Pseudo-Register (ASR 20)

6.5.10.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears
selected bits in the privileged SOFTINT register (ASR 22) (see page 77). That is, bits
16:0 of the write data are inverted and anded into SOFTINT; any ‘1’ bit in the write
data causes the corresponding bit of SOFTINT to be set to 0. Bits 63:17 of the write
data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 21 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

Programming | There is no actual “register” (machine state) corresponding to
Note | ASR 21; it is just a programming interface to conveniently clear
(set to ‘0") selected bits in the SOFTINT register, ASR 22.

FIGURE 6-19 illustrates the SOFTINT_CLR pseudo-register.

Wic
SOFTINT_CL RP — ASR 22 bits to be cleared
63 17 16 0
FIGURE 6-19 SOFTINT_CLR Pseudo-Register (ASR 21))

6.5.11 Tick Compare (TICK_CMPRP) Register (ASR
23)

The privileged TICK_CMPR register allows system software to cause a trap when
the TICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
431).

The TICK_CMPR register is illustrated in FIGURE 6-20 and described in TABLE 6-14.

RW RW
TICK_CMPRP [int_dis tick_cmpr
63 62

FIGURE 6-20 TICK_CMPR Register
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TABLE 6-14 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to determine
the source of the level-14 interrupt.

6.5.12 System Tick (STICK) Register (ASR 24)

The System Tick (STICK) register provides a counter that is synchronized across a
system, useful for timestamping. The counter field of the STICK register is a 63-bit
counter that increments at a rate determined by a clock signal external to the
processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access
to the STICK register by nonprivileged software.

The STICK register is illustrated in FIGURE 6-21 and described below.

R R
STICKPNPt npt counter
53 62

FIGURE 6-21 STICK Register

Privileged software can always read the STICK register with the RDSTICK
instruction. Privileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in privileged mode results in an illegal_instruction
exception.

Nonprivileged software can read the STICK register by using the RDSTICK
instruction, but only when nonprivileged access to STICK is enabled by
hyperprivileged software. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action
exception. Nonprivileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in nonprivileged mode results in an
illegal_instruction exception.
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System Tick Compare (STICK_CMPRY) Register
(ASR 25)

The privileged STICK_CMPR register allows system software to cause a trap when
the STICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
431).

The System Tick Compare Register is illustrated in FIGURE 6-22 and described in
TABLE 6-15.

RW RW
STICK_CMPRP|int_dis stick_cmpr
63 62 0

FIGURE 6-22 STICK_CMPR Register

TABLE 6-15 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

6.6

Register-Window PR State Registers

The state of the register windows is determined by the contents of a set of privileged
registers. These state registers can be read/written by privileged software using the
RDPR/WRPR instructions. An attempt by nonprivileged software to execute a
RDPR or WRPR instruction causes a privileged_opcode exception. In addition, these
registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register
windows.
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6.6.1

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE,
OTHERWIN, and CLEANWIN contain values in the range 0 to N_REG_WINDOWS — 1.
An attempt to write a value greater than N_REG_WINDOWS — 1 to any of these
registers causes an implementation-dependent value between 0 and
N_REG_WINDOWS — 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS - 2 violates the register window state
definition in Register Window State Definition on page 85.

Although the width of each of these five registers is architecturally 5 bits, the width
is implementation dependent and shall be between dog,(N_REG_WINDOWS)Oand 5
bits, inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits
shall read as 0 and writes to them shall have no effect. All five registers should have
the same width.

For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window
Management Instructions on page 116.

Programming | CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must

Note | never be set to a value greater than N_REG_WINDOWS — 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS — 2 violates the register
window state definition in Register Window State Definition on
page 85. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

Current Window Pointer (CWPY) Register (PR 9)

The privileged CWP register, shown in FIGURE 6-23, is a counter that identifies the
current window into the array of integer registers. See Register Window Management
Instructions on page 116 and Chapter 12, Traps, for information on how hardware
manipulates the CWP register.

RW RW
cwpP | | |
4 32 0

FIGURE 6-23 Current Window Pointer Register
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6.6.2

6.6.3

6.6.4

Savable Windows (CANSAVED) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 6-24, contains the number of
register windows following CWP that are not in use and are, hence, available to be
allocated by a SAVE instruction without generating a window spill exception.

RW RW
CANSAVEP | | |
4 32 0

FIGURE 6-24 CANSAVE Register, Figure 5-24, page 88

Restorable Windows (CANRESTOREY) Register
(PR 11)

The privileged CANRESTORE register, shown in FIGURE 6-25, contains the number of
register windows preceding CWP that are in use by the current program and can be
restored (by the RESTORE instruction) without generating a window fill exception.

RW RW
CANRESTORE” | | |
4 32 0

FIGURE 6-25 CANRESTORE Register

Clean Windows (CLEANWINP) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 6-26, contains the number of
windows that can be used by the SAVE instruction without causing a clean_window
exception.

RW RW
CLEANWINP | | |
4 32 0

FIGURE 6-26 CLEANWIN Register

The CLEANWIN register counts the number of register windows that are “clean”
with respect to the current program; that is, register windows that contain only
zeroes, valid addresses, or valid data from that program. Registers in these windows
need not be cleaned before they can be used. The count includes the register
windows that can be restored (the value in the CANRESTORE register) and the
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6.6.5

6.6.6

6.6.7

register windows following CWP that can be used without cleaning. When a clean
window is requested (by a SAVE instruction) and none is available, a clean_window
exception occurs to cause the next window to be cleaned.

Other Windows (OTHERWINP) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 6-27, contains the count of
register windows that will be spilled /filled by a separate set of trap vectors based on
the contents of WSTATE.other. If OTHERWIN is zero, register windows are spilled/
filled by use of trap vectors based on the contents of WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill /fill traps efficiently by use of separate spill/fill
vectors.

RW RW
OTHERWINP | | |
4 32 0

FIGURE 6-27 OTHERWIN Register

Window State (WSTATE") Register (PR 14)

The privileged WSTATE register, shown in FIGURE 6-28, specifies bits that are inserted
into TT[TL]{4:2} on traps caused by window spill and fill exceptions. These bits are
used to select one of eight different window spill and fill handlers. If OTHERWIN =0
at the time a trap is taken because of a window spill or window fill exception, then
the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the WSTATE.other bits
are inserted into TT[TL]. See Register Window State Definition, below, for details of the
semantics of OTHERWIN.

RW RW
WSTATEP I other normal I
5 32 0

FIGURE 6-28 WSTATE Register

Register Window Management

The state of the register windows is determined by the contents of the set of
privileged registers described in Register-Window PR State Registers on page 81.
Those registers are affected by the instructions described in Register Window
Management Instructions on page 116. Privileged software can read /write these state
registers directly by using RDPR/WRPR instructions.
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6.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS — 2

FIGURE 6-3 on page 51 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

» The current window plus the window that must not be used because it overlaps
two other valid windows. In FIGURE 6-3, these are windows 0 and 5, respectively.
They are always present and account for the “2” subtracted from N_REG_WINDOWS
in the right-hand side of the above equation.

= Windows that do not have valid contents and that can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 14 in
FIGURE 6-3) are counted in CANSAVE.

= Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 6-3) are counted in CANRESTORE.

= Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 6-3) are counted
in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

Programming | System software is responsible for keeping the state of the
Note | register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS — 1.
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6.6.7.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 436 for a detailed description of how fill, spill, and
clean_window traps support register windowing.

6.7

6.7.1

TPC,?
TPC,F

TPC,P

TPCMAXPTLP

Non-Register-Window PR State
Registers

The registers described in this section are visible only to software running in
privileged mode (that is, when PSTATE.priv = 1), and may be accessed with the
WRPR and RDPR instructions. (An attempt to execute a WRPR or RDPR instruction
in nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.
Implementation | A write to any privileged register, including PR state registers,
Note | may drain the CPU pipeline.

Trap Program Counter (TPCP) Register (PR 0)

The privileged Trap Program Counter register (TPC; FIGURE 6-29) contains the
program counter (PC) from the previous trap level. There are MAXPTL instances of
the TPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TPC[TL] register is accessible. An attempt to read
or write the TPC register when TL = 0 causes an illegal_instruction exception.

RW R
pc_high62 (PC{63:2} from trap while TL =0) 00
pc_high62 (PC{63:2} from trap while TL =1) 00
pc_high62 (PC{63:2} from trap while TL =2) 00
pc_high62 (PC{63:2} from trap while TL = MAXPTL — 1) 00
63 210

FIGURE 6-29 Trap Program Counter Register Stack

During normal operation, the value of TPC[n], where n is greater than the current
trap level (n > TL), is undefined.
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TABLE 6-16 lists the events that cause TPC to be read or written.

TABLE 6-16 Events that involve TPC, when executing with TL = n.

Event Effect

Trap TPC[n +1] « PC
RETRY instruction PC — TPCJn]
RDPR (TPC) R[rd] « TPC[n]
WRPR (TPC) TPC[n] « value

6.7.2 Trap Next PC (TNPCP) Register (PR 1)

The privileged Trap Next Program Counter register (TNPC; FIGURE 6-29) is the next

program counter (NPC) from the previous trap level. There are MAXPTL instances of
the TNPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TNPC register is accessible. An attempt to read or
write the TNPC register when TL = 0 causes an illegal_instruction exception.

RW R
TNPC,P npc_high62 (NPC{63:2} from trap while TL = 0) 00
P
TNPC, npc_high62 (NPC{63:2} from trap while TL = 1) 00
TNPC,P npc_high62 (NPC{63:2} from trap while TL = 2) 00
TNPCyaxer | npc_high62 (NPC{63:2} from trap while TL = MAXPTL — 1) 00
63 210

FIGURE 6-30 Trap Next Program Counter Register Stack

During normal operation, the value of TNPC[n], where n is greater than the current
trap level (n > TL), is undefined.

TABLE 6-17 lists the events that cause TNPC to be read or written.

TABLE 6-17 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n +1] « NPC

DONE instruction PC « TNPC[n]; NPC —~ TNPC[n] +4
RETRY instruction NPC —~ TNPCJn]

RDPR (TNPC) R[rd] « TNPC[n]

WRPR (TNPC) TNPC[n] « value
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6.7.3

Trap State (TSTATED) Register (PR 2)

The privileged Trap State register (TSTATE; FIGURE 6-31) contains the state from the
previous trap level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE
registers from the previous trap level. There are MAXPTL instances of the TSTATE
register, but only one is accessible at a time. The current value in the TL register
determines which instance of TSTATE is accessible. An attempt to read or write the
TSTATE register when TL = 0 causes an illegal_instruction exception.

RW RW RW R RW R RW
TST ATElP gl ccl asi — pstate — cwp
(GL from TL = 0) |(CCR from TL = 0)| (ASI from TL = 0) (PSTATE from TL = 0) (CWP from TL =0)
TST ATEZP gl ccl asi — pstate — cwp
(GL from TL = 1) |(CCR from TL = 1)| (ASI from TL=1 (PSTATE from TL = 1) (CWP fromTL=1)
TST, ATE3P gl ccr asi — pstate — cwp
P (GL from TL = 2) |(CCR from TL = 2)[ (ASI from TL =2 (PSTATE from TL = 2) (CWP fromTL =2)
gl cer asi — pstate — cwp
TSTATE yaxer. | (GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXPTL — 1)[TL = MAXPTL — 1)[TL = MAXPTL — 1) TL = MAXPTL — 1) TL = MAXPTL — 1)
gl cer asi — pstate — cwp
TSTATEMAxpTL+1H (GL from (CCR from (ASI from (PSTATE from (CWP from
TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL) TL = MAXPTL)
77 40 39 32 31 242327 20 8 75 4 0
TABLE 6-18

FIGURE 6-31 Trap State (TSTATE) Register Stack
During normal operation the value of TSTATE[n], when n is greater than the current
trap level (n > TL), is undefined.

V9 Compatibility | Because of the addition of additional bits in the PSTATE register
Note | in the UltraSPARC Architecture, a 13-bit PSTATE value is stored
in TSTATE instead of the 10-bit value specified in the SPARC V9

architecture.

TABLE 6-19 lists the events that cause TSTATE to be read or written.

TABLE 6-19 Events That Involve TSTATE, When Executing with TL =#n

Event Effect

Trap TSTATE[n + 1] ~ (registers)
DONE instruction (registers) — TSTATE[n]
RETRY instruction (registers) — TSTATE[n]
RDPR (TSTATE) R[rd] — TSTATE[n]

WRPR (TSTATE) TSTATE[n] < value
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6.7.4

6.7.5

TBAP

Trap Type (TTH) Register (PR 3)

The privileged Trap Type register (TT; see FIGURE 6-32) contains the trap type of the
trap that caused entry to the current trap level. There are MAXPTL instances of the TT
register, but only one is accessible at a time. The current value in the TL register
determines which instance of the TT register is accessible. An attempt to read or
write the TT register when TL = 0 causes an illegal_instruction exception.

RW
TT1P Trap type from trap while TL = 0
TTZP Trap type from trap while TL = 1
: P
TTMAXPTLP Trap type from trap while TL = MAXPTL - 1

FIGURE 6-32 Trap Type Register Stack

During normal operation, the value of TT[n], where n is greater than the current trap
level (n > TL), is undefined.

TABLE 6-20 lists the events that cause TT to be read or written.

TABLE 6-20 Events that involve TT, when executing with TL = n.

Event Effect

Trap TT[n +1] « (trap type)
RDPR (TT) R[rd] « TT[n]

WRPR (TT) TT[n] ~ value

Trap Base Address (TBAP) Register (PR 5)

The privileged Trap Base Address register (TBA), shown in FIGURE 6-33, provides the
upper 49 bits (bits 63:15) of the virtual address used to select the trap vector for a
trap that is to be delivered to privileged mode. The lower 15 bits of the TBA always
read as zero, and writes to them are ignored.

RW R

tba_high49 000 0000 0000 0000

63 15 14 0
FIGURE 6-33 Trap Base Address Register

Details on how the full address for a trap vector is generated, using TBA and other
state, are provided in Trap-Table Entry Address to Privileged Mode on page 419.
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6.7.6

PSTATEP

Processor State (PSTATEY) Register (PR 6)

The privileged Processor State register (PSTATE), shown in FIGURE 6-34, contains
control fields for the current state of the virtual processor. There is only one instance
of the PSTATE register per virtual processor.

RW RW RW RW RW RW RW RW
— — cle tle mm —_ pef am priv ie —
12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6-34 PSTATE Field

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR
instructions are used to read and write PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Current Little Endian (cle). This bit affects the endianness of data accesses
performed using an implicit ASI. When PSTATE.cle = 1, all data accesses using an
implicit ASI are performed in little-endian byte order. When PSTATE.cle = 0, all data
accesses using an implicit ASI are performed in big-endian byte order. Specific ASIs
used are shown in TABLE 7-3 on page 108. Note that the endianness of a data access
may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-
endian byte order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is
pushed onto the trap stack.

During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to
have a different implicit byte ordering than the current process. Thus, if PSTATE.tle
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is
restored from the trap stack.
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Memory Model (mm). This 2-bit field determines the memory model in use by
the virtual processor. The defined values for an UltraSPARC Architecture virtual
processor are listed in TABLE 6-21.

TABLE 6-21 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)
11 Implementation dependent (impl. dep. #113-V9-Ms10)

The current memory model is determined by the value of PSTATE.mm. Software
should refrain from writing the values 01,, 10,, or 11, to PSTATE.mm because they
are implementation-dependent or reserved for future extensions to the architecture,
and in any case not currently portable across implementations.

= Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by

PSTATE.mm = 10, or 11, are supported in an UltraSPARC Architecture processor is
implementation dependent. If the 10, model is supported, then when
PSTATE.mm = 10, the implementation must correctly execute software that adheres
to the RMO model described in The SPARC Architecture Manual-Version 9. If the 11,
model is supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model
designation into PSTATE.mm is implementation dependent.

SPARC V9 | The PSO memory model described in SPARC V8 and SPARC V9
Compatibility | architecture specifications was never implemented in a SPARC
Notes | V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2005 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2005 implementation.
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Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point
unit. This allows privileged software to manage the FPU. For the FPU to be usable,
both PSTATE.pef and FPRS.fef must be set to 1. Otherwise, any floating-point
instruction that tries to reference the FPU causes an fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as
0 and writes to it are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC
software to run correctly on a 64-bit SPARC V9 processor, by masking out (zeroing)
bits 63:32 of virtual addresses at appropriate times.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are
preserved at all times.

When PSTATE.am = 1, bits 63:32 of instruction and data virtual addresses are
masked out (treated as 0).

Programming | It is the responsibility of privileged software to manage the
Note | setting of the PSTATE.am bit, since hardware masks virtual
addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
software is executed.

Instances in which the more-significant 32 bits of a virtual address are masked
include:

= Before any (virtual or real) data address is sent out of the virtual processor
(notably, to the memory system, which includes MMU, internal caches, and
external caches); this includes ASI accesses using ASI _AS_| F_USER* in
privileged mode.

= Before any instruction virtual address is sent out of the virtual processor (notably,
to the memory system, which includes MMU, internal caches, and external
caches)

= When the value of PC is stored to a general-purpose register by a CALL, JMPL, or
RDPC instruction (closed impl.dep. #125-V9-Cs10)

= When the values of PC and NPC are written to TPC[TL] and TNPC[TL]
(respectively) during a trap (closed impl.dep. #125-V9-Cs10)
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= Before any virtual address is sent to a watchpoint comparator

Programming | A 64-bit comparison is always used when performing a masked
Note | watchpoint address comparison with the Instruction or Data VA

watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

= When a bypassing ASI (ASI _* REAL_*) is used in a load or store instruction (see
ASI 1444, ASI _REAL, for an example).

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly
preserved and not masked out in the following cases:

= When a target address is written to NPC by a control transfer instruction

Forward | This behavior is expected to change in the next revision of the
Compatibility | architecture, such that implementations will explicitly mask out
Note | (not preserve) the more-significant 32 bits, in this case.

= When NPC is incremented to NPC + 4 during execution of an instruction that is
not a taken control transfer

Forward
Compatibility
Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

= When a WRPR instruction writes to TPC[TL] or TNPC[TL]

Programming
Note

Since writes to PSTATE are nondelayed (see page 90), a change
to PSTATE.am can affect the address of the next instruction
executed. Specifically, if a WRPR to the PSTATE register
changes the value of PSTATE.am from '0’ to '1’, and the more-
significant 32 bits of NPC when the WRPR began execution were
nonzero, then the next instruction that executes after the WRPR
will not be from the address in NPC when the WRPR began
execution but rather from that address truncated to a 32-bit
address (NPC with its more-significant 32 bits set to zero).

= When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am =1 and (2) a DONE or RETRY instruction is executed?,
it is implementation dependent whether the DONE or RETRY instruction masks
(zeroes) the more-significant 32 bits of the values it places into PC and NPC (impl.

dep. #417-510).

1 which sets PSTATE.am to '1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am
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6.7.7

Programming | Because of implementation dependency #417-510, great care
Note | must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPCITL].

Privileged Mode (priv). When PSTATE.priv = 1, the virtual processor is operating
in privileged mode.

When PSTATE.priv = 0, the processor is operating in nonprivileged mode

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor
can take traps due to disrupting exceptions (such as interrupts or errors unrelated to
instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see
Conditioning of Disrupting Traps on page 415.

SPARC V9 | Since the UltraSPARC Architecture provides a more general
Compatibility | “alternate globals” facility (through use of the GL register) than
Note | does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

Trap Level Register (TLP) (PR 7)

The privileged Trap Level register (TL; FIGURE 6-35) specifies the current trap level.
TL = 0 is the normal (nontrap) level of operation. TL > 0 implies that one or more
traps are being processed.

RW
TLP | t
2

0
FIGURE 6-35 Trap Level Register

The maximum valid value that the TL register may contain is MAXPTL, which is
always equal to the number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for
each implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of
saved trap state). In a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-
510). Architecturally, MAXPTL must be = 2.
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In an UltraSPARC Architecture 2005 implementation, MAXPTL = 2. See Chapter 12,
Traps, for more details regarding the TL register.

The effect of writing to TL with a WRPR instruction is summarized in TABLE 6-22.

TABLE6-22  Effect of WRPR of Value x to Register TL

Privilege Level when Executing WRPR

Value x Written with WRPR Nonprivileged Privileged

x < MAXPTL

privileged_opcode
X > MAXPTL exception TL — MAXPTL

TL « x

(no exception generated)

Writing the TL register with a WRPR instruction does not alter any other machine
state; that is, it is not equivalent to taking a trap or returning from a trap.

Programming
Note

Implementation
Note

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation

whereMAXPTL < 3, bits 63:2 of data written to the TL register
using the WRPR instruction are ignored; only the least-
significant two bits (bits 1:0) of TL are actually written. For
example, if MAXPTL =2, writing a value of 054 to the TL register
causes a value of 114 to actually be stored in TL.

MAXPTL =2 for all UltraSPARC Architecture 2005 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

Although it is possible for privileged software to set TL > 0 for
nonprivileged software’, an UltraSPARC Architecture virtual
processor’s behavior when executing with TL > 0 in
nonprivileged mode is undefined.

* by executing a WRPR to TSTATE followed by DONE instruction or RETRY
instruction.

6.7.8 Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 6-36) specifies the
interrupt level above which the virtual processor will accept an interrupt_level_n
interrupt. Interrupt priorities are mapped so that interrupt level 2 has greater
priority than interrupt level 1, and so on. See TABLE 12-4 on page 422 for a list of
exception and interrupt priorities.
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6.7.9

RW
PILP [ pil |
3 0

FIGURE 6-36 Processor Interrupt Level Register

V9 Compatibility | On SPARC V8 processors, the level 15 interrupt is considered to
Note | be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

Global Level Register (GLF) (PR 16)

The privileged Global Level (GL) register selects which set of global registers is
visible at any given time.

FIGURE 6-37 illustrates the Global Level register.

RW

o 5]

2 0

FIGURE 6-37 Global Level Register, GL

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set
of global registers (R[1] through R[7]) becomes visible. A DONE or RETRY
instruction restores the value of GL from TSTATE[TL].

The valid range of values that the GL register may contain is 0 to MAXPGL, where
MAXPGL is one fewer than the number of global register sets available to the virtual
processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each
implementation; its legal values are from 2 to 7 (supporting from 3 to 8 sets of global
registers). In a typical implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-
CS10). Architecturally, MAXPGL must be = 2.

In all UltraSPARC Architecture 2005 implementations, MAXPGL = 2. (impl. dep. #401-
510).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation
may implement any subset of those bits sufficient to encode the values from 0 to
MAXPGL for that implementation. If any bits of GL are not implemented, they read as
zero and writes to them are ignored.
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GL operates similarly to TL, in that it increments during entry to a trap, but the
values of GL and TL are independent. That is, TL = n does not imply that GL =1,
and GL = n does not imply that TL = n. Furthermore, there may be a different total
number of global levels (register sets) than there are trap levels; that is, MAXPTL and
MAXPGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as
privileged register number 16). Writing the GL register directly with WRPR will
change the set of global registers visible to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL
register causes MAXPGL to be written to GL.

The effect of writing to GL with a WRPR instruction is summarized in TABLE 6-23.

TABLE6-23  Effect of WRPR to Register GL

Privilege Level when WRPR Is Executed

Value x Written with WRPR Nonprivileged Privileged
x < MAXPGL GL « x
X > MAXPGL -
privileged_opcode
pxrppﬁnn GL « MAXPGL

(no exception generated)
Since TSTATE itself is software-accessible, it is possible that when a DONE or
RETRY is executed to return from a trap handler, the value of GL restored from
TSTATE[TL] will be different from that which was saved into TSTATE[TL] when the
trap occurred.
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CHAPTER 7

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed,
annulled, or trapped. Instructions are encoded in 4 major formats and partitioned
into 11 general categories. Instructions are described in the following sections:

= Instruction Execution on page 99.
= Instruction Formats on page 100.
= Instruction Categories on page 101.

7.1

Instruction Execution

The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible virtual
processor and/or memory state. As a side effect of its execution, new values are
assigned to the program counter (PC) and the next program counter (NPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 12, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic
overflow if any). There are two types of control-transfer instructions (CTIs): delayed
and immediate. For a delayed CTI, at the end of the execution of the instruction,
NPC is copied to into the PC and the target address is copied into NPC. For an
immediate CTI, at the end of execution, the target is copied to PC and target + 4 is
copied to NPC. In the SPARC instruction set, many CTIs do not transfer control until
after a delay of one instruction, hence the term “delayed CTI” (DCTI). Thus, the two
program counters provide for a delayed-branch execution model.
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For each instruction access and each normal data access, an 8-bit address space
identifier (ASI) is appended to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 108) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the
ASI register.

7.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 7-1. For detailed formats for specific instructions, see individual
instruction descriptions in the Instructions chapter.

op = 00,: SETHI and Branches

00 rd op2 imm22
00 |a|l cond op2 disp22
00 [a| cond op2 |cclecl] p disp19
00 |a|Of rcond op2 |di6hi| p rsl d16lo
31 302928 27 2524 22 2120 19 18 14 13 0
op = 01,: CALL
01 disp30
31 3029 0

op = 10, or 11,: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

1x rd op3 rsl i=0j imm_asi rs2
1x rd op3 rsl i=1] simm13
31 3029 25 24 19 18 14 13 12 5 4 0

FIGURE 7-1 Summary of Instruction Formats
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7.3

7.3.1

Instruction Categories

UltraSPARC Architecture instructions can be grouped into the following categories:

= Memory access

= Memory synchronization

= Integer arithmetic

= Control transfer (CTI)

= Conditional moves

= Register window management
= State register access

= Privileged register access

= Floating-point operate

= Implementation dependent
= Reserved

These categories are described in the following subsections.

Memory Access Instructions

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the memory access instructions except CASA, CASXA, and
Partial Store use either two R registers or an R register and simm13 to calculate a 64-
bit byte memory address. For example, Compare and Swap uses a single R register
to specify a 64-bit byte memory address. To this 64-bit address, an ASI is appended
that encodes address space information.

The destination field of a memory reference instruction specifies the R or F
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the R register to be
exchanged atomically with the calculated memory location. For Compare and Swap,
an R register is specified, the value of which is compared with the value in memory
at the computed address. If the values are equal, then the destination field specifies
the R register that is to be exchanged atomically with the addressed memory
location. If the values are unequal, then the destination field specifies the R register
that is to receive the value at the addressed memory location; in this case, the
addressed memory location remains unchanged. The LDFSR/LDXFSR and the
STFSR/STXEFSR are special load and store instructions that load or store the floating-
point status instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of
the prefetch.

CHAPTER 7 ¢ Instruction Set Overview 101



Memory is byte (8-bit) addressable. Integer load and store instructions support byte,
halfword (2 bytes), word (4 bytes), and doubleword/extended-word (8 bytes)
accesses. Floating-point load and store instructions support word, doubleword, and
quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, CASA
accesses words, and CASXA accesses doublewords. The LDTXA (load twin-
extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads
and stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

Programming | For some instructions, by using simm13, any location in the
Note | lowest or highest 4 Kbytes of an address space can be accessed
without using a register to hold part of the address.

7.3.1.1 Memory Alignment Restrictions

A halfword access must be aligned on a 2-byte boundary, a word access (including
an instruction fetch) must be aligned on a 4-byte boundary, an extended-word (LDX,
LDXA, STX, STXA) or integer twin word (LDTW, LDTWA, STTW, STTWA ) access
must be aligned on an 8-byte boundary,an integer twin-extended-word (LDTXA)
access must be aligned on a 16-byte boundary, and a Block Load (LDBLOCKEF) or
Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be
aligned on an 8-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point doubleword access to an address which is 4-byte aligned
but not 8-byte aligned may result in less efficient and nonatomic access (causes a
trap and is emulated in software (impl. dep. #109-V9-Cs10)), so 8-byte alignment is
recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned
on a 16-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point quadword access to an address which is 4-byte or 8-byte
aligned but not 16-byte aligned may result in less efficient and nonatomic access
(causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-byte
alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

= An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an LDDF_mem_address_not_aligned exception
(impl. dep. #109-V9-Cs10).

= An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an STDF_mem_address_not_aligned exception
(impl. dep. #110-V9-Cs10).
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= An LDQF or LDQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an LDQF_mem_address_not_aligned exception
(impl. dep. #111-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2005 implementations do not currently generate it.

= An STQF or STQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an STQF_mem_address_not_aligned exception
(impl. dep. #112-V9-Cs10a).

Implementation | Although the architecture provides for the
Note | STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2005 implementations do not currently generate it.

7.3.1.2  Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all
instruction accesses and, by default, for data accesses. It is possible to access data in
little-endian format by using selected ASIs. It is also possible to change the default
byte order for implicit data accesses. See Processor State ( PSTATEP) Register (PR 6) on
page 90 for more information.!

Big-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are described in TABLE 7-1
and illustrated in FIGURE 7-2.

TABLE 7-1  Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15-8) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 1.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On
Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.
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TABLE 7-1  Big-endian Addressing Conventions

Term Definition

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31-24) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 3.

doubleword or For a load/store extended or floating-point load/store double instruction,

extended word eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA+, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.
Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127-120) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the
address + 15.
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Byte

Halfword

Word

Doubleword / Address{ 2:0}
Extended word

Quadword

Address

7 0
Address{ 0} = 0 1

15 8|7 0
Address{ 1:0} = 00 01 10 11

31 24|23 16|15 8|7 0

= 000 001 010 011

63 56 | 55 48|47 40|39 32
Address{ 2;0} = 100 101 110 111

31 24|23 16|15 8|7 0
Address{ 3:0} = 0000 0001 0010 0011

127 120|119 112{111 104 (103 96
Address{ 3:0} = 0100 0101 0110 0111

95 88|87 80|79 72|71 64
Address{ 3:0} = 1000 1001 1010 1011

63 56 | 55 48|47 40|39 32
Address{ 3:0} = 1100 1101 1110 1111

31 24|23 16|15 8|7 0

FIGURE 7-2 Big-endian Addressing Conventions
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Little-endian Addressing Convention. Within a multiple-byte integer, the byte

with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are defined in TABLE 7-2
and illustrated in FIGURE 7-3.

TABLE 7-2  Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 15-8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 31-24) is accessed at the
address + 3.

doubleword or  For a load/store extended or floating-point load/store double

extended word instruction, eight bytes are accessed. The least significant byte (bits 7-0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63-56) is accessed at the address + 7.

For the deprecated integer load/store twin word instructions (LDTW,
LDTWA*, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

+Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA'’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 127-120) is accessed at the
address + 15.
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Byte

Halfword

Word

Doubleword /
Extended word

Quadword

Address

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

7 0
0 1

7 0] 15 8
00 01 10 11

7 0] 15 8| 23 16|31 24
000 001 010 011

7 0] 15 8| 23 16|31 24
100 101 110 111

39 32| 47 40| 55 48|63 56
0000 0001 0010 0011

7 0] 15 8| 23 16|31 24
0100 0101 0110 0111

39 32| 47 40| 55 48|63 56
1000 1001 1010 1011

71 64|79 72| 87 80|95 88
1100 1101 1110 1111

103 96| 111 104| 119 112|127 120

FIGURE 7-3 Little-endian Addressing Conventions
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7.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use
for their data access; when i = 0, the explicit ASI is provided in the instruction’s

imm_asi field, and when i =1, it is provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value
that depends on the current trap level (TL) and the value of PSTATE.cle. Instruction
fetches use an implicit ASI that depends only on the current trap level. The cases are

enumerated in TABLE 7-3.

TABLE 7-3  ASIs Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.cle ASI Used
Instruction Fetch =0 any ASI _PRI MARY

>0 any ASI _NUCLEUS*
Non-alternate-space =0 0 ASI _PRI MARY
Load, Store, or 1 AS|_PRI MARY_LI TTLE
Load-Store =

>0 0 ASI _NUCLEUS*

1 ASI _NUCLEUS_LI TTLE**

Alternate-space Load, any any
Store, or Load-Store

ASI explicitly specified in the instruction
(subject to privilege-level restrictions)

*On some early SPARC V9 implementations, ASI _PRI MARY may have been used for this case.
**On some early SPARC V9 implementations, ASI _PRI MARY_LI TTLE may have been used for this case.
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See also Memory Addressing and Alternate Address Spaces on page 369.

ASIs 0014 through 7F;¢ are restricted; only software with sufficient privilege is
allowed to access them. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-
Ms10(6)). ASIs 8044 through FFqg4 are unrestricted; software is allowed to access them
regardless of the virtual processor’s privilege mode, as summarized in TABLE 7-4.

TABLE 7-4  Allowed Accesses to ASIs

Processor Mode

Value Access Type (PSTATE.priv) Result of ASI Access
001¢—7F1¢ Restricted Nonprivileged (0) privileged_action exception
Privileged (1) Valid access
8014-FF1¢ Unrestricted Nonprivileged (0) Valid access
Privileged (1) Valid access

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2005 ASIs are implementation
dependent. See TABLE 10-1 on page 389 for details.

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers
(impl. dep. #30-V8-Cu3).

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

7.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.

Programming | A SPARC V9 program containing self-modifying code should
Note | use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.
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7.3.2

7.3.3

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage
the order and completion of memory references. Ordering MEMBARs induce a
partial ordering between sets of loads and stores and future loads and stores.
Sequencing MEMBARs exert explicit control over completion of loads and stores (or
other instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in cmask and mmask fields.

Integer Arithmetic and Logical Instructions

The integer arithmetic and logical instructions generally compute a result that is a
function of two source operands and either write the result in a third (destination)
register R[rd] or discard it. The first source operand is R[rs1]. The second source
operand depends on the i bit in the instruction; if i = 0, then the second operand is
R[rs2]; if i = 1, then the second operand is the constant Simm10, simm11, or simm13
from the instruction itself, sign-extended to 64 bits.

Note | The value of R[0] always reads as zero, and writes to it are
ignored.

7.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (icc and xcc) as a side effect; the other does not affect the condition
codes. A special comparison instruction for integer values is not needed since it is
easily synthesized with the “subtract and set condition codes” (SUBcc) instruction.
See Synthetic Instructions on page 486 for details.

7.3.3.2  Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.

7.3.3.3  Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.
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7.3.4

7.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer
divide instructions perform 64 + 64 — 64-bit operations. For compatibility with
SPARC V8 processors, 32 x 32 — 64-bit multiply instructions, 64 + 32 - 32-bit divide
instructions, and the Multiply Step instruction are provided. Division by zero causes
a division_by_zero exception.

7.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR.icc.v bit; if 64-bit arithmetic overflow
occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated.
See Tagged Add on page 339 and Tagged Subtract on page 345 for details.

Control-Transfer Instructions (CTIs)

The basic control-transfer instruction types are as follows:

» Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
= Unconditional branch

= (Call and link (CALL)

» Jump and link (JMPL, RETURN)

= Return from trap (DONE, RETRY)

= Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (NPC) or by changing the value of both the program counter (PC) and the
next program counter (NPC). When only the next program counter, NPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-
transfer instruction is said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not
execute, the instruction in the delay slot, depending upon whether the transfer is
taken or not taken. Annulled instructions have no effect upon the program-visible
state, nor can they cause a trap.

TABLE 7-5 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
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Programming | The annul bit increases the likelihood that a compiler can find a

Note | useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

represented in the table by BA and BN, respectively. The effect of an annulled branch
is shown in the table through explicit transfers of control, rather than by fetching
and annulling the instruction.

TABLE 7-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC
Non-CTIs — — — — NPC NPC + 4
Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4
Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8
BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA +4
BN PC-relative Yes No 0 NPC NPC + 4
BN PC-relative Yes No 1 NPC + 4 NPC + 8
CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL] + 4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tec Trap vector No Yes — EA EA +4
Tcc Trap vector No No — NPC NPC + 4
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The effective address, EA in TABLE 7-5, specifies the target of the control-transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.

= PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.

= Register-indirect effective address — A register-indirect effective address
computes its target address as either R[rs1] + R[rs2] if i = 0, or
R[rs1] + sign_ext(simm13) if i = 1.

= Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if
i =0, or as the least significant 7 or 8 bits of R[rs1] + imm_trap# if i = 1. Whether
7 or 8 bits is used depends on the privilege level — 7 bits are used in
nonprivileged mode and 8 bits are used in privileged mode. The trap level, TL, is
incremented. The hardware trap type is computed as 256 + the software trap
number and stored in TT[TL]. The effective address is generated by combining the
contents of the TBA register with the trap type and other data; see Trap Processing
on page 429 for details.

= Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[TL] or TNPCJ[TL].

SPARC V8 | The SPARC V8 architecture specified that the delay instruction
Compatibility | was always fetched, even if annulled, and that an annulled
Note | instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

7.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is executed only when the conditional branch is taken.

Note | The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

7.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed.

Note | The annul behavior of an unconditional branch is different from
that of a taken conditional branch.
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7.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into R[15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into R[15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into R[rd] and then causes a register-indirect delayed transfer of
control to the address given by “R[rs1] + R[rs2]” or “R[rs1] + a signed immediate
value.” The value written into R[rd] is visible to the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the
CALL instruction or to R[rd] by the JMPL instruction is zero.

7.3.44 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a
JMPL instruction with R[0] specified as the destination register and the register-
window semantics of a RESTORE instruction.

7.3.45 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of NPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.

7.3.4.6  Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches
the current state of the condition code register specified in its cc field; otherwise, it
executes as a NOP. If the trap is taken, it increments the TL register, computes a trap
type that is stored in TT[TL], and transfers to a computed address in a trap table
pointed to by a trap base address register.

A Tcc instruction can specify one of 256 software trap types (128 when in
nonprivileged mode). When a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or
8 (in privileged mode) least significant bits of the Tec’s second source operand are
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7.3.5

written to TT[TL]. The only visible difference between a software trap generated by
a Tec instruction and a hardware trap is the trap number in the TT register. See
Chapter 12, Traps, for more information.

Programming | Tcc can be used to implement breakpointing, tracing, and calls
Note | to privileged or hyperprivileged software. Tec can also be used
for runtime checks, such as out-of-range array index checks or

integer overflow checks.

7.3.47 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is
referred to as a “DCTI couple”. The use of DCTI couples is deprecated in the
UltraSPARC Architecture; no new software should place a DCTI in the delay slot of
another DCTI, as on future UltraSPARC Architecture implementations that construct
may execute either slowly or differently than the programmer assumes it will.

SPARC V8 and | The SPARC V8 architecture left behavior undefined for a DCTI
SPARC V9 | couple. The SPARC V9 architecture defined behavior in that
Compatibility | case, but as of UltraSPARC Architecture 2005, use of DCTI couples
Note | is deprecated.

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy
the contents of any integer or floating-point register to a destination integer or
floating-point register if a condition is satisfied. The condition to test is specified in
the instruction and may be any of the conditions allowed in conditional delayed
control-transfer instructions. This condition is tested against one of the six sets of
condition codes (icc, xcc, fceO, feel, fec2, and fce3), as specified by the instruction.
For example:

f novdg % cc2, 9% 20, 9% 22
moves the contents of the double-precision floating-point register % 20 to register
% 22 if floating-point condition code number 2 (fcc2) indicates a greater-than

relation (FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation
(FSR.fcc2 # 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A>B) X =1; else X = 0;

can be coded as
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cnp % 0, % 2 I (A > B)
or %90, 0, %3 ! set X =0
novg oxce, 1, %3 ! overwite Xwith 1if A>B

which eliminates the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer
or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 7-6.

TABLE7-6  MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero
LZ Less than zero

LEZ Less than or equal to zero
GZ Greater than zero

Any of the integer registers (treated as a signed value) may be tested for one of the
conditions, and the result used to control the move. For example,

novr nz %2, %4, %6

moves integer register % 4 to integer register % 6 if integer register % 2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.

Register Window Management Instructions

This subsection describes the instructions that manage register windows in the
UltraSPARC Architecture. The privileged registers affected by these instructions are
described in Register-Window PR State Registers on page 81.

7.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill
exception, that is, one of the spill_n_<normal | other> exceptions.
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If CANSAVE # 0 but the number of clean windows is zero, that is,
(CLEANWIN - CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD
operation are from the old window (the one to which CWP pointed before the
SAVE), while the result is written into a register in the new window (the one to
which the incremented CWP points).

7.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing
the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill
exception, that is, one of the fill_n_<normal | other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are
from the old window (the one to which CWP pointed before the RESTORE), and the
result is written into a register in the new window (the one to which the
decremented CWP points).

Programming | This note describes a common convention for use of register
Note | windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.
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7.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE and decrements
either OTHERWIN or CANRESTORE, depending on the conditions at the time
SAVED is executed.

See SAVED on page 300 for details.

7.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE and decrements
either OTHERWIN or CANSAVE, depending on the conditions at the time
RESTORED is executed. RESTORED also manipulates CLEANWIN, which is used to
ensure that no address space’s data become visible to another address space through
windowed registers.

See RESTORED on page 292 for details.

7.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHW instruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as:

N_REG_WINDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction continues causing spill traps until all the register windows
except the current window have been flushed.

Ancillary State Register (ASR) Access

The read/write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from R registers. A
read/write Ancillary State register instruction is privileged only if the accessed
register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State
Registers on page 67.
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7.3.9

Privileged Register Access

The read /write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from R registers. The read/write privileged register instructions are
privileged.

Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) compute a result that is a function of one
or two source operands and place the result in one or more destination F registers,
with one exception: floating-point compare operations do not write to an F register
but update one of the fccn fields of the FSR instead.

The term “FPop” refers to instructions in the FPop1, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory
and the F registers, or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
115.

The FMOVr instructions function for the floating-point registers as the MOVr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
11e.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All
FPop instructions that can generate IEEE exceptions set the cexc and aexc fields
unless they generate an exception. FABS<sd|q>, FMOV<sld|q>,

FMOVcc<s|d I g>, FMOVr<sld|q>, and FNEG<s|d|q> cannot generate IEEE
exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating an
fp_exception_other exception with FSR.ftt = unfinished_FPop or

FSR.fit = unimplemented FPop. In this case, software running in a mode with
greater privileges must emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 62 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unfinished_FPop). See ftt = 3
(unimplemented_FPop) on page 62 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unimplemented_FPop).
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7.3.10  Implementation-Dependent Instructions

The SPARC V9 architecture provided two instruction spaces that are entirely
implementation dependent: IMPDEP1 and IMPDEP2.

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by VIS
instructions.

In the UltraSPARC Architecture, IMPDEP?2 is subdivided into IMPDEP2A and
IMPDEP2B. IMPDEP2A remains implementation dependent. The IMPDEP2B opcode
space is reserved for implementation of floating-point multiply-add /multiply-
subtract instructions.

7.3.11 Reserved Opcodes and Instruction Fields

If a conforming UltraSPARC Architecture 2005 implementation attempts to execute
an instruction bit pattern that is not specifically defined in this specification, it
behaves as follows:

= If the instruction bit pattern encodes an implementation-specific extension to the
instruction set, that extension is executed.

= {r=1} If the instruction bit pattern does not encode an extension to the instruction
set, but would decode as a valid instruction if nonzero bits in reserved instruction
field(s) were ignored (read as 0):

» The recommended behavior is to generate an illegal_instruction exception (or,
for FPop, an fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop)).

= Alternatively, the implementation can ignore the nonzero reserved field bits
and execute the instruction as if those bits had been zero.

» {r=1}If the instruction bit pattern does not encode an extension to the instruction
set and would still not decode as a valid instruction if nonzero bits in reserved
instruction field(s) were ignored, then the instruction bit pattern is invalid and
causes an exception. Specifically, attempting to execute an FPop instruction (see
Floating-Point Operate on page 30) causes an fp_exception_other exception (with
FSR.ftt = unimplemented_FPop); attempting to execute any other invalid
instruction bit pattern causes an illegal_instruction exception.

Forward | To further enhance backward (and forward) binary
Compatibility | compatibility, the next revision of the UltraSPARC Architecture
Note | is expected to require an illegal_instruction exception to be
generated by any instruction bit pattern that encodes neither a
known UltraSPARC Architecture instruction nor an
implementation-specific extension instruction (including those
with nonzero bits in reserved instruction fields).
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{r>1} See Appendix A, Opcode Maps, for an enumeration of the reserved instruction
bit patterns (opcodes).

Implementation
Note

Programming
Note

As described above, implementations are strongly encouraged,
but not strictly required, to trap on nonzero values in reserved
instruction fields.

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—").
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CHAPTER 8
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/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Instructions

UltraSPARC Architecture 2005 extends the standard SPARC V9 instruction set with
additional classes of instructions:

» Enhanced functionality:

Instructions for alignment (Align Address on page 135)

Array handling (Three-Dimensional Array Addressing on page 138)
Byte-permutation instructions ()

Edge handling (Edge Handling Instructions on pages 156 and 158)

Logical operations on floating-point registers (F Register Logical Operate (1
operand) on page 211)

Partitioned arithmetic (Fixed-point Partitioned Add on page 203 andFixed-point
Partitioned Subtract on page 208)

Pixel manipulation (FEXPAND on page 172, FPACK on page 197, and
FPMERGE on page 206)

= Efficient memory access

Partial store (Store Partial Floating-Point on page 325)
Short floating-point loads and stores (Store Short Floating-Point on page 328)
Block load and store (Block Load on page 232 and Block Store on page 312)

» Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 304) and
all instructions that reference GSR.im

TABLE 8-2 provides a quick index of instructions, alphabetically by architectural
instruction name.

TABLE 8-3 summarizes the instruction set, listed within functional categories.
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Within these tables and throughout the rest of this chapter, and in Appendix A,
Opcode Maps, certain opcodes are marked with mnemonic superscripts. The
superscripts and their meanings are defined in TABLE 8-1.

TABLE8-1  Instruction Superscripts

Superscript Meaning

D Deprecated instruction

N Nonportable instruction

p Privileged instruction

Past Privileged action if bit 7 of the referenced ASI is 0

Pasr Privileged instruction if the referenced ASR register is privileged
Prpt Privileged action if PSTATE.priv = 0 and (S)TICK.npt = 1

Ppic Privileged action if PCR.priv =1
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TABLE 8-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (1 of 2)

Page Instruction

134  ADD (ADDcc) 180 FMOV(s,d,q)cc 236  LDQF

134 ADDC (ADDCcc) 185 FMOV(s,d,qR 239  LDQFAPas
135 ALIGNADDRESS{ LITTLE} 194 FMUL(s,d,q) 227 LDSB

136 ALLCLEAN 188 FMULS(SU,UL)x16 229 LDSBAPas
137 AND (ANDcc) 188 FMULSX16 227 LDSH

138  ARRAY(8,16,32) 188 FMULSx16(AU,AL) 229 LDSHAP»s
142 Bicc 188 FMULDS(SU,UL)x16 245 LDSHORTF
144 BMASK 214 ENANDs} 247 LDSTUB

145 BPcc 196  FNEG(s,d,q) 248 LDSTUBAP»s
148 BPr 214 FNOR({s} 227 LDSW

144 BSHUFFLE 212 ENOT(1,2){ s} 229 LDSWAPast
150 CALL 211  FONE(s) 250 LDTXAN

151 CASAPas 214 FORNOT(1,2){s} 253 LDTWP

151 CASXAPast 214 FOR({s} 255 LDTWAPD: Pasi
154 DONEF 197 FPACK(16,32, FIX) 247 LDUB

156  EDGE(8,16,32){L}cc 203 FPADD<16,32>[9] 229 LDUBAPas
158 EDGE(8,16,32){L}N 206 FPMERGE 227 LDUH

218  F(s,d,q)TO(s,d,q) 208 FPSUB<16,32>[S] 229 LDUHAP»s
216  F(s,d,q)TOi 194 FsMULd 227 LDUW

216 F(s,d,q)TOx 215  FSQRT(s,d,q) 229 LDUWAPs
159  FABS(s,d,q) 212 FSRC(1,2){s} 227 LDX

160 FADD(s,d,q) 220 FSUB(s,d,q) 229 LDXAP»s

161 FALIGNDATA 214  FXNOR(s} 236 LDXFSR

214 FANDNOT(1,2)(s) 214  EXOR(s} 258 MEMBAR
214 FAND(s} 221 FxTO(s,d,q) 262 MOVcc

162 FBfecP 211  FZERO{s} 266 MOVr

164 FBPfcc 222 ILLTRAP 268 MULSccP
169 FCMP(s,d,q) 223 IMPDEP2A 270  MULX

166 FCMP*<16,32> 223 IMPDEP2B 271 NOP

169 FCMPE(s,d,q) 225 INVALW 272 NORMALW
171  EDIV(s,d,q) 226  JMPL 273 OR (ORcc)
194 FdMULq 232 LDBLOCKF 273  ORN (ORNcc)
172 FEXPAND 236 LDDF 274  OTHERW
173 FiTO(s,d,q) 239 LDDFAP»s 275 PDIST

174 FLUSH 236 LDF 276  POPC

177  FLUSHW 239  LDFAPas 278 PREFETCH
178 FMOV(s,d,q) 243 LDFSRP 278 PREFETCHAPs
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TABLE 8-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (2 of 2)

Page Instruction

285 RDASI 316 STDF 355 WRPR"

285 RDasrl A 319 STDFAPas 353  WRSOFTINT_CLRP

285 RDCCR 316 STF 353  WRSOFTINT_SET?

285 RDFPRS 319 STFAPast 353  WRSOFTINT?

285 RDGSR 323 STESRP 353 WRSTICK_CMPR?
307 STH 353  WRSTICKP

285 RDPC 308 STHAPas 353 WRTICK_CMPR?

285 RDPCRP 325 STPARTIALF 353  WRYP

285 RDPICPrc 316 STQF 358  XNOR (XNORcc)

288 RDPRP 319  STQFAP»s 358  XOR (XORcc)

285 RDSOFTINT? 328 STSHORTF

285 RDSTICK_CMPRP 330 STTWP

285 RDSTICK re 332 STTWAD: Pasi

285 RDTICK_CMPR? 307 STW

285 RDTICK 308 STWAPas

292 RESTOREDY 307 STX

290 RESTOREP 308 STXAPas

294 RETRY? 316 STXFSR

296 RETURN 335 SUB (SUBcc)

300 SAVEDP 335 SUBC (SUBCcc)

298 SAVEF 337 SWAPAD: Pasi

348 SDIVP (SDIVccP) 336 SWAPP

270  SDIVX 339 TADDcc

302 SETHI 340 TADDccTVP

303 SHUTDOWNPT 342 Tec

304 SIAM 345 TSUBcc
346  TSUBccTVP

305 SLL 348 UDIVP (UDIVccP)

305 SLLX 270 UDIVX

351 SMULP (SMULccP) 351 UMULP (UMULccP)

305 SRA 353  WRASI

305 SRAX 353  WRasrlast

305 SRL 353  WRCCR

305 SRLX 353 WRFPRS

307 STB 353  WRGSR

308 STBAFas

311 STBARP 353 WRPCRP

312 STBLOCKF 353  WRPICPre
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TABLE 8-3 Instruction Set - by Functional Category (1 of 6)

Ext. to

Instruction Category and Function Page V9?
Data Movement Operations, Between R Registers
MOVcc Move integer register if condition is satisfied 262
MOVr Move integer register on contents of integer register 266
Data Movement Operations, Between F Registers
FMOV(s,d,q) Floating-point move 178
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 180
FMOV(s,d,q)R Move {-p reg. if integer reg. contents satisfy condition 185
FSRC(1,2){s} Copy source 212 VIS 1
Data Conversion Instructions
FiTO(s,d,q) Convert 32-bit integer to floating-point 173
F(s,d,q)TOi Convert floating point to integer 216
F(s,d,q)TOx Convert floating point to 64-bit integer 216
F(s,d,q)TO(s,d,q) Convert between floating-point formats 218
FxTO(s,d,q) Convert 64-bit integer to floating-point 221
Logical Operations on R Registers
AND (ANDcc) Logical and (and modify condition codes) 137
OR (ORcc) Inclusive-or (and modify condition codes) 273
ORN (ORNCcc) Inclusive-or not (and modify condition codes) 273
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 358
XOR (XORcc) Exclusive-or (and modify condition codes) 358
Logical Operations on F Registers
FAND(s} Logical and operation 214 VIS 1
FANDNOT(1,2){s} Logical and operation with one inverted source 214 VIS 1
FNAND({s} Logical nand operation 214 VIS 1
FNOR(s} Logical nor operation 214 VIS 1
FNOT(1,2){ s} Copy negated source 212 VIS 1
FONE/(s} One fill 211 VIS 1
FOR{s} Logical or operation 214 VIS 1
FORNOT(1,2){s} Logical or operation with one inverted source 214 VIS 1
FXNOR(s} Logical xnor operation 214 VIS 1
FXOR({s} Logical xor operation 214 VIS 1
FZERO(s} Zero fill 211 VIS 1
Shift Operations on R Registers

SLL Shift left logical 305
SLLX Shift left logical, extended 305
SRA Shift right arithmetic 305
SRAX Shift right arithmetic, extended 305
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TABLE 8-3 Instruction Set - by Functional Category (2 of 6)

Ext. to
Instruction Category and Function Page V9?
SRL Shift right logical 305
SRLX Shift right logical, extended 305

Special Addressing Operations
ALIGNADDRESS{_LITTLE} Calculate address for misaligned data 135 VIS 1
ARRAY(8,16,32) 3-D array addressing instructions 138 VIS 1
FALIGNDATA Perform data alignment for misaligned data 161 VIS 1
Control Transfers
Bicc Branch on integer condition codes 142
BPcc Branch on integer condition codes with prediction 145
BPr Branch on contents of integer register with prediction 148
CALL Call and link 150
DONE? Return from trap 154
FBfccP Branch on floating-point condition codes 162
FBPfcc Branch on floating-point condition codes with prediction 164
ILLTRAP Illegal instruction 222
JMPL Jump and link 226
RETRY? Return from trap and retry 294
RETURN Return 296
Tec Trap on integer condition codes 342
Byte Permutation
BMASK Set the GSR.mask field 144 VIS 2
BSHUFFLE Permute bytes as specified by GSR.mask 144 VIS 2
Data Formatting Operations on F Registers
FEXPAND Pixel expansion 172 VIS 1
FPACK(16,32, FIX) Pixel packing 197 VIS 1
FPMERGE Pixel merge 206 VIS 1
Memory Operations to/from F Registers

LDBLOCKF Block loads 232 VIS 1
STBLOCKF Block stores 312 VIS 1
LDDF Load double floating-point 236
LDDFAPss! Load double floating-point from alternate space 239
LDF Load floating-point 236
LDFAPast Load floating-point from alternate space 239
LDQF Load quad floating-point 236
LDQFAPsst Load quad floating-point from alternate space 239
LDSHORTF Short floating-point loads 245 VIS 1
STDF Store double floating-point 316
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TABLE 8-3 Instruction Set - by Functional Category (3 of 6)

Ext. to
Instruction Category and Function Page V9?
STDFA'ast Store double floating-point into alternate space 319
STF Store floating-point 316
STFAPast Store floating-point into alternate space 319
STPARTIALF Partial Store instructions 325 VIS 1
STQF Store quad floating point 316
STQFAPst Store quad floating-point into alternate space 319
STSHORTF Short floating-point stores 328 VIS 1

Memory Operations — Miscellaneous
LDFSRP Load floating-point state register lower 243
LDXFSR Load floating-point state register 236
MEMBAR Memory barrier 258
PREFETCH Prefetch data 278
PREFETCHAP»s! Prefetch data from alternate space 278
STFSRP Store floating-point state register 323
STXFSR Store extended floating-point state register 316
Atomic (Load-Store) Memory Operations to/from R Registers
CASAP»st Compare and swap word in alternate space 151
CASXAPast Compare and swap doubleword in alternate space 151
LDSTUB Load-store unsigned byte 247
LDSTUBAPst Load-store unsigned byte in alternate space 248
SWAPP Swap integer register with memory 336
SWAPAD: Past Swap integer register with memory in alternate space 337
Memory Operations to/from R Registers

LDSB Load signed byte 227
LDSBAPs! Load signed byte from alternate space 229
LDSH Load signed halfword 227
LDSHAPs! Load signed halfword from alternate space 229
LDSW Load signed word 227
LDSWAPast Load signed word from alternate space 229
LDTXAN Load integer twin extended word from alternate space 250 VIS 2+
LDTWP” Past Load integer twin word 253
LDTWAP: Pasi Load integer twin word from alternate space 255
LDUB Load unsigned byte 247
LDUBAPast Load unsigned byte from alternate space 229
LDUH Load unsigned halfword 227
LDUHAPAs! Load unsigned halfword from alternate space 229
LDUW Load unsigned word 227
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TABLE 8-3 Instruction Set - by Functional Category (4 of 6)

Ext. to

Instruction Category and Function Page V9?
LDUWA" st Load unsigned word from alternate space 229
LDX Load extended 227
LDXAPast Load extended from alternate space 229
STB Store byte 307
STBAPas! Store byte into alternate space 308
STBARP Store barrier 311
STTWP Store twin word 330
STTWAPD: Past Store twin word into alternate space 332
STH Store halfword 307
STHAPast Store halfword into alternate space 308
STW Store word 307
STWAPst Store word into alternate space 308
STX Store extended 307
STXAPast Store extended into alternate space 308

Floating-Point Arithmetic Operations
FABS(s,d,q) Floating-point absolute value 159
FADD(s,d,q) Floating-point add 160
FDIV(s,d,q) Floating-point divide 171
FdMULq Floating-point multiply double to quad 194
FMUL(s,d,q) Floating-point multiply 194
FNEG(s,d,q) Floating-point negate 196
FsMULd Floating-point multiply single to double 194
FSQRT(s,d,q) Floating-point square root 215
FSUB(s,d,q) Floating-point subtract 220

Floating-Point Comparison Operations
FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 166 VIS 1
FCMP(s,d,q) Floating-point compare 169
FCMPE(s,d,q) Floating-point compare (exception if unordered) 169

Register-Window Control Operations
ALLCLEAN Mark all register window sets as “clean” 136
INVALW Mark all register window sets as “invalid” 225
FLUSHW Flush register windows 177
NORMALW “Other” register windows become “normal” register windows 272
OTHERW “Normal” register windows become “other” register windows 274
RESTORE" Restore caller’s window 290
RESTORED® Window has been restored 292
SAVEF Save caller’s window 298
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TABLE 8-3 Instruction Set - by Functional Category (5 of 6)
Ext. to
Instruction Category and Function Page V9?
SAVED" Window has been saved 300
Miscellaneous Operations
FLUSH Flush instruction memory 174
IMPDEP2A Implementation-dependent instructions 223
IMPDEP2B Implementation-dependent instructions (reserved) 223
NOP No operation 271
SHUTDOWNP-P Shut down the virtual processor 303 VIS 1
Integer SIMD Operations on F Registers
FPADD<16,32>[S] Fixed-point partitioned add 203 VIS 1
FPSUB<16,32>[S] Fixed-point partitioned subtract 208 Vis1
Integer Arithmetic Operations on R Registers
ADD (ADDcc) Add (and modify condition codes) 134
ADDC (ADDCcc) Add with carry (and modify condition codes) 134
MULSccP Multiply step (and modify condition codes) 268
MULX Multiply 64-bit integers 270
SDIVP (SDIVccP) 32-bit signed integer divide (and modify condition codes) 348
SDIVX 64-bit signed integer divide 270
SMULP (SMULccP) Signed integer multiply (and modify condition codes) 351
SUB (SUBcc) Subtract (and modify condition codes) 335
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 335
TADDcc Tagged add and modify condition codes (trap on overflow) 339
TADDccTVP Tagged add and modify condition codes (trap on overflow) 340
TSUBcc Tagged subtract and modify condition codes (trap on overflow) 345
TSUBccTVP Tagged subtract and modify condition codes (trap on overflow) 346
UDIVP (UDIVccP) Unsigned integer divide (and modify condition codes) 348
UDIVX 64-bit unsigned integer divide 270
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 351
Integer Arithmetic Operations on F Registers
FMULS8x16 8x16 partitioned product 188 VIS 1
FMUL8x16(AU,AL) 8x16 upper/lower a partitioned product 188 VIS 1
FMULS(SU,UL)x16 8x16 upper/lower partitioned product 188 VIS 1
FMULDS8(SU,UL)x16 8x16 upper/lower partitioned product 188 VIS 1
Miscellaneous Operations on R Registers
POPC Population count 276
SETHI Set high 22 bits of low word of integer register 302
Miscellaneous Operations on F Registers
EDGE(8,16,32){L}cc Edge handling instructions (and modify condition codes) 156 VIS 1
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TABLE 8-3 Instruction Set - by Functional Category (6 of 6)

Ext. to
Instruction Category and Function Page V9?
EDGE(8,16,32){LIN Edge handling instructions 158 VIS 2
PDIST Pixel component distance 275 VIS 1

Control and Status Register Access
RDASI Read ASI register 285
RDasr!Ast Read ancillary state register 285
RDCCR Read Condition Codes register (CCR) 285
RDFPRS Read Floating-Point Registers State register (FPRS) 285
RDGSR Read General Status register (GSR) 285
RDPC Read Program Counter register (PC) 285
RDPCRP Read Performance Control register (PCR) 285
RDPICPric Read Performance Instrumentation Counters register (PIC) 285
RDPRP Read privileged register 288
RDSOFTINT? Read per-virtual processor Soft Interrupt register (SOFTINT) 285
RDSTICK et Read System Tick register (STICK) 285
RDSTICK_CMPR” Read System Tick Compare register (STICK_CMPR) 285
RDTICKF et Read Tick register (TICK) 285
RDTICK_CMPRF Read Tick Compare register (TICK_CMPR) 285
SIAM Set interval arithmetic mode 304 VIS 2
WRASI Write ASI register 353
WRasrF sk Write ancillary state register 353
WRCCR Write Condition Codes register (CCR) 353
WRFPRS Write Floating-Point Registers State register (FPRS) 353
WRGSR Write General Status register (GSR) 353
WRPCRF Write Performance Control register (PCR) 353
WRPICFric Write Performance Instrumentation Counters register (PIC) 353
WRPRF Write privileged register 355
WRSOFTINT? Write per-virtual processor Soft Interrupt register (SOFTINT) 353
WRSOFTINT_CLRP Clear bits of per-virtual processor Soft Interrupt register 353
(SOFTINT)

WRSOFTINT_SET? Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 353
WRTICK_CMPRF Write Tick Compare register (TICK_CMPR) 353
WRSTICKP Write System Tick register (STICK) 353
WRSTICK_CMPR? Write System Tick Compare register (STICK_CMPR) 353
WRYP Write Y register 353
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In the remainder of this chapter, related instructions are grouped into subsections.
Each subsection consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection,
including the values of the field(s) that uniquely identify the instruction(s), assembly
language syntax, and software and implementation classifications for the
instructions. (description of the Software Classes [letters] and Implementation Classes
[digits] will be provided in a later update to this specification)

(2) Illustration of Instruction Format(s). These illustrations show how the
instruction is encoded in a 32-bit word in memory. In them, a dash (—) indicates
that the field is reserved for future versions of the architecture and must be 0 in any
instance of the instruction. If a conforming UltraSPARC Architecture
implementation encounters nonzero values in these fields, its behavior is as defined
in Reserved Opcodes and Instruction Fields on page 120.

Note | Instruction classes are subject to change, and are not yet defined in
this document. The classes will be defined in a later draft of this
document and in the meantime are subject to change.

(3) Description. This subsection describes the operation of the instruction, its
features, restrictions, and exception-causing conditions.

(4) Exceptions. The exception that can occur as a consequence of attempting to
execute the instruction(s). Exceptions due to an instruction_access_exception, and
interrupts are not listed because they can occur on any instruction. An FPop that is
not implemented in hardware generates an fp_exception_other exception with
FSR.ftt = unimplemented_FPop when executed. A non-FPop instruction not
implemented in hardware generates an illegal_instruction exception and therefore
will not generate any of the other exceptions listed. Exceptions are listed in order of
trap priority (see Trap Priorities on page 428), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note | This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
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8.1 Add

ADD

Instruction op3 Operation Assembly Language Syntax Class
ADD 00 0000 Add add regrs1, reg_or_imm, regqy Al
ADDcc 01 0000 Add and modify cc’s addcc  regsy, reg_or_imm, regyy Al
ADDC 00 1000 Add with 32-bit Carry addc regg1, reg_or_imm, regq Al
ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc  regsy, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ 1f i =0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute

Exceptions

“R[rs1] + sign_ext( simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(icc.c) bit. That is, if i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they
compute “R[rs1] + sign_ext( sinm13) + icc.c”. In either case, the sum is written to
R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different from that of the operands.

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCRucc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility
Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i =0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

illegal_instruction
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ALIGNADDRESS

8.2 Align Address

Instruction opf Operation Assembly Language Syntax Class

ALIGNADDRESS 000011000 Calculate address for misaligned al i gnaddr  regs1. 7egrs2,  7€8rd Al
data access

ALIGNADDRESS_ 000011010 Calculate address for misaligned al i gnaddr| regis1, regrsp,  7€8rq Al

LITTLE data access little-endian
10 rd | 110110 | rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result
(with the least significant 3 bits forced to 0) in the integer register R[rd]. The least
significant 3 bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s
complement of the least significant 3 bits of the result is stored in GSR.align.

Note | ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

A byte-aligned 64-bit load can be performed as shown below.

al i gnaddr Address, Offset, Address !set GSR align

| dd [ Address] , %60
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR align to sel ect bytes

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an ALIGNADDRESS or
ALIGNADDRESS_LITTLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 161
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ALLCLEAN

8.3 Mark All Register Window Sets “Clean”

Instruction Operation Assembly Language Syntax Class
ALLCLEAN'  Mark all register window sets as “clean”  al | ¢l ean C1
10 | fcn =0 0010 11 0001 —
31 30 29 25 24 19 18 0

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it
performs the following operation:

CLEANWIN « (N_REG_WINDOWS - 1)

Programming | ALLCLEAN is used to indicate that all register windows are
Note | “clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
privileged_opcode

See Also INVALW on page 225
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292
SAVED on page 300
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8.4

AND, ANDN

AND Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
AND 00 0001 and and regis1, reg_or_imm, regyy Al
ANDcc 01 0001 and and modify cc’s andcc  regyg1, reg_or_imm, regyg Al
ANDN 00 0101 and not andn regrs1, reg_or_imm, regyq Al
ANDNCcc 01 0101 and not and modify cc’s andncc reg.y, reg_or_imm, regyy Al
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4
Description These instructions implement bitwise logical and operations. They compute “R[rs1]
op R[rs2]” if i =0, or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into
R[rd].
ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:
= ICC.V, icc.c, xcc.v, and xcc.c are set to 0
= icc.n is copied from bit 31 of the result
= Xcc.n is copied from bit 63 of the result
= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)
ANDN and ANDNCcc logically negate their second operand before applying the
main (and) operation.
An attempt to execute an AND, ANDcc, ANDN or ANDNCcc instruction when i =0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction
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ARRAY<8|16|32>

8.5 Three-Dimensional Array Addressing

Instruction  opf Operation Assembly Language Syntax Class

ARRAY8 00001 0000 Convert 8-bit 3D address to blocked byte address array8 regys1, regrsz, regrg C3
ARRAY16 00001 0010 Convert 16-bit 3D address to blocked byte address array16 regys1, regrsp, regrg C3
ARRAY32 00001 0100 Convert 32-bit 3D address to blocked byte address array32 reg,s1, regrsz, regrg C3

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert three-dimensional (3D) fixed-point addresses contained
in R[rs1] to a blocked-byte address; they store the result in R[rd]. Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAYS), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions
of a 3D image array. The legal values for R[rs2] and their meanings are shown in
TABLE 8-4. Illegal values produce undefined results in the destination register, R[rd].

TABLE8-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements
0 64
128
256
512
1024
2048

QL = W N =

Implementation | Architecturally, an illegal R[rs2] value (>5) causes the array
Note | instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

The array instructions facilitate 3D texture mapping and volume rendering by
computing a memory address for data lookup based on fixed-point x, y, and z
coordinates. The data are laid out in a blocked fashion, so that points which are near
one another have their data stored in nearby memory locations.
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ARRAY<8|16|32>

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by
the z = 1 plane, etc.), then even small changes in z would result in references to
distant pages in memory. The resulting lack of locality would tend to result in TLB
misses and poor performance. The three versions of the array instruction, ARRAYS,
ARRAY16, and ARRAY32, differ only in the scaling of the computed memory offsets.
ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is
imposed. The N x N x M volume, where N =2"x64, M=m x32,0<n<51<m<16
should be composed of 64 x 64 x 32 smaller volumes, which in turn should be
composed of 4 x 4 x 2 volumes. This data structure is optimal for 16-bit data. For 16-
bit data, the 4 x 4 x 2 volume has 64 bytes of data, which is ideal for reducing cache-
line misses; the 64 x 64 x 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 8-1 illustrates how the data has to be organized,
where the origin (0,0,0) is assumed to be at the lower-left front corner and the x
coordinate varies faster than y than z. That is, when traversing the volume from the
origin to the upper right back, you go from left to right, front to back, bottom to top.

1
z
A |
I
[
|
M =m X 32 I
|
| \%
| b 4
I 7/
N=2"x 64 e e e e e | - — — —
/
I /
16x2=32 Z _
T L [ Jxazes
ey
X
0 4 16 X 4 = 64 N=2"x64 >

FIGURE 8-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:
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The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as
shown in FIGURE 8-2.

Z integer Z fraction Y integer Y fraction| X integer X fraction
63 55 54 44 43 33 32 22 21 11 10 0

FIGURE 8-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since
(x,y,z) are all contained in one 64-bit register, they can be incremented or
decremented simultaneously with a single add or subtract instruction (ADD or
SUB).

So for a 512 x 512 x 32 or a 512 x 512 x 256 volume, the size value is 3. Note that the
x and y size of the volume must be the same. The z size of the volume is a multiple
of 32, ranging between 32 and 512.

The array instructions generate an integer memory offset, that when added to the
base address of the volume, gives the address of the volume element (voxel) and can
be used by a load instruction. The offset is correct only if the data has been
reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address
formats as shown in FIGURE 8-3 for ARRAYS, FIGURE 8-4 for ARRAY16, and FIGURE 8-5
for ARRAY32.

UPPER MIDDLE LOWER
Z Y X Z Y X Z Y X
20 17 17 17 13 9 5 4 2 0
+2n +2n +n

FIGURE 8-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

UPPER MIDDLE LOWER

Z Y X Z Y X Z Y X

21 18 18 18 14 10 6 5 3 10
+2n +2n +n

FIGURE 8-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)

140 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006



ARRAY<8|16|32>

UPPER MIDDLE LOWER
00
z Y X z Y X z Y X
22 19 19 19 15 11 7 6 5 4 3 21 0
+2n +2n +n
FIGURE 8-5 Three Dimensional Array Blocked-Address Format (ARRAY32)
The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by R[rs2] are ignored.
TABLE8-5 ARRAYS8 Description
Result (R[rd]) Bits Source (R[rs1] Bits Field Information
1:0 12:11 X_integer{1:0}
3:2 34:33 Y_integer{1:0}
4 55 Z_integer{0}
8:5 16:13 X_integer{5:2}
12:9 38:35 Y_integer{5:2}
16:13 59:56 Z_integer{4:1}
17+n-1:17 17+n-1:17 X_integer{6+71-1:6}
17+2n-1:17+n 39+n-1:39 Y_integer{6+11-1:6}
20+2n:17+2n 63:60 Z_integer{8:5}
63:20+2n+1 n/a 0
In the above description, if n = 0, there are 64 elements, so X_integer{6} and
Y_integer{6} are not defined. That is, result{20:17} equals Z_integer{8:5}.
Note | To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 x 32 x 64
block.
The code fragment below shows assembly of components along an interpolated line
at the rate of one component per clock.
add Addr, DeltaAddr, Addr
array8 Addr, %0, bAddr
| dda [ bAddr] #AS|I _FL8_PRI MARY, data
faligndata data, accum, accum
Exceptions None
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Bicc Instructions

8.6 Branch on Integer Condition Codes
(Bicc)

Assembly Language

Opcode cond Operation icc Test Syntax Class
BA 1000 Branch Always 1 ba{, a} label Al
BN 0000 Branch Never 0 bn{, a} label Al
BNE 1001  Branch on Not Equal not Z bnef{, a} label Al
BE 0001 Branch on Equal Z be¥{, a} label Al
BG 1010  Branch on Greater not (Z or (N xor V)) bg{, a} label Al
BLE 0010 Branch on Less or Equal Z or (N xor V) bl e{,a} label Al
BGE 1011  Branch on Greater or Equal not (N xor V) bge{, a} label Al
BL 0011 Branch on Less N xor V bl {, a} label Al
BGU 1100  Branch on Greater Unsigned not (C or Z) bgu{, a} label Al
BLEU 0100 Branch on Less or Equal Unsigned CorZ bl eu{, a} label Al
BCC 1101  Branch on Carry Clear (Greater Than not C bcc®{, a} label Al
or Equal, Unsigned)
BCS 0101 Branch on Carry Set (Less Than, Unsigned) C besD{, a} label Al
BPOS 1110 Branch on Positive not N bpos{, a} label Al
BNEG 0110 Branch on Negative N bneg{, a} label Al
BVC 1111  Branch on Overflow Clear not V bvc{,a} label Al
BVS 0111  Branch on Overflow Set v bvs{,a} label Al
t synonym: bnz  synonym: bz © synonym: bgeu O synonym: bl u
00 |a cond 010 disp22
3130 29 28 25 24 22 21 0

Programming | To set the annul (a) bit for Bicc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “bgu, a label”. In the
preceding table, braces signify that the “, a” is optional.

Unconditional branches and icc-conditional branches are described below:

= Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch
Never) instruction is treated as a NOP. If its annul bit is 1 (a = 1), the following
(delay) instruction is annulled (not executed). In neither case does a transfer of
control take place.
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Exceptions

Bicc Instructions

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 x sign_ext( disp22) )”. If the annul (a) bit of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul bit is
0 (a=0), the delay instruction is executed.

icc-conditional branches — Conditional Bicc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (icc), according to the cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken,
that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 x sign_ext( disp22) )”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 7, Instruction Set Overview.

None
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BMASK / BSHUFFLE

8.7 Byte Mask and Shuffle

Instruction opf Operation Assembly Language Syntax Class

BMASK 000011001 Set the GSR.mask field in preparation bmask regrs1y €Srs2s 1€8rd C3
for a subsequent BSHUFFLE instruction

BSHUFFLE 001001100 Permute 16 bytes as specified by GSR.mask bshuf fl e fregs1, fregisos fregq C3

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the
integer register R[rd]. The least significant 32 bits of the result are stored in the
GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers Fp[rsl] (more
significant half) and Fp[rs2] (less significant half) to form a 128-bit (16-byte) value.
Bytes in the concatenated value are numbered from most significant to least
significant, with the most significant byte being byte 0. BSHUFFLE extracts 8 of
those 16 bytes and stores the result in the 64-bit floating-point register Fp[rd]. Bytes
in Fp[rd] are also numbered from most to least significant, with the most significant
being byte 0. The following table indicates which source byte is extracted from the
concatenated value to generate each byte in the destination register, Fp[rd].

Destination Byte (in F[rd])  Source Byte

0 (most significant)  (Fp[rsl] :: Fp[[rs2]){GSR.mask{31:28}}

1 (Fpllrs1] :: Fpllrs2]){GSR.mask{27:24}}
2 (Fpllrs1] :: Fpl[rs2]){GSR.mask{23:20}}
3 (Fpllrs1] :: Fpllrs2]){GSR.mask{19:16}}
4 (Fpllrs1] :: Fpllrs2]){GSR.mask{15:12}}
5 (Fpllrs1] :: Fpl[rs2]){GSR.mask{11:8}}
6 (Fpllrs1] :: Fpllrs2]){GSR.mask{7:4}}

7 (least significant)  (Fp[[rs1] :: Fp[[rs2]){GSR.mask({3:0}}

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute a BMASK or BSHUFFLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled
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BPcc

8.8 Branch on Integer Condition Codes with
Prediction (BPcc)

Instructioncond Operation cc Test Assembly Language Syntax Class
BPA 1000 Branch Always 1 ba{, a}{, pt I, pn} i_or_x_cc, label Al
BPN 0000 Branch Never 0 bn{, a}{, pt I, pn}  i_or_x_cc, label Al
BPNE 1001 Branch on Not Equal not Z bnet{, al{, pt |, pn} i_or_x_cc, label Al
BPE 0001 Branch on Equal Z bei{, al{, pt I, pn} i_or_x_cc, label Al
BPG 1010 Branch on Greater not (Z or ba{, a}{, pt I, pn} i_or_x_cc, label Al
(N xor V))

BPLE 0010 Branch on Less or Equal Zor (N xorV) blef{,al}{,ptl,pn} ior_x_cc, label Al
BPGE 1011 Branch on Greater or Equal not (N xor V) bge{, a}{, pt I, pn} i_or_x_cc, label Al
BPL 0011 Branch on Less N xor V bl {, al{, pt I, pn} i_or_x_cc, label Al
BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{, al{, pt I, pn} i_or_x_cc, label Al
BPLEU 0100 Branch on Less or Equal Unsigned C or Z bl eu{, al{, pt |, pn} i_or_x_cc, label Al
BPCC 1101 Branch on Carry Clear not C bcedf, al{, pt |, pn} i_or_x_cc, label Al

(Greater than or Equal, Unsigned)
BPCS 0101 Branch on Carry Set C besOf, a}{, pt |, pn}i_or_x_cc, label Al

(Less than, Unsigned)
BPPOS 1110 Branch on Positive not N bpos{, a}{, pt |, pn} i_or_x_cc, label Al
BPNEG 0110 Branch on Negative N bnegf{, a}{, pt |, pn} i_or_x_cc, label Al
BPVC 1111 Branch on Overflow Clear not V bvc{, a}{, pt |, pn} i_or_x_cc, label Al
BPVS 0111 Branch on Overflow Set A% bvs{, al{, pt |, pn} i_or_x_cc, label Al
1t synonym: bnz 1 synonym: bz ¢ synonym: bgeu O synonym: bl u
00 |a cond 001 |cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18
ccl cc0 Condition Code

0 0 icc

0 1 —

1 0 Xcc

1 1 —
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Description

Exceptions

BPcc

Programming | To set the annul (a) bit for BPcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use bgu, a % cc, label. Braces in
the preceding table signify that the “, a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“, pt” for predict taken or “, pn” for predict not taken. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “,pt ”. To
select the appropriate integer condition code, include “% cc” or
“%xcc” before the label.

Unconditional branches and conditional branches are described below.
= Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)

instruction for this branch type (0p2 = 1) may be used in the SPARC V9
architecture as an instruction prefetch; that is, the effective address (PC + (4 x
sign_ext( disp19))) specifies an address of an instruction that is expected to be
executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following
(delay) instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the
following instruction is executed. In no case does a Branch Never cause a transfer
of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 x sign_ext( disp19))”. If the annul
bit of the branch instruction is 1 (a = 1), then the delay instruction is annulled (not
executed). If the annul bit is 0 (a = 0), then the delay instruction is executed.

Conditional branches — Conditional BPcc instructions (except BPA and BPN)
evaluate one of the two integer condition codes (icc or Xcc), as selected by ccO
and ccl, according to the cond field of the instruction, producing either a TRUE or
FALSE result. If TRUE, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 x sign_ext( disp19))”. If
FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 7, Instruction Set Overview.

An attempt to execute a BPcc instruction with ccO =1 (a reserved value) causes an
illegal_instruction exception.

illegal_instruction
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BPcc

See Also Branch on Integer Register with Prediction (BPr) on page 148
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8.9

Branch on Integer Register with
Prediction (BPr)

Register
Contents
Instruction rcond Operation Test Assembly Language Syntax Class
— 000 Reserved — —
BRZ 001 Branch on Register Zero R[rsl]=0 brz {,a}{,pt |, pn}  regs1, label Al
BRLEZ 010 Branch on Register Less Than or Equal R[rs1]<0 brlez {, a}{, pt |, pn} reg,s1, label Al
to Zero
BRLZ 011 Branch on Register Less Than Zero Rlrs1] <0 brlz {, a}{, pt |, pn} regsy, label Al
— 100 Reserved — —
BRNZ 101 Branch on Register Not Zero Rlrs1]20 brnz {, a}{, pt |, pn} reg.s1, label Al
BRGZ 110 Branch on Register Greater Than Zero R[rs1] >0 brgz {, a}{, pt |, pn} reg.s1, label Al
BRGEZ 111 Branch on Register Greater Than or  R[rs1] 20 brgez {, a}{, pt |, pn} reg,s1, label Al
Equal to Zero
00 [a|0"| rcond | 011 |di6hi|p rsi d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0
* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, many
early implementations ignored the value of this bit and executed the opcode as a BPr instruction even if
bit28 =1.
Programming | To set the annul (a) bit for BPr instructions, append “, a” to the
Note | opcode mnemonic. For example, use “brz, a % 3, label.” In the
preceding table, braces signify that the “, a” is optional. To set the
branch prediction bit p, append either “, pt ” for predict taken or
“, pn” for predict not taken to the opcode mnemonic. If neither
“, pt” nor “, pn” is specified, the assembler defaults to “, pt ”.
Description These instructions branch based on the contents of R[rs1]. They treat the register

contents as a signed integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( d16hi :: d16lo))”. If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul (a) bit. If the branch is not taken and the annul bit is 1 (a = 1), the
delay instruction is annulled (not executed).
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See Also

BPr

The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. If p = 1, the branch is expected to be taken; p = 0 indicates that the branch
is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 =1 or rcond is a
reserved value (000, or 100,) causes an illegal_instruction exception.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 7, Instruction Set Overview.

Implementation | If this instruction is implemented by tagging each register value
Note | with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:
Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ NorZ
BRGZ not (N or Z)

illegal_instruction

Branch on Integer Condition Codes with Prediction (BPcc) on page 145
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8.10 Call and Link

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link cal l label Al

01 disp30
3130 29 0

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer
to address PC + (4 x sign_ext(disp30)). Since the word displacement (disp30) field is
30 bits wide, the target address lies within a range of 23! to +23! — 4 bytes. The PC-
relative displacement is formed by sign-extending the 30-bit word displacement field
to 62 bits and appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into R[15] (out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system and in the address
written into R[15]. (closed impl. dep. #125-V9-Cs10)

Exceptions None

See Also JMPL on page 226

150 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006



CASA / CASXA

8.11

Compare and Swap

Instruction op3 Operation Assembly Language Syntax Class
CASAPAs 111100 Compare and Swap Word from casa [ regis1] imm_asi, regiso, regq Al
Alternate Space casa [ regs1] Y@Si, regrso, regig
CASXAPat 111110  Compare and Swap Extended from casxa [ regsi] imm_asi, regyss, regq Al
Alternate Space casxa [regisi]l Y@Si, regso, regrg
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i=1] — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Description Concurrent processes use these instructions for synchronization and memory

updates. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The last two can use wait-free
(nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword
in memory pointed to by the doubleword address in R[rs1]. If the values are equal,
the value in R[rd] is swapped with the doubleword pointed to by the doubleword
address in R[rs1]. If the values are not equal, the contents of the doubleword
pointed to by R[rs1] replaces the value in R[rd], but the memory location remains
unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word
in memory pointed to by the word address in R[rs1]. If the values are equal, then the
low-order 32 bits of register R[rd] are swapped with the contents of the memory
word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0. If the values are not equal, the memory location remains unchanged, but
the contents of the memory word pointed to by R[rs1] replace the low-order 32 bits
of R[rd] and the high-order 32 bits of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and
a swap. The overall instruction is atomic; that is, no intervening interrupts or
deferred traps are recognized by the virtual processor and no intervening update
resulting from a compare-and-swap, swap, load, load-store unsigned byte, or store
instruction to the doubleword containing the addressed location, or any portion of it,
is performed by the memory system.
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A compare-and-swap operation does not imply any memory barrier semantics.
When compare-and-swap is used for synchronization, the same consideration
should be given to memory barriers as if a load, store, or swap instruction were
used.

A compare-and-swap operation behaves as if it performs a store, either of a new
value from R[rd] or of the previous value in memory. The addressed location must
be writable, even if the values in memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if
i =1, the address space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not
properly aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, CASXA and CASA
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3014 to 7F15, CASXA and CASA cause a privileged_action exception.

Compatibility | An implementation might cause an exception because of an
Note | error during the store memory access, even though there was no
error during the load memory access.

Programming | Compare and Swap (CAS) and Compare and Swap Extended

Note | (CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs,
subject to the privilege mode rules described for the privileged_action exception
above. Use of any other ASI with these instructions causes a data_access_exception
exception.

ASils valid for CASA and CASXA instructions
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER _SECONDARY_LI TTLE

ASI _REAL ASl _REAL_LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI TTLE
ASI _SECONDARY ASI _SECONDARY_LI TTLE
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Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
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8.12  DONE

Instruction  op3 Operation Assembly Language Syntax Class
DONE" 111110  Return from Trap (skip trapped instruction) done C1
10 fcn =0 0000 11 1110 —
31 30 29 25 24 19 18 0

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), sets PC and NPC, and decrements TL. DONE sets
PC — TNPC[TL] and NPC — TNPC[TL]+4 (normally, the value of NPC saved at the
time of the original trap and address of the instruction immediately after the one
referenced by the NPC).

Programming | The DONE and RETRY instructions are used to return from
Notes | privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

If the saved TNPC[TL] was not altered by trap handler software, DONE causes
execution to resume immediately after the instruction that originally caused the trap
(as if that instruction was “done” executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction
produces undefined results.

If software writes invalid or inconsistent state to TSTATE before executing DONE,
virtual processor behavior during and after execution of the DONE instruction is
undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a DONE instruction
is executed (which sets PSTATE.am to "1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
DONE instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv = 1), an attempt to execute DONE
while TL = 0 causes an illegal_instruction exception. An attempt to execute DONE
(in any mode) with instruction bits 18:0 nonzero causes an illegal_instruction
exception.
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In nonprivileged mode (PSTATE.priv = 0), an attempt to execute DONE causes a
privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

Exceptions illegal_instruction

privileged_opcode

See Also RETRY on page 294
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8.13  Edge Handling Instructions

Instruction opf Operation Assembly Language Syntax t Class

EDGE8cc 00000 0000 Eight 8-bit edge boundary processing  edge8cc regrs1y 1€Srs2s 1egrqg C3

EDGES8Lcc 000000010 Eight 8-bit edge boundary processing, edge8l cc regrs1, 1€Srs2y €8rd C3
little-endian

EDGEl6cc 00000 0100 Four 16-bit edge boundary processing edgel6cc regrs1, 1€Srs2y €8rd C3

EDGE16Lcc 000000110 Four 16-bit edge boundary processing, edgel6l cc  regis1, 7€9rsns 7€8rd C3
little-endian

EDGE32cc 000001000 Two 32-bit edge boundary processing  edge32cc regrs1y T€Srs2y 1€8rd C3

EDGE32Lcc 000001010 Two 32-bit edge boundary processing, edge32lcc  reg,g;, regmy, regy C3
little-endian

t The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-"cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions handle the boundary conditions for parallel pixel scan line loops,
where R[rs1] is the address of the next pixel to render and R[rs2] is the address of
the last pixel in the scan line.

EDGES8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGES8cc,
EDGE16cc, and EDGE32cc. They produce an edge mask that is bit-reversed from
their big-endian counterparts but are otherwise identical. This makes the mask
consistent with the mask produced by the Partial Store instruction (see Partial Store
on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the
least significant bits of R[rd]. The mask is computed from left and right edge masks
as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the
right edge mask is computed from the 3 least significant bits of R[rs2], according
to TABLE 8-6.

2. If a 32-bit address masking is disabled (PSTATE.am = 0, 64-bit addressing) and
the upper 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is
set to the right edge mask anded with the left edge mask.
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3. If 32-bit address masking is enabled (PSTATE.am = 1, 32-bit addressing) and bits
31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded
with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the
same operands (see Subtract on page 303).

TABLE 8-6 lists edge mask specifications.

TABLE8-6  Edge Mask Specification

Edge R[rsn] Big Endian Little Endian
Size  {2:0} Left Edge Right Edge Left Edge Right Edge
8 000 1111 1111 1000 0000 1111 1111 0000 0001
8 001 0111 1111 1100 0000 1111 1110 0000 0011
8 010 0011 1111 1110 0000 1111 1100 0000 0111
8 011 0001 1111 1111 0000 1111 1000 0000 1111
8 100 0000 1111 1111 1000 1111 0000 0001 1111
8 101 0000 0111 1111 1100 1110 0000 0011 1111
8 110 0000 0011 1111 1110 1100 0000 0111 1111
8 111 0000 0001 1111 1111 1000 0000 1111 1111
16 00x 1111 1000 1111 0001
16 01x 0111 1100 1110 0011
16 10x 0011 1110 1100 0111
16 11x 0001 1111 1000 1111
32 Oxx 1 10 11 01
32 1Ixx 01 11 10 11
Exceptions illegal_instruction
See Also EDGE(8,16,32){LIN on page 158
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8.14  Edge Handling Instructions (no CC)

Instruction opf Operation Assembly Language Syntax Class
EDGESN 000000001 Eight 8-bit edge boundary processing, no CC edge8n  regs;, regrs2, tegrq  C3
EDGESLN 000000011 Eight 8-bit edge boundary processing, edge8l n  regs1, 7€Qrs2s 1€Srd C3

little-endian, no CC
EDGE16N 000000101 Four 16-bit edge boundary processing, no CC edgel6n regs1, "egrs2: '€Srd C3

EDGE16LN 000000111 Four 16-bit edge boundary processing, edgel6l n regis1, regrs2, T€Srd C3
little-endian, no CC

EDGE32N 000001001 Two 32-bit edge boundary processing, no CC edge32n reg,s1, regus, regy C3

EDGE32LN 000001011 Two 32-bit edge boundary processing, edge32l n reg.s;, regisy, regy C3
little-endian, no CC

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description EDGES[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc,
EDGE16[L]cc, and EDGE32[L]cc, respectively, but do not set the integer condition
codes.

See Edge Handling Instructions on page 156 for details.
Exceptions illegal_instruction

See Also EDGE<8,16,32>[L]cc on page 156
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8.15

Floating-Point Absolute Value

Instruction  op3

opf Operation Assembly Language Syntax Class

FABSs 11 0100 00000 1001 Absolute Value Single fabss  fregiso, fregyg Al
FABSd 110100 000001010  Absolute Value Double fabsd  fregsa fregeg Al
FABSq 11 0100 00000 1011 Absolute Value Quad fabsq  fregso, fregug C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FABS copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on
double-precision (64-bit) floating-point register pairs, and FABSq operates on quad-
precision (128-bit) floating-point register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR fit. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FABS instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FABSq))
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8.16  Floating-Point Add

Instruction op3 opf Operation Assembly Language Syntax Class
FADDs 11 0100 00100 0001 Add Single f adds freges1, fregrsos  fregid Al
FADDd 11 0100 00100 0010 Add Double f addd fregis1,  fregrsz,  fregrd Al
FADDq 11 0100 00100 0011 Add Quad f addq freges1, fregrsos  freged C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description The floating-point add instructions add the floating-point register(s) specified by the
rsl field and the floating-point register(s) specified by the rs2 field. The instructions
then write the sum into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FADD instruction causes an fp_disabled exception.

If the FPU is enabled, FADDq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FADDq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
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8.17  Align Data

10 rd | 110110 | rsi opf rs2
31 30 29 25 24 1918 1413 5 4 0
Instruction opf Operation Assembly Language Syntax Class
FALIGNDATA 001001000 Perform data alignment for faligndata fregs1, fregrsos fregq Al

misaligned data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rsl
and rs2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the
intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR.align specifies the number of the most significant byte to extract
(and, therefore, the least significant byte extracted is numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.
GSR.align

bytd byte
Fplrsl] :: Fp[rs2] ol1|2|3|4|5|6|7]|8|9]|10[12]|12]|123[124]15

|12<7 Fplrsil] > | Fplrs2] "

FD[I’d]

63 0
FIGURE 8-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

al i gnaddr Address, Offset, Address !set GSR align

| dd [ Address] , %0
| dd [ Address + 8], %2
faligndata %0, %2, %4 luse GSR. align to sel ect bytes

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled
See Also Align Address on page 135
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8.18

Branch on Floating-Point Condition

Codes (FBfcc)

The FBfcc instructions are deprecated and should not be used in new software.
The FBPfcc instructions should be used instead.

Opcode cond Operation fcc Test Assembly Language Syntax Class
FBAP 1000  Branch Always 1 f ba{, a} label Al
FBNP 0000 Branch Never 0 fbn{,a} label Al
FBUP 0111  Branch on Unordered U f bu{, a} label Al
FBGP 0110  Branch on Greater G f bg{, a} label Al
FBUGP 0101 Branch on Unordered or Greater GorU fbug{, a} label Al
FBLP 0100  Branch on Less L f bl {, a} label Al
FBULP 0011 Branch on Unordered or Less LorU fbul {,a} label Al
FBLGP 0010 Branch on Less or Greater LorG fbl g{, a} label Al
FBNEP 0001 Branch on Not Equal LorGorU fbnet(, a} label Al
FBEP 1001  Branch on Equal E fbef{, a} label Al
FBUEP 1010 Branch on Unordered or Equal EorU fbue{, a} label Al
FBGEP 1011  Branch on Greater or Equal Eor G fbge{, a} label Al
FBUGEP 1100 Branch on Unordered or Greater or Equal EorGorU f bugef{, a} label Al
FBLEP 1101  Branch on Less or Equal EorL fbl e{,a} label Al
FBULEP 1110  Branch on Unordered or Less or Equal EorLorU f bul e{, a} label Al
FBOP 1111  Branch on Ordered EorLorG f bo{, a} label Al

t synonym: f bnz ¥ synonym: f bz
00 |a cond 110 disp22

31 30 29 28 25 24 22 21 0
Programming | To set the annul (a) bit for FBfcc instructions, append “, a” to

Note | the opcode mnemonic. For example, use “f bl , a Iabel”. In the

preceding table, braces around “, a” signify that “, a” is
optional.
Description Unconditional and Fcc branches are described below:
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= Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch
Never) instruction acts like a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed) when the FBN is executed. In neither case
does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext( disp22) )” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

» Fcc-conditional branches — Conditional FBfcc instructions (except FBA and
FBN) evaluate floating-point condition code zero (fcc0) according to the cond
field of the instruction. Such evaluation produces either a TRUE or FALSE result.
If TRUE, the branch is taken, that is, the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 x sign_ext(disp22))”. If FALSE, the branch
is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than
it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled
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8.19  Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

Instruction cond Operation fcc Test Assembly Language Syntax Class
FBPA 1000  Branch Always 1 fbaf{, a}{, pt I, pn} % ccn, label Al
FBPN 0000  Branch Never 0 fbn{, a}{, pt I, pn} % ccn, label Al
FBPU 0111  Branch on Unordered U fbu{, a}{, pt I, pn} % ccn, label Al
FBPG 0110  Branch on Greater G fbg{, a}{, pt I, pn} % ccn, label Al
FBPUG 0101  Branch on Unordered or Greater G or U fbug{, a}{, pt I, pn} % ccn, label Al
FBPL 0100  Branch on Less L fbl {, al{,pt 1, pn} % ccn, label Al
FBPUL 0011  Branch on Unordered or Less LorU fbul {,a}{,pt |, pn} % ccn, label Al
FBPLG 0010  Branch on Less or Greater LorG fblgf{,al{, pt I, pn} % ccn, label Al
FBPNE 0001  Branch on Not Equal LorGorU fbne'{, a}f, pt |, pn} 9% ccn, label Al
FBPE 1001  Branch on Equal E f be¥(, a}f, pt |, pn} 9% ccn, label Al
FBPUE 1010  Branch on Unordered or Equal EorU fbue{, a}{, pt I, pn} % ccn, label Al
FBPGE 1011  Branch on Greater or Equal Eor G fbge{, a}{, pt I, pn} % ccn, label Al
FBPUGE 1100 Branch on Unordered or Greater E or Gor U fbuge{, a}{, pt |, pn} % ccn, label Al
or Equal
FBPLE 1101  Branch on Less or Equal EorL fble{, al{,pt I, pn} % ccn, label Al
FBPULE 1110 Branch on Unordered or Lessor EorLorU fbul e{, a}{, pt |, pn} % ccn, label Al
Equal
FBPO 1111  Branch on Ordered EorLorG fbo{, al{f, ptl, pn} % ccn, label Al

t synonym: f bnz 1 synonym: f bz

00 |a cond 101  |ccl|ccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0
ccl cc0 Condition Code
0 0 fcco
0 1 fccl
1 0 fcc2
1 1 fcc3
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Exceptions

FBPfcc

Programming | To set the annul (a) bit for FBPfcc instructions, append “, a” to the
Note | opcode mnemonic. For example, use “f bl , a % cc3, Ilabel”. In

the preceding table, braces signify that the “, a” is optional. To set
the branch prediction bit, append either “, pt ” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“, pt ” nor “, pn” is specified, the assembler defaults to “, pt ”. To
select the appropriate floating-point condition code, include

“o cc0”, “% ccl”, “% cc2”, or “% cc3” before the label.

Unconditional branches and Fcc-conditional branches are described below.

Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the
Branch Never’s annul field is 0, the following (delay) instruction is executed; if
the annul (a) bit is 1, the following instruction is annulled (not executed). In no
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext( disp19))”. If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul (&) bit is 0, the delay
instruction is executed.

Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (f cc0O,fccl,fcc2,
f cc3) as selected by cc0 and ccl, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 x sign_ext( disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Note | The annul bit has a different effect on conditional branches than it
does on unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken. A 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 7, Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBPfcc instruction causes an fp_disabled exception.

fp_disabled
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8.20  SIMD Signed Compare [Vis1]

Instruction opf Operation sl d Assembly Language Syntax Class
FCMPLE16 0 0010 0000 Four 16-bit compare; f64 fo4 i64 fcnpl el6 fregrsy, fregrsa, 1€8rd C3
set R[rd] if srcl < src2
FCMPNE16 00010 0010 Four 16-bit compare; f64 fo4 i64 fcnpnel6 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 # src2
FCMPLE32 00010 0100 Two 32-bit compare; f64 fo4 i64 fcnpl €32 fregsy, fregrsa, 1€8rd C3
set R[rd] if srcl < src2
FCMPNE32 00010 0110 Two 32-bit compare; f64 fo4 i64 fcnpne32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 # src2
FCMPGT16 00010 1000 Four 16-bit compare; f64 fo4 i64 fcnpgt 16 fregrsy, fregrso, 1€8rd C3
set R[rd] if src1 > src2
FCMPEQ16 00010 1010 Four 16-bit compare; f64 fo4 i64 fcnpeql6 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 = src2
FCMPGT32 00010 1100 Two 32-bit compare; f64 fo4 i64 fcnpgt 32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 > src2
FCMPEQ32 00010 1110 Two 32-bit compare; f64 fo4 i64 fcnpeq32 fregsy, fregrso, 1€8rd C3
set R[rd] if src1 = src2
10 rd | 110110 opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Either four 16-bit signed values or two 32-bit signed values in Fp[rs1] and Fp[rs2]

are compared. The 4-bit or 2-bit condition-code results are stored in the least

significant bits of the integer register R[rd]. The least significant 16-bit or 32-bit
compare result corresponds to bit zero of R[rd].

Note | Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rsl] is greater than the signed value in Fp[rs2]. Less-than comparisons
are made by swapping the operands.

For FCMPLE(16,32}, each bit in the result is set to 1 if the corresponding signed value
in Fp[rsl] is less than or equal to the signed value in Fp[rs2]. Greater-than-or-equal
comparisons are made by swapping the operands.

For FCMPEQ({16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rsl] is equal to the signed value in Fp[rs2].
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For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed
value in Fp[rs1] is not equal to the signed value in Fp[rs2].

FIGURE 8-7 and FIGURE 8-8 illustrate 16-bit and 32-bit pixel comparison operations,
respectively.

Fplrsi]
63 48" 47 32 31 16 15 0
fcmp[gt, le, eq, ne, It, ge]16
Fplrs2]
R[rd]

FIGURE 8-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

Fplrsi]
63 32 31 o
femp[gt, le, eq, ne, It ge]32
Fplrs2]
R[rd]

FIGURE 8-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the
result is set to 0.

Programming | The results of a SIMD signed compare operation can be used
Note | directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIMD signed compare instruction causes an fp_disabled
exception.
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Exception fp_disabled

See Also STPARTIALF on page 325
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FCMP<s|d|g>/ FCMPE<s|d|g>

8.21  Floating-Point Compare

Instruction opf Operation Assembly Language Syntax Class
FCMPs 001010001  Compare Single fcps Y ccn, freger, fregrso Al
FCMPd 001010010  Compare Double fcnpd 9 ccn, fregsr, fregrsa Al
FCMPq 001010011  Compare Quad fcpg Y ccn, freger, fregrso C3
FCMPEs 001010101  Compare Single and Exception if fcnpes 9 ccn, fregsr, fregsn Al
Unordered
FCMPEd 001010110  Compare Double and Exception if fcnped 9% ccn, fregsr, fregso Al
Unordered
FCMPEq 001010111  Compare Quad and Exception if fcnpeq % ccn, freger, fregrso C3
Unordered
10 — |ccelfecO 110101 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
ccl cco Condition Code
0 0 fcco
0 1 fcecl
1 0 fcc2
1 1 fce3

Description These instructions compare the floating-point register(s) specified by the rs1 field
with the floating-point register(s) specified by the rs2 field, and set the selected
floating-point condition code (f ccn) as shown below.

fcc value Relation

0 fregrs1 = fregrsa

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrgo (unordered)

The “?” in the preceding table means that the comparison is unordered. The
unordered condition occurs when one or both of the operands to the compare is a
signalling or quiet NaN.
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Exceptions

FCMP<s|d|g>/ FCMPE<s|d|g>

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

V8 Compatibility | Unlike the SPARC V8 architecture, SPARC V9 and the

Note | UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as f ccO and the FBfcc
instruction branches based on the value of f ccO.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero
causes an illegal_instruction exception.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates fp_exception_other (with
FSR.ftt = unimplemented_FPop), which causes a trap, allowing
privileged software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_ieee_754 (NV)

fp_exception_other (FSR.ftt = unimplemented_FPop (FCMPq, FCMPEq only))
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FDIV<s|d|g>

8.22

Floating-Point Divide

Instruction op3

opf Operation Assembly Language Syntax Class

FDIVs
FDIVd
FDIVq

11 0100
11 0100
11 0100

00100 1101
00100 1110
00100 1111

Divide Single fdivs
Divide Double

Divide Quad

fregrst,  fregrsas fregrg Al
fdivd fregis1, fregisos freg Al
fdivg fregisi, fregsos freg C3

10

rd op3 rsl opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0
The floating-point divide instructions divide the contents of the floating-point

register(s) specified by the rsl field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the quotient into the floating-

point register(s) specified by the rd field.
Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

If the FPU is enabled, FDIVq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | For FDIVs and FDIVd, an fp_exception_other with
FSRftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FDIVq only))
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)
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823  FEXPAND

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FEXPAND 00100 1101 Four 16-bit expands — 32 fe4 fexpand fregso, fregrg C3
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FEXPAND takes four 8-bit unsigned integers from Fg[rs2], converts each integer to a
16-bit fixed-point value, and stores the four resulting 16-bit values in a 64-bit
floating-point register Fp[rd]. FIGURE 7-10 illustrates the operation.

Fslrs2] | — /
31 2 23 }16 8 y 0
Fplrdl | o000 <& 0000 | 0000 & 0000 | 0000 A& 0000 | 0000 0000
63 60 59 52 51 48 47 44 43 36 35 32 31 28 27 20 19 16 15 12 11 43 0

FIGURE 8-9 FEXPAND Operation

This operation is carried out as follows:
1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, Fp[rd].

Programming | FEXPAND performs the inverse of the FPACK16 operation.
Note

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction
See Also FPMERGE on page 206

FPACK on page 197
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824  Convert 32-bit Integer to Floating Point

Assembly Language

Instruction op3 opf Operation sl s2 d Syntax Class

FiTOs 11 0100 011000100 Convert 32-bit Integer to — 32 {32 fit 0S fregisz, fregy Al
Single

FiTOd 110100 011001000 Convert 32-bit Integer to — 32 f64 fit od fregsp, fregiq Al
Double

FiTOq 110100 011001100  Convert 32-bit Integer to —  f32 {128 fit 0q fregrsz, fregr C3
Quad

10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description  FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point
register Fg[rs2] into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FiTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FiTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FiTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

CHAPTER 8 - Instructions 173



FLUSH

8.25

Flush Instruction Memory

Instruction op3 Operation Assembly Language Syntaxt Class

FLUSH 111011 Flush Instruction Memory flush [address] Al

t The original assembly language syntax for a FLUSH instruction (“f | ush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

10 — op3 rsi i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description FLUSH ensures that the aligned doubleword specified by the effective address is

consistent across any local caches and, in a multiprocessor system, will eventually
(impl. dep. #122-V9) become consistent everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between
instruction memory and data memory. When software writes (stores) to a memory
location containing an instruction (self-modifying code!), a potential memory
consistency problem arises, which is addressed by the FLUSH instruction. Use of
FLUSH ensures that instruction and data memory are synchronized after instruction
memory has been modified.

The virtual processor waits until all previous (cacheable) stores have completed
before issuing a FLUSH instruction. For the purpose of memory ordering, a FLUSH
instruction behaves like a store instruction.

In the following discussion Py gy refers to the virtual processor that executed the
FLUSH instruction.

FLUSH causes a synchronization within a virtual processor which ensures that
instruction fetches from the specified effective address by P ysy appear to execute
after any loads, stores, and atomic load-stores to that address issued by Pg ygy prior
to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will
eventually become visible to the instruction fetches of all other virtual processors in
the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
was a store operation (see Memory Barrier on page 258).

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”;
ifi=1, it is “R[rs1] + sign_ext (simm13)”. The three least-significant three bits of
the effective address are ignored; that is, the effective address always refers to an

aligned doubleword.
1 practiced, for example, by software such as debuggers and dynamic linkers
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FLUSH

See implementation-specific documentation for details on specific implementations
of the FLUSH instruction.

On an UltraSPARC Architecture processor:

= A FLUSH instruction causes a synchronization within the virtual processor on
which the FLUSH is executed, which flushes its instruction pipeline to ensure that
no instruction already fetched has subsequently been modified in memory. Any
other virtual processors on the same physical processor are unaffected by a
FLUSH.

= Coherency between instruction and data memories may or may not be
maintained by hardware.

IMPL. DEP. #409-S10-Cs20: The implementation of the FLUSH instruction is
implementation dependent. If the implementation automatically maintains
consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

Programming | For portability across all SPARC V9 implementations, software
Note | must always supply the target effective address in FLUSH
instructions.

» If the implementation contains instruction prefetch buffers:
= the instruction prefetch buffer(s) are invalidated

= instruction prefetching is suspended, but may resume starting with the
instruction immediately following the FLUSH

Programming | 1.Typically, FLUSH is used in self-modifying code.
Notes | The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.
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Implementation
Note

V9 Compatibility
Note

FLUSH

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged mode will use the nucleus
context and will not necessarily affect instruction cache lines
containing data from a user (nonprivileged) context.

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.

An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction
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8.26  Flush Register Windows

Instruction op3 Operation Assembly Language Syntax Class
FLUSHW 101011  Flush Register Windows flushw Al
10 — op3 — i=0 —
31 30 29 25 24 19 18 14 13 12 0

Description FLUSHW causes all active register windows except the current window to be
flushed to memory at locations determined by privileged software. FLUSHW
behaves as a NOP if there are no active windows other than the current window. At
the completion of the FLUSHW instruction, the only active register window is the
current one.

Programming | The FLUSHW instruction can be used by application software to
Note | flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS — 2. Otherwise, there is
more than one active window, so FLUSHW causes a spill exception. The trap vector
for the spill exception is based on the contents of OTHERWIN and WSTATE. The spill
trap handler is invoked with the CWP set to the window to be spilled (that is,
(CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window Management
Instructions on page 116.

Programming | Typically, the spill handler saves a window on a memory stack
Note | and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or
12:0 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other
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8.27

Floating-Point Move

Instruction  op3

opf Operation Assembly Language Syntax Class

FMOVs 11 0100 0 0000 0001 Move (copy) Single fnovs fregrsa,  fregrg Al
FMOVd 11 0100 0 0000 0010 Move (copy) Double f movd fregrso,  fregrg Al
FMOVq 110100 00000 0011 Move (copy) Quad fnovq fregrso,  fregg C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FMOV copies the source floating-point register(s) to the destination floating-point
register(s), unaltered.

FMOVs, FMOVd, and FMOV(q perform 32-bit, 64-bit, and 128-bit operations,
respectively.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOV(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOV instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOV(q instruction causes an
fp_exception_other (with FSR ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVq only))
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See Also F Register Logical Operate (2 operand) on page 212
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8.28

FMOVcc

Move Floating-Point Register on
Condition (FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 000001 Move Floating-Point Single, fovsicc % cc, fregso, fregrg Al
based on 32-bit integer condition codes

FMOVDicc 000010 Move Floating-Point Double, fmovdicc % cc, fregrso, fregrg Al
based on 32-bit integer condition codes

FMOVQicc 000011 Move Floating-Point Quad, fmovaicc % cc, fregrso, fregrg C3
based on 32-bit integer condition codes

FMOVSxcc 000001 Move Floating-Point Single, fmovsxce MXcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVDxcc 000010 Move Floating-Point Double, f movdxce Xcc, fregrso, fregrg Al
based on 64-bit integer condition codes

FMOVQxcc 000011 Move Floating-Point Quad, fmovaxce 9Xcc, fregrso, fregrg C3
based on 64-bit integer condition codes

FMOVSfcc 000001  Move Floating-Point Single, frovsfce % ccn, fregigo, fregrg Al
based on floating-point condition codes

FMOVDfcc 000010 Move Floating-Point Double, fovdfcc % ccn, fregigo, fregrg Al
based on floating-point condition codes

FMOVQfcc 000011 Move Floating-Point Quad, fovafec % ccn, fregso, fregrg  C3
based on floating-point condition codes

10 rd 110101 0 cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 1413 11 10 5 4 0
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FMOVcc

Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icC or Xcc)

icc/xcc name(s) in
Assembly Language

cond  Operation icc / xcc Test Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
1001  Move if Not Equal not Z ne (or nz)
0001 Move if Equal Z e (or z)
1010 Move if Greater not (Z or (N xor V)) g
0010 Move if Less or Equal Z or (N xor V) e
1011  Move if Greater or Equal not (N xor V) ge
0011 Move if Less N xor V I

1100 Move if Greater Unsigned not (C or Z) gu
0100 Move if Less or Equal Unsigned (CorZ) I eu
1101  Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)
0101 Move if Carry Set (Less than, Unsigned) C cs (orlu)
1110  Move if Positive not N pos
0110 Move if Negative N neg
1111 Move if Overflow Clear not V vec
0111  Move if Overflow Set \Y Vs
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Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

fcc name(s) in Assembly

cond  Operation fcen Test Language Mnemonics
1000 Move Always 1 a
0000 Move Never 0 n
0111  Move if Unordered U u
0110 Move if Greater G g
0101 Move if Unordered or Greater GorU ug
0100 Move if Less L I

0011 Move if Unordered or Less LorU ul
0010 Move if Less or Greater LorG g
0001 Move if Not Equal LorGorU ne (or nz)
1001 Move if Equal E e (orz
1010 Move if Unordered or Equal EorU ue
1011  Move if Greater or Equal EorG ge
1100 Move if Unordered or Greater or Equal E or G or U uge
1101  Move if Less or Equal EorL le
1110  Move if Unordered or Less or Equal EorLorU ule
1111  Move if Ordered EorLorG o]

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

Condition Code
opf_cc Instruction to be Tested

100, FEMOV(S,D,Q)icc icc
110, FMOV(S,D,Q)xcc xcc
000, FMOV(S,D,Q)fcc fccO

001, fccl
010, fcc2
011, fcc3

101,  (illegal_instruction exception)
111,
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Description

FMOVcc

The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the
floating-point register(s) specified by rd if the condition indicated by the cond field is
satisfied by the selected floating-point condition code field in FSR. The condition
code used is specified by the opf_cc field of the instruction. If the condition is
FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or
opf_cc =101, or 111, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an
fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.
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Exceptions

Programming
Note

illegal_instruction
fp_disabled

FMOVcc

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X
if (A>B) then X = 1.03; else X = 0.0;

can be coded as

I assune Ais in %0; Bisin %2, %x points to

I constant area
| dd [ %x+C_1.03], % 4 I X =1.03
ferpd % cc3,%0, % 2 I A>B
fble,a % cc3, | abel
I followi ng instructiononly executed if the
I precedi ng branch was taken
fsubd 9% 4,%4,%4 I X =0.0

label : ...

This code takes four instructions including a branch.
With FMOVcgc, this could be coded as

| dd [ %x+C 1.03],% 4 ' X =1.03
fsubd % 4,%4,%6 ' X =0.0
fcnpd % cc3,%0,% 2 I A>B

frovdl e % cc3,% 6, % 4 I' X =0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.

fp_exception_other (FSR.ftt = unimplemented_FPop (opf_cc = 101, or 111,))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVQ instructions only))
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FMOVR

8.29  Move Floating-Point Register on Integer
Register Condition (FMOVR)

Instruction rcond opf_low Operation Test Class
— 000 00101 Reserved — —
FMOVRsZ 001 00101 Move Single if Register = 0 R[rs1]=0 A1l
FMOVRsLEZ 010 00101 Move Single if Register < 0 Rrs1]<0 A1l
FMOVRsLZ 011 00101 Move Single if Register < 0 R[rs1] <0 A1l
— 100 00101 Reserved — —
FMOVRsNZ 101 00101 Move Single if Register # 0 R[rs1]#0 Al
FMOVRsGZ 110 00101 Move Single if Register > 0 R[rsl]>0 Al
FMOVRsGEZ 111 00101 Move Single if Register = 0 R[rsl]=z0 Al
— 000 00110 Reserved — —
FMOVRdZ 001 00110 Move Double if Register = 0 R[rs1]=0 Al
FMOVRALEZ 010 00110 Move Double if Register < 0 R[rs1]<0 A1l
FMOVRdALZ 011 00110 Move Double if Register < 0 R[rs1] <0 Al
— 100 00110 Reserved — —
FMOVRdANZ 101 00110 Move Double if Register # 0 R[rs1]#0 Al
FMOVRAGZ 110 00110 Move Double if Register > 0 R[rs1] >0 A1l
FMOVRAGEZ 111 00110 Move Double if Register = 0 R[rs1]=0 Al
— 000 00111 Reserved — —

FMOVRqgZ 001 00111 Move Quad if Register = 0 R[rs1]=0 C3
FMOVRqLEZ 010 00111 Move Quad if Register < 0 R[rsl]<0 C3
FMOVRqLZ 011 00111 Move Quad if Register < 0 R[rs1]<0 C3

— 100 00111 Reserved — —
FMOVRgNZ 101 00111 Move Quad if Register # 0 R[rs1]#0 C3
FMOVRqGZ 110 00111 Move Quad if Register > 0 R[rs1]>0 C3
FMOVRqGEZ 111 00111 Move Quad if Register = 0 R[rs1]=0 C3

10 rd 110101 rsl 0| rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0
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Description

FMOVR

Assembly Language Syntax

frovr{s,d, qjz regs1, fregrse, fregrg (synonym: f movr {s, d, q}e)
frovr s, d, q}l ez reg,s1, fregrso, fregrg

frovr{s, d, g}l regrs1: fregrsa, fregrd

{ }

{ }

{ I z

frovr (s, d, qinz regs1, fregrsz, fregrg (synonym: f movr {s, d, qjne)
{ }
{ }

frovri{s,d, algz regrs1, fregrsa, fregra
frovr (s, d, qlgez reg,s1, fregrsz, fregrg

If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy the contents of the floating-point register(s) specified
by the rs2 field to the floating-point register(s) specified by the rd field. If the
contents of R[rs1] do not satisfy the condition, the floating-point register(s) specified
by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they
do not modify any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or
rcond = 000, or 100, causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVR instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVR(q instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.
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Exceptions

Implementation
Note

fp_disabled

FMOVR

If this instruction is implemented by tagging each register value
with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z

FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ NorZ
FMOVRGZ N nor Z

fp_exception_other (FSR.ftt = unimplemented_FPop (rcond = 000, or 100,))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVRq))
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8.30

FMUL (partitioned)

Partitioned Multiply Instructions

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FMULS8x16 00011 0001 Unsigned 8-bit by signed 16-bit 32 f64 f64 f mul 8x16  fregsy, fregrsz, fregq C3
partitioned product
FMULS8x16AU 00011 0011 Unsigned 8-bit by signed 16-bit {32 {32 f64 f nul 8x16au freg,s1, fregiso, fregrg C3
upper a partitioned product
FMULSx16AL 000110101 Unsigned 8-bit by signed 16-bit £32 £32 f64 f mul 8x16al fregys;, fregrso, fregrg C3
lower a partitioned product
FMUL8SUx16 00011 0110 Signed upper 8-bit by signed 32 f64 f64 f mul 8sux16 freg,s1, fregrsp. fregq C3
16-bit partitioned product
FMULSULx16 000110111 Unsigned lower 8-bit by signed 32 f64 f64 f mul 8ul x16 freg,s1, fregrsz, fregrg C3
16-bit partitioned product
FMULDS8SUx16 000111000 Signed upper 8-bit by signed 32 £32 64 f mul d8sux16 freg,s1, fregrsz, fregq C3
16-bit partitioned product
FMULDS8ULx16 00011 1001 Unsigned lower 8-bit by signed 32 £32 64 f mul d8ul x16 fregs1, fregrsz, fregq C3
16-bit partitioned product
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Programming | When software emulates an 8-bit unsigned by 16-bit signed
Note | multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.
Description The following sections describe the versions of partitioned multiplies.
In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.
Exceptions illegal_instruction
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FMUL (partitioned)
8.30.1 FMULS8x16 Instruction

FMULS8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in
the 32-bit floating-point register Fg[rs1] by the corresponding (signed) 16-bit fixed-
point integer in the 64-bit floating-point register Fp[rs2]. It rounds the 24-bit product
(assuming binary point between bits 7 and 8) and stores the most significant 16 bits
of the result into the corresponding 16-bit field in the 64-bit floating-point
destination register Fp[rd]. FIGURE 8-10 illustrates the operation.

Note | This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rsl pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be

realized.
Flrsi1] /
31 y[s 16 7{ 8 7 / 0
Flrs2] | | | | /
63 * /8’ 47 * /éz 31 * '/ 16 15 ** 0
Xms16b XMs16b XMs16b XMs16b
Flrd] ¢ ¢ ¢ ¢
63 48 47 32 31 16 15 0

FIGURE 8-10 FMULS8x16 Operation
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FMUL (partitioned)
8.30.2 FMUL8Xx16AU Instruction

FMULS8x16AU is the same as FMULS8x16, except that one 16-bit fixed-point value is
used as the multiplier for all four multiplies. This multiplier is the most significant
(“upper”) 16 bits of the 32-bit register Fg[rs2] (typically an a pixel component
value). FIGURE 8-11 illustrates the operation.

Fslrsil
31 %3 16/5 8 7 0
Fs[rSZ] _____ o -;
Ry /e e
XMs16b XMs16b XMs16b XMs16b
Fplrd] ¢ ¢ ¢ ¢
63 78 47 2 31 6 15 0

FIGURE 8-11 FMUL8x16AU Operation

8.30.3 FMUL8X16AL Instruction

FMULS8x16AL is the same as FMUL8x16AU, except that the least significant
(“lower”) 16 bits of the 32-bit register Fg[rs2] register are used as a multiplier.
FIGURE 8-12 illustrates the operation.

Fs[r51]
Fslrs2]
XMs16b XMs16b XMs16b XMs16b
Fplrd] ¢ ¢ ¢ ¢
63 48 47 32 31 16 15 0

FIGURE 8-12 FMUL8Xx16AL Operation

190 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



8.30.4

8.30.5

Folrs2] \ \ \ \

FMUL (partitioned)
FMULS8SUx16 Instruction

FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in the 64-bit floating-point register Fp[rs1] by the corresponding signed, 16-bit,
fixed-point, signed integer in the 64-bit floating-point register Fp[rs2]. It rounds the
24-bit product toward the nearest representable value and then stores the most
significant 16 bits of the result into the corresponding 16-bit field of the 64-bit
floating-point destination register Fp[rd]. If the product is exactly halfway between
two integers, the result is rounded toward positive infinity. FIGURE 8-13 illustrates the
operation.

- _— - - _— - - _— - R

Fplrsi] I

- —_ = - — - = - — - = R |

63 56 55_ 48 47 0 39 32 31 4 23 16 15 7 0

63 ** 48 47 ** 32 31 ** 16 15 ** 0
XMs16b XMs16b XMs16b XMs16b
Fplrd]
63 48 47 32 31 16 15 0

FIGURE 8-13 FMUL8SUx16 Operation

FMULS8SULX16 Instruction

FMULSULXx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit
value in the 64-bit floating-point register Fp[rs1] by the corresponding fixed-point
signed 16-bit integer in the 64-bit floating-point register Fp[rs2]. Each 24-bit product
is sign-extended to 32 bits. The most significant (“upper”) 16 bits of the sign-
extended value are rounded to nearest and then stored in the corresponding 16-bit
field of the 64-bit floating-point destination register Fp[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity.
FIGURE 8-14 illustrates the operation; CODE EXAMPLE 8-1 exemplifies the operation.
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FMUL (partitioned)

Fplrsi] Ir____ T T T
"63” 5655 | 48 47 40 39 | 32 31 24 23 | 16 15 8 7 0
] ] ] ]

L e R R

X .
sign-extended, X sign-extended, X sign-extended, X sign-extended,
‘MSle ¢ MS16b ¢ MS16b ¢ MS16b
FD[rd]
63 48 47 32 31 16 15 0

FIGURE 8-14 FMUL8ULx16 Operation

CODE EXAMPLE 8-1  16-bit x 16-bit 16-bit Multiply

f mul 8sux16 %0, %1, %2
f mul 8ul x16 %0, %1, %3
f paddl16 %2, %3, %4

8.30.6 FMULDS8SUx16 Instruction

FMULDB8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in F[rs1] by the corresponding signed 16-bit fixed-point value in F[rs2]. Each
24-bit product is shifted left by 8 bits to generate a 32-bit result, which is then stored
in the 64-bit floating-point register specified by rd. FIGURE 8-15 illustrates the

operation.
Fslrsi] \ T \ T -;
31 \24 23 16 15 \87___0
Fslrs2] \
|
31 ** 16 15 * * 0
X X
Fplrd] 4 |50000000 ~ 00000000
63 20 39 32 31 8 7 0

FIGURE 8-15 FMULD8SUx16 Operation
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FMUL (partitioned)
8.30.7 FMULDSULX16 Instruction

FMULDS8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-
bit value in F[rs1] by the corresponding 16-bit fixed-point signed integer in F[rs2].
Each 24-bit product is sign-extended to 32 bits and stored in the corresponding half
of the 64-bit floating-point register specified by rd. FIGURE 8-16 illustrates the
operation; CODE EXAMPLE 8-2 exemplifies the operation.

Fglrsi] L o
31 24 23] 16 15 87 0

Fglrs2] | / | /

Tw tt ow

X sign-extended X sign-extended

Fplrd] P F

63 32 31 0

FIGURE 8-16 FMULD8ULXx16 Operation

CODE EXAMPLE 8-2  16-bit x 16-bit 32-bit Multiply

frul d8sux16 %0, % 1, 9% 2
frrul d8ul x16 %0, %1, %3
f padd32 %2, %3, %4
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FMUL<s|d|g>

8.31

Floating-Point Multiply

Instruction op3 opf Operation Assembly Language Syntax Class
FMULs 11 0100 001001001  Multiply Single frul's  fregsr, fregrsar  fregrg Al
FMULd 110100 001001010  Multiply Double fruld  freges1, fregrsas  fregrd Al
FMULq 110100 001001011  Multiply Quad frul g  fregesr, fregrsar  fregrg C3
FsMULd 110100 001101001  Multiply Single to Double fsrul d freg.s1, fregsos fregeq Al
FAMULq 110100 00110 1110 ~ Multiply Double to Quad  fdrmul q freg,s1, fregrsor fregrg C3
10 rd op3 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description The floating-point multiply instructions multiply the contents of the floating-point

register(s) specified by the rsl field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the product into the floating-
point register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-
precision operands, without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision
operands.

Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FAMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any FMUL instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMULq or FAMULq instruction
causes an fp_exception_other (with FSR.ftt = unimplemented_FPop), since that
instruction is not implemented in hardware in UltraSPARC Architecture 2005
implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.
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FMUL<s|d|g>

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMULq, FAMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV, FMUL(s,d,q) only: OF, UF, NX)
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FNEG

8.32

Floating-Point Negate

Instruction  op3

opf Operation Assembly Language Syntax Class

FNEGs 110100 000000101  Negate Single fnegs  fregrso fregeg Al
FNEGd 110100 000000110  Negate Double frnegd  fregrso fregra Al
FNEGq 11 0100 00000 0111 Negate Quad fnegq  fregso, fregrg C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

FNEG copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FNEG instruction causes an fp_disabled exception.

illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FNEGq only))
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FPACK

8.33

FPACK

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPACK16 000111011 Four 16-bit packs into 8 — fe4 32 fpackl6 fregsr, fregg C3
unsigned bits
FPACK32 000111010 Two 32-bit packs into 8 f64 f64 f64 fpack32 fregsy, fregrsos fregrg C3
unsigned bits
FPACKFIX 000111101 Four 16-bit packs into 16 ~— {64 {32 fpackfix fregiso, fregig C3
signed bits
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The FPACK instructions convert multiple values in a source register to a lower-
precision fixed or pixel format and stores the resulting values in the destination
register. Input values are clipped to the dynamic range of the output format. Packing
applies a scale factor from GSR.scale to allow flexible positioning of the binary
point.
In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.
Exceptions illegal_instruction
See Also FEXPAND on page 172

FPMERGE on page 206
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8.33.1

FPACK
FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register
Fplrs2], scales, truncates, and clips them into four 8-bit unsigned integers, and stores
the results in the 32-bit destination register, Fg[rd]. FIGURE 8-17 illustrates the
FPACK16 operation.

Folrse] | | | | |

63 48 4 3

?\3\
Fs[rd] 1\ | ‘
GSR.scale

Folrs2] (16 bits)

| H 0000|

el

FIGURE 8-17 FPACK16 Operation

Note | FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

This operation is carried out as follows:

1. Left-shift the value from Fp[rs2] by the number of bits specified in GSR.scale
while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to
the left of the implicit binary point (that is, between bits 7 and 6 for each 16-bit
word). Truncation converts the scaled value into a signed integer (that is, round
toward negative infinity). If the resulting value is negative (that is, its most
significant bit is set), 0 is returned as the clipped value. If the value is greater than
255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, Fg[rd].

For each 16-bit partition, the sequence of operations performed is shown in the
following example pseudo-code:

tnp — source_operand{15: 0} << GSR.scale;
/1l Pick off the bits frombit position 15+GSR.scale to
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8.33.2

FPACK

/1 bit position 7 fromthe shifted result
trunc_si gned_val ue —~ tnp{(15+GSR.scale): 7};
If (trunc_signed_val ue < 0)
unsi gned_8bit _result ~ O;
else if (trunc_signed_value > 255)
unsi gned_8bit_result ~ 255;
el se
unsi gned_8bit _result « trunc_signed_val ue{14: 7};

FPACK32

FPACKB32 takes two 32-bit fixed values from the second source operand (64-bit
floating-point register Fp[rs2]) and scales, truncates, and clips them into two 8-bit
unsigned integers. The two 8-bit integers are merged at the corresponding least
significant byte positions of each 32-bit word in the 64-bit floating-point register
Fplrs1], left-shifted by 8 bits. The 64-bit result is stored in Fp[rd]. Thus, successive
FPACKB32 instructions can assemble two pixels by using three or four pairs of 32-bit
fixed values. FIGURE 8-18 illustrates the FPACK32 operation.

Fplrs2]
FD[rS].]
S S )X\ FTF )X\
63 56 55 48 47 40 39 32 31 24 23 16 15 87 0
GSR.scale |00110
4 0
Fplrs2] (32 bits)
000000
37 31 30 2 6 5 0
implicit binary point FD[rd] (8 bits)

FIGURE 8-18 FPACK32 Operation

This operation, illustrated in FIGURE 8-18, is carried out as follows:

1. Left-shift each 32-bit value in Fp[rs2] by the number of bits specified in
GSR.scale, while maintaining clipping information.
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FPACK

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 23 and
22 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, the most significant bit is 1), then 0 is returned as the clipped
value. If the value is greater than 255, then 255 is delivered as the clipped value.
Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from Fp[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least
significant byte positions in the left-shifted Fp[rs2] value.

5. Store the result in the 64-bit destination register Fp[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:

tnp —~ source_operand2{31: 0} << GSR.scale;
/'l Pick off the bits frombit position 31+GSR.scale to
/1 bit position 23 fromthe shifted result
trunc_si gned_val ue « tnp{(31+GSR.scale): 23};
if (trunc_signed_value < 0)
unsi gned_8bi t _val ue « 0;
else if (trunc_signed_value > 255)
unsi gned_8bi t _val ue —~ 255;
el se
unsi gned_8bi t _val ue — trunc_signed_val ue{30: 23};
Fi nal _32bit_Result ~ (source_operandl{31:0} << 8) |
(unsi gned_8bit_val ue{7:0});

200 UltraSPARC Architecture 2005 ¢ Draft D0.8.7, 27 Mar 2006



FPACK
8.33.3 FPACKFIX

FPACKEFIX takes two 32-bit fixed values from the 64-bit floating-point register
Fplrs2], scales, truncates, and clips them into two 16-bit unsigned integers, and then
stores the result in the 32-bit destination register Fg[rd]. FIGURE 8-19 illustrates the
FPACKFIX operation.

Fplrs2]
63 32 31 0
Fslrd] N
31 16 15 0
GSR.scale |00110
4 0
Fplrs2] (32 bits)

f/ 000000
37 32 31 16*15 65 0
implicit binary point

Fgrdl (16 bits)

FIGURE 8-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from Fp[rs2]) by the number of bits specified in
GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 16 and
15 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
less than —-32768, then —32768 is returned as the clipped value. If the value is
greater than 32767, then 32767 is delivered as the clipped value. Otherwise, the
scaled value is returned as the result.

3. Store the result in the 32-bit destination register Fg[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:

tnp — source_operand{31: 0} << GSR.scale;

/1 Pick off the bits frombit position 31+GSR.scale to

/1 bit position 16 fromthe shifted result
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trunc_si gned_val ue « tnp{(31+GSR.scale): 16} ;
if (trunc_signed_value < -32768)
signed_16bit _result ~ -32768;
else if (trunc_signed_value > 32767)
signed_16bit _result ~ 32767;
el se
signed_16bit_result — trunc_signed_val ue{31: 16};
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8.34

FPADD

Fixed-point Partitioned Addvist ]

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPADD16 0 0101 0000 Four 16-bit adds f64 f64 fo64  fpaddlé  fregsy, fregrso, fregd Al
FPADD16S 00101 0001 Two 16-bit adds 32 f32 32 fpaddl6s freg.s1, fregrsa, fregg Al
FPADD32 0 0101 0010 Two 32-bit adds f64 f64 fo4 fpadd32  fregsy, fregrso, fregga Al
FPADD32S 00101 0011 One 32-bit add 32 £32 32 fpadd32s fregs1, fregrso, frega Al
10 rd 110110 rsl opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions

between the corresponding fixed-point values contained in the source operands
(Fplrsl], Fplrs2]). The result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two
16-bit or one 32-bit partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic
result is produced.

Fplrsi] \ \ \ \
63 \ 48 47 \ 32 31 \ 16 15 \ 0
Fplrs2l \ | \ / \ /
63 48 47 32 31 16 15
W Ny N A
| | |
Fplrd] (sum) v v % v
63 48 47 32 31 16 15 0

FIGURE 8-20 FPADD16 Operation
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Fplrsi]
63 \ 32 31 |
L
Fplrs2] \ \
63 * % 32 31 *
+ +
Fplrd] (sum) + +
63 32 31

FIGURE 8-21 FPADD32 Operation

Fs[rSl]

Fs[rSZ]

Fslrd] (sum)

FIGURE 8-22 FPADD16S Operation

Fs[rS].]

Fglrs2]

Fglrd] (sum)

FIGURE 8-23 FPADD32S Operation

|

il

16 15

\
V+r 16 15

\\
7

'

'

31

16 15

31
—
|
Y
31
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled
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835 FPMERGE

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPMERGE 001001011 Two 32-bit merges 32 f32 fe4 fpmerge fregsy, fregrsas fregrg C3
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FPMERGE interleaves eight 8-bit unsigned values in Fg[rs1] and Fg[rs2] to produce
a 64-bit value in the destination register Fp[rd]. This instruction converts from

packed to planar representation when it is applied twice in succession; for example,
R1G1B1A1,R3G3B3A3 - RIR3G1G3A1A3 - RIR2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in
succession; for example, RIR2R3R4,B1B2B3B4 — R1B1R2B2R3B3R4B4 -
R1G1B1A1R2G2B2A2.

FIGURE 8-24 illustrates the operation.

Fs[r51]

= i

FD[rd] > o ;

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

FIGURE 8-24 FPMERGE Operation

%0 Rl Gl Bl Al 2 @ B2 A2 .
%2 R3 G3 B3 A3 R4 G4 B4 A4} packed representation

fprerge %0, %2, %4 !'r1l R3 GL G3 Bl B3 Al A3, . )
fpnerge %1, %3, %6 !r2 R4 G2 G4 B2 B4 A2 A4} intermediate
fprerge %4, %6, %0 !r1 R RBRRA Gl & GB A .
fpmerge %5, %7, %2 !Bl B2 B3 B4 Al A2 A3 A4] planar representation
fprerge %0, %2, %94 'r1 Bl R2 B2 R3 B3 R4 B4, . )
fpmerge %1, %3, %6 IGL Al @ A2 G3 A3 G4 A4lintermediate
fprerge %4, %6, %0 IRL Gl BL Al R2 & B2 A2 .
fpnerge %5, %7, %2 |R3 G3 B3 A3 R4 G4 B4 A4} packed representation
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CODE EXAMPLE 8-3 FPMERGE

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FPACK on page 197
FEXPAND on page 172
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8.36

FPSUB

Fixed-point Partitioned Subtract

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 {64 fpsubl6é  fregsy, fregrso, fregda Al
FPSUB16S 00101 0101 Two 16-bit subtracts {32 32 32 fpsubl6s freg.s1, fregrsa, fregg Al
FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32  freg.1, fregrso, frega Al
FPSUB32S 00101 0111 One 32-bit subtract 32 32 32 fpsub32s freg.s1, fregiso, frega Al
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions

between the corresponding fixed-point values contained in the source operands
(Fplrs1], Fplrs2]). The values in Fp[rs2] are subtracted from those in Fp[rsl], and
the result is placed in the destination register, Fp[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-
bit or one 32-bit partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic
result is produced.

Fplrsi] \ \ | \
Folrs2] ! \V_VI | \v— ¥ | \v_ V/ I O
e [ v v v

63 48 47 32 31 16 15 0

FIGURE 8-25 FPSUB16 Operation
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Fplrsi] \ ‘
63 \ 32 31 \
FD[rSZJ \ \
63 V_ ’ 32 31 *_ ’
| |
FD[rd]
(difference) v v
63 32 31

FIGURE 8-26 FPSUB32 Operation

Fglrsil

Fslrs2]

Fs[rd]
(difference)

FIGURE 8-27 FPSUB16S Operation

FslrS].]

Fs[rSZ]

Fglrd]
(difference)

|
31 \ 16 15 \ 0
\ |
T IE T
' v
31 \_} 0
v

FIGURE 8-28 FPSUB32S Operation
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled
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8.37  FRegister Logical Operate (1 operand)

Instruction opf Operation Assembly Language Syntax Class
FZERO 00110 0000  Zero fill fzero fregrg Al
FZEROs 00110 0001  Zero fill, 32-bit fzeros fregig Al
FONE 001111110  One fill fone fregrg Al
FONEs 001111111  Ore fill, 32-bit fones fregrg Al
10 rd 110110 — opf —
31 30 29 25 24 19 18 14 13 5 4 0

Description ~ FZERO and FONE fill the 64-bit destination register, Fp[rd], with all ‘0’ bits or all ‘1’
bits (respectively).

FZEROs and FONEs fill the 32-bit destination register, Fp[rd], with all ‘0" bits or all
‘1’ bits (respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or
bits 4:0 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FZERO[s] or FONE[s] instruction causes an fp_disabled

exception.
Exceptions illegal_instruction
fp_disabled
See Also F Register 2-operand Logical Operations on page 212

F Register 3-operand Logical Operations on page 214

CHAPTER 8 - Instructions 211



F Register 2-operand Logical Ops

8.38

F Register Logical Operate (2 operand)

Instruction opf Operation Assembly Language Syntax Class
FSRC1 00111 0100  Copy Fplrs1] to Fp[rd] fsrcl fregrs1, fregrd Al
FSRCls 001110101  Copy Fgrs1] to Fg[rd], 32-bit fsrcls  fregsr fregrg Al
FSRC2 001111000 Copy Fp[rs2] to Fp[rd] fsrc2 fregrsz, fregg Al
FSRC2s 001111001  Copy Fg[rs2] to Fg[rd], 32-bit fsrc2s  fregso fregeg Al
FNOT1 001101010 Negate (1's complement) Fp[rs1] fnotl fregs1s fregrg Al
FNOT1s 001101011 Negate (1's complement) Fg[rsl1], 32-bit fnotls  fregs1, fregrg Al
FNOT2 00110 0110  Negate (1’s complement) Fp[rs2] fnot2 fregrso, fregd Al
FNOT2s 00110 0111  Negate (1’s complement) Fg[rs2], 32-bit fnot2s  freg.so, fregrg Al
10 rd 110110 rsl —
10 rd 110110 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The standard 64-bit versions of these instructions perform one of four 64-bit logical
operations on the 64-bit floating-point register Fp[rs1] (or Fp[rs2]) and store the
result in the 64-bit floating-point destination register Fp[rd].
The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations on Fg[rs1] (or Fg[rs2]) and store the result in Fg[rd].
An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0
are nonzero causes an illegal_instruction exception. An attempt to execute an
FSRC2(s) or FNOT2(s) instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes
an fp_disabled exception.
Programming | FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
Note | that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 178). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.
Exceptions illegal_instruction

fp_disabled
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See Also Floating-Point Move on page 178
F Register 1-operand Logical Operations on page 211
F Register 3-operand Logical Operations on page 214
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F Register 3-operand Logical Ops

8.39

F Register Logical Operate (3 operand)

Instruction opf Operation Assembly Language Syntax Class
FOR 001111100 Logical or for fregrs1, fregrso, fregid Al
FORs 001111101 Logical or, 32-bit fors fregrs1, fregrso, fregid Al
FNOR 001100010 Logical nor f nor fregrs1, fregrso, fregid Al
FNORs 00110 0011  Logical nor, 32-bit fnors fregs1y fregrsos fregrg Al
FAND 00111 0000 Logical and fand fregs1y fregrsas fregrg Al
FANDs 00111 0001 Logical and, 32-bit f ands fregrs1, fregrse, fregig Al
FNAND 00110 1110  Logical nand f nand fregrs1, fregrse, fregig Al
FNANDs 00110 1111  Logical nand, 32-bit f nands fregrs1, fregrse, fregig Al
FXOR 00110 1100  Logical xor f xor fregrs1, fregrse, fregid Al
FXORs 00110 1101  Logical xor, 32-bit fxors fregrs1, fregrsn, fregid Al
FXNOR 00111 0010  Logical xnor f xnor fregrs1, fregrsa, fregid Al
FXNORs 00111 0011  Logical xnor, 32-bit fxnors fregrs1, fregrso, fregid Al
FORNOT1 001111010 (not F[rs1]) or F[rs2] fornotl  fregis1, fregrsos fregid Al
FORNOTIs 001111011 (not F[rs1]) or F[rs2], 32-bit fornotls freg1, fregis fregrq Al
FORNOT2 00111 0110  F[rs1] or (not F[rs2]) fornot2  fregis1, freSrsos fregrd Al
FORNOT2s 001110111  F[rs1] or (not F[rs2]), 32-bit fornot2s freger, fregrsps fregrg Al
FANDNOT1 00110 1000 (not F[rs1]) and F[rs2] fandnotl fregis1, fregrsas fregrd Al
FANDNOT1s 001101001 (not F[rs1]) and F[rs2], 32-bit fandnot 1s fregis1, fregrsar fregrg Al
FANDNOT2 001100100 F[rs1] and (not F[rs2]) fandnot 2 fregis1, fregrsar fregrg Al
FANDNOT2s 001100101 F[rs1] and (not F[rs2]), 32-bit fandnot 2s fregis1, fregrsas fregrg Al
10 rd 110110 rsi opf rs2
31 30 29 25 24 19 18 5 4 0
Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical
operations between the 64-bit floating-point registers Fp[rs1] and Fp[rs2]. The result
is stored in the 64-bit floating-point destination register Fp[rd].
The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations between Fg[rs1] and Fg[rs2], storing the result in Fg[rd].
If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any 3-operand F Register Logical Operate instruction causes an
fp_disabled exception.
Exceptions fp_disabled
See Also F Register 1-operand Logical Operations on page 211
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FSQRT<s|d|g> Instructions

8.40

Floating-Point Square Root

Instruction

op3 opf Operation Assembly Language Syntax Class

FSQRTs
FSQRTd
FSQRTq

11 0100 00010 1001 Square Root Single fsqrts fregrso, fregr Al
11 0100 00010 1010 Square Root Double fsqrtd fregiso, fregeg Al
11 0100 00010 1011 Square Root Quad fsqrtq fregrsz, fregr C3

10

rd op3 — opf rs2

31 30 29

Description

Exceptions

25 24 19 18 14 13 5 4 0

These SPARC V9 instructions generate the square root of the floating-point operand
in the floating-point register(s) specified by the rs2 field and place the result in the
destination floating-point register(s) specified by the rd field. Rounding is performed
as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRT(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSQRT instruction causes an fp_disabled exception.

If the FPU is enabled, an fp_exception_other (with FSR.ftt = unimplemented_FPop)
exception occurs, since the FSQRT instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FSQRT is not implemented
in hardware))
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8.41

Convert Floating-Point to Integer

Instruction opf Operation sl s2 d Assembly Language Syntax Class
FsTOx 010000001 Convert Single to 64-bit Integer — f32  f64 fstox fregsy, fregy Al
FdTOx 010000010 Convert Double to 64-bit Integer — fo4 f64 fdtox fregs, fregq Al
FqTOx 010000011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregss, fregy C3
FsTOi 01101 0001 Convert Single to 32-bit Integer — {32 f32 fstoi fregsy, fregig Al
FATOi 011010010 Convert Double to 32-bit Integer — f64 32 fdtoi freg.so, fregyqg Al
FqTOi 01101 0011  Convert Quad to 32-bit Integer — f128 f32 fqtoi fregsy, fregyg C3
10 rd op3 =11 0100 — opf rs2

31 30 29 25 24 19 18 1413 5 4 0

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 64-bit integer in the floating-point register Fp[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 32-bit integer in the floating-point register Fg[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of
the FSR register is ignored.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

An attempt to execute an F<s|d | q>TO<i | x> instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d|q>TO<ilx> instruction causes an fp_disabled
exception.

If the FPU is enabled, FqTOi and FqTOx cause fp_exception_other (with FSR.fit =
unimplemented_FPop), since those instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

If the floating-point operand’s value is too large to be converted to an integer of the
specified size or is a NaN or infinity, then an fp_exception_ieee_754 “invalid”
exception occurs. The value written into the floating-point register(s) specified by rd
in these cases is as defined in Integer Overflow Definition on page 363.
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For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.fit = unimplemented_FPop (FqTOx, FqTOi only))
fp_exception_ieee_754 (NV, NX)
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F<s|d|g>TO<s|d|g>

8.42  Convert Between Floating-Point Formats

Instruction op3 opf Operation sl s2 d Assembly Language Syntax Class
FsTOd 110100 011001001 Convert Single to Double — 32 f64 fstod  freg.so, fregq Al
FsTOq 110100 011001101 Convert Single to Quad — 32 128 fstoq freg.sp, fregq  C3
FdTOs 110100 011000110 Convert Double to Single — f64 32 fdtos  fregsp, fregq Al
FATOq 110100 011001110 Convert Double to Quad — f64 128 fdtoq fregspy, fregrg  C3
FqTOs 110100 011000111 Convert Quad to Single — 128 32 fqtos  freg.so, fregq  C3
FqTOd 110100 011001011 Convert Quad to Double — 128 f64 fqtod  freg.sp, fregq C3
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions convert the floating-point operand in the floating-point register(s)
specified by rs2 to a floating-point number in the destination format. They write the
result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

An attempt to execute an F(s,d,q)TO(s,d,q) instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d | q>TO<s |d|q> instruction causes an fp_disabled
exception.

If the FPU is enabled, FsTOq, FATOq, FqTOs, and FqTOd cause fp_exception_other
(with FSR.ftt = unimplemented_FPop), since those instructions are not implemented
in hardware in UltraSPARC Architecture 2005 implementations.

FqTOd, FqTOs, and FATOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FATOq, FsTOq, and FsTOd (the
“widening” conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if
the source operand is a signalling NaN.
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F<s|d|g>TO<s|d|g>

Untrapped Result in Different Format from Operands on page 360 defines the rules for
converting NaNs from one floating-point format to another.

Note | For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FsTOq, FqTOs, FdTOq,
and FqTOd only))

fp_exception_other (FSR.ftt = unfinished_FPop)

fp_exception_ieee_754 (NV)

fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))
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8.43

Floating-Point Subtract

Instruction op3 opf Operation Assembly Language Syntax Class
FSUBs 11 0100 001000101 Subtract Single fsubs  fregis1, fregrso, fregeg Al
FSUBd 110100 001000110  Subtract Double fsubd  fregrs1, fregrsa fregrd Al
FSUBq 11 0100 00100 0111 Subtract Quad fsubq fregis1, fregrso, fregig C3
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The floating-point subtract instructions subtract the floating-point register(s)
specified by the rs2 field from the floating-point register(s) specified by the rs1 field.
The instructions then write the difference into the floating-point register(s) specified
by the rd field.
Rounding is performed as specified by FSR.rd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUB(q instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSUB instruction causes an fp_disabled exception.

If the FPU is enabled, FSUBq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note | An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBAJ).

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.
Exceptions illegal_instruction

fp_disabled

fp_exception_other (FSR.ftt = unimplemented_FPop (FSUBQ))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)
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FxTO(<s|d|g>

8.44  Convert 64-bit Integer to Floating Point

Assembly Language

Instruction op3 opf Operation sl s2 d Syntax Class

FxTOs 11 0100 010000100 Convert 64-bit Integer to — 64 32  fXtos fregsn, fregyg Al
Single

FxTOd 110100 010001000 Convert 64-bit Integer to — i64 f64  fxtod fregso, fregw Al
Double

FxTOq 110100 010001100 Convert 64-bit Integer to — 64 128 fxtoq fregso, fregyy C3
Quad

10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-
point register Fp[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.
The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

Note | UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FXTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

An attempt to execute an FxTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FxTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FXTOq causes an fp_exception_other (with FSRfit =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FxTOq only))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))
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8.45  Illegal Instruction Trap

Instruction op op2 Operation Assembly Language Syntax Class
ILLTRAP 00 000 illegal_instruction trap illtrap const22 Al
00 — 000 const22
31 30 29 25 24 22 21 0

Description ~ The ILLTRAP instruction causes an illegal_instruction exception. The const22 value
in the instruction is ignored by the virtual processor; specifically, this field is not
reserved by the architecture for any future use.

V9 Compatibility | Except for its name, this instruction is identical to the SPARC V8
Note | UNIMP instruction.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25
are nonzero (also) causes an illegal_instruction exception. However, software should
not rely on this behavior, because a future version of the architecture may use
nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction
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8.46

Implementation-Dependent Instructions

Instruction op3 op4 Operation Class
IMPDEP1 11 0110 (any) Implementation-Dependent Instruction 1 N3
IMPDEP2A 11 0111 0 Implementation-Dependent Instruction 2A N3
IMPDEP2B 11 0111 1,2,3 Implementation-Dependent Instruction 2B N3
10 impl. dep. op3 impl. dep. op4 impl. dep.
31 30 29 25 24 19 18 76 5 4 0
Description IMPL. DEP. #106-V9: The IMPDEP2A opcode space is completely implementation

Exceptions

8.46.1

dependent. Implementation-dependent aspects of IMPDEP2A instructions include
their operation, the interpretation of bits 29-25, 18-7, and 40 in their encodings,
and which (if any) exceptions they may cause.

IMPDEP2B opcodes are reserved; see IMDEP2B Opcodes on page 224.

See “Implementation-Dependent and Reserved Opcodes” in the "Extending the
UltraSPARC Architecture" section of the separate document UltraSPARC Architecture
Application Notes, for information about extending the instruction set by means of
implementation-dependent instructions.

Compatibility | IMPDEP2A and IMPDEP2B are subsets of the SPARC V9
Note | IMPDEP2 opcode space. The IMPDEP1 opcode space from
SPARC V9 is occupied by various VIS instructions in the
UltraSPARC Architecture, so it should not be used for
implementation-dependent instructions.

implementation-dependent (IMPDEP2A, IMPDEP2B)

IMPDEP1 Opcodes

All operands of instructions using IMPDEP1 opcodes are in floating-point registers,
unless otherwise specified. Pixel values are stored in single-precision floating point
registers and fixed values are stored in double-precision floating point registers,
unless otherwise specified.

Note | All instructions, regardless of whether they use floating-point
registers or integer registers, leave FSR.cexc and FSR.aexc
unchanged.
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8.46.1.1 Opcode Formats

Most of the VIS instruction set maps to the opcode space reserved for the
Implementation-Dependent Instruction 1 (op3 = IMPDEP1 = 3644) instructions.

8.46.2  IMDEP2B Opcodes

No instructions are currently encoded in the IMPDEP2B opcode space; it is a
reserved opcode space.
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8.47  Mark Register Window Sets as “Invalid”

Instruction Operation Assembly Language Syntax Class
INVALW? Mark all register window sets as “invalid” inval w C1
10 | fcn=00101 11 0001 —
31 30 29 25 24 19 18 0

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it
atomically performs the following operations:

CANSAVE ~ (N_REG_WINDOWS — 2)
CANRESTORE « 0
OTHERWIN « 0

Programming | INVALW marks all windows as invalid; after executing INVALW,
Notes | N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 136
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292
SAVED on page 300
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8.48

10

Jump and Link

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link j mpl address, reg.q Al

rd op3 rsl i=0 — rs2

10

rd op3 rsl i=1 simm13

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 12 5 4 0

The JMPL instruction causes a register-indirect delayed control transfer to the
address given by “R[rs1] + R[rs2]” if i field = 0, or “R[rs1] + sign_ext( sinm13)” if
i=1.

The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

Programming | A JMPL instruction with rd = 15 functions as a register-indirect
Notes | call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system or being written
into R[rd]. (closed impl. dep. #125-V9-Cs10)

illegal_instruction
mem_address_not_aligned

CALL on page 150
Bicc on page 142
BPCC on page 148
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8.49

Load Integer

Instruction op3 Operation Assembly Language Syntax Class
LDSB 00 1001 Load Signed Byte I dsb [ address] , regyq Al
LDSH 00 1010 Load Signed Halfword | dsh [ address] , regyq Al
LDSW 00 1000 Load Signed Word | dsw [ address] , regyq Al
LDUB 00 0001 Load Unsigned Byte | dub [ address] , reg.g Al
LDUH 00 0010 Load Unsigned Halfword | duh [ address] , regyq Al
LDUW 00 0000 Load Unsigned Word | duwt [ address] , regyq Al
LDX 00 1011 Load Extended Word | dx [ address] , regyq Al

t synonym: | d

11 rd op3 rsl i=0| — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load integer instructions copy a byte, a halfword, a word, or an extended word

from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or
word is right-justified in the destination register R[rd]; it is either sign-extended or
zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 104). The
effective address is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or
LDSH causes a mem_address_not_aligned exception. If the effective address is not
word-aligned, an attempt to execute an LDUW or LDSW instruction causes a
mem_address_not_aligned exception. If the effective address is not doubleword-
aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

V8 Compatibility | The SPARC V8 LD instruction was renamed LDUW in the SPARC
Note [ V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load
Integer Twin Word on page 253 for details.
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Exceptions illegal_instruction
mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
data_access_exception

228 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



LDA

8.50

Load Integer from Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
LDSBAPAt 011001  Load Signed Byte from Alternate | dsba [ regaddr] imm_asi, reg.q Al
Space | dsba [ reg_plus_imm] %@sSi, regyq
LDSHAPA' 011010  Load Signed Halfword from Alternate | dsha [ regaddr] imm_asi, regq Al
Space I dsha [ reg_plus_imm] %@sSi, regyq
LDSWAPast 011000  Load Signed Word from Alternate | dswa [ regaddr] imm_asi, reg.g Al
Space | dswa [ reg_plus_imm] %@sSi, regyq
LDUBAMs 010001 Load Unsigned Byte from Alternate | duba [ regaddr] imm_asi, regq Al
Space I duba [ reg_plus_imm] %@si, regyq
LDUHAPAs' 010010 Load Unsigned Halfword from I duha [ regaddr] imm_asi, reg.qy Al
Alternate Space I duha [ reg_plus_imm] Y@si, regyq
LDUWAPat 010000 Load Unsigned Word from Alternate | duwat [ regaddr] imm_asi, regq Al
Space I duwa [ reg_plus_imm] Y@si, regyq
LDXAPat 011011  Load Extended Word from Alternate | dxa [ regaddr] imm_asi, regyq Al
Space | dxa [ reg_plus_imm] Y@si, regyq
Y synonym: | da
11 rd op3 rsl i=0] imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description  The load integer from alternate space instructions copy a byte, a halfword, a word,

or an extended word from memory. All copy the fetched value into R[rd]. A fetched
byte, halfword, or word is right-justified in the destination register R[rd]; it is either
sign-extended or zero-filled on the left, depending on whether the opcode specifies a
signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is
deprecated; see Load Integer Twin Word from Alternate Space on page 255 for details.

An attempt to execute a load integer from alternate space instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
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If the effective address is not halfword-aligned, an attempt to execute an LDUHA or
LDSHA instruction causes a mem_address_not_aligned exception. If the effective
address is not word-aligned, an attempt to execute an LDUWA or LDSWA
instruction causes a mem_address_not_aligned exception. If the effective address is
not doubleword-aligned, an attempt to execute an LDXA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 30,4 to 7Fqg, these instructions cause a privileged_action exception.

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any
of the following ASIs, subject to the privilege mode rules described for the
privileged_action exception above. Use of any other ASI with these instructions
causes a data_access_exception xception.

ASIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA
AS| _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER PRI MARY  AS|I _AS | F_USER PRI MARY LI TTLE
ASl _AS | F_USER SECONDARY AS| AS | F_USER SECONDARY LI TTLE

ASl _REAL ASI _REAL_LI TTLE

ASI _REAL_| O ASI_REAL_| O LI TTLE

AS| _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS|I _SECONDARY LI TTLE

ASl _PRI MARY_NO FAULT ASI _PRI MARY_NO FAULT LI TTLE

ASI _SECONDARY_NO FAULT  AS| _SECONDARY NO FAULT LI TTLE

LDXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASls invalid for LDXA (cause data_access_exception exception)

24 (aliased to 27, ASI _LDTX_N) 2C; (aliased to 2F, ASI _LDTX_NL)

2216 (ASI _LDTX_Al UP) 2As6 (ASI _LDTD Al UP_L)

2316 (ASI _LDTX_AI US) 2B (ASI _LDTX_AI US_L)

26,6 (AS| _LDTX_REAL) 2E;5 (ASl _LDTX_REAL_L)

2716 (ASI _LDTX_N) 2F;6 (ASl _LDTX_NL)

ASI_BLOCK_AS_| F_USER PRI MARY ASI _BLOCK_AS_| F_USER PRI MARY LI TTLE
ASI _BLOCK_AS | F_USER SECONDARY  ASlI BLOCK AS | F_USER SECONDARY LI TTLE
ASl _PST8_PRI MARY AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY AS| _PST8_SECONDARY_ LI TTLE

AS| _PST16_PRI MARY AS| _PST16_PRI MARY_LI TTLE

AS| _PST16_SECONDARY AS| _PST16_SECONDARY_LI TTLE

AS| _PST32_PRI MARY AS| _PST32_PRI MARY_LI TTLE

AS| _PST32_SECONDARY AS| _PST32_SECONDARY_ LI TTLE

AS| _FL8_PRI MARY AS| _FL8_PRI MARY_LI TTLE
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ASls invalid for LDXA (cause data_access_exception exception)

AS| _FL8_SECONDARY AS|_FL8_SECONDARY LI TTLE
AS| _FL16_PRI MARY AS| _FL16_PRI MARY_LI TTLE
AS| _FL16_SECONDARY AS| _FL16_SECONDARY LI TTLE
AS| _BLOCK_COMM T_PRI MARY AS| _BLOCK_COWM T_SECONDARY
E2,6 (ASI _LDTX_P) EAg (ASI _LDTX_PL)

E3;6 (ASI _LDTX_S) EByg (ASI _LDTX_SL)

ASl _BLOCK_PRI MARY ASI _BLOCK_PRI MARY_LI TTLE
ASI _BLOCK_SECONDARY AS| _BLOCK_SECONDARY_LI TTLE

Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
data_access_exception

See Also LD on page 227
STA on page 308
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8.51

Block Load

The LDBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is
executing.

ASI
Instruc-tion  Value Operation Assembly Language Syntax Class
LDBLOCKF 1644 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_Al UP, freg,q B2
space, user privilege I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF 17;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_Al US, fregq B2
address space, user privilege | dda [ reg_plus_imm] %@Si , freg,
LDBLOCKF 1E;4 64-byte block load from primary address | dda [ regaddr] #AS| _BLK_AlI UPL, freg,q B2
space, little-endian, user privilege I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF 1F;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_Al USL, freg,q B2
address space, little-endian, user privilegel dda [ reg_plus_imm] %@Si , freg,q
LDBLOCKF F0;4 64-byte block load from primary address | dda [ regaddr] #ASI _BLK_P, freg.q B2
space I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF Fly4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_S, fregq B2
address space | dda [ reg_plus_imm] %@Si , freg,
LDBLOCKF F8;4 64-byte block load from primary address | dda [ regaddr] #AS| _BLK_PL, freg.q B2
space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
LDBLOCKF F9;4 64-byte block load from secondary | dda [ regaddr] #ASI _BLK_SL, fregq B2
address space, little-endian I dda [ reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl I=0 imm_asi rs2
11 rd | 110011 rsi 1=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description A block load (LDBLOCKF) instruction uses one of several special block-transfer

ASIs. Block transfer ASIs allow block loads to be performed accessing the same
address space as normal loads. Little-endian ASIs (those with an ‘L’ suffix) access
data in little-endian format; otherwise, the access is assumed to be big-endian. Byte
swapping is performed separately for each of the eight 64-bit (double-precision) F
registers used by the instruction.
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A block load instruction loads 64 bytes of data from a 64-byte aligned memory area
into the eight double-precision floating-point registers specified by rd. The lowest-
addressed eight bytes in memory are loaded into the lowest-numbered 64-bit
(double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

Programming | LDBLOCKEF is intended to be a processor-specific instruction

Note | (see the warning at the top of page 232). If LDBLOCKEF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-510, described
below.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load
(LDBLOCKE) instructions are implementation dependent:

What memory ordering model is used by LDBLOCKF (LDBLOCKEF is not
required to follow TSO memory ordering)

Whether LDBLOCKF follows memory ordering with respect to stores (including
block stores), including whether the virtual processor detects read-after-write and
write-after-read hazards to overlapping addresses

Whether LDBLOCKEF appears to execute out of order, or follow LoadLoad
ordering (with respect to older loads, younger loads, and other LDBLOCKFs)
Whether LDBLOCKEF follows register-dependency interlocks, as do ordinary load
instructions

Whether LDBLOCKEFs to non-cacheable locations are (a) strictly ordered, (b) not
strictly ordered and cause an illegal_instruction exception, or (c) not strictly
ordered and silently execute without causing an exception (option (c) is strongly
discouraged)

Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKEF (the recommended behavior), or only on the first eight bytes
Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses
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Programming | If ordering with respect to earlier stores is important (for

Note | example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#St or eLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadSt or e instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

For further restrictions on the behavior of the block load instruction, see
implementation-specific processor documentation.

Implementation | In all UltraSPARC Architecture implementations, the MMU
Note | ignores the side-effect bit (TTE.e) for LDBLOCKEF accesses (impl.
dep. #410-510).

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point
destination registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKF
instruction are nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1644, 177,
1E4, and 1F;¢), LDBLOCKEF causes a privileged_action exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#410-510).

Implementation | LDBLOCKEF shares an opcode with LDDFA and LDSHORTF; it
Note | is distinguished by the ASI used.

illegal_instruction

fp_disabled
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #410-510)
data_access_exception
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See Also STBLOCKEF on page 312
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8.52  Load Floating-Point

Instruction op3 rd Operation Assembly Language Syntax Class
LDF 10 0000 0-31 Load Floating-Point Register Id [ address], fregq Al
LDDF 10 0011 ¥ Load Double Floating-Point Register | dd [ address], freg.g Al
LDQF 10 0010 ¥ Load Quad Floating-Point Register I dq [ address], fregq Cs3
LDXFSR 100001 1 Load Floating-Point State Register I dx [ address], % sr Al

— 10 0001 2-31 Reserved

¥ Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load single floating-point instruction (LDF) copies a word from memory into 32-
bit floating-point destination register Fg[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, Fp[rd].
The unit of atomicity for LDDF is 4 bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword
from memory into a 128-bit floating-point destination register, Fg[rd]. The unit of
atomicity for LDQF is 4 bytes (one word).

The load floating-point state register instruction (LDXFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a
doubleword from memory into the FSR. LDXFSR does not alter the ver, ftt, gne, or
reserved fields of FSR (see page 58).

Programming | For future compatibility, software should only issue an LDXFSR
Note | instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

These load floating-point instructions access memory using the implicit ASI (see
page 104).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i =0,
the effective address is “R[rs1] + sign_ext( simm13)”.
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Exceptions. An attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction
when i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception. An attempt to execute an instruction encoded as op =2, op3 = 2144, and
rd > 1 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDF, LDDEF, LDQF, or LDXFSR instruction causes an
fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction
causes a mem_address_not_aligned exception. If the effective address is not
doubleword-aligned, an attempt to execute an LDXFSR instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute an LDDF instruction
causes an LDDF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDDF instruction and return (impl. dep. #109-V9-
Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQF instruction
causes an LDQF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDQF instruction and return (impl. dep. #111-V9-
Cs10(a)).

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

An attempt to execute an LDQF instruction when rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Destination Register(s) when Exception Occurs. If aload floating-point
instruction generates an exception that causes a precise trap, the destination floating-
point register(s) remain unchanged.
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IMPL. DEP. #44-V8-Cs10(a): If a load floating-point instruction generates an
exception that causes a non-precise trap, the contents of the destination floating-point
register(s) remain unchanged or are undefined.

Implementation | LDXFSR shares an opcode with the LDFSR instruction (and
Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
data_access_exception

See Also Load Floating-Point from Alternate Space on page 239
Load Floating-Point State Register on page 243
Store Floating-Point on page 316
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8.53

Load Floating-Point from Alternate
Space

Instruction op3 rd Operation Assembly Language Syntax Class
LDFAPsst 110000 0-31 Load Floating-Point Register | da [ regaddr] imm_asi, freg.g Al
from Alternate Space lda [ reg_plus_imm] Y@si, freqq
LDDFAPast 110011 # Load Double Floating-Point | dda [ regaddr] imm_asi, freg,q Al
Register from Alternate Space | dda [ reg_plus_imm] Y@si, fregq
LDQFAFPasi 110010 * Load Quad Floating-Point I dga [ regaddr] imm_asi, freg.q C3
Register from Alternate Space |dqa [ reg_plus_imm] Y@Si, fregyq
¥ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load single floating-point from alternate space instruction (LDFA) copies a word

from memory into 32-bit floating-point destination register Fg[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a 64-bit floating-point destination
register, Fp[rd]. The unit of atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a
word-aligned quadword from memory into a 128-bit floating-point destination
register, Fo[rd]. The unit of atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the
load in the imm_asi field and the effective address for the instruction is

“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext( simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an LDFA, LDDFA, or LDQFA instruction
causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address
is not word-aligned.

V9 Compatibility | LDFA, LDDFA, and LDQFA cause a privileged_action exception if
Note | PSTATE.priv = 0 and bit 7 of the ASl is 0.
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LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, LDQFA causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

An attempt to execute an LDQFA instruction when rd{1} # O causes an
fp_exception_other (with FSR.fit = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.fit = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming | Some compilers issued sequences of single-precision loads for
Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASl is in the range 3014 to 7F¢, this instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

ASils valid for LDFA and LDQFA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY ASl _AS_| F_USER PRI MARY_ LI TTLE
ASI _AS_| F_USER SECONDARY ASl _AS_| F_USER _SECONDARY_ LI TTLE
AS| _REAL ASl _REAL_LI TTLE

ASl _REAL_|O ASI _REAL_| O LI TTLE

ASI _PRI MARY ASl _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE

ASI PRI MARY_NO FAULT ASl _PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO_FAULT AS| _SECONDARY_NO FAULT LI TTLE
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LDFA / LDDFA / LDQFA

LDDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the LDDFA instruction causes a data_access_exception exception.

ASls valid for LDDFA

ASl _NUCLEUS ASI _NUCLEUS LI TTLE

AS| _AS | F_USER_PRI MARY ASl _AS | F_USER PRI MARY_LI TTLE
ASl _AS | F_USER_SECONDARY ASl _AS | F_USER SECONDARY_ LI TTLE
ASl _REAL ASI _REAL_LI TTLE

ASI_REAL_1O ASI _REAL_1O LI TTLE

ASl _PRI MARY ASlI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_ LI TTLE

ASI _PRI MARY_NO FAULT ASlI PRI MARY_NO FAULT LI TTLE

AS| _SECONDARY_NO FAULT AS| _SECONDARY_NO FAULT LI TTLE

Behavior with Partial Store ASIs. ASIs C0.,—C5;4 and C8;4—CD;¢ are only
defined for use in Partial Store operations (see page 325). None of them should be
used with LDDFA; however, if any of those ASIs is used with LDDFA, the LDDFA
behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C0,—C544 or
C814—CDq4 (Partial Store ASIs, which are an illegal combination with LDDFA) and
a memory address is specified with less than 8-byte alignment, the virtual
processor generates an exceptoin. It is implementation dependent whether the
generated exception is a data_access_exception, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a
data_access_exception.

Destination Register(s) when Exception Occurs. If a load floating-point
alternate instruction generates an exception that causes a precise trap, the
destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates
an exception that causes a non-precise trap, it is implementation dependent whether
the contents of the destination floating-point register(s) are undefined or are
guaranteed to remain unchanged.

Implementation | LDDFA shares an opcode with the LDBLOCKF and LDSHORTF
Note | instructions; it is distinguished by the ASI used.

illegal_instruction

fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned
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fp_exception_other (FSR.fit = invalid_fp_register (LDQFA only))
privileged_action
VA_watchpoint

See Also Load Floating-Point on page 236
Block Load on page 232
Store Short Floating-Point on page 328
Store Floating-Point into Alternate Space on page 319
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LDFSR - Deprecated

8.54

Load Floating-Point State Register

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class
LDFSRP 100001 0 Load Floating-Point State Register Lower | d  [address], % sr C2
11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The load floating-point state register lower instruction (LDFSR) waits for all FPop

instructions that have not finished execution to complete and then loads a word
from memory into the less significant 32 bits of the FSR. The upper 32 bits of FSR
are unaffected by LDFSR. LDFSR does not alter the ver, fit, gne, or reserved fields of
FSR (see page 58).

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

LDFSR accesses memory using the implicit ASI (see page 108).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

V8 Compatibility | The SPARC V9 architecture supports two different instructions
Note | to load the FSR: the SPARC V8 LDFSR instruction is defined to
load only the less significant 32 bits of the FSR, whereas
LDXFSR allows SPARC V9 programs to load all 64 bits of the
FSR.w
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Implementation | LDFSR shares an opcode with the LDXFSR instruction (and
Note | possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 11,, op3 = 10 0001, opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint
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LDSHORTF

8.55

Short Floating-Point Load

ASI
Instruction Value Operation Assembly Language Syntax Class
LDSHORTF D04 8-bit load from primary address space | dda [ regaddr] #ASI _FL8_P, fregyy C3
| dda [ reg_plus_imm] Y&si, fregyq
LDSHORTF D144 8-bit load from secondary address | dda  [regaddr] #AS| _FL8_S, fregq C3
space | dda [ reg_plus_imm] %@si, fregyq
LDSHORTF  D8;¢ 8-bit load from primary address space, |dda [regaddr] #ASI _FL8_PL, fregy C3
little-endian | dda  [reg_plus_imm] %&si, fregyq
LDSHORTF D94 8-bitload from secondary address space, | dda [ regaddr] #ASI _FL8_SL, freg C3
little-endian | dda  [reg_plus_imm] Y@asi, fregy
LDSHORTF  D2;¢ 16-bit load from primary address space | dda [ regaddr] #ASI _FL16_P, fregyq C3
| dda  [reg_plus_imm] %asi, fregyq
LDSHORTF  D3;¢ 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_S, fregq C3
space | dda  [reg_plus_imm] Y@si, freg.y
LDSHORTF DA, 16-bit load from primary address space, | dda [ regaddr] #ASI _FL16_PL, fregq C3
little-endian | dda [ reg_plus_imm] Y@asi, freg.y
LDSHORTF  DBjg 16-bit load from secondary address | dda  [regaddr] #AS| _FL16_SL, fregq C3
space, little-endian | dda [ reg_plus_imm] Y@si, fregyq
11 rd 110011 rsl i=0 imm_asi rs2
11 rd 110011 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from

memory into a 64-bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of Fp[rd] and
zeroes in the most-significant three bytes of Fp[rd]. An 8-bit LDSHORTF can be
performed from an arbitrary byte address.

A 16-bit load places the loaded value in the least significant halfword of Fp[rd] and
zeroes in the more-significant halfword of Fp[rd]. A 16-bit LDSHORTF from an
address that is not halfword-aligned (an odd address) causes a
mem_address_not_aligned exception.
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Exceptions

LDSHORTF

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be in big-endian byte order.

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 135) to assemble or store 64 bits from
noncontiguous components.

LDSHORTEF shares an opcode with the LDBLOCKF and LDDFA
instructions; it is distinguished by the ASI used.

Programming
Note

Implementation
Note

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause a data_access_exception exception, and are
emulated in software.

VA_watchpoint
data_access_exception
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LDSTUB

8.56

11

Load-Store Unsigned Byte

Instruction op3 Operation Assembly Language Syntax Class

LDSTUB 001101 Load-Store Unsigned Byte | dstub [ address], reg.q Al

rd op3 rsl i=0 — rs2

11

rd op3 rsl i=1 simm13

31 30 29

Description

Exceptions

25 24 19 18 14 13 12 5 4 0

The load-store unsigned byte instruction copies a byte from memory into R[rd], then
rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in
the destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 104). The effective
address for this instruction is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5

are nonzero causes an illegal_instruction exception.

illegal_instruction
VA_watchpoint
data_access_exception
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8.57  Load-Store Unsigned Byte to Alternate
Space

Instruction op3 Operation Assembly Language Syntax Class
LDSTUBAPAt 011101 Load-Store Unsigned Byte into | dstuba [ regaddr] imm_asi, regq Al
Alternate Space | dstuba [ reg_plus_imm] %@Si, regyq
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The load-store unsigned byte into alternate space instruction copies a byte from
memory into R[rd], then rewrites the addressed byte in memory to all 1’s. The
fetched byte is right-justified in the destination register R[rd] and zero-filled on the
left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load
in the imm_asi field. If i = 1, the ASI is found in the ASI register. In nonprivileged
mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASl is in the
range 30q4 to 7Fqg, this instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASlIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

ASls valid for LDSTUBA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY ASI _AS | F_USER PRI MARY LI TTLE
ASI _AS_| F_USER_SECONDARY ASI _AS | F_USER SECONDARY_LI TTLE
ASI _REAL ASI _REAL_LI TTLE

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE
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Exceptions privileged_action
VA_watchpoint
data_access_exception
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8.58

Load Integer Twin Extended Word from

Alternate Space

implementation on which it is executing.

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be

used in platform-specific dynamically-linked libraries or in software created by a
runtime code generator that is aware of the specific virtual processor

ASI
Instruction Value Operation Assembly Language Syntax T Class
LDTXAN 221¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al UP, reg.y N1
as if user (nonprivileged), Primary
address space
2316 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al US, reg N1
as if user (nonprivileged), Secondary
address space
2616 Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_REAL, regq N1
real address
271¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_N, reg.q N1
nucleus context
2A1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al UP_L, regq N1
as if user (nonprivileged), Primary
address space, little endian
2By Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_Al US_L, reg.q N1
as if user (nonprivileged), Secondary
address space, little endian
2E1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #AS| _LDTX_REAL_L, regq N1
real address, little endian
2F1¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_NL, reg.q N1
nucleus context, little-endian
LDTXAN E2, Load Integer Twin Extended Word, | dt xa [ regaddr] #AS| _LDTX_P, regq N1
Primary address space
E31s, Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_S, regq N1
Secondary address space
EAq¢ Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_PL, regyy N1
Primary address space, little endian
EBys Load Integer Twin Extended Word, | dt xa [ regaddr] #ASI _LDTX_SL, regyy N1

Secondary address space, little-endian

t The original assembly language syntax for these instructions used the “I dda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “I dt xa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “I dda” mnemonic.
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11 rd 01 0011 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 12 5 4 0
Description  ASIs 2614, 2E14, E214, E314, FO14, and F1; are used with the LDTXA instruction to

atomically read a 128-bit data item into a pair of 64-bit R registers (a “twin extended
word”). The data are placed in an even/odd pair of 64-bit registers. The lowest-
address 64 bits are placed in the even-numbered register; the highest-address 64 bits
are placed in the odd-numbered register.

Note | Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

ASIs E244, E314, FO14, and F1¢ perform an access using a virtual address, while ASIs
2614 and 2E;¢ use a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises
two 64-bit loads (performed atomically), each of which is byte-swapped
independently before being written into its respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered
destination register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that
is not aligned on a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether
VA_watchpointexceptions are recognized on accesses to all 16 bytes of a LDTXA
instruction (the recommended behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a
data_access_exception exception (impl. dep. #306-U4-Cs10).

Programming | A key use for this instruction is to read a full TTE entry (128 bits,
Note | tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2644
and 2E;g; the effective address provided with either of those ASIs is interpreted
directly as a real address.

Compatibility | ASIs 274, 2F1¢, 2614, and 2E;4 are now standard ASIs that
Note | replace (respectively) ASIs 244, 2Cq4, 3416, and 3Cq4 that were
supported in some previous UltraSPARC implementations.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte
boundary.
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Implementation | LDTXA shares an opcode with the “i = 0” variant of the
Note | (deprecated) LDTWA instruction. See Load Integer Twin Word
from Alternate Space on page 255.

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #413-510)
data_access_exception
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LDTW (Deprecated)

8.59  Load Integer Twin Word

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax T Class

LDTWP 00 0011 Load Integer Twin Word I dtw [ address] , regyy D2

t The original assembly language syntax for this instruction used an “I dd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “l dt W’ mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “I dd” mnemonic.

11 rd op3 rsl i= — rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word instruction (LDTW) copies two words (with doubleword
alignment) from memory into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R
register. The word at the effective memory address + 4 is copied into the least
significant 32 bits of the following odd-numbered R register. The most significant 32
bits of both the even-numbered and odd-numbered R registers are zero-filled.

Note | Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Load integer twin word instructions access memory using the implicit ASI (see
page 104). If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and
if i = 0, the effective address is “R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises
two 32-bit loads, each of which is byte-swapped independently before being written
into its respective destination register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is
implemented in hardware. If not, an attempt to execute an LDTW instruction will
cause an unimplemented_LDTW exception.

Programming | LDTW is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.
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SPARC V9 | LDTW was (inaccurately) named LDD in the SPARC V8 and
Compatibility | SPARC V9 specifications. It does not load a doubleword; it
Note | Joads two words (into two registers), and has been renamed
accordingly.

The least significant bit of the rd field in an LDTW instruction is unused and should
always be set to 0 by software. An attempt to execute an LDTW instruction that
refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW
instruction causes a mem_address_not_aligned exception.

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_exception

See Also LDW/LDX on page 227
STTW on page 330
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LDTWA (Deprecated)

8.60  Load Integer Twin Word from Alternate
Space

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
LDTWADP:Pas1 01 0011 Load Integer Twin Word from Alternate | dtwa [regaddr] imm_asi, reg,q t
Space | dtwa [reg_plus_imm] Y@Si , regq

1 The original assembly language syntax for this instruction used an “l dda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “l dt wa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “I dda” mnemonic.

T Y3 for restricted ASIs (0014-7F¢); D2 for unrestricted ASIs (80,4-FF¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The load integer twin word from alternate space instruction (LDTWA) copies two
words (with doubleword alignment) from memory into a pair of R registers. The
word at the effective memory address is copied into the least significant 32 bits of
the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register.
The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

Note | Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used
for the load in its imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext( simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is
composed of two 32-bit loads, each of which is byte-swapped independently before
being written into its respective destination register.
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IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is
implemented in hardware. If not, an attempt to execute an LDTWA instruction will
cause an unimplemented_LDTW exception so that it can be emulated.

Programming | LDTWA is provided for compatibility with existing SPARC V8
Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9 | LDTWA was (inaccurately) named LDDA in the SPARC V8 and
Compatibility | SPARC V9 specifications.
Note

The least significant bit of the rd field in an LDTWA instruction is unused and
should always be set to 0 by software. An attempt to execute an LDTWA instruction
that refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA
instruction causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 30,4 to 7Fqg, these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-

Cs10).
ASls valid for LDTWA
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER_PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI _AS | F_USER_SECONDARY_LI TTLE
ASI _REAL ASI _REAL LI TTLE
ASI _REAL_10O ASI _REAL 1O LI TTLE
22161 (ASI _LDTX_Al UP) 2A161 (ASI _LDTD_AI UP_L)
23161 (ASI _LDTX_Al US) 2B1gt (ASI _LDTX_AlIUS_L)
24,67 (aliased to 271¢, ASI _LDTX_N) 2C¢} (aliased to 2Fg, ASI _LDTX_NL)
26,61 (ASI _LDTX_REAL) 2E;61 (ASI _LDTX_REAL_L)
27161 (ASI _LDTX_N) 2F161 (ASI _LDTX_NL)
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See Also

LDTWA (Deprecated)

ASlIs valid for LDTWA

ASI _PRI MARY ASI _PRI MARY_LI TTLE

ASI _SECONDARY ASI _SECONDARY_LI TTLE

ASI _PRI MARY_NO_FAULT ASI _PRI MARY_NO FAULT LI TTLE
ASI _SECONDARY_NO FAULT ASI _SECONDARY_NO FAULT LI TTLE
E2;6% (AS| _LDTX_P) EAef (ASI _LDTX_PL)

E3;6t (ASl _LDTX_S) EB;et (ASI _LDTX_SL)

1 If this ASI is used with the opcode for LDTWA and i =0, the LDTXA

instruction is executed instead of LDTWA. For behavior of

LDTXA, see Load Integer Twin Extended Word from Alternate Space on page
250.

If this ASI is used with the opcode for LDTWA and i = 1, behavior is
undefined.

Programming | Nontranslating ASIs (see page 387) should only be accessed

Note | using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a data_access_exceptionexception (impl. dep.
#300-U4-Cs10).

Implementation | The deprecated instruction LDTWA shares an opcode with

Note | LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 250.

unimplemented_LDTW illegal_instruction
mem_address_not_aligned
privileged_action

VA_watchpoint

data_access_exception

LDWA /LDXA on page 229
STTWA on page 332
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8.61

Memory Barrier

Instruction op3 Operation Assembly Language Syntax Class

MEMBAR 10 1000 Memory Barrier menbar membar_mask Al

10 op3 01111 i= — cmask | mmask
31 30 29 25 24 19 18 14 13 12 7 6 4 3 0
Description The memory barrier instruction, MEMBAR, has two complementary functions: to

express order constraints between memory references and to provide explicit control
of memory-reference completion. The membar_mask field in the suggested assembly
language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references
appearing before the MEMBAR and memory references following it in a program.
The particular classes of memory references are specified by the mmask field.
Memory references are classified as loads (including load instructions LDSTUB[A],
SWAP[A], CASA, and CASX[A] and stores (including store instructions LDSTUB[A],
SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of
memory references subject to ordering, as described below. MEMBAR applies to all
memory operations in all address spaces referenced by the issuing virtual processor,
but it has no effect on memory references by other virtual processors. When the
cmask field is nonzero, completion as well as order constraints are imposed, and the
order imposed can be more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from
memory and cannot be modified by another virtual processor. A store has been
performed when the value stored has become visible, that is, when the previous
value can no longer be read by any virtual processor. In specifying the effect of
MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has
begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 8-7 specifies
the order constraint that each bit of mmask (selected when set to 1) imposes on
memory references appearing before and after the MEMBAR. From zero to four
mask bits may be selected in the mmask field.

258 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



MEMBAR

TABLE8-7 MEMBAR mmask Encodings
Assembly

Mask Bit Language Name Description

mmask{3}  #St or eSt or e The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction.

mmask{2}  #LoadSt ore Allloads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{l}  #St oreLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must

have been performed before any loads following the MEMBAR
may be performed.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask
field, described in TABLE 8-8, specify additional constraints on the order of memory
references and the processing of instructions. If cmask is zero, then MEMBAR
enforces the partial ordering specified by the mmask field; if cmask is nonzero, then
completion and partial order constraints are applied.

TaBLE8-8 MEMBAR cmask Encodings
Assembly
Mask Bit Function Language Name Description
cmask{2}  Synchronization  #Sync All operations (including nonmemory
barrier reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.
cmask{l} Memory issue #Menl ssue  All memory reference operations appearing
barrier prior to the MEMBAR must have been
performed before any memory operation
after the MEMBAR may be initiated.
cmask{0} Lookaside barrier #lLookasi de A store appearing prior to the MEMBAR

must complete before any load following the
MEMBAR referencing the same address can
be initiated.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on
page 381 and Programming with the Memory Models contained in the separate volume
UltraSPARC Architecture Application Notes. For additional information about the
memory models themselves, see Chapter 9, Memory.
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The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

MEMBAR with mmask = 8,4 and cmask = 0;4 (MEMBAR
#St or eSt or e) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

V9 Compatibility
Note

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero
causes an illegal_instruction exception.

MEMBAR shares an opcode withRDasr and STBARP; it is
distinguished by rs1=15,rd =0, i=1, and bit 12 = 0.

Implementation
Note

8.61.1  Memory Synchronization

The UltraSPARC Architecture provides some level of software control over memory
synchronization, through use of the MEMBAR and FLUSH instructions for explicit
control of memory ordering in program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the
operation of each MEMBAR variant in any manner that provides the required
semantics.

Implementation | For an UltraSPARC Architecture virtual processor that only

Note | provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 8-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

TABLE 8-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#St oreSt ore, STBAR NOP

#LoadSt or e NOP
#St or eLoad #Sync
#LoadLoad NOP
#Sync #Sync
#Mem ssue #Sync
#Lookasi de #Sync

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.
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8.61.2

8.61.3

Exceptions

MEMBAR

Synchronization of the Virtual Processor

Synchronization of a virtual processor forces all outstanding instructions to be
completed and any associated hardware errors to be detected and reported before
any instruction after the synchronizing instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR
instruction (MEMBAR #Sync) or by executing an LDXA /STXA /LDDFA /STDFA
instruction with an ASI that forces synchronization.

Programming | Completion of a MEMBAR #Sync instruction does not
Note | guarantee that data previously stored has been written all the
way out to external memory. Software cannot rely on that
behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory.

TSO Ordering Rules affecting Use of MEMBAR

For detailed rules on use of MEMBAR to enable software to adhere to the ordering
rules on a virtual processor running with the TSO memory model, refer to TSO
Ordering Rules on page 378.

illegal_instruction
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8.62

For Integer Condition Codes

MOVcc

Move Integer Register on Condition
(MOVcc)

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class
MOVA 101100 1000 Move Always 1 nova  i_or_x_cc, reg_or_immll, reg. Al
MOVN 101100 0000 Move Never 0 nmovn  i_or_x_cc, reg_or_immll, regy Al
MOVNE 101100 1001 Move if Not Equal not Z movnet i_or_x_cc, reg_or_immil, regyq Al
MOVE 101100 0001 Move if Equal 4 movet ior_x_cc, reg_or_immll, regyq Al
MOVG 101100 1010 Move if Greater not (Z or nmovg  i_or_x_cc, reg_or_immll, reg Al
N xor V))
MOVLE 101100 0010 Move if Less or Zor (N xorV) novle ior_x_cc, reg or_immll, regyq Al
Equal
MOVGE 101100 1011 Move if Greater not (N xor V) novge i_or_x_cc, reg_or_immll, reg.q Al
or Equal
MOVL 10 1100 0011 Move if Less N xor V nmov| i_or_x_cc, reg_or_immll, reg.y Al
MOVGU 101100 1100 Move if Greater, not (C or Z) novgu i_or_x_cc, reg_or_immll, regq Al
Unsigned
MOVLEU 101100 0100 Move if Less or (CorZz) nmovl eu i_or_x_cc, reg_or_immll, reg. Al
Equal, Unsigned
MOVCC 101100 1101 Move if Carry not C movee® ior_x_cc, reg_or_immll, regyq Al
Clear (Greater or
Equal, Unsigned)
MOVCS 101100 0101 Move if Carry Set C movesY i_or_x_cc, reg_or_immll, regyq Al
(Less than,
Unsigned)
MOVPOS 101100 1110 Move if Positive not N novpos i_or_x_cc, reg_or_immll, regy Al
MOVNEG 101100 0110 Move if Negative N novneg i_or_x_cc, reg_or_immll, reg. Al
MOVVC 101100 1111 Move if Overflow  notV nmovvc i_or_x_cc, reg_or_immll, reg Al
Clear
MOVVS 101100 0111 Move if Overflow V novvs i_or_x_cc, reg_or_immll, reg.q Al

Set

t synonym: movnz

¥ synonym: movz

© synonym: movgeu

Y synonym: movl u

Programming | In assembly language, to select the appropriate condition code,
Note | include % cc or %&cc before the reg_or_imm11 field.
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For Floating-Point Condition Codes

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 101100 1000 Move Always 1 nmova % ccn, reg_or_immll, reg.q Al

MOVEN 101100 0000 Move Never 0 movn 9% ccn, reg_or_immll, reg.g Al

MOVFU 101100 0111 Move if Unordered U movu Y% ccn, reg_or_immll, regyq Al

MOVFG 101100 0110 Move if Greater G novg % ccn, reg_or_immll, reg.y Al

MOVFUG 101100 0101 Move if Unordered G or U nmovug % ccn, reg_or_immll, reg.g Al
or Greater

MOVFL 101100 0100 Move if Less L novl % ccn, reg_or_immll, reg.y Al

MOVFUL 101100 0011 Move if Unordered L orU novul % ccn, reg_or_immll, reg.y Al
or Less

MOVFLG 101100 0010 Move if Less or LorG movl g 9% ccn, reg_or_immll, reg.y Al
Greater

MOVENE 101100 0001 Move if Not Equal L or G or U movne® % ccn, reg or_immil, reg.q Al

MOVFE 101100 1001 Move if Equal E movel % ccn, reg_or_imm1l, regq Al

MOVFUE 101100 1010 Move if Unordered E or U novue 9% ccn, reg_or_immll, reg.g Al
or Equal

MOVFGE 101100 1011 Move if Greater or E or G novge 9% ccn, reg_or_immll, reg.y Al
Equal

MOVFUGE 101100 1100 Move if Unordered E or G or U novuge 9% ccn, reg_or_immll, regyq Al
or Greater or Equal

MOVFLE 101100 1101 Move if Less or EorL movl e 9% ccn, reg_or_immll, reg.q Al
Equal

MOVFULE 101100 1110 Move if Unordered E orL or U novul e % ccn, reg_or_immll, reg.y Al
or Less or Equal

MOVFO 101100 1111 Move if Ordered EorLorG novo % ccn, reg_or_immll, reg.y Al

' synonym: movnz ¥ synonym: movz

Programming | In assembly language, to select the appropriate condition code,
Note | include % ccO, % cc1, % cc2, or % cc3 before the reg_or_imm11

field.
10 rd op3 cc cond i=0fcc1fccO — rs2
10 rd op3 cc2l  cond i=1|cc cco simm11
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0
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cc2 ccl ccO Condition Code

e e e OO O O
_— = OO = = OO
— O R, O R, O -

0 fccO

fccl

fcc2

fce3

icc

Reserved (illegal_instruction)
Xce

Reserved (illegal_instruction)

Description These instructions test to see if cond is TRUE for the selected condition codes. If so,
they copy the value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd].
The condition code used is specified by the cc2, ccl, and ccO fields of the
instruction. If the condition is FALSE, then R[rd] is not changed.

These instructions copy an integer register to another integer register if the condition
is TRUE. The condition code that is used to determine whether the move will occur
can be either integer condition code (icc or xcc) or any floating-point condition code
(fccO, fcel, fee2, or feel).

These instructions do not modify any condition codes.

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement
if (A>B) then X = 1; else X = 0;
can be coded as
cnp % 0, % 2
bg,a %cc, | abel
or %90, 1, % 3! X
or %90, 0, % 3! X
| abel : ...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:
cnp % 0, % 2

or %90, 1, % 3! assune X =1

movl e 9xcc,0,% 3! overwite with X =0
This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVce and FMOVcec
instead of branches wherever these instructions would increase
performance.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are

nonzero or (Cc2 ::

ccl :: cc0) = 101, or 111, causes an illegal_instruction exception.
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If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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8.63  Move Integer Register on Register
Condition (MOVr)

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 101111 000 Reserved (illegal_instruction) —
MOVRZ 101111 001 Move if Register Zero RIs11=0 novrzt  regq, reg or_imml0, regq Al

MOVRLEZ 101111 010 Move if Register Less Rlrsl]<0 novrl ez reggy, reg_or_imml0, regyq Al
Than or Equal to Zero

MOVRLZ 101111 011 Move if Register Less Rrs1]<0 nmovrlz regsp, reg_or_imml0, regyg Al
Than Zero

— 101111 100 Reserved (illegal_instruction) —
MOVRNZ 101111 101 Move if Register Not RIrs11#20  novrnzt regrs1, reg_or_imml0, regyy Al

Zero
MOVRGZ 101111 110 Move if Register RIrs1]>0 novrgz regwg1, reg_or_imml0, regyy Al
Greater Than Zero
MOVRGEZ 101111 111 Move if Register Rlrs1]=0 novrgez regygy, reg_or_imml0, regyq Al
Greater Than or Equal
to Zero
t synonym: movr e ¥ synonym: movr ne
10 rd op3 | rsi i=0[ rcond — rs2
10 rd op3 rsl i=1| rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy their second operand (if i =0, R[rs2]; ifi=1,
sign_ext(simm10)) into R[rd]. If the contents of R[rs1] do not satisfy the condition,
then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not
modify any condition codes.
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Exceptions

Implementation
Note

MOVr

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

An attempt to execute a MOVr instruction when either instruction bits 9:5 are

nonzero or rcond =

illegal_instruction

000, or 100, causes an illegal_instruction exception.

CHAPTER 8 - Instructions 267



MULScc - Deprecated

8.64  Multiply Step

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
MULScc? 100100 Multiply Step and modify cc’s nul scc  regygy, reg_or_imm, regqy Y3
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of
the Y register as a single 64-bit, right-shiftable doubleword register. The least
significant bit of R[rs1] is treated as if it were adjacent to bit 31 of the Y register. The
MULScc instruction performs an addition operation, based on the least significant
bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1]
contains the most significant bits of the product, and R[rs2] contains the
multiplicand. Upon completion of the multiplication, the Y register contains the least
significant bits of the product.

Note | In a standard MULScc instruction, rs1 = rd.

MULScc operates as follows:
1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext( sSimm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCRu.cc.n xor CCRu.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for
the previous partial product.)

3. If the least significant bit of Y =1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y =0, then 0 is added to
the shifted value from step (2).
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Exceptions

MULScc - Deprecated

4. MULScc writes the following result values:

Register field Value written by MULScc

CCRuicc updated according to the result of the addition in step (3)
above

R[rd]{63:32} undefined

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one

bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCRxcc undefined

5. The Y register is shifted right by one bit, with the least significant bit of the
unshifted R[rs1] replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

illegal_instruction
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MULX / SDIVX / UDIVX

8.65

Multiply and Divide (64-bit)

Instruction op3 Operation Assembly Language Class
MULX 00 1001 Multiply (signed or unsigned) mul x regrs1, 1eg_or_imm, regiq Al
SDIVX 10 1101 Signed Divide sdi vx regrs1, teg_or_imm, regyg Al
UDIVX 001101 Unsigned Divide udi vx regrs1, reg_or_imm, regyq Al
10 rd op3 rsl i=0| — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description =~ MULX computes “R[rs1] x R[rs2]” if i = 0 or “R[rs1] x sign_ext( simm13)” if i =1,
and writes the 64-bit product into R[rd]. MULX can be used to calculate the 64-bit
product for signed or unsigned operands (the product is the same).
SDIVX and UDIVX compute “R[rs1] + R[rs2]” if i =0 or
“R[rs1] + sign_ext( simm13)” if i = 1, and write the 64-bit result into R[rd]. SDIVX
operates on the operands as signed integers and produces a corresponding signed
result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.
For SDIVX, if the largest negative number is divided by -1, the result should be the
largest negative number. That is:
8000 0000 0000 00004¢ + FFFF FFFF FFFF FFFF ¢ = 8000 0000 0000 00001.
These instructions do not modify any condition codes.
An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.
Exceptions illegal_instruction

division_by_zero
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8.66  No Operation

Instruction op2 Operation Assembly Language Syntax Class
NOP 100 No Operation nop Al
00 (rd=00000 op2 imm22=0000000000000000000000
31 30 29 25 24 22 21 0

Description The NOP instruction changes no program-visible state (except that of the PC
register).

NOP is a special case of the SETHI instruction, with imm22 =0 and rd = 0.

Programming | There are many other opcodes that may execute as NOPs;
Note | however, this dedicated NOP instruction is only one guaranteed
to implemented efficiently across all implementations.

Exceptions None
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8.67  NORMALW

Instruction Operation Assembly Language Syntax Class
NORMALW?  “Other” register windows become “normal” register windows nor mal w C1
10 | fcn=00100 11 0001 —
31 30 29 25 24 19 18 0

Description NORMALWY is a privileged instruction that copies the value of the OTHERWIN
register to the CANRESTORE register, then sets the OTHERWIN register to zero.

Programming | The NORMALW instruction is used when changing address
Notes | spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
See Also ALLCLEAN on page 136

INVALW on page 225
OTHERW on page 274
RESTORED on page 292
SAVED on page 300
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8.68  OR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
OR 00 0010 Inclusive or or regrs1, reg_or_imm, regyq Al
ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regyy Al
ORN 00 0110 Inclusive or not orn regys1, 1eg_or_imm, regyq Al
ORNCcc 01 0110 Inclusive or not and modify cc’s  orncc  reg.gp, reg_or_imm, reg.g Al

10 rd op3 rsi i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions implement bitwise logical or operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into
R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

= icc.y, icc.c, xce.v, and xcc.c are set to 0

= icc.n is copied from bit 31 of the result

= Xcc.n is copied from bit 63 of the result

= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)

= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNCcc logically negate their second operand before applying the main
(or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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8.69  OTHERW

Instruction Operation Assembly Language Syntax Class

OTHERW? “Normal” register windows become “other” ot herw C1
register windows

10 | fcn=00011 11 0001 —
31 30 29 25 24 19 18 0

Description OTHERWY is a privileged instruction that copies the value of the CANRESTORE
register to the OTHERWIN register, then sets the CANRESTORE register to zero.

Programming | The OTHERW instruction is used when changing address spaces.

Notes | OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in

software.
Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
See Also ALLCLEAN on page 136

INVALW on page 225
NORMALW on page 272
RESTORED on page 292
SAVED on page 300
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8.70  Pixel Component Distance

Instruction  opf Operation Assembly Language Syntax Class

PDIST 000111110 Distance between eight 8-bit components, pdi st  fregs1, fregiso, fregrq  C3
with accumulation

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
Fplrsl] and Fp[rs2]. The corresponding 8-bit values in the source registers are
subtracted (that is, each byte in Fp[rs2] is subtracted from the corresponding byte in
Fplrsl]). The sum of the absolute value of each difference is added to the integer in
Fplrd] and the resulting integer sum is stored in the destination register, Fp[rd].

Programming | PDIST uses Fp[rd] as both a source and a destination register.

Notes Typically, PDIST is used for motion estimation in video

compression algorithms.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction
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8.71  Population Count

Instruction op3 Operation Assembly Language Syntax Class
POPC 10 1110 Population Count popc reg_or_imm, regq D3
10 rd | op3 | 00000 |i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ POPC counts the number of one bits in R[rs2] if i = 0, or the number of one bits in
sign_ext( simm13) if i = 1, and stores the count in R[rd]. This instruction does not

modify the condition codes.
V9 Compatibility | Instruction bits 18 through 14 must be zero for POPC. Other
Note | encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming | POPC can be used to “find first bit set” in a register. A ‘C’-
Note | language program illustrating how POPC can be used for this
purpose follows:

int ffs(zz)/* finds first 1 bit, counting fromthe LSB */
unsi gned zz;

{
return popc ( zz ~ (0O (-zz)));/* for nonzero zz */
}
Inline assembly language code for f f s() is:
neg %N, %VI_IN I —zz(2's conpl enent)
xnor %N, %VI_IN, YWAEMP ! ~ O —zz (exclusive nor)
popc YTEMP, YRESULT ! result = popc(zz N O -zz)
nmovrz %N, %90, YRESULT I %RESULT shoul d be 0 for % N=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:

IN = ...00101000 !1st ‘1" bit fromright is
—-IN=...11011000 ! bit 3 (4th bit)
~—-IN=...00100111
IN~ ~—IN=...00001111
popc(IN~ ~—IN = 4
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POPC

Programming | POPC can be used to “centrifuge” all the ‘1" bits in a register to the
Note | least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %N, YDEST

cnp %N, -1 | Test for pattern of all 1's
nmov -1, WEMP I Constant -1 -> tenp register
sl x YTEMP, YDEST, Y“ODEST ! (shift count of 64 same as 0)
not YDEST !

novcc  Wcc, -1, Y%DEST ' If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

An attempt to execute a POPC instruction when either instruction bits 18:14 are
nonzero, or i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception.

illegal_instruction
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8.72 Prefetch

PREFETCH

Instruction op3 Operation Assembly Language Syntax Class
PREFETCH 101101 Prefetch Data prefetch [address], prefetch_fcn Al
PREFETCHAP*' 111101 Prefetch Data from pref etcha [regaddr] imm_asi, prefetch_fcn Al
Alternate Space prefetcha [ reg_plus_imm] Y@&si, prefetch_fen
PREFETCH
11 fcn op3 rsl i=0 — rs2
11 fcn op3 rsi |i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
PREFETCHA
11 fcn op3 rsl i=0 imm_asi rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

TABLE 8-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads
3 (Weak) Prefetch for one write

4 Prefetch page

5-15 (0514—0F¢) Reserved (illegal_instruction)

16 (104¢) Implementation dependent (NOP if not implemented)
17 (1144) Prefetch to nearest unified cache

18-19 (1214-1314) Implementation dependent (NOP if not implemented)
20 (144¢) Strong Prefetch for several reads

21 (15¢¢) Strong Prefetch for one read

22 (1644) Strong Prefetch for several writes and possibly reads
23 (171¢) Strong Prefetch for one write

24-31 (18,4-1Fy¢)

Implementation dependent (NOP if not implemented)
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PREFETCH

A PREFETCHJ[A] instruction provides a hint to the virtual processor that software
expects to access a particular address in memory in the near future, so that the
virtual processor may take action to reduce the latency of accesses near that address.
Typically, execution of a prefetch instruction initiates movement of a block of data
containing the addressed byte from memory toward the virtual processor or creates
an address mapping.

Implementation | A PREFETCHJ[A] instruction may be used by software to:

Note |, prefetch a cache line into a cache

o prefetch a valid address translation into a TLB
L]

If i = 0, the effective address operand for the PREFETCH instruction is
“R[rsl] + R[rs2]”; if i = 1, it is “R[rs1] + sign_ext (sSimm13)”.

PREFETCH instructions access the primary address space
(ASI _PRI MARY[_LI TTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address
space identifier (ASI) to be used for the instruction is in the imm_asi field. If i = 1, the
ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation, but with certain
important differences. In particular, a PREFETCH[A] instruction is non-blocking;
subsequent instructions can continue to execute while the prefetch is in progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same
observable effect as a NOP. A prefetch instruction will not cause a trap if applied to
an illegal or nonexistent memory address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block
prefetched is implementation dependent; the minimum size is 64 bytes and the
minimum alignment is a 64-byte boundary.
Programming | Software may prefetch 64 bytes beginning at an arbitrary address
Note | address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

Variants of the prefetch instruction can be used to prepare the memory system for
different types of accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or
all of the defined PREFETCHJA] variants. It is implementation-dependent whether
each variant is (1) not implemented and executes as a NODP, (2) is implemented and
supports the full semantics for that variant, or (3) is implemented and only supports
the simple common-case prefetching semantics for that variant.
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PREFETCH

8.72.1 Exceptions

Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the
conditions detailed in TABLE 8-11. Only the implementation-dependent prefetch
variants (see TABLE 8-10) may generate an exception under conditions not listed in

this table; the predefined variants only generate the exceptions listed here.

TABLE 8-11 Behavior of PREFETCHJ[A] Instructions Under Exceptional Conditions

fcn Instruction Condition Result

any PREFETCH i =0 and instruction bits 12:5 are illegal_instruction
nonzero

any PREFETCHA  reference to an ASI in the range executes as NOP
016-7F1¢, while in nonprivileged
mode (privileged_action condition)

any PREFETCHA reference to an ASI in range executes as NOP
301¢..7F1¢, while in privileged
mode (privileged_action condition)

0-3 PREFETCHJ[A] condition detected for MMU miss executes as NOP

(weak)

0-4 PREFETCH[A] variant unimplemented executes as NOP

0-4 PREFETCHA  reference to an invalid ASI executes as NOP

0-4,17, PREFETCH[A]

20-23

4,20-23 PREFETCHJ[A]
(strong)

5-15 PREFETCH[A]
(0516—0F1¢)

16-31 PREFETCH[A]

(1816—1F1¢)

(ASI not listed in following table)

condition detected for ((TTE.cp =0) executes as NOP
or ((fcn =0) and TTE.cv = 0)), or

(TTEe =1)

prefetching the requested data executes as NOP
would be a very time-consuming

operation

(always) illegal_instruction
variant unimplemented executes as NOP

ASils valid for PREFETCHA (all others are invalid)

ASI _NUCLEUS

ASI _NUCLEUS LI TTLE

AS| _AS | F_USER PRI MARY ASI _AS | F_USER PRI MARY LI TTLE

AS| _AS | F_USER SECONDARY

ASI _PRI MARY
ASI _SECONDARY
ASI _PRI MARY_NO_FAULT

ASI _PRI MARY_LI TTLE
ASI _SECONDARY_LI TTLE
ASI _PRI MARY_NO FAULT_LI TTLE

ASI _SECONDARY_NO_FAULT ASI _SECONDARY_NO FAULT LI TTLE

ASI _REAL

ASI _REAL_LI TTLE
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8.72.2

8.72.3

PREFETCH

Weak versus Strong Prefetches

Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of
certainty that the data being prefetched will subsequently be accessed. That, in
turn, affects the amount of effort (time) it’s willing for the underlying hardware to
invest to perform the prefetch. If the prefetch is speculative (software believes the
data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and
behave like a NOP if it turns out that performing the full prefetch will be time-
consuming. If software has very high confidence that data being prefetched will
subsequently be accessed, then a Strong prefetch requests that the prefetch operation
will continue, even if the prefetch operation does become time-consuming.

From the virtual processor’s perspective, the difference between a Weak and a
Strong prefetch is whether the prefetch is allowed to perform a time-consuming
operation in order to complete. If a time-consuming operation is required, a Weak
prefetch will abandon the operation and behave like a NOP while a Strong prefetch
may pay the cost of performing the time-consuming operation so it can finish
initiating the requested data movement. Behavioral differences among loads and
prefetches are compared in TABLE 8-12.

TABLE 8-12 Comparative Behavior of Load and Weak Prefetch Operations

Behavior

Condition Load Prefetch

Upon detection of privileged_action, data_access_exception Traps NOPt
or VA_watchpoint exception...

If page table entry has cp =0, e = 1, and cv = 0 for Prefetch for Traps NOP%
Several Reads

If page table entry has nfo = 1 for a non-NoFault access... Traps NOPt

If page table entry has w = 0 for any prefetch for write access Traps NOPf
(fen =2, 3,22, or 23)...

Instruction blocks until cache line filled? Yes No

Prefetch Variants

The prefetch variant is selected by the fcn field of the instruction. fcn values 5-15 are
reserved for future extensions of the architecture, and PREFETCH fcn values of 16—
19 and 24-31 are implementation dependent in UltraSPARC Architecture 2005.
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Each prefetch variant reflects an intent on the part of the compiler or programmer, a
“hint” to the underlying virtual processor. This is different from other instructions
(except BPN), all of which cause specific actions to occur. An UltraSPARC
Architecture implementation may implement a prefetch variant by any technique, as
long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are
intended to provide scalability for future improvements in both hardware and
compilers. If a variant is implemented, it should have the effects described below. In
case some of the variants listed below are implemented and some are not, a
recommended overloading of the unimplemented variants is provided in the SPARC
V9 specification. An implementation must treat any unimplemented prefetch fcn
values as NOPs (impl. dep. #103-V9-Ms10).

8.72.3.1 Prefetch for Several Reads (fcn = 0, 20(144¢))

The intent of these variants is to cause movement of data into the cache nearest the
virtual processor.

There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and
fcn = 20 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | The intended use of this variant is for streaming relatively small
Note | amounts of data into the primary data cache of the virtual
processor.

8.72.3.2 Prefetch for One Read (fcn =1, 21(154¢))

The data to be read from the given address are expected to be read once and not
reused (read or written) soon after that. Use of this PREFETCH variant indicates
that, if possible, the data cache should be minimally disturbed by the data read from
the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and
fcn = 21 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | The intended use of this variant is in streaming medium amounts
Note | of data into the virtual processor without disturbing the data in
the primary data cache memory.

8.72.3.3 Prefetch for Several Writes (and Possibly Reads)
(fcn =2, 22(1616))

The intent of this variant is to cause movement of data in preparation for multiple
writes.
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8.72.4

PREFETCH

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and
fcn = 22 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

Programming | An example use of this variant is to initialize a cache line, in
Note | preparation for a partial write.

Implementation | On a multiprocessor system, this variant indicates that exclusive

Note | ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.

8.72.3.4 Prefetch for One Write (fcn = 3, 23(174¢))

The intent of this variant is to initiate movement of data in preparation for a single
write. This variant indicates that, if possible, the data cache should be minimally
disturbed by the data written to this address, because those data are not expected to
be reused (read or written) soon after they have been written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and
fcn = 23 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

8.72.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or
privileged or hyperprivileged software) to initiate asynchronous mapping of the
referenced virtual address (assuming that it is legal to do so).

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

In a non-virtual-memory system or if the addressed page is already mapped, this
variant has no effect.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.

Implementation-Dependent Prefetch Variants
(fen =16, 18, 19, and 24-31)

IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-
31 are implemented are implementation dependent. If a variant is not implemented,
it must execute as a NOP.
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PREFETCH
Additional Notes

Programming | Prefetch instructions do have some “cost to execute”. As long as

Note | the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming | A compiler that generates PREFETCH instructions should

Note | generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation | Any effects of a data prefetch operation in privileged code should
Note | be reasonable (for example, no page prefetching is allowed within
code that handles page faults). The benefits of prefetching should

be available to most privileged code.

Implementation | A prefetch from a nonprefetchable location has no effect. It is up
Note | to memory management hardware to determine how locations
are identified as not prefetchable.

illegal_instruction
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8.73

RDasr

Read Ancillary State Register

Instruction rsl  Operation Assembly Language Syntax Class

RDYP 0  Read Y register (deprecated) rd %, regyq Cc2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %cr, regyq Al

RDASI 3 Read ASI register rd %asi, regyq Al

RDTICKPnet 4  Read TICK register rd %ick, regq Al

RDPC 5 Read Program Counter (PC) rd %pc, regyq B2

RDFPRS 6  Read Floating-Point Registers Status (FPRS) rd % prs, regyq Al
register

— 7-14 Reserved

See text 15 STBAR, MEMBAR or Reserved; see text

RDPCRP 16  Read Performance Control registers (PCR) rd %pcr, regq Al

RDPICPrc 17 Read Performance Instrumentation Counters rd 9%pic, regyq Al
register (PIC)

— 18  Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 Read General Status register (GSR) rd %gsr, regq Al

— 20-21 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDSOFTINT? 22 Read per-virtual processor Soft Interrupt register rd %sof ti nt, regyq N2
(SOFTINT)

RDTICK_CMPRF 23 Read Tick Compare register (TICK_CMPR) rd %ick_cnpr, regy N2

RDSTICK et 24 Read System Tick Register (STICK) rd 9%ys_tick, regq N2

RDSTICK_CMPR' 25 Read System Tick Compare register rd %sys_tick_cnpr, regq N2
(STICK_CMPR)

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28-31 Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

10 rd 10 1000 rsl |i:O —
31 30 29 25 24 19 18 14 13 12 0
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RDasr

The Read Ancillary State Register (RDasr) instructions copy the contents of the state
register specified by rsl into R[rd].

An RDasr instruction with rsl =0 is a (deprecated) RDY instruction (which should
not be used in new software).

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full
64-bit address is copied into R[rd]. If PSTATE.am =1, only a 32-bit address is saved;
PC{31:0} is copied to R[rd]{31:0} and R[rd]{63:32} is set to 0. (closed impl. dep. #125-
V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to
complete before reading the FPRS register.

The following values of rsl are reserved for future versions of the architecture: 1, 7—
14, 18, 20-21, and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28-31 are

available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr

instruction with rsl in the range 28-31, the following are implementation

dependent:

» the interpretation of bits 13:0 and 29:25 in the instruction

= whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20),
and

= whether an attempt to execute the instruction causes an illegal_instruction
exception.

Implementation | See the section “Read/Write Ancillary State Registers (ASRs)” in

Note | Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note | Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8 | The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
Compatibility | exist in the UltraSPARC Architecture, since the PSR, WIM, and
Note | TBR registers do not exist.

See Ancillary State Registers on page 67 for more detailed information regarding ASR
registers.
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See Also

RDasr

Exceptions. An attempt to execute a RDasr instruction when any of the following
conditions are true causes an illegal_instruction exception:

= rsl=15and rd # 0 (reserved for future versions of the architecture)

= 1sl=1,7-14, 18, 20-21, or 26-27 (reserved for future versions of the architecture)
= instruction bits 13:0 are nonzero

An attempt to execute a RDPCR (impl. dep. #250-U3-Cs10), RDSOFTINT,
RDTICK_CMPR, RDSTICK, or RDSTICK_CMPR instruction in nonprivileged mode
(PSTATE.priv = 0) causes a privileged_opcode exception (impl. dep. #250-U3-Cs10).

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0), the following cause a privileged_action
exception:

= execution of RDTICK when TICK.npt=1
= execution of RDSTICK when STICK.npt =1
= execution of RDPIC when nonprivileged access to PIC is disabled (PCR.priv=1)

Implementation | RDasr shares an opcode withMEMBAR and STBARD; it is
Note | distinguished by rs1 =15 or rd =0 or (i = 0, and bit 12 = 0).

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDPR on page 288
WRasr on page 353
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8.74

Read Privileged Register

Instruction op3 Operation rsi Assembly Language Syntax Class
RDPRF 101010  Read Privileged register C2
TPC 0 rdpr % pc, regyg
TNPC 1 rdpr % npc, regyq
TSTATE 2 rdpr % state, regyq
T 3 rdpr %t, regq
TICK 4 rdpr % ick, regyq
TBA 5 rdpr % ba, regq
PSTATE 6 rdpr Upstate, regyq
TL 7 rdpr %1, regyq
PIL 8 rdpr Yoi |, regyq
CWP 9 rdpr Yewp, regrg
CANSAVE 10 rdpr Y%ansave, regyq
CANRESTORE 1 rdpr Yanrestore, regyq
CLEANWIN 12 rdpr Y%l eanwin, reggq
OTHERWIN 13 rdpr Y%t herwi n, regyq
WSTATE 14 rdpr Ynst at e, regq
Reserved 15
GL 16 rdpr %yl , regq
Reserved 17-31
10 | rd op3 rsl —
31 30 29 25 24 19 18 14 13 0
Description The rs1 field in the instruction determines the privileged register that is read. There

are MAXPTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of
these registers returns the value in the register indexed by the current value in the
trap level register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is
zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions

exist causes an illegal_instruction exception:

= instruction bits 13:0 are nonzero

= rsl=15,or 17 <rsl < 31 (reserved rsl values)

= 0<rsl< 3 (attempt to read TPC, TNPC,TSTATE, or TT register) while TL =0
(current trap level is zero) and the virtual processor is in privileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note | 0 <rsl < 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.
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Historical Note

Exceptions illegal_instruction
privileged_opcode

RDPR

On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rsl = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.

See Also RDasr on page 285
WRPR on page 356
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8.75  RESTORE

Instruction op3 Operation Assembly Language Syntax Class
RESTORE 111101 Restore Caller’s Window restore reg.y, reg_or_imm, regyq Al
10 rd 11 1101 rsi i= — rs2
10 rd 11 1101 rsi i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window
become the out registers of the new window. The in and local registers in the new
window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a
normal ADD instruction, except that the source operands R[rs1] or R[rs2] are read
from the old window (that is, the window addressed by the original CWP) and the
sum is written into R[rd] of the new window (that is, the window addressed by the
new CWP).

Note | CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming | Typically, if a RESTORE instruction traps, the fill trap handler

Notes | returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod
N_REG_WINDOWS) to restore the register window that was in use prior to the last
SAVE instruction executed by the current process. It also updates the state of the
register windows by decrementing CANRESTORE and incrementing CANSAVE.
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See Also

RESTORE

If the register window to be restored has been spilled (CANRESTORE = 0), then a
fill trap is generated. The trap vector for the fill trap is based on the values of
OTHERWIN and WSTATE, as described in Trap Type for Spi ll/Fill Traps on page 428.
The fill trap handler is invoked with CWP set to point to the window to be filled,
that is, old CWP - 1.

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

illegal_instruction

fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)

SAVE on page 298
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8.76

RESTORED

Instruction Operation Assembly Language Syntax Class
RESTORED”  Window has been restored restored C1l
10 fcn =0 0001 11 0001 —
31 30 29 25 24 19 18 0
Description RESTORED adjusts the state of the register-windows control registers.

RESTORED increments CANRESTORE.
If CLEANWIN < (N_REG_WINDOWS-1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN # 0, it
decrements OTHERWIN.

Programming | Trap handler software for register window fills use the

Notes | RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

If CANSAVE = 0 or CANRESTORE = (N_REG_WINDOWS — 2) just prior to execution of
a RESTORED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can RESTORED generate a register window state that is both
valid (see Register Window State Definition on page 85) and consistent with the state
prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are
nonzero causes an illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv
= 0) causes a privileged_opcode exception.
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See Also

RESTORED

illegal_instruction
privileged_opcode

ALLCLEAN on page 136
INVALW on page 225
NORMALW on page 272
OTHERW on page 274
SAVED on page 300
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8.77  RETRY

Instruction  op3 Operation Assembly Language Syntax Class
RETRY" 111110  Return from Trap (retry trapped instruction) retry C1
10 | fcn =0 0001 11 1110 —
31 30 29 25 24 19 18 0

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), sets PC and NPC, and decrements TL. RETRY sets
PC — TPC[TL] and NPC — TNPC[TL](normally, the values of PC and NPC saved at
the time of the original trap).

Programming | The DONE and RETRY instructions are used to return from
Note | privileged trap handlers.

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software,
RETRY causes execution to resume at the instruction that originally caused the trap
(“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction
produces undefined results.

If software writes invalid or inconsistent state to TSTATE before executing RETRY,
virtual processor behavior during and after execution of the RETRY instruction is
undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am =1 and (2) a RETRY instruction
is executed (which sets PSTATE.am to "1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
RETRY instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when the following
condition is true causes an illegal_instruction exception:
= TL =0 and the virtual processor is in privileged mode (PSTATE.priv = 1)
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An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

Implementation | In nonprivileged mode, illegal_instruction exception due to TL =0
Note | does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).

Exceptions illegal_instruction

privileged_opcode

See Also DONE on page 154
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8.78

RETURN

RETURN

Instruction op3 Operation Assembly Language Syntax Class
RETURN 111001 Return return address Al
10 — op3 rsl | i=o| — rs2
10 — op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The RETURN instruction causes a delayed transfer of control to the target address

and has the window semantics of a RESTORE instruction; that is, it restores the
register window prior to the last SAVE instruction. The target address is

“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if i = 1. Registers R[rs1]
and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible
prior to execution of the delay slot instruction.

Programming
Note

Programming
Note

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

j mpl % 6, %g0
return% 7

1 Trapped PC supplied to user trap handl er
1 Trapped NPC supplied to user trap handl er

A routine that uses a register window may be structured either as:

save Usp, - framesize, %sp
r et ! Sane as jnpl %7 +8, %0
restore 1 Sonet hi ng useful like “restore
1 %92, % 2, Y%00”
or as:
save Usp, -framesize, %sp

return %7 + 8
nop ! Coul d do sore useful
rcaller’s window, e.g.,

work in the

“or %1, %2, %©0”

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE

semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.
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A RETURN instruction causes a mem_address_not_aligned exception if either of the
two least-significant bits of the target address is nonzero.

Exceptions illegal_instruction
fill_n_normal (n = 0-7)
fill_n_other (n = 0-7)
mem_address_not_aligned
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SAVE

SAVE

Instruction op3 Operation Assembly Language Syntax Class
SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regyy Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The SAVE instruction provides the routine executing it with a new register window.

The out registers from the old window become the in registers of the new window.
The contents of the out and the local registers in the new window are zero or contain
values from the executing process; that is, the process sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal
ADD instruction, except that the source operands R[rs1] or R[rs2] are read from the
old window (that is, the window addressed by the original CWP) and the sum is

written into R[rd]
CWP).

Note

Programming
Notes

of the new window (that is, the window addressed by the new

CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

Description (Effect on Privileged State)

If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS)
to provide a new register window and updates the state of the register windows by
decrementing CANSAVE and incrementing CANRESTORE.
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Exceptions

See Also

SAVE

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is
generated. The trap vector for the spill trap is based on the value of OTHERWIN and
WSTATE. The spill trap handler is invoked with the CWP set to point to the window
to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is
zero, that is, (CLEANWIN — CANRESTORE) = 0. The clean_window trap handler is
invoked with the CWP set to point to the window to be cleaned (that is, old

CWP +1).

Programming
Note

illegal_instruction

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.

spill_n_normal (n = 0-7)
spill_n_other (n = 0-7)

clean_window

RESTORE on page 290
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SAVED

SAVED

Instruction

Operation

Assembly Language Syntax Class

SAVED?

Window has been saved saved C1l

10 | fcn =0 0000

11 0001 —

31 30 29

Description

Exceptions

25 24

19 18 0

SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements
CANRESTORE. If OTHERWIN # 0, it decrements OTHERWIN.

Programming
Notes

If CANSAVE = (N_

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

REG_WINDOWS - 2) or CANRESTORE = 0 just prior to execution of

a SAVED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can SAVED generate a register window state that is both valid
(see Register Window State Definition on page 85) and consistent with the state prior to

the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

illegal_instruction
privileged_opcode
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See Also

ALLCLEAN on page 136
INVALW on page 225
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292

SAVED
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8.81 SETHI

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100  Set High 22 Bits of Low Word sethi  const22, reg.y Al
sethi Wi (value), regyq

00 rd op2 imm22
31 30 29 25 24 22 21 0

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and
replaces bits 31 through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:
= rd =0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

« rd =0 and imm22 # 0 may be used to trigger hardware performance counters in
some UltraSPARC Architecture implementations (for details, see implementation-
specific documentation).

Programming | The most common form of 64-bit constant generation is creating
Note | stack offsets whose magnitude is less than 2%2. The code below can

be used to create the constant 0000 0000 ABCD 1234:

set hi %i (Oxabcd1234), %0

or %0, 0x234, %0
The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 12344:

set hi %i (0x5432edch), 00! not e 0x5432EDCB, not O0xABCD1234
xor %0, 0x1e34, %0! part of imm overlaps upper bits

Exceptions None
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SHUTDOWN (Deprecated)

882  SHUTDOWN

The SHUTDOWN instruction is deprecated and should not be used in new

software.

Instruction opf Operation Assembly Language Syntax Class
SHUTDOWNP® 010000000  Enter low-power mode shut down D3
10 — 110110 — opf —

31 30 29 25 24 19 18 14 13 5 4 0

Description SHUTDOWN is a deprecated, privileged instruction that was used in early
UltraSPARC implementations to bring the virtual processor or its containing system
into a low-power state in an orderly manner. It had no effect on software-visible
virtual processor state.

On an UltraSPARC Architecture implementation operating in privileged mode,
SHUTDOWN behaves like a NOP (impl. dep. #206-U3-Cs10).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and its effect is
emulated in software.

Exceptions illegal_instruction  (instruction not implemented in hardware)
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8.83  Set Interval Arithmetic Mode

Instruction  opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR  si am siam_mode B1

| 10 — 110110 — opf — mode|
31 30 29 25 24 19 18 14 13 5 4 3 2 0

Description ~ The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:
GSR.im —~ mode{2}
GSR.irnd — mode{1:0}
Note | When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-

mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note | When GSR.im =1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a STAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
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8.84  Shift

Instruction op3 X Operation Assembly Language Syntax Class
SLL 10 0101 0 Shift Left Logical — 32 bits sl | regrs1, reg_or_shcnt, reg.y Al
SRL 10 0110 0 Shift Right Logical — 32 bits srl regrs1, reg_or_shcnt, reg.g Al
SRA 10 0111 0 Shift Right Arithmetic— 32 bits sra regrs1, reg_or_shcnt, regyy Al
SLLX 10 0101 1 Shift Left Logical — 64 bits slIx  regs1, reg_or_shcnt, regy Al
SRLX 10 0110 1 Shift Right Logical — 64 bits srlx  regsy, reg_or_shcnt, regyqy Al
SRAX 10 0111 1 Shift Right Arithmetic — 64 bits srax  regus1, reg_or_shcnt, regy Al

10 rd op3 rsl i=0| x — rs2

10 rd op3 rsl i=1x= — shcnt32

10 rd op3 rsl i=1ix= — shcnt64

31 30 29 25 24 19 18 14 13 12 6 5 4 0

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When
i =1 and x = 0, the shift count is the immediate value specified in bits 0 through 4 of
the instruction.

When i =1 and x = 1, the shift count is the immediate value specified in bits 0
through 5 of the instruction.

TABLE 8-13 shows the shift count encodings for all values of i and x.

TABLE 8-13  Shift Count Encodings

i x  Shift Count

0 0 bits 4-0 of R[rs2]
0 1 bits 5-0 of R[rs2]
1 0
1 1

bits 4-0 of instruction

bits 5-0 of instruction

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits
specified by the shift count, replacing the vacated positions with zeroes, and write
the shifted result to R[rd].
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Exceptions

SLL /SRL / SRA

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero,
and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count. Zeroes are shifted into the vacated high-order bit positions, and the
shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count and replaces the vacated positions with bit 31 of R[rs1]. The high-
order 32 bits of the result are all set with bit 31 of R[rs1], and the result is written to
R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count and replaces the vacated positions with bit 63 of R[rs1]. The shifted
result is written to R[rd].

No shift occurs when the shift count is 0, but the high-order bits are affected by the
32-bit shifts as noted above.

These instructions do not modify the condition codes.

Programming | “Arithmetic left shift by 1 (and calculate overflow)” can be
Notes | effected with the ADDcc instruction.

The instruction “sra reg,s1, 0, regrq” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “sr |
regrs1, 0, regrg” can be used to clear the upper 32 bits of R[rd].

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are
nonzero causes an illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the
following conditions exist causes an illegal_instruction exception:

» i =0 or x =0 and instruction bits 11:5 are nonzero
» X =1 and instruction bits 11:6 are nonzero

illegal_instruction
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STB/STH/STW/STX

8.85

Store Integer

Instruction op3 Operation Assembly Language Syntax  Class
STB 00 0101 Store Byte stb®  reg.q, [ address] Al
STH 00 0110 Store Halfword sthi  reg.y, [ address) Al
STW 00 0100 Store Word stw’ regrq, | address) Al
STX 00 1110 Store Extended Word StX  regyq, [ address] Al
¥ synonyms: st ub, st sh ¥ synonyms: st uh, st sh © synonyms: St , st uw st sw
11 rd op3 rsl i=0| — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer instructions (except store doubleword) copy the whole extended
(64-bit) integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.
These instructions access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i=0, or
“R[rs1] + sign_ext( simm13)” if i = 1.
A successful store (notably, STX) integer instruction operates atomically.
An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.
STH causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STW causes a mem_address_not_aligned exception if the effective
address is not word-aligned. STX causes a mem_address_not_aligned exception if
the effective address is not doubleword-aligned.
Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint
See Also STTW on page 330
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STBA / STHA / STWA / STXA

8.86

Store Integer into Alternate Space

Instruction op3 Operation Assembly Language Syntax Class
STBAPst 010101  Store Byte into Alternate Space stba®  regyq, [ regaddr] imm_asi Al
stba  regq, [ reg_plus_imm] Y@si
STHAPAst 010110  Store Halfword into Alternate Space st hat  regq, [ regaddr] imm_asi Al
stha  regq, [ reg_plus_imm] Y@si
STWAPAs 010100  Store Word into Alternate Space stwa®  regq, [ regaddr] imm_asi Al
stwa  regq, [ reg_plus_imm] Y@si
STXAPast 011110 Store Extended Word into Alternate  stxa  regyq, [ regaddr] imm_asi Al
Space stxa  regq, [ reg_plus_imm] Y@si
tsynonyms: st uba, st sba ¥ synonyms: st uha, st sha © synonyms: st a, st uwa, st swa
11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The store integer into alternate space instructions copy the whole extended (64-bit)

integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI)
to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “R[rs1] + R[rs2]” if i =0, or
“R[rs1]+sign_ext( simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3044 to 7Fy¢, these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STWA causes a mem_address_not_aligned exception if the
effective address is not word-aligned. STXA causes a mem_address_not_aligned
exception if the effective address is not doubleword-aligned.
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STBA, STHA, and STWA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

ASls valid for STBA, STHA, and STWA

AS| _NUCLEUS

ASI _AS_| F_USER PRI MARY
ASl _AS | F_USER SECONDARY
ASI _REAL

ASI _REAL_|1 O

AS| PRI MARY
AS| _SECONDARY

ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER SECONDARY LI TTLE
ASl _REAL_LI TTLE

ASI_REAL_| O LI TTLE

ASl _PRI MARY_LI TTLE
AS|I _SECONDARY LI TTLE

STXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a

data_access_exception exception.

ASils invalid for STXA
246 (aliased to 271, ASI _LDTX_N)
ASI _BLOCK_AS_| F_USER_PRI MARY
ASI _BLOCK_AS_| F_USER_SECONDARY
24,6 (deprecated ASI _QUAD_LDD)

AS| _PST8_PRI MARY
AS| _PST8_SECONDARY

AS| _PRI MARY_NO FAULT

AS| _SECONDARY_NO FAULT
AS| _PST16_PRI MARY

AS| _PST16_SECONDARY

ASI _PST32_PRI MARY

ASI _PST32_SECONDARY

ASI _FL8_PRI MARY

AS| _FL8_SECONDARY

AS| _FL16_PRI MARY

ASI _FL16_SECONDARY

ASI _BLOCK_COMM T_PRI MARY
ASI _BLOCK_PRI MARY

AS| _BLOCK_SECONDARY

(cause data_access_exception exception)

2Cy¢ (aliased to 2F,, ASI _LDTX_NL)

ASI _BLOCK_AS_| F_USER PRI MARY_LI TTLE
ASI _BLOCK_AS_| F_USER_SECONDARY_LI TTLE
2Cy¢ (deprecated ASI _QUAD_LDD L)

AS| _PST8_PRI MARY_LI TTLE

AS| _PST8_SECONDARY_LI TTLE
AS| PRI MARY_NO FAULT LI TTLE
AS| _SECONDARY_NO FAULT LI TTLE
AS| _PST16_PRI MARY_LI TTLE
AS| _PST16_SECONDARY_ LI TTLE
AS| _PST32_PRI MARY_LI TTLE
AS| _PST32_SECONDARY_LI TTLE
AS| _FL8_PRI MARY_LI TTLE

AS| _FL8_SECONDARY LI TTLE

AS| _FL16_PRI MARY_LI TTLE

AS| _FL16_SECONDARY LI TTLE
AS| _BLOCK_COMM T_SECONDARY
AS| _BLOCK_PRI MARY_LI TTLE
AS| _BLOCK_SECONDARY_ LI TTLE

V8 Compatibility | The SPARC V8 STA instruction was renamed STWA in the

Note

SPARC V9 architecture.
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Exceptions mem_address_not_aligned (all except STBA)
privileged_action
VA_watchpoint

See Also LDA on page 229
STTWA on page 332
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STBAR - Deprecated

8.87 Store Barrier

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 Operation Assembly Language Syntax Class
STBARP 10 1000 Store Barrier st bar Y2
10 0 op3 01111 0 —
31 30 29 25 24 19 18 14 13 12 0

Description The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by a virtual processor prior to the STBAR to complete their effects
on memory before any store or atomic load-store operations issued by that virtual
processor subsequent to the STBAR are executed by memory.

V8 Compatibility | STBAR is identical in function to a MEMBAR instruction with
Notes | mmask = 8;4. STBAR is retained for compatibility with existing
SPARC V8 software.

For correctness, it is sufficient for a virtual processor to stop
issuing new store and atomic load-store operations when an
STBAR is encountered and to resume after all stores have
completed and are observed in memory by all virtual
processors. More efficient implementations may take advantage
of the fact that the virtual processor is allowed to issue store and
load-store operations after the STBAR, as long as those
operations are guaranteed not to become visible before all the
earlier stores and atomic load-stores have become visible to all
virtual processors.

An attempt to execute a STBAR instruction when instruction bits 12:0 are nonzero
causes an illegal_instruction exception.

Implementation | STBAR shares an opcode with MEMBAR, and RDasr; it is
Note | distinguished by rs1 =15, rd =0, i = 0, and bit 12 = 0.

Exceptions illegal_instruction
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STBLOCKF

8.88  Block Store

The STBLOCKEF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is

executing.
ASI
Instruction Value Operation Assembly Language Syntax Class
STBLOCKF 1614 64-byte block store to primary address stda fregy, [ regaddr] #ASI _BLK_Al UP A2
space, user privilege stda fregy, [reg_plus_imm] %asi
STBLOCKF 171, 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_Al US A2
space, user privilege stda fregy, [reg_plus_imm] %asi
STBLOCKF 1Eq4 64-byte block store to primary address stda fregy, [ regaddr] #ASI _BLK_Al UPL A2
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si
STBLOCKF 1F;4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_Al USL A2
space, little-endian, user privilege stda fregy, [reg_plus_imm] Y@si
STBLOCKF F0,4 64-byte block store to primary address stda fregyy, [ regaddr] #ASI _BLK_P A2
space stda fregyy, [reg_plus_imm] %asi
STBLOCKF Fly4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_S A2
space stda fregy, [reg_plus_imm] %asi
STBLOCKF F8y4 64-byte block store to primary address stda fregyy, [ regaddr] #ASI _BLK_PL A2
space, little-endian stda freg,y, [reg_plus_imm] Yasi
STBLOCKF F9;4 64-byte block store to secondary address stda fregy, [ regaddr] #ASI _BLK_SL A2
space, little-endian stda freg,y, [reg_plus_imm] Yasi
11 rd 110111 rsl 1=0 imm_asi rs2
11 rd 110111 rsl =1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
Description A block store instruction references one of several special block-transfer ASIs. Block-

transfer ASIs allow block stores to be performed accessing the same address space as
normal stores. Little-endian ASIs (those with an ‘L’ suffix) access data in little-endian
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format; otherwise, the access is assumed to be big-endian. Byte swapping is
performed separately for each of the eight double-precision registers accessed by the
instruction.
Programming | The block store instruction, STBLOCKEF, and its companion,
Note | LDBLOCKEF, were originally defined to provide a fast
mechanism for block-copy operations.

STBLOCKEF stores data from the eight double-precision floating-point registers
specified by rd to a 64-byte-aligned memory area. The lowest-addressed eight bytes
in memory are stored from the lowest-numbered double-precision rd.

While a STBLOCKEF operation is in progress, any of the following values may be
observed in a destination doubleword memory locations: (1) the old data value, (2)
zero, or (3) the new data value. When the operation is complete, only the new data
values will be seen.

Compatibility | Software written for older UltraSPARC implementations

Note | that reads data being written by STBLOCKEF instructions

may or may not allow for case (2) above. Such software
should be checked to verify that either it always waits
for STBLOCKEF to complete before reading the values
written, or that it will operate correctly if an intermediate
value of zero (not the “old” or “new” data values) is
observed while the STBLOCKEF operation is in progress.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes that it stores.

Software should assume the following (where “load operation” includes load, load-
store, and LDBLOCKEF instructions and “store operation” includes store, load-store,
and STBLOCKEF instructions):

= A STBLOCKEF does not follow memory ordering with respect to earlier or later
load operations. If there is overlap between the addresses of destination memory
locations of a STBLOCKF and the source address of a later load operation, the
load operation may receive incorrect data. Therefore, if ordering with respect to
later load operations is important, a MEMBAR #St or eLoad instruction must be
executed between the STBLOCKF and subsequent load operations.

= A STBLOCKEF does not follow memory ordering with respect to earlier or later
store operations. Those instructions’” data may commit to memory in a different
order from the one in which those instructions were issued. Therefore, if ordering
with respect to later store operations is important, a MEMBAR #St or eSt or e
instruction must be executed between the STBLOCKF and subsequent store
operations.

=« STBLOCKTFs do not follow register dependency interlocks, as do ordinary stores.
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Programming | STBLOCKEF is intended to be a processor-specific instruction (see
Note | the warning at the top of page 312). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-510, described below.

IMPL. DEP. #411-S10: The following aspects of the behavior of the block store

(STBLOCKTF) instruction are implementation dependent:

= The memory ordering model that STBLOCKEF follows (other than as constrained
by the rules outlined above).

= Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of
the STBLOCKEF (the recommended behavior), or only on accesses to the first eight
bytes.

= Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict
program order or not. If not, a STBLOCKF to a non-cacheable page causes an
illegal_instruction exception.

= Whether STBLOCKEF follows register dependency interlocks (as ordinary stores
do).

= Whether a STBLOCKEF forces the data to be written to memory and invalidates
copies in all caches present.

= Any other restrictions on the behavior of STBLOCKE, as described in
implementation-specific documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point
registers are not aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a STBLOCKEF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a
mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1644, 1774,
1Eq¢, and 1Fq4), STBLOCKF causes a privileged_action exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#411-510).

Implementation | STBLOCKEF shares an opcode with the STDFA, STPARTIALF,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction
mem_address_not_aligned
privileged_action

VA_watchpoint (impl. dep. #411-510)
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See Also LDBLOCKEF on page 232
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8.89  Store Floating-Point

Instruction  op3 rd Operation Assembly Language Class
STF 10 0100 0-31  Store Floating-Point register st fregeq, [ address] Al
STDF 10 0111 t Store Double Floating-Point register st d fregyq, [ address] Al
STQF 10 0110 ¥ Store Quad Floating-Point register ~ stq fregeq, [ address] C3
STXFSR 100101 1 Store Floating-Point State register st x % sr, [ address] Al

— 10 0101 2-31 Reserved

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0] — rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store single floating-point instruction (STF) copies the contents of the 32-bit
floating-point register Fg[rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit
floating-point register Fp[rd] into a word-aligned doubleword in memory. The unit
of atomicity for STDF is 4 bytes (one word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit
floating-point register Fg[rd] into a word-aligned quadword in memory. The unit of
atomicity for STQF is 4 bytes (one word).

The store floating-point state register instruction (STXFSR) waits for any currently
executing FPop instructions to complete, and then it writes all 64 bits of the FSR into
memory.

STXFSR zeroes FSRftt after writing the FSR to memory.

Implementation | FSR.ftt should not be zeroed by STXFSR until it is known that the
Note | store will not cause a precise trap.

These instruction access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i=0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

Exceptions. An attempt to execute a STF, STDF, or STXFSR instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.
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If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STF, STDF, or STXFSR instruction
causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned. STXFSR causes a mem_address_not_aligned exception if the
address is not doubleword-aligned.

STDF requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDF
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDF instruction and return (impl. dep. #110-V9-
Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, an attempt to execute an STQF instruction causes
an STQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

An attempt to execute an STQF instruction when rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

illegal_instruction

fp_disabled

STDF_mem_address_not_aligned

STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2005)
mem_address_not_aligned

fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))

VA_watchpoint
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See Also Load Floating-Point on page 236
Block Store on page 312
Store Floating-Point into Alternate Space on page 319
Store (Lower) Floating-Point Status Register on page 323
Store Short Floating-Point on page 328
Store Partial Floating-Point on page 325
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8.90  StoreFloating-Pointinto Alternate Space

Instruction op3 rd Operation Assembly Language Syntax Class
STFAPast 110100 0-31 Store Floating-Point Register sta  freg,, [ regaddr] imm_asi Al
to Alternate Space sta  fregg, [ reg_plus_imm] %@si
STDEAPast 110111 F Store Double Floating-Point stda freg,q, [ regaddr] imm_asi Al
Register to Alternate Space  stda freg,, [ reg_plus_imm] %@si
STQFAPast 110110 F Store Quad Floating-Point stga fregyy, [ regaddr] imm_asi c3

Register to Alternate Space  stqa freg,, [ reg_plus_imm] %@si

* Encoded floating-point register value, as described on page 51.

11 rd op3 rsl i=0| imm_asi rs2
11 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store single floating-point into alternate space instruction (STFA) copies the
contents of the 32-bit floating-point register Fg[rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the
contents of 64-bit floating-point register Fp[rd] into a word-aligned doubleword in
memory. The unit of atomicity for STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the
contents of 128-bit floating-point register Fg[rd] into a word-aligned quadword in
memory. The unit of atomicity for STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

Programming | Some compilers issued sequences of single-precision stores for

Note | SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective
memory address is not word-aligned.
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STDFA requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDFA
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDFA instruction and return (impl. dep. #110-
V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is
word-aligned but not quadword-aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return (impl.
dep. #112-V9-Cs10(b)).

Implementation | STDFA shares an opcode with the STBLOCKF, STPARTIALE,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

An attempt to execute an STQFA instruction when rd{1} # O causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Implementation | Since UltraSPARC Architecture 2005 processors do not implement

Note | in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASl is in the range 30¢4 to 7Fy, this instruction causes a privileged_action exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege
mode rules described for the privileged_action exception above. Use of any other ASI
with these instructions causes a data_access_exception exception.

ASIs valid for STFA and STQFA

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE

ASI _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
AS| _AS_| F_USER_SECONDARY ASI _AS_| F_USER_SECONDARY_LI TTLE
ASI _REAL ASl _REAL_LI TTLE

ASI _REAL_1O ASI _REAL_I O LI TTLE

ASI PRI MARY ASl _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_LI TTLE
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STDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the STDFA instruction causes a data_access_exception exception.

ASls valid for STDFA

AS| _NUCLEUS ASI _NUCLEUS_LI TTLE

AS| _AS_| F_USER PRI MARY ASI _AS_| F_USER PRI MARY_ LI TTLE
ASl _AS | F_USER_SECONDARY ASl _AS | F_USER SECONDARY_ LI TTLE
ASl _REAL ASl _REAL_LI TTLE

ASI_REAL_1O ASI _REAL_1O LI TTLE

ASl _PRI MARY ASI _PRI MARY_LI TTLE

AS| _SECONDARY AS| _SECONDARY_ LI TTLE

ASI _BLOCK_AS | F_USER PRI MARY+ ASI _BLOCK_AS_| F_USER PRI MARY LI TTLEt
ASI _BLOCK_AS | F_USER SECONDARY t+ ASI BLOCK_AS_| F_USER SECONDARY_ LI TTLE+
AS|I _BLOCK_PRI MARY + AS| _BLOCK_PRI MARY_ LI TTLE +

AS| _BLOCK_SECONDARY + AS| _BLOCK_SECONDARY_ LI TTLE+

ASlI _BLOCK_COVMM T_PRI MARY +

AS| _BLOCK_COVM T_SECONDARY +

ASI _FL8_PRI MARY } AS| _FL8_PRI MARY_LI TTLE}

AS| _FL8_SECONDARY AS| _FL8_SECONDARY_LI TTLE }
AS| _FL16_PRI MARY } ASl _FL16_PRI MARY LI TTLE}

AS| _FL16_SECONDARY t AS| _FL16_SECONDARY LI TTLE}
AS| _PST8_PRI MARY * AS| _PST8_ PRI MARY LI TTLE*
AS| _PST8_SECONDARY * AS| _PST8_SECONDARY_ LI TTLE*
AS| _PST16_PRI MARY * AS| _PST16_PRI MARY LI TTLE*
AS| _PST16_SECONDARY * AS| _PST16_SECONDARY LI TTLE*
AS| _PST32_PRI MARY * AS| _PST32_PRI MARY_LI TTLE*
AS| _PST32_SECONDARY * AS| _PST32_SECONDARY_ LI TTLE*

1 If this ASI is used with the opcode for STDFA, the STBLOCKEF instruction is
executed instead of STFA. For behavior of STBLOCKE, see Block Store on page 312.
f If this ASIis used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 328.
* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 325.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2005)
mem_address_not_aligned
fp_exception_other (FSR.fit = invalid_fp_register (STQFA only))
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privileged_action
VA_watchpoint

See Also Load Floating-Point from Alternate Space on page 239
Block Store on page 312
Store Floating-Point on page 316
Store Short Floating-Point on page 328
Store Partial Floating-Point on page 325
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8.91 Store (Lower) Floating-Point Status
Register

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class
STFSRP 100101 0 Store Floating-Point State Register Lower st % sr, [address] D2
11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The Store Floating-point State register lower instruction (STFSR) waits for any
currently executing FPop instructions to complete, and then it writes the less
significant 32 bits of the FSR into memory.

STFSR zeroes FSR ftt after writing the FSR to memory.

V9 Compatibility | FSR.ftt should not be zeroed until it is known that the store will
Note | not cause a precise trap.

STFSR accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STFSR instruction causes an
fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

V9 Compatibility | Although STFSR is deprecated, UltraSPARC Architecture
Note | implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only 32 bits of the FSR into memory, while STXFSR
allows SPARC V9 software to store all 64 bits of the FSR.
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Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint

See Also Store Floating-Point on page 316
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8.92

STPARTIALF

Store Partial Floating-Point

ASI

Instruction Value Operation Assembly Language Syntax T Class

STPARTIALF CO0,4 Eight 8-bit conditional stores to stda fregyg, regrso [ regrsi] #ASI _PST8_P C3
primary address space

STPARTIALF C1y4 Eight 8-bit conditional stores to stda fregyg, regrso [ regsi] #ASI _PST8_S C3
secondary address space

STPARTIALF C8;4 Eight 8-bit conditional stores to stda fregyq, regrsa. [1egrs1] #ASI _PST8_PL Cc3
primary address space, little-endian

STPARTIALF C9¢4 Eight 8-bit conditional stores to stda fregyqg, regrsp, [ regsi] #ASI _PST8_SL C3
secondary address space, little-
endian

STPARTIALF C244 Four 16-bit conditional stores to stda fregqg, regrso [ regs1] #ASI_PST16_P C3
primary address space

STPARTIALF C3;4 Four 16-bit conditional stores to st da fregyy, regrs2, [regrs1] #ASI _PST16_S C3
secondary address space

STPARTIALF CA;¢ Four 16-bit conditional stores to stda fregg, regrsp, [ regsi]l #ASI _PST16_PL C3
primary address space, little-endian

STPARTIALF CBj, Four 16-bit conditional stores to ~ stda fregu, regrs2. [ regs1] #ASI _PST16_SL C3
secondary address space, little-
endian

STPARTIALF C4;4 Two 32-bit conditional stores to stda fregyg, regrso. [ regrsi] #ASI_PST32_P C3
primary address space

STPARTIALF C5;4 Two 32-bit conditional stores to stda fregyg, regrso. [ regrsi] #ASI _PST32_S C3
secondary address space

STPARTIALF CC;4 Two 32-bit conditional stores to stda fregiq, regrsos [ regs1] #ASI _PST32_PL C3
primary address space, little-endian

STPARTIALF CD;¢ Two 32-bit conditional stores to stda fregyg, regrs2. [ regrsi]l #ASI _PST32_SL C3

secondary address space, little-
endian

t The original assembly language syntax for a Partial Store instruction (“st dafreg,q, [reg.;] reg,s, imm_asi” ) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

11 rd 110111 rsl i=0 imm_asi rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The partial store instructions are selected by one of the partial store ASIs with the

STDFA instruction.
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Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register
Fplrd] are conditionally stored at the address specified by R[rs1], using the mask
specified in R[rs2]. STPARTIALF has the effect of merging selected data from its
source register, Fp[rd], into the existing data at the corresponding destination
locations.

The mask value in R[rs2] has the same format as the result specified by the pixel
compare instructions (see SIMD Signed Compare on page 166). The most significant
bit of the mask (not of the entire register) corresponds to the most significant part of
Fplrd]. The data is stored in little-endian form in memory if the ASI name has an “L”
(or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

R[rs2]
8-bit partial store mask
for ASI _PST8_* 7 6 543 210
mask for bits 63:56 gf
mask for bits 55:48
mask for bits 15:8
mask for bits  7:0
R[rs2]

16-bit partial store mask
for ASI _PST16_*

mask for bits 63:48
mask for bits 47:32
mask for bits 31:16
mask for bits 15:0

L
— P N

L—— P o

R[rs2]
32-bit partial store mask
for ASI _PST32_*

mask for bits 63:32
mask for bits 31:0

>
P o

FIGURE 8-29 Mask Format for Partial Store

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Exceptions. An attempt to execute a STPARTIALF instruction when i = 1 causes an
illegal_instruction exception.
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If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STPARTIALF instruction causes an
fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the
effective address is word-aligned but not doubleword-aligned, it generates an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDFA instruction and return.

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of
data watchpoints are implementation dependent: (a) whether data watchpoint logic
examines the byte store mask in R[rs2] or it conservatively behaves as if every
Partial Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the LSU
Control register DCUCR to determine which bytes are being watched or (when the
Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are being
watched.

ASIs C074-C514 and C81,—CD;¢4 are only used for partial store operations. In
particular, they should not be used with the LDDFA instruction; however, if any of
them is used, the resulting behavior is specified in the LDDFA instruction
description on page 241.

Implementation | STPARTIALF shares an opcode with the STBLOCKF, STDFA,
Note | and STSHORTF instructions; it is distinguished by the ASI used.

illegal_instruction
fp_disabled
data_access_exception (not implemented in hardware in UA-2005)

CHAPTER 8 - Instructions 327



STSHORTF

8.93  Store Short Floating-Point

ASI
Instruction Value Operation Assembly Language Syntax Class

STSHORTF D0y 8-bit store to primary address space stda freg.q, [regaddr] #ASl _FL8_P C3
stda  fregq, [reg_plus_imm] Y@asi

STSHORTF D1y,  8-bit store to secondary address space  stda  fregyy, [regaddr] #ASI _FL8_S C3
stda  fregq, [reg_plus_imm] Y@si

STSHORTF D8y  8-bit store to primary address space, stda  fregyy, [regaddr] #ASI _FL8_PL C3

little-endian stda  fregu, [reg_plus_imm] %@si
STSHORTF D9y  8-bit store to secondary address space, stda  fregyy, [regaddr] #ASI _FL8_SL C3
little-endian stda  fregu, [reg_plus_imm] %@si

STSHORTF  D2;¢ 16-bit store to primary address space ~ stda  freg,y, [regaddr] #ASI _FL16_P C3
stda  fregyy, [ reg_plus_imm] Yasi

STSHORTF D3y 16-bit store to secondary address space stda  fregyy, [regaddr] #ASI _FL16_S C3
stda  fregq, [reg_plus_imm] Y@asi

STSHORTEF DAj¢ 16-bit store to primary address space, stda freg.q, [regaddr] #AS| _FL16_PL C3

little-endian stda  fregrg, [ reg_plus_imm] Yasi
STSHORTF DBy 16-bit store to secondary address space, stda  fregyy, [regaddr] #ASI _FL16_SL  C3
little-endian stda  fregw, [reg_plus_imm] Yasi
11 rd 110111 rsl i=0 imm_asi rs2
11 rd 110111 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed
from the floating-point registers. Short stores access the low-order 8 or 16 bits of the
register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be big-endian. Short stores are typically used with the
FALIGNDATA instruction (see Align Data on page 161) to assemble or store 64 bits
on noncontiguous components.

Implementation | STSHORTF shares an opcode with the STBLOCKF, STDFA, and
Note | STPARTIALF instructions; it is distinguished by the ASI used.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.
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If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STSHORTF instruction causes an
fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory
address is not halfword-aligned.

An 8-bit STSHORTF (using ASI D04, D114, D814, or D944) can be performed to an
arbitrary memory address (no alignment requirement).

A 16-bit STSHORTF (using ASI D214, D314, DA14, or DByg) to an address that is not
halfword-aligned (an odd address) causes a mem_address_not_aligned exception.

Exceptions VA_watchpoint
data_access_exception
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8.94  Store Integer Twin Word

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax T Class

STTWP 000111 Store Integer Twin Word sttw regrq, [address] D2

t The original assembly language syntax for this instruction used an “st d” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “st t W mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “st d” mnemonic.

11 rd op3 rsl i=0) — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description  The store integer twin word instruction (STTW) copies two words from an R register
pair into memory. The least significant 32 bits of the even-numbered R register are
written into memory at the effective address, and the least significant 32 bits of the
following odd-numbered R register are written into memory at the “effective
address +4”.

The least significant bit of the rd field of a store twin word instruction is unused and
should always be set to 0 by software.

STTW accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is
implemented in hardware. If not, an attempt to execute it will cause an

unimplemented_STTW exception. (STTW is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTW instruction when either of the following conditions
exist causes an illegal_instruction exception:

= destination register number rd is an odd number (is misaligned)
= i =0 and instruction bits 12:5 are nonzero
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Exceptions

See Also

STTW (Deprecated)

STTW causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

Programming | STTW is provided for compatibility with SPARC V8. It may

Notes | execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, STX instruction should be
used for the memory access in the emulation code to preserve
atomicity.

unimplemented_STTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint

STW/STX on page 307
STTWA on page 332
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STTWA (Deprecated)

8.95  Store Integer Twin Word into Alternate
Space

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD PAS 01 0111 Store Twin Word into Alternate Space  sttwa regq [regaddr] imm_asi ¥
sttwa regyy [reg_plus_imm] Y@si

1 The original assembly language syntax for this instruction used an “st da” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “st t wa” mnemonic for this instruction. In the meantime, some existing assemblers may only recog-
nize the original “st da” mnemonic.

T Y3 for restricted ASIs (00,4-7F¢); D2 for unrestricted ASIs (80,4-FF¢)

11 rd op3 rsl i= imm_asi rs2
11 rd op3 rsi i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description The store twin word integer into alternate space instruction (STTWA) copies two
words from an R register pair into memory. The least significant 32 bits of the even-
numbered R register are written into memory at the effective address, and the least
significant 32 bits of the following odd-numbered R register are written into memory
at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should
always be set to 0 by software.

Store integer twin word to alternate space instructions contain the address space
identifier (ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext( simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.
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IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTWA is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination
register number rd causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASl is in the range 3044 to 7Fqg, this instruction causes a privileged_action exception.

STTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

ASils valid for STTWA
ASI _NUCLEUS ASI _NUCLEUS LI TTLE
ASI _AS | F_USER_PRI MARY ASI _AS | F_USER_PRI MARY_LI TTLE
ASI _AS | F_USER_SECONDARY ASI| _AS | F_USER SECONDARY_LI TTLE

ASI _REAL ASI _REAL_LI TTLE

ASI _REAL_| O ASl _REAL_| O LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI TTLE
ASI _SECONDARY ASI _SECONDARY_LI TTLE

Programming | Nontranslating ASIs (see page 387) may only be accessed using
Note | STXA (not STTWA) instructions. If an STTWA referencing a

nontranslating ASI is executed, per the above table, it generates

a data_access_exception exception (impl. dep. #300-U4-Cs10).

Programming | STTWA is provided for compatibility with existing SPARC V8

Note | software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties. Therefore, software
should avoid using STTWA.

If STTWA is emulated in software, the STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity.

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned
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privileged_action
VA_watchpoint

See Also STWA /STXA on page 308
STTW on page 330
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SUB

8.96

Subtract

Instruction op3 Operation Assembly Language Syntax Class
SUB 000100  Subtract sub regrs1, reg_or_imm, regyq Al
SUBcc 010100  Subtract and modify cc’s subcc  reggy, reg_or_imm, regyy Al
SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regyq Al
SUBCcc 011100 Subtract with Carry and modify cc’s subccc  regg1, reg_or_imm, regyy Al

10 rd op3 rsl i= — rs2

10 rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions compute “R[rs1] - R[rs2]” if i = 0, or

Exceptions

“R[rs1] - sign_ext( simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit
carry (icc.c) bit; that is, they compute “R[rs1] — R[rs2] —icc.c” or
“R[rs1] - sign_ext( simm13) — icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-
bit overflow (CCRu.icc.v) occurs on subtraction if bit 31 (the sign) of the operands
differs and bit 31 (the sign) of the difference differs from R[rs1]{31}. A 64-bit
overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs
and bit 63 (the sign) of the difference differs from R[rs1]{63}.

Programming | A SUBcc instruction with rd = 0 can be used to effect a signed or
Notes [ unsigned integer comparison. See the cnp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes” carry bit
(CCRuicc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are

nonzero causes an illegal_instruction exception.

illegal_instruction
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SWAP (Deprecated)

8.97

11

Swap Register with Memory

The SWAP instruction is deprecated and should not be used in new software.

The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPP 001111 Swap Register with Memory swap [address], regq D2

rd op3 rsl i=0 — rs2

11

rd op3 rsl i=1 simm13

31 30 29
Description

Exceptions

25 24 19 18 14 13 12 5 4 0

SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at
the addressed memory location. The upper 32 bits of R[rd] are set to 0. The operation
is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of
the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 104). The effective address
for these instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction
causes a mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

illegal_instruction
mem_address_not_aligned
VA_watchpoint
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SWAPA (Deprecated)

8.98

Swap Register with Alternate Space
Memory

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class
SWAPAP: Past 011111 Swap register with Alternate Space  swapa [regaddr] imm_asi, regyy ¥
Memory swapa [reg_plus_imm] Y@si , reg.g

T Y3 for restricted ASIs (00,4-7F¢); D2 for unrestricted ASIs (80,4-FFq¢)

11 rd op3 rsl i=0) imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description ~ SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word

at the addressed memory location. The upper 32 bits of R[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more virtual processors
executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to
execute them in an undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the
load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext( simm13)” if
i=1

This instruction causes a mem_address_not_aligned exception if the effective
address is not word-aligned. It causes a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA
instruction causes a mem_address_not_aligned exception.
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In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASI is in the range 3044 to 7Fy¢, this instruction causes a privileged_action exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

ASls valid for SWAPA

ASI _NUCLEUS ASI _NUCLEUS_LI TTLE
AS| _AS | F_USER_PRI MARY ASlI _AS | F_USER PRI MARY_LI TTLE
AS| _AS | F_USER_SECONDARY ASl _AS | F_USER _SECONDARY_LI TTLE
ASI _PRI MARY ASI _PRI MARY_LI TTLE
ASI _ SECONDARY ASI _SECONDARY_LI TTLE
ASI _REAL ASI _REAL_LI TTLE

Exceptions mem_address_not_aligned

privileged_action
VA_watchpoint
data_access_exception
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TADDcc

8.99

Tagged Add

Instruction op3 Operation Assembly Language Syntax Class
TADDcc 100000 Tagged Add and modify cc’s  taddcc  regs;, reg_or_imm, regyq Al
10 rd op3 rsl i= — rs2
10 rd op3 rsl i= simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.
TADDcc modifies the integer condition codes (i cc and xcc).
A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).
If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TADDcc does not cause a tag overflow, CCR.icc.v is set to 0.
In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.
An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVP on page 340

TSUBcc on page 345
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TADDccTV (Deprecated)

8.100 Tagged Add and Trap on Overflow

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVP 100010  Tagged Add and modify cc’s, taddcctv — reg.y, reg or_imm, regyq D2
or Trap on Overflow

10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i =0, or
“R[rs1] + sign_ext( simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd]
and the integer condition codes remain unchanged. If a TADDccTV does not cause a
tag overflow, the sum is written into R[rd] and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.
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SPARC V8 | TADDccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow

condition.
Exceptions illegal_instruction
tag_overflow
See Also TADDcc on page 339

TSUBccTVP on page 346
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8.101 Trap on Integer Condition Codes (Tcc)

Instruction op3 cond Operation cc TestAssembly Language Syntax Class

TA 111010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number Al

TN 111010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number Al

TNE 111010 1001 Trap on Not Equal not Z tnef i_or_x_cc, software_trap_number Al

TE 111010 0001 Trap on Equal z tet  ior_x_cc, software_trap_number Al

TG 111010 1010 Trap on Greater not(Zor(N tg i_or_x_cc, software_trap_number Al
xor V))

TLE 111010 0010 Trap on Less or Equal Z or (N xor V)tl e i_or_x_cc, software_trap_number Al
TGE 111010 1011 Trap on Greater or not (N xor V) tge i_or_x_cc, software_trap_number Al

Equal

TL 111010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number Al

TGU 111010 1100 Trap on Greater, not (CorZ) tgu i_or_x_cc, software_trap_number Al
Unsigned

TLEU 111010 0100 Trap on Less or (CorZ2) tleu i_or_x_cc, software_trap_number Al
Equal, Unsigned

TCC 111010 1101 Trap on Carry Clear not C tecc? i_or_x_cc, software_trap_number Al

(Greater than or
Equal, Unsigned)

TCS 111010 0101 Trap on Carry Set C tcsY ior_x_ce, software_trap_number Al
(Less Than, Unsigned)
TPOS 111010 1110 Trap on Positive or not N tpos i_or_x_cc, software_trap_number Al
Zero
TNEG 111010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number Al
TVC 111010 1111  Trap on Overflow not V tve  i_or_x_cc, software_trap_number Al
Clear
TVS 111010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number Al
i synonym: t nz ¥ synonym: t z © synonym: t geu 0 synonym: t1u
10 |— cond op3 rsl i=0|ccliccO — rs2
10 |— cond op3 rsl i=1|ccliccO — imm_trap_#
3130 29 28 25 24 19 18 14 13 12 11 10 8 7 5 4 0
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Description

Tcc

ccl :: ccO Condition Codes Evaluated

00 CCRu.icc

01 — (illegal_instruction)
10 CCR.xcc

11 — (illegal_instruction)

The Tcc instruction evaluates the selected integer condition codes (icc or xcc)
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE and no higher-priority exceptions or interrupt requests are pending,
then a trap_instruction or htrap_instruction exception is generated. If FALSE, the
trap_instruction (or htrap_instruction) exception does not occur and the instruction
behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number”
used by Tcc will be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven
bits of “R[rs1] + imm_trap_#". Therefore, the valid range of values for SWTN in
nonprivileged mode is 0 to 127. The most significant 57 bits of SWTN are unused
and should be supplied as zeroes by software.

In privileged mode, if i = 0 the SWTN is specified by the least significant eight bits of
“R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant eight bits of
“R[rs1] + imm_trap_#". Therefore, the valid range of values for SWTN in privileged
mode is 0 to 255. The most significant 56 bits of SWTN are unused an should be
supplied as zeroes by software.

Generally, values of 0 < SWTN < 127 are used to trap to privileged-mode software
and values of 128 < SWTN < 255 are used to trap to hyperprivileged-mode software.
The behavior of Tcc, based on the privilege mode in effect when it is executed and
the value of the supplied SWTN, is as follows:

Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 < SWTN < 127 128 < SWTN < 255

Nonprivileged trap_instruction exception =~ —
(PSTATE.priv = 0) (to privileged mode) (not possible)

(256 < TT < 383)

Privileged trap_instruction exception  htrap_instruction exception
(PSTATE.priv=1) (to privileged mode) (to hyperprivileged mode)

(256 < TT < 383) (384 < TT < 511)
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Exceptions

Tcc

Programming | Tec can be used to implement breakpointing, tracing, and calls to
Note | privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.

Exceptions. An attempt to execute a Tcc instruction when any of the following
conditions exist causes an illegal_instruction exception:

= instruction bit 29 is nonzero

= i =0 and instruction bits 12:5 are nonzero
= i =1 and instruction bits 10:8 are nonzero
= ccO=1

If a Tec instruction causes a trap_instruction trap, 256 plus the SWTN value is written
into TT[TL]. Then the trap is taken and the virtual processor performs the normal
trap entry procedure, as described in Trap Processing on page 429.

illegal_instruction
trap_instruction (0 < SWTN < 127)
htrap_instruction (128 < SWTN < 255)
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TSUBcc

8.102 Tagged Subtract

Instruction

op3

Operation Assembly Language Syntax Class

TSUBcc

100001  Tagged Subtract and modify cc’'s  tsubcc  reg.gy, reg_or_imm, reg.y Al

10

rd op3 rsl i=0 — rs2

10

rd op3 rsl i=1 simm13

31 30 29

Description

Exceptions

See Also

25 24 19 18 14 13 12 5 4 0

This instruction computes “R[rs1] — R[rs2]” if i =0, or
“R[rs1] — sign_ext( simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TSUBcc does not cause a tag overflow, CCRu.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCRu.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-bit
subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

illegal_instruction

TADDcc on page 339
TSUBccTVP on page 346
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TSUBccTV (Deprecated)

8.103 Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used

instead.
Opcode op3 Operation Assembly Language Syntax Class
TSUBccTVP 100011 Tagged Subtract and modify cc’s, or  t subcctv regsy, reg_or_imm, regyq D2

Trap on Overflow

10 rd op3 rsl i=0) — rs2
10 rd op3 rsl i=1 simm13
3T 30 29 25 24 19 18 14 13 12 5 4 0

Description This instruction computes “R[rs1] - R[rs2]” if i = 0, or “R[rs1] - sign_ext( simm13)”
ifi=1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and
R[rd] and the integer condition codes remain unchanged. If a TSUBccTV does not
cause a tag overflow condition, the difference is written into R[rd] and the integer
condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit subtract.
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TSUBccTV (Deprecated)

SPARC V8| TSUBccTV traps based on the 32-bit overflow condition, just as
Compatibility | in the SPARC V8 architecture. Although the tagged add
Note | instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow

condition.
Exceptions illegal_instruction
tag_overflow
See Also TADDccTVP on page 340

TSUBcc on page 345
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UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

8.104 Divide (64-bit + 32-bit)

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated and should not
be used in new software. The UDIVX and SDIVX instructions should be used

instead.

Opcode op3 Operation Assembly Language Syntax Class
uDIVP 001110  Unsigned Integer Divide udi v regrs1, 1eg_or_imm, regyq C2
SDIVP 001111  Signed Integer Divide sdi v regys1, 1€g_Or_imm, regyqy Cc2
UDIVccP 011110  Unsigned Integer Divide and modify cc’s udi vec regqq, reg_or_imm, regq C2
SDIVccP 011111  Signed Integer Divide and modify cc’s sdivce  regsy, reg_or_imm, regyq Cc2

10 rd op3 rsl i= — rs2

10 rd op3 rsl i= simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If

i =0, they compute “(Y :: R[rs1]{31:0}) + R[rs2]{31:0}". Otherwise (that is, if i = 1), the
divide instructions compute “(Y :: R[rs1]{31:0}) + (sign_ext(simm13){31:0})”. In either
case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign- or zero-extended to 64 bits and are written into R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Unsigned Divide

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword
dividend (Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or
(sign_ext( simm13){31:0}) and computes an unsigned integer word quotient (R[rd]).
Immediate values in simm13 are in the ranges 0 to 2'2—1 and 232-212 to 2321 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

Programming | The rational quotient is the infinitely precise result quotient. It
Note | includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 =2.75 (integer
part =2, fractional part =.75).
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UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

Signed Divide

The result of an unsigned divide instruction can overflow the less significant 32 bits
of the destination register R[rd] under certain conditions. When overflow occurs, the
largest appropriate unsigned integer is returned as the quotient in R[rd]. The
condition under which overflow occurs and the value returned in R[rd] under this
condition are specified in TABLE 8-14.

TABLE 8-14 UDIV / UDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 232 2%2 -1
(0000 0000 FFFF FFFF;g)

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written
into register R[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Bit UDIVce

icc.n Set if R[rd]{31} =1

icc.z Set if R[rd]{31:0} =0

icc.v Set if overflow (per TABLE 8-14)
icc.c Zero

Xcc.n Set if R[rd]{63} =1

Xcc.z Set if R[rd]{63:0} =0

Xce.v Zero

Xcc.c Zero

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend

(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of
R[rs2] or lower 32 bits of sign_ext(simm13)) and computes a signed integer word
quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, -7 + 4 equals
the rational quotient of —1.75, which rounds to -1 (not —2) when rounding toward
zero.

The result of a signed divide can overflow the low-order 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest
appropriate signed integer is returned as the quotient in R[rd]. The conditions under
which overflow occurs and the value returned in R[rd] under those conditions are
specified in TABLE 8-15.
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UDIV / UDIVcc / SDIV / SDIVce (Deprecated)

TABLE 8-15 SDIV / SDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]
Rational quotient > 23! 231 ~1 (0000 0000 7FFF FEFF;)
Rational quotient < —231 7 1 —231 (FFFF FFEF 8000 0000;4)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written
into register R[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Bit

SDIVcc

icc.n
icc.z
icc.v

icc.c

Set to 1 if R[rd]{31} = 1; otherwise, set to 0

Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

Set to 1 if overflow (per TABLE 7-12); otherwise set to 0
Set to 0

Xcc.n

XCccC.z

XCC.v

Xcc.c

Set to 1 if R[rd]{63} = 1; otherwise, set to 0
Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0
Set to 0

Set to 0

An attempt to execute a UDIV, UDIVcc, SDIV, or SDIVcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero
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UMUL / UMULcc / SMUL / SMULcc (Deprecated)

8.105 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated and
should not be used in new software. The MULX instruction should be used

instead.

Opcode op3 Operation Assembly Language Syntax Class
UMULP 001010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regyy Cc2
SMULP 001011 Signed Integer Multiply smul regrs1, reg_or_imm, regqy Cc2
UMULccP 011010  Unsigned Integer Multiply and modify cc’s umul cc  regys1, reg_or_imm, regyq Cc2
SMULccP 011011 Signed Integer Multiply and modify cc’s smul cc regyg1, reg_or_imm, regy Cc2

10 rd op3 rsl i=0) — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description ~ The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “R[rs1]{31:0} x R[rs2]{31:0}"” if i = 0, or “R[rs1]{31:0} x
sign_ext( simm13){31:0}” if i = 1. They write the 32 most significant bits of the
product into the Y register and all 64 bits of the product into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer
word operands and compute an unsigned integer doubleword product. Signed
multiply instructions (SMUL, SMULcc) operate on signed integer word operands
and compute a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write
the integer condition code bits, icc and xcc, as shown below.

Bit UMULcc / SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Setto 0

icc.c Setto 0

Xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
Xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
XCC.V Set to 0

Xcc.c Set to 0

CHAPTER 8 - Instructions 351



UMUL / UMULcc / SMUL / SMULcc (Deprecated)

Note | 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming | 32-bit overflow after UMUL/UMULcc is indicated by Y # 0.

Notes 32-bit overflow after SMUL/SMULcc is indicated by
Y # (R[rd] >> 31), where “>>" indicates 32-bit arithmetic right-
shift.

An attempt to execute a UMUL, UMULcc, SMUL, or SMULcc instruction when i =0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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WRasr

8.106  Write Ancillary State Register

Instruction rd  Operation Assembly Language Syntax Class

WRYP 0 Write Y register (deprecated) W regrg1, reg_or_imm, Yy C1

— 1 Reserved

WRCCR 2 Write Condition Codes W regrg1, reg_or_imm, 4€Cr Al
register

WRASI 3 Write ASI register W regps1, teg_or_imm, Y@si Al

— 4  Reserved (read-only ASR (TICK))

— 5  Reserved (read-only ASR (PC))

WRFPRS 6  Write Floating-Point Registers Status Wr reg,sq1, reg_or_imm, % prs Al
register

— 7-14 Reserved

— 24  used at higher privilege level

WRPCR? 16  Write Performance Control register ~Wr reg,sq, reg_or_imm, ¥pcr Al
(PCR)

WRPICPric 17 Write Performance Instrumentation W regg1, reg_or_imm, %pi c Al
Counters (PIC)

— 18 Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 Write General Status register (GSR) wr regsq, reg_or_imm, %gsr Al

WRSOFTINT_SET® 20 Set bits of per-virtual processor Soft Wr regs;, reg_or_imm, ¥sof tint_set N1
Interrupt register

WRSOFTINT_CLRF 21  Clear bits of per-virtual processor Soft W regs1, reg_or_imm, ¥sof tint _cl r N1
Interrupt register

WRSOFTINT? 22 Write per-virtual processor Soft W regrs1, reg_or_imm, ¥sof tint N1
Interrupt register

WRTICK_CMPRP 23 Write Tick Compare register W regrsy, reg_or_imm, % i ck_cnpr N1

— 24  used at higher privilege level

WRSTICK_CMPRY 25 Write System Tick Compare register W reg,g1, reg_or_imm, ¥%8ys_tick_cnpr N1

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-

Cs20)

28-31 Implementation dependent (impl.

dep. #8-V8-Cs20, 9-V8-Cs20)
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10 rd op3 =11 0000 rsl i=0 — rs2
10 rd op3 =11 0000 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description The WRasr instructions each store a value to the writable fields of the ancillary state

register (ASR) specified by rd.

The value stored by these instructions (other than the implementation-dependent
variants) is as follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store
“R[rs1] xor sign_ext( simm13)”.

Note | The operation is exclusive-or.

The WRasr instruction with rsl = 0 is a (deprecated) WRY instruction (which should
not be used in new software). WRY is not a delayed-write instruction; the instruction
immediately following a WRY observes the new value of the Y register.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction
immediately following a WRCCR, WRFPRS, or WRASI observes the new value of
the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing
the FPRS register.

IMPL. DEP. #48-V8-Cs20: WRasr instructions with rd in the range 26-31 are

available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr

instruction with rd in the range 26-31, the following are implementation dependent:

= the interpretation of bits 18:0 in the instruction

= the operation(s) performed (for example, xor) to generate the value written to the
ASR

= whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20),
and

= whether an attempt to execute the instruction causes an illegal_instruction
exception.

Note | See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.
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Exceptions

See Also

WRasr

V9 | Ancillary state registers may include (for example) timer, counter,
Compatibility | diagnostic, self-test, and trap-control registers.

NOteS | T,e SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.

See Ancillary State Registers on page 67 for more detailed information regarding ASR
registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following
conditions exist causes an illegal_instruction exception:

= i =0 and instruction bits 12:5 are nonzero

= rd=1,4,5,7-14, 18, or 26-31

=« rd=15and ((rs1 #0) or (i = 0))

An attempt to execute a WRPCR (impl. dep. #250-U3-Cs10), WRSOFTINT_SET,
WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or WRSTICK_CMPR instruction
in nonprivileged mode (PSTATE.priv = 0) causes a privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a WRGSR instruction causes an
fp_disabled exception.

An attempt to execute a WRPIC instruction in nonprivileged mode (PSTATE.priv = 0)
when PCR.priv = 1 causes a privileged_action exception.

illegal_instruction
privileged_opcode
fp_disabled
privileged_action

RDasr on page 285
WRPR on page 356
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WRPR

8.107  Write Privileged Register

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRF 110010  Write Privileged register C1
TPC 0 wr pr regrs1, reg_or_imm, % pc
TNPC 1 wr pr regrs1, reg_or_imm, % npc
TSTATE 2 wr pr regrs1, reg_or_imm, % state
1T 3 wWr pr regrs1, reg_or_imm, Y%t
(illegal_instruction) 4
TBA 5 wr pr regrs1, reg_or_imm, % ba
PSTATE 6 wr pr regrs1, reg_or_imm, %pstate
TL 7 wr pr regrs1, reg_or_imm, % |
PIL 8 wr pr regrs1, reg_or_imm, Ui |
CwP 9 wr pr regrs1, reg_or_imm, YCWp
CANSAVE 10 wr pr regrs1, reg_or_imm, %cansave
CANRESTORE 1 wr pr regrs1, reg_or_imm, %ganrestore
CLEANWIN 12 wr pr regrs1, reg_or_imm, %€l eanwi n
OTHERWIN 13 wr pr regrs1, reg_or_imm, Y®therw n
WSTATE 14 wr pr regrs1, reg_or_imm, WSt ate
Reserved 15
GL 16 wr pr regrs1, reg_or_imm, gl
Reserved 17-31

10 rd op3 rsl i=0| — rs2
10 rd op3 rsl i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Description This instruction stores the value “R[rs1] xor R[rs2]” if i =0, or “R[rs1] xor

sign_ext( simm13)” if i = 1 to the writable fields of the specified privileged state
register.

Note | The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written.

There are MAXPTL copies of the TPC, TNPC, TT, and TSTATE registers, one for each
trap level. A write to one of these registers sets the register, indexed by the current
value in the trap-level register (TL).
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Exceptions

See Also

WRPR

A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from
a trap, or alter any machine state other than TL and state (such as PC, NPC, TICK,
etc.) that is indirectly modified by every instruction.

Programming | A WRPR of TL can be used to read the values of TPC, TNPC, and
Note | TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

The WRPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRPR observes any changes made to virtual processor
state made by the WRPR.

MAXPTL is the maximum value that may be written by a WRPR to TL; an attempt to
write a larger value results in MAXPTL being written to TL. For details, see TABLE 6-22
on page 95.

MAXPGL is the maximum value that may be written by a WRPR to GL; an attempt to
write a larger value results in MAXPGL being written to GL. For details, see TABLE 6-23
on page 97.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode
(PSTATE.priv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions

exist causes an illegal_instruction exception:

= i=0 and instruction bits 12:5 are nonzero

= rd=4

= rd =15, or 17-31 (reserved for future versions of the architecture)

= 0<rd< 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL =0
(current trap level is zero) and the virtual processor is in privileged mode.

Implementation | In nonprivileged mode, illegal_instruction exception due to
Note [0 <rd < 3 and TL =0 does not occur; the privileged_opcode
exception occurs instead.

privileged_opcode
illegal_instruction

RDPR on page 288
WRasr on page 353
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XOR / XNOR

8.108 XOR Logical Operation

Instruction op3 Operation Assembly Language Syntax Class
XOR 00 0011 Exclusive or xor regis1, reg_or_imm, regyy Al
XORcc 01 0011 Exclusive or and modify cc’s XOrcc  regug1, reg_or_imm, regyg Al
XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regyq Al
XNORcc 010111 Exclusive nor and modify cc’s XNOrcC  regg1, reg_or_imm, regyg Al

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description These instructions implement bitwise logical xor operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext( simm13)” if i = 1, and write the result into
R[rd].

XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

= icc.y, icc.c, xce.v, and Xcc.c are set to 0

= icc.n is copied from bit 31 of the result

= Xcc.n is copied from bit 63 of the result

= icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)

= XCC.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

Programming | XNOR (and XNORcc) is identical to the xor_not (and set condition
Note | codes) xor_not_cc logical operation, respectively.

An attempt to execute an XOR, XORcc, XNOR, or XNORCcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
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CHAPTER 9
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/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /
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IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2005

The IEEE Std 754-1985 floating-point standard contains a number of implementation
dependencies. This chapter specifies choices for these implementation dependencies,
to ensure that SPARC V9 implementations are as consistent as possible.

The chapter contains these major sections:

Traps Inhibiting Results on page 359.

NaN Operand and Result Definitions on page 360.
Trapped Underflow Definition (ufm =1) on page 362.
Untrapped Underflow Definition (ufm = 0) on page 362.
Integer Overflow Definition on page 363.
Floating-Point Nonstandard Mode on page 364.

Exceptions are discussed in this chapter on the assumption that instructions are
implemented in hardware. If an instruction is implemented in software, it may not
trigger hardware exceptions but its behavior as observed by nonprivileged software
(other than timing) must be the same as if it was implemented in hardware.

9.1 Traps Inhibiting Results

As described in Floating-Point State Register (FSR) on page 58 and elsewhere, when a
floating-point trap occurs, the following conditions are true:

= The destination floating-point register(s) (the F registers) are unchanged.
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= The floating-point condition codes (f ccO, f cc1, f cc2, and f cc3) are unchanged.
= The FSR.aexc (accrued exceptions) field is unchanged.

= The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to 1, corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished or
unimplemented FPops execute as if by hardware; that is, such a trap is undetectable
by application software, except that timing may be affected.

Programming | A user-mode trap handler invoked for an IEEE_754_exception,

Note | whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop or
FSR ftt = unimplemented_FPop, can rely on the following
behavior:

= The address of the instruction that caused the exception will
be available.

= The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

» The floating-point condition codes (f ccO, fccl, fcc2, and
f cc3) are unchanged.

= The FSR.aexc field is unchanged.

= The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

= The FSRftt, FSR.gne, and reserved fields of FSR are zero.

9.2

9.2.1

NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or
different from, the format of the source operands. These two cases are described
separately below.

Untrapped Result in Different Format from
Operands

= F<sdq>TO<sdq> or F<sd>MUL<dq> with a quiet NaN operand — No
exception caused; result is a quiet NaN. The operand is transformed as follows:
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9.2.2

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. In conversion to a narrower
format, excess low-order bits of the operand fraction are discarded (which is not
considered a "rounding” operation). In conversion to a wider format, excess low-
order bits of the result fraction are set to 0. The quiet bit (the most significant bit
of the result fraction) is always set to 1, so the NaN transformation always
produces a quiet NaN. The sign bit is copied from the operand to the result
without modification.

F<sdq>TO<sdq> or F<sd>MUL<dq> with a signalling NaN operand — Invalid
exception; result is the signalling NaN operand processed by the NaN
transformation above to produce a quiet NaN.

FCMPE<sdq> with any NaN operand — Invalid exception; the selected floating-
point condition code is set to unordered.

FCMP<sdq> with any signalling NaN operand — Invalid exception; the selected
floating-point condition code is set to unordered.

FCMP<sdq> with any quiet NaN operand but no signalling NaN operand —
No exception; the selected floating-point condition code is set to unordered.

Untrapped Result in Same Format as Operands

No NaN operand — For an invalid operation such as sqrt(—1.0) or 0.0 + 0.0, the
result is the quiet NaN with sign = zero, exponent = all 1’s, and fraction = all ones.
The sign is zero to distinguish such results from storage initialized to all ones.

One operand, a quiet NaN — No exception; result is the quiet NaN operand.

One operand, a signalling NaN — Invalid exception; result is the signalling NaN
with its quiet bit (most significant bit of fraction field) set to 1.

Two operands, both quiet NaNs — No exception; result is the rs2 (second source)
operand.

Two operands, both signalling NaNs — Invalid exception; result is the rs2
operand with the quiet bit set to 1.

Two operands, only one is a signalling NaN — Invalid exception; result is the
signalling NaN operand with the quiet bit set to 1.

Two operands, neither is a signalling NaN, only one is a quiet NaN — No
exception; result is the quiet NaN operand.

In TABLE 9-1, NaN#n means that the NaN is in rsn, Q means quiet, S signalling.
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TABLE9-1  Untrapped Floating-Point Results

rs2 Operand
Number QNaN2 SNaN2
rsi None IEEE 754 QNaN2 QSNaN2
operand
Number 1IEEE 754 QNaN2 QSNaN2
QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

QSNaNn means a quiet NaN produced by the NaN transformation on a signalling
NaN from rsn; the invalid exception is always indicated. The QNaN# results in the
table never generate an exception, but IEEE 754 specifies several cases of invalid
exceptions, and QNaN results from operands that are both numbers.

9.3

Trapped Underflow Definition (ufm = 1)

An UltraSPARC Architecture virtual processor detects tininess before rounding
occurs. (impl. dep. #55-V8-Cs10)

Since tininess is detected before rounding, trapped underflow occurs when the exact
unrounded result has magnitude between zero and the smallest normalized number
in the destination format.

Note | The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the SPARC V9 architecture at the hardware, and privileged
software levels. If they are created at all, it would be by user
software in a nonprivileged-mode trap handler.

9.4

Untrapped Underflow Definition
(ufm = 0)

On an implementation that detects tininess before rounding, untrapped underflow
occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded
result in the destination format is inexact.
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TABLE 9-2 summarizes what happens on an implementation that detects tininess
before rounding, when an exact unrounded value u satisfying

0 < |u| < smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value.

TABLE9-2  Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap: ufm=1 ufm =0 ufm =0
Inexact trap: nxm = x nxm =1 nxm =0
7 is minimum normal None None None
u=r |[rissubnormal UF None None
r is zero None None None
r is minimum normal UF NX uf nx
u#r |rissubnormal UF NX uf nx
r is zero UF NX uf nx
UF = fp_exception_ieee_754 trap with cexc.ufc =1
NX = fp_exception_ieee_754 trap with cexc.nxc =1
uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc =1, aexc.nxa = 1, no fp_exception_ieee_754 trap

9.5 Integer Overflow Definition

= F<sdq>TOi — When a NaN infinity, large positive argument > 2L or large
negative argument < ~(2%1 +1) is converted to an integer, the invalid_current
(nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754 should be raised.
If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the oi)erand is 0, the result is
231 _1; if the sign bit of the operand is 1, the result is -23

= F<sdq>TOx — When a NaN infinity, large positive argument > 293, or large
negative argument < (2 + 1) is converted to an extended integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0),
no trap occurs and a numerical result is generated: if the sign bit of the o 6gerand is
0, the result is 2% - 1; if the sign bit of the operand is 1, the result is -2
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9.6 Floating-Point Nonstandard Mode

Please refer to Nonstandard Floating-Point (ns) on page 60 for information.
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CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory
operations. The instruction set semantics require that loads and stores behave as if
they are performed in the order in which they appear in the dynamic control flow of
the program. The actual order in which they are processed by the memory may be
different. The purpose of the memory models is to specify what constraints, if any,
are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple virtual processors and input/output devices in a
shared memory configuration. Programming shared memory multiprocessors
requires a detailed understanding of the operative memory model and the ability to
specify memory operations at a low level in order to build programs that can safely
and reliably coordinate their activities. For additional information on the use of the
models in programming real systems, see Programming with the Memory Models,
contained in the separate volume UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of
the UltraSPARC Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

= Memory Location Identification on page 366.

= Memory Accesses and Cacheability on page 366.

= Memory Addressing and Alternate Address Spaces on page 369.

= SPARC V9 Memory Model on page 372.

= The UltraSPARC Architecture Memory Model — TSO on page 376.
= Nonfaulting Load on page 384.

= Store Coalescing on page 385.
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9.1

Memory Location Identification

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit memory address. The 8-bit ASI can be obtained from an ASI register or included
in a memory access instruction. The ASI used for an access can distinguish among
different 64-bit address spaces, such as Primary memory space, Secondary memory
space, and internal control registers. It can also apply attributes to the access, such as
whether the access should be performed in big- or little-endian byte order, or
whether the address should be taken as a virtual or real.

9.2

9.2.1

Memory Accesses and Cacheability

Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location (or, in the case of a load or load-store, on the
destination register).

I/O locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on I/0O locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on I/O locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation
dependent.

Coherence Domains

Two types of memory operations are supported in the UltraSPARC Architecture:
cacheable and noncacheable accesses. The manner in which addresses are
differentiated is implementation dependent. In some implementations, it is indicated
by the page translation (TTE.cp), while in other implementations, it is physical
address bit specific.
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Although SPARC V9 does not specify memory ordering between cacheable and
noncacheable accesses, the UltraSPARC Architecture maintains TSO ordering
between memory references regardless of their cacheability.

The UltraSPARC Architecture obeys the Sun-5 Ordering rules as documented in the
“Sun-4u/Sun-5 Ordering with TSO” specification.

9.2.1.1 Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have these
properties:

= Data reside in real memory locations.

= Accesses observe supported cache coherency protocol(s).

= The cache line size is 2" bytes (where n 2 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses

Noncacheable accesses are outside of the coherence domain. They have the
following properties:

» Data might not reside in real memory locations. Accesses may result in
programmer-visible side effects. An example is memory-mapped I/O control
registers.

= Accesses do not observe supported cache coherency protocol(s).

= The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page
translation, TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor consistent and
obey TSO memory ordering. In particular, processor consistency ensures that a
noncacheable load that references the same location as a previous noncacheable store
will load the data of the previous store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are
strongly ordered. These accesses are described in more detail in the following
section.

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory
semantics. Loads and stores could have side effects; for example, a read access could
clear a register or pop an entry off a FIFO. A write access could set a register address
port so that the next access to that address will read or write a particular internal
register. Such devices are considered order sensitive. Also, such devices may only
allow accesses of a fixed size, so store merging of adjacent stores or stores within a
16-byte region would cause an error (see Store Coalescing on page 385).
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Noncacheable accesses (other than block loads and block stores) to pages with side
effects (TTE.e = 1) exhibit the following behavior:

= Noncacheable accesses are strongly ordered with respect to each other. Bus
protocol should guarantee that IO transactions to the same device are delivered in
the order that they are received.

= Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until
all previous instructions have completed, and the store queue is empty.

= Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

= A MEMBAR may be needed between side-effect and non-side-effect accesses. See
TABLE 9-3 on page 382.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e
and always behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-
510, #411-510).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect
accesses do not observe supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI _PRI MARY_NO_FAULT[_LI TTLE] or
AS| _SECONDARY_NO_FAULT[_LI TTLE]) with the TTE.e bit=1 cause a trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches
that it predicts are taken. Instruction addresses mapped by the MMU can be
accessed even though they are not actually executed by the program. Normally,
locations with side effects or that generate timeouts or bus errors are not mapped as
instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is
implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between
virtual processors and I/O DMA memory accesses are implementation dependent.

V9 Compatibility | Operations to I/O locations are not guaranteed to be
Note | sequentially consistent among themselves, as they are in SPARC
V8.

Systems supporting SPARC V8 applications that use memory-mapped 1/0 locations
must ensure that SPARC V8 sequential consistency of I/O locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses
and use an implementation-dependent memory model for references to them.
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9.3

9.3.1

Memory Addressing and Alternate
Address Spaces

An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset within the specified address space. Memory is
byte-addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 102, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword®. Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

Notes | The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.

Memory Addressing Types

The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual
processor that maps all systemwide, program-visible memory. Virtual addresses can
be presented in nonprivileged mode and privileged mode

1 Two exceptions to this are the special ASI _TW N_DW NUCLEUS[ _L] and ASI _LD_TW NX_REAL[ _L] which
provide hardware support for an atomic quad load to be used for TTE loads from TSBs.
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9.3.2

9.3.3

Real addresses (RA). A real address is provided to privileged software to
describe the underlying physical memory allocated to it. Translation storage buffers
(TSBs) maintained by privileged software are used to translate privileged or
nonprivileged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual
and real addresses.

Memory Address Spaces

The UltraSPARC Architecture supports accessing memory using virtual or real
addresses. Multiple virtual address spaces within the same real address space are
distinguished by a context identifier (context ID).

Privileged software can create multiple virtual address spaces, using the primary
and secondary context registers to associate a context ID with every virtual address.
Privileged software manages the allocation of context IDs.

The full representation of a real address is as follows:

real_address = context_ID :: virtual_address

Address Space Identifiers

The virtual processor provides an address space identifier with every address. This
ASI may serve several purposes:

= To identify which of several distinguished address spaces the 64-bit address offset
is addressing

= To provide additional access control and attribute information, for example, to
specify the endianness of the reference

= To specify the address of an internal control register in the virtual processor,
cache, or memory management hardware

Memory management hardware can associate an independent 264—byte memory
address space with each ASI. In practice, the three independent memory address
spaces (contexts) created by the MMU are Primary, Secondary, and Nucleus.

Programming | Independent address spaces, accessible through ASIs, make it
Note | possible for system software to easily access the address space of

faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.

Alternate-space load, store, load-store and prefetch instructions specify an explicit
ASI to use for their data access. The behavior of the access depends on the current
privilege mode.
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Non-alternate space load, store, load-store, and prefetch instructions use an implicit
ASI value that is determined by current virtual processor state (the current privilege
mode, trap level (TL), and the value of the PSTATE.cle). Instruction fetches use an
implicit ASI that depends only on the current mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers
(ASIs). The operation of each ASI in nonprivileged and privileged modes is
indicated in TABLE 10-1 on page 389.

Attempts by nonprivileged software (PSTATE.priv = 0) to access restricted ASIs (ASI
bit 7 = 0) cause a privileged_action exception. Attempts by privileged software
(PSTATE.priv = 1) to access ASIs 3014-7F4 cause a privileged_action exception.

When TL =0, normal accesses by the virtual processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI _PRI MARY or
ASI _PRI MARY_LI TTLE, depending on the setting of PSTATE.cle.

When TL =1 or 2 (> 0 but < MAXPTL), the implicit ASI in privileged mode is:

= for instruction fetches, ASI _NUCLEUS

= for loads and stores, ASI _NUCLEUS if PSTATE.cle = 0 or ASI _NUCLEUS_LI TTLE
if PSTATE.cle =1 (impl. dep. #124-V9).

SPARC V9 supports the PRI MARY[_LI TTLE], SECONDARY[_LI TTLE], and
NUCLEUS[_LI TTLE] address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register+register
addressing mode) or taken from the ASI register (for register+immediate
addressing).

ASlIs are either nonrestricted or restricted-to-privileged:

= A nonrestricted ASI (ASI range 80,4 — FF14) is one that may be used
independently of the privilege level (PSTATE.priv) at which the virtual processor
is running.

= A restricted-to-privileged ASI (ASI range 0014 — 2F¢) requires that the virtual
processor be in privileged mode for a legal access to occur.
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The relationship between virtual processor state and ASI restriction is shown in
TABLE 9-1.

TABLE9-1  Allowed Accesses to ASIs

Result of ASI Result of ASI
ASI Value Type Access in NP Mode Access in P Mode
0016 — Restricted-to- privileged_action Valid Access
2Fq4 privileged exception
8016 — Nonrestricted Valid Access Valid Access

FF6

Some restricted ASIs are provided as mandated by SPARC V9:

ASI _AS_| F_USER_PRI MARY[_LI TTLE] and

ASI _AS_| F_USER_SECONDARY[_LI TTLE]. The intent of these ASIs is to give
privileged software efficient, yet secure access to the memory space of nonprivileged
software.

The normal address space is primary address space, which is accessed by the
unrestricted ASI _PRI MARY[_LI| TTLE] ASIs. The secondary address space, which is
accessed by the unrestricted ASI _SECONDARY[_LI TTLE] ASls, is provided to allow
server software to access client software’s address space.

AS| _PRI MARY_NOFAULT[_LI TTLE] and ASI _SECONDARY_NOFAULT[_LI TTLE]
support nonfaulting loads. These ASIs may be used to color (that is, distinguish into
classes) loads in the instruction stream so that, in combination with a judicious
mapping of low memory and a specialized trap handler, an optimizing compiler can
move loads outside of conditional control structures.

9.4

SPARC V9 Memory Model

The SPARC V9 processor architecture specified the organization and structure of a
central processing unit but did not specify a memory system architecture. This
section summarizes the MMU support required by an UltraSPARC Architecture
processor.

The memory models specify the possible order relationships between memory-
reference instructions issued by a virtual processor and the order and visibility of
those instructions as seen by other virtual processors. The memory model is
intimately intertwined with the program execution model for instructions.
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94.1

SPARC V9 Program Execution Model

The SPARC V9 strand model of a virtual processor consists of three units: an Issue
Unit, a Reorder Unit, and an Execute Unit, as shown in FIGURE 9-1.

Processor
Data Path
Issue Reorder Execute
. - . M
Unit Unit Unit Instruction Path emory

FIGURE 9-1 Processor Model: Uniprocessor System

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.

Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another virtual processor, be identical to the result
that would be observed if the instructions were performed in program order. In the
model in FIGURE 9-1, instructions are issued in program order and placed in the
reorder buffer. The virtual processor is allowed to reorder instructions, provided it
does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all
earlier instructions that write to that register have been performed (read-after-
write hazard; write-after-write hazard).
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2. An instruction cannot be performed that writes to a register until all earlier
instructions that read that register have been performed (write-after-read hazard).

V9 Compatibility | An implementation can avoid blocking instruction execution in
Note | case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location
cannot be performed until all earlier memory-reference instructions that set (store
to) that location have been performed (read-after-write hazard, write-after-write
hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be
performed until all previous instructions that read (load from) that location have
been performed (write-after-read hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain
the issue of memory-reference instructions. See Memory Ordering and Synchronization
on page 381 and The UltraSPARC Architecture Memory Model — TSO on page 376 for
a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.
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9.4.2

Virtual Processor/Memory Interface Model

Each UltraSPARC Architecture virtual processor in a multiprocessor system is
modeled as shown in FIGURE 9-2; that is, having two independent paths to memory:
one for instructions and one for data.

Memory Transactions

Virtual Processors in Memory Order

Instructions
M M Data

Instructions
H H Data Memory

Instructions
M M Data

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. See Synchronizing Instruction and Data Memory on page 383 for
details. Memory is shared in terms of address space, but it may be nonhomogeneous
and distributed in an implementation.Caches are ignored in the model, since their
functions are transparent to the memory model®.

In real systems, addresses may have attributes that the virtual processor must
respect. The virtual processor executes loads, stores, and atomic load-stores in
whatever order it chooses, as constrained by program order and the memory model.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory
transactions to the memory. The memory performs transactions in memory order. The
memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered, unless the memory unit can still guarantee in-order
semantics.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to

a location preserve the per-virtual processor partial orderings. Memory transactions
1- The model described here is only a model; implementations of UltraSPARC Architecture systems are
unconstrained as long as their observable behaviors match those of the model.
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may complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that
preserves the partial orderings of each virtual processor’s transactions to this
address. There may be many legal total orders for a given program’s execution.

9.5

The UltraSPARC Architecture Memory
Model — TSO

The UltraSPARC Architecture is a model that specifies the behavior observable by
software on UltraSPARC Architecture systems. Therefore, access to memory can be
implemented in any manner, as long as the behavior observed by software conforms
to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly
ordered model, for example, Sequential Consistency) to ensure compatibility for
SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO
and RMO models from SPARC V9 are not described in this UltraSPARC Architecture
specification. UltraSPARC Architecture 2005 processors do not implement the PSO
memory model directly, but all software written to run under PSO will execute
correctly on an UltraSPARC Architecture 2005 processor (using the TSO model).

Whether memory models represented by PSTATE.mm = 10, or 11, are supported in
an UltraSPARC Architecture processor is implementation dependent (impl. dep.
#113-V9-Ms10). If the 10, model is supported, then when PSTATE.mm = 10, the
implementation must correctly execute software that adheres to the RMO model
described in The SPARC Architecture Manual-Version 9. If the 11, model is supported,
its definition is implementation dependent and will be described in implementation-
specific documentation.

Programs written for Relaxed Memory Order will work in both Partial Store Order
and Total Store Order. Programs written for Partial Store Order will work in Total
Store Order. Programs written for a weak model, such as RMO, may execute more
quickly when run on hardware directly supporting that model, since the model
exposes more scheduling opportunities, but use of that model may also require extra
instructions to ensure synchronization. Multiprocessor programs written for a
stronger model will behave unpredictably if run in a weaker model.
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9.5.1

9.5.2

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO. Sequential
consistency is not a SPARC V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all virtual processors are performed by memory in
a serial order that conforms to the order in which these instructions are issued by
individual virtual processors. A machine that implements sequential consistency
may deliver lower performance than an equivalent machine that implements TSO
order. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

Memory Model Selection

The active memory model is specified by the 2-bit value in PSTATE.mm,. The value
00, represents the TSO memory model; increasing values of PSTATE.mm indicate
increasingly weaker (less strongly ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory
model designation into PSTATE.mm is implementation dependent; however, it
should never result in a value of PSTATE.mm value greater than the one that was
written. In the case of an UltraSPARC Architecture implementation that only
supports the TSO memory model, PSTATE.mm always reads as zero and attempts to
write to it are ignored.

Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model

Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.

The rules for TSO, in addition to those required for self-consistency (see page 373),
are:

= Loads are blocking and ordered with respect to earlier loads

= Stores are ordered with respect to stores.

= Atomic load-stores are ordered with respect to loads and stores.

= Stores cannot bypass earlier loads.

Programming | Loads can bypass earlier stores to other addresses, which
Note | maintains processor self-consistency.
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9.5.3

Atomic load-stores are treated as both a load and a store and can only be applied to
cacheable address spaces.

Thus, TSO ensures the following behavior:

= Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad
and #LoadStore.

= Each store instruction behaves as if it were followed by a MEMBAR
#StoreStore.

= Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad,
#LoadSt or e, and #St or eSt or e.

In addition to the above TSO rules, the following rules apply to UltraSPARC
Architecture memory models:

= A MEMBAR #St or eLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order (as defined in The UltraSPARC Architecture
Memory Model — TSO on page 376) is desired.

= Accesses that have side effects are all strongly ordered with respect to each other.

= A MEMBAR #Lookasi de is not needed between a store and a subsequent load to
the same noncacheable address.

= Load (LDXA) and store (STXA) instructions that reference certain internal ASIs
perform both an intra-virtual processor synchronization (i.e. an implicit
MEMBAR #Sync operation before the load or store is executed) and an inter-
virtual processor synchronization (that is, all active virtual processors are brought
to a point where synchronization is possible, the load or store is executed, and all
virtual processors then resume instruction fetch and execution). The model-
specific PRM should indicate which ASIs require intra-virtual processor
synchronization, inter-virtual processor synchronization, or both.

TSO Ordering Rules

TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two
memory operations on an UltraSPARC Architecture virtual processor running in
TSO mode, to ensure that the operations appear to complete in a particular order.
Memory operation ordering is not to be confused with processor consistency or
deterministic operation; MEMBARSs are required for deterministic operation of
certain ASI register updates.

Programming | To ensure software portability across systems, the MEMBAR
Note | rules in this section should be followed (which may be stronger
than the rules in SPARC V9).

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory
operation in program order in a row is followed by the memory operation found in
the column. Symbols used as table entries:
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9.54

= #— No intervening operation is required.

» M — an intervening MEMBAR #St or eLoad or MEMBAR #Sync or
MEMBAR #Meml ssue is required

= S — an intervening MEMBAR #Sync or MEMBAR #Mem ssue is required
= nc — Noncacheable
= e — Side effect

= ne — No side effect

TABLE9-2  Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):
[5)
()

(] ‘D| o C| )
| 2} | o o c
(8] c [S] c c |
] ] c | c | | o)
s|2|E|B | |d |2 | |2 |8 |8
From Memory © 8 8 9 *(7) I 8 g 9 9 o;)
Operation R (row): | S | » | © | & a o 7] ° »n | @ a
load # # # S S # # # # S S
store M2 # # M S M # M # M S
atomic # # # M S # # # # M S
bload S S S S S S S S S S S
bstore M S M M S M S M S M S
load_nc_e # # # s s # # # # s s
store_nc_e s # # s s # # M2 # M s
load_nc_ne # # # s s # # # # s s
store_nc_ne s # # s s M> # M2 #£ M s
bload_nc S S S s S S S S S S S
bstore_nc S S S s S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.

Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, the UltraSPARC Architecture
provides three hardware primitives for mutual exclusion:

= Compare and Swap (CASA and CASXA)
= Load Store Unsigned Byte (LDSTUB and LDSTUBA)
= Swap (SWAP and SWAPA)
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Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the TSO memory model
and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in
noncacheable I/O addresses). An attempt to use an atomic load-store instruction to
access a noncacheable page results in a data_access_exception exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the
specific instruction descriptions for a list of the valid ASIs. An attempt to execute an
atomic load-store alternate instruction with an invalid ASI results in a
data_access_exception exception.

9.54.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual
processor register to a value in memory and, if and only if they are equal, swaps the
value in memory with the value in a second virtual processor register. Both 32-bit
(CASA) and 64-bit (CASXA) operations are provided. The compare-and-swap
operation is atomic in the sense that once it begins, no other virtual processor can
access the memory location specified until the compare has completed and the swap
(if any) has also completed and is potentially visible to all other virtual processors in
the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. For examples, see Programming with the Memory
Models, contained in the separate volume UltraSPARC Architecture Application Notes.

9542 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a
word in memory. SWAP has a consensus number of two; that is, it cannot resolve
more than two contending processes in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF;4 into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.
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9.5.5

Memory Ordering and Synchronization

The UltraSPARC Architecture provides some level of programmer control over
memory ordering and synchronization through the MEMBAR and FLUSH
instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR,
the ordering MEMBAR, provides a way for the programmer to control the order of
loads and stores issued by a virtual processor. The other variant of MEMBAR, the
sequencing MEMBAR, enables the programmer to explicitly control order and
completion for memory operations. Sequencing MEMBARs are needed only when a
program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.! Because both forms are bit-encoded into the instruction, a
single MEMBAR can function both as an ordering MEMBAR and as a sequencing
MEMBAR.

The SPARCV?9 instruction set architecture does not guarantee consistency between
instruction and data spaces. A problem arises when instruction space is dynamically
modified by a program writing to memory locations containing instructions (Self-
Modifying Code). Examples are Lisp, debuggers, and dynamic linking. The FLUSH
instruction synchronizes instruction and data memory after instruction space has
been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single virtual processor. Sets of loads and stores that appear before the MEMBAR in
program order are ordered with respect to sets of loads and stores that follow the
MEMBAR in program order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and
CASXA) are ordered by MEMBAR as if they were both a load and a store, since they
share the semantics of both. An STBAR instruction, with semantics that are a subset
of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR
operate on all pending memory operations in the reorder buffer, independently of
their address or ASI, ordering them with respect to all future memory operations.
This ordering applies only to memory-reference instructions issued by the virtual
processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example,
MEMBAR 0144, written as “menbar #LoadLoad” in assembly language, requires
that all load operations appearing before the MEMBAR in program order complete
before any of the load operations following the MEMBAR in program order
complete. Store operations are unconstrained in this case. MEMBAR 08,4

1-Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBAR when one is
not needed may cause a degradation of performance. See Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes, for examples of the use of sequencing
MEMBARs.
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(#St or eSt or e) is equivalent to the STBAR instruction; it requires that the values
stored by store instructions appearing in program order prior to the STBAR
instruction be visible to other virtual processors before issuing any store operations
that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

TABLE9-3  Ordering Relationships Selected by Mask

Ordering Relation, Assembly Language Effective Behavior Mask nmask
Earlier <m Later Constant Mnemonic  in TSO model Value Bit #
Load <m Load #LoadLoad nop 0146 0
Store <m Load #St or eLoad #StoreLoad 024 1
Load <m Store #LoadSt ore nop 04¢ 2
Store <m Store #StoreStore nop 081¢ 3

Implementation | An UltraSPARC Architecture 2005 implementation that only
Note | implements the TSO memory model may implement
MEMBAR #LoadlLoad, MEMBAR #LoadSt or e, and
MEMBAR #St or eSt or e as nops and MEMBAR #St or el oad
as a MEMBAR #Sync.

9.55.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations.
The three sequencing MEMBAR options each have a different degree of control and
a different application.

= Lookaside Barrier — Ensures that loads following this MEMBAR are from
memory and not from a lookaside into a write buffer. Lookaside Barrier requires
that pending stores issued prior to the MEMBAR be completed before any load
from that address following the MEMBAR may be issued. A Lookaside Barrier
MEMBAR may be needed to provide lock fairness and to support some plausible
I/0 location semantics. See the example in “Control and Status Registers” in
Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

= Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new
memory operation may be initiated. See the example in “I/O Registers with Side
Effects” in Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.
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= Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier MEMBAR fully synchronizes the
virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.
TABLE 9-4  Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #
Lookaside Barrier #Lookasi de 1044 0
Memory Issue Barrier #Meml ssue 2014 1
Synchronization Barrier #Sync 4016 2

Implementation | In UltraSPARC Architecture 2005 implementations,
Note | MEMBAR #Lookasi de and MEMBAR #Mem ssue are
typically implemented as a MEMBAR #Sync.

For more details, see the MEMBAR instruction on page 258 of Chapter 8, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the virtual processor executing FLUSH. The
programmer must ensure that the modification sequence is robust under multiple
updates and concurrent execution. Since, in general, loads and stores may be
performed out of order, appropriate MEMBAR and FLUSH instructions must be
interspersed as needed to control the order in which the instruction data are
modified.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the virtual processor executing the FLUSH
appear to execute after any loads, stores, and atomic load-stores issued by the virtual
processor to that address prior to the FLUSH. FLUSH acts as a barrier for instruction
fetches in the virtual processor on which it executes and has the properties of a store
with respect to MEMBAR operations.

CHAPTER 9 « Memory 383



IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual
processor and the point at which the modified instructions have replaced outdated
instructions in a multiprocessor is implementation dependent.

Programming | Because FLUSH is designed to act on a doubleword and

Note | because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

On an UltraSPARC Architecture virtual processor:

» A FLUSH instruction causes a synchronization with the virtual processor, which
flushes the instruction pipeline in the virtual processor on which the FLUSH
instruction is executed.

= Coherency between instruction and data memories may or may not be
maintained by hardware. If it is, an UltraSPARC Architecture implementation
may ignore the address in the operands of a FLUSH instruction.

Programming | UltraSPARC Architecture virtual processors are not required to
Note | maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following;:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.

For more details, see the FLUSH instruction on page 174 of Chapter 8, Instructions.

9.6 Nonfaulting Load

A nonfaulting load behaves like a normal load, with the following exceptions:

= A nonfaulting load from a location with side effects (TTE.e = 1) causes a
data_access_exception exception.

= A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is
allowed; other types of accesses to such a page cause a data_access_exception
exception.

= These loads are issued with ASI _PRI MARY_NO FAULT[_LI TTLE] or
ASI _SECONDARY_NO FAULT[_LI TTLE]. A store with a NO_FAULT ASI causes a
data_access_exception exception.
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Typically, optimizers use nonfaulting loads to move loads across conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, in order to hide latency. The
technique allows more flexibility in instruction scheduling and improves
performance in certain algorithms by removing address checking from the critical
code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a speculative, read-ahead fashion; the page at virtual address
0,6 can safely be accessed with no penalty. The TTE.nfo bit marks pages that are
mapped for safe access by nonfaulting loads but that can still cause a trap by other,
normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers
count on an exception being generated when accessing address 0,4 to debug
software—while benefiting from the acceleration of nonfaulting access in debugged
library routines.

9.7

Store Coalescing

Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte
boundary offset in the store buffer to improve store bandwidth. Similarly non-side-
effect-noncacheable stores may be coalesced with adjacent non-side-effect
noncacheable stores within an 8-byte boundary offset in the store buffer.

In order to maintain strong ordering for I/O accesses, stores with side-effect
attribute (e bit set) will not be combined with any other stores.

Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
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CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

= Address Space Identifiers and Address Spaces on page 387.
= ASI Values on page 387.

= ASI Assignments on page 388.

= Special Memory Access ASIs on page 397.

10.1  Address Space Identifiers and Address
Spaces

An UltraSPARC Architecture processor provides an address space identifier (ASI)
with every address sent to memory. The ASI does the following:

» Distinguishes between different address spaces
= Provides an attribute that is unique to an address space
= Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to
generate a memory, I/O, or internal register address.

10.2 ASI Values

The range of address space identifiers (ASIs) is 0014-FF14. That range is divided into
restricted and unrestricted portions. ASIs in the range 80,4—FF;¢ are unrestricted;
they may be accessed by software running in any privilege mode.
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ASIs in the range 00;4—7F;¢ are restricted; they may only be accessed by software
running in a mode with sufficient privilege for the particular ASI. ASIs in the range
001¢—2F may only be accessed by software running in privileged or
hyperprivileged mode and ASIs in the range 3014—7F;¢ may only be accessed by
software running in hyperprivileged mode.

SPARC V9 | In SPARC V9, the range of ASIs was evenly divided into

Compatibility | restricted (0014-7F;4) and unrestricted (8014-FF4) halves.
Note

An attempt by nonprivileged software to access a restricted (privileged or
hyperprivileged) ASI (0014-7F;4) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (301¢,—7F;¢) also
causes a privileged_action trap.

An ASI can be categorized based on how it affects the MMU's treatment of the
accompanying address, into one of three categories:

= A Normal or Translating ASI is translated by the MMU.

= A Nontranslating ASI is not translated by the MMU; instead the address is passed
through unchanged. Nontranslating ASIs are typically used for accessing internal
registers.

= A Bypass ASI, like a nontranslating ASI, is not translated by the MMU and the
address is passed through unchanged. However, unlike a nontranslating ASI, an
access using a bypass ASI can cause exception(s) only visible in hyperprivileged
mode. Bypass ASIs are typically used by privileged software for directly
accessing memory using real (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See
implementation-specific documentation for detailed information about
implementation-dependent ASIs.

10.3  ASI Assignments

Every load or store address in an UltraSPARC Architecture processor has an 8-bit
Address Space Identifier (ASI) appended to the virtual address (VA). The VA plus
the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the
load or store alternate instructions, the ASI is an implicit ASI generated by the
virtual processor.

388 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



10.3.1

If a load alternate, store alternate, or load-store alternate instruction is used, the
value of the ASI (an "explicit ASI") can be specified in the ASI register or as an
immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used
for other functions like referencing registers in the MMU unit.

Supported ASIs

TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture
implementations and some are only present in some implementations.

An ASI marked with a closed bullet (e ) is required to be implemented on all
UltraSPARC Architecture 2005 processors.

An ASI marked with an open bullet (0) is defined by the UltraSPARC Architecture
2005 but is not necessarily implemented in all UltraSPARC Architecture 2005
processors; its implemention is optional. Across all implementations on which it is
implemented, it appears to software to behave identically.

Some ASIs may only be used with certain load or store instructions; see table
footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the
the supplied virtual address is decoded by the virtual processor.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture
and are not to be used by implemenations. ASIs marked "implementation
dependent" may be used for implementation-specific purposes.

Attempting to access an address space described as “Implementation dependent” in
TABLE 10-1 produces implementation-dependent results.

TABLE10-1  UltraSPARC Architecture ASIs (1 of 8)
Virtual T/ Shared

ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O0)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
0016~ O — 212 — — _ Implementation dependent?
0314
0444 e ASI_NUCLEUS (ASI _N) RW%*  (decoded) T —  Implicit address space,

nucleus context, TL > 0
05~ O _ _212 — — _ Implementation dependent?
0B1g
0C16 e ASI_NUCLEUS_ LI TTLE (ASI _NL) RW?%*  (decoded) T —  Implicit address space,

nucleus context, TL > 0,
little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (2 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
0Di1g- O — 212 — — _ Implementation dependent?
0F1¢
1044 e ASI_AS | F_USER PRI MARY RW%%18 (decoded) T —  Primary address space, as if
(ASI _Al UP) user (nonprivileged)
1144 e ASI_AS | F_USER SECONDARY RW%%18 (decoded) T —  Secondary address space, as
(ASI _Al US) if user (nonprivileged)
1216~ O _ _212 — — _ Implementation dependent?
1316
1444 0o ASI_REAL RW%%*  (decoded) B —  Real address
1544 O ASI_REAL IOP RW?%°  (decoded) B __ Real address, noncacheable,
with side effect (deprecated)
1616 0 ASI_BLOCK_AS | F_USER PRI MARY RW?281418(decoded) T — Primary address space,
(ASI _BLK_AI UP) block load/store, as if user
(nonprivileged)
1716 0 ASI_BLOCK_AS | F_USER_SECONDAR RW?2%1418(decoded) T —  Secondary address space,
Y block load/store, as if user
(ASI _BLK_AI US) (nonprivileged)
1816 e ASI_AS | F_USER PRI MARY_LI TTLE RW%*1% (decoded) T —  Primary address space, as if
(ASI _Al UPL) user (nonprivileged), little-
endian
1944 e ASlI_AS | F_USER_SECONDARY_ RW?Z%18 (decoded) T — Secondary address space, as
LI TTLE (ASI _Al USL) if user (nonprivileged), little-
endian
1A~ O _ _212 —_ — _ Implementation dependent’
1Cq4 0 ASI_REAL_LITTLE RW %% (decoded) B —  Real address, little-endian
(ASl _REAL_L)
1Dq¢ 0O ASI_REAL 10O LITTLEP RW % (decoded) B —  Physical address,
(ASI _REAL_10 LP) noncacheable, with side
effect, little-endian
(deprecated)
1B O ASI_BLOCK_AS | F_USER PRI MARY_ RW?231418(decoded) T —  Primary address space,
LI TTLE block load/store, as if user
(ASI _BLK_AI UPL) (nonprivileged), little-endian
1Fs4 O ASI_BLOCK AS | F_USER RW?281418(decoded) T —  Secondary address space,

SECONDARY_LI TTLE
(ASI _BLK_Al US_L)

block load/store, as if user
(nonprivileged), little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (3 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2044 0  ASI _SCRATCHPAD RW%®  (decoded; N per Privileged Scratchpad
see below) strand registers; implementation
dependent!
0 016 Scratchpad Register 0!
] 816 Scratchpad Register 1!
] 1046 " " Scratchpad Register 2!
] 1846 " " Scratchpad Register 3!
] 2014 " Scratchpad Register 4!
] 2814 Scratchpad Register 5!
0 3046 Scratchpad Register 6!
0 3814 Scratchpad Register 7!
2144 O ASI_MVJ_CONTEXTI D RW%®  (decoded; N per MMU context registers
see below) strand
0 816 I/D MMU Primary
Context ID register
0 1044 I/D MMU Secondary
Context ID register
2216 g ASI_LD TWNX _AS | F_USER_ R%7H " (decoded) T _ Primary address space, 128-
PRI MARY bit atomic load twin
(ASI _LDTX_Al UP) extended word, as if user
(nonprivileged)
2346 O ASI_LD TWNX_AS | F_USER_ R%7 (decoded) T —  Secondary address space,
SECONDARY 128-bit atomic load twin
(ASI _LDTX_AI US) extended word, as if user
(nonprivileged)
2444 0 — — — — __ Implementation dependent’
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TABLE10-1  UltraSPARC Architecture ASIs (4 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2514 0 ASI _QUEUE (see (decoded; N per
below) see below) strand
O RW?20 3C044 ! " CPU Mondo Queue Head
Pointer
O RW?26:17 3C86 ! " CPU Mondo Queue Tail
Pointer
] RW?20 3D0;6 ! " Device Mondo Queue Head
Pointer
O RW?26:17 3D844 ! " Device Mondo Queue Tail
Pointer
O RW?20 3E0;4 ! " Resumable Error Queue
Head Pointer
O RW?26:17 3E844 ! " Resumable Error Queue Tail
Pointer
O RW?20 3F014 ! " Nonresumable Error Queue
Head Pointer
O RW?26:17 3F814 ! " Nonresumable Error Queue
Tail Pointer
2616 O ASI_LD TW NX_REAL R%7™ " (decoded) B _ 128-bit atomic twin
(ASI _LDTX_REAL) extended-word load from
ASI _QUAD_LDD REALDY real address
2716 0 ASI_LD TW NX_NUCLEUS R%7H " (decoded) T —  Nucleus context, 128-bit
(ASI _LDTX_N) atomic load twin extended-
word
281- O — —— — — — Implementation dependent’
2916
2A44 0 ASI_LD TWNX_AS | F_USER_ R%7H " (decoded) T —  Primary address space, 128-
PRI MARY_LI TTLE bit atomic load twin
(ASI _LDTX_AI UPL) extended-word, as if user
(nonprivileged), little-endian
2By O ASI_LD TWNX_AS | F_USER_ R%7™ " (decoded) T —  Secondary address space,
SECONDARY_LI TTLE 128-bit atomic load twin
(ASI _LDTX_AlUS_L) extended-word, as if user
(nonprivileged), little-endian
2Cq4 0 — _2 — — __ Implementation dependent’
2Dy4 0 — 212 — — — Implementation dependent’
2, O ASI_LD TWNX_REAL_LITTLE RZ7T (decoded) B —  128-bit atomic twin-

(AS| _LDTX_REAL_L)
ASI _QUAD_LDD REAL_LI TTLEP

extended-word load from
real address, little-endian
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TABLE10-1  UltraSPARC Architecture ASIs (5 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
2F16 0 ASI_LD TWNX_NUCLEUS LITTLE R?%*”M  (decoded) T _ Nucleus context, 128-bit
(ASI _LDTX_NL) atomic load twin extended-
word, little-endian
3016~ o — _3 — — —  Reserved for use in
7F16 hyperprivilege mode
4516 0 — _31 — — — Implementation dependent’
4616~ 0O — _313 — — — Implementation dependent’
4816
4946 0 — _31 — — — Implementation dependent’
4A16- 0O — _313 — — — Implementation dependent’
4B,
4Cq4 0  Error Status and Enable Registers Implementation dependent’
8014 e ASI_PRIMARY (ASI_P) RwW* (decoded) T —  Implicit primary address
space
8144 e ASI_SECONDARY (ASI _S) RW* (decoded) T — Secondary address space
8216 e ASI_PRIMARY_NO FAULT (ASI _PNF) R1 (decoded) T — Primary address space, no
fault
8316 e ASI_SECONDARY_NO FAULT RO (decoded) T —  Secondary address space, no
(ASI _SNF) fault
8415~ o — 16 — — —  Reserved
8816 e ASI_PRIMARY_LI TTLE (ASI _PL) RW* (decoded) T —  Implicit primary address
space, little-endian
8916 e ASI_SECONDARY_LITTLE (ASI_SL) RW* (decoded) T —  Secondary address space,
little-endian
8A14 e ASI_PRIMARY_NO FAULT_LITTLE R (decoded) T — Primary address space, no
(ASI _PNFL) fault, little-endian
8B e ASI_SECONDARY_NO FAULT_LITTLE R (decoded) T —  Physical address,
(ASI _SNFL) noncacheable, with side
effect, little-endian
8Ci~ o — 16 — — —  Reserved
BFi¢
CO46 0 ASI_PST8_PRI MARY (ASI_PST8_P) W30 (decoded) T —  Primary address space, 8x8-
bit partial store
Clyg 0 ASI_PST8_SECONDARY W81014 (decoded) T —  Secondary address space,

(ASI _PST8_S)

8x8-bit partial store
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TABLE10-1  UltraSPARC Architecture ASIs (6 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
C246 0 ASI_PST16_PRI MARY W81014  (decoded) T —  Primary address space,
(ASI _PST16_P) 4x16-bit partial store
C346 0 ASI_PST16_SECONDARY W81014  (decoded) T —  Secondary address space,
(ASI _PST16_5S) 4x16-bit partial store
C4 0  ASI_PST32_PRI MARY W81014  (decoded) T —  Primary address space, 2x32-
(ASI _PST32_P) bit partial store
C5¢ 0  ASI_PST32_SECONDARY W81014  (decoded) T —  Secondary address space,
(ASI _PST32_5S) 2x32-bit partial store
Cbig— o — 15 — — _ Implementation dependent’
C86 O ASI_PST8_PRI MARY_LI TTLE W8I0 (decoded) T —  Primary address space, 8x8-
(ASI _PST8_PL) bit partial store, little-endian
C944 0 ASI_PST8_SECONDARY_LI TTLE W8I0 (decoded) T _  Secondary address space,
(ASI _PST8_SL) 8x8-bit partial store, little-
endian
CAiy [0 ASI_PST16_PRI MARY_LI TTLE W81014  (decoded) T —  Primary address space, 4x16-
(ASI _PST16_PL) bit partial store, little-endian
CByy [0 ASI_PST16_SECONDARY_LI TTLE W81014  (decoded) T —  Secondary address space,
(ASI _PST16_SL) 4x16-bit partial store, little-
endian
CCys O ASI_PST32_PRI MARY_LI TTLE W81014  (decoded) T —  Primary address space,
(ASI _PST32_PL) 2x32-bit partial store, little-
endian
CDjy 1O AS|_PST32_SECONDARY_LI TTLE WeI014 (decoded) T —  Second address space, 2x32-
(ASI _PST32_SL) bit partial store, little-endian
CEig— o — _15 — — — Implementation dependent’
D0y, O ASI_FL8_PRI MARY (ASI _FL8_P) RW814  (decoded) T — Primary address space, one
8-bit floating-point load/
store
D14 0 ASI_FL8_SECONDARY (ASI _FL8_S) RW&!* (decoded) T —  Second address space, one 8-
bit floating-point load /store
D24 0 ASI_FL16_PRI MARY (ASI _FL16_P) RW&!* (decoded) T —  Primary address space, one
16-bit floating-point load /
store
D344 0  ASI_FL16_SECONDARY RW&4  (decoded) T —  Second address space, one
(ASI _FL16_S) 16-bit floating-point load/
store
Ddig— o — _15 — — _ Implementation dependent!
D736
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TABLE10-1  UltraSPARC Architecture ASIs (7 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
D8, 0 ASI_FL8_PRI MARY_LI TTLE RW&4  (decoded) T —  Primary address space, one
(ASI _FL8_PL) 8-bit floating point load/
store, little-endian
D944 0 ASI_FL8_SECONDARY_LI TTLE RW&4  (decoded) T —  Second address space, one 8-
(ASI _FL8_SL) bit floating point load/store,
little-endian
DA O ASI_FL16_PR MARY_LI TTLE RW8T4  (decoded) T — Primary address space, one
(ASI _FL16_PL) 16-bit floating-point load/
store, little-endian
DBy O ASI_FL16_SECONDARY_LI TTLE RW814  (decoded) T —  Second address space, one
(ASI _FL16_SL) 16-bit floating point load/
store, little-endian
DCis o — 15 — — _ Implementation dependent’
-DFq4
E0j— o — _15 — — —  Reserved
Elyg
E244 0  ASI_LD_TW NX_PRI MARY RD (decoded) T —  Primary address space, 128-
(ASI _LDTX_P) bit atomic load twin
extended word
E3¢ O ASI_LD TW NX_SECONDARY RY (decoded) T —  Secondary address space,
(ASI _LDTX_S) 128-bit atomic load twin
extended-word
Edis— o _ 15 — — _ Implementation dependent’
E96
EAqq 0 ASI_LD_TWNX_PRI MARY_LITTLE R (decoded) T — Primary address space, 128-
(ASI _LDTX_PL) bit atomic load twin
extended word, little endian
EByy, O ASI_LD TW NX_SECONDARY_LI TTLE RY (decoded) T —  Secondary address space,
(ASI _LDTX_SL) 128-bit atomic load twin
extended word, little endian
ECis- O — 15 — — _ Implementation dependent’
EFi¢
FOy4 0 ASI_BLOCK_PRI MARY RW&4  (decoded) T —  Primary address space, 8x8-
(ASI _BLK_P) byte block load/store
Flye 0  ASI_BLOCK_SECONDARY RW&4  (decoded) T —  Secondary address space,
(ASI _BLK_S) 8x8- byte block load/store
F21- o _ 15 — — _ Implementation dependent’
F51¢
F616— o — — — — _ Implementation dependent’
F716
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TABLE10-1  UltraSPARC Architecture ASIs (8 of 8)
Virtual T/ Shared
ASI  feq'd(e) Access |Address Non-T/ |/per
Value ppt’l (O)[ASI Name (and Abbreviation) Type(s) (VA) Bypass|strand |Description
F814 0 ASI_BLOCK_PRI MARY_LI TTLE RW&4  (decoded) T —  Primary address space, 8x8-
(ASI _BLK_PL) byte block load/store, little
endian
F944 0  ASI_BLOCK_SECONDARY_LI TTLE RW&4  (decoded) T —  Secondary address space,
(ASI _BLK_SL) 8x8- byte block load/store,
little endian
FAjg— o — _15 — — _ Implementation dependent!
FDqg
FEi;— o — 15 — — _ Implementation dependent’
FFy6

This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a data_access_exception exception.

May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASlIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a data_access_exception exception.

May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a
data_access_exception exception.

May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a data_access_exception exception.
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May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
data_access_exception exception.

Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a data_access_exception exception.

Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a data_access_exception exception.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode causes a data_access_exception exception.
An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 397 for details).

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a data_access_exception exception if this ASI
is not implemented by the model dependent implementation.

An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a data_access_exception exception.

The Queue Tail Registers (ASI 25:4) are read-only. An attempted write to the Queue Tail
Registers causes a data_access_exception exception

10.4

10.4.1

Special Memory Access ASIs

This section describes special memory access ASIs that are not described in other
sections.

ASIs 1016’ 1116’ 1616/ 1716 and 1816
(ASI _*AS | F_USER *)

These ASI are intended to be used in accesses from privileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are
subject to privilege-related exceptions. They are distinguished from each other by
the context from which the access is made, as described in TABLE 10-2.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs

= In any other privilege mode:

If U/DMMU TTE.p =1, a data_access_exception (privilege violation)
exception occurs
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= Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie = 0, the access is big-endian;
otherwise, it is little-endian.

TABLE 10-2 Privileged ASI _*AS | F_USER * ASIs

Addressing
ASI Names (Context) Endianness of Access
10,4 ASI _AS_ | F_USER PRI MARY (ASI _Al UP) Virtual
(Primary) | Big-endian when
11;s ASI _AS | F_USER_SECONDARY (ASI _Al US) Virtual ~|U/DMMU
(Secondary) |TTE.ie =0;
little-endian when
1614 ASI _BLOCK_AS_| F_USER_PRI MARY Virtual U/DMMU
(ASI _BLK_AIl UP) (Primary) |TTEje=1
17,6 ASI _BLOCK_AS_| F_USER_SECONDARY Virtual
(ASI _BLK_AI US) (Secondary)

10.4.2 ASIs 1816’ 1916’ 1E16/ and 1F16
(ASI _*AS | F_USER * LI TTLE)

These ASIs are little-endian versions of ASIs 1074, 1114, 1614, and 1744

(ASI _AS_I F_USER_*), described in section 10.4.1. Each operates identically to the
corresponding non-little-endian ASI, except that if an access occurs its endianness is
the opposite of that for the corresponding non-little-endian ASI.

These ASI are intended to be used in accesses from privileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are
subject to privilege-related exceptions. They are distinguished from each other by
the context from which the access is made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs

= In any other privilege mode:

« If U/DMMU TTE.p =1, a data_access_exception (privilege violation)
exception occurs

= Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie = 0, the access is little-endian;
otherwise, it is big-endian.
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10.4.3

10.4.4

TABLE 10-3 Privileged ASI _*AS | F_USER *_LI TTLE ASIs

Addressing Endianness of
ASI Names (Context) Access
181 ASI_AS | F_USER PRI MARY_LI TTLE Virtual . .
(ASI _Al UPL) (Primary) Little-endian
when U/
1916 ASI _AS_| F_USER_SECONDARY_LI TTLE Virtual DMMU
(ASI _Al' USL) (Secondary) |TTE.ie = 0;
1E;, ASlI_BLOCK_AS_| F_USER PRI MARY_LI TTLE Virtual |big-endian
(ASI _BLK_AI UP) (Primary) |When U/
DMMU
1F;s ASI_BLOCK_AS_| F_USER SECONDARY_LITTLE  Virtual |TTEje =1
(ASI _BLK_AI USL) (Secondary)

ASI 14,¢ (AS| _REAL)

When ASI _REAL is specified in any load alternate, store alternate or prefetch
alternate instruction, the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs
= In any other privilege mode:
= VA is passed through to RA
= During the address translation, context values are disregarded.
= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a
cacheable access.

ASI 15,4 (ASI _REAL_I O)

Accesses with ASI _REAL _| Obypass the external cache and behave as if the side
effect bit (TTE.e bit) is set. When this ASI is specified in any load alternate or store
alternate instruction, the virtual processor behaves as follows:

= In nonprivileged mode, a privileged_action exception occurs

» If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a
data_access_exception exception occurs

= Used with any other load alternate or store alternate instuction, in privileged
mode:

= VA is passed through to RA

= During the address translation, context values are disregarded.
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= The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

10.4.5 ASI 1Cq4 (ASI _REAL_LI TTLE)

ASI _REAL_LI TTLE is a little-endian version of ASI 14,4 (ASI _REAL). It operates
identically to ASI _REAL, except if an access occurs, its endianness the opposite of
that for ASI _REAL.

104.6  ASI 1Dy (ASI _REAL_I O LI TTLE)

ASI _REAL_I O _LI TTLE is a little-endian version of ASI 1514 (ASI _REAL_I O). It
operates identically to ASI _REAL _| O, except if an access occurs, its endianness the
opposite of that for ASI _REAL_I O

10.4.7  ASIs 2244, 2314, 2714, 2A16, 2B, 2F16
(Privileged Load Integer Twin Extended
Word)

ASIs 2214, 2314, 2716, 2A14, 2B1g and 2F 4 exist for use with the (nonportable)
LDTXA instruction as atomic Load Integer Twin Extended Word operations (see Load
Integer Twin Extended Word from Alternate Space on page 250). These ASIs are
distinguished by the context from which the access is made and the endianness of
the access, as described in TABLE 10-4.

400 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



10.4.8

TABLE 10-4 Privileged Load Integer Twin Extended Word / Block Store Init ASIs

Addressing Endianness of
ASI Names (Context) Access
2216 ASI _LD_TW NX_AS_| F_USER_PRI MARY Virtual Big-endian
(ASI _LDTX_Al UP) (Primary) when U/
. DMMU
2316 ASI _LD_TW NX_AS_| F_USER_SECONDARY Virtual TTE.ie = 0;
(ASI _LDTX_AI US) (Secondary) little-endian
2716 ASI _LD_TW NX_NUCLEUS (ASI _LDTX_N) Virtual when U/
(Nucleus) DMMU
TTE.ie=1
2A14 ASI_LD TWNX_AS | F_USER PRI MARY_LI TTL Virtual Little-endian
E (ASI_LDTX_Al UP_L) (Primary) when U/
2B ASI _LD_TW NX_AS_| F_USER_SECONDARY_ Virtual ?_IF/IIEI\iAeU: 0:
LI TTLE (ASI _LDTX_AlUS_L) (Secondary) .. " .
big-endian
2F1¢ ASI _LD_TW NX_NUCLEUS_LI TTLE Virtual when U/
(ASI _LDTX_NL) (Nucleus) DMMU
TTE.ie=1

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 244 and 2Cq4 used in earlier
Note | UltraSPARC implementations; see the detailed Compatibility Note
on page 406 for details.

ASIs 2614 and 2E;4 (Privileged Load Integer Twin
Extended Word, Real Addressing)

ASIs 2614 and 2E4 exist for use with the LDTXA instruction as atomic Load Integer
Twin Extended Word operations using Real addressing (see Load Integer Twin
Extended Word from Alternate Space on page 250). These two ASlIs are distinguished by
the endianness of the access, as described in TABLE 10-5.
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TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

Addressing
ASI Name (Context) Endianness of Access
2616 ASI _LD_TW NX_REAL Real Big-endian when U/DMMU

(ASI _LDTX REAL) TTE.ie = 0; little-endian when U/

=) DMMU TTE.ie=1

Real Little-endian when U/DMMU
(ia) TTE.ie = 0; big-endian when U/
DMMU TTE.ie=1

2E;¢ ASI_LD TW NX_REAL_LI TTLE
(ASI _LDTX_REAL_L)

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Compatibility | These ASIs replaced ASIs 34,4 and 3C;4 used in earlier
Note | UltraSPARC implementations; see the Compatibility Note on
page 406 for details.

10.4.9 ASIs E216/ E316/ EA16, EB16
(Nonprivileged Load Integer Twin Extended
Word)

ASIs E214, E314, EAq4, and EBq4 exist for use with the (nonportable) LDTXA
instruction as atomic Load Integer Twin Extended Word operations (see Load Integer
Twin Extended Word from Alternate Space on page 250). These ASIs are distinguished
by the address space accessed (Primary or Secondary) and the endianness of the
access, as described in TABLE 10-6.
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10.4.10

TABLE 10-6 Load Integer Twin Extended Word ASIs

Addressing Endianness of
ASI Names (Context) Access
E2;4 ASI _LD_TW NX_PRI MARY ( ASI _LDTX_P) Virtual Big-endian
(Primary) when U/
E31¢ ASI _LD TW NX_SECONDARY ?_IF/IIEI\./IGU_ 0
(ASI_LDTX_S) o=
Virtual little-endian
(Secondary) when U/
DMMU
TTE.ie=1
EAjq ASI _LD_TW NX_PRI MARY_LI TTLE Virtual Little-endian
(ASI _LDTX_PL) (Primary) when U/
EBig ASI _LD TW NX_SECONDARY_LI TTLE ?‘?/él\i/[eU— 0
(ASI _LDTX_SL) Lo
Virtual big-endian
(Secondary) when U/
DMMU
TTE.ie=1

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

Block Load and Store ASIs

ASlIs 1616' 1716/ 1E16' 1F16’ F016' F116' F816, and F916 exist for use with LDDFA and
STDFA instructions as Block Load (LDBLOCKF) and Block Store (STBLOCKF)
operations (see Block Load on page 232 and Block Store on page 312).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store),
a mem_address_not_aligned exception is generated if the operand address is not 64-
byte aligned.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store
Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a
data_access_exception exception is always generated and
mem_address_not_aligned is not generated.
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10.4.11

10.4.12

Partial Store ASIs

ASIs C014—C5;4 and C814—CDy exist for use with the STDFA instruction as Partial
Store (STPARTIALF) operations (see Store Partial Floating-Point on page 325).

When these ASIs are used with STDFA for Partial Store, a
mem_address_not_aligned exception is generated if the operand address is not 8-
byte aligned and an illegal_instruction exception is generated if i = 1 in the
instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a
Load Alternate, Store Alternate, Atomic Load-Store Alternate, or PREFETCHA
instruction, a data_access_exception exception is generated and
mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

ASIs C074-C57¢ and C815—CD4 are only defined for use in Partial Store operations
(see page 325). None of them should be used with LDDFA; however, if any of those
ASIs is used with LDDFA, the resulting behavior is specified in the LDDFA
instruction description on page 241.

Short Floating-Point Load and Store ASIs

ASIs D01s-D316 and D8s-DB4 exist for use with the LDDFA and STDFA
instructions as Short Floating-point Load and Store operations (see Load Floating-
Point on page 236 and Store Floating-Point on page 316).

When ASI D244, D314, DA14, or DBy is used with LDDFA (STDFA) for a 16-bit Short
Floating-point Load (Store), a mem_address_not_aligned exception is generated if
the operand address is not halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a data_access_exception
exception is always generated and mem_address_not_aligned is not generated.

10.5

ASI-Accessible Registers

In this section the Data Watchpoint registers, and scratchpad registers are described.

A list of UltraSPARC Architecture 2005 ASIs is shown in TABLE 10-1 on page 389.
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10.5.1

10.5.2

Privileged Scratchpad Registers
(ASI _SCRATCHPAD)

An UltraSPARC Architecture virtual processor includes eight Scratchpad registers
(64 bits each, read/write accessible) (impl.dep. #302-U4-Cs10). The use of the
Scratchpad registers is completely defined by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in
Software Considerations, contained in the separate volume UltraSPARC Architecture
Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap
handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-7.

TABLE 10-7  Scratchpad Registers

Privileged Scratchpad
Assembly Language ASI Name ASI #  Virtual Address Register #

0016 0
0816
1044
1814
2016
2816
3046
3814

ASI _SCRATCHPAD 2016

N O G s W N =

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4-7 are accessible to
privileged software is implementation dependent. Each may be

(1) fully accessible,

(2) accessible, with access much slower than to scratchpad registers 0-3, or

(3) inaccessible (cause a data_access_exception).

V9 Compatibility
Note

Privileged scratchpad registers are an UltraSPARC Architecture
extension to SPARC V9.

ASI Changes in the UltraSPARC Architecture

The following Compatibility Note summarize the UltraSPARC ASI changes in
UltraSPARC Architecture.
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Compatibility | The names of several ASIs used in earlier UltraSPARC
Note | implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture
141, ASI _PHYS_USE_EC AS| _REAL
15,4 ASI _PHYS_BYPASS_EC W TH EBI T ASI_REAL_I O
1Cy¢ ASI _PHYS USE_EC LI TTLE ASI _REAL_LI TTLE
(ASI _PHYS_USE_EC L)
1Dy ASI _PHYS BYPASS EC W TH_ ASI _REAL_| O LI TTLE
EBI T_LI TTLE

(ASI _PHY_BYPASS EC W TH EBI T_L)

Compatibility | The names and ASI assignments (but not functions) changed
Note | between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC __UltraSPARC Architecture
ASI# Name ASI# Name
241, ASI _NUCLEUS_QUAD LDD 27;¢ ASI_LD TW NX_NUCLEUS
(ASI _LDTX_N)
2Cq6 ASI _NUCLEUS_QUAD LDD_ 2F;4 ASI_LD TW NX_NUCLEUS_
LI TTLE LI TTLE

(ASI _NUCLEUS QUAD_LDD L)  (ASl _LDTX_NL)
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CHAPTER 11

Performance Instrumentation

(contents to be supplied in a later revision)
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CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see
page 410) with (typically) greater privileges. A trap in nonprivileged mode can be
delivered to privileged mode or hyperprivileged mode. A trap that occurs while
executing in privileged mode can be delivered to privileged mode or
hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight
instructions (32 instructions for clean_window, window spill, and window fill, traps)
of each trap handler. The virtual base address of the trap table for traps to be
delivered in privileged mode is specified in the Trap Base Address (TBA) register.
The displacement within the table is determined by the trap type and the current
trap level (TL). One-half of each table is reserved for hardware traps; the other half is
reserved for software traps generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR,
PSTATE, and the trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The virtual processor must appear to behave as though, before executing
each instruction, it determines if there are any pending exceptions or interrupt
requests. If there are pending exceptions or interrupt requests, the virtual processor
selects the highest-priority exception or interrupt request and causes a trap.
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Thus, an exception is a condition that makes it impossible for the virtual processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the virtual processor when it changes the instruction flow
in response to the presence of an exception, interrupt, reset, or Tcc instruction.

V9 Compatibility | Exceptions referred to as “catastrophic error exceptions” in the
Note | SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)

An interrupt is a request for service presented to a virtual processor by an external
device.

Traps are described in these sections:

= Virtual Processor Privilege Modes on page 410.

= Virtual Processor States and Traps on page 412.

= Trap Categories on page 412.

= Trap Control on page 417.

= Trap-Table Entry Addresses on page 418.

= Trap Processing on page 429.

= Exception and Interrupt Descriptions on page 431.
= Register Window Traps on page 436.

12.1  Virtual Processor Privilege Modes

An UltraSPARC Architecture virtual processor is always operating in a discrete
privilege mode. The privilege modes are listed below in order of increasing
privilege:

= Nonprivileged mode (also known as “user mode”)

= Privileged mode, in which supervisor (operating system) software primarily
operates

» Hyperprivileged mode (not described in this document)

The virtual processor’s operating mode is determined by the state of two mode bits,
as shown in TABLE 12-1.

TABLE 12-1 Virtual Processor Privilege Modes

PSTATE .priv Virtual Processor Privilege Mode

0 Nonprivileged
1 Privileged
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A trap is delivered to the virtual processor in either privileged mode or
hyperprivileged mode; in which mode the trap is delivered depends on:

= Its trap type
= The trap level (TL) at the time the trap is taken
= The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual
processor in privileged mode or hyperprivileged mode.

TABLE 12-4 on page 422 indicates in which mode each trap is processed, based on the
privilege mode at which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based
upon the TBA register. See Trap-Table Entry Address to Privileged Mode on page 419 for
details.

The maximum trap level at which privileged software may execute is MAXPTL
(which, on an virtual processor, is 2)..

Notes | Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged software should never allow to occur.

FIGURE 12-1 shows how a virtual processor transitions between privilege modes,
excluding transitions that can occur due to direct software writes to PSTATE.priv. In
this figure, indicates a “trap destined for privileged mode” and indicates a
“trap destined for hyperprivileged mode”.

@ TL < MAXPTL (2)

Nonprivileged Privileged Hyperprivileged

1 if (TSTATE[TL].PSTATE.priv = 0) 2 if (TSTATE[TL].PSTATE.priv = 1)

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram
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12.2 Virtual Processor States and Traps

The value of TL affects the generated trap vector address. TL also determines where
(that is, into which element of the TSTATE array) the states are saved.

12.2.0.1 Usage of Trap Levels

If MAXPTL = 2 in an UltraSPARC Architecture implementation, the trap levels might
be used as shown in TABLE 12-2.

TABLE 12-2 Typical Usage for Trap Levels

Corresponding

TL Execution Mode Usage
0 Nonprivileged = Normal execution
1 Privileged System calls; interrupt handlers; instruction emulation
2 Privileged Window spill/fill handler

12.3  Trap Categories

An exception, error, or interrupt request can cause any of the following trap types:

= Precise trap

= Deferred trap

= Disrupting trap
= Reset trap

12.3.1 Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-
visible state has been changed by the trap-inducing instructions. When a precise trap
occurs, several conditions must be true:

= The PC saved in TPC[TL] points to the instruction that induced the trap and the
NPC saved in TNPC[TL] points to the instruction that was to be executed next.

= All instructions issued before the one that induced the trap have completed
execution.

= Any instructions issued after the one that induced the trap remain unexecuted.
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12.3.2

Among the actions that trap handler software might take when processing a precise
trap are:

= Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC < old PC, NPC ~ old NPC).

= Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC — old NPC,
NPC — old NPC +4).

= Terminate the program or process associated with the trap.

Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

There are two classes of deferred traps:

» Termination deferred traps — The instruction (usually a store) that caused the trap
has passed the retirement point of execution (the TPC has been updated to point
to an instruction beyond the one that caused the trap). The trap condition is an
error that prevents the instruction from completing and its results becoming
globally visible. A termination deferred trap has high trap priority, second only to
the priority of resets.

Programming | Not enough state is saved for execution of the instruction stream
Note | to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

= Restartable deferred traps — The program-visible state has been changed by the
trap-inducing instruction or by one or more other instructions after the trap-
inducing instruction.

SPARC V9 | A restartable deferred trap is the “deferred trap” defined in the
Compatibility | SPARC V9 specification.
Note

The fundamental characteristic of a restartable deferred trap is that the state of the
virtual processor on which the trap occurred may not be consistent with any precise
point in the instruction sequence being executed on that virtual processor. When a
restartable deferred trap occurs, TPC[TL] and TNPC|[TL] contain a PC value and an
NPC value, respectively, corresponding to a point in the instruction sequence being
executed on the virtual processor. This PC may correspond to the trap-inducing
instruction or it may correspond to an instruction following the trap-inducing
instruction. With a restartable deferred trap, program-visible updates may be
missing from instructions prior to the instruction to which TPC[TL] refers. The
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missing updates are limited to instructions in the range from (and including) the
actual trap-inducing instruction up to (but not including) the instruction to which
TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet
executed, therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the
error that caused the deferred trap. If system software can recover from the error
that caused the deferred trap, then there must be sufficient information to generate a
consistent state within the processor so that execution can resume. Included in that
information must be an indication of the mode (nonprivileged, privileged, or
hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is
maintained and how the state is repaired to a consistent state are implementation
dependent. It is also implementation dependent whether execution resumes at the
point of the trap-inducing instruction or at an arbitrary point between the trap-
inducing instruction and the instruction pointed to by the TPC[TL], inclusively.

Associated with a particular restartable deferred trap implementation, the following
must exist:

= An instruction that causes a potentially outstanding restartable deferred trap
exception to be taken as a trap

= Instructions with sufficient privilege to access the state information needed by
software to emulate the restartable deferred trap-inducing instruction and to
resume execution of the trapped instruction stream.

Programming | Resuming execution may require the emulation of instructions
Note | that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.

Software should resume execution with the instruction starting at the instruction to
which TPC[TL] refers. Hardware should provide enough information for software to
recreate virtual processor state and update it to the point just before execution of the
instruction to which TPC[TL] refers. After software has updated virtual processor

state up to that point, it can then resume execution by issuing a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly,
associated deferred-trap queues) are present is implementation dependent.
Among the actions software can take after a restartable deferred trap are these:

= Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated restartable
deferred trap state queue, and use RETRY to return control to the instruction at
which the deferred trap was invoked.

= Terminate the program or process associated with the restartable deferred trap.
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12.3.3

A deferred trap (of either of the two classes) is always delivered to the virtual
processor in hyperprivileged mode.

Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than
directly by a particular instruction. This distinguishes it from precise and deferred
traps.

When a disrupting trap has been serviced, trap handler software normally arranges
for program execution to resume where it left off. This distinguishes disrupting traps
from reset traps, since a reset trap vectors to a unique reset address and execution of
the program that was running when the reset occurred is generally not expected to
resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program
stream and the NPC value saved in TNPCJ[TL] points to the instruction that was
to be executed after that one.

2. All instructions issued before the instruction indicated by TPC[TL] have
retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were
issued after it remain unexecuted.

A disrupting trap may be due to an interrupt request directly related to a
previously-executed instruction; for example, when a previous instruction sets a bit
in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not
directly related to instruction processing. The source of an interrupt request may be
either internal or external. An interrupt request can be induced by the assertion of a
signal not directly related to any particular virtual processor or memory state, for
example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:
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= The privilege mode in effect when the trap is outstanding, just before the trap is
actually taken (regardless of the privilege mode that was in effect when the
exception was detected).

= The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Privileged mode. An outstanding disrupting trap condition in either
nonprivileged mode or privileged mode and destined for delivery to privileged
mode is held pending while the Interrupt Enable (ie) field of PSTATE is zero
(PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either

PSTATE.ie = 0 or the condition’s interrupt level is less than or equal to the level
specified in PIL. When delivery of this disrupting trap is enabled by PSTATE.ie =1,
it is delivered to the virtual processor in privileged mode if TL < MAXPTL (2, in
UltraSPARC Architecture 2005 implementations).

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected while
in either nonprivileged mode or privileged mode and destined for delivery in
hyperprivileged mode is never masked; it is delivered immediately.

The above is summarized in TABLE 12-3.
TABLE 12-3 Conditioning of Disrupting Traps

Disposition of Disrupting Traps, based on privilege

Type of Disrupting  Current Virtual Processor mode in which the trap is destined to be delivered

Trap Condition Privilege Mode Privileged Hyperprivileged
Nonprivileged or Held pending while =~ —
Privileged ie =

Interrupt_level_n PSTATE.ie =0 or

interrupt level < PIL

All other disrupting| Nonprivileged or Held pending while Delivered
traps Privileged PSTATE.ie = 0 immediately

12.3.3.4 Trap Handler Actions for Disrupting Traps
Among the actions that trap-handler software might take to process a disrupting
trap are:

= Use RETRY to return to the instruction at which the trap was invoked
(PC ~ old PC, NPC - old NPC).

» Terminate the program or process associated with the trap.
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12.3.4

Uses of the Trap Categories

The SPARC V9 trap model stipulates the following:
1. Reset traps occur asynchronously to program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and
Exception and Interrupt Descriptions on page 431 for identification of which traps
are precise.

3. In an UltraSPARC Architecture implementation, all exceptions that occur as the
result of program execution are precise (impl. dep. #33-V8-Cs10).

4. An error detected after the initial access of a multiple-access load instruction (for
example, LDTX or LDBLOCKEF) should be precise. Thus, a trap due to the second
memory access can occur. However, the processor state should not have been
modified by the first access.

5. Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

12.4

Trap Control

Several registers control how any given exception is processed, for example:

= The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL)
register control interrupt processing. See Disrupting Traps on page 415 for details.

= The enable floating-point unit (fef) field in FPRS, the floating-point unit enable
(pef) field in PSTATE, and the trap enable mask (tem) in the FSR control floating-
point traps.

= The TL register, which contains the current level of trap nesting, affects whether
the trap is processed in privileged mode or hyperprivileged mode.

= PSTATE.tle determines whether implicit data accesses in the trap handler routine
will be performed using big-endian or little-endian byte order.

Between the execution of instructions, the virtual processor prioritizes the
outstanding exceptions, errors, and interrupt requests. At any given time, only the
highest-priority exception, error, or interrupt request is taken as a trap. When there
are multiple interrupts outstanding, the interrupt with the highest interrupt level is
selected. When there are multiple outstanding exceptions, errors, and/or interrupt
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requests, a trap occurs based on the exception, error, or interrupt with the highest
priority (numerically lowest priority number in TABLE 12-5). See Trap Priorities on
page 428.

12.4.1 PIL Control

When an interrupt request occurs, the virtual processor compares its interrupt
request level against the value in the Processor Interrupt Level (PIL) register. If the
interrupt request level is greater than PIL and no higher-priority exception is
outstanding, then the virtual processor takes a trap using the appropriate
interrupt_level_n trap vector.

12.4.2 FSR.tem Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (tem) field of the FSR. If a particular bit of
FSR.tem is 1, the associated IEEE_754_exception can cause an
fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause
an fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded
in the FSR’s accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination F register, FSR.fccn, and FSR.aexc fields remain unchanged. However,
if an IEEE_754_exception does not result in a trap, then the F register, FSR.fccn, and
FSR.aexc fields are updated to their new values.

12.5  Trap-Table Entry Addresses

Traps are delivered to the virtual processor in either privileged mode or
hyperprivileged mode, depending on the trap type, the value of TL at the time the
trap is taken, and the privilege mode at the time the exception was detected. See
TABLE 12-4 on page 422 and TABLE 12-5 on page 426 for details.

Unique trap table base addresses are provided for traps being delivered in
privileged mode and in hyperprivileged mode.
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12.5.1 Trap-Table Entry Address to Privileged Mode

Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its
most significant 49 bits) with bits 63:15 of the desired 64-bit privileged trap-table
base address.

At the time a trap to privileged mode is taken:

= Bits 63:15 of the trap vector address are taken from TBA{63:15}.

= Bit 14 of the trap vector address (the “TL>0" field) is set based on the value of TL
just before the trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL >0
then bit 14 is set to 1.

= Bits 13:5 of the trap vector address contain a copy of the contents of the TT
register (TT[TL]).

= Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at
least 2° or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.

FIGURE 12-2 illustrates the trap vector address for a trap delivered to privileged
mode. In FIGURE 12-2, the “TL>0" bit is 0 if TL = 0 when the trap was taken, and 1 if
TL > 0 when the trap was taken. This implies, as detailed in the following section,
that there are two trap tables for traps to privileged mode: one for traps from TL =0
and one for traps from TL > 0.

from TBA{63:15} (TBA.tba_high49) | TL>O| TT[TL]| 00000 |
63 15 14 13 54 0

FIGURE 12-2 Privileged Mode Trap Vector Address
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12.5.2  Privileged Trap Table Organization

The layout of the privileged-mode trap table (which is accessed using virtual
addresses) is illustrated in FIGURE 12-3.

Value Software Hardware Trap Table

of TL Trap Trap Type Offset
(tigg;e Type (TTITLD) (from TBA) Contents of Trap Table
— 000,6—07F16 0,6— FEO,6 | Hardware traps
_ — 08046—0FF;5  1000,6—1FEO0q¢ | Spill / fill traps

=0 016— 7F16 100,-17F¢ 20004—2FEO;¢ | Software traps to Privileged level
— 180,4-1FF,;  3000,6-3FE015 | unassigned
— 000,6—07F1¢  4000,6—4FEO;5 | Hardware traps

TL =1 — 080,—0FF;5  500016—5FEQ.g | Spill/ fill traps

(TL = 016— 7F16 10046-17F1g  6000,6—6FEQ;5 | Software traps to Privileged level

waeol) 180,5-1FFy;  7000;4—7FEO;q | unassigned

FIGURE 12-3 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL > 0 comprises 512 more thirty-two-byte entries. Therefore, the total size of a full
privileged trap table is 2 x 512 x 32 bytes (32 Kbytes). However, if privileged
software does not use software traps (Tcc instructions) at TL > 0, the table can be
made 24 Kbytes long.

1253  Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the type of the trap is

written into the current 9-bit TT register (TT[TL]) by hardware. Control is then

transferred into the trap table to an address formed by the trap’s destination

privilege mode:

= The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged
Mode on page 419)

TT values 0001,—0FF;4 are reserved for hardware traps. TT values 100,4,—-17F4 are
reserved for software traps (caused by execution of a Tcc instruction) to privileged-
mode trap handlers.

IMPL. DEP. #35-V8-Cs20: TT values 0604 to 07F;4 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification,
but are now all defined as standard UltraSPARC Architecture exceptions. See
TABLE 12-4 for details.
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The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the
same list, but sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

. This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2005. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

O This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2005, but its implementation is optional.

p Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)
H Trap is taken in Hyperprivileged mode

-X- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in privileged mode,
therefore a privileged_opcode trap cannot occur in privileged mode.

— This trap is reserved for future use.

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to
one in which the exception can be serviced.
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (1 of 4)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2005 T (0= Privilege Mode
® —Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv
— Reserved 00014 — — — —
. (used at higher privilege levels) 00144~ — — — —
00514
— Reserved 00514 — — — —
— implementation-dependent 00614 — — — —
. instruction_access_exception 00814 precise 3 H H
. (used at higher privilege levels) 00914 — — — —
. (used at higher privilege levels) 00A 14 — — — —
— Reserved 00B14- — — — —
00D14
— Reserved 00D14— — — — —
00Eq4
— Reserved 00F1¢ — — — —
. illegal_instruction 01014 precise 6.2 H H
° privileged_opcode 01144 precise 7 P -X-
(nm)
— Reserved 01214~ — — — —
01314
— Reserved 014B¢4- — — — —
01714
— Reserved 01814- — — — —
01F14
. fp_disabled 02014 precise 8 P P
(nm) (nm)
O fp_exception_ieee_754 02144 precise 111 P P
(nm) (nm)
O fp_exception_other 02214 precise 1.1 p p
(nm)  (nm)
. tag_overflow? 02314 precise 14 P P

(nm)  (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (2 of 4)

Mode in which Trap is
Delivered (and
Conditioning Applied),

Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv
. clean_window 02416t precise  10.1 P P
(nm) (nm)
— Reserved 02514~ — — — —
02714
. division_by_zero 02814 precise 15 P p
(nm) (nm)
— Reserved 02C14 — — — —
— Reserved 02Dq4- — — — —
02F;¢
. data_access_exception 03014 precise 12.01 H H
— Reserved 03214 — — — —
. mem_address_not_aligned 03414 precise 10.2 H H
. LDDF_mem_address_not_aligned 03514 precise 10.1 H H
. STDF_mem_address_not_aligned 03614 precise 10.1 H H
° privileged_action 03716 precise 11.1 H H
O LDQF_mem_address_not_aligned 03814 precise 10.1 H H
O STQF_mem_address_not_aligned 03916 precise 10.1 H H
— Reserved 03A14 — — — —
— Reserved 03B14 — — — —
— Reserved 03B1g- — — — —
03D14
— Reserved 04014 — — — —
. interrupt_level_n (n = 1-15) 0411¢-  disrupting 32-n P P
04F1¢ (Blto (ie) (ie)
17)
— Reserved 0501¢— — — — —
05Dq¢
. (used at higher privilege levels) 05F 16— — — — —
06114
— Reserved 06014 — — — —
— Reserved 06214 — — — —
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (3 of 4)
Mode in which Trap is
Delivered (and
o Conditioning Applied),
Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
=0pt’l Exception or Interrupt Request Type) Category est) NP Priv
ad VA_watchpoint 06214 precise 11.2 P p
(nm) (nm)
. (used at higher privilege levels) 06316- — — — —
06C1¢
— Reserved 06D~ — — — —
06Fq¢
O implementation_dependent_exception_n 07014 — O — —
(impl. dep. #35-V8-Cs20) 07514
O implementation_dependent_exception_n 077 — O — —
(impl. dep. #35-V8-Cs20)
O implementation_dependent_exception_n 07914 — O — —
(impl. dep. #35-V8-Cs20) 07B1¢
— Reserved 07916 — — — —
. cpu_mondo 07Cq¢ disrupting  16.08 P P
(ie) (ie)
. dev_mondo 07D1¢ disrupting  16.11 p p
(ie) (ie)
. resumable_error 07Eq1¢ disrupting  33.3 P P
(ie) (ie)
g implementation_dependent_exception_15  07Fq¢ — O — —
(impl. dep. #35-V8-Cs20)
— nonresumable_error 07F16 — — — —
. spill_n_normal (n = 0-7) 08016+ precise 9 P P
09Cq¢6t (nm) (nm)
o (reserved for use by spill_7_normal; 09D 46— — — — —
see footnote for trap type 09Cq¢) 09F14
. spill_n_other (n = 0-7) 0A0;¢H- precise 9 P P
0BCq¢t (nm) (nm)
o (reserved for use by spill_7_other 0BD14— — — — —
see footnote for trap type 0BCy¢) 0BF14
° fill_n_normal (n = 0-7) 0C016+ precise 9 p P
0DCq¢t (nm) (nm)
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TABLE 12-4  Exception and Interrupt Requests, by TT Value (4 of 4)
Mode in which Trap is
Delivered (and
o Conditioning Applied),
Priority based on Current
UA-2005 T 0= Privilege Mode
® =Req'd. (Trap Trap High-
0=0pt’l Exception or Interrupt Request Type) Category est) NP Priv
. (reserved for use by fill_7_normal; 0DDq6- — — — —
see footnote for trap type 0DCq4) 0DFq¢
° fill_n_other (n = 0-7) 0EO16+ precise 9 p P
0FC161 (nm) (nm)
. (reserved for use by fill_7_other 0FDq6- — — — —
see footnote for trap type 0FCqq) 0FFq¢
. trap_instruction 10014— precise 16.02 P P
17F¢ (nm) (nm)
. htrap_instruction 18014~ precise 16.02  -x-
1FFq4

" Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page

428), including relative priorities within a given priority level.

¥ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

0 The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.
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TABLE 12-5  Exception and Interrupt Requests, by Priority (1 of 2)

Mode in which Trap is
Delivered and (and

UA-2005 o Conditioning Applied),
® =Req'd. Priority  pased on Current
=Opt’l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv
. instruction_access_exception 00814 precise 3 H H
. illegal_instruction 01044 precise 6.2 H H
. privileged_opcode 01144 precise 7 P -X-
(nm)
. fp_disabled 02044 precise 8 p p
(nm) (nm)
. spill_n_normal (n = 0-7) 08014t precise P P
09Cq4t (nm) (nm)
. spill_n_other (n = 0-7) 0A076H- precise P P
0BCy¢t (nm) (nm)
9
. fil_n_normal (n = 0-7) 0C01 61— precise P P
0DCq¢t (nm) (nm)
. fill_n_other (n = 0-7) 0EO14* precise P P
OFCqgt (nm) (nm)
. clean_window 02416i precise P P
(nm) (nm)
. LDDF_mem_address_not_aligned 03514 precise H H
. STDF_mem_address_not_aligned 03616 precise 101 H H
O LDQF_mem_address_not_aligned 03816 precise H H
O STQF_mem_address_not_aligned 03914 precise H H
. mem_address_not_aligned 03444 precise 10.2 H H
O fp_exception_other 02214 precise P P
(nm) (nm)
] fp_exception_ieee_754 02144 precise P P
11.1 (nm) (nm)
. privileged_action 03716 precise H H
] VA_watchpoint 06214 precise 11.2 P P
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TABLE 125  Exception and Interrupt Requests, by Priority (2 of 2)
Mode in which Trap is
Delivered and (and
UA-2005 ~ Conditioning Applied),
® =Req'd. Priority  pased on Current
O=0pt'l T (0= Privilege Mode
O.=Impl- (Trap Trap High-
Specific Exception or Interrupt Request Type) Category est) NP Priv
. data_access_exception 03016 precise 1201 H H
e tag_overflowP 02314 precise 14 P P
(nm)  (nm)
. division_by_zero 02814 precise 15 P P
(nm)  (nm)
. trap_instruction 10014— precise P P
17F¢ (nm) (nm)
16.02
. htrap_instruction 18014— precise -X-
1FFq¢
. cpu_mondo 07C1¢ disrupting 16.08 P P
() (ie)
. dev_mondo 07D14 disrupting  16.11 p p
(ie)  (ie)
° interrupt_level_n (n = 1-15) 04114- disrupting  32-n P P
04Fq¢ (31to (ie) (ie)
17)
. resumable_error 07Eq¢ disrupting  33.3 p P
(ie)  (ie)
O implementation_dependent_exception_n 07014 — — O — —
(impl. dep. #35-V8-Cs20) 07516,
07716,
07916 —
07B1¢,
07F1¢
— nonresumable_error 07F1¢4 — — — —

" Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 428), including relative priorities within a given priority level.

1 The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

0 The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)

D This exception is deprecated, because the only instructions that can generate it have been deprecated.
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12.5.4

12.5.3.1 Trap Type for Spi 1l1/Fill Traps

The trap type for window spill /fill traps is determined on the basis of the contents of
the OTHERWIN and WSTATE registers as described below and shown in FIGURE 12-4.

Bit Field Description
8:6 spill_or_fill 010, for spill traps; 011, for fill traps
5 other (OTHERWIN # 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal
Trap Type spill_or_fill other wtype 0 0
8 6 5 4 2 1 0

FIGURE 12-4 Trap Type Encoding for Spill/Fill Traps

Trap Priorities

TABLE 12-4 on page 422 and TABLE 12-5 on page 426 show the assignment of traps to
TT values and the relative priority of traps and interrupt requests. A trap priority is
an ordinal number, with 0 indicating the highest priority and greater priority
numbers indicating decreasing priority; that is, if x <y, a pending exception or
interrupt request with priority x is taken instead of a pending exception or interrupt
request with priority y. Traps within the same priority class (0 to 33) are listed in
priority order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC
Architecture are fixed. However, the absolute priorities of those traps are
implementation dependent (because a future version of the architecture may define
new traps). The priorities (both absolute and relative) of any new traps are
implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in
TABLE 12-4 and TABLE 12-5 must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of
how the virtual processor actually issues and executes instructions.
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12.6

12.6.1

Trap Processing

The virtual processor’s action during trap processing depends on various virtual
processor states, including the trap type, the current level of trap nesting (given in
the TL register), and PSTATE. When a trap occurs, the GL register is normally
incremented by one (described later in this section), which replaces the set of eight
global registers with the next consecutive set.

During normal operation, the virtual processor is in execut e_st at e. It processes
traps in execut e_st at e and continues.

TABLE 12-6 describes the virtual processor mode and trap-level transitions involved
in handling traps.

TABLE 12-6 Trap Received While in execut e_st ate

New State, After Receiving Trap

Original State or Interrupt

execute_state execute_state
TL < MAXPTL-1 TL « TL+1

Normal Trap Processing

A trap is delivered in either privileged mode or hyperprivileged mode, depending
on the type of trap, the trap level (TL), and the privilege mode in effect when the
exception was detected.

During normal trap processing, the following state changes occur (conceptually, in
this order):

= The trap level is updated. This provides access to a fresh set of privileged trap-
state registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL «TL+1
= Existing state is preserved.

= TSTATE[TL].gl -« GL
TSTATE[TL].ccr — CCR
TSTATE[TL].asi « ASI
TSTATE[TL].pstate — PSTATE
TSTATE[TL].cwp ~ CWP
TPC[TL] ~ PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPCI[TL] — NPC // (upper 32 bits zeroed if PSTATE.am = 1) The trap type is
preserved.

TT[TL] « the trap type
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= The Global Level register (GL) is updated. This normally provides access to a
fresh set of global registers:

GL ~ min (GL + 1, MAXPGL)

= The PSTATE register is updated to a predefined state:

PSTATE.mm is unchanged
PSTATE.pef ~ 1 // if an FPU is present, it is enabled
PSTATE.am ~ 0 // address masking is turned offPSTATE.priv — 1 //
the virtual processor enters privileged mode
PSTATE.cle — PSTATE.tle //set endian mode for traps
endif
PSTATE.ie ~ 0 // interrupts are disabled
PSTATE.tle  is unchanged
PSTATE.tct ~ 0 // trap on CTI disabled

= For a register-window trap (clean_window, window spill, or window fill) only,
CWP is set to point to the register window that must be accessed by the trap-
handler software, that is:

if TT[TL] = 0244 // a clean_window trap
then CWP ~ CWP +1
endif

if (08014 < TT[TL] < 0BF4) // window spill trap
then CWP ~ CWP + CANSAVE + 2
endif

if (0C014 < TT[TL] < 0FF;¢) // window fill trap
then CWP — CWP -1
endif

For non-register-window traps, CWP is not changed.

= Control is transferred into the trap table:

// Note that at this point, TL has already been incremented (above)
if ( (trap is to privileged mode) and (TL < MAXPTL) )
then
/ /the trap is handled in privileged mode
/ /Note: The expression “(TL > 1)” below evaluates to the
/ /value 0, if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 1, if
//TL was > 0 before the trap.
PC — TBA{63:15} : (TL > 1) =: TT[TL] :: 0 0000,
NPC — TBA(63:15} = (TL > 1) = TT[TL] = 00100,
else { trap is handled in hyperprivileged mode }
endif
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Interrupts are ignored as long as PSTATE.ie = 0.

Programming | State in TPC[n], TNPC[n], TSTATE[#], and TT[#] is only changed
Note | autonomously by the processor when a trap is taken while
TL = n -1; however, software can change any of these values
with a WRPR instruction when TL = n.

12.7

Exception and Interrupt Descriptions

The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model.

All other trap types are reserved.

Note | The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 8, Instructions, enumerates which traps
can be generated by each instruction.

The following traps are generally expected to be supported in all UltraSPARC
Architecture 2005 implementations. A given trap is not required to be supported in
an implementation in which the conditions that cause the trap can never occur.

= clean_window [TT = 024,,-027;4] (Precise) — A SAVE instruction discovered
that the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement
automatic cleaning of register windows in hardware or to generate a
clean_window trap, when needed, so that window(s) can be cleaned by software.
If an implementation chooses the latter option, then support for this trap type is
mandatory.

= cpu_mondo [TT = 07Cy4] (Disrupting) — This interrupt is generated when
another virtual processor has enqueued a message for this virtual processor. It is
used to deliver a trap in privileged mode, to inform privileged software that an
interrupt report has been appended to the virtual processor’s CPU mondo queue.
A direct message between virtual processors is sent via a CPU mondo interrupt.
When the CPU mondo queue has a valid entry, a cpu_mondo exception is sent to
the target virtual processor.

= data_access_exception [TT = 030¢4] (Precise) — An exception occurred on an
attempted data access.

The conditions that may cause a data_access_exception exception are:
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Privilege Violation — An attempt to access a privileged page (TTE.p = 1) by
any type of load, store, or load-store instruction when executing in
nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the

ASl _AS | F_USER PRI MARY[ LI TTLE] or

ASl _AS | F_USER SECONDARY[ LI TTLE] ASIs.

Illegal Access to Noncacheable Page — An access to a noncacheable page
(TTE.cp = 0) was attempted by an atomic load-store instruction (CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA) or an LDTXA instruction.

Illegal Access to Page That May Cause Side Effects — An attempt was made
to access a page which may cause side effects (TTE.e = 1) by any type of load
instruction with nonfaulting ASI.

Invalid ASI — An attempt was made to execute an invalid combination of
instruction and ASI. See the instruction descriptions in Chapter 8 for a detailed
list of valid ASIs for each instruction that can access alternate address spaces.
The following invalid combinations of instruction, ASI, and virtual address
cause a data_access_exception exception:

« A load, store, load-store, or PREFETCHA instruction with either an invalid
ASI or an invalid virtual address for a valid ASI.

« A disallowed combination of instruction and ASI (see Block Load and Store
ASIs on page 403 and Partial Store ASIs on page 404). This includes the
following:

= An attempt to use a Load Twin Extended Word (LDTXA) ASI (see ASIs 1044,
1116/ 1616’ 1716 and 1816 (AS' _* AS_' F_USER_*) on page 397) with any load
alternate opcode other than LDTXA’s (which is shared by LDTWA)

= An attempt to use a nontranslating ASI value with any load or store alternate
instruction other than LDXA, LDDFA, STXA, or STDFA

= An attempt to read from a write-only ASI-accessible register
= An attempt to write to a read-only ASl-accessible register

Illegal Access to Non-Faulting-Only Page — An attempt was made to access a
non-faulting-only page (TTE.nfo = 1) by any type of load, store, or load-store
instruction with an ASI other than a nonfaulting ASI

(PRI MARY_NO_FAULT[_LI TTLE] or SECONDARY_NO_FAULT[_LI TTLE]).

Forward | The next revision of the UltraSPARC Architecture is expected to
Compatibility | replace data_access_exception with several more specific
Note | exceptions — one for each condition that currently can cause a
data_access_exception. This will support slightly faster trap
handling for these exceptions.

dev_mondo [TT = 07Dq¢] (Disrupting) — This interrupt causes a trap to be

delivered in privileged mode, to inform privileged software that an interrupt
report has been appended to its device mondo queue. When a virtual processor
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has appended a valid entry to a target virtual processor’s device mondo queue, it
sends a dev_mondo exception to the target virtual processor. The interrupt report
contents are device specific.

division_by_zero [TT = 028;¢] (Precise) — An integer divide instruction
attempted to divide by zero.

fill_n_normal [TT = 0C0;,—0DF;¢] (Precise)
fill_n_other [TT = 0E0;4—0FF;¢] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a
register window must be restored from memory.

fp_disabled [TT = 0204] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load /store instruction while an FPU was
disabled (PSTATE.pef = 0 or FPRS.fef = 0).

fp_exception_ieee_754 [TT = 021;¢] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was
1. The floating-point exception type, IEEE_754_exception, is encoded in the
FSRftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

fp_exception_other [TT = 02244] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented or execution of an FPop requires software assistance to complete.
The floating-point exception type is encoded in FSR.ftt.

htrap_instruction [TT = 180;¢—1FF¢] (Precise) — A Tcc instruction was executed
in privileged mode, the trap condition evaluated to TRUE, and the software trap
number was greater than 127. The trap is delivered in hyperprivileged mode. See
also trap_instruction on page 435.

illegal_instruction [TT = 010¢4] (Precise) — An attempt was made to execute an
ILLTRAP instruction, an instruction with an unimplemented opcode, an
instruction with invalid field usage, or an instruction that would result in illegal
processor state.

Note | An unimplemented FPop instruction generates an
fp_exception_other exception with ftt = 3, instead of an
illegal_instruction exception.

Examples of cases in which illegal_instruction is generated include the following;:

= An instruction encoding does not match any of the opcode map definitions (see
Appendix A, Opcode Maps).

= A non-FPop instruction is not implemented in hardware.
« A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be, but is not required to be, generated.
(See Reserved Opcodes and Instruction Fields on page 120.)

= An illegal value is present in an instruction i field.
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= Anillegal value is present in a field that is explicitly defined for an instruction,
such as cc2, ccl, ccO, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or opf_cc.

= Illegal register alignment (such as odd rd value in a doubleword load
instruction).

= Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR.

« ILLTRAP instruction.
« DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual
instruction descriptions in Chapter 8, Instructions.

= instruction_access_exception [TT = 008;¢] (Precise) — An exception occurred
on an instruction access. The conditions that may cause an
instruction_access_exception exception are:

» Privilege Violation — An attempt to fetch an instruction from a privileged
memory page (TTE.p = 1) while the virtual processor was executing in
nonprivileged mode.

= Unauthorized Access — An attempt to fetch an instruction from a memory
page which was missing “execute” permission (TTE.ep = 0).

= No-Fault Only Access — An attempt to fetch an instruction from a memory
page which was marked for access only by nonfaulting loads (TTE.nfo = 1).

= interrupt_level_n [TT = 041,,-04F¢] (Disrupting) — SOFTINT{n} was set to 1 or
an external interrupt request of level n was presented to the virtual processor and
n> PIL.
Implementation | interrupt_level_14 can be caused by (1) setting SOFTINT{14}
Note | to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINT? Register (ASRs 20, 21, 22) on
page 77).

= LDDF_mem_address_not_aligned [TT = 0354] (Precise) — An attempt was
made to execute an LDDF or LDDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #109)

= mem_address_not_aligned [TT = 034;¢4] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Special Memory Access ASIs on page 397.)

= nonresumable_error [TT = 07F4] (Disrupting) — There is a valid entry in the
nonresumable error queue. This interrupt is not generated by hardware, but is
used by hyperprivileged software to inform privileged software that an error
report has been appended to the nonresumable error queue.

= privileged_action [TT = 037;¢] (Precise) — An action defined to be privileged has
been attempted while in nonprivileged mode (PSTATE.priv = 0), or an action
defined to be hyperprivileged has been attempted while in nonprivileged or
privileged mode. Examples:
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= A data access by nonprivileged software using a restricted (privileged or
hyperprivileged) ASI, that is, an ASI in the range 0014 to 7F¢ (inclusively)

= A data access by nonprivileged or privileged software using a hyperprivileged
AS], that is, an ASI in the range 304 to 7F4 (inclusively)

= Execution by nonprivileged software of an instruction with a privileged
operand value

= An attempt to read the TICK register by nonprivileged software when
TICK.npt=1

= An attempt to access the PIC register (using RDPIC or WRPIC) while
PSTATE.priv = 0 and PCR.priv =1

= An attempt to execute a nonprivileged instruction with an operand value
requiring more privilege than available in the current privilege mode.

privileged_opcode [TT = 0114] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE.priv = 0.

resumable_error [TT = 07E4] (Disrupting) — There is a valid entry in the
resumable error queue. This interrupt is used to inform privileged software that
an error report has been appended to the resumable error queue, and the current
instruction stream is in a consistent state so that execution can be resumed after
the error is handled.

spill_n_normal [TT = 080,,—09F4] (Precise)

spill_n_other [TT = 0A0,,—0BF4] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

STDF_mem_address_not_aligned [TT = 0364¢] (Precise) — An attempt was
made to execute an STDF or STDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #110)

tag_overflow [TT = 0234] (Precise) (deprecated ) — A TADDccTV or
TSUBccTV instruction was executed, and either 32-bit arithmetic overflow
occurred or at least one of the tag bits of the operands was nonzero.

trap_instruction [TT = 10074-17F;¢4] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE, and the software trap number operand
of the instruction is 127 or less.

unimplemented_LDTW [TT = 01244] (Precise) — An attempt was made to execute
an LDTW instruction that is not implemented in hardware on this
implementation (impl. dep. #107-V9).

unimplemented_STTW [TT = 0134¢] (Precise) — An attempt was made to execute
an STTW instruction that is not implemented in hardware on this implementation
(impl. dep. #108-V9).

VA_watchpoint [TT = 062¢4] (Precise) — The virtual processor has detected an
attempt to access a virtual address specified by the VA Watchpoint register, while

VA watchpoints are enabled and the address is being translated from a virtual
address to a physical address. If the load or store address is not being translated
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from a virtual address (for example, the address is being treated as a real
address), then a VA_watchpoint exception will not be generated even if a match is
detected between the VA Watchpoint register and a load or store address.

12.7.1 SPARC V9 Traps Not Used in UltraSPARC
Architecture 2005

The following traps were optional in the SPARC V9 specification and are not used in
UltraSPARC Architecture 2005:

= implementation_dependent_exception_n [TT = 07714 - 07A1¢] This range of
implementation-dependent exceptions has been replaced by a set of
architecturally-defined exceptions. (impl.dep. #35-V8-Cs20)

= LDQF_mem_address_not_aligned [TT = 038;¢] (Precise) — An attempt was
made to execute an LDQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #111-V9-Cs10). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See Load Floating-Point on page 236. (impl. dep.
#111)

= STQF_mem_address_not_aligned [TT = 039¢4] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112-V9-Cs10). A separate trap entry for the exception supports fast
software emulation of the STQF instruction when the effective address is word
aligned but not quadword aligned. See Store Floating-Point on page 316. (impl. dep.
#112)

12.8  Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

12.8.1  Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.
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12.8.2

12.8.3

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a
fill trap that allows privileged software to load the registers from memory.

clean_window Trap

The virtual processor provides the clean_window trap so that system software can
create a secure environment in which it is guaranteed that data cannot inadvertently
leak through register windows from one software program to another.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, from software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANWIN register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows available to be used by the SAVE instruction is

CLEANWIN - CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

Vectoring of Fill/Spill Traps

To make handling of fill and spill traps efficient, the SPARC V9 architecture provides
multiple trap vectors for the fill and spill traps. These trap vectors are determined as
follows:

= Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERWIN register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

= Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE.normal field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.
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See Trap-Table Entry Addresses on page 418, for more details on how the trap address
is determined.

12.8.4 CWP on Window Traps

On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows.

Note | All arithmetic on CWP is done modulo N_REG_WINDOWS.

= If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:
CWP ~ (CWP + 2) mod N_REG_WINDOWS
If the spill trap occurs because of a FLUSHW instruction, there can be unused

windows (CANSAVE) in addition to the overlap window between the CWP and
the window to be spilled:

CWP ~ (CWP + CANSAVE + 2) mod N_REG_WINDOWS
Implementation | All spill traps can set CWP by using the calculation:
Note | CWP ~ (CWP + CANSAVE + 2) mod N_REG_WINDOWS

since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.

= On a fill trap, the window preceding CWP must be filled:
CWP ~ (CWP - 1) mod N_REG_WINDOWS

= On a clean_window trap, the window following CWP must be cleaned. Then
CWP ~ (CWP + 1) mod N_REG_WINDOWS

12.8.5  Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANWIN, CANSAVE, CANRESTORE, and
OTHERWIN must remain consistent. Follow these recommendations:

= A spill trap handler should execute the SAVED instruction for each window that
it spills.

= A fill trap handler should execute the RESTORED instruction for each window
that it fills.

= A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ~ (CLEANWIN + 1)

438 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



CHAPTER 12 « Traps 439



440 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



CHAPTER 13
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/ / Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /

’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by
assembling and sending an interrupt packet. The contents of the interrupt packet are
defined by software convention. Thus, hardware interrupts and cross-calls can have
the same hardware mechanism for interrupt delivery and share a common software
interface for processing.

The interrupt mechanism is a two-step process:

» sending of an interrupt request (through an implemenation-specific hardware
mechanism) to an interrupt queue of the target virtual processor

= receipt of the interrupt request on the target virtual processor and scheduling
software handling of the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself
(typically, to process queued interrupts at a later time) by setting bits in the
privileged SOFTINT register (see Software Interrupt Register (SOFTINT) on page 442).

Programming | An interrupt request packet is sent by an interrupt source and is

Note | received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.

In the following sections, the following aspects of interrupt handling are described:
= Interrupt Packets on page 442.

= Software Interrupt Register (SOFTINT) on page 442.

= Interrupt Queues on page 443.
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= Interrupt Traps on page 445.

13.1  Interrupt Packets

Each interrupt is accompanied by data, referred to as an “interrupt packet”. An
interrupt packet is 64 bytes long, consisting of eight 64-bit doublewords. The
contents of these data are defined by software convention.

13.2  Software Interrupt Register (SOFTINT)

To schedule interrupt vectors for processing at a later time, privileged software
running on a virtual processor can send itself signals (interrupts) by setting bits in
the privileged SOFTINT register.

See SOFTINT? Register (ASRs 20, 21, 22) on page 77 for a detailed description of the
SOFTINT register.

Programming | The SOFTINT register (ASR 164¢4) is used for communication

Note | from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming | The SOFTINT mechanism is independent of the “mondo”
Note | interrupt mechanism mentioned in Interrupt Queues on page 443.
The two mechanisms do not interact.

13.2.1 Setting the Software Interrupt Register

SOFTINT({n} is set to 1 by executing a WRSOFTINT_SETY instruction (WRasr using
ASR 20) with a ‘1’ in bit n of the value written (bit n corresponds to interrupt level
n). The value written to the SOFTINT_SET register is effectively ored into the
SOFTINT register. This approach allows the interrupt handler to set one or more
bits in the SOFTINT register with a single instruction.

See SOFTINT_SET” Pseudo-Register (ASR 20) on page 78 for a detailed description of
the SOFTINT_SET pseudo-register.
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13.2.2

Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, kernel
software executes a WRSOFTINT_CLR? instruction (WRasr using ASR 21) with a ‘1’
in bit n of the value written, to clear interrupt level n (impl. dep. 34-V8a). The
complement of the value written to the SOFTINT_CLR register is effectively anded
with the SOFTINT register. This approach allows the interrupt handler to clear one
or more bits in the SOFTINT register with a single instruction.

Programming | To avoid a race condition between operating system kernel
Note | software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.

See SOFTINT_CLR? Pseudo-Register (ASR 21) on page 79 for a detailed description of
the SOFTINT_CLR pseudo-register.

13.3

13.3.1

Interrupt Queues

Interrupts are indicated to privileged mode via circular interrupt queues, each with
an associated trap vector. There are 4 interrupt queues, one for each of the following
types of interrupts:

» Device mondos!

» CPU mondos

= Resumable errors

= Nonresumable errors

New interrupt entries are appended to the tail of a queue and privileged software
reads them from the head of the queue.

Programming | Software conventions for cooperative management of interrupt
Note | queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.

Interrupt Queue Registers

The active contents of each queue are delineated by a 64-bit head register and a 64-
bit tail register.

L. “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which

these interrupts were introduced
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The interrupt queue registers are accessed through ASI ASI _ QUEUE (25:4). The ASI
and address assignments for the interrupt queue registers are provided in TABLE 13-1.

TABLE 13-1 Interrupt Queue Register ASI Assignments

| poi e s
Register Access
CPU Mondo Queue Head 2514 (ASI _QUEUE) 3C044 RW
CPU Mondo Queue Tail 251 (ASI _QUEUE) 3C81¢ Ror RW+t
Device Mondo Queue Head 2514 (ASI _QUEUE)  3D0q4 RW
Device Mondo Queue Tail 251 (ASI _QUEUE) 3D815 R or RWt
Resumable Error Queue Head 2514 (ASI _QUEUE) 3E04¢ RW
Resumable Error Queue Tail 2516 (ASI _QUEUE) 3E81, R or RWt

Nonresumable Error Queue Head 254 (ASI _QUEUE) 3F044 RW
Nonresumable Error Queue Tail 2514 (ASI _QUEUE) 3F81¢ R or RWt

t seeIMPL.DEP.#422-510

The status of each queue is reflected by its head and tail registers:

= A Queue Head Register indicates the location of the oldest interrupt packet in the
queue

= A Queue Tail Register indicates the location where the next interrupt packet will
be stored

An event that results in the insertion of a queue entry causes the tail register for that
queue to refer to the following entry in the circular queue. Privileged code is
responsible for updating the head register appropriately when it removes an entry
from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue
is full when the insertion of one more entry would cause the contents of its head and
tail registers to become equal.
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Programming | By current convention, the format of a Queue Head or Tail
Note | register is as follows:

head/tail offset \ oooooo|
63 6 5 0

Under this convention:

= updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

» Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

= bits 5:0 always read as zeros, and attempts to write to them are
ignored

» the maximum queue offset for an interrupt queue is
implementation dependent

= behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

13.4

Interrupt Traps

The following interrupt traps are defined in the UltraSPARC Architecture 2005:
cpu_mondo, dev_mondo, resumable_error, and nonresumable_error. See
Chapter 12, Traps, for details.

UltraSPARC Architecture 2005 also supports the interrupt_level_n traps defined in
the SPARC V9 specification.

How interrupts are delivered is implementation-specific; see the relevant
implementation-specific Supplement to this specification for details.
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CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the
requirements set forth in the SPARC V9 Architecture Manual. In particular, it supports
a 64-bit virtual address space, simplified protection encoding, and multiple page
sizes.

In UltraSPARC Architecture 2005, memory management is implementation-specific.
Basic concepts are described in this chapter, but see the relevant processor-specific
Supplement to this specification for a detailed description of a particular processor’s
memory management facilities.

This appendix describes the Memory Management Unit, as observed by privileged
software, in these sections:

= Virtual Address Translation on page 447.
= TSB Translation Table Entry (TTE) on page 448.
= Translation Storage Buffer (TSB) on page 451.

14.1

Virtual Address Translation

The MMUs may support up to four page sizes: 8 KBytes, 64 KBytes, 4 MBytes, and
256 MBytes 8-KByte, 64-KByte and 4- MByte page sizes must be supported; other
page sizes are optional.

Privileged software manages virtual-to-real address translations.

Privileged software maintains translation information in an arbitrary data structure,
called the software translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which
serves as a cache of the software translation table, used to quickly reload the TLB in
the event of a TLB miss.
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A conceptual view of privileged-mode memory management the MMU is shown in
FIGURE 14-1. The software translation table is likely to be large and complex. The
translation storage buffer (TSB), which acts like a direct-mapped cache, is the
interface between the software translation table and the underlying memory
management hardware. The TSB can be shared by all processes running on a virtual
processor or can be process specific; the hardware does not require any particular
scheme. There can be several TSBs.

RA « VA
T lati Software
rgnsalon @— Translation
torage
Table

Buffer
(TSB)

Memory Operating System

Data Structure

~[m Managed by privileged [
mode software

FIGURE 14-1 Conceptual View of the MMU

14.2

TTE
Tag

TTE
Data

TSB Translation Table Entry (TTE)

The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent
of a page table entry as defined in the Sundv Architecture Specification; it holds
information for a single page mapping. The TTE is divided into two 64-bit words
representing the tag and data of the translation. Just as in a hardware cache, the tag
is used to determine whether there is a hit in the TSB; if there is a hit, the data are
used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-2 and described in TABLE 14-1.

context_id 000000 va
63 48 47 42 41 0
v | nfo soft2 taddr ie | e |cp cv|p ep | w | soft sz
63 62 61 56 55 13 12 11 10 9 8 7 6 5 43 0

FIGURE 14-2 Translation Storage Buffer (TSB) Translation Table Entry (TTE)
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TABLE 14-1

TSB TTE Bit Description (1 of 3)

Bit

Field

Description

Tag— 63:48
Tag— 47:42
Tag- 41:0

context_id

va

The 16-bit context ID associated with the TTE.
These bits must be zero for a tag match.

Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data - 63

Data — 62

Data — 61:56

Data - 55:13

Data — 12

nfo

soft2

t_addr

Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

Programming | The explicit Valid bit is (intentionally) redundant with the
Note | software convention of encoding an invalid TTE with an unused
context ID. The encoding of the context_id field is necessary to
cause a failure in the TTE tag comparison, while the explicit
Valid bit in the TTE data simplifies the TTE miss handler.

No Fault Only. If nfo = 1, loads with ASI _PRI MARY_NO_FAULT{ _LI TTLE} or
AS| _SECONDARY_NO FAULT{ _LI TTLE} are translated. Any other data access
with the D/UMMU TTE.nfo =1 will trap with a data_access_exception. An
instruction fetch access to a page with the IMMU TTE.nfo = 1 results in an
instruction_access_exception exception.

Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Target address from TSB (Real Address {55:13}).

IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.

IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Invert Endianness. If ie =1 for a page, accesses to the page are processed with

inverse endianness from that specified by the instruction (big for little, little for
big).

Note: This bit is intended to be set to 1 primarily for noncacheable accesses. The
performance of cacheable accesses may be degraded as if the access missed the

D-cache.

IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.
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TABLE14-1  TSB TTE Bit Description (2 of 3)

Bit Field Description

Data — 11 e Side effect. If the side-effect bit is set to 1, loads with ASI _PRI MARY_NO_FAULT,
AS| _SECONDARY_NO _FAULT, and their * _LI TTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.

Note: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note: The e bit and the nfo bit are mutually exclusive; both bits should never be
set to 1 in any TTE.

Data — 10 cp, The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-

Data - 9 cv indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

Meaning of TTE when placed in:

Cacheable

(cp, cv) I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)
00, 01 Noncacheable Noncacheable

10 Cacheable L2-cache, I-cache Cacheable L2-cache

11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.

IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Data - 8 p Privileged. If p = 1, only privileged software can access the page mapped by the
TTE. If p =1 and an access to the page is attempted by nonprivileged mode
(PSTATE.priv = 0), then the MMU signals aninstruction_access_exception
exception ordata_access_exception exception.

Data -7 ep Executable. If ep =1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep =0, an
attempt to execute an instruction from this page results in an
instruction_access_exception exception.

IMPL. DEP. #___: Some UltraSPARC Architecture ITLB implementations may
not implement the ep bit, and present the instruction_access_exception
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must also
detect the ep = 0 case when the IMMU miss is handled by software.
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TABLE14-1  TSB TTE Bit Description (3 of 3)

Bit Field Description

Data - 6 w IMPL. DEP. #Writable. If w = 1, the page mapped by this TTE has write
permission granted. Otherwise, write permission is not granted

Data — 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.

Data - 3:0 sz The page size of this entry, encoded as shown below.

sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 Reserved
0011 4 Mbyte
0100 Reserved
0101 256 Mbyte
0110 Reserved
0111 Reserved

1000-1111  Reserved

14.3

14.3.1

14.3.2

Translation Storage Buffer (TSB)

The Translation Storage Buffer (TSB) is an array of Translation Table Entries
managed entirely by privileged software. It serves as a cache of the software
translation table, used to quickly reload the TLB in the event of a TLB miss.

TSB Indexing Support

Hardware TSB indexing support via TSB pointers should be provided for the TTEs.

TSB Cacheability

The TSB exists as a data structure in memory and therefore can be cached. Indeed,
the speed of the TLB miss handler relies on the TSB accesses hitting the level-2 cache
at a substantial rate. This policy may result in some conflicts with normal instruction
and data accesses, but the dynamic sharing of the level-2 cache resource will provide
a better overall solution than that provided by a fixed partitioning.
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14.3.3 TSB Organization

The TSB is arranged as a direct-mapped cache of TTEs.

In each case, 1 least significant bits of the respective virtual page number are used as
the offset from the TSB base address, with n equal to log base 2 of the number of
TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-3. The constant 7 is determined by
the size field in the TSB register; it can range from 512 to an implementation-
dependent number.

Tagl (8 bytes) A Datal (8 bytes)

2" Lines in TSB

Tag2" (8 bytes) v Data2” (8 bytes)

FIGURE 14-3 TSB Organization
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APPENDIX A

Opcode Maps

This appendix contains the UltraSPARC Architecture 2005 instruction opcode maps.
Also included are the optional UltraSPARC V instruction opcode maps; UltraSPARC
V opcodes are highlighted in bold face.

In this appendix and in Chapter 8, Instructions, certain opcodes are marked with
mnemonic superscripts. These superscripts and their meanings are defined in
TABLE 8-1 on page 124. For preferred substitute instructions for deprecated opcodes,
see the individual opcodes in Chapter 8 that are labeled “Deprecated”.

In the tables in this appendix, reserved (—) and shaded entries (as defined below)
indicate opcodes that are not implemented in UltraSPARC Architecture 2005 strands.

Shading

Meaning

An attempt to execute opcode will cause an illegal_instruction exception.

An attempt to execute opcode will cause an fp_exception_other exception with
FSR.ftt = 3 (unimplemented_FPop).

An attempt to execute a reserved opcode behaves as defined in Reserved Opcodes and
Instruction Fields on page 120.

TABLE A-1  op{1:0}
op {1:0}
0 1 2 3
Branches and SETHI CALL Arithmetic & Miscellaneous Loads/Stores
(See TABLE A-2) (See TABLE A-3) (See TABLE A-4)
TABLE A2 0p2{2:0} (op =0)
op2 {2:0}
0 1 2 3 4 5 6 7
ILLTRAP  |BPcc (See BiccP(See BPr (bit 28 = 0) SETHI  |FBPfcc (See FBfccP (See —

TABLE A-7) |TABLE A-7) |(See TABLE A-8) TABLE A-7) TABLE A-7)

— (bit28=1)! |NOP?

1. Seethe footnote regarding bit 28 on page 148.
2.rd =0,imm22 =0
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TABLE A-3

0p3{5:0} (op = 10,) (1 of 2)

op3{5:4}

2

ADD

ADDcc

TADDcc

WRYP (rd = 0)

— (rd=1)

WRCCR (rd =2

WRASI (rd = 3)

— (rd = 4,5)

— (rd=15,rs1=0,i=1)

— (rd = 15) and (rs1 #0 or i # 1))
— (rd =7 - 14)

WRFPRS (rd = 6)
WRasr™SR (7 < rd < 14)
WRPCRY (rd = 16)

WRPIC (rd = 17)

— (rd = 18)

WRGSR (rd = 19)
WRSOFTINT_SETY (rd =20)
WRSOFTINT_CLR? (rd = 21)
WRSOFTINT? (rd = 22)
WRTICK_CMPR? (rd =23)
WRSTICK_CMPRF (rd = 25)
— (rd =26 -31)

op3
{3:0}

AND

ANDcc

TSUBcc

SAVEDY (fcn = 0)
RESTOREDY (fcn = 1)
ALLCLEANY (fen = 2)
OTHERW (fcn = 3)
NORMALWY (fcn = 4)
INVALWP (fcn = 5)

— (fcn 2 6)

OR

ORcc

TADDccTVP

N

OR

ORcc

TADDccTVP

WRPRY (rd = 0-14 or 16)
— (rd =15 or 17-31)

XOR

XORcc

TSUBccTVP

SUB

SUBcc

MULSccP

FPop] (See TABLE A-5)

ANDN

ANDNCcc

SLL (x = 0), SLLX (x = 1)

FPop2 (See TABLE A-6)

ORN

ORNCcc

SRL (x = 0), SRLX (x = 1)

IMPDEP1 (VIS) (See TABLE A-12)

~N(o|o(Mfw

XNOR

XNORcc

SRA (X = 0), SRAX (x = 1)
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TABLE A-3

0p3{5:0} (op = 10,) (2 of 2)

op3{5:4}

1

2

op3
{3:0}

ADDC

ADDCcc

RDYP (rs1=0,i=0)

— (rs1=1,i=0)

RDCCR (rs1= 2,i=0)

RDASI (rs1 = 3,i=0)

RDTICKP™Pt (rs1 = 4,i=0)

RDPC (rs1 = 5,i=0)

RDEPRS (rs1 = 6, i = 0)

RDastPA% (7 < rd < 14, i = 0)

MEMBAR (rs1=15,rd =0, i=1,

instruction bit 12 = 0)

— (rs1=15,rd =0, i=1,
instruction bit 12 = 1)

— (i=1,(rsl1#150rrd #0))

STBARP (rs1=15, rd = 0, i = 0)

— (rsl =15 and rd > 0 and i = 0)

RDPCRP (rs1 = 16 and i = 0)

RDPIC (rs1 = 17 and i = 0)

— (rs1 =18 and i = 0)

RDGSR (rs1 =19 and i = 0)

— (rs1 =20 or 21) and (i = 0))

RDSOFTINT? (rs1 = 22 and i = 0)

RDTICK_CMPRY (rs1 = 23 and i = 0)

RDSTICK (rsl = 24 and i = 0)

RDSTICK_CMPR?
(rsl1=25andi=0)

— ((rs1 = 26 - 31) and (i = 0))

JMPL

MULX

RETURN

UMULP

UMULccP

RDPRT (rs1 =1-14 or 16)

— (rs1 =15 or 17 - 30)

Tec ((i = 0 and inst{10:5} = 0) or
((i=1) and (inst{10:7} = 0)))
(See TABLE A-7)

— (bit 29 =1)

— ((i=0 and (inst{10:5} # 0)) or
(i=1 and (inst{10:7} # 0))

SMULP

SMULccP

FLUSHW

FLUSH

SUBC

SUBCcc

MOVcc

SAVE

UDIVX

SDIVX

RESTORE

o
©°
w

m(O|O|®

uDIVP

spIvP

UDIVccP

SDIVccP

POPC (rs1 =0)
—(rs1 > 0)

MOVr (See TABLE A-8)

DONE? (fcn = 0)
RETRY? (fcn = 1)
— (fcn = 2..15)
— (fcn = 16..31)

.-_
®
L
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TABLE A-4  0p3{5:0} (op = 11,)
op3{5:4}
0 1 2 3
LDUW LDUWAPASI LDF LDFATPASE
1 |LDUB LDUBAPAS! LDFSRP, LDXFSR —
—(rd >1)
2 |LDUH LDUHAPAS! LDQF LDQFAPASI
3 |[LDTWP LDTWAD PASI LDDF LDDFAPASE
— (rd odd) LDBLOCKF
— (rd odd) LDSHORTF
STW STWAPAST STF STFAPAS
5 |[STB STBAPAS STFSRP, STXFSR =
—(rd >1)

6 |STH STHAPASI STQF STQFAPASI
op3 7 |sTTWP STTWAPASE STDF STDFATPAST
{3:0} — (rd 0dd) — (rd odd) STLBLOCKF

STPARTIALF
STSHORTF

8 |LDSwW LDSWAPASI = =

9 |LDSB LDSBAPAS! = =

A |LDSH LDSHAPAS! = =

B |LDX LDXAPAST — —

C — — — CASAPAST

D |LDSTUB LDSTUBAPAST PREFETCH PREFETCHAPAS!

— (fcn =5 - 15) — (fcn =5 - 15)

E [STX STXAPASI = CASXAPAS

F |swaPP SWAPAD, PASI = —
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TABLE A-5  0pf(8:0} (op = 10,,0p3 = 34,4 = FPopl)

opf{3:0}

opf{8:4}
0046
0144
0246
0316
0416
0516
0614
0716
0815
0916
0Aq4
0B14

0014
0146
0244
0314

0514

0616 FsMULd

0716
0916
0A46
0By
0Dy
0E;6-1F16
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TABLE A-6  0pf{8:0} (op = 10,, 0p3 = 35,4 = FPop2)

opf{3:0}
opf{8:4}| O 1 2 3 4 5 6 7 8-F
0014 FMOVd
(fccO)

0144
0246
0314
0446 FMOVRALEZ
0516 FCMPEd 1
0616 FMOVRALZ
0716

(fcc2) (fcc2)
0916
0B16

(fcel3) (fce3)
0D1¢
0F36

(icc) (icc)
1114-1714

(xcc) (xcc)
1916-1F16

* Reserved variation of FMOVR
1 bit 13 of instruction = 0
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TABLE A-7  cond{3:0}

BPcc Bicc FBPfcc FBfccP Tcc
op=0 op=0 op=0 op=0 op=2
op2=1 op2=2 op2=5 op2==6 op3 =3ay6

0 | BPN BNP FBPN FBNP TN
1 | BPE BEP FBPNE FBNEP TE
2 | BPLE BLEP FBPLG FBLGP TLE
3 | BPL BLP FBPUL FBULP TL
4 | BPLEU BLEUP FBPL FBLP TLEU
5 | BPCS BCSP FBPUG FBUGP TCS
6 | BPNEG BNEGP FBPG FBGP TNEG
cond | 7 | BPVS BVSP FBPU FBUP TVS
{3:0} 8 | BPA BAP FBPA FBAP TA
9 | BPNE BNEP FBPE FBEP TNE
A | BPG BGP FBPUE FBUEP TG
B | BPGE BGEP FBPGE FBGEP TGE
C | BPGU BGUP FBPUGE FBUGEP TGU
D | BPCC BCCP FBPLE FBLEP TCC
E | BPPOS BPOSP FBPULE FBULEP TPOS
F | BPVC BvCP FBPO FBOP TVC
TABLE A-8  Encoding of rcond{2:0} Instruction Field
BPr MOVr FMOVr
op=0 op=2 op=2
op2=3 0p3 = 2F6 o0p3 =354
0 — — —
1 [BRZ MOVRZ FMOVR<s |d | q>Z
2 |BRLEZ MOVRLEZ FMOVR<s |d | g>LEZ
rcond 3 [BRLZ MOVRLZ FMOVR<s |d | q>LZ
{2:0} 4 _ _ _
5 |BRNZ MOVRNZ FMOVR<s | d | g>NZ
6 |BRGZ MOVRGZ FMOVR<s |d | g>GZ
7 |BRGEZ MOVRGEZ FMOVR<s | d | g>GEZ
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TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
cc2 ccl cco Selected

0 0 0 fcco
0 0 1 fccl
0 1 0 fcc2
0 1 1 fcc3
1 0 0 icc

1 0 1 —_

1 1 0 Xcc
1 1 1 —

TABLE A-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cel | eco Condition Code
Selected
0 0 fccO
0 1 fccl
1 0 fcc2
1 1 fcc3

TABLE A-11 cc Fields (BPcc and Tcc)

cel | cco Condition Code
Selected
0 0 icc
0 1 —
1 0 Xcc
1 1 —
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TABLE A-12  IMPDEP1: opf{8:0} for VIS opcodes (op = 10,, 0p3 = 361¢)

opf {8:4}
00 01 02 03 04 05 06 07 08
EDGES8 ARRAYS8 FCMPLE16 — — FPADD16 (FZERO FAND SHUT
0 DOWNP-P
1 EDGESN — — FMUL — FPADD16S|FZEROS FANDS SIAM
8x16
2 |[EDGESL ARRAY16 FCMPNE16 — — FPADD32 |FNOR FXNOR —
3 EDGESLN — — FMUL — FPADD32S|FNORS FXNORS —
8x16AU
4 (EDGE16 ARRAY32 FCMPLE32 — FPSUB16 |(FANDNOT2 |FSRC1 —
EDGE16N — — FMUL — FPSUB16S|FANDNOT2S|FSRC1S —
5
8x16AL
6 EDGE16L — FCMPNE32 |FMUL — FPSUB32 |FNOT2 FORNOT2 —
8SUx16
EDGE16LN — — FMUL — FPSUB32S |FNOT2S FORNOT2S —
-
8ULx16
8 EDGE32 ALIGN FCMPGT16 [FMULD FALIGN — FANDNOT1 |FSRC2 —
ADDRESS 8SUx16 DATA
EDGE32N |BMASK — FMULD — — FANDNOT1S|FSRC2S —
9
8ULx16
EDGE32L |ALIGN FCMPEQ16 |FPACK32 — — FNOT1 FORNOT1 —
A ADDRESS
_LITTLE
B [EDGE32LN — — FPACK16 |FPMERGE — FNOT1S FORNOT1S] —
C — — FCMPGT32 — BSHUFFLE — FXOR FOR —
onf
D — — — FPACKFIX |FEXPAND — FXORS FORS —
E — — FCMPEQ32 [PDIST — — FNAND FONE —
E — — —_ — — — FNANDS FONES —

APPENDIX A « Opcode Maps 461




TABLE A-14 IMPDEP1: opf{8:0} for VIS opcodes (op = 10,, 0p3 = 364¢) (3 of 3)

opf {8:4}

09-1F | 10 11 12 13 | 14 15 16-1F

0 _ _ _ N _ _

1 — — — — — | — —

opf

3:0} 9

>
|
|
|
|
|
|
|

O| O @
|
|
|
|
|
|
|
|

m
|
|
|
|
|
|
|
|
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APPENDIX B
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/ Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /
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Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9
standard. In SPARC V9, the notation “IMPL. DEP. #nn:” identifies the definition of
an implementation dependency; the notation “(impl. dep. #nn)” identifies a reference
to an implementation dependency. These dependencies are described by their
number nn in TABLE B-1 on page 465.

The appendix contains these sections:

Definition of an Implementation Dependency on page 463.
Hardware Characteristics on page 464.

Implementation Dependency Categories on page 464.

List of Implementation Dependencies on page 465.

B.1 Definition of an Implementation
Dependency

The SPARC V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC V9 systems. Therefore, it does not necessarily
describe the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An
attempt to execute a SPARC V9 instruction that is not implemented in hardware
generates a trap. Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.
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The two levels of SPARC V9 compliance are described in UltraSPARC Architecture
2005 Compliance with SPARC V9 Architecture on page 23.

Some elements of the architecture are defined to be implementation dependent.
These elements include certain registers and operations that may vary from
implementation to implementation; they are explicitly identified as such in this
appendix.

Implementation elements (such as instructions or registers) that appear in an
implementation but are not defined in this document (or its updates) are not
considered to be SPARC V9 elements of that implementation.

B.2

Hardware Characteristics

Hardware characteristics that do not affect the behavior observed by software on
SPARC V9 systems are not considered architectural implementation dependencies. A
hardware characteristic may be relevant to the user system design (for example, the
speed of execution of an instruction) or may be transparent to the user (for example,
the method used for achieving cache consistency). The SPARC International
document, Implementation Characteristics of Current SPARC V9-based Products, Revision
9.x, provides a useful list of these hardware characteristics, along with the list of
implementation-dependent design features of SPARC V9-compliant
implementations.

In general, hardware characteristics deal with
= Instruction execution speed

= Whether instructions are implemented in hardware

= The nature and degree of concurrency of the various hardware units constituting
a SPARC V9 implementation

B.3

Implementation Dependency Categories

Many of the implementation dependencies can be grouped into four categories,
abbreviated by their first letters throughout this appendix:

= Value (v)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations. A typical example
is the number of implemented register windows (impl. dep. #2-V8).
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= Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations and the actual
value is assigned by SPARC International. Typical examples are the impl field of
the Version register (VER) (impl. dep. #13-V8) and the FSR.ver field (impl. dep.
#19-V8).

= Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several
possible semantics related to an architectural function. A typical example is the
treatment of a catastrophic error exception, which may cause either a deferred or
a disrupting trap (impl. dep. #31-V8-Cs10).

« Total Unit (t)
The existence of the architectural unit or function is recognized, but details are
left to each implementation. Examples include the handling of 1/O registers
(impl. dep. #7-V8) and some alternate address spaces (impl. dep. #29-V8).

B.4

TABLE B-1

List of Implementation Dependencies

TABLE B-1 provides a complete list of the SPARC V9 implementation dependencies.
The Page column lists the page for the context in which the dependency is defined;
bold face indicates the main page on which the implementation dependency is
described.

SPARC V9 Implementation Dependencies (1 of 9)

Nbr Category Description Page

1-v8 f

2-V8 v

3-v8 f

4,5

Software emulation of instructions 23
Whether an instruction complies with UltraSPARC Architecture 2005 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

Number of IU registers 24, 48
An UltraSPARC Architecture implementation may contain from 72 to 640 general-

purpose 64-bit R registers. This corresponds to a grouping of the registers into

MAXPGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16
registers each, known as register windows. The number of register windows present
(N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32

(inclusive).

Incorrect IEEE Std 754-1985 results 119
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.fit = unfinished_FPop or FSR.ftt = unimplemented_FPop. In this case, software
running in a higher privilege mode shall emulate any functionality not present in the
hardware.

Reserved.
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TABLE B-1  SPARC V9 Implementation Dependencies (2 of 9)

Nbr Category Description Page
6-v8 f I/O registers privileged status 27
Whether I/0O registers can be accessed by nonprivileged code is implementation
dependent.
7-V8 t I/O register definitions 27
The contents and addresses of I/O registers are implementation dependent.
8-V8- t RDasr/WRasr target registers 29, 67,
Cs20 Ancillary state registers (ASRs) in the range 0-27 that are not defined in UltraSPARC 285, 353

Architecture 2005 are reserved for future architectural use. ASRs in the range 28-31 are
available to be used for implementation-dependent purposes.

9-v8- f RDasr/WRasr privileged status 29, 67,
Cs20 Whether each of the implementation-dependent read /write ancillary state register 285, 353
instructions (for ASRs 28-31) is privileged is implementation dependent.

10-V8-12-V8  Reserved.
13-V8 a (this implementation dependency applies to execution modes with greater privileges)
14-V8-15-V8  Reserved.
16-V8-Cu3 Reserved.

17-v8 Reserved.

18- f Nonstandard IEEE 754-1985 results

V8- UltraSPARC Architecture 2005 implementations do not implement a nonstandard 60

Ms10 floating-point
mode. FSR.ns is a reserved bit; it always reads as 0 and writes to it are ignored.

19-V8 a FPU version, FSR.ver 60
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

20-V8-21-V8  Reserved.

22-V8 f FPU tem, cexc, and aexc 67

An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields in hardware, conformant to IEEE Std 754-1985.

23-V8 Reserved.
24-V8 Reserved.
25-v8 f RDPR of FQ with nonexistent FQ 63, 289

An UltraSPARC Architecture implementation does not contain a floating-point queue
(FQ). Therefore, FSR.ftt = 4 (sequence_error) does not occur, and an attempt to read
the FQ with the RDPR instruction causes an illegal_instruction exception.

26-V8-28-V8  Reserved.

29-V8 t Address space identifier (ASI) definitions 109
In SPARC V9, many ASIs were defined to be implementation dependent. Some of
those ASIs have been allocated for standard uses in the UltraSPARC Architecture.
Others remain implementation dependent in the UltraSPARC Architecture. See ASI
Assignments on page 388 and Block Load and Store ASIs on page 403 for details.
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TABLE B-1  SPARC V9 Implementation Dependencies (3 of 9)

Nbr Category Description Page
30- f ASI address decoding 109
V8- In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
Cu3 specifier. In UltraSPARC Architecture implementations, all 8 bits of each ASI specifier
must be decoded. Refer to Chapter 10, Address Space Identifiers (ASIs), of this
specification for details.
31- f This implementation dependency is no longer used in the UltraSPARC Architecture, —
V8- since “catastrophic” errors are now handled using normal error-reporting
Csl10 mechanisms.
32- t Restartable deferred traps 414
V8- Whether any restartable deferred traps (and associated deferred-trap queues) are
Ms10 present is implementation dependent.
33- f Trap precision 417
V8- In an UltraSPARC Architecture implementation, all exceptions that occur as the result
Cs10 of program execution are precise.
34-v8 f Interrupt clearing
a: The method by which an interrupt is removed is now defined in the UltraSPARC 443
Architecture (see Clearing the Software Interrupt Register on page 443).
b: How quickly a virtual processor responds to an interrupt request, like all timing-
related issues, is implementation dependent.
35-  t Implementation-dependent traps 420
V8- Trap type (TT) values 060,4—07F were reserved for
Cs20 implementation_dependent_exception_n exceptions in SPARC V9 but are now all
defined as standard UltraSPARC Architecture exceptions.
36-V8 f Trap priorities 428
The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because
a future version of the architecture may define new traps). The priorities (both
absolute and relative) of any new traps are implementation dependent.
41-v8 Reserved.
42- t, f,v FLUSH instruction
V8- FLUSH is implemented in hardware in all UltraSPARC Architecture 2005
Csl10 implementations, so never causes a trap as an unimplemented instruction.
43-V8 Reserved.
44- Data access FPU trap
V8- a: If a load floating-point instruction generates an exception that causes a non-precise 238
Cs10 trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged. 241
b: If a load floating-point alternate instruction generates an exception that causes a
non-precise trap, it is implementation dependent whether the contents of the
destination floating-point register(s) are undefined or are guaranteed to remain
unchanged.
45-V8-46-V8  Reserved.
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TABLE B-1  SPARC V9 Implementation Dependencies (4 of 9)

Nbr Category Description Page
47- RDasr 286
V8- RDasr instructions with rd in the range 28-31 are available for implementation-
Cs20 dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rsl in the

range 28-31, the following are implementation dependent:

¢ the interpretation of bits 13:0 and 29:25 in the instruction

* whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)

* whether an attempt to execute the instruction causes an illegal_instruction exception
48- t WRasr 354
V8- WRasr instructions with rd in the range 26-31 are available for implementation-
Cs20 dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction with rd in the range

26-31, the following are implementation dependent:

* the interpretation of bits 18:0 in the instruction

¢ the operation(s) performed (for example, xor) to generate the value written to the

ASR

e whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)

e whether an attempt to execute the instruction causes an illegal_instruction exception
49-V8-54-V8  Reserved.
55- f Tininess detection 66
V8- In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
Cs10 detected before or after rounding. In all UltraSPARC Architecture implementations,

tininess is detected before rounding.
56-100 Reserved.
101- v Maximum trap level (MAXPTL) 94, 96
V9- The architectural parameter MAXPTL is a constant for each implementation; its legal
Cs10 values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state). In a typical

implementation MAXPTL = MAXPGL (see impl. dep. #401-510).

Architecturally, MAXPTL must be > 2.
102- f Clean windows trap 431
V9 An implementation may choose either to implement automatic “cleaning” of register

windows in hardware or to generate a clean_window trap, when needed, for
window(s) to be cleaned by software.
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TABLE B-1  SPARC V9 Implementation Dependencies (5 of 9)

Nbr Category Description Page
103- f Prefetch instructions

V9- The following aspects of the PREFETCH and PREFETCHA instructions are

Ms10 implementation dependent:

a: the attributes of the block of memory prefetched: its size (minimum = 64 bytes) 279
and its alignment (minimum = 64-byte alignment)

b: whether each defined prefetch variant is implemented (1) as a NOP, (2) with its 279, 282
full semantics, or (3) with common-case prefetching semantics

c: whether and how variants 16, 18, 19 and 24-31 are implemented; if not 283C
implemented, a variant must execute as a NOP

The following aspects of the PREFETCH and PREFETCHA instructions used to be (but
are no longer) implementation dependent:
d: while in nonprivileged mode (PSTATE.priv = 0), an attempt to reference an ASI in —
the range 014..7F 4 by a PREFETCHA instruction executes as a NOP; specifically,
it does not cause a privileged_action exception.
e: PREFETCH and PREFETCHA have no observable effect in privileged code —
g: while in privileged mode (PSTATE.priv = 1), an attempt to reference an ASI in the —
range 304¢..7F14 by a PREFETCHA instruction executes as a NOP (specifically, it
does not cause a privileged_action exception)

105- f TICK register 72
V9 a: If an accurate count cannot always be returned when TICK is read, any inaccuracy
should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in TICK.counter; however,
the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as 0.

106- f IMPDEP2A instructions 223
V9 The IMPDEP2A instructions are completely implementation dependent.
Implementation-dependent aspects include their operation, the interpretation of bits
29:25 and 18:0 in their encodings, and which (if any) exceptions they may cause.

107- f Unimplemented LDTW(A) trap

A& a: It is implementation dependent whether LDTW is implemented in hardware. If 253
not, an attempt to execute an LDTW instruction will cause an
unimplemented_LDTW exception. 256

b: It is implementation dependent whether LDTWA is implemented in hardware. If
not, an attempt to execute an LDTWA instruction will cause an
unimplemented_LDTW exception.

108- f Unimplemented STTW(A) trap

A& a: Itis implementation dependent whether STTW is implemented in hardware. If not, 330
an attempt to execute an STTW instruction will cause an unimplemented_STTW
exception. 333

b: It is implementation dependent whether STDA is implemented in hardware. If not,
an attempt to execute an STTWA instruction will cause an unimplemented_STTW
exception.
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TABLE B-1

SPARC V9 Implementation Dependencies (6 of 9)

Nbr

Category Description

Page

109-
V9-
Cs10

110-
V9-
Cs10

LDDF(A)_mem_address_not_aligned
a: LDDEF requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i=1 or
instruction bits 12:5 = 0) LDDF instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.

(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDF
instruction)

: LDDFA requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i=1 or
instruction bits 12:5 = 0) LDDFA instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDFA instruction and return.

(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDFA
instruction)

STDF(A)_mem_address_not_aligned
a: STDF requires only word alignment in memory. However, if the effective address is

word-aligned but not doubleword-aligned, an attempt to execute a valid (i=1 or
instruction bits 12:5 = 0) STDF instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDF instruction and return.

(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDF
instruction)

: STDFA requires only word alignment in memory. However, if the effective address

is word-aligned but not doubleword-aligned, an attempt to execute a valid (i =1 or
instruction bits 12:5 = 0) STDFA instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDFA instruction and return.

(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDFA
instruction)

102, 102,
237,434

240

102,
317, 435

320
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TABLE B-1

SPARC V9 Implementation Dependencies (7 of 9)

Nbr

Category Description

Page

111-
V9-
Cs10

112-
V9-
Cs10

f

f

LDQF(A)_mem_address_not_aligned
a: LDQF requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQF instruction may
cause an LDQF_mem_address_not_aligned exception. In this case, the trap handler
software must emulate the LDQF instruction and return.

(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQF
instruction)

(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQF instruction in
hardware)

: LDQFA requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQFA instruction
may cause an LDQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the LDQF instruction and return.

(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQFA
instruction)

(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQFA instruction in
hardware)

STQF(A)_mem_address_not_aligned
a: STQF requires only word alignment in memory. However, if the effective address is 103,

word aligned but not quadword aligned, an attempt to execute an STQF instruction
may cause an STQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the STQF instruction and return.

(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQF
instruction)

(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQF instruction in
hardware)

: STQFA requires only word alignment in memory. However, if the effective address

is word aligned but not quadword aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return.

(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQFA
instruction)

(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQFA instruction in
hardware)

103,102,
237, 436

240

317, 436

320

APPENDIX B « Implementation Dependencies 471



TABLE B-1  SPARC V9 Implementation Dependencies (8 of 9)
Nbr Category Description Page
113- f Implemented memory models 91, 376
V9- Whether memory models represented by PSTATE.mm = 10, or 11, are supported in an
Ms10 UltraSPARC Architecture processor is implementation dependent. If the 10, model is
supported, then when PSTATE.mm = 10, the implementation must correctly execute
software that adheres to the RMO model described in The SPARC Architecture Manual-
Version 9. 1If the 11, model is supported, its definition is implementation dependent.
118- f Identifying I/O locations 368
V9 The manner in which I/O locations are identified is implementation dependent.
119- f Unimplemented values for PSTATE.mm 91, 377
Ms10 The effect of an attempt to write an unsupported memory model designation into
PSTATE.mm is implementation dependent; however, it should never result in a value
of PSTATE.mm value greater than the one that was written. In the case of an
UltraSPARC Architecture implementation that only supports the TSO memory model,
PSTATE.mm always reads as zero and attempts to write to it are ignored.
120- f Coherence and atomicity of memory operations 368
V9 The coherence and atomicity of memory operations between virtual processors and
I/0O DMA memory accesses are implementation dependent.
121- f Implementation-dependent memory model 368
V9 An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.
122- f FLUSH latency 174, 384
V9 The latency between the execution of FLUSH on one virtual processor and the point at
which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.
123- f Input/output (I/O) semantics 27
V9 The semantic effect of accessing I/O registers is implementation dependent.
124- v Implicit ASI when TL >0 371
V9 In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all UltraSPARC Architecture implementations, when
TL > 0, the implicit ASI for instruction fetches is ASI _NUCLEUS; loads and stores will
use ASI _NUCLEUS if PSTATE.cle =0 or ASI _NUCLEUS_LI| TTLE if PSTATE.cle = 1.
125- f Address masking 92,92,
V9- (1) When PSTATE.am = 1, only the less-significant 32 bits of the PC register are stored 150,226,
Cs10 in the specified destination register(s) in CALL, JMPL, and RDPC instructions, while 286, 429

the more-significant 32 bits of the destination registers(s) are set to 0.

((2) When PSTATE.am = 1, during a trap, only the less-significant 32 bits of the PC and
NPC are stored (respectively) to TPC[TL] and TNPCJ[TL]; the more-significant 32 bits
of TPC[TL] and TNPCJ[TL] are set to 0.
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TABLE B-1  SPARC V9 Implementation Dependencies (9 of 9)

Nbr Category Description Page

126- Register Windows State registers width 82

V9- Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN

Ms10 contain values in the range 0 to N_REG_WINDOWS - 1. An attempt to write a value

greater than N_REG_WINDOWS - 1 to any of these registers causes an implementation-
dependent value between 0 and N_REG_WINDOWS - 1 (inclusive) to be written to the
register. Furthermore, an attempt to write a value greater than N_REG_WINDOWS — 2
violates the register window state definition in Register Window Management
Instructions on page 116.

Although the width of each of these five registers is architecturally 5 bits, the width is
implementation dependent and shall be between dog,(N_REG_wINDOWS)Oand 5 bits,
inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits shall
read as 0 and writes to them shall have no effect. All five registers should have the
same width.

For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

127-199 Reserved. —
TABLE B-2 provides a list of implementation dependencies that, in addition to those
in TABLE B-1, apply to UltraSPARC Architecture processors. Bold face indicates the
main page on which the implementation dependency is described. See Appendix C
in the Extensions Documents for further information.

TABLE B-2  UltraSPARC Architecture Implementation Dependencies (1 of 6)
Nbr Description Page
200-201  Reserved. —
203-U3-  Dispatch Control register (DCR) bits 13:6 and 1
Cs10 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.
204-U3-  DCR bits 5:3 and 0
CS10 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.
205-U3-  Instruction Trap Register
Cs10 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.
206-U3- SHUTDOWN instruction 303
Cs10 On an UltraSPARC Architecture implementation executing in privileged mode,
SHUTDOWN behaves like a NOP.

207-U3 PCR register bits 47:32, 26:17, and 3 75
The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR register are
implementation dependent.

208-U3 Ordering of errors captured in instruction execution —

The order in which errors are captured in instruction execution is implementation
dependent. Ordering may be in program order or in order of detection.
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TABLE B-2  UltraSPARC Architecture Implementation Dependencies (2 of 6)

Nbr Description Page

209-U3 Software intervention after instruction-induced error —
Precision of the trap to signal an instruction-induced error of which recovery requires
software intervention is implementation dependent.

211-U3 Error logging registers’ information —
The information that the error logging registers preserves beyond the reset induced by an
ERROR signal is implementation dependent.

212-U3-  Trap with fatal error —

Csl10 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

213-U3  AFSR. priv —
The existence of the AFSR. priv bit is implementation dependent. If AFSR. priv is
implemented, it is implementation dependent whether the logged AFSR. priv indicates the
privileged state upon the detection of an error or upon the execution of an instruction that
induces the error. For the former implementation to be effective, operating software must
provide error barriers appropriately.

228-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

Cs10

229-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.TSB ~ —

Csl10 Base address generation
Whether the implementation generates the TSB Base address by exclusive-ORing the TSB
Base register and a TSB register or by taking the tsb_base field directly from a TSB register
is implementation dependent in UltraSPARC Architecture. This implementation
dependency existed for UltraSPARC III/IV, only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

230 Reserved. —

230-U3 data_access_exception trap —
The causes of a data_access_exception trap are implementation dependent in UltraSPARC
Architecture 2005.

232-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

Cs10

233-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

Cs10

235-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

Cs10

236-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.t —

Cs10

239-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

Cs10

240-U3-  Reserved. —

Cs10

243-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
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TABLE B-2  UltraSPARC Architecture Implementation Dependencies (3 of 6)

Nbr Description Page

244-U3-  Data Watchpoint Reliability —
Cs10 Data Watchpoint traps are completely implementation-dependent in UltraSPARC
Architecture processors.

245-U3-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10

248-U3 Conditions for fp_exception_other with unfinished_FPop 62
The conditions under which an fp_exception_other exception with floating-point trap type
of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with unfinished_FPop under a different (but specified) set of

conditions.
249-U3-  Data Watchpoint for Partial Store Instruction 327
Cs10 For an STPARTIAL instruction, the following aspects of data watchpoints are

implementation dependent: (a) whether data watchpoint logic examines the byte store
mask in R[rs2] or it conservatively behaves as if every Partial Store always stores all 8
bytes, and (b) whether data watchpoint logic examines individual bits in the Virtual
(Physical) Data Watchpoint Mask in the LSU Control register to determine which bytes are
being watched or (when the Watchpoint Mask is nonzero) it conservatively behaves as if
all 8 bytes are being watched.

250-U3- PCR accessibility when PSTATE.priv = 0 74,287,
Cs10 In an UltraSPARC Architecture implementation, PCR is never accessible to nonprivileged 355
software. Specifically, when a virtual processor is operating in nonprivileged mode
(PSTATE.priv = 0), an attempt to access PCR (using an RDPCR or a WRPCR instruction)
results in a privileged_opcode exception.

251 Reserved.

252-U3- Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10

253-U3-  Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10

257-U3 LDDFA with ASI C0—C5;4 or C8;,—CD1¢ and misaligned memory address 241
If an LDDFA opcode is used with an ASI of C07¢—C514 or C814—CD;¢ (Partial Store ASIs,
which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates n exception. It is
implementation dependent whether the exception generated is data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

259-299  Reserved. —

300-U4-  Attempted access to ASI registers with LDTWA 257

Csl10 If an LDTWA instruction referencing a non-memory ASI is executed, it generates a
data_access_exception exception.

301-U4-  Attempted access to ASI registers with STTWA 333

Cs10 If an STTWA instruction referencing a non-memory ASI is executed, it generates a

data_access_exception exception.
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TABLE B-2  UltraSPARC Architecture Implementation Dependencies (4 of 6)

Nbr Description Page
302-U4-  Scratchpad registers 405
Cs10 An UltraSPARC Architecture processor includes eight privileged Scratchpad registers (64
bits each, read/write accessible).
303-U4-  This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10
305-U4-  Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10
306-U4-  Trap type generated upon attempted access to noncacheable page with LDTXA 251
Cs10 When an LDTXA instruction attempts access from an address that is not mapped to
cacheable memory space, a data_access_exception exception is generated.
307-U4-  Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10
308-U3-  Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —
Cs10
309-U4-  Reserved. —
Cs10
311-319  Reserved.
327-399  Reserved
400-S10  Global Level register (GL) implementation 96
Although GL is defined as a 4-bit register, an implementation may implement any subset
of those bits sufficient to encode the values from 0 to MAXPGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.
401-S10 Maximum Global Level (MAXPGL) 94, 96
The architectural parameter MAXPGL is a constant for each implementation; its legal values
are from 2 to 15 (supporting from 3 to 16 sets of global registers). In a typical
implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10).
Architecturally, MAXPTL must be > 2.
403-S10  Setting of “dirty” bits in FPRS 74, 74
A “dirty” bit (du or dl) in the FPRS register must be set to “1” if any of its corresponding F
registers is actually modified. The specific conditions under which a dirty bit is set are
implementation dependent.
404-S10  Scratchpad registers 4 through 7 405

The degree to which Scratchpad registers 4-7 are accessible to privileged software is
implementation dependent. Each may be (1) fully accessible, (2) accessible, with access
much slower than to scratchpad register 0-3, or (3) inaccessible (cause a
data_access_exception exception).

476 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



TABLE B-2  UltraSPARC Architecture Implementation Dependencies (5 of 6)

Nbr Description Page

405-S10  Virtual address range 26
An UltraSPARC Architecture implementation may support a full 64-bit virtual address
space or a more limited range of virtual addresses. In an implementation that does support
a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for
n-bit virtual addresses, the valid address ranges are 0 to 2"™' = 1 and 264 - 2771 to 264 - 1.

409-S10- FLUSH instruction and memory consistency 175
Cs20 The implementation of the FLUSH instruction is implementation dependent.
If the implementation automatically maintains consistency between instruction and data
memory,

(1) the FLUSH address is ignored and

(2) the FLUSH instruction cannot cause any data access exceptions, because its effective
address operand is not translated or used by the MMU.

On the other hand, if the implementation does not maintain consistency between

instruction and data memory, the FLUSH address is used to access the MMU and the

FLUSH instruction can cause data access exceptions.

410-S10  Block Load behavior

The following aspects of the behavior of block load (LDBLOCKF) instructions are 233

implementation dependent:

¢ What memory ordering model is used by LDBLOCKF (LDBLOCKEF is not required to
follow TSO memory ordering)

e Whether LDBLOCKEF follows memory ordering with respect to stores (including block
stores), including whether the virtual processor detects read-after-write and write-after-
read hazards to overlapping addresses

¢ Whether LDBLOCKEF appears to execute out of order, or follow LoadLoad ordering
(with respect to older loads, younger loads, and other LDBLOCKFs)

¢ Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

* Whether LDBLOCKFs to non-cacheable locations are (a) strictly ordered, (b) not strictly
ordered and cause an illegal_instruction exception, or (c) not strictly ordered and silently
execute without causing an exception (option (c) is strongly discouraged)

* Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses 368
(in which case, LDBLOCKFs behave as if TTE.e =0)

¢ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a 234, 234
LDBLOCKE (the recommended behavior), or only on accesses to the first eight bytes
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TABLE B-2  UltraSPARC Architecture Implementation Dependencies (6 of 6)

Nbr Description Page

411-S10 Block Store behavior 314, 314
The following aspects of the behavior of block store (STBLOCKF) instructions are
implementation dependent:

* The memory ordering model that STBLOCKEF follows (other than as constrained by the
rules outlined on page 314).

¢ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
STBLOCKEF (the recommended behavior), or only on accesses to the first eight bytes.

e Whether STBLOCKFs to non-cacheable pages execute in strict program order or not. If
not, a STBLOCKF to a non-cacheable page causes an illegal_instruction exception.

¢ Whether STBLOCKEF follows register dependency interlocks (as ordinary stores do).

¢ Whether a non-Commit STBLOCKF forces the data to be written to memory and
invalidates copies in all caches present (as the Commit variants of STBLOCKF do).

* Whether the MMU ignores the side-effect bit (TTE.e) for STBLOCKEF accesses 368
(in which case, STBLOCKFs behave as if TTE.e = 0)

® Any other restrictions on the behavior of STBLOCKE, as described in implementation-
specific documentation.

412-S10 MEMBAR behavior 260
An UltraSPARC Architecture implementation may define the operation of each MEMBAR
variant in any manner that provides the required semantics.

413-S10 Load Twin Extended Word behavior 251
It is implementation dependent whether VA_watchpoint exceptions are recognized on
accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

414 Reserved. —

417-S10  Behavior of DONE and RETRY when TSTATE[TL].pstate.am =1 93, 154294
If (1) TSTATE[TL].pstate.am =1 and (2) a DONE or RETRY instruction is executed (which
sets PSTATE.am to ‘1" by restoring the value from TSTATE[TL].pstate.am to PSTATE.am),
it is implementation dependent whether the DONE or RETRY instruction masks (zeroes)
the more-significant 32 bits of the values it places into PC and NPC.

441-449  Reserved for UltraSPARC Architecture 2005
450-499  Reserved for UltraSPARC Architecture 2006

451 Reserved.
and up
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/ Note: This chapter is undergoing final review; please check 4
/ back later for a copy of UltraSPARC Architecture ;
/ 2005 containing the final version of this chapter. /
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Assembly Language Syntax

This appendix supports Chapter 8, Instructions. Each instruction description in
Chapter 8 includes a table that describes the suggested assembly language format
for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions provided by
UltraSPARC Architecture assemblers for the convenience of assembly language
programmers.

The appendix contains these sections:

= Notation Used on page 479.
= Syntax Design on page 485.
= Synthetic Instructions on page 486.

C.1 Notation Used

The notations defined here are also used in the assembly language syntax
descriptions in Chapter 8, Instructions.

Items intypewriter font are literals to be written exactly as they appear. Items
in italic font are metasymbols that are to be replaced by numeric or symbolic values
in actual SPARC V9 assembly language code. For example, “imm_asi” would be
replaced by a number in the range 0 to 255 (the value of the imm_asi bits in the
binary instruction) or by a symbol bound to such a number.
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C.1.1

Subscripts on metasymbols further identify the placement of the operand in the
generated binary instruction. For example, regs, is a reg (register name) whose
binary value will be placed in the rs2 field of the resulting instruction.

Register Names

reg. A reg is an integer register name. It can have any of the following values:!

% 0-% 31
%g0-%g7
%00-%07
% 0-% 7
% 0-% 7
% p

%sp

global registers; same as % 0-% 7)

out registers; same as % 8-% 15)

local registers; same as % 16-% 23)

in registers; same as % 24-9% 31)

frame pointer; conventionally same as % 6)
stack pointer; conventionally same as %06)

AN N N AN AN~

Subscripts identify the placement of the operand in the binary instruction as one of
the following;:

regrs1 (rsl field)

regrs2 (rs2 field)

regrg (rd field)

freg. An freg is a floating-point register name. It may have the following values:
% 0,9% 1, % 2-% 63
See Floating-Point Registers on page 52.

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

freqsy (sl field)

fregrsp  (rs2 field)
fregrs3 (rs3 field)
fregg (rd field)

asr_reg. An asr_reg is an Ancillary State Register name. It may have one of the
following values:
%asr 16-%sr 31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1 (rsl field)
asr_regyy (rd field)

L In actual usage, the %sp, % p, Ygn, Yon, % n, and %n forms are preferred over % n.
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i_or_x_cc. Ani_or_x_cc specifies a set of integer condition codes, those based on
either the 32-bit result of an operation (i cc) or on the full 64-bit result (xcc). It may
have either of the following values:

% cc

%xcc

feen.  An f ccn specifies a set of floating-point condition codes. It can have any of
the following values:

% ccO
% ccl
% cc2
% cc3

C.12 Special Symbol Names

Certain special symbols appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading percent sign (%.

The symbol names and the registers or operators to which they refer are as follows:

Yasi Address Space Identifier (ASI) register
%anrestore Restorable Windows register

Y%ansave Savable Windows register

%cr Condition Codes register

%! eanwi n Clean Windows register

Y%ewp Current Window Pointer (CWP) register
% prs Floating-Point Registers State (FPRS) register
9% sr Floating-Point State register

%gsr General Status Register (GSR)

%ot herwi n Other Windows (OTHERWIN) register
%pc Program Counter (PC) register

Y%pcr Performance Control Register (PCR)

%pi ¢ Performance Instrumentation Counters
Ypi | Processor Interrupt Level register

Ypst ate Processor State register

%softint Soft Interrupt register

Y%softint_clr Soft Interrupt register (clear selected bits)
Y%sof tint_set Soft Interrupt register (set selected bits)

%sys_tick System Timer (STICK) register
sys_tick_cnpr System Timer Compare (STICK_CMPR) register
% ba Trap Base Address (TBA) register

% i ck Cycle count (TICK) register
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% i ck_cnpr
% |

% npc

% pc

% state

% t

owmst at e

%

Timer Compare (TICK_CMPR) register

Trap Level (TL) register

Trap Next Program Counter (TNPC) register
Trap Program Counter (TPC) register

Trap State (TSTATE) register

Trap Type (TT) register

Window State register

Y register

The following special symbol names are unary operators that perform the functions
described:

% hi

%l o or % m

ohi or % m

% o

Extracts bits 63:42 (high 22 bits of upper word) of its operand
Extracts bits 41:32 (low-order 10 bits of upper word) of its
operand

Extracts bits 31:10 (high-order 22 bits of low-order word) of
its operand

Extracts bits 9:0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in t ypewriter font.
They must be written exactly as they are shown, including the leading sharp sign

(#). The value names and the constant values to which they are bound are listed in
TABLE C-1.

TABLE C-1  Value Names and Values (1 of 2)

Value Name in Assembly Language

Value Comments

for PREFETCH instruction “fcn” field

#n_reads

#one_r ead
#n_writes
#one_wite

#page

#unified
#n_reads_strong
#one_read_strong
#n_writes_strong

#one_write_stron

g

0
1
2
3
4

17 (114¢)
20 (1445)
21 (1516)
22 (164¢)
23 (171¢)

for MEMBAR instruction “mmask” field

#lLoadLoad
#St or eLoad

0146
0214
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TABLE C-1  Value Names and Values (2 of 2)

Value Name in Assembly Language Value Comments

#LoadSt ore 0414

for MEMBAR instruction “cmask” field

#StoreStore 0816
#Lookasi de 1014
#Mem ssue 2016
#Sync 4014

C13 Values

Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits

const22 A constant that can be represented in 22 bits

imm_asi An alternate address space identifier (0-255)

siam_mode A 3-bit mode value for the SIAM instruction

simm7 A signed immediate constant that can be represented in 7 bits
simm8 A signed immediate constant that can be represented in 8 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value

shcnt32 A shift count from 0-31

shent64 A shift count from 0-63

C1l4 Labels

A label is a sequence of characters that comprises alphabetic letters (a—z, A-Z [with
upper and lower case distinct]), underscores (_), dollar signs ($), periods (.), and
decimal digits (0-9). A label may contain decimal digits, but it may not begin with
one. A local label contains digits only.

C.15 Other Operand Syntax

Some instructions allow several operand syntaxes, as follows:

reg_plus_imm Can be any of the following:
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regrs1 (equivalent to regs1 + %90)
regrs1 + simml3

regrsy — simmi13

simm13 (equivalent to %90 + simm13)
simml13 + regg1(equivalent to reg,g; + SIMM13)

address Can be any of the following:

regrs1 (equivalent to regs1 + %90)
regrs1 + simml3

regrsy — simmi13

simm13 (equivalent to %90 + simm13)
simml13 + regg1(equivalent to reg,g; + SIMmM13)

regrs1 + 1€8rs2

membar_mask s the following:

const7 A constant that can be represented in 7 bits. Typically, this is an
expression involving the logical OR of some combination of
#Lookasi de, #Mem ssue, #Sync, #St or eSt or e, #LoadSt or e,
#St or eLoad, and #LoadlLoad.

prefetch_fcn (prefetch function) Can be any of the following:

#n_r eads
#one_r ead
#n_writes
#one_write
#page

0-31

regaddr (register-only address) Can be any of the following:

regrs1 (equivalent to reg,s1 + ¥g0)

re8ys1 T re8rs2

reg_or_imm (register or immediate value) Can be either of:

re8rs2
simm13

reg_or_imm10 (register or immediate value) Can be either of:
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re8rs2
simm10

reg_or_imm11 (register or immediate value) Can be either of:

re8rs2
simm11

reg_or_shcnt (register or shift count value) Can be any of:

régrs2
shcnt32

shcnt64

software_trap_number Can be any of the following:

C.1.6

regrs1 (equivalent to regs1 + %90)
Tegrs1 + 1€8rs2

regysy + simm8

regysy — simms

simm8 (equivalent to %90 + simmS8)
simm8 + regyg1 (equivalent to reg,gy + simms8)

The resulting operand value (software trap number) must be in the range 0-255,
inclusive.

Comments

Two types of comments are accepted by the SPARC V9 assembler: C-style “/ *. .. */
” comments, which may span multiple lines, and “! . . . ” comments, which extend
from the “! ” to the end of the line.

C.2

Syntax Design

The SPARC V9 assembly language syntax is designed so that the following
statements are true:

» The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.
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= A reference to the contents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB[A], or SWAP[A] instruction) is always indicated by square brackets ([]);
a reference to the address of a memory location (such as in a JMPL, CALL, or
SETHI) is specified directly, without square brackets.

C.3

Synthetic Instructions

TABLE C-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to
actual instructions. These synthetic instructions are provided by the SPARC V9
assembler for the convenience of assembly language programmers.

Note: Synthetic instructions should not be confused with “pseudo ops,” which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC V9 instructions.

TABLE C-2  Mapping Synthetic to SPARC V9 Instructions (1 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
cnp regys1, reg_or_imm  subcc regrs1, reg_or_imm, %0 Compare.
jnmp address j mpl address, ¥%g0

cal l address j mpl address, Y©7

i prefetch label
t st regrs1
ret

retl

restore

save

set uw value, regyy

set value, regyq

set sw value, regyqy

bn, a, pt %cc,label

orcc %90, regrs1, Y90
j mpl % 7+8, %90

j mpl %7+8, %90
restore %g0, %90, %90

save %90, %90, %90
set hi Yhi (value) , regyqy
— or —
or %90, value, reg.g
— or—
set hi Yhi (value) , regyq;
or regrg, 98 o(value) ,
set hi Wi (value) , regyq

— Oor —

regrd

Instruction prefetch.

Test.

Return from subroutine.
Return from leaf subroutine.
Trivial RESTORE.

Trivial SAVE.
(Warning: trivial SAVE should
only be used in kernel code!)

(When ((value&3FF;¢) == 0).)

(When 0 < value < 4095) .

(Otherwise)

Warning: do not use set uwin
the delay slot of a DCTL
synonym for set uw

(When (value> = 0) and
((value & 3FF¢) ==0).)

486 UltraSPARC Architecture 2005 « Draft D0.8.7, 27 Mar 2006



TABLE C-2

Mapping Synthetic to SPARC V9 Instructions (2 of 3)

Synthetic Instruction

SPARC V9 Instruction(s)

Comment

set X

si gnx
si gnx
not
not
neg
neg
cas
casl
casx
casxl

inc
inc
inccc
inccc
dec
dec
decc

value, reg, regiq

regrs1r 1€&rd

regrd

re8rs1s 1€&rd

regrd

regrs2: 1e&rd

regrd

[regrs1l, regrso, regrd
[regrs1l, regrs2, regra
[regrs1l, regrs2, regrg
[regis1l, regrso, 7€8rd

e8rd
const13, regry

re&rd

const13, regqy
Te8rd

constl3, regyg

Te8rd

or

set hi

sra

set hi
or

set hi
or
sra

set hi
or
sl x
set hi
or
or

sra
sra
xnor
xnor
sub
sub
casa
casa
casxa
casxa

add
add
addcc
addcc
sub
sub
subcc

%90, value, reg.q
— or—

Yhi (value) , regyqy

regrd, @0, regyg
— or —

Wi (value) , regiq;
regrq, 9 o(value) , regyy
— or —

Wi (value) , regiq;
regrg, 9 o(value) , regyq
regrg, Y90, regrg

Yuhi (value), reg

reg, %l o(value), reg
reg, 32, reg

Wi (value), regyy

regrd, €8, 1e8rd
regrg, 9 o(value), regyy

regrs1, Y0, regyg

regrd: Y90, regrg

regrs1, Y90, regy

regrq, Y90, regrq

%90, regrso, Te8rd

%90, regrd, regrd

[regrs1]#ASI _P, regrso, regrg
[regis11#ASI _P_L, reg.sp, regq
[regs11#ASI _P, regisa, regyg
[regrsl]#ASI _P_L, regyrs2s 1e8rd

regrds 1, regrg
regrq, constl3, regrq
regrds 1, regrg
regrq, constl3, regyy
regrds 1, regrg
regrq, constl3, regrq

regrd, 1, regrg

(When 4096 < value < 4095).

(Otherwise, if (value < 0) and
((value & 3FF4) = =0))

(Otherwise, if value 0)

(Otherwise, if value < 0)

Warning: do not use set swin
the delay slot of a CTI.

Create 64-bit constant.

(“reg” is used as a temporary
register.)

Note: set x optimizations are
possible but not enumerated
here. The worst case is shown.
Warning: do not use set x in the
delay slot of a CTIL.

Sign-extend 32-bit value to
64 bits.

One’s complement.

One’s complement.

Two’s complement.

Two’s complement.

Compare and swap.

Compare and swap, little-endian.
Compare and swap extended.

Compare and swap extended,
little-endian.

Increment by 1.

Increment by const13.
Increment by 1; set icc & xcc.
Incr by const13; set icc & xcc.
Decrement by 1.

Decrement by const13.
Decrement by 1; set icc & xcc.
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TABLE C-2

Mapping Synthetic to SPARC V9 Instructions (3 of 3)

Synthetic Instruction

SPARC V9 Instruction(s)

Comment

deccc const13, regqy subcc
bt st reg_or_imm, reg.s; andcc
bset reg_or_imm, reg.q or
bclr reg_or_imm, regyq  andn
bt og reg_or_imm, tregq  XOr
clr 7egrd or
clrb [address] sth
clrh [address] sth
clr [address] stw
clrx [address] st x
clruw regrs1, 7e8rd srl
clruw regrd srl
nov reg_or_imm, regy  OrF
nov %, regrq rd
nov vasrn, regyq rd
nov reg_or_imm, %y wr
nmov reg_or_imm, Y@srn W

regrq, constl3, regpq

regrs1, reg_or_imm, %g0

regyq, reg_or_imm,

Te8rd

regyq, reg_or_imm, regyy

regyq, 1reg_or_imm, regyq

%90, %90, regq
%90, [address]
%90, [address]
%90, [address]
%90, [address]
regrs1: Y90, regrg
regrgr Y90, regrg
%90, reg_or_imm,
W, 1e8rd

vasrn, regyqy
%90, reg_or_imm,

%90, reg_or_imm,

re8rd

K

Yasrn

Decr by const13; set icc & xcc.
Bit test.

Bit set.

Bit clear.

Bit toggle.

Clear (zero) register.

Clear byte.

Clear half-word.

Clear word.

Clear extended word.

Copy and clear upper word.

Clear upper word.
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Index

A
a (annul) instruction field
branch instructions, 142, 143, 145, 148, 163, 165
accesses
cacheable, 367
1/0, 367
restricted ASI, 371
with side effects, 367, 378
accrued exception (aexc) field of FSR register, 63,
418, 466
ADD instruction, 134
ADDC instruction, 134
ADDcc instruction, 134, 306
ADDCcc instruction, 134
address
operand syntax, 484
space identifier (ASI), 387
address mask (am) field of PSTATE register
description, 92
address space, 20
address space identifier (ASI), 366
appended to memory address, 25, 100
architecturally specified, 371
bypass, 388
bypassing, 93
changed in, 406
changed in UA
ASl _LD_TW NX_NUCLEUS_LI TTLE, 406
ASI _LDTX_N, 406
ASI _LDTX_NL, 406
ASI _REAL, 406
ASI _REAL_1 O 406
ASI _REAL | O LI TTLE, 406

AS|I _REAL_LI TTLE, 406
definition, 7
encoding address space information, 101
explicit, 108
explicitly specified in instruction, 108
implicit, See implicit ASIs
nontranslating, 12, 257, 333
nontranslating ASIs, 388
with prefetch instructions, 279
restricted, 371, 387

privileged, 371
restriction indicator, 71
SPARC V9 address, 369
translating ASIs, 388
unrestricted, 371, 387

address space identifier (ASI) register

for load /store alternate instructions, 71

address for explicit ASI, 108

and LDDA instruction, 239, 255

and LDSTUBA instruction, 248

load integer from alternate space
instructions, 229

with prefetch instructions, 279

for register-immediate addressing, 371

restoring saved state, 154, 294

saving state, 409

and STDA instruction, 332

store floating-point into alternate space
instructions, 319

store integer to alternate space instructions, 308

and SWAPA instruction, 337

after trap, 30

and TSTATE register, 88

and write state register instructions, 354



addressing modes, 20
ADDX instruction (SPARC V8), 134
ADDXcc instruction (SPARC V8), 134
alias
floating-point registers, 52
aliased, 7
ALIGNADDRESS instruction, 135
ALIGNADDRESS_LITTLE instruction, 135
alignment
data (load/store), 26,102, 369
doubleword, 26,102, 369
extended-word, 102
halfword, 26, 102, 369
instructions, 26, 102, 369
integer registers, 254, 256
memory, 369, 434
quadword, 26, 102, 369
word, 26,102, 369
ALLCLEAN instruction, 136
alternate space instructions, 27,71
ancillary state registers (ASRs)
access, 67
assembly language syntax, 480
I/0O register access, 27
possible registers included, 286, 355
privileged, 29, 466
reading/writing implementation-dependent
processor registers, 29,466
writing to, 354
AND instruction, 137
ANDcc instruction, 137
ANDN instruction, 137
ANDNCcc instruction, 137
annul bit
in branch instructions, 148
in conditional branches, 163
annulled branches, 148
application program, 7, 67
architectural direction note, 4
architecture, meaning for SPARC V9, 19
arithmetic overflow, 70
ARRAY16 instruction, 138
ARRAY32 instruction, 138
ARRAYS instruction, 138
ASI
invalid, and data_access_exception, 432
ASl register, 67
ASI, See address space identifier (ASI)
ASI _Al UP, 390, 398
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ASI _Al UPL, 390, 399

ASI _Al US, 390,398

ASI Al US_L, 250

ASI _Al USL, 390, 399

AS| _AS_ | F_USER*, 92

AS| _AS | F_USER NONFAULT LI TTLE, 372

ASl _AS_ | F_USER PRI MARY, 390, 398

AS| _AS | F_USER PRI MARY_LI TTLE, 372,390,
399, 432

ASI _AS_| F_USER_SECONDARY, 372,390, 398, 432

AS| _AS | F_USER SECONDARY_ LI TTLE, 372,
390, 399, 432

AS| _AS | F_USER SECONDARY NOFAULT LI TT
LE, 372

ASI _BLK_AI UP, 390, 398

AS| _BLK_AI UPL, 390,399

ASI _BLK_AI US, 390, 398

ASI _BLK_AI USL, 390,399

ASl _BLK_P, 395

ASl _BLK_PL, 396

ASl _BLK_S, 395

ASl _BLK_SL, 396

ASI _BLOCK_AS_| F_USER PRI MARY, 390, 398

ASI _BLOCK_AS_| F_USER PRI MARY_ LI TTLE, 3
90, 399

AS| _BLOCK_AS_| F_USER SECONDARY, 390, 398

AS| _BLOCK_AS | F_USER SECONDARY LI TTLE,
390, 399

AS| _BLOCK_PRI MARY, 395

AS| _BLOCK_PRI MARY_ LI TTLE, 396

AS| _BLOCK_SECONDARY, 395

AS| _BLOCK_SECONDARY_ LI TTLE, 396

ASl _FL16_P, 394

ASl _FL16_PL, 395

AS| _FL16_PRI MARY, 394

AS| _FL16_PRI MARY LI TTLE, 395

ASl _FL16_S, 394

AS| _FL16_SECONDARY, 394

AS| _FL16_SECONDARY LI TTLE, 395

ASl _FL16_SL, 395

AS| _FL8_P, 394

ASl _FL8_PL, 395

AS| _FL8_PRI MARY, 394

AS| _FL8_PRI MARY_LI TTLE, 395

ASl _FL8_S, 394

AS| _FL8_SECONDARY, 394

AS| _FL8_SECONDARY LI TTLE, 395

ASl _FL8_SL, 395

ASlI _LD TW NX_AS_| F_USER PRI MARY, 391,



401

ASI _LD_TW NX_AS_| F_USER PRI MARY_LI TTL
E, 392,401

ASl _LD_TW NX_AS_| F_USER_SECONDARY, 391,
401

ASl LD TW NX_AS | F_USER SECONDARY LI T
TLE, 392,401

ASI _LD_TW NX_NUCLEUS, 392, 401, 406

AS| _LD_TW NX_NUCLEUS[ _L], 369

ASI _LD_TW NX_NUCLEUS_LI TTLE, 393, 401, 406

ASl _LD_TW NX_PRI MARY, 395, 403

ASl _LD_TW NX_PRI MARY LI TTLE, 395,403

ASI _LD_TW NX_REAL, 392, 402

ASI _LD_TW NX_REAL_LI TTLE, 392, 402

ASl _LD_TW NX_REAL_REAL[ ] L, 369

ASI _LD_TW NX_SECONDARY, 395, 403

AS| _LD_TW NX_SECONDARY LI TTLE, 395, 403

ASI _LDTX_Al UP, 250, 391, 401

ASI _LDTX_Al UP_L, 250, 401

ASI _LDTX_Al UPL, 392

ASI _LDTX_AI US, 250, 401

ASI _LDTX_AI US_L, 392,401

ASI _LDTX_N, 250, 392, 406

ASI _LDTX_NL, 250, 393, 401, 406

ASI _LDTX_P, 250,395

ASI _LDTX_PL, 250, 395

ASl _LDTX_R, 402

AS| _LDTX_REAL, 250, 392

AS| _LDTX_REAL_L, 392,402

ASI _LDTX_S, 250,395

ASI _LDTX_SL, 250, 395

ASI _MMU_CONTEXTI D, 391

ASl N, 389

ASI _NL, 389

ASI _NUCLEUS, 108, 389

ASI _NUCLEUS_LI TTLE, 108, 389

ASI _NUCLEUS_QUAD_LDD, 406

ASI _NUCLEUS_QUAD LDD_L, 406

ASI _NUCLEUS_QUAD_LDD LI TTLE, 406

ASl _P, 393

AS| _PHY_BYPASS EC W TH EBI T_L, 406

AS| _PHYS_BYPASS EC W TH_EBI T, 406

AS| _PHYS_BYPASS EC W TH EBI T_LI TTLE, 4
06

ASl _PHYS_USE_EC, 406

ASI _PHYS_USE_EC L, 406

ASl _PHYS_USE_EC LI TTLE, 406

ASl _PL, 393

ASI _PNF, 393

ASl _PNFL, 393

AS| _PRI MARY, 108, 371, 372, 393

AS| _PRI MARY_LI TTLE, 108,371,393

ASI _PRI MARY_NO FAULT, 368, 384, 393, 432

AS| _PRI MARY_NO FAULT LI TTLE, 368,384,
393, 432

AS| _PRI MARY_NOFAULT LI TTLE, 372

AS| _PST16_P, 325,394

AS| _PST16_PL, 325,394

AS| _PST16_PRI MARY, 394

AS| _PST16_PRI MARY LI TTLE, 394

AS| _PST16_S, 325,394

AS| _PST16_SECONDARY, 394

AS| _PST16_SECONDARY_ LI TTLE, 394

AS| _PST16_SL, 325

AS| _PST32_P, 325,394

AS| _PST32_PL, 325,394

AS| _PST32_PRI MARY, 394

AS| _PST32_PRI MARY_LI TTLE, 394

AS| _PST32_S, 325,394

AS| _PST32_SECONDARY, 394

AS| _PST32_SECONDARY LI TTLE, 394

AS| _PST32_SL, 325,394

ASl _PST8_P, 393

ASl _PST8_PL, 394

AS| _PST8_PRI MARY, 393

AS| _PST8_PRI MARY_ LI TTLE, 394

AS| _PST8_S, 393

AS| _PST8_SECONDARY, 393

AS| _PST8_SECONDARY_ LI TTLE, 394

AS| _PST8_SL, 325,394

AS| _QUAD LDD REAL_LI TTLE, 392

ASI _QUAD_LOAD REAL, 392

ASI _REAL, 390,399, 406

ASI _REAL_| O, 390, 399, 406

ASI _REAL_1 O L, 390

ASI _REAL_| O LI TTLE, 390, 400, 406

ASl _REAL_L, 390

ASI _REAL_LI TTLE, 390, 400, 406

ASl _S, 393

AS| _SECONDARY, 393

AS| _SECONDARY_ LI TTLE, 393

AS| _SECONDARY_NO FAULT, 384,393, 432

AS| _SECONDARY_NO FAULT LI TTLE, 384,393,
432

AS| _SECONDARY_NOFAULT, 372

ASI _SL, 393

ASI _SNF, 393

ASI _SNFL, 393
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asr_reg, 480
atomic
memory operations, 251, 380, 381
store doubleword instruction, 330, 332
store instructions, 307, 308
atomic load-store instructions
compare and swap, 151
load-store unsigned byte, 247, 337
load-store unsigned byte to alternate space, 248
simultaneously addressing doublewords, 336
swap R register with alternate space
memory, 337
swap R register with memory, 151, 336
atomicity, 368,472

B

BA instruction, 142, 143, 459
BCC instruction, 142, 459

bcl r g synthetic instruction, 488
BCS instruction, 142, 459

BE instruction, 142, 459

Berkeley RISCs, 22

BG instruction, 142,459

BGE instruction, 142,459

BGU instruction, 142, 459

Bicc instructions, 142, 453
big-endian, 7

big-endian byte order, 26, 90, 103
binary compatibility, 22

BL instruction, 459

BLD, See LDBLOCKEF instruction
BLE instruction, 142, 459

BLEU instruction, 142, 459

block load instructions, 53, 232, 403
block store instructions, 53, 312, 403
blocked byte formatting, 139
BMASK instruction, 144

BN instruction, 142, 459

BNE instruction, 142, 459

BNEG instruction, 142, 459

BP instructions, 459

BPA instruction, 145, 459

BPCC instruction, 145, 459

BPcc instructions, 70, 71, 145, 460
BPCS instruction, 145, 459

BPE instruction, 145, 459

BPG instruction, 145, 459

BPGE instruction, 145, 459
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BPGU instruction, 145, 459
BPL instruction, 145, 459
BPLE instruction, 145, 459
BPLEU instruction, 145, 459
BPN instruction, 145, 459
BPNE instruction, 145, 459
BPNEG instruction, 145,459
BPOS instruction, 142, 459
BPPOS instruction, 145, 459
BPr instructions, 148, 459
BPVC instruction, 145, 459
BPVS instruction, 145, 459
branch
annulled, 148
delayed, 99
elimination, 115, 116
fcc-conditional, 163, 165
icc-conditional, 143
instructions
on floating-point condition codes, 162
on floating-point condition codes with
prediction, 164
on integer condition codes with prediction
(BPcc), 145
on integer condition codes, See Bicc instruc-
tions
when contents of integer register match
condition, 148
prediction bit, 148
unconditional, 142, 146, 163, 165
with prediction, 20
BRGEZ instruction, 148
BRGZ instruction, 148
BRLEZ instruction, 148
BRLZ instruction, 148
BRNZ instruction, 148
BRZ instruction, 148
bset synthetic instruction, 488
BSHUFEFELE instruction, 144
BST, See STBLOCKEF instruction
bt og synthetic instruction, 488
bt st synthetic instruction, 488
BVC instruction, 142, 459
BVS instruction, 142, 459
bypass ASIs, 388
byte, 7
addressing, 108
data format, 33
order, 26



order, big-endian, 26

order, little-endian, 26
byte order

big-endian, 90

implicit, 90

in trap handlers, 417

little-endian, 90

C

cache
coherency protocol, 367
data, 375
instruction, 375
miss, 284
nonconsistent instruction cache, 375
cacheable accesses, 366
caching, TSB, 451
CALL instruction
description, 150
displacement, 29
does not change cwp, 50
and JMPL instruction, 226
writing address into R[15], 52
cal | synthetic instruction, 486
CANRESTORE (restorable windows) register, 83
and clean_window exception, 117
and CLEANWIN register, 83, 85, 437
counting windows, 85
decremented by RESTORE instruction, 290
decremented by SAVED instruction, 300
detecting window underflow, 50
if registered window was spilled, 291
incremented by SAVE instruction, 298
modified by NORMALW instruction, 272
modified by OTHERW instruction, 274
range of values, 82,473
RESTORE instruction, 117
specification for RDPR instruction, 288
specification for WRPR instruction, 356
window underflow, 437
CANSAVE (savable windows) register, 83
decremented by SAVE instruction, 298
detecting window overflow, 50
FLUSHW instruction, 177
if equals zero, 116
incremented by RESTORE, 290
incremented by SAVED instruction, 300
range of values, 82,473

SAVE instruction, 438
specification for RDPR instruction, 288
specification for WRPR instruction, 356
window overflow, 436
CAS synthetic instruction, 381
CASA instruction, 151
32-bit compare-and-swap, 380
alternate space addressing, 27
and data_access_exception (noncacheable page)
exception, 432
atomic operation, 247
hardware primitives for mutual exclusion of
CASXA, 379
in multiprocessor system, 248, 336, 337
R register use, 101
word access (memory), 102
casn synthetic instructions, 487
CASX synthetic instruction, 380, 381
CASXA instruction, 151
64-bit compare-and-swap, 380
alternate space addressing, 27
and data_access_exception (noncacheable page)
exception, 432
atomic operation, 248
doubleword access (memory), 102
hardware primitives for mutual exclusion of
CASA, 379
in multiprocessor system, 247, 248, 336, 337
R register use, 101
catastrophic error exception, 410
ccO instruction field
branch instructions, 145, 165
floating point compare instructions, 169
move instructions, 264, 460
ccl instruction field
branch instructions, 145, 165
floating point compare instructions, 169
move instructions, 264, 460
cc2 instruction field
move instructions, 264, 460
CCR (condition codes) register, 69
32-bit operation (icc) bit of condition field, 70, 71
64-bit operation (xcc) bit of condition field, 70,
71
ADD instructions, 134
ASR for, 67
carry (c) bit of condition fields, 70
icc field, See cCR.icc field
MULScc instruction, 268
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negative (n) bit of condition fields, 70
overflow bit (v) in condition fields, 70
restored by RETRY instruction, 154, 294
saved after trap, 409
saving after trap, 30
TSTATE register, 88
write instructions, 354
xcc field, See ccr.xcc field
zero () bit of condition fields, 70
CCR.icc field
add instructions, 134, 339
bit setting for signed division, 350
bit setting for signed /unsigned multiply, 351
bit setting for unsigned division, 349
branch instructions, 143, 146, 264
integer subtraction instructions, 335
logical operation instructions, 137, 273, 358
MULScc instruction, 268
Tcc instruction, 343
CCR.xcc field
add instructions, 134, 339
bit setting for signed /unsigned divide, 349, 350
bit setting for signed /unsigned multiply, 351
branch instructions, 146, 264
logical operation instructions, 137, 273, 358
subtract instructions, 335
Tcc instruction, 343
clean register window, 298, 431
clean window, 8
and window traps, 86, 436
CLEANWIN register, 85
definition, 437
number is zero, 117
trap handling, 438
clean_window exception, 83,117,299, 431, 437, 468
CLEANWIN (clean windows) register, 83
CANSAVE instruction, 117
clean window counting, 83
incremented by trap handler, 438
range of values, 82,473
specification for RDPR instruction, 288
specification for WRPR instruction, 356
specifying number of available clean
windows, 437
value calculation, 85
clock cycle, counts for virtual processor, 72
clock tick registers, See TICK and STICK registers
clock-tick register (TICK), 435
cl r n synthetic instructions, 488
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cnp synthetic instruction, 335, 486
coherence, 8
between processors, 472
data cache, 375
domain, 367
memory, 368
unit, memory, 369
compare and swap instructions, 151
comparison instruction, 110, 335
compatibility note, 4
completed (memory operation), 8
compliant SPARC V9 implementation, 23
cond instruction field
branch instructions, 143, 145, 163, 165
floating point move instructions, 180
move instructions, 264
condition codes
adding, 339
effect of compare-and-swap instructions, 152
extended integer (xcc), 71
floating-point, 163
icc field, 70
integer, 69
results of integer operation (icc), 71
subtracting, 335, 345
trapping on, 343
xcc field, 70
condition codes register, See CCR register
conditional branches, 143,163, 165
conditional move instructions, 30
conforming SPARC V9 implementation, 23
const22 instruction field of ILLTRAP
instruction, 222
constants, generating, 302
context, 8
nucleus, 176
context identifier, 370
control transfer
pseudo-control-transfer via WRPR to
PSTATE.am, 93
control-transfer instructions (CTIs), 28, 154, 294
conventions
font, 2
notational, 2
conversion
between floating-point formats instructions, 218
floating-point to integer instructions, 216, 363
integer to ﬂoating—point instructions, 173, 221
planar to packed, 206



copyback, 8
CPI, 8
CPU, pipeline draining, 82, 86
cpu_mondo exception, 431
cross-call, 8
CTI, 8,16
current exception (cexc) field of FSR register, 64,
119, 466
current window, 8
current window pointer register, See CWP register
current_little_endian (cle) field of PSTATE
register, 90, 371
CWP (current window pointer) register
and instructions
CALL and JMPL instructions, 50
FLUSHW instruction, 177
RDPR instruction, 288
RESTORE instruction, 117,290
SAVE instruction, 116, 290, 298
WRPR instruction, 356
and traps
after spill trap, 438
after spill/fill trap, 30
on window trap, 438
saved by hardware, 409
CWP (current window pointer) register, 82
clean windows, 84
definition, 8
incremented /decremented, 49, 290, 298
overlapping windows, 49
range of values, 82,473
restored during RETRY, 154, 294
specifying windows for use without
cleaning, 437
and TSTATE register, 88

D
D superscript on instruction name, 124
d16hi instruction field
branch instructions, 148
d16lo instruction field
branch instructions, 148
data
access, 8
cache coherence, 375
conversion between SIMD formats, 41
flow order constraints
memory reference instructions, 374

register reference instructions, 373
formats
byte, 33
doubleword, 33
halfword, 33
Int16 SIMD, 42
Int32 SIMD, 42
quadword, 33
tagged word, 33
Uint8 SIMD, 42
word, 33
memory, 383
types
floating-point, 33
signed integer, 33
unsigned integer, 33
width, 33
Data Cache Unit Control register, See DCUCR
data_access_exception (invalid ASI) exception
with load alternate instructions, 230
data_access_exception exception, 431
with compare-and-swap instructions, 153
with LD instructions, 228
with LDSHORTF instructions, 231, 234
with LDTXA instructions, 252
with load instructions, 238, 254, 257
with load instructions and ASIs, 241, 401, 402,
403, 404, 405
with store instructions and ASIs, 241, 401, 402,
403, 404, 405
with STPARTIALF instructions, 327
with SWAPA instruction, 338
DCTI couple, 115
DCTTI instructions, 8
behavior, 99
RETURN instruction effects, 296
dec synthetic instructions, 487
decccg synthetic instructions, 487
deferred trap, 413
distinguishing from disrupting trap, 415
floating-point, 289
restartable
implementation dependency, 414
software actions, 414
delay instruction
and annul field of branch instruction, 163
annulling, 29
conditional branches, 165
DONE instruction, 154

Index



executed after branch taken, 148 WRY, 67,69, 353

following delayed control transfer, 29 dev_mondo exception, 432
RETRY instruction, 294 displ19 instruction field
RETURN instruction, 296 branch instructions, 145, 165
unconditional branches, 165 disp22 instruction field
with conditional branch, 146 branch instructions, 142, 163
delayed branch, 99 disp30 instruction field
delayed control transfer, 148 word displacement (CALL), 150
delayed CTI, See DCTI dispatch, 9
denormalized number, 8 disrupting trap, 415
deprecated, 8 divide instructions, 28, 270, 348
deprecated exceptions division_by_zero exception, 111, 270, 433
tag_overflow, 435 division-by-zero bits of FSR.aexc/FSR.cexc
deprecated instructions fields, 66
FBA, 162 DONE instruction, 154
FBE, 162 effect on TNPC register, 87
FBG, 162 effect on TSTATE register, 88
FBGE, 162 generating illegal_instruction exception, 434
FBL, 162 modifying CCR.xcc condition codes, 70
FBLE, 162 return from trap, 409
FBLG, 162 return from trap handler with different GL
FBN, 162 value, 97
FBNE, 162 target address, 29
FBO, 162 doublet, 9
FBU, 162 doubleword, 9
FBUE, 162 addressing, 106
FBUGE, 162 alignment, 26, 102, 369
FBUL, 162 data format, 33
FBULE, 162 definition, 9
LDFSR, 243
LDTW, 253
LDTWA, 255 E
MULScc, 69, 268 EDGE16 instruction, 156
RDY, 67,69, 285 EDGE16L instruction, 156
SDIV, 69, 348 EDGE16LN instruction, 158
SDIVce, 69, 348 EDGE16N instruction, 158
SMUL, 69, 351 EDGE32 instruction, 156
SMULcc, 69, 351 EDGE32L instruction, 156
STFSR, 323 EDGE32LN instruction, 158
STTW, 330 EDGE32N instruction, 158
STTWA, 332 EDGES instruction, 156
SWAP, 336 EDGESL instruction, 156
SWAPA, 337 EDGESLN instruction, 158
TADDccTV, 340 EDGES8N instruction, 158
TSUBccTV, 346 emulating multiple unsigned condition codes, 116
UDIV, 69, 348 enable floating-point
UDIVce, 69, 348 See FPRS register, fef field
UMUL, 69, 351 See PSTATE register, pef field
UMULcc, 69, 351 even parity, 9
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exception, 9
exceptions

See also individual exceptions
catastrophic error, 410
causing traps, 409
clean_window, 431, 468
cpu_mondo, 431
data_access_exception, 431
definition, 410
dev_mondo, 432
division_by_zero, 433
fill_n_normal, 433
fill_n_other, 433
fp_disabled

and GSR, 76
fp_disabled, 433
fp_exception_ieee_754, 433
fp_exception_other, 433
htrap_instruction, 433
illegal_instruction, 433
instruction_access_exception, 434, 434
interrupt_level_14

and SOFTINT.int_level, 78

and STICK_CMPR.stick_cmpr, 81

and TICK_CMPR.tick_cmpr, 80
interrupt_level_14, 434
interrupt_level_15

and SOFTINT.int_level, 78
interrupt_level_n

and SOFTINT register, 77

and SOFTINT.int_level, 78
interrupt_level_n, 416, 434
LDDF_mem_address_not_aligned, 434
LDQF_mem_address_not_aligned, 436
mem_address_not_aligned, 434
nonresumable_error, 434
pending, 31
privileged_action, 434
privileged_opcode

and access to register-window PR state

registers, 81, 86,95, 97

and access to SOFTINT, 77

and access to SOFTINT_CLR, 79

and access to SOFTINT_SET, 78

and access to STICK_CMPR, 81

and access to TICK_CMPR, 79
privileged_opcode, 435
resumable_error, 435
spill_n_normal, 299, 435

spill_n_other, 299, 435
STDF_mem_address_not_aligned, 435
STQF_mem_address_not_aligned, 436
tag_overflow (deprecated), 435
trap_instruction, 435
unimplemented_LDTW, 435
unimplemented_STTW, 435
VA_watchpoint, 435

execute unit, 373

execute_state
trap processing, 429

explicit ASI, 9,108, 389

extended word, 9
addressing, 106

F

F registers, 9, 24,119, 359, 418
FABSd instruction, 159, 457, 458
FABSq instruction, 159, 457, 458
FABSs instruction, 159

FADD, 160

FADDd instruction, 160
FADDq instruction, 160

FADDs instruction, 160
FALIGNDATA instruction, 161
FAND instruction, 214
FANDNOT1 instruction, 214
FANDNOT1S instruction, 214
FANDNOT2 instruction, 214
FANDNOT?2S instruction, 214
FANDS instruction, 214

FBA instruction, 162, 163, 459
FBE instruction, 162, 459

FBfcc instructions, 58, 162, 433, 453, 459
FBG instruction, 162, 459

FBGE instruction, 162, 459

FBL instruction, 162, 459

FBLE instruction, 162, 459
FBLG instruction, 162, 459

FBN instruction, 162, 163, 459
FBNE instruction, 162, 459

FBO instruction, 162,459

FBPA instruction, 164, 165, 459
FBPE instruction, 164, 459
FBPfcc instructions, 58, 164, 453, 459, 460
FBPG instruction, 164, 459
FBPGE instruction, 164, 459
FBPL instruction, 164, 459

Index



FBPLE instruction, 164, 459
FBPLG instruction, 164, 459
FBPN instruction, 164, 165, 459
FBPNE instruction, 164, 459
FBPO instruction, 164, 459
FBPU instruction, 164, 459
FBPUE instruction, 164, 459
FBPUG instruction, 164, 459
FBPUGE instruction, 164, 459
FBPUL instruction, 164, 459
FBPULE instruction, 164, 459
FBU instruction, 162, 459
FBUE instruction, 162, 459
FBUG instruction, 162, 459
FBUGE instruction, 162, 459
FBUL instruction, 162, 459
FBULE instruction, 162, 459
fcc-conditional branches, 163, 165
fcen, 9
FCMP instructions, 460
FCMP* instructions, 58, 59, 169
FCMPd instruction, 169, 361, 458
FCMPE instructions, 460
FCMPE* instructions, 58,59, 169
FCMPEd instruction, 169, 361, 458
FCMPEq instruction, 169, 361, 458
FCMPEQ16 instruction, 166
FCMPEQ32 instruction, 166
FCMPEs instruction, 169, 361, 458
FCMPGT instruction, 166
FCMPGT16 instruction, 166
FCMPGT32 instruction, 166
FCMPLE16 instruction, 166
FCMPLE16 instruction, 166
FCMPLE32 instruction, 166
FCMPLE32 instruction, 166
FCMPNE16 instruction, 166, 167
FCMPNES32 instruction, 166, 167
FCMPq instruction, 169, 361, 458
FCMPs instruction, 169, 361, 458
fcn instruction field

DONE instruction, 154

PREFETCH, 278

RETRY instruction, 294
FDIVd instruction, 171
FDIVq instruction, 171
FDIVs instructions, 171
FdMULq instruction, 194
FdTOi instruction, 216, 363
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FdTOq instruction, 218
FdTOs instruction, 218
FdTOx instruction, 216, 458
fef field of FPRS register, 73
and access to GSR, 76
and fp_disabled exception, 433
branch operations, 163, 165
byte permutation, 144
comparison operations, 167,170
data movement operations, 265
enabling FPU, 92
floating-point operations, 159,160,171,173,178,
183, 186, 194, 196, 215, 216, 218, 220, 221, 237,
239,243,245
integer arithmetic operations, 205, 210
logical operations, 211,212,214
memory operations, 234
read operations, 287, 304, 314
special addressing operations, 135,161,317, 323,
327,329, 355
fef, See FPRS register, fef field
FEXPAND instruction, 172
FEXPAND operation, 172
fill handler, 291
fill register window, 433
overflow /underflow, 50
RESTORE instruction, 85,290, 437
RESTORED instruction, 118,292, 438
RETRY instruction, 438
selection of, 437
trap handling, 437, 438
trap vectors, 291
window state, 85
fill_n_normal exception, 291,297, 433, 433
fill_n_other exception, 291, 297, 433
FiTOd instruction, 173
FiTOq instruction, 173
FiTOs instruction, 173
fixed values, 223
fixed-point scaling, 189
floating point
absolute value instructions, 159
add instructions, 160
compare instructions, 58, 59, 169, 169, 361
condition code bits, 163
condition codes (fcc) fields of FSR register, 61,
163, 165, 169
data type, 33
deferred-trap queue (FQ), 289



divide instructions, 171
exception, 9
exception, encoding type, 60
FPRS register, 354
FSR condition codes, 59
move instructions, 178
multiply instructions, 194
negate instructions, 196
operate (FPop) instructions, 9, 30, 60, 64, 119, 243
registers
destination F, 359
FPRS, See FPRS register
FSR, See FSR register
programming, 56
rounding direction, 59
square root instructions, 215
subtract instructions, 220
trap types, 9
IEEE_754_exception, 61, 62, 64, 67, 360
invalid_fp_register, 159, 160, 220
unfinished_FPop, 61, 62, 67,160, 171, 195,
219, 220, 360
results after recovery, 62
unimplemented_FPop, 62, 67, 159, 160, 170,
171,173,178,184, 187,195, 196, 217, 219,
220, 360
traps
deferred, 289
precise, 289
floating-point condition codes (fcc) fields of FSR
register, 418
floating-point operate (FPop) instructions, 433
floating-point trap types
IEEE_754_exception, 418, 433
floating-point unit (FPU), 9, 24
FLUSH instruction, 175
memory ordering control, 260
FLUSH instruction
memory/instruction synchronization, 174
FLUSH instruction, 174, 383
data access, 8
immediacy of effect, 176
in multiprocessor system, 174
in self-modifying code, 175
latency, 472
flush instruction memory, See FLUSH instruction
flush register windows instruction, 177
FLUSHW instruction, 177, 435
effect, 30

management by window traps, 86, 436
spill exception, 118,177, 438
FMOVcc instructions
conditionally moving floating-point register
contents, 71
conditions for copying floating-point register
contents, 115
copying a register, 58
encoding of opf<84> bits, 458
encoding of opf_cc instruction field, 460
encoding of rcond instruction field, 459
floating-point moves, 180
FPop instruction, 119
used to avoid branches, 184, 264
FMOVccd instruction, 458
FMOVccq instruction, 458
FMOV(d instruction, 178, 457, 458
FMOVDfcc instructions, 180
FMOVdAGEZ instruction, 185
FMOVdGZ instruction, 185
FMOVDicc instructions, 180
FMOVALEZ instruction, 185
FMOVdLZ instruction, 185
FMOVdANZ instruction, 185
FMOVdZ instruction, 185
FMOVq instruction, 178, 457, 458
FMOVQfcc instructions, 180, 183
FMOVqGEZ instruction, 185
FMOVqGZ instruction, 185
FMOVQicc instructions, 180, 183
FMOV(qLEZ instruction, 185
FMOV(LZ instruction, 185
FMOVgNZ instruction, 185
FMOVqZ instruction, 185
FMOVr instructions, 119, 459
FMOVRq instructions, 186
FMOVRsGZ instruction, 185
FMOVRSLEZ instruction, 185
FMOVRsLZ instruction, 185
FMOVRsNZ instruction, 185
FMOVRsZ instruction, 185
FMOVs instruction, 178
FMOVScc instructions, 182
FMOVSfcc instructions, 180
FMOVsGEZ instruction, 185
FMOVSicc instructions, 180
FMOVSxcc instructions, 180
FMOVxcc instructions, 180, 183
FMULS8SUx16 instruction, 188, 191

Index
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FMULSULX16 instruction, 188, 191
FMULS8x16 instruction, 188, 189
FMULS8x16AL instruction, 188, 190
FMULS8x16AU instruction, 188, 190
FMULJ instruction, 194
FMULDB8SUx16 instruction, 188,192
FMULDS8ULXx16 instruction, 188, 193
FMULq instruction, 194
FMULSs instruction, 194
FNAND instruction, 214
FNANDS instruction, 214
FNEG instructions, 196
FNEGA instruction, 196, 457, 458
FNEGq instruction, 196, 457, 458
FNEGs instruction, 196
FNOR instruction, 214
FNORS instruction, 214
FNOT1 instruction, 212
FNOT1S instruction, 212
FNOT?2 instruction, 212
FNOT?2S instruction, 212
FONE instruction, 211
FONES instruction, 211
FOR instruction, 214
formats, instruction, 100
FORNOT1 instruction, 214
FORNOT1S instruction, 214
FORNOT?2 instruction, 214
FORNOT2S instruction, 214
FORS instruction, 214
fp_disabled exception, 433
absolute value instructions, 159, 160, 220
and GSR, 76
FPop instructions, 119
FPRs.fef disabled, 73
PSTATE.pef not set, 73,74
with branch instructions, 163, 165
with compare instructions, 168
with conversion instructions, 173,217, 219, 221
with floating-point arithmetic instructions, 171,
195, 205, 210
with FMOV instructions, 178
with load instructions, 241
with move instructions, 184, 187, 265
with store instructions, 317, 321, 323, 324, 327,
329, 355
fp_exception exception, 64
fp_exception_ieee_754 "invalid" exception, 216
fp_exception_ieee_754 exception, 433
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and tem bit of FSR, 60
cause encoded in FSR.ftt, 61
FSR.aexc, 64
FSR.cexc, 65
FSR.ftt, 64
generated by FCMP or FCMPE, 59
and IEEE 754 overflow /underflow
conditions, 64, 65
trap handler, 360
when FSR.tem =0, 418
when FSR.tem =1, 418
with floating-point arithmetic instructions, 160,
171, 195, 220
fp_exception_other exception, 67, 433
absolute value instructions, 159
cause encoded in FSR.ftt, 61
FADDq instruction, 160, 220
FCMP{E}q instructions, 170
FDIVq instruction, 171
FdTOq, FqTOd instructions, 219
FiTOq instruction, 173
FMOVcc instruction, 184
FMOVq instruction, 178
FMOVRq instruction, 187
FMULgq, FAMULq instructions, 195
FNEGq instruction, 196
FqTOx, FqTOi instructions, 217
FSQRT instructions, 215
FxTOq instruction, 221
incorrect IEEE Std 754-1985 result, 119, 465
occurrence, 133
supervisor handling, 360
trap type of unfinished_FPop, 62
unimplemented_FPop for quad FPops, 57
when quad FPop unimplemented in
hardware, 63
with floating-point arithmetic instructions, 171,
195
FPACK instruction, 77
FPACK instructions, 197-201
FPACK16 instruction, 197, 198
FPACK16 operation, 198
FPACKS32 instruction, 197, 199
FPACKB32 operation, 199
FPACKFIX instruction, 197, 201
FPACKFIX operation, 201
FPADD16 instruction, 203
FPADDI16S instruction, 203
FPADD32 instruction, 203



FPADD32S instruction, 203
FPMERGE instruction, 206
FPop, 9
FPop instruction
unimplemented, 433
FPop, See floating-point operate (FPop) instructions
FPRS register
See also floating-point registers state (FPRS)
register
FPRS register, 73
ASR summary, 68
definition, 9
fef field, 119,417
RDEFPRS instruction, 286
FPRS register fields
dl (dirty lower fp registers), 74
du (dirty upper fp registers, 74
fef, 73
fef, See also fef field of FPRS register
FPSUBI16 instruction, 208
FPSUBI16S instruction, 208
FPSUB32 instruction, 208
FPSUB32S instruction, 208
FPU, 10
FqTOd instruction, 218
FqTOi instruction, 216, 363
FqTOs instruction, 218
FqTOx instruction, 216, 457, 458
freg, 480
FsMULd instruction, 194
FSQRTd instruction, 215
FSQRTq instruction, 215
FSQRTs instruction, 215
FSR (floating-point state) register
fields
aexc (accrued exception), 61, 62, 63, 64, 360
aexc (accrued exceptions)
in user-mode trap handler, 360
-- dza (division by zero) bit of aexc, 66
-- nxa (rounding) bit of aexc, 67
cexc (current exception), 59, 61, 62, 64, 64, 65,
360, 433
cexc (current exceptions)
in user-mode trap handler, 360
-- dzc (division by zero) bit of cexc, 66
-- nxc (rounding) bit of cexc, 67
fce (condition codes), 58, 61, 62, 360, 481
fcen, 59
ftt (floating-point trap type), 60, 64, 119, 316,

323,433
in user-mode trap handler, 360
not modified by LDFSR/LDXFSR
instructions, 58
gne (queue not empty), 63
in user-mode trap handler, 360
rd (rounding), 59
tem (trap enable mask), 59, 63, 65, 433
ver, 60
FSR (floating-point state) register, 58
after floating-point trap, 360
compliance with IEEE Std 754-1985, 67
LDFSR instruction, 243
reading/writing, 58
values in ftt field, 61
writing to memory, 316, 323
FSRC1 instruction, 212
FSRC1S instruction, 212
FSRC2 instruction, 212
FSRC2S instruction, 212
FsTOd instruction, 218
FsTOi instruction, 216, 363
FsTOq instruction, 218
FsTOx instruction, 216, 457, 458
FSUBd instruction, 220
FSUBq instruction, 220
FSUBs instruction, 220
functional choice, implementation-dependent, 465
FXNOR instruction, 214
FXNORS instruction, 214
FXOR instruction, 214
FXORS instruction, 214
FxTOd instruction, 221, 458
FxTOq instruction, 221, 458
FxTOs instruction, 221, 458
FZERO instruction, 211
FZEROS instruction, 211

G

General Status register, See GSR
generating constants, 302
GL register, 96
access, 97
during trap processing, 429
function, 96
reading with RDPR instruction, 288, 356
relationship to TL, 97
restored during RETRY, 154, 294
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SPARC V9 compatibility, 94
and TSTATE register, 88
value restored from TSTATE[TL], 97
writing to, 97
global level register, See GL register
global registers, 20, 24, 46, 48, 48, 465
Graphics Status register, See GSR
GSR (general status) register
fields
align, 77
im (interval mode) field, 77
irnd (rounding), 77
mask, 77
scale, 77
GSR (general status) register
ASR summary, 68

H
halfword, 10

alignment, 26,102, 369

data format, 33
hardware

dependency, 464

traps, 420
hardware trap stack, 30
htrap_instruction exception, 344, 433

|

i (integer) instruction field
arithmetic instructions, 268, 270, 273, 348, 351
floating point load instructions, 236, 239, 243
flush memory instruction, 174
flush register instruction, 177
jump-and-link instruction, 226
load instructions, 227,247,248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 264, 266
POPC, 276
PREFETCH, 278
RETURN, 296

1I/0
access, 367
memory, 366
memory-mapped, 367

IEEE 754, 10

IEEE Std 754-1985, 10, 19, 59, 62, 65, 67, 119, 359,
465
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IEEE_754_exception floating-point trap type, 10,61,
62, 64, 67,360, 418, 433
IEEE-754 exception, 10
IER register (SPARC V8), 355
illegal_instruction
and OTHERW instruction, 303
illegal_instruction exception, 177, 433
attempt to write in nonprivileged mode, 80
DONE/RETRY, 155, 295, 296
ILLTRAP, 222
instruction not specifically defined in
architecture, 120
not implemented in hardware, 133
POPC, 277
PREFETCH, 284
RETURN, 297
with BPr instruction, 149
with branch instructions, 146, 149
with CASA and CASXA instructions, 152,273
with CASXA instruction, 153
with DONE instruction, 154
with FMOV instructions, 178
with FMOVcc instructions, 184

with load instructions, 52,234, 238, 254, 256, 404

with move instructions, 265, 267
with read hyperprivileged register
instructions, 288
with read instructions, 286, 287, 288, 357, 468
with store instructions, 317, 324, 330, 331, 333
with STQFA instruction, 321
with Tcc instructions, 344
with TPC register, 86
with TSTATE register, 88
with write instructions, 355, 357
write to ASR 5, 73
write to STICK register, 80
ILLTRAP instruction, 222,433
imm_asi instruction field
explicit ASI, providing, 108
floating point load instructions, 239
load instructions, 248, 253, 255
PREFETCH, 278
immediate CTI, 99
I-MMU
and instruction prefetching, 368
IMPDEPI1 instruction, 224
IMPDEP1 instructions, 223, 461, 462
IMPDEP2A instructions, 223, 434, 469
IMPDEP2B instructions, 120, 223, 434



implementation, 10
implementation dependency, 463
implementation dependent, 10
implementation note, 4
implementation-dependent functional choice, 465
implementation-dependent instructions, See
IMPDEP2A instructions
implicit ASI, 10, 108, 388
implicit ASI memory access
LDFSR, 243
LDSTUB, 247
load fp instructions, 236
load integer doubleword instructions, 253
load integer instructions, 227
STD, 330
STFSR, 323
store floating-point instructions, 316
store integer instructions, 307
SWAP, 336
implicit byte order, 90
in registers, 46, 49,298
i nccc synthetic instructions, 487
inexact accrued (nxa) bit of aexc field of FSR
register, 363
inexact current (nxc) bit of cexc field of FSR
register, 363
inexact quotient, 348, 349
infinity, 363
initiated, 10
input/output (I/O) locations
access by nonprivileged code, 466
behavior, 366
contents and addresses, 466
identifying, 472
order, 366
semantics, 472
value semantics, 366
instruction fields, 10
See also individual instruction fields
definition, 10
instruction group, 10
instruction MMU, See -MMU
instruction prefetch buffer, invalidation, 175
instruction set architecture (ISA), 10, 10, 21
instruction_access_exception exception, 434
instructions
32-bit wide, 20
alignment, 102
alignment, 26, 135, 369

arithmetic, integer
addition, 134, 339
division, 28, 270, 348
multiplication, 28, 268, 270, 351
subtraction, 335, 345
tagged, 28
array addressing, 138
atomic
CASA/CASXA, 151
load twin extended word from alternate
space, 250
load-store, 101, 151, 247, 248, 336, 337
load-store unsigned byte, 247, 248
successful loads, 227, 229, 254, 256
successful stores, 307, 308
branch
branch if contents of integer register match
condition, 148
branch on floating-point condition codes, 162,
164
branch on integer condition codes, 142, 145
cache, 375
causing illegal instruction, 222
compare and swap, 151
comparison, 110, 335
conditional move, 30
control-transfer (CTIs), 28,154,294
conversion
convert between floating-point formats, 218
convert floating-point to integer, 216
convert integer to floating-point, 173, 221
floating-point to integer, 363
count of number of bits, 276
edge handling, 156
fetches, 102
floating point
compare, 58, 59, 169
floating-point add, 160
floating-point compare, 361
floating-point divide, 171
floating-point load, 101, 236
floating-point load from alternate space, 239
floating-point move, 178, 180, 185
floating-point operate (FPop), 30, 243
floating-point square root, 215
floating-point store, 101, 316
floating-point store to alternate space, 319
floating-point subtract, 220
operate (FPop), 60, 64
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short floating-point load, 245
short floating-point store, 328
status of floating-point load, 243
flush instruction memory, 174
flush register windows, 177
formats, 100
implementation-dependent, See IMPDEP2A
instructions
jump and link, 29, 226
loads
block load, 232
floating point, See instructions: floating point
integer, 101
simultaneously addressing doublewords, 336
unsigned byte, 151, 247
unsigned byte to alternate space, 248
logical operations
64-bit/32-bit, 212,214
AND, 137
logical 1-operand ops on F registers, 211
logical 2-operand ops on F registers, 212
logical 3-operand ops on F registers, 214
logical XOR, 358
OR, 273
memory, 383
moves
floating point, See instructions: floating point
move integer register, 262, 266
on condition, 20
ordering MEMBAR, 110
permuting bytes specified by GSR.mask, 144
pixel component distance, 275, 275
pixel formatting (PACK), 197
prefetch data, 278
read privileged register, 288
read state register, 29, 285
register window management, 30
reordering, 373
reserved, 120
reserved fields, 133
RETRY
and restartable deferred traps, 414
RETURN vs. RESTORE, 296
sequencing MEMBAR, 110
set high bits of low word, 302
set interval arithmetic mode, 304
setting GSR.mask field, 144
shift, 28
shift, 305
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shift count, 305
shut down to enter power-down mode, 303
SIMD, 15
simultaneous addressing of doublewords, 337
stores
block store, 312
floating point, See instructions: floating point
integer, 101, 307
integer (except doubleword), 307
integer into alternate space, 308
partial, 325
unsigned byte, 151
unsigned byte to alternate space, 248
unsigned bytes, 247
swap R register, 336, 337
synthetic (for assembly language
programmers), 486—488
tagged addition, 339
test-and-set, 380
timing, 133
trap on integer condition codes, 342
write privileged register, 356
write state register, 354
integer unit (IU)
condition codes, 71
definition, 10
description, 24
interrupt
enable (ie) field of PSTATE register, 416,417
level, 95
request, 10,31, 409
interrupt_level_14 exception, 78, 434
and SOFTINT.int_level, 78
and STICK_CMPR.stick_cmpr, 81
and TICK_CMPR.tick_cmpr, 80
interrupt_level_15 exception
and SOFTINT.int_level, 78
interrupt_level_n exception, 416, 434
and SOFTINT register, 77
and SOFTINT.int_level, 78
inter-strand operation, 11
intra-strand operation, 11
invalid accrued (nva) bit of aexc field of FSR
register, 66
invalid ASI
and data_access_exception, 432
invalid current (nvc) bit of cexc field of FSR
register, 66, 363
invalid_exception exception, 216



invalid_fp_register floating-point trap type, 159,
160, 170,171,173, 178,184, 187, 215, 220

INVALW instruction, 225

i pr ef et ch synthetic instruction, 486

ISA, 11

ISA, See instruction set architecture

issue unit, 373, 373

issued, 11

italic font, in assembly language syntax, 479

IU, 11

i xc synthetic instructions, 487

IXX>data_access_exception (invalid ASI)
with load alternate instructions, 256

J
j mp synthetic instruction, 486
JMPL instruction, 226
computing target address, 29
does not change cwp, 50
mem_address_not_aligned exception, 434
reexecuting trapped instruction, 296
jump and link, See JMPL instruction

L
LD instruction (SPARC V8), 227
LDBLOCKE instruction, 232,403
LDD instruction (SPARC V8 and V9), 254
LDDA instruction, 402
LDDA instruction (SPARC V8 and V9), 256
LDDF instruction, 102, 236, 434
LDDF_mem_address_not_aligned exception, 434
address not doubleword aligned, 470
address not quadword aligned, 471
LDDE/LDDFA instruction, 102
load instruction with partial store ASI and
misaligned address, 241
with load instructions, 237, 240, 404
with store instructions, 320, 404
LDDF_mem_not_aligned exception, 57
LDDFA instruction, 239, 327
alignment, 102
ASIs for fp load operations, 404
behavior with partial store ASIs, 237-??, 241,
241-??,404-??
causing LDDF_mem_address_not_aligned
exception, 102,434
for block load operations, 403

used with ASIs, 403
LDF instruction, 57, 236
LDFA instruction, 57, 239
LDFSR instruction, 58, 60, 61, 243, 434
LDQF instruction, 236, 436
LDQF_mem_address_not_aligned exception, 436
address not quadword aligned, 471
LDQF/LDQFA instruction, 103
with load instructions, 240
LDQFA instruction, 239
LDSB instruction, 227
LDSBA instruction, 229
LDSH instruction, 227
LDSHA instruction, 229
LDSHORTF instruction, 245
LDSTUB instruction, 101, 247, 248, 380, 381
and data_access_exception (noncacheable page)
exception, 432
hardware primitives for mutual exclusion of
LDSTUB, 379
LDSTUBA instruction, 247, 248
alternate space addressing, 27
and data_access_exception exception, 432
hardware primitives for mutual exclusion of
LDSTUBA, 379
LDSW instruction, 227
LDSWA instruction, 229
LDTW instruction, 52, 102
LDTW instruction (deprecated), 253
LDTWA instruction, 52, 102
LDTWA instruction (deprecated), 255
LDTX instruction, 400
LDTXA instruction, 104, 106, 250, 401
access alignment, 102
access size, 102
and data_access_exception (noncacheable page)
exception, 432
LDUB instruction, 227
LDUBA instruction, 229
LDUH instruction, 227
LDUHA instruction, 229
LDUW instruction, 227
LDUWA instruction, 229
LDX instruction, 227
LDXA instruction, 229, 257, 378
LDXFSR instruction, 58, 60, 61, 236, 243, 300, 434
leaf procedure
modifying windowed registers, 117
little-endian byte order, 11, 26, 90
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load
block, See block load instructions
floating-point from alternate space
instructions, 239
floating-point instructions, 236, 243
from alternate space, 27,71, 108
instructions, 11
instructions accessing memory, 101
nonfaulting, 372
short floating-point, See short floating-point load
instructions
LoadLoad MEMBAR relationship, 259
LoadLoad MEMBAR relationship, 382
LoadLoad predefined constant, 484
loads
nonfaulting, 384
load-store alignment, 26, 102, 369
load-store instructions
compare and swap, 151
definition, 11
load-store unsigned byte, 151, 247, 336, 337
load-store unsigned byte to alternate space, 248
memory access, 25
swap R register with alternate space
memory, 337
swap R register with memory, 151, 336
LoadSt or e MEMBAR relationship, 259, 382
LoadSt or e predefined constant, 484
local registers, 46,49, 290
logical XOR instructions, 358
Lookasi de predefined constant, 484
LSTPARTIALF instruction, 404

M
MAXPGL, 24, 46, 48, 94, 96, 96, 97, 476
MAXPTL
and MAXPGL, 97
instances of TNPC register, 87
instances of TPC register, 86
instances of TSTATE register, 88
instances of TT register, 89
may (keyword), 11
mem_address_not_aligned exception, 434
JMPL instruction, 226
LDTXA, 401, 402, 403
load instruction with partial store ASI and
misaligned address, 241
RETURN, 297
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when recognized, 153
with CASA instruction, 152
with compare instructions, 153
with load instructions, 102-103, 227, 228, 230,
237,243,254, 256,257,403, 404
with store instructions, 102-103, 307, 308, 310,
321, 324, 331, 333, 403, 404
with swap instructions (deprecated), 336, 338
MEMBAR
#Sync
semantics, 261
instruction
atomic operation ordering, 381
FLUSH instruction, 174, 383
functions, 258, 381-383
memory ordering, 260
memory synchronization, 110
side-effect accesses, 368
STBAR instruction, 260
mask encodings
#lLoadLoad, 259, 382
#LoadSt or e, 259, 382
#Lookasi de, 259, 383
#Menl ssue, 259, 383
#St or eLoad, 259, 382
#St or eSt or e, 259, 382
#Sync, 259,383
predefined constants
#LoadlLoad, 484
#LoadSt or e, 484
#Lookasi de, 484
#Mem ssue, 484
#St or eLoad, 484
#St oreSt ore, 484
#Sync, 484
MEMBAR
#Lookasi de, 378
#St or eLoad, 378
membar_mask, 484
Meml ssue predefined constant, 484
memory
access instructions, 25, 101
alignment, 369
atomic operations, 380
atomicity, 472
cached, 366
coherence, 368, 472
coherency unit, 369
data, 383



instruction, 383
location, 366
models, 365
ordering unit, 369
real, 366
reference instructions, data flow order
constraints, 374
synchronization, 260
virtual address, 366
virtual address 0, 385
Memory Management Unit
definition, 11
Memory Management Unit, See MMU
memory model
mode control, 377
partial store order (PSO), 376
relaxed memory order (RMO), 260, 376
sequential consistency, 377
strong, 376
total store order (TSO), 260, 376, 377
weak, 376
memory model (mm) field of PSTATE register, 91
memory order
pending transactions, 375
program order, 373
memory_model (mm) field of PSTATE register, 377
memory-mapped I/0, 367
mmask instruction field
store instructions, 311
MMU
definition, 11
page sizes, 447
mode
nonprivileged, 22
privileged, 24, 86, 371
motion estimation, 275
MOVA instruction, 262
MOVCC instruction, 262
MOVcc instructions, 262
conditionally moving integer register
contents, 71
conditions for copying integer register
contents, 115
copying a register, 58
encoding of cond field, 459
encoding of opf_cc instruction field, 460
used to avoid branches, 184, 264
MOVCS instruction, 262
move floating-point register if condition is true, 180

move floating-point register if contents of integer
register satisfy condition, 185

MOVE instruction, 262

move integer register if condition is satisfied
instructions, 262

move integer register if contents of integer register
satisfies condition instructions, 266

move on condition instructions, 20

MOVFA instruction, 263

MOVEE instruction, 263

MOVFEG instruction, 263

MOVEGE instruction, 263

MOVEL instruction, 263

MOVEFLE instruction, 263

MOVEFLG instruction, 263

MOVEN instruction, 263

MOVENE instruction, 263

MOVFO instruction, 263

MOVEFU instruction, 263

MOVEFUE instruction, 263

MOVEFUG instruction, 263

MOVEFUGE instruction, 263

MOVEFUL instruction, 263

MOVFULE instruction, 263

MOVG instruction, 262

MOVGE instruction, 262

MOVGU instruction, 262

MOVL instruction, 262

MOVLE instruction, 262

MOVLEU instruction, 262

MOVN instruction, 262

novn synthetic instructions, 488

MOVNE instruction, 262

MOVNEG instruction, 262

MOVPOS instruction, 262

MOVr instructions, 116, 266, 459

MOVRGEZ instruction, 266

MOVRGZ instruction, 266

MOVRLEZ instruction, 266

MOVRLZ instruction, 266

MOVRNZ instruction, 266

MOVRZ instruction, 266

MOVVC instruction, 262

MOVYVS instruction, 262

multiple unsigned condition codes, emulating, 116

multiply instructions, 28,270, 351

multiprocessor synchronization instructions, 151,
336, 337

multiprocessor system, 12, 174, 283, 336, 337, 375,
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472
MULX instruction, 270
must (keyword), 12

N

N superscript on instruction name, 124
N_REG_WINDOWS, 12
integer unit registers, 24, 465
RESTORE instruction, 290
SAVE instruction, 298
value of, 46, 82
NaN (not-a-number)
conversion to integer, 363
converting floating-point to integer, 216
quiet, 169, 170, 361
signalling, 59, 169, 170, 218, 361
transformation, 361
neg synthetic instructions, 487
negative infinity, 363
nested traps, 21
next program counter register, See NPC register
NFO, 12
noncacheable
accesses, 366
nonfaulting load, 12, 372
nonfaulting loads
behavior, 384
use by optimizer, 385
nonleaf routine, 226
nonprivileged, 12
mode, 7,12,22,24,61
software, 73
nonprivileged trap (npt) field of TICK register, 72,
287
nonresumable_error exception, 434
nonstandard floating-point, See floating-point status
register (FSR) NS field
nontranslating ASI, 12,257, 333
nontranslating ASIs, 388
nonvirtual memory, 283
NOP instruction, 142, 163, 165, 271, 279, 343
normal traps, 420
NORMALW instruction, 272
not synthetic instructions, 487
note
architectural direction, 4
compatibility, 4
general, 4
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implementation, 4
programming, 4

NPC (next program counter) register, 73
control flow alteration, 16
definition, 12
DONE instruction, 154
instruction execution, 99
relation to TNPC register, 87
RETURN instruction, 294
saving after trap, 30

npt, 12

nucleus context, 176

nucleus software, 12

NUMA, 12

NWIN, See N_REG_WINDOWS

O
octlet, 12
odd parity, 13
op3 instruction field
arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351
floating point load instructions, 236, 239, 243
flush instructions, 174, 177
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 273, 358
PREFETCH, 278
RETURN, 296
opcode
definition, 13
format, 224
opf instruction field
floating point arithmetic instructions, 160, 171,
194, 215
floating point compare instructions, 169
floating point conversion instructions, 216, 218,
221
floating point instructions, 159
floating point integer conversion, 173
ﬂoating point move instructions, 178
floating point negate instructions, 196
opf_cc instruction field
floating point move instructions, 180
move instructions, 460
opf_low instruction field, 180
optional, 13
OR instruction, 273



ORcc instruction, 273
ordering MEMBAR instructions, 110
ordering unit, memory, 369
ORN instruction, 273
ORNCcc instruction, 273
OTHERW instruction, 274
OTHERWIN (other windows) register, 84
FLUSHW instruction, 177
keeping consistent state, 85
modified by OTHERW instruction, 274
partitioned, 85
range of values, 82,473
rd designation for WRPR instruction, 356
rs1 designation for RDPR instruction, 288
SAVE instruction, 299
zeroed by INVALW instruction, 225
zeroed by NORMALW instruction, 272
OTHERWIN register trap vectors
fill/spill traps, 437
handling spill/fill traps, 437
selecting spill/fill vectors, 437
out register #7, 52
out registers, 46,49, 298
overflow
bits
(v) in condition fields of CCR, 111
accrued (ofa) in aexc field of FSR register, 66
current (ofc) in cexc field of FSR register, 66
causing spill trap, 436
tagged add/subtract instructions, 111

P
p (predict) instruction field of branch
instructions, 145, 148, 149, 165
P superscript on instruction name, 124
packed-to-planar conversion, 206
packing instructions, See FPACK instructions
page fault, 283
page table entry (PTE), See translation table entry
(TTE)
parity, even, 9
parity, odd, 13
partial store instructions, 325, 404
partial store order (PSO) memory model, 376, 376
partitioned
additions, 203
subtracts, 208
PAgy superscript on instruction name, 124

PgR superscript on instruction name, 124
PC (program counter) register, 14, 68, 72
after instruction execution, 99
CALL instruction, 150
changed by NOP instruction, 271
copied by JMPL instruction, 226
saving after trap, 30
set by DONE instruction, 154
set by RETRY instruction, 294
Trap Program Counter register, 86
PCR
ASR summary, 68
PCR register fields
priv, 75
sl (select lower bits of PIC), 75
st (system trace enable), 75
Su (select upper bits of PIC), 75
ut (user trace enable), 75
PDIST instruction, 275
pef field of PSTATE register
and access to GSR, 76
and fp_disabled exception, 433
and FPop instructions, 119
branch operations, 163, 165
byte permutation, 144
comparison operations, 167,170
data movement operations, 265
enabling FPU, 73
floating-point operations, 159,160,171,173,178,
183, 186, 194, 196, 215, 216, 218, 220, 221, 237,
239, 243, 245
integer arithmetic operations, 205, 210
logical operations, 211,212,214
memory operations, 234
read operations, 287, 304, 314
special addressing operations, 135,161,317,323,
327,329, 355
trap control, 417
pef, See PSTATE, pef field
Performance Control register, See PCR
performance instrumentation counter register, See
PIC register
PIC (performance instrumentation counter)
register, 13,75
accessing, 435
ASR summary, 68
and PCR, 74
picl field, 76
picu field, 76
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PIL (processor interrupt level) register, 95
interrupt conditioning, 416
interrupt request level, 418
interrupt_level_n, 434
specification of register to read, 288
specification of register to write, 356
trap processing control, 417

pipeline, 13

pipeline draining of CPU, 82, 86

pixel instructions
compare, 166
component distance, 275,275
formatting, 197

pixel registers for storing values, 223

planar-to-packed conversion, 206

Py pt superscript on instruction name, 124

POPC instruction, 276

POR, 13

positive infinity, 363

Ppic superscript on instruction name, 124

precise floating-point traps, 289

precise trap, 412
conditions for, 412
software actions, 413
vs. disrupting trap, 415

predefined constants
LoadLoad, 484
| ookasi de, 484
Menl ssue, 484
St or eLoad, 484
StoreStore, 484
Sync, 484

predict bit, 149

prefetch
for one read, 282
for one write, 283
for several reads, 282
for several writes, 282
page, 283

prefetch data instruction, 278

PREFETCH instruction, 101, 278, 469

prefetch_fcn, 484

PREFETCHA instruction, 278, 469
and invalid ASI or VA, 432

prefetchable, 13

priority of traps, 417,428

privilege violation
and data_access_exception, 432, 434
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privileged, 13

mode, 24, 86

registers, 86

software, 23,50, 61, 92,109, 177, 420, 469
privileged (priv) field of PCR register, 287
privileged (priv) field of PSTATE register, 94, 152,

154, 155, 230, 234, 239, 240, 248, 256, 308, 314,

320, 333, 337, 338, 355, 371, 434, 435
privileged mode, 13
privileged_action exception, 434

accessing restricted ASIs, 371

PIC access, 75

restricted ASI access attempt, 109, 388

TICK register access attempt, 71

with CASA instruction, 152

with compare instructions, 153

with load alternate instructions, 230, 234, 240,

248, 256, 308, 314, 320, 333, 338, 355

with load instructions, 239

with RDasr instructions, 287

with read instructions, 287

with store instructions, 322

with swap instructions, 338
privileged_opcode exception, 435

DONE instruction, 155

RETRY instruction, 295

SAVED instruction, 300

with DONE instruction, 155, 288, 295, 357

with write instructions, 357
processor, 13

execute unit, 373

issue unit, 373, 373

privilege-mode transition diagram, 411

reorder unit, 373

self-consistency, 373
processor cluster, See processor module
processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states

execut e_state, 429
program counter register, See PC register
program counters, saving, 409
program order, 373, 373
programming note, 4
PSO, See partial store order (PSO) memory model
PSR register (SPARC V8), 355
PSTATE register

fields

priv



and access to PCR, 74
PSTATE register
entering privileged execution mode, 409
restored by RETRY instruction, 154, 294
saved after trap, 409
saving after trap, 30
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and TSTATE register, 88
PSTATE register fields

ag

unimplemented, 94
am

CALL instruction, 150

description, 92

masked /unmasked address, 154, 226, 294,

296

cle

and implicit ASIs, 108

and PSTATE.tle, 90

description, 90

description, 94
enabling disrupting traps, 416
interrupt conditioning, 416
masking disrupting trap, 421
mm
description, 91
implementation dependencies, 91, 376, 472
reserved values, 91
pef
and FPRs.fef, 92
description, 92
See also pef field of PSTATE register
priv
access to register-window PR state
registers, 86
accessing restricted ASIs, 371
description, 94
determining mode, 12, 13, 450
tle
description, 90
PTE (page table entry), See translation table entry
(TTE)

Q

quadword, 14
alignment, 26, 102, 369

data format, 33
quiet NaN (not-a-number), 59, 169, 170, 361

R
R register, 14
#15, 52
special-purpose, 52
alignment, 254, 256
rational quotient, 348
R-A-W, See read-after-write memory hazard
rcond instruction field
branch instructions, 148
encoding of, 459
move instructions, 266
rd (rounding), 14
rd instruction field, 15
arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351
floating point arithmetic, 160
floating point arithmetic instructions, 171, 194,
215
floating point conversion instructions, 216, 218,
221
floating point integer conversion, 173
floating point load instructions, 236, 239, 243
floating point move instructions, 178, 180
floating point negate instructions, 196
floating-point instructions, 159
jump-and-link instruction, 226
load instructions, 227,247,248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 264, 266
POPC, 276
RDASI instruction, 67,71, 285
RDasr instruction, 285
accessing 1/0O registers, 27
implementation dependencies, 286, 468
reading ASRs, 67
RDCCR instruction, 67, 69, 285, 285
RDFPRS instruction, 68,73, 285
RDGSR instruction, 68, 76, 285
RDPC instruction, 68, 285
reading PC register, 73
RDPCR instruction, 68, 285
RDPIC instruction, 68, 285, 435
RDPR instruction, 14, 68, 288
accessing GL register, 97
accessing non-register-window PR state
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registers, 86
accessing register-window PR state registers, 81
and register-window PR state registers, 81
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
effect on TT register, 89
reading privileged registers, 86
reading PSTATE register, 90
reading the TICK register, 72
registers read, 288
RDSOFTINT instruction, 68,77, 285
RDSTICK instruction, 68, 80, 285
RDSTICK_CMPR instruction, 68, 285
RDTICK instruction, 68, 72, 285
RDTICK_CMPR instruction, 68, 285
RDY instruction, 69
read ancillary state register (RDasr)
instructions, 285
read state register instructions, 29
read-after-write memory hazard, 373, 374
real memory, 366
reference MMU, 479
reg, 480
reg_or_imm, 484, 485
reg_plus_imm, 483
regaddr, 484
register reference instructions, data flow order
constraints, 373
register window, 46, 48
register window management instructions, 30
register windows
clean, 83, 85, 86, 117,431, 436, 437, 438
fill, 50, 85, 117, 118, 291, 292, 300, 433, 437, 438
management of, 22
overlapping, 49-51
spill, 50, 85, 116, 118, 299, 300, 435, 436, 437, 438
registers
See also individual register (common) names
address space identifier (ASI), 371
Asl (address space identifier), 71
chip-level multithreading, See CMT
clean windows (CLEANWIN), 83
clock-tick (TICK), 435
current window pointer (Cwp), 82
F (floating point), 359, 418
floating-point, 24
programming, 56
floating-point registers state (FPRS), 73
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floating-point state (FSR), 58
general status (GSR), 76
global, 20,24, 46, 48, 48, 465
global level (GL), 96
IER (SPARC V8), 355
in, 46,49, 298
local, 46,49
next program counter (NPC), 73
other windows (OTHERWIN), 84
out, 46,49,298
out #7, 52
performance control (PCR), 74
performance instrumentation counter (PIC), 75
pixel storage registers, 223
processor interrupt level (PIL)
and PIC, 76
and PIC counter overflow, 76
and SOFTINT, 78
and STICK_CMPR, 81
and TICK_CMPR, 80
processor interrupt level (PIL), 95
program counter (PC), 72
PSR (SPARC V8), 355
R register #15, 52
renaming mechanism, 374
restorable windows (CANRESTORE), 83, 83
savable windows (CANSAVE), 83
scratchpad
privileged, 405
SOFTINT, 68
SOFTINT_CLR pseudo-register, 68,79
SOFTINT_SET pseudo-register, 68, 78
STICK, 80
STICK_CMPR
ASR summary, 68
int_dis field, 78, 81
stick_cmpr field, 81
and system software trapping, 81
TBR (SPARC V8), 355
TICK, 71
TICK_CMPR
int_dis field, 78, 80
tick_cmpr field, 80
TICK_CMPR, 68,79
trap base address (TBA), 89
trap base address, See registers: TBA
trap level (TL), 94
trap level, See registers: TL
trap next program counter (TNPC), 87



trap next program counter, See registers: TNPC
trap program counter (TPC), 86
trap program counter, See registers: TPC
trap state (TSTATE), 88
trap state, See registers: TSTATE
trap type (TT), 89,420
trap type, See registers: TT
VA_WATCHPOINT, 435
visible to software in privileged mode, 86-97
wiMm (SPARC V8), 355
window state (WSTATE), 84
window state, See registers: WSTATE
Y (32-bit multiply /divide), 69
relaxed memory order (RMO) memory model, 260,
376
renaming mechanism, register, 374
reorder unit, 373
reordering instruction, 373
reserved, 14
fields in instructions, 133
register field, 46
reset
reset trap, 415
restartable deferred trap, 413
restorable windows register, See CANRESTORE
register
RESTORE instruction, 50, 290-291
actions, 117
and current window, 52
decrementing CWP register, 49
fill trap, 433,437
followed by SAVE instruction, 50
managing register windows, 30
operation, 290
performance trade-off, 290, 298
and restorable windows (CANRESTORE)
register, 83
restoring register window, 290
role in register state partitioning, 85
r est or e synthetic instruction, 486
RESTORED instruction, 118, 292
creating inconsistent window state, 292
fill handler, 291
fill trap handler, 118, 438
register window management, 30
restricted, 14
restricted address space identifier, 109
restricted ASI, 371, 387
resumable_error exception, 435

ret /r et 1 synthetic instructions, 486
RETRY instruction, 294
and restartable deferred traps, 414
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
generating illegal_instruction exception, 434
modifying CCR.xcc, 70
reexecuting trapped instruction, 438
restoring gl value in GL, 97
return from trap, 409
returning to instruction after trap, 416
target address, return from privileged traps, 29
RETURN instruction, 296-297
computing target address, 29
fill trap, 433
mem_address_not_aligned exception, 434
operation, 296
reexecuting trapped instruction, 296
RETURN vs. RESTORE instructions, 296
RMO, 15
RMO, See relaxed memory order (RMO) memory
model
rounding
for floating-point results, 59
in signed division, 349
rounding direction (rd) field of FSR register, 160,
171, 194, 215, 216, 218, 220, 221
routine, nonleaf, 226
rsl instruction field, 15
arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351
branch instructions, 148
floating point arithmetic instructions, 160, 171,
194
floating point compare instructions, 169
floating point load instructions, 236, 239, 243
flush memory instruction, 174
jump-and-link instruction, 226
load instructions, 227,247, 248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 266
PREFETCH, 278
RETURN, 296
rs2 instruction field, 15
arithmetic instructions, 134, 146, 149, 151, 268,
270, 273, 348, 351
floating point arithmetic instructions, 160, 171,
194, 215
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floating point compare instructions, 169 SDIVX instruction, 270

floating point conversion instructions, 216, 218, self-consistency, processor, 373
221 self-modifying code, 174, 175

floating point instructions, 159 sequencing MEMBAR instructions, 110

floating point integer conversion, 173 sequential consistency memory model, 377

floating point load instructions, 236,239, 243 SETHI instruction, 110, 302

floating point move instructions, 178, 180 creating 32-bit constant in R register, 27

floating point negate instructions, 196 and NOP instruction, 271

flush memory instruction, 174 with rd =0, 302

jump-and-link instruction, 226 set n synthetic instructions, 486

load instructions, 227,253, 255 shall (keyword), 15

logical operation instructions, 137, 358 shared memory, 365

move instructions, 264, 266 shift count encodings, 305

POPC, 276 shift instructions, 28

PREFETCH, 278 shift instructions, 110, 305
RTO, 15 short floating-point load and store instructions, 404
RTS, 15 short floating-point load instructions, 245

short floating-point store instructions, 328
should (keyword), 15

S SHUTDOWN instruction, 303
savable windows register, See CANSAVE register SIAM instruction, 304
SAVE instruction, 49, 298 side effect
actions, 116 accesses, 367
after RESTORE instruction, 296 definition, 15
clean_window exception, 431, 437 1/0 locations, 366
and current window, 52 instruction prefetching, 368
decrementing CWP register, 49 real memory storage, 366
effect on privileged state, 299 visible, 367
leaf procedure, 226 signalling NaN (not-a-number), 59, 169, 170, 218,
and Jocal / out registers of register window, 50 361
managing register windows, 30 signed integer data type, 33
no clean window available, 84 si gnx synthetic instructions, 487
number of usable windows, 83 SIMD, 15
operation, 298 instruction data formats, 4143
performance trade-off, 298 simm10 instruction field
role in register state partitioning, 85 move instructions, 266
and savable windows (CANSAVE) register, 83 simm11 instruction field
spill trap, 435, 436, 438 move instructions, 264
save synthetic instruction, 486 simm13 instruction field
SAVED instruction, 118, 300 floating point
creating inconsistent window state, 300 load instructions, 236
register window management, 30 simm13 instruction field
spill handler, 299, 300 arithmetic instructions, 268, 270, 273, 348, 351
spill trap handler, 118, 438 floating point load instructions, 239, 243
scaling of the coefficient, 189 flush memory instruction, 174
scratchpad registers jump-and-link instruction, 226
privileged, 405 load instructions, 227,247, 248, 253, 255
SDIV instruction, 69, 348 logical operation instructions, 137, 358
SDIVcc instruction, 69, 348 POPC, 276
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PREFETCH, 278
RETURN, 296
single instruction/multiple data, See SIMD
SLL instruction, 305
SLLX instruction, 305
SMUL instruction, 69, 351
SMULcc instruction, 69, 351
SOFTINT register, 68,77
clearing, 443
clearing of selected bits, 79
communication from nucleus code to kernel
code, 442
scheduling interrupt vectors, 441, 442
setting, 442
SOFTINT register fields
int_level, 78
sm (stick_int), 78
tm (tick_int), 78, 80
SOFTINT_CLR pseudo-register, 68, 79
SOFTINT_SET pseudo-register, 68, 78,79
software
nucleus, 12
software translation table, 447
software trap, 343, 420
software trap number (SWTN), 343
software, nonprivileged, 73
software_trap_number, 485
source operands, 203, 208

SPA
ASI _TW N_DW NUCLEUS, 406
SPARC V8 compatibility

LD, LDUW instructions, 227
operations to I/O locations, 368
read state register instructions, 286
STA instruction renamed, 309
STBAR instruction, 260, 311
STD instruction, 331
STDA instruction, 333
tagged subtract instructions, 347
UNIMP instruction renamed, 222
window_overflow exception superseded, 433
write state register instructions, 355
SPARC V9
compliance, 13
features, 20
SPARC V9 Application Binary Interface (ABI), 22
speculative load, 15
spill register window, 435
FLUSH instruction, 118

overflow /underflow, 50
RESTORE instruction, 117
SAVE instruction, 85, 116, 298, 436
SAVED instruction, 118, 300, 438
selection of, 437
trap handling, 438
trap vectors, 299, 438
window state, 85
spill_n_normal exception, 299, 435
and FLUSHW instruction, 177
spill_n_other exception, 299, 435
and FLUSHW instruction, 177

SRA instruction, 305

SRAX instruction, 305
SRL instruction, 305
SRLX instruction, 305
stack frame, 298
state registers (ASRs), 67-81
STB instruction, 307
STBA instruction, 308
STBAR instruction, 260
STBAR instruction, 286, 354, 374, 381
STBLOCKEF instruction, 312, 403
STDF instruction, 102, 316, 435
STDF_mem_address_not_aligned exception, 435
and store instructions, 317, 321
STDF/STDFA instruction, 102
STDFA instruction, 319
alignment, 102
ASIs for fp store operations, 404
causing data_access_exception exception, 404
causing mem_address_not_aligned or
illegal_instruction exception, 404
causing STDF_mem_address_not_aligned
exception, 102, 435
for block load operations, 403
for partial store operations, 404
used with ASIs, 403
STF instruction, 316
STFA instruction, 319
STFSR instruction, 58, 60, 61, 434
STH instruction, 307
STHA instruction, 308
STICK register, 68,72, 80
counter field, 80
npt field, 72, 80
RDSTICK instruction, 285
STICK_CMPR register, 68, 81
int_dis field, 78, 81
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RDSTICK_CMPR instruction, 285
stick_cmpr field, 81
store
block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store
instructions
store buffer
merging, 367
store floating-point into alternate space
instructions, 319
store instructions, 15,101
St or eLoad MEMBAR relationship, 259, 382
St or eLoad predefined constant, 484
stores to alternate space, 27,71, 108
St or eSt or e MEMBAR relationship, 259, 382
St or eSt or e predefined constant, 484
STPARTIALF instruction, 325
STQF instruction, 103, 316, 436
STQF_mem_address_not_aligned exception, 436
STQF/STQFA instruction, 103
STQFA instruction, 103, 319, 319
strand, 15
strong consistency memory model, 377
strong ordering, 377
Strong Sequential Order, 378
strongly ordered page, illegal access to, 432
STSHORTF instruction, 328
STTW instruction, 52, 102
STTW instruction (deprecated), 330
STTWA instruction, 52, 102
STTWA instruction (deprecated), 332
STW instruction, 307
STWA instruction, 308
STX instruction, 307
STXA instruction, 308
accessing nontranslating ASIs, 333
mem_address_not_aligned exception, 308
referencing internal ASIs, 378
STXFSR instruction, 58, 60, 61, 316, 434
SUB instruction, 335, 335
SUBC instruction, 335, 335
SUBcc instruction, 110, 335, 335
SUBCcc instruction, 335, 335
subnormal number, 16
subtract instructions, 335
superscalar, 16
supervisor software
accessing special protected registers, 26
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definition, 16
SWAP instruction, 336
accessing doubleword simultaneously with other
instructions, 337
and data_access_exception (noncacheable page)
exception, 432
hardware primitive for mutual exclusion, 379,
380
identification of R register to be exchanged, 101
in multiprocessor system, 247, 248
memory accessing, 336
ordering by MEMBAR, 381
swap R register
bit contents, 151
with alternate space memory instructions, 337
with memory instructions, 336
SWAPA instruction, 337
accessing doubleword simultaneously with other
instructions, 337
alternate space addressing, 27
and data_access_exception (noncacheable page)
exception, 432
hardware primitive for mutual exclusion, 379
in multiprocessor system, 247, 248
ordering by MEMBAR, 381
SWTN (software trap number), 343
Sync predefined constant, 484
synchonization, 261
synchronization, 16
synthetic instructions
mapping to SPARC V9 instructions, 486—488
for assembly language programmers, 486
mapping
bcl rg, 488
bset, 488
bt og, 488
bt st, 488
cal |, 486
casn, 487
clrn, 488
cnp, 486
dec, 487
deccc, 487
i nc, 487
i nccc, 487
i prefetch, 486
j mp, 486
novn, 488
neg, 487



not, 487
restore, 486
ret /retl, 486
save, 486
setn, 486
si gnx, 487
tst, 486
vs. pseudo ops, 486
system clock-tick register (STICK), 80
system software
accessing memory space by server program, 370
ASIs allowing access to memory space, 372
FLUSH instruction, 176, 384
processing exceptions, 370
trap types from which software must recover, 61
System Tick Compare register, See STICK_CMPR
register
System Tick register, See STICK register

T

TA instruction, 342, 459

TADDcc instruction, 111, 339

TADDccTV instruction, 111,435

tag overflow, 111

tag_overflow exception, 111, 339, 340, 341, 345, 347

tag_overflow exception (deprecated), 435

tagged arithmetic, 111

tagged arithmetic instructions, 28

tagged word data format, 33

tagged words, 33

TBA (trap base address) register, 89,411
establishing table address, 30, 409
initialization, 419
specification for RDPR instruction, 288
specification for WRPR instruction, 356
trap behavior, 16

TBR register (SPARC V8), 355

TCC instruction, 342

Tcc instructions, 342
atTL> 0, 420
causing trap, 409
causing trap to privileged trap handler, 420
CCR register bits, 70
generating htrap_instruction exception, 433
generating illegal_instruction exception, 433
generating trap_instruction exception, 435
opcode maps, 455, 459, 460
programming uses, 344

trap table space, 30
vector through trap table, 409
TCS instruction, 342, 459
TE instruction, 342, 459
termination deferred trap, 413
test-and-set instruction, 380
TG instruction, 342, 459
TGE instruction, 342, 459
TGU instruction, 342, 459
thread, 16
TICK register, 68
controlling access to timing information, 72
counter field, 72,469
inaccuracies between two readings of, 469
npt field, 72
specification for RDPR instruction, 288
TICK_CMPR register, 68, 79
int_dis field, 78, 80
tick_cmpr field, 80
timer registers, See TICK register and STICK register
timing of instructions, 133
tininess (floating-point), 66
TL (trap level) register, 94, 411
affect on privilege level to which a trap is
delivered, 418
and implicit ASIs, 108
displacement in trap table, 409
executing RESTORED instruction, 292
executing SAVED instruction, 300
indexing for WRPR instruction, 356
indexing privileged register after RDPR, 288
setting register value after WRPR, 356
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and TBA register, 419
and TPC register, 86
and TSTATE register, 88
and TT register, 89
use in calculating privileged trap vector
address, 419
and WSTATE register, 84
TL instruction, 342, 459
TLB
and 3-dimensional arrays, 141
miss
reloading TLB, 447, 451
TLE instruction, 342, 459
TLEU instruction, 342, 459
TN instruction, 342, 459
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TNE instruction, 342, 459

TNEG instruction, 342, 459

TNPC (trap next program counter) register, 87
saving NPC, 412
specification for RDPR instruction, 288
specification for WRPR instruction, 356

total order, 376

total store order (TSO) memory model, 91,260, 367,
376,376,377

TPC (trap program counter) register, 16, 86
address of trapping instruction, 289
number of instances, 86
specification for RDPR instructions, 288
specification for WRPR instruction, 356

TPOS instruction, 342, 459

translating ASIs, 388

Translation Table Entry, See TTE

trap
See also exceptions and traps
noncacheable accesses, 368
when taken, 16

trap enable mask (tem) field of FSR register, 417,
418, 466

caused by undefined feature /behavior, 17

causes, 31, 31
definition, 30, 410
hardware, 420
hardware stack, 21
level specification, 94
model stipulations, 417
nested, 21
normal, 420
processing, 429
software, 343, 420
stack, 429
vector address, specifying, 89
TSB, 16, 451
cacheability, 451
caching, 451
indexing support, 451
organization, 452
TSO, 16

TSO, See total store order (TSO) memory model

t st synthetic instruction, 486
TSTATE (trap state) register, 88
DONE instruction, 154,294

trap handler

privileged mode, 420

regular /nonfaulting loads, 12

returning from, 154, 294

user, 62,362
trap level register, See TL register
trap next program counter register, See TNPC register
trap on integer condition codes instructions, 342
trap program counter register, See TPC register
trap state register, See TSTATE register
trap type (TT) register, 420
trap type register, See TT register
trap_instruction (ISA) exception, 343, 344, 435
trap_little_endian (tle) field of PSTATE register, 90

registers saved after trap, 30
restoring GL value, 97
specification for RDPR instruction, 288
specification for WRPR instruction, 356
tstate, See trap state (TSTATE) register
TSUBcc instruction, 111, 345
TSUBccTV instruction, 111, 435
TT (trap type) register, 89
and privileged trap vector address, 419
reserved values, 467
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and Tcc instructions, 344
transferring trap control, 420

traps, 16 window spill/fill exceptions, 84
See also exceptions and individual trap names WRPR instruction, 356
categories TTE, 16

deferred, 412,413,415
disrupting, 412,415
precise, 412,412,415
priority, 417,428
reset, 412,415
restartable
implementation dependency, 414
restartable deferred, 413
termination deferred, 413
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context ID field, 449

cp (cacheability) field, 366
cp field, 432,450, 450

cv field, 450, 450

e field, 367,384, 432, 450
ie field, 449

indexing support, 451

nfo field, 384, 432, 449, 450
p field, 432, 450



size field, 451
soft2 field, 449
SPARC V8 equivalence, 448
taddr field, 449
v field, 449
va_tag field, 449
w field, 451
TVC instruction, 342, 459
TVS instruction, 342, 459
typewriter font, in assembly language syntax, 479

U
UDIV instruction, 69, 348
UDIVcc instruction, 69, 348
UDIVX instruction, 270
UltraSPARC, previous ASIs
ASI NUCLEUS QUAD LDD, 406
ASI _NUCLEUS_QUAD LDD L, 406
ASI _NUCLEUS_QUAD LDD LI TTLE, 406
AS|I _PHY_BYPASS_EC W TH EBI T_L, 406
ASI _PHYS_BYPASS _EC W TH_EBI T, 406
AS| _PHYS_BYPASS EC W TH _EBI T_LI TTLE,
406
ASI _PHYS USE EC, 406
ASI _PHYS_USE _EC L, 406
AS|I _PHYS_USE_EC LI TTLE, 406
UMUL instruction, 69, 351
UMULcc instruction, 69, 351
unassigned, 17
unconditional branches, 142, 146, 163, 165
undefined, 17
underflow
bits of FSR register
accrued (ufa) bit of aexc field, 66, 363
current (ufc) bit of cexc, 66
current (ufc) bit of cexc field, 363
mask (ufm) bit of FSR.tem, 66
mask (ufm) bit of tem field, 362
detection, 50
occurrence, 437
unfinished_FPop floating-point trap type, 62, 160,
171, 195, 219, 220, 360
handling, 67
in normal computation, 61
results after recovery, 62
UNIMP instruction (SPARC V8), 222
unimplemented, 17
unimplemented_FPop floating-point trap type, 62,

159, 160, 170,171,173, 178,184, 187, 195, 196,
217,219, 220, 360
handling, 67
result after recovery, 62
unimplemented_LDTW exception, 254, 435
unimplemented_STTW exception, 331, 435
uniprocessor system, 17
unrestricted, 17
unrestricted ASI, 387
unsigned integer data type, 33
user application program, 17
user trap handler, 62,362

\%
VA, 17
VA_watchpoint exception, 435
VA_WATCHPOINT register, 435
value clipping, See FPACK instructions
value semantics of input/output (I/O)
locations, 366
VER (version) register fields
impl, 60
virtual
address, 366
address 0, 385
virtual address, 17
virtual core, 17
virtual memory, 283
VIS, 17
VIS instructions
encoding, 461,462
implicitly referencing GSR register, 76
Visual Instruction Set, See VIS instructions

w

W-A-R, See write-after-read memory hazard

watchpoint comparator, 93

W-A-W, See write-after-write memory hazard

WIM register (SPARC V8), 355

window fill exception, See also fill_n_normal
exception

window fill trap handler, 30

window overflow, 50, 436

window spill exception, See also spill_n_normal
exception

window spill trap handler, 30

window state register, See WSTATE register

Index
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window underflow, 437
window, clean, 298
window_fill exception, 84, 117
RETURN, 296
window_spill exception, 84
word, 17
alignment, 26, 102, 369
data format, 33
WRASI instruction, 67,71, 353
WRasr instruction, 353
accessing I/0O registers, 27
attempt to write to ASR 5 (PC), 73
cannot write to PC register, 73
implementation dependencies, 468
writing ASRs, 67
WRCCR instruction, 67,69, 70, 353
WREFPRS instruction, 68,73, 353
WRGSR instruction, 68,76, 353
WRIER instruction (SPARC V8), 355
write ancillary state register (WRasr)
instructions, 353
write ancillary state register instructions, See WRasr
instruction
write privileged register instruction, 356
write-after-read memory hazard, 374
write-after-write memory hazard, 373, 374
WRPCR instruction, 68,353
WRPIC instruction, 68, 353, 435
WRPR instruction, 18
accessing non-register-window PR state
registers, 86
accessing register-window PR state registers, 81
and register-window PR state registers, 81
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
effect on TT register, 89
writing to GL register, 97
writing to PSTATE register, 90
WRPSR instruction (SPARC V8), 355
WRSOFTINT instruction, 68, 77, 353
WRSOFTINT_CLR instruction, 68,77,79, 353, 443
WRSOFTINT_SET instruction, 68,77, 78, 353, 442
WRSTICK_CMPR instruction, 68,353
WRTBR instruction (SPARC V8), 355
WRTICK_CMP instruction, 68,353
WRWIM instruction (SPARC V8), 355
WRY instruction, 67, 69, 353
WSTATE (window state) register
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description, 84

and fill/spill exceptions, 437
normal field, 437

other field, 437

overview, 81

reading with RDPR instruction, 288
spill exception, 177

spill trap, 299

writing with WRPR instruction, 356

X

XNOR instruction, 358
XNORcc instruction, 358
XOR instruction, 358
XORcc instruction, 358

Y

Y register, 67,69
after multiplication completed, 268
content after divide operation, 348
divide operation, 348
multiplication, 268
unsigned multiply results, 351
WRY instruction, 354

Y register (deprecated), 69

z

zero virtual address, 385
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