
Sun Micro
4150 Net
Santa Cla
U.S.A. 65

Part No. 8xx
Release 1.0
Part No: 95
Revision: Dr
systems, Inc.
work Circle
ra, CA 95054
0-960-1300

UltraSPARC Architecture 2005

Draft D0.8.7, 27 Mar 2006

Privilege Levels: Privileged
and Nonprivileged

Distribution: Public

Some portions of this specification are undergoing final review;
please check monthly to see if an updated revision is available
for download.
-xxxx-xx
, 2002
0-4895-07
aft D0.8.7, 27 Mar 2006

ii UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Copyright 2002-2005 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, UltraSPARC, and VIS are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID

.

Copyright 2002–2005 Sun Microsystems, Inc., 4150 Network Circle • Santa Clara, CA 950540 Etats-Unis. Tous droits réservés.

Des parties de ce document est protégé par un copyright 1994 SPARC International, Inc.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, UltraSPARC et VIS sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

.

Comments and "bug reports” regarding this document are welcome; they should be submitted to email
address: UST1-editor@sun.com

iv UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Contents

1 Preface . i

1.1 What’s New? . i
1.2 Acknowledgements . ii

2 Document Overview . 1

2.1 Navigating UltraSPARC Architecture 2005 . 1
2.2 Fonts and Notational Conventions. 2

2.2.1 Implementation Dependencies . 4
2.2.2 Notation for Numbers . 4
2.2.3 Informational Notes . 4

2.3 Reporting Errors in this Specification . 5

3 Definitions . 7

4 Architecture Overview . 19

4.1 The UltraSPARC Architecture 2005 . 20
4.1.1 Features . 20
4.1.2 Attributes . 21

4.1.2.1 Design Goals . 21
4.1.2.2 Register Windows. 22

4.1.3 System Components . 22
4.1.3.1 Binary Compatibility . 22
4.1.3.2 UltraSPARC Architecture 2005 MMU 22
4.1.3.3 Privileged Software . 23

4.1.4 Architectural Definition . 23
4.1.5 UltraSPARC Architecture 2005 Compliance with SPARC V9

Architecture 23
4.1.6 Implementation Compliance with UltraSPARC Architecture 2005

23
4.2 Processor Architecture . 24

4.2.1 Integer Unit (IU) . 24
i

4.2.2 Floating-Point Unit (FPU) . 24
4.3 Instructions . 25

4.3.1 Memory Access . 25
4.3.1.1 Memory Alignment Restrictions. 26
4.3.1.2 Addressing Conventions . 26
4.3.1.3 Addressing Range. 26
4.3.1.4 Load/Store Alternate . 26
4.3.1.5 Separate I and D Memories . 27
4.3.1.6 Input/Output (I/O) . 27
4.3.1.7 Memory Synchronization . 28

4.3.2 Arithmetic / Logical / Shift Instructions. 28
4.3.3 Control Transfer . 28
4.3.4 State Register Access . 29
4.3.5 Floating-Point Operate . 30
4.3.6 Conditional Move . 30
4.3.7 Register Window Management. 30

4.4 Traps . 30

5 Data Formats . 33

5.1 Integer Data Formats . 34
5.1.1 Signed Integer Data Types . 35

5.1.1.1 Signed Integer Byte, Halfword, and Word 35
5.1.1.2 Signed Integer Doubleword (64 bits) 35
5.1.1.3 Signed Integer Extended-Word (64 bits) 36

5.1.2 Unsigned Integer Data Types . 36
5.1.2.1 Unsigned Integer Byte, Halfword, and Word 36
5.1.2.2 Unsigned Integer Doubleword (64 bits). 37
5.1.2.3 Unsigned Extended Integer (64 bits) 37

5.1.3 Tagged Word (32 bits). 37
5.2 Floating-Point Data Formats . 38

5.2.1 Floating Point, Single Precision (32 bits) 38
5.2.2 Floating Point, Double Precision (64 bits) 39
5.2.3 Floating Point, Quad Precision (128 bits). 40
5.2.4 Floating-Point Data Alignment in Memory and Registers 41

5.3 SIMD Data Formats . 41
5.3.1 Uint8 SIMD Data Format . 42
5.3.2 Int16 SIMD Data Formats . 42
5.3.3 Int32 SIMD Data Format . 42

6 Registers . 45

6.1 Reserved Register Fields . 46
6.2 General-Purpose R Registers. 46

6.2.1 Global R Registers . 48
6.2.2 Windowed R Registers . 48
6.2.3 Special R Registers . 52
ii UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.3 Floating-Point Registers . 52
6.3.1 Floating-Point Register Number Encoding 55
6.3.2 Double and Quad Floating-Point Operands 56

6.4 Floating-Point State Register (FSR) . 58
6.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3). 58
6.4.2 Rounding Direction (rd) . 59
6.4.3 Trap Enable Mask (tem) . 59
6.4.4 Nonstandard Floating-Point (ns) . 60
6.4.5 FPU Version (ver) . 60
6.4.6 Floating-Point Trap Type (ftt) . 60
6.4.7 FQ Not Empty (qne) . 63
6.4.8 Accrued Exceptions (aexc) . 63
6.4.9 Current Exception (cexc) . 64
6.4.10 Floating-Point Exception Fields . 65
6.4.11 FSR Conformance . 67

6.5 Ancillary State Registers . 67
6.5.1 32-bit Multiply/Divide Register (Y) (ASR 0) 69
6.5.2 Integer Condition Codes Register (CCR) (ASR 2) 69

6.5.2.1 Condition Codes (CCR.xcc and CCR.icc) 70
6.5.3 Address Space Identifier (ASI) Register (ASR 3) 71
6.5.4 Tick (TICK) Register (ASR 4) . 71
6.5.5 Program Counters (PC, NPC) (ASR 5) . 72
6.5.6 Floating-Point Registers State (FPRS) Register (ASR 6) 73
6.5.7 Performance Control Register (PCRP) (ASR 16) 74
6.5.8 Performance Instrumentation Counter (PIC) Register (ASR 17) 75
6.5.9 General Status Register (GSR) (ASR 19) 76
6.5.10 SOFTINTP Register (ASRs 20, 21, 22) . 77

6.5.10.1 SOFTINT_SETP Pseudo-Register (ASR 20). 78
6.5.10.2 SOFTINT_CLRP Pseudo-Register (ASR 21) 79

6.5.11 Tick Compare (TICK_CMPRP) Register (ASR 23) 79
6.5.12 System Tick (STICK) Register (ASR 24) . 80
6.5.13 System Tick Compare (STICK_CMPRP) Register (ASR 25) . . 81

6.6 Register-Window PR State Registers . 81
6.6.1 Current Window Pointer (CWPP) Register (PR 9) 82
6.6.2 Savable Windows (CANSAVEP) Register (PR 10) 83
6.6.3 Restorable Windows (CANRESTOREP) Register (PR 11) 83
6.6.4 Clean Windows (CLEANWINP) Register (PR 12) 83
6.6.5 Other Windows (OTHERWINP) Register (PR 13) 84
6.6.6 Window State (WSTATEP) Register (PR 14) 84
6.6.7 Register Window Management. 84

6.6.7.1 Register Window State Definition 85
6.6.7.2 Register Window Traps . 86

6.7 Non-Register-Window PR State Registers. 86
6.7.1 Trap Program Counter (TPCP) Register (PR 0) 86
6.7.2 Trap Next PC (TNPCP) Register (PR 1) . 87
6.7.3 Trap State (TSTATEP) Register (PR 2) . 88
• Contents iii

6.7.4 Trap Type (TTP) Register (PR 3) . 89
6.7.5 Trap Base Address (TBAP) Register (PR 5) 89
6.7.6 Processor State (PSTATEP) Register (PR 6) 90
6.7.7 Trap Level Register (TLP) (PR 7) . 94
6.7.8 Processor Interrupt Level (PILP) Register (PR 8) 95
6.7.9 Global Level Register (GLP) (PR 16) . 96

7 Instruction Set Overview . 99

7.1 Instruction Execution . 99
7.2 Instruction Formats . 100
7.3 Instruction Categories . 101

7.3.1 Memory Access Instructions . 101
7.3.1.1 Memory Alignment Restrictions 102
7.3.1.2 Addressing Conventions . 103
7.3.1.3 Address Space Identifiers (ASIs). 108
7.3.1.4 Separate Instruction Memory . 109

7.3.2 Memory Synchronization Instructions. 110
7.3.3 Integer Arithmetic and Logical Instructions 110

7.3.3.1 Setting Condition Codes . 110
7.3.3.2 Shift Instructions. 110
7.3.3.3 Set High 22 Bits of Low Word . 110
7.3.3.4 Integer Multiply/Divide . 111
7.3.3.5 Tagged Add/Subtract . 111

7.3.4 Control-Transfer Instructions (CTIs) . 111
7.3.4.1 Conditional Branches . 113
7.3.4.2 Unconditional Branches . 113
7.3.4.3 CALL and JMPL Instructions . 114
7.3.4.4 RETURN Instruction . 114
7.3.4.5 DONE and RETRY Instructions 114
7.3.4.6 Trap Instruction (Tcc) . 114
7.3.4.7 DCTI Couples . 115

7.3.5 Conditional Move Instructions . 115
7.3.6 Register Window Management Instructions 116

7.3.6.1 SAVE Instruction. 116
7.3.6.2 RESTORE Instruction . 117
7.3.6.3 SAVED Instruction . 118
7.3.6.4 RESTORED Instruction . 118
7.3.6.5 Flush Windows Instruction . 118

7.3.7 Ancillary State Register (ASR) Access . 118
7.3.8 Privileged Register Access . 119
7.3.9 Floating-Point Operate (FPop) Instructions 119
7.3.10 Implementation-Dependent Instructions. 120
7.3.11 Reserved Opcodes and Instruction Fields 120

8 Instructions . 123

8.30.1 FMUL8x16 Instruction . 189
iv UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

8.30.2 FMUL8x16AU Instruction . 190
8.30.3 FMUL8x16AL Instruction . 190
8.30.4 FMUL8SUx16 Instruction . 191
8.30.5 FMUL8ULx16 Instruction . 191
8.30.6 FMULD8SUx16 Instruction . 192
8.30.7 FMULD8ULx16 Instruction. 193
8.33.1 FPACK16 . 198
8.33.2 FPACK32 . 199
8.33.3 FPACKFIX . 201
8.46.1 IMPDEP1 Opcodes . 223

8.46.1.1 Opcode Formats . 224
8.46.2 IMDEP2B Opcodes . 224
8.61.1 Memory Synchronization . 260
8.61.2 Synchronization of the Virtual Processor 261
8.61.3 TSO Ordering Rules affecting Use of MEMBAR. 261
8.72.1 Exceptions . 280
8.72.2 Weak versus Strong Prefetches . 281
8.72.3 Prefetch Variants . 281

8.72.3.1 Prefetch for Several Reads (fcn = 0, 20(1416)) 282
8.72.3.2 Prefetch for One Read (fcn = 1, 21(1516)) 282
8.72.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2,

22(1616))282
8.72.3.4 Prefetch for One Write (fcn = 3, 23(1716)). 283
8.72.3.5 Prefetch Page (fcn = 4) . 283

8.72.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and
24–31) 283

8.72.5 Additional Notes . 284

9 IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005 359

9.1 Traps Inhibiting Results . 359
9.2 NaN Operand and Result Definitions . 360

9.2.1 Untrapped Result in Different Format from Operands 360
9.2.2 Untrapped Result in Same Format as Operands 361

9.3 Trapped Underflow Definition (ufm = 1). 362
9.4 Untrapped Underflow Definition (ufm = 0) . 362
9.5 Integer Overflow Definition . 363
9.6 Floating-Point Nonstandard Mode . 364

9 Memory . 365

9.1 Memory Location Identification . 366
9.2 Memory Accesses and Cacheability . 366

9.2.1 Coherence Domains . 366
9.2.1.1 Cacheable Accesses . 367
9.2.1.2 Noncacheable Accesses . 367
9.2.1.3 Noncacheable Accesses with Side-Effect 367

9.3 Memory Addressing and Alternate Address Spaces . 369
• Contents v

9.3.1 Memory Addressing Types . 369
9.3.2 Memory Address Spaces . 370
9.3.3 Address Space Identifiers . 370

9.4 SPARC V9 Memory Model . 372
9.4.1 SPARC V9 Program Execution Model . 373
9.4.2 Virtual Processor/Memory Interface Model 375

9.5 The UltraSPARC Architecture Memory Model — TSO 376
9.5.1 Memory Model Selection . 377
9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture

TSO Model 377
9.5.3 TSO Ordering Rules . 378
9.5.4 Hardware Primitives for Mutual Exclusion 379

9.5.4.1 Compare-and-Swap (CASA, CASXA) 380
9.5.4.2 Swap (SWAP) . 380
9.5.4.3 Load Store Unsigned Byte (LDSTUB) 380

9.5.5 Memory Ordering and Synchronization 381
9.5.5.1 Ordering MEMBAR Instructions 381
9.5.5.2 Sequencing MEMBAR Instructions 382
9.5.5.3 Synchronizing Instruction and Data Memory. 383

9.6 Nonfaulting Load . 384
9.7 Store Coalescing . 385

10 Address Space Identifiers (ASIs). 387

10.1 Address Space Identifiers and Address Spaces . 387
10.2 ASI Values . 387
10.3 ASI Assignments. 388

10.3.1 Supported ASIs . 389
10.4 Special Memory Access ASIs. 397

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*) . . 397
10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE) .

398
10.4.3 ASI 1416 (ASI_REAL) . 399
10.4.4 ASI 1516 (ASI_REAL_IO). 399
10.4.5 ASI 1C16 (ASI_REAL_LITTLE). 400
10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE) . 400
10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin

Extended Word) 400
10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word,

Real Addressing) 401
10.4.9 ASIs E216, E316, EA16, EB16

(Nonprivileged Load Integer Twin Extended Word) 402
10.4.10 Block Load and Store ASIs. 403
10.4.11 Partial Store ASIs . 404
10.4.12 Short Floating-Point Load and Store ASIs 404

10.5 ASI-Accessible Registers . 404
vi UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD) 405
10.5.2 ASI Changes in the UltraSPARC Architecture 405

11 Performance Instrumentation . 407

12 Traps. 409

12.1 Virtual Processor Privilege Modes . 410
12.2 Virtual Processor States and Traps . 412

12.2.0.1 Usage of Trap Levels . 412
12.3 Trap Categories . 412

12.3.1 Precise Traps . 412
12.3.2 Deferred Traps . 413
12.3.3 Disrupting Traps . 415

12.3.3.1 Disrupting versus Precise and Deferred Traps 415
12.3.3.2 Causes of Disrupting Traps . 415
12.3.3.3 Conditioning of Disrupting Traps 415
12.3.3.4 Trap Handler Actions for Disrupting Traps 416

12.3.4 Uses of the Trap Categories . 417
12.4 Trap Control . 417

12.4.1 PIL Control . 418
12.4.2 FSR.tem Control . 418

12.5 Trap-Table Entry Addresses . 418
12.5.1 Trap-Table Entry Address to Privileged Mode 419
12.5.2 Privileged Trap Table Organization . 420
12.5.3 Trap Type (TT) . 420

12.5.3.1 Trap Type for Spi ll/Fill Traps. 428
12.5.4 Trap Priorities . 428

12.6 Trap Processing . 429
12.6.1 Normal Trap Processing. 429

12.7 Exception and Interrupt Descriptions . 431
12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2005 436

12.8 Register Window Traps . 436
12.8.1 Window Spill and Fill Traps . 436
12.8.2 clean_window Trap . 437
12.8.3 Vectoring of Fill/Spill Traps . 437
12.8.4 CWP on Window Traps . 438
12.8.5 Window Trap Handlers . 438

13 Interrupt Handling . 441

13.1 Interrupt Packets . 442
13.2 Software Interrupt Register (SOFTINT). 442

13.2.1 Setting the Software Interrupt Register 442
13.2.2 Clearing the Software Interrupt Register. 443

13.3 Interrupt Queues . 443
13.3.1 Interrupt Queue Registers . 443
• Contents vii

13.4 Interrupt Traps . 445

14 Memory Management . 447

14.1 Virtual Address Translation . 447
14.2 TSB Translation Table Entry (TTE) . 448
14.3 Translation Storage Buffer (TSB). 451

14.3.1 TSB Indexing Support . 451
14.3.2 TSB Cacheability . 451
14.3.3 TSB Organization . 452

A Opcode Maps . 453

B Implementation Dependencies . 463

B.1 Definition of an Implementation Dependency . 463
B.2 Hardware Characteristics. 464
B.3 Implementation Dependency Categories. 464
B.4 List of Implementation Dependencies . 465

C Assembly Language Syntax . 479

C.1 Notation Used . 479
C.1.1 Register Names . 480
C.1.2 Special Symbol Names . 481
C.1.3 Values . 483
C.1.4 Labels . 483
C.1.5 Other Operand Syntax . 483
C.1.6 Comments. 485

C.2 Syntax Design . 485
C.3 Synthetic Instructions . 486

. Index1
viii UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 1

Preface

First came the 32-bit SPARC Version 7 (V7) architecture, publicly released in 1987.
Shortly after, the SPARC V8 architecture was announced and published in book
form. The 64-bit SPARC V9 architecture was released in 1994. Now, the
UltraSPARC Architecture specification provides the first significant update in over
10 years to Sun’s SPARC processor architecture.

1.1 What’s New?
For the first time, UltraSPARC Architecture 2005 pulls together in one document all
parts of the architecture:

■ the nonprivilged (Level 1) architecture from SPARC V9

■ most of the privileged (Level 2) architecture from SPARC V9

■ more in-depth coverage of all SPARC V9 features

Plus, it includes all of Sun’s now-standard architectural extensions:

■ the VIS 1 and VIS 2 instruction sets and GSR register

■ multiple levels of global registers, controlled by the GL register

■ MMU architecture

Plus, now architectural features are tagged with Software Classes and
Implementation Classes1. Software Classes provide a new, high-level view of the
expected architectural longevity and portability of software that references those
features. Implementation Classes give an indication of how efficiently each feature
is likely to be implemented across current and future UltraSPARC Architecture
processor implementations. This information provides guidance that should be
1. although most features in this specification are already tagged with Software Classes, the full description of

those Classes does not appear in this version of the specification. Please check back
(http://opensparc.sunsource.net/nonav/opensparct1.html) for a later release of this
document, which will include that description
i

particularly helpful to programmers who write in assembly language or those who
write tools that generate SPARC instructions. It also provides the infrastructure for
defining clear procedures for adding and removing features from the architecture
over time, with minimal software disruption.

1.2 Acknowledgements
This specification builds upon all previous SPARC specifications — SPARC V7, V8,
and especially, SPARC V9. It therefore owes a debt to all the pioneers who
developed those architectures.

SPARC V7 was developed by the SPARC (“Sunrise”) architecture team at Sun
Microsystems, with special assistance from Professor David Patterson of University
of California at Berkeley.

The enhancements present in SPARC V8 were developed by the nine member
companies of the SPARC International Architecture Committee: Amdahl
Corporation, Fujitsu Limited, ICL, LSI Logic, Matsushita, Philips International, Ross
Technology, Sun Microsystems, and Texas Instruments.

SPARC V9 was also developed by the SPARC International Architecture Committee,
with key contributions from the individuals named in the Editor’s Notes section of
The SPARC Architecture Manual-Version 9.

The voluminous enhancements and additions present in this UltraSPARC
Architecture 2005 specification are the result of years of deliberation, review, and
feedback from readers of earlier Sun-internal revisions. I would particularly like to
acknowledge the following people for their key contributions:

■ The UltraSPARC Architecture working group, who reviewed dozens of drafts of
this specification and strived for the highest standards of accuracy and
completeness; its active members included: Hendrik-Jan Agterkamp, Paul
Caprioli, Steve Chessin, Hunter Donahue, Greg Grohoski, John (JJ) Johnson, Paul
Jordan, Jim Laudon, Jim Lewis, Bob Maier, Wayne Mesard, Greg Onufer,
Seongbae Park, Joel Storm, David Weaver, and Tom Webber.

■ Robert (Bob) Maier, for expansion of exception descriptions in every page of the
Instructions chapter, major re-writes of several chapters and appendices
(including Memory, Memory Management, Performance Instrumentation, and
Interrupt Handling), significant updates to 5 other chapters, and tireless efforts to
infuse commonality wherever possible across implementations.

■ Steve Chessin and Joel Storm, “ace” reviewers — the two of them spotted more
typographical errors and small inconsistencies than all other reviewers combined
ii UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Jim Laudon (an UltraSPARC T1 architect and author of that processor’s
implementation specification), for numerous descriptions of new features which
were merged into this specicification

■ The working group responsible for developing the system of Software Classes
and Implementation Classes, comprising: Steve Chessin, Yuan Chou, Peter
Damron, Q. Jacobson, Nicolai Kosche, Bob Maier, Ashley Saulsbury, Lawrence
Spracklen, and David Weaver.

■ Lawrence Spracklen, for his advice and numerous contributions regarding
descriptions of VIS instructions

I hope you find the UltraSPARC Architecture 2005 specification more complete,
accurate, and readable than its predecessors.

— David Weaver
UltraSPARC Architecture coordinator and specification editor

Corrections and other comments regarding this specification can be emailed to:
UA-editor@sun.com
CHAPTER 1 • Preface iii

iv UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 2

Document Overview

This chapter discusses:

■ Navigating UltraSPARC Architecture 2005 on page 1.
■ Fonts and Notational Conventions on page 2.
■ Reporting Errors in this Specification on page 5.

2.1 Navigating UltraSPARC Architecture
2005
If you are new to the SPARC architecture, read Chapter 4, Architecture Overview,
study the definitions in Chapter 3, Definitions, then look into the subsequent sections
and appendixes for more details in areas of interest to you.

If you are familiar with the SPARC V9 architecture but not UltraSPARC Architecture
2005, note that UltraSPARC Architecture 2005 conforms to the SPARC V9 Level 1
architecture (and most of Level 2), with numerous extensions — particularly with
respect toVIS instructions. For additional details, see the following:

■ Chapter 3, Definitions

■ Chapter 5, Data Formats, for a description of the supported data formats

■ Chapter 6, Registers, for a description of the register set

■ Chapter 7, Instruction Set Overview, for a description of the new instructions

■ Chapter 8, Instructions, for descriptions of instruction set extensions

■ Chapter 9, IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005, for a
description of the trap model

■ Chapter 9, Memory

■ Chapter 10, Address Space Identifiers (ASIs), for a complete list of supported ASIs

■ Chapter 11, Performance Instrumentation
1

■ Chapter 12, Traps, for a description of the trap model

■ Chapter 13, Interrupt Handling, for information on how interrupts are handled

■ Chapter 14, Memory Management

■ Appendix A, Opcode Maps, to see the overall pictures of how the instruction
opcodes are mapped

■ Appendix B, Implementation Dependencies, for descriptions of resolutions of all
implementation dependencies

■ Appendix C, Assembly Language Syntax, to see extensions to the assembly
language syntax; in particular, synthetic instructions are documented in this
appendix

■ Appendix D, Formal Specification of the Memory Models

2.2 Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

■ Italic font is also used for terms where substitution is expected, for example,
“fccn”, “virtual processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

■ lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”

■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: %f0,
ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are
separated by a period (’.’), for example, “FSR.cexc”.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary in Chapter 3, Definitions. Note: Names of some instructions
contain both upper- and lower-case letters.

■ An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:
2 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ The left arrow symbol (←) is the assignment operator. For example, “PC ← PC +
1” means that the Program Counter (PC) is incremented by 1.

■ Square brackets ([]) are used in two different ways, distinguishable by the
context in which they are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,Q]F” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI_PRIMARY[_LITTLE] indicates two
related address space identifiers, ASI_PRIMARY and ASI_PRIMARY_LITTLE.
(Contrast with the use of angle brackets, below)

■ Angle brackets (< >) indicate mandatory additions/extensions to symbol names.
For example, “ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

■ Curly braces ({ }) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon (:), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

■ A double period (..) indicates any single intermediate value between two given
end values is possible. For example, NAME[2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAME0; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAME0. (Contrast with the use of
the colon, above)

■ A vertical bar (|) separates mutually exclusive alternatives inside square
brackets ([]), angle brackets (< >), or curly braces ({ }). For example,
“NAME[A|B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A|B>”
expands to "NAMEA, NAMEB".

■ The asterisk (*) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|q> and FCMPE<s|d|q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.

■ The slash (/) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKF instruction pair”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.
CHAPTER 2 • Document Overview 3

2.2.1 Implementation Dependencies
Implementors of UltraSPARC Architecture 2005 processors are allowed to resolve
some aspects of the architecture in machine-dependent ways. Each possible
implementation dependency is indicated by the notation “IMPL. DEP. #nn: Some
descriptive text.” In this specification, the number nn enumerates the dependencies
in . References to implementation dependencies are indicated by the notation
“(impl. dep. #nn)”.

2.2.2 Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 10012, FFFF 000016). Long binary and hexadecimal numbers
within the text have spaces inserted every four characters to improve readability.
Within C language or assembly language examples, numbers may be preceded by
“0x” to indicate base-16 (hexadecimal) notation (for example, 0xFFFF0000).

2.2.3 Informational Notes
This guide provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.

Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture 2005 processor
might implement an architectural feature.

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture 2005 and SPARC V9 implementations.
Such information is relevant to UltraSPARC Architecture 2005
implementations and might not apply to other SPARC V9
implementations.

Forward
Compatibility

Note

Note containing information about how the UltraSPARC
Architecture is expected to evolve in the future. Such notes are
not intended as a guarantee that the architecture will evolve as
indicated, but as a guide to features that should not be depended
upon to remain the same, by software intended to run on both
current and future implementations.
4 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

2.3 Reporting Errors in this Specification
This specification has been reviewed for completeness and accuracy. Nonetheless, as
with any document this size, errors and omissions may occur, and reports of such
are welcome. Please send “bug reports” and other comments on this document to
email address: UA-editor@sun.com
CHAPTER 2 • Document Overview 5

6 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 3

Definitions

This chapter defines concepts and terminology common to all implementations of
UltraSPARC Architecture 2005.

aliased Said of each of two virtual addresses that refer to the same underlying memory
location.

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data

access, an ASI is associated withthe address. See also implicit ASI.

application program A program executed with the virtual processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged virtual processor state (for example, as stored in a memory-image
dump).

ASI Address space identifier.

ASR Ancillary State register.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKF.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.

byte Eight consecutive bits of data, aligned on an 8-bit boundary.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
7

clean window A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

completed (memory
operation) Said of a memory transaction when an idealized memory has executed the

transaction with respect to all processors. A load is considered completed
when no subsequent memory transaction can affect the value returned by the
load. A store is considered completed when no subsequent load can return the
value that was overwritten by the store.

consistency See coherence.

context A set of translations that defines a particular address space. See also Memory
Management Unit (MMU).

context ID A numeric value that uniquely identifies a particular context.

copyback The process of sending a copy of the data from a cache line owned by a
physical processor core, in response to a snoop request from another device.

CPI Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

cross-call An interprocessor call in a system containting multiple virtual processors.

CTI Abbreviation for control-transfer instruction.

current window The block of 24 R registers that is presently in use. The Current Window
Pointer (CWP) register points to the current window.

data access
(instruction) A load, store, load-store, or FLUSH instruction.

DCTI Delayed control transfer instruction.

denormalized
number A nonzero floating-point number, the exponent of which has a value of zero. A

more complete definition is provided in IEEE Standard 754-1985.

deprecated The term applied to an architectural feature (such as an instruction or register)
for which an UltraSPARC Architecture implementation provides support only
for compatibility with previous versions of the architecture. Use of a
deprecated feature must generate correct results but may compromise software
performance.

Deprecated features should not be used in new UltraSPARC Architecture
software and may not be supported in future versions of the architecture.
8 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

dispatch To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the this specification attempts to use dispatch consistently as
defined here). See also issued.

doublet Two bytes (16 bits) of data.

doubleword An 8-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

even parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of ‘1’ bits.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream. Some exceptions may be masked (that is, trap
generation disabled — for example, floating-point exceptions masked by
FSR.tem) so that the decision on whether or not to apply special processing
can be deferred and made by software at a later time. See also trap.

explicit ASI An ASI that that is provided by a load, store, or load-store alternate instruction
(either from its imm_asi field or from the ASI register).

extended word An 8-byte datum, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

floating-point
exception An exception that occurs during the execution of a floating-point operate

(FPop) instruction. The exceptions are unfinished_FPop, unimplemented_FPop,
sequence_error, hardware_error, invalid_fp_register, or IEEE_754_exception.

F register A floating-point register. The SPARC V9 architecture includes single-, double-,
and quad-precision F registers.

floating-point operate
(FPop) instructions Instructions that perform floating-point calculations, as defined in Floating-

Point Operate (FPop) Instructions on page 119. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the F registers, or
non-floating-point operations that read or write F registers.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

FPop See floating-point operate (FPop) instructions.

FPRS Floating-Point Register State register.
CHAPTER 3 • Definitions 9

FGU Floating-point and Graphics Unit (which, in most implementations, is a
synonym for FPU).

FPU Floating-Point Unit.

FSR Floating-Point Status register.

GL Global Level register.

GSR General Status register.

halfword A 2-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

IEEE 754 IEEE Standard 754-1985, the IEEE Standard for Binary Floating-Point
Arithmetic.

IEEE-754 exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within
this specification as IEEE_754_exception.

implementation Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

implementation
dependent An aspect of the UltraSPARC Architecture that can legitimately vary among

implementations. In many cases, the permitted range of variation is specified.
When a range is specified, compliant implementations must not deviate from
that range.

implicit ASI An address space identifier that is implicitly supplied by the virtual processor
on all instruction accesses and on data accesses that do not explicitly provide
an ASI value (from either an imm_asi instruction field or the ASI register).

initiated Synonym for issued.

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous
execution.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the UltraSPARC
Architecture 2005 instruction set architecture.

integer unit A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and virtual processor state registers,
as defined by this specification.

interrupt request A request for service presented to a virtual processor by an external device.
10 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

inter-strand Describes an operation that crosses virtual processor (strand) boundaries.

intra-strand Describes an operation that occurs entirely within one virtual processor
(strand).

invalid
(ASI or address) Undefined, reserved, or illegal.

ISA Instruction set architecture.

issued (1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a virtual processor has sent the transaction to the memory
subsystem and the completion of the request is out of the virtual processor’s
control. Synonym for initiated.

(2) An instruction (or sequence of instructions) is said to be issued when
released from the virtual processor's instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but this
specification attempts to use "issued" consistently as defined here.)
See also dispatched.

IU Integer Unit.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

load An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Some examples of Load
includes loads into integer or floating-point registers, block loads, and
alternate address space variants of those instructions. See also load-store and
store, the definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

Memory Management
Unit The address translation hardware in an UltraSPARC Architecture

implementation that translates 64-bit virtual address into physical addresses.
The MMU is composed of the ASRs and ASI registers used to manage address
translation. See also context and virtual address.

MMU Memory Management Unit.
CHAPTER 3 • Definitions 11

multiprocessor
system A system containing more than one processor.

must A keyword indicating a mandatory requirement. Designers must implement
all such mandatory requirements to ensure interoperability with other
UltraSPARC Architecture-compliant products. Synonym: shall.

next program counter
(NPC) Conceptually, a register that contains the address of the instruction to be

executed next if a trap does not occur.

NFO Nonfault access only.

nonfaulting load A load operation that behaves identically to a normal load operation, except
when supplied an invalid effective address by software. In that case, a regular
load triggers an exception whereas a nonfaulting load appears to ignore the
exception and loads its destination register with a value of zero (on an
UltraSPARC Architecture processor, hardware treats regular and nonfaulting
loads identically; the distinction is made in trap handler software). Contrast
with speculative load.

nonprivileged An adjective that describes
(1) the state of the virtual processor when PSTATE.priv = 0, that is,
nonprivileged mode;
(2) virtual processor state information that is accessible to software while the
virtual processor is in either privileged mode or nonprivileged mode; for
example, nonprivileged registers, nonprivileged ASRs, or, in general,
nonprivileged state;
(3) an instruction that can be executed when the virtual processor is in either
privileged mode or nonprivileged mode.

nonprivileged mode The mode in which a virtual processor is operating when executing application
software (at the lowest privilege level). Nonprivileged mode is defined by
PSTATE.priv = 0. See also privileged.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

NPC Next program counter.

npt Nonprivileged trap.

nucleus software Privileged software running at a trap level greater than 0 (TL> 0).

NUMA Nonuniform memory access.

N_REG_WINDOWS The number of register windows present in a particular implementation.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.
12 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

odd parity The mode of parity checking in which each combination of data bits plus a
parity bit together contain an odd number of ‘1’ bits.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for UltraSPARC Architecture 2005 compliance.

PC Program counter.

PCR Performance Control register.

PIC Performance Instrumentation Counter.

PIL Processor Interrupt Level register.

pipeline Refers to an execution pipeline. It is a loose term for the basic collection of
hardware needed to execute instructions. A pipeline may be used by one or
more strands to execute instructions from one or more threads. Synonym for
microcore. See also processor, strand, thread, and virtual processor.

POR Power-on reset.

prefetchable (1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.
(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

privileged An adjective that describes:
(1) the state of the processor when PSTATE.priv = 1, that is, privileged mode;
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;
(3) an instruction that can be executed only when the processor is in privileged
mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1. See also
nonprivileged.

processor The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.
Synonym for processor module. See also pipeline, strand, thread, and virtual
processor.

processor core See virtual processor.
CHAPTER 3 • Definitions 13

processor module Synonym for processor.

program counter (PC) A register that contains the address of the instruction currently being executed.

quadword A 16-byte datum. Note: The definition of this term is architecture dependent
and may be different from that used in other processor architectures.

R register An integer register. Also called a general-purpose register or working register.

RA Real address.

RAS (1) Return Address Stack
(2) Reliability, Availability, and Serviceability

RAW Read After Write (hazard)

rd Rounding direction.

RDPR Read Privileged Register instruction.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

A reserved instruction field must read as 0, unless the implementation supports
extended instructions within the field. The behavior of an UltraSPARC
Architecture 2005 virtual processor when it encounters a nonzero value in a
reserved instruction field is as defined in Reserved Opcodes and Instruction Fields
on page 120.

A reserved bit combination within an instruction field is defined in Chapter 8,
Instructions. In all cases, an UltraSPARC Architecture 2005 processor must
decode and trap on such reserved bit combinations.

A reserved field within a register reads as 0 in current implementations and, when
written by software, should always be written with values of that field
previously read from that register or with the value zero (as described in
Reserved Register Fields on page 46).

Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

restricted Describes an address space identifier (ASI) that may be accessed only while the
virtual processor is operating in a privileged mode.

retired An instruction is said to be “retired” when one of (instruction) the following
two events has occurred:
(1) A precise trap has been taken, with TPC containing the instruction's
address (the instruction has not changed architectural state in this case).
(2) The instruction's execution has progressed to a point at which architectural
state affected by the instruction has been updated such that all three of the
following are true:

■ The PC has advanced beyond the instruction.
14 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Except for deferred trap handlers, no consumer in the same instruction
stream can see the old values and all consumers in the same instruction
stream will see the new values.

■ Stores are visible to all loads in the same instruction stream, including
stores to noncacheable locations.

RMO Relaxed memory order.

rs1, rs2, rd The integer or floating-point register operands of an instruction. rs1 and rs2
are source registers; rd is the destination register.

RTO Read to Own (a type of transaction, used to request ownership of a cache line).

RTS Read to Share (a type of transaction, used to request read-only access to a
cache line).

shall Synonym for must.

should A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym for it is recommended.

side effect The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

SIMD Single Instruction/Multiple Data; a class of instructions that perform identical
operations on multiple data contained (or “packed”) in each source operand.

speculative load A load operation that is issued by a virtual processor speculatively, that is,
before it is known whether the load will be executed in the flow of the
program. Speculative accesses are used by hardware to speed program
execution and are transparent to code. An implementation, through a
combination of hardware and system software, must nullify speculative loads
on memory locations that have side effects; otherwise, such accesses produce
unpredictable results. Contrast with nonfaulting load.

store An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Some
examples of Store includes stores from either integer or floating-point registers,
block stores, Partial Store, and alternate address space variants of those
instructions. See also load and load-store, the definitions of which are mutually
exclusive with store.

strand Identifies the hardware state used to hold a software thread in order to execute
it. Strand is specifically the software-visible architected state (program counter
(PC), next program counter (NPC), general-purpose registers, floating-point
CHAPTER 3 • Definitions 15

registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. See also
pipeline, processor, thread, and virtual processor.

subnormal number Synonym for denormalized number.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

supervisor software Software that executes when the virtual processor is in privileged mode.

synchronization An operation that causes the processor to wait until the effects of all previous
instructions are completely visible before any subsequent instructions are
executed.

system A set of virtual processors that share a physical address space.

taken A control-transfer instruction (CTI) is taken when the CTI alters the control
flow by writing a value into NPC other than the default value NPC = 4.

A trap is taken when the control flow changes in response to an exception,
reset, Tcc instruction, or interrupt. An exception must be detected and
recognized before it can cause a trap to be taken.

TBA Trap base address.

TEE Thread Execution Engine. Synonym for virtual processor and strand.

thread A software entity that can be run on hardware. A thread is scheduled, may or
may not be actively running on hardware at any given time, and may migrate
around the hardware of a system. See also pipeline, processor, strand, and
virtual processor.

TPC Trap-saved program counter.

trap The action taken by a virtual processor when it changes the instruction flow in
response to the presence of an exception, reset, a Tcc instruction, or an
interrupt. The action is a vectored transfer of control to supervisor software
through a table, the address of which is specified by the privileged Trap Base
Address (TBA) register. See also exception.

TSB Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

TSO Total store order.

TTE Translation Table Entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the page table. In some cases, the term is
explicitly used for the entries in the TSB.

UA-2005 UltraSPARC Architecture 2005
16 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

unassigned A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as changing the privilege state or allowing
circumvention of normal restrictions imposed by the privilege state), put a
virtual processor into privileged mode, or put the virtual processor into an
unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

unpredictable Synonym for undefined.

uniprocessor system A system containing a single virtual processor.

unrestricted Describes an address space identifier (ASI) that can be used in all privileged
modes; that is, regardless of the value of PSTATE.priv.

user application
program Synonym for application program.

VA Virtual address.

virtual address An address produced by a virtual processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a
combination of hardware and software to physical addresses, which can be
used to access physical memory.

virtual core,
virtual processor,

virtual processor core Synonyms: virtual processor.

virtual processor The term virtual processor, or virtual processor core, is used to identify each
strand in a processor. A processor contains one or more physical cores, each of
which contains one or more virtual processors (strands). Each virtual
processor (strand) has its own interrupt ID. At any given time, an operating
system can have a different thread scheduled on each virtual processor. See also
pipeline, processor, strand, and thread.

VIS VIS™ Instruction Set.

Strand Abbreviation for Virtual Processor.

word A 4-byte datum. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.
CHAPTER 3 • Definitions 17

WRPR Write Privileged Register instruction.
18 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 4

Architecture Overview

The UltraSPARC Architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The architecture defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 264-byte virtual address space.

The UltraSPARC Architecture 2005 specification describes a processor architecture to
which Sun Microsystem’s SPARC processor implementations (beginning with
UltraSPARC T1) comply. Future implementations are expected to comply with either
this document or a later revision of this document.

The UltraSPARC Architecture 2005 is a descendant of the SPARC V9 architecture and
complies fully with the “Level 1” (nonprivileged) SPARC V9 specification.

Nonprivileged (application) software that is intended to be portable across all
SPARC V9 processors should be written to adhere to The SPARC Architecture Manual-
Version 9.

Material in this document specific to UltraSPARC Architecture 2005 processors may
not apply to SPARC V9 processors produced by other vendors.

In this specification, the word architecture refers to the processor features that are
visible to an assembly language programmer or to a compiler code generator. It does
not include details of the implementation that are not visible or easily observable by
software, nor those that only affect timing (performance).
19

4.1 The UltraSPARC Architecture 2005
This section briefly describes features, attributes, and components of the
UltraSPARC Architecture 2005 and, further, describes correct implementation of the
architecture specification and SPARC V9-compliance levels.

4.1.1 Features
The UltraSPARC Architecture 2005, like its ancestor SPARC V9, includes the
following principal features:

■ A linear 64-bit address space with 64-bit addressing.

■ 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform I/O.

■ Few addressing modes — A memory address is given as either “register +
register” or “register + immediate”.

■ Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

■ A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

■ Floating point — The architecture provides an IEEE 754-compatible floating-
point instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

■ Fast trap handlers — Traps are vectored through a table.

■ Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by virtual processors.

■ Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

■ Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
20 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

In addition, UltraSPARC Architecture 2005 includes the following features that were
not present in the SPARC V9 specification:

■ Hyperprivileged mode, which simplifies porting of operating systems, supports
far greater portability of operating system (privileged) software, and supports the
ability to run multiple simultaneous guest operating systems. (hyperprivileged
mode is described in detail in the Hyperprivileged version of this specification)

■ Multiple levels of global registers — Instead of the two 8-register sets of global
registers specified in the SPARC V9 architecture, UltraSPARC Architecture 2005
provides multiple sets; typically, one set is used at each trap level.

■ Extended instruction set — UltraSPARC Architecture 2005 provides many
instruction set extensions, including the VIS instruction set for "vector" (SIMD)
data operations.

■ More detailed, specific instruction descriptions — UltraSPARC Architecture
2005 provides many more details regarding what exceptions can be generated by
each instruction and the specific conditions under which those exceptions can
occur. Also, detailed lists of valid ASIs are provided for each load/store
instruction from/to alternate space.

■ Detailed MMU architecture — UltraSPARC Architecture 2005 provides a
blueprint for the software view of the UltraSPARC MMU (TTEs and TSBs).

4.1.2 Attributes
UltraSPARC Architecture 2005 is a processor instruction set architecture (ISA) derived
from SPARC V8 and SPARC V9, which in turn come from a reduced instruction set
computer (RISC) lineage. As an architecture, UltraSPARC Architecture 2005 allows
for a spectrum of processor and system implementations at a variety of price/
performance points for a range of applications, including scientific/engineering,
programming, real-time, and commercial applications.

4.1.2.1 Design Goals

The UltraSPARC Architecture 2005 architecture is designed to be a target for
optimizing compilers and high-performance hardware implementations. This
specification documents the UltraSPARC Architecture 2005 and provides a design
spec against which an implementation can be verified, using appropriate verification
software.
CHAPTER 4 • Architecture Overview 21

4.1.2.2 Register Windows

The UltraSPARC Architecture 2005 architecture is derived from the SPARC
architecture, which was formulated at Sun Microsystems in 1984 through1987. The
SPARC architecture is, in turn, based on the RISC I and II designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

4.1.3 System Components
The UltraSPARC Architecture 2005 allows for a spectrum of subarchitectures, such
as cache system.

4.1.3.1 Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 9, Memory, for more information.

Additionally, the SPARC V9 architecture is binary upward-compatible from SPARC
V8 for applications running in nonprivileged mode that conform to the SPARC V8
ABI.

4.1.3.2 UltraSPARC Architecture 2005 MMU

Although the SPARC V9 architecture allows its implementations freedom in their
MMU designs, UltraSPARC Architecture 2005 defines a common MMU architecture
(see Chapter 14, Memory Management) with some specifics left to implementations
(see processor implementation documents).
22 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

4.1.3.3 Privileged Software

UltraSPARC Architecture 2005 does not assume that all implementations must
execute identical privileged software (operating systems). Thus, certain traits that
are visible to privileged software may be tailored to the requirements of the system.

4.1.4 Architectural Definition
The UltraSPARC Architecture 2005 is defined by the chapters and normative
appendixes of this specification. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the
chapters and normative appendixes.

UltraSPARC Architecture 2005 defines a set of implementations that conform to the
SPARC V9 architecture, Level 1.

4.1.5 UltraSPARC Architecture 2005 Compliance with
SPARC V9 Architecture
UltraSPARC Architecture 2005 fully complies with SPARC V9 Level 1
(nonprivileged). It partially complies with SPARC V9 Level 2 (privileged).

4.1.6 Implementation Compliance with UltraSPARC
Architecture 2005
Compliant implementations must not add to or deviate from this standard except in
aspects described as implementation dependent. Appendix B, Implementation
Dependencies lists all UltraSPARC Architecture 2005, SPARC V8, and SPARC V9
implementation dependencies. Documents for specific UltraSPARC Architecture
2005 processor implementations describe the manner in which implementation
dependencies have been resolved in those implementations.

IMPL. DEP. #1-V8: Whether an instruction complies with UltraSPARC Architecture
2005 by being implemented directly by hardware, simulated by software, or
emulated by firmware is implementation dependent.
CHAPTER 4 • Architecture Overview 23

4.2 Processor Architecture
An UltraSPARC Architecture processor logically consists of an integer unit (IU) and
a floating-point unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

An UltraSPARC Architecture virtual processor can run in nonprivileged mode,
privileged mode, or in mode(s) of greater privilege. In privileged mode, the processor
can execute nonprivileged and privileged instructions. In nonprivileged mode, the
processor can only execute nonprivileged instructions. In nonprivileged or
privileged mode, an attempt to execute an instruction requiring greater privilege
than the current mode causes a trap.

4.2.1 Integer Unit (IU)
The integer unit contains the general-purpose registers and controls the overall
operation of the virtual processor. The IU executes the integer arithmetic
instructions and computes memory addresses for loads and stores. It also maintains
the program counters and controls instruction execution for the FPU.

IMPL. DEP. #2-V8: An UltraSPARC Architecture implementation may contain from
72 to 640 general-purpose 64-bit R registers. This corresponds to a grouping of the
registers into MAXPGL + 1 sets of global R registers plus a circular stack of
N_REG_WINDOWS sets of 16 registers each, known as register windows. The number
of register windows present (N_REG_WINDOWS) is implementation dependent, within
the range of 3 to 32 (inclusive).

4.2.2 Floating-Point Unit (FPU)
The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision registers , and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If no FPU is present, then it appears to software as if the FPU is permanently
disabled.

If the FPU is not enabled, then an attempt to execute a floating-point instruction
generates an fp_disabled trap and the fp_disabled trap handler software must either
24 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Enable the FPU (if present) and reexecute the trapping instruction, or
■ Emulate the trapping instruction in software.

4.3 Instructions
Instructions fall into the following basic categories:

■ Memory access
■ Integer arithmetic / logical / shift
■ Control transfer
■ State register access
■ Floating-point operate
■ Conditional move
■ Register window management

These classes are discussed in the following subsections.

4.3.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two R registers or an R register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two R
registers or one, two, or four F registers that supply the data for a store or that
receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword1 memory accesses.

CASA, CASXA, SWAP, and LDSTUB are special atomic memory access instructions
that concurrent processes use for synchronization and memory updates.

The (nonportable) LDTXA instruction supplies an atomic 128-bit (16-byte) load that
is important in certain system software applications.

1. No UltraSPARC Architecture processor currently implements the LDQF instruction in hardware; it generates
an exception and is emulated in supervisor software.
CHAPTER 4 • Architecture Overview 25

4.3.1.1 Memory Alignment Restrictions

A memory access on an UltraSPARC Architecture virtual processor must typically be
aligned on an address boundary greater than or equal to the size of the datum being
accessed. An improperly aligned address in a load, store, or load-store in instruction
may trigger an exception and cause a subsequent trap. For details, see Memory
Alignment Restrictions on page 102.

4.3.1.2 Addressing Conventions

The SPARC V9 architecture uses big-endian byte order by default: the address of a
quadword, doubleword, word, or halfword is the address of its most significant
byte. Increasing the address means decreasing the significance of the unit being
accessed. All instruction accesses are performed using big-endian byte order.

The SPARC V9 architecture also supports little-endian byte order for data accesses
only: the address of a quadword, doubleword, word, or halfword is the address of
its least significant byte. Increasing the address means increasing the significance of
the data unit being accessed. See Processor State (PSTATEP) Register (PR 6) on page 90
for information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 7-2 on page 105 and FIGURE 7-3 on
page 107.

4.3.1.3 Addressing Range

IMPL. DEP. #405-S10: An UltraSPARC Architecture implementation may support a
full 64-bit virtual address space or a more limited range of virtual addresses. In an
implementation that does support a full 64-bit virtual address space, the supported
range of virtual addresses is restricted to two equal-sized ranges at the extreme
upper and lower ends of 64-bit addresses; that is, for n-bit virtual addresses, the
valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

4.3.1.4 Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0016–7F16 is restricted to privileged code, and access to alternate
spaces 8016–FF16 is unrestricted. Some of the ASIs are available for implementation-
dependent uses. Supervisor software can use the implementation-dependent ASIs to
access special protected registers, such as MMU, cache control, and virtual processor
state registers, and other processor- or system-dependent values. See Address Space
Identifiers (ASIs) on page 108 for more information.
26 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUBA, CASA, and CASXA.

4.3.1.5 Separate I and D Memories

The interpretation of addresses can be unified, in which case the same translations
and caching are applied to both instructions and data. Alternatively, addresses can
be split, in which case instruction references use one translation mechanism and
cache and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so a write
into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state.

An UltraSPARC Architecture virtual processor may or may not have coherent
instruction and data caches. Even if it does, a FLUSH instruction is required for self-
modifying code — not for cache coherency, but to flush pipeline instruction buffers
that contain unmodified instructions which may have been subsequently modified.

4.3.1.6 Input/Output (I/O)

The UltraSPARC Architecture assumes that input/output registers are accessed
through load/store alternate instructions, normal load/store instructions, or read/
write Ancillary State Register instructions (RDasr, WRasr).

IMPL. DEP. #123-V9: The semantic effect of accessing input/output (I/O) locations
is implementation dependent.

IMPL. DEP. #6-V8: Whether the I/O registers can be accessed by nonprivileged code
is implementation dependent.

IMPL. DEP. #7-V8: The addresses and contents of I/O registers are implementation
dependent.

Note SWAPA is also available, but it is deprecated and should not be
used in newly developed software.
CHAPTER 4 • Architecture Overview 27

4.3.1.7 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 174 and
Memory Barrier on page 258, respectively.

4.3.2 Arithmetic / Logical / Shift Instructions
The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI, can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an R
register.

Shift instructions shift the contents of an R register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an R
register.

The integer multiply instruction performs a 64 × 64 → 64-bit operation. The integer
division instructions perform 64 ÷ 64 → 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (icc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc)
arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero, icc is
set. The xcc overflow bit is not affected by the tag bits.

4.3.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.

Note STBAR is also available, but it is deprecated and should not be
used in newly developed software.
28 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address.
They compute their target addresses either as the sum of two R registers or as the
sum of an R register and a 13-bit signed immediate value. The “branch on condition
codes without prediction” instruction provides a displacement of ±8 Mbytes; the
“branch on condition codes with prediction” instruction provides a displacement of
±1 Mbyte; the “branch on register contents” instruction provides a displacement of
±128 Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within ± 2 gigabytes (± 231 bytes).

4.3.4 State Register Access
The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA,
PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN,
WSTATE, and VER).

IMPL. DEP. #8-V8-Cs20: Ancillary state registers (ASRs) in the range 0–27 that are
not defined in UltraSPARC Architecture 2005 are reserved for future architectural
use. ASRs in the range 28–31 are available to be used for implementation-dependent
purposes.

IMPL. DEP. #9-V8-Cs20: Whether each of the implementation-dependent read/
write ancillary state register instructions (for ASRs 28–31) is privileged is
implementation dependent.

Note The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The return from privileged trap instructions (DONE and
RETRY) get their target address from the appropriate TPC or
TNPC register.
CHAPTER 4 • Architecture Overview 29

4.3.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
FPops compute a result that is a function of one or two source operands. The groups
of instructions that are considered FPops are listed in Floating-Point Operate (FPop)
Instructions on page 119.

4.3.6 Conditional Move
Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

4.3.7 Register Window Management
Register window instructions manage the register windows. SAVE and RESTORE
are nonprivileged and cause a register window to be pushed or popped. FLUSHW is
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

4.4 Traps
A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for some frequently used traps) of each
trap handler. The base address of the table is established by software in a state
register (the Trap Base Address register, TBA. The displacement within the table is
encoded in the type number of each trap and the level of the trap. Part of the trap
table is reserved for hardware traps, and part of it is reserved for software traps
generated by trap (Tcc) instructions.

A trap causes the current PC and NPC to be saved in the TPC and TNPC registers.
It also causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE.
TPC, TNPC, and TSTATE are entries in a hardware trap stack, where the number of
entries in the trap stack is equal to the number of supported trap levels. A trap also
sets bits in the PSTATE register and typically increments the GL register. Normally,
the CWP is not changed by a trap; on a window spill or fill trap, however, the CWP
is changed to point to the register window to be saved or restored.
30 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

A trap can be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or an interrupt request not directly related to a particular
instruction. Before executing each instruction, a virtual processor determines if there
are any pending exceptions or interrupt requests. If any are pending, the virtual
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 12, Traps, for a complete description of traps.
CHAPTER 4 • Architecture Overview 31

32 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 5

Data Formats

The UltraSPARC Architecture recognizes these fundamental data types:
■ Signed integer: 8, 16, 32, and 64 bits
■ Unsigned integer: 8, 16, 32, and 64 bits
■ SIMD data formats: Uint8 SIMD (32 bits), Int16 SIMD (64 bits), and Int32 SIMD

(64 bits)
■ Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:
■ Byte: 8 bits
■ Halfword: 16 bits
■ Word: 32 bits
■ Tagged word: 32 bits (30-bit value plus 2-bit tag)
■ Doubleword/Extended-word: 64 bits
■ Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:
■ Integer Data Formats on page 34.
■ Floating-Point Data Formats on page 38.
■ SIMD Data Formats on page 41.

Names are assigned to individual subwords of the multiword data formats as
described in these sections:
■ Signed Integer Doubleword (64 bits) on page 35.
■ Unsigned Integer Doubleword (64 bits) on page 37.
■ Floating Point, Double Precision (64 bits) on page 39.
■ Floating Point, Quad Precision (128 bits) on page 40.
33

5.1 Integer Data Formats
TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLE 5-2 describes the memory and register alignment for multiword integer data.
All registers in the integer register file are 64 bits wide, but can be used to contain
smaller (narrower) data sizes. Note that there is no difference between integer
extended-words and doublewords in memory; the only difference is how they are
represented in registers.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data Type
Width
(bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer doubleword/extended-word 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer doubleword/extended-word 64 0 to 264 − 1

Integer tagged word 32 0 to 230 − 1

TABLE 5-2 Integer Doubleword/Extended-word Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)1

1. The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian access-
es are used.

Required
Alignment

Register
Number

SD-0 signed_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

SD-1 signed_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

SX signed_ext_integer{63:0} n mod 8 = 0 n — r

UD-0 unsigned_dbl_integer{63:32} n mod 8 = 0 n r mod 2 = 0 r

UD-1 unsigned_dbl_integer{31:0} (n + 4) mod 8 = 4 n + 4 (r + 1) mod 2 = 1 r + 1

UX unsigned_ext_integer{63:0} n mod 8 = 0 n — r
34 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The data types are illustrated in the following subsections.

5.1.1 Signed Integer Data Types
Figures in this section illustrate the following signed data types:

■ Signed integer byte
■ Signed integer halfword
■ Signed integer word
■ Signed integer doubleword
■ Signed integer extended-word

5.1.1.1 Signed Integer Byte, Halfword, and Word

FIGURE 5-1 illustrates the signed integer byte, halfword, and word data formats.

FIGURE 5-1 Signed Integer Byte, Halfword, and Word Data Formats

5.1.1.2 Signed Integer Doubleword (64 bits)

FIGURE 5-2 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

FIGURE 5-2 Signed Integer Double Data Format

7 6 0

S

15 14 0

S

31 30 0

S

SB

SH

SW

31 30 0

SSD–0

SD–1

31 0

signed_int_doubleword{62:32}

signed_int_doubleword{31:0}
CHAPTER 5 • Data Formats 35

5.1.1.3 Signed Integer Extended-Word (64 bits)

FIGURE 5-3 illustrates the signed integer extended-word (SX) data format.

FIGURE 5-3 Signed Integer Extended-Word Data Format

5.1.2 Unsigned Integer Data Types
Figures in this section illustrate the following unsigned data types:

■ Unsigned integer byte
■ Unsigned integer halfword
■ Unsigned integer word
■ Unsigned integer doubleword
■ Unsigned integer extended-word

5.1.2.1 Unsigned Integer Byte, Halfword, and Word

FIGURE 5-4 illustrates the unsigned integer byte data format.

FIGURE 5-4 Unsigned Integer Byte, Halfword, and Word Data Formats

63 62 0

S signed_int_extendedSX

7 0

15 0

31 0

UB

UH

UW
36 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

5.1.2.2 Unsigned Integer Doubleword (64 bits)

FIGURE 5-5 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

FIGURE 5-5 Unsigned Integer Double Data Format

5.1.2.3 Unsigned Extended Integer (64 bits)

FIGURE 5-6 illustrates the unsigned extended integer (UX) data format.

FIGURE 5-6 Unsigned Extended Integer Data Format

5.1.3 Tagged Word (32 bits)
FIGURE 5-7 illustrates the tagged word data format.

FIGURE 5-7 Tagged Word Data Format

31 0

UD–0

UD–1

31 0

unsigned_int_doubleword{63:32}

unsigned_int_doubleword{31:0}

63 0

unsigned_int_extendedUX

31 0

tag

2 1

TW
CHAPTER 5 • Data Formats 37

5.2 Floating-Point Data Formats
Single-precision, double-precision, and quad-precision floating-point data types are
described below.

5.2.1 Floating Point, Single Precision (32 bits)
FIGURE 5-8 illustrates the floating-point single-precision data format, and TABLE 5-3
describes the formats.

FIGURE 5-8 Floating-Point Single-Precision Data Format

TABLE 5-3 Floating-Point Single-Precision Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S

2223

FS exp{7:0} fraction{22:0}
38 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

5.2.2 Floating Point, Double Precision (64 bits)
FIGURE 5-9 illustrates both components (FD-0 and FD-1) of the floating-point double-
precision data format, and TABLE 5-4 describes the formats.

FIGURE 5-9 Floating-Point Double-Precision Data Format

TABLE 5-4 Floating-Point Double-Precision Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0, f = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

31 30 0

S

1920

FD–0

FD–1

31 0

fraction{31:0}

fraction{51:32}exp{10:0}
CHAPTER 5 • Data Formats 39

5.2.3 Floating Point, Quad Precision (128 bits)
FIGURE 5-10 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-5 describes the formats.

FIGURE 5-10 Floating-Point Quad-Precision Data Format

TABLE 5-5 Floating-Point Quad-Precision Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0, f = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

31 30 0

S

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

31 0

31 0

fraction{31:0}

fraction{63:32}

fraction{95:64}

fraction{111:96}exp{14:0}
40 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

5.2.4 Floating-Point Data Alignment in Memory and
Registers
TABLE 5-6 describes the address and memory alignment for floating-point data.

5.3 SIMD Data Formats
SIMD (single instruction/multiple data) instructions perform identical operations on
multiple data contained (“packed”) in each source operand. This section describes
the data formats used by SIMD instructions.

Conversion between the different SIMD data formats can be achieved through SIMD
multiplication or by the use of the SIMD data formatting instructions.

TABLE 5-6 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Memory Address Register Number

Required
Alignment

Address
(big-endian)*

Required
Alignment

Register
Number

FD-0 s:exp{10:0}:fraction{51:32} 0 mod 4 † n 0 mod 2 f

FD-1 fraction{31:0} 0 mod 4 † n + 4 1 mod 2 f + 1◊

FQ-0 s:exp{14:0}:fraction{111:96} 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction{95:64} 0 mod 4 ‡ n + 4 1 mod 4 f + 1◊

FQ-2 fraction{63:32} 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction{31:0} 0 mod 4 ‡ n + 12 3 mod 4 f + 3◊

* The memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian
accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores
instead of multiple singleword loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

◊ Note that this 32-bit floating-point register is only directly addressable in the lower half of the register file (that is, if its register
number is ≤ 31).
CHAPTER 5 • Data Formats 41

5.3.1 Uint8 SIMD Data Format
The Uint8 SIMD data format consists of four unsigned 8-bit integers contained in a
32-bit word (see FIGURE 5-11).

FIGURE 5-11 Uint8 SIMD Data Format

5.3.2 Int16 SIMD Data Formats
The Int16 SIMD data format consists of four signed 16-bit integers contained in a 64-
bit word (see FIGURE 5-12).

FIGURE 5-12 Int16 SIMD Data Format

5.3.3 Int32 SIMD Data Format
The Int32 SIMD data format consists of two signed 32-bit integers contained in a 64-
bit word (see FIGURE 5-13).

FIGURE 5-13 Int32 SIMD Data Format

Programming
Note

The SIMD data formats can be used in graphics calculations to
represent intensity values for an image (e.g., α, B, G, R).

Intensity values are typically grouped in one of two ways, when
using SIMD data formats:

■ Band interleaved images, with the various color components
of a point in the image stored together, and

■ Band sequential images, with all of the values for one color
component stored together.

31 24 023 15 8 716

value0 value1 value3value2
Uint8 SIMD

63 48 0

s0 value0

47 32 31 16 1562

s1 value1

46

s2 value2

30

s3

14

value3
Int16
SIMD

63 032 31

s0

62

value0 s1

30

value1
Int32
SIMD
42 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Programming
Note

The integer SIMD data formats can be used to hold fixed-point
data. The position of the binary point in a SIMD datum is
implied by the programmer and does not influence the
computations performed by instructions that operate on that
SIMD data format.
CHAPTER 5 • Data Formats 43

44 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 6

Registers

The following registers are described in this chapter:
■ General-Purpose R Registers on page 46.
■ Floating-Point Registers on page 52.
■ Floating-Point State Register (FSR) on page 58.
■ Ancillary State Registers on page 67. The following registers are included in this

category:
■ 32-bit Multiply/Divide Register (Y) (ASR 0) on page 69.
■ Integer Condition Codes Register (CCR) (ASR 2) on page 69.
■ Address Space Identifier (ASI) Register (ASR 3) on page 71.
■ Tick (TICK) Register (ASR 4) on page 71.
■ Program Counters (PC, NPC) (ASR 5) on page 72.
■ Floating-Point Registers State (FPRS) Register (ASR 6) on page 73.
■ Performance Control Register (PCRP) (ASR 16) on page 74.
■ Performance Instrumentation Counter (PIC) Register (ASR 17) on page 75.
■ General Status Register (GSR) (ASR 19) on page 76.
■ SOFTINTP Register (ASRs 20, 21, 22) on page 77.
■ SOFTINT_SETP Pseudo-Register (ASR 20) on page 78.
■ SOFTINT_CLRP Pseudo-Register (ASR 21) on page 79.
■ Tick Compare (TICK_CMPRP) Register (ASR 23) on page 79.
■ System Tick (STICK) Register (ASR 24) on page 80.
■ System Tick Compare (STICK_CMPRP) Register (ASR 25) on page 81.

■ Register-Window PR State Registers on page 81. The following registers are
included in this subcategory:
■ Current Window Pointer (CWPP) Register (PR 9) on page 82.
■ Savable Windows (CANSAVEP) Register (PR 10) on page 83.
■ Restorable Windows (CANRESTOREP) Register (PR 11) on page 83.
■ Clean Windows (CLEANWINP) Register (PR 12) on page 83.
■ Other Windows (OTHERWINP) Register (PR 13) on page 84.
■ Window State (WSTATEP) Register (PR 14) on page 84.

■ Non-Register-Window PR State Registers on page 86. The following registers are
included in this subcategory:
■ Trap Program Counter (TPCP) Register (PR 0) on page 86.
■ Trap Next PC (TNPCP) Register (PR 1) on page 87.
45

■ Trap State (TSTATEP) Register (PR 2) on page 88.
■ Trap Type (TTP) Register (PR 3) on page 89.
■ Trap Base Address (TBAP) Register (PR 5) on page 89.
■ Processor State (PSTATEP) Register (PR 6) on page 90.
■ Trap Level Register (TLP) (PR 7) on page 94.
■ Processor Interrupt Level (PILP) Register (PR 8) on page 95.
■ Global Level Register (GLP) (PR 16) on page 96.

There are additional registers that may be accessed through ASIs; those registers are
described in Chapter 10, Address Space Identifiers (ASIs).

6.1 Reserved Register Fields
For convenience, some registers in this chapter are illustrated as fewer than 64 bits
wide. Any bits not shown (or explicitly marked as reserved) are reserved for future
extensions to the architecture.

Such a reserved field within a register reads as zero in current implementations and,
when written by software, should only be written with the value of that field
previously read from that register or with the value zero.

6.2 General-Purpose R Registers
An UltraSPARC Architecture virtual processor contains an array of general-purpose
64-bit R registers. The array is partitioned into MAXPGL + 1 sets of eight global
registers, plus N_REG_WINDOWS groups of 16 registers each. The value of
N_REG_WINDOWS in an UltraSPARC Architecture implementation falls within the
range 3 to 32 (inclusive).

One set of 8 global registers is always visible. At any given time, a group of 24
registers, known as a register window, is also visible. A register window comprises
the 16 registers from the current 16-register group (referred to as 8 in registers and 8
local registers), plus half of the registers from the next 16-register group (referred to
as 8 out registers). See FIGURE 5-1.

Programming
Note

Software intended to run on future versions of the UltraSPARC
Architecture should not assume that reserved register fields will
read as 0 or any other particular value.
46 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SPARC instructions use 5-bit fields to reference R registers. That is, 32 R registers are
visible to software at any moment. Which 32 out of the full set of R registers are
visible is described in the following sections. The visible 32 R registers are named
R[0] through R[31], illustrated in FIGURE 6-1.

i7R[31]

i6R[30]

i5R[29]

i4R[28]

i3R[27]

i2R[26]

i1R[25]

i0R[24]

R[23]

R[22]

R[21]

R[20]

R[19]

R[18]

R[17]

R[16]

R[15]

R[14]

R[13]

R[12]

R[11]

R[10]

R[9]

R[8]

R[7]

R[6]

R[5]

R[4]

R[3]

R[2]

R[1]

R[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

FIGURE 6-1 General-Purpose Registers (as Visible at Any Given Time)

ins

locals

outs

globals
CHAPTER 6 • Registers 47

6.2.1 Global R Registers
Registers R[0]–R[7] refer to a set of eight registers called the global registers (labeled
g0 through g7). At any time, one of MAXPGL +1 sets of eight registers is enabled and
can be accessed as the current set of global registers. The currently enabled set of
global registers is selected by the GL register. See Global Level Register (GLP) (PR 16)
on page 96.

Global register zero (G0) always reads as zero; writes to it have no software-visible
effect.

6.2.2 Windowed R Registers
A set of 24 R registers that is visible as R[8]–R[31] at any given time is called a
“register window”. The registers that become R[8]–R[15] in a register window are
called the out registers of the window. Note that the in registers of a register window
become the out registers of an adjacent register window. See TABLE 6-1 and
FIGURE 6-2.

The names in, local, and out originate from the fact that the out registers are typically
used to pass parameters from (out of) a calling routine and that the called routine
receives those parameters as its in registers.

TABLE 6-1 Window Addressing

Windowed Register Address R Register Address

in[0] – in[7] R[24] – R[31]

local[0] – local[7] R[16] – R[23]

out[0] – out[7] R[8] – R[15]

global[0] – global[7] R[0] – R[7]

V9 Compatibility
Note

In the SPARC V9 architecture, the number of 16-register
windowed register sets, N_REG_WINDOWS, ranges from 3 to 32
(impl. dep. #2-V8). The maximum global register set index in the
UltraSPARC Architecture, MAXPGL, ranges from 2 to 15. The
number of implemented global register sets is MAXPGL + 1. The
total number of R registers in a given UltraSPARC Architecture
implementation is:

(N_REG_WINDOWS × 16) + ((MAXPGL + 1) × 8)
Therefore, an UltraSPARC Architecture processor may contain

from 72 to 640 R registers.

A1

A1
48 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The current window in the windowed portion of R registers is indicated by the
current window pointer (CWP) register. The CWP is decremented by the RESTORE
instruction and incremented by the SAVE instruction.

Overlapping Windows. Each window shares its ins with one adjacent window
and its outs with another. The outs of the CWP – 1 (modulo N_REG_WINDOWS)
window are addressable as the ins of the current window, and the outs in the current
window are the ins of the CWP + 1 (modulo N_REG_WINDOWS) window. The locals
are unique to each window.

Register address o, where 8 ≤ o ≤ 15, refers to exactly the same out register before the
register window is advanced by a SAVE instruction (CWP is incremented by 1
(modulo N_REG_WINDOWS)) as does register address o+16 after the register window
is advanced. Likewise, register address i, where 24 ≤ i ≤ 31, refers to exactly the same

Window (CWP – 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

Window (CWP + 1)

R[31]

R[24]

ins

R[23]

R[16]

locals

R[15]

R[8]

outs

R[7]

R[1]

globals
.
.

R[0] 0

63 0

FIGURE 6-2 Three Overlapping Windows and Eight Global Registers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CHAPTER 6 • Registers 49

in register before the register window is restored by a RESTORE instruction (CWP is
decremented by 1 (modulo N_REG_WINDOWS)) as does register address i−16 after the
window is restored. See FIGURE 6-2 on page 49 and FIGURE 6-3 on page 51.

To application software, the virtual processor appears to provide an infinitely-deep
stack of register windows.

Since CWP arithmetic is performed modulo N_REG_WINDOWS, the highest-numbered
implemented window overlaps with window 0. The outs of window
N_REG_WINDOWS − 1 are the ins of window 0. Implemented windows are numbered
contiguously from 0 through N_REG_WINDOWS −1.

Because the windows overlap, the number of windows available to software is 1 less
than the number of implemented windows; that is, N_REG_WINDOWS – 1. When the
register file is full, the outs of the newest window are the ins of the oldest window,
which still contains valid data.

Window overflow is detected by the CANSAVE register, and window underflow is
detected by the CANRESTORE register, both of which are controlled by privileged
software. A window overflow (underflow) condition causes a window spill (fill)
trap.

When a new register window is made visible through use of a SAVE instruction, the
local and out registers are guaranteed to contain either zeroes or valid data from the
current context. If software executes a RESTORE and later executes a SAVE, then the
contents of the resulting window’s local and out registers are not guaranteed to be
preserved between the RESTORE and the SAVE1. Those registers may even have
been written with “dirty” data, that is, data created by software running in a
different context. However, if the clean_window protocol is being used, system
software must guarantee that registers in the current window after a SAVE always
contains only zeroes or valid data from that context. See Clean Windows
(CLEANWINP) Register (PR 12) on page 83, Savable Windows (CANSAVEP) Register
(PR 10) on page 83, and Restorable Windows (CANRESTOREP) Register (PR 11) on
page 83.

Programming
Note

Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing
the window. See the section “Leaf-Procedure Optimization” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes

1. For example, any of those 16 registers might be altered due to the occurrence of a trap between the RESTORE
and the SAVE, or might be altered during the RESTORE operation due to the way that register windows are
implemented. After a RESTORE instruction executes, software must assume that the values of the affected 16
registers from before the RESTORE are unrecoverable.

Implementation
Note

An UltraSPARC Architecture virtual processor supports the
guarantee in the preceding paragraph of “either zeroes or valid
data from the current context”; it may do so either in hardware
or in a combination of hardware and system software.
50 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Register Window Management Instructions on page 116 describes how the windowed
integer registers are managed.

FIGURE 6-3 Windowed R Registers for N_REG_WINDOWS = 8

w4 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

The current window (window 0) and the overlap window (window 5) account for the
two windows in the right side of the equation. The “overlap window” is the window
that must remain unused because its ins and outs overlap two other valid windows.

SAVE RESTORE w5 ins

CANSAVE =4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(CURRENT WINDOW POINTER)
CHAPTER 6 • Registers 51

In FIGURE 6-3, N_REG_WINDOWS = 8. The eight global registers are not illustrated.
CWP = 0, CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure
using window w0 executes a RESTORE, then window w7 becomes the current
window. If the procedure using window w0 executes a SAVE, then window w1
becomes the current window.

6.2.3 Special R Registers
The use of two of the R registers is fixed, in whole or in part, by the architecture:

■ The value of R[0] is always zero; writes to it have no program-visible effect.

■ The CALL instruction writes its own address into register R[15] (out register 7).

Register-Pair Operands. LDTW, LDTWA, STTW, and STTWA instructions access
a pair of words (“twin words”) in adjacent R registers and require even-odd register
alignment. The least significant bit of an R register number in these instructions is
unused and must always be supplied as 0 by software.

When the R[0]–R[1] register pair is used as a destination in LDTW or LDTWA, only
R[1] is modified. When the R[0]–R[1] register pair is used as a source in STTW or
STTWA, 0 is read from R[0], so 0 is written to the 32-bit word at the lowest address,
and the least significant 32 bits of R[1] are written to the 32-bit word at the highest
address.

An attempt to execute anLDTW, LDTWA, STTW, or STTWA instruction that refers
to a misaligned (odd) destination register number causes an illegal_instruction trap.

6.3 Floating-Point Registers
The floating-point register set consists of sixty-four 32-bit registers, which may be
accessed as follows:

■ Sixteen 128-bit quad-precision registers, referenced as FQ[0], FQ[4], …, FQ[60]

■ Thirty-two 64-bit double-precision registers, referenced as FD[0], FD[2], …, FD[62]

■ Thirty-two 32-bit single-precision registers, referenced as FS[0], FS[1], …, FS[31]
(only the lower half of the floating-point register file can be accessed as single-
precision registers)

The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
TABLE 6-2. Unlike the windowed R registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by

A2
52 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

floating-point operate (FPop1/FPop2 format) instructions, by load/store single/
double/quad floating-point instructions, by VIS™ instructions, and by block load
and block store instructions.

TABLE 6-2 Floating-Point Registers, with Aliasing (1 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language

FS[0] %f0 63:32
FD[0] %d0 127:64

FQ[0] %q0
FS[1] %f1 31:0

FS[2] %f2 63:32
FD[2] %d2 63:0

FS[3] %f3 31:0

FS[4] %f4 63:32
FD[4] %d4 127:64

FQ[4] %q4
FS[5] %f5 31:0

FS[6] %f6 63:32
FD[6] %d6 63:0

FS[7] %f7 31:0

FS[8]] %f8 63:32
FD[8] %d8 127:64

FQ[8] %q8
FS[9] %f9 31:0

FS[10] %f10 63:32
FD[10] %d10 63:0

FS[11] %f11 31:0

FS[12] %f12 63:32
FD[12] %d12 127:64

FQ[12] %q12
FS[13] %f13 31:0

FS[14] %f14 63:32
FD[14] %d14 63:0

FS[15] %f15 31:0

FS[16] %f16 63:32
FD[16] %d16 127:64

FQ[16] %q16
FS[17] %f17 31:0

FS[18] %f18 63:32
FD[18] %d18 63:0

FS[19] %f19 31:0

FS[20] %f20 63:32
FD[20] %d20 127:64

FQ[20] %q20
FS[21] %f21 31:0

FS[22] %f22 63:32
FD[22] %d22 63:0

FS[23] %f23 31:0
CHAPTER 6 • Registers 53

FS[24] %f24 63:32
FD[24] %d24 127:64

FQ[24] %q24
FS[25] %f25 31:0

FS[26] %f26 63:32
FD[26] %d26 63:0

FS[27] %f27 31:0

FS[28] %f28 63:32
FD[28] %d28 127:64

FQ[28] %q28
FS[29] %f29 31:0

FS[30] %f30 63:32
FD[30] %d30 63:0

FS[31] %f31 31:0

63:32
FD[32] %d32 127:64

FQ[32] %q32
31:0

63:32
FD[34] %d34 63:0

31:0

63:32
FD[36] %d36 127:64

FQ[36] %q36
31:0

63:32
FD[38] %d38 63:0

31:0

63:32
FD[40] %d40 127:64

FQ[40] %q40
31:0

63:32
FD[42] %d42 63:0

31:0

63:32
FD[44] %d44 127:64

FQ[44] %q44
31:0

63:32
FD[46] %d46 63:0

31:0

63:32
FD[48] %d48 127:64

FQ[48] %q48
31:0

63:32
FD[50] %d50 63:0

31:0

TABLE 6-2 Floating-Point Registers, with Aliasing (2 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
54 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.3.1 Floating-Point Register Number Encoding
Register numbers for single, double, and quad registers are encoded differently in
the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b{4} … b{0} (where b{4} is the most significant bit of the
register number), the encoding of floating-point register numbers into 5-bit
instruction fields is as given in TABLE 6-3.

63:32
FD[52] %d52 127:64

FQ[52] %q52
31:0

63:32
FD[54] %d54 63:0

31:0

63:32
FD[56] %d56 127:64

FQ[56] %q56
31:0

63:32
FD[58] %d58 63:0

31:0

63:32
FD[60] %d60 127:64

FQ[60] %q60
31:0

63:32
FD[62] %d62 63:0

31:0

TABLE 6-3 Floating-Point Register Number Encoding

Register Operand
Type Full 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single 0 b{4} b{3} b{2} b{1} b{0} b{4} b{3} b{2} b{1} b{0}

Double b{5} b{4} b{3} b{2} b{1} 0 b{4} b{3} b{2} b{1} b{5}

Quad b{5} b{4} b{3} b{2} 0 0 b{4} b{3} b{2} 0 b{5}

TABLE 6-2 Floating-Point Registers, with Aliasing (3 of 3)

Single Precision
(32-bit)

Double Precision
(64-bit)

Quad Precision
(128-bit)

Register
Assembly
Language Bits Register

Assembly
Language Bits Register

Assembly
Language
CHAPTER 6 • Registers 55

6.3.2 Double and Quad Floating-Point Operands
A single 32-bit F register can hold one single-precision operand; a double-precision
operand requires an aligned pair of F registers, and a quad-precision operand
requires an aligned quadruple of F registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.

SPARC V8
Compatibility

Note

In the SPARC V8 architecture, bit 0 of double and quad register
numbers encoded in instruction fields was required to be zero.
Therefore, all SPARC V8 floating-point instructions can run
unchanged on an UltraSPARC Architecture virtual processor,
using the encoding in TABLE 5-3.
56 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Programming
Note

The upper 16 double-precision (upper 8 quad-precision)
floating-point registers cannot be directly loaded by 32-bit load
instructions. Therefore, double- or quad-precision data that is
only word-aligned in memory cannot be directly loaded into the
upper registers with LDF[A] instructions. The following
guidelines are recommended:

1. Whenever possible, align floating-point data in memory on
proper address boundaries. If access to a datum is required to
be atomic, the datum must be properly aligned.

2. If a double- or quad-precision datum is not properly aligned
in memory or is still aligned on a 4-byte boundary, and access
to the datum in memory is not required to be atomic, then
software should attempt to allocate a register for it in the
lower half of the floating-point register file so that the datum
can be loaded with multiple LDF[A] instructions.

3. If the only available registers for such a datum are located in
the upper half of the floating-point register file and access to
the datum in memory is not required to be atomic, the word-
aligned datum can be loaded into them by one of two
methods:
■ Load the datum into an upper register by using multiple

LDF[A] instructions to first load it into a double- or quad-
precision register in the lower half of the floating-point
register file, then copy that register to the desired
destination register in the upper half

■ Use an LDDF[A] or LDQF[A] instruction to perform the
load directly into the upper floating-point register,
understanding that use of these instructions on poorly
aligned data can cause a trap (LDDF_mem_not_aligned) on
some implementations, possibly slowing down program
execution significantly.

Programming
Note

If an UltraSPARC Architecture 2005 implementation does not
implement a particular quad floating-point arithmetic operation
in hardware and an invalid quad register operand is specified,
per FSR.ftt priorities in TABLE 6-7, the fp_exception_other
exception occurs with FSR.ftt = 3 (unimplemented_FPop)
instead of with FSR.ftt = 6 (invalid_fp_register).

Implementation
Note

UltraSPARC Architecture 2005 implementations do not
implement any quad floating-point arithmetic operations in
hardware. Therefore, an attempt to execute any of them results
in a trap on the fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop).
CHAPTER 6 • Registers 57

6.4 Floating-Point State Register (FSR)
The Floating-Point State register (FSR) fields, illustrated in FIGURE 6-4, contain FPU
mode and status information. The lower 32 bits of the FSR are read and written by
the STFSR and LDFSR instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR instructions, respectively. FSR.ver, FSR.ftt, and the reserved
(“—”) fields of FSR are not modified by LDFSR or LDXFSR.

Bits 63–38, 29–28, 21–20, and 12 are reserved. When read by an STXFSR instruction,
these bits always read as zero.

The subsections on pages 58 through 67 describe the remaining fields in the FSR.

6.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2,
fcc3)
The four sets of floating-point condition code fields are labeled fcc0, fcc1, fcc2, and
fcc3 (fccn refers to any of the floating-point condition code fields).

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32,
fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields
in the FSR, as selected by the compare instruction. The fccn fields are read and
written by STXFSR and LDXFSR instructions, respectively. The fcc0 field can also be
read and written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions
base their control transfers on the content of these fields. The MOVcc and FMOVcc
instructions can conditionally copy a register, based on the contents of these fields.

Programming
Note

For future compatibility, software should issue LDXFSR
instructions only with zero values in these bits or values of these
bits exactly as read by a previous STXFSR.

RW RW RW

— fcc3 fcc2 fcc1

63 38 37 36 35 34 33 32

RW RW RW R R R RW RW RW

rd — tem ns — ver ftt qne — fcc0 aexc cexc

31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

FIGURE 6-4 FSR Fields

FSR

A1
58 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

In TABLE 6-5, frs1 and frs2 correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s rs1 and
rs2 fields. The question mark (?) indicates an unordered relation, which is true if
either frs1 or frs2 is a signalling NaN or a quiet NaN. If FCMP or FCMPE generates
an fp_exception_ieee_754 exception, then fccn is unchanged.

6.4.2 Rounding Direction (rd)
Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-6 shows the encodings.

If the interval mode bit of the General Status register has a value of 1 (GSR.im = 1),
then the value of FSR.rd is ignored and floating-point results are instead rounded
according to GSR.irnd. See General Status Register (GSR) (ASR 19) on page 76 for
further details.

6.4.3 Trap Enable Mask (tem)
Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 6-5
on page 66. If a floating-point instruction generates one or more exceptions and the

TABLE 6-4 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 F[rs1] = F[rs2]

1 F[rs1] < F[rs2]

2 F[rs1] > F[rs2]

3 F[rs1] ? F[rs2] (unordered)

TABLE 6-5 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn

0 1 2 3

Indicated Relation
(FCMP*, FCMPE*)

F[rs1] = F[rs2] F[rs1] < F[rs2] F[rs1] > F[rs2] F[rs1] ? F[rs2]
(unordered)

TABLE 6-6 Rounding Direction (rd) Field of FSR

rd Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞

A1

A1
CHAPTER 6 • Registers 59

tem bit corresponding to any of the exceptions is 1, then this condition causes an
fp_exception_ieee_754 trap. A tem bit value of 0 prevents the corresponding IEEE
754 exception type from generating a trap.

6.4.4 Nonstandard Floating-Point (ns)
On an UltraSPARC Architecture 2005 processor, FSR.ns is a reserved bit; it always
reads as 0 and writes to it are ignored. (impl. dep. #18-V8)

6.4.5 FPU Version (ver)
IMPL. DEP. #19-V8: Bits 19 through 17 identify one or more particular
implementations of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER.impl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR.ver.

FSR.ver = 7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

6.4.6 Floating-Point Trap Type (ftt)
Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, FSR.ftt (FSR{16:14}) identifies the cause of the exception, the
“floating-point trap type.” After a floating-point exception occurs, FSR.ftt encodes
the type of the floating-point exception until it is cleared (set to 0) by execution of an
STFSR, STXFSR, or FPop that does not cause a trap due to a floating-point exception.

The FSR.ftt field can be read by a STFSR or STXFSR instruction. The LDFSR and
LDXFSR instructions do not affect FSR.ftt.

A1

A1
60 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero ftt
after the store completes without error. If the store generates an error and does not
complete, ftt remains unchanged.

FSR.ftt encodes the primary condition (“floating-point trap type”) that caused the
generation of an fp_exception_other or fp_exception_ieee_754 exception. It is
possible for more than one such condition to occur simultaneously; in such a case,
only the highest-priority condition will be encoded in FSR.ftt. The conditions
leading to fp_exception_other and fp_exception_ieee_754 exceptions, their relative
priorities, and the corresponding FSR.ftt values are listed in TABLE 6-7. Note that the
FSR.ftt values 4 and 5 were defined in the SPARC V9 architecture but are not
currently in use, and that the value 7 is reserved for future architectural use.

IEEE_754_exception, unimplemented_FPop, and unfinished_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. When an fp_exception_ieee_754 trap occurs, a bit corresponding to the trapping
exception is set in cexc. On other traps, the value of cexc is unchanged.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

Programming
Note

Neither LDFSR nor LDXFSR can be used for the purpose of
clearing the ftt field, since both leave ftt unchanged. However,
executing a nontrapping floating-point operate (FPop)
instruction such as “fmovs %f0,%f0” prior to returning to
nonprivileged mode will zero FSR.ftt. The ftt field remains zero
until the next FPop instruction completes execution.

TABLE 6-7 FSR Floating-Point Trap Type (ftt) Field

Condition Detected During
Execution of an FPop

Relative
Priority

(1 = highest)

Result

FSR.ftt Set
to Value Exception Generated

unimplemented_FPop 10 3 fp_exception_other

invalid_fp_register 20 6 fp_exception_other

unfinished _FPop 30 2 fp_exception_other

IEEE_754_exception 40 1 fp_exception_ieee_754

Reserved — 4, 5, 7 —

(none detected) — 0 —
CHAPTER 6 • Registers 61

The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an fp_exception_ieee_754 exception or after
recovery from an unfinished_FPop or unimplemented_FPop. In either case, cexc as
seen by the trap handler reflects the exception causing the trap.

In the cases of an fp_exception_other exception with a floating-point trap type of
unfinished_FPop or unimplemented_FPop that does not subsequently generate an
IEEE trap, the recovery software should set cexc, aexc, and the destination register
or fccn, as appropriate.

ftt = 1 (IEEE_754_exception). The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The IEEE 754 exception type (overflow, inexact, etc.) is set in the cexc field. The
aexc and fccn fields and the destination F register are unchanged.

ftt = 2 (unfinished_FPop). The unfinished_FPop floating-point trap type indicates
that the virtual processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. In cases where exceptions have
occurred, the cexc field is unchanged.

IMPL. DEP. #248-U3: The conditions under which an fp_exception_other exception
with floating-point trap type of unfinished_FPop can occur are implementation
dependent. An implementation may cause fp_exception_other with
FSR.ftt = unfinished_FPop under a different (but specified) set of conditions.

ftt = 3 (unimplemented_FPop) . The unimplemented_FPop floating-point trap
type indicates that the virtual processor decoded an FPop that it does not implement
in hardware. In this case, the cexc field is unchanged.

For example, all quad-precision FPop variations in an UltraSPARC Architecture 2005
virtual processor cause an fp_exception_other exception, setting
FSR.ftt = unimplemented_FPop.

Forward
Compatibility

Note

The next revision of the UltraSPARC Architecture is expected to
eliminate “unimplemented_FPop”, to simplify handling of
unimplemented instructions. At that point, all conditions which
currently cause cause fp_exception_other with FSR.ftt = 3 will
cause an illegal_instruction exception, instead. FSR.ftt = 3 and
the trap type associated with fp_exception_other will become
reserved for other possible future uses.
62 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

ftt = 4 (Reserved).

ftt = 5 (Reserved).

ftt = 6 (invalid_fp_register). This trap type indicates that one or more F register
operands of an FPop are misaligned; that is, a quad-precision register number is not
0 mod 4. An implementation generates an fp_exception_other trap with FSR.ftt =
invalid_fp_register in this case.

6.4.7 FQ Not Empty (qne)
Since UltraSPARC Architecture virtual processors do not implement a floating-point
queue, FSR.qne always reads as zero and writes to FSR.qne are ignored.

6.4.8 Accrued Exceptions (aexc)
Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the tem field. See FIGURE 6-6 on page 66.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 4 was defined to be
"sequence_error", for use with certain error conditions
associated with a floating-point queue (FQ). Since UltraSPARC
Architecture implementations generate precise (rather than
deferred) traps for floating-point operations, an FQ is not
needed; therefore sequence_error conditions cannot occur and
ftt =4 has been returned to the pool of reserved ftt values.

SPARC V9
Compatibility

Note

In the SPARC V9 architecture, FSR.ftt = 5 was defined to be
"hardware_error", for use with hardware error conditions
associated with an external floating-point unit (FPU) operating
asynchronously to the main processor (IU). Since UltraSPARC
Architecture processors are now implemented with an integral
FPU, a hardware error in the FPU can generate an exception
directly, rather than indirectly report the error through FSR.ftt
(as was required when FPUs were external to IUs). Therefore,
ftt = 5 has been returned to the pool of reserved ftt values.

Implementation
Note

Per FSR.ftt priorities in TABLE 6-7, if an UltraSPARC Architecture
2005 processor does not implement a particular quad FPop in
hardware, that FPop generates an fp_exception_other exception
with FSR.ftt = 3 (unimplemented_FPop) instead of
fp_exception_other with FSR.ftt = 6 (invalid_fp_register),
regardless of the specified F registers.

Y2

A1
CHAPTER 6 • Registers 63

After an FPop completes with ftt = 0, the tem and cexc fields are logically anded
together. If the result is nonzero, aexc is left unchanged and an
fp_exception_ieee_754 trap is generated; otherwise, the new cexc field is ored into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

FSR.aexc is written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

6.4.9 Current Exception (cexc)
FSR.cexc (FSR{4:0}) indicates whether one or more IEEE 754 floating-point
exceptions were generated by the most recently executed FPop instruction. The
absence of an exception causes the corresponding bit to be cleared (set to 0). See
FIGURE 6-5 on page 66.

The cexc bits are set as described in Floating-Point Exception Fields on page 65, by the
execution of an FPop that either does not cause a trap or causes an
fp_exception_ieee_754 exception with FSR.ftt = IEEE_754_exception. An IEEE 754
exception that traps shall cause exactly one bit in FSR.cexc to be set, corresponding
to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an “inexact” condition. For overflow and underflow conditions, FSR.cexc bits
are set and trapping occurs as follows:

■ If an IEEE 754 overflow condition occurs:

■ if FSR.tem.ofm = 0 and tem.nxm = 0, the FSR.cexc.ofc and FSR.cexc.nxc bits
are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

■ if FSR.tem.ofm = 0 and tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the other
four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does
occur.

■ if FSR.tem.ofm = 1, the FSR.cexc.ofc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

■ If an IEEE 754 underflow condition occurs:

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 0, the FSR.cexc.ufc and FSR.cexc.nxc
bits are both set to 1, the other three bits of FSR.cexc are set to 0, and an
fp_exception_ieee_754 trap does not occur.

Programming
Note

If the FPop traps and software emulate or finish the instruction,
the system software in the trap handler is responsible for
creating a correct FSR.cexc value before returning to a
nonprivileged program.

A1
64 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ if FSR.tem.ufm = 0 and FSR.tem.nxm = 1, the FSR.cexc.nxc bit is set to 1, the
other four bits of FSR.cexc are set to 0, and an fp_exception_ieee_754 trap
does occur.

■ if FSR.tem.ufm = 1, the FSR.cexc.ufc bit is set to 1, the other four bits of
FSR.cexc are set to 0, and an fp_exception_ieee_754 trap does occur.

The above behavior is summarized in TABLE 6-8 (where “✔ ” indicates “exception was
detected” and “x” indicates “don’t care”):

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR.cexc is left unchanged.

6.4.10 Floating-Point Exception Fields
The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):

TABLE 6-8 Setting of FSR.cexc Bits

Conditions Results

Exception(s)
Detected

in F.p.
operation

Trap Enable
Mask bits

(in FSR.tem) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx ofm ufm nxm ofc ufc nxc

- - - x x x no 0 0 0

- - ✔ x x 0 no 0 0 1

- ✔ 1 ✔ 1 x 0 0 no 0 1 1

✔ 2 - ✔ 2 0 x 0 no 1 0 1

- - ✔ x x 1 yes 0 0 1

- ✔ 1 ✔ 1 x 0 1 yes 0 0 1

- ✔ - x 1 x yes 0 1 0

- ✔ ✔ x 1 x yes 0 1 0

✔ 2 - ✔ 2 1 x x yes 1 0 0

✔ 2 - ✔ 2 0 x 1 yes 0 0 1

Notes: 1 When the underflow trap is disabled (FSR.tem.ufm = 0)
underflow is always accompanied by inexact.

2 Overflow is always accompanied by inexact.

A1
CHAPTER 6 • Registers 65

Invalid (nvc, nva). An operand is improper for the operation to be performed.
For example, 0.0 ÷ 0.0 and ∞ – ∞ are invalid; 1 = invalid operand(s), 0 = valid
operand(s).

Overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

Underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0.
Otherwise, when the correct unrounded result is not 0:

If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny and a loss of
accuracy occurs.

If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

The SPARC V9 architecture allows tininess to be detected either before or after
rounding. However, in all cases and regardless of the setting of FSR.tem.ufm, an
UltraSPARC Architecture strand detects tininess before rounding (impl. dep. #55-V8-
Cs10). See Trapped Underflow Definition (ufm = 1) on page 362 and Untrapped
Underflow Definition (ufm = 0) on page 362 for additional details.

Division by zero (dzc, dza). X ÷ 0.0, where X is subnormal or normalized;
1 = division by zero, 0 = no division by zero.

RW RW RW RW RW

FSR.tem nvm ofm ufm dzm nxm

27 26 25 24 23

FIGURE 6-5 Trap Enable Mask (tem) Fields of FSR

RW RW RW RW RW

FSR.aexc nva ofa ufa dza nxa

9 8 7 6 5

FIGURE 6-6 Accrued Exception Bits (aexc) Fields of FSR

RW RW RW RW RW

FSR.cexc nvc ofc ufc dzc nxc

4 3 2 1 0

FIGURE 6-7 Current Exception Bits (aexc) Fields of FSR
66 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Inexact (nxc, nxa). The rounded result of an operation differs from the infinitely
precise unrounded result; 1 = inexact result, 0 = exact result.

6.4.11 FSR Conformance
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields of FSR in hardware, conforming to IEEE Std 754-1985 (impl. dep. #22-V8).

6.5 Ancillary State Registers
The SPARC V9 architecture defines several optional ancillary state registers (ASRs)
and allows for additional ones. Access to a particular ASR may be privileged or
nonprivileged.

An ASR is read and written with the Read State Register and Write State Register
instructions, respectively. These instructions are privileged if the accessed register is
privileged.

The SPARC V9 architecture left ASRs numbered 16–31 available for implementation-
dependent uses. UltraSPARC Architecture virtual processors implement the ASRs
summarized in TABLE 6-9 and defined in the following subsections.

Each virtual processor contains its own set of ASRs; ASRs are not shared among
virtual processors.

Programming
Note

Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the
operation of the FPU in order to handle the fp_exception_other
(with FSR.ftt = unfinished_FPop or unimplemented_FPop) and
IEEE_754_exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully
compliant with IEEE Std 754-1985.

TABLE 6-9 ASR Register Summary

ASR
number ASR name Register

Read by
Instruction(s)

Written by
Instruction(s)

0 YD Y register (deprecated) RDYD WRYD

1 — Reserved — —

2 CCR Condition Codes register RDCCR WRCCR

3 ASI ASI register RDASI WRASI
CHAPTER 6 • Registers 67

4 TICKPnpt TICK register RDTICKPnpt,
RDPRP (TICK)

WRPRP (TICK)

5 PC Program Counter (PC) RDPC (all instructions)

6 FPRS Floating-Point Registers Status register RDFPRS WRFPRS

7–14 — Reserved — —

15 — Reserved — —

16–31 non-SPARC V9 ASRs — —

16 PCRP Performance Control registers (PCR) RDPCRP WRPCRP

17 PICP Performance Instrumentation Counters
(PIC)

RDPICPPIC WRPICPPIC

18 — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

19 GSR General Status register (GSR) RDGSR,
FALIGNDATA,
many VIS and
floating-point
instructions

WRGSR,
BMASK, SIAM

20 SOFTINT_CLRP (pseudo-register, for "Write 1s Clear" to
SOFTINT register, ASR 22)

— WRSOFTINT_CLRP

21 SOFTINT_SETP (pseudo-register, for "Write 1s Set" to
SOFTINT register, ASR 22)

— WRSOFTINT_SETP

22 SOFTINTP per-virtual processor Soft Interrupt
register

RDSOFTINTP WRSOFTINTP

23 TICK_CMPRP Tick Compare register RDTICK_CMPRP WRTICK_CMPRP

24 STICKPnpt System Tick register RDSTICKPnpt —

25 STICK_CMPRP System Tick Compare register RDSTICK_CMPRP WRSTICK_CMPRP

26–31 — Implementation dependent (impl. dep.
#8-V8-Cs20, 9-V8-Cs20)

— —

TABLE 6-9 ASR Register Summary (Continued)

ASR
number ASR name Register

Read by
Instruction(s)

Written by
Instruction(s)
68 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.5.1 32-bit Multiply/Divide Register (Y) (ASR 0)

The low-order 32 bits of the Y register, illustrated in FIGURE 6-8, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an
integer multiply step (MULScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDIV, SDIVcc,
UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits always read as 0.

The Y register may be explicitly read and written by the RDY and WRY instructions,
respectively.

6.5.2 Integer Condition Codes Register (CCR)
(ASR 2)
The Condition Codes Register (CCR), shown in FIGURE 6-9, contains the integer
condition codes. The CCR register may be explicitly read and written by the RDCCR
and WRCCR instructions, respectively.

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software.
It is recommended that all instructions that reference the Y register (that is,
SMUL, SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc,
RDY, and WRY) be avoided. For suitable substitute instructions, see the
following pages: for the multiply instructions, see page 351; for the multiply
step instruction, see page 268; for division instructions, see page 348; for the
read instruction, see page 286; and for the write instruction, see page 354.

R RW

Y 0 product{63:32} or dividend{63:32}

63 32 31 0

FIGURE 6-8 Y Register

RW RW

CCR xcc icc

7 4 3 0

FIGURE 6-9 Condition Codes Register

E3

A1
CHAPTER 6 • Registers 69

6.5.2.1 Condition Codes (CCR.xcc and CCR.icc)

All instructions that set integer condition codes set both the xcc and icc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The icc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value
0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.n is set to 1) but the 64-bit
result is nonnegative (xcc.n is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 6-10.

The n bits indicate whether the two’s-complement ALU result was negative for the
last instruction that modified the integer condition codes; 1 = negative, 0 = not
negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (icc) two’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is
a borrow into bit 63 (xcc) or bit 31 (icc); 1 = borrow, 0 = no borrow (see TABLE 6-10).

Both fields of CCR (xcc and icc) are modified by arithmetic and logical instructions,
the names of which end with the letters “cc” (for example, ANDcc), and by the
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which
replaces these bits with the contents of TSTATE.ccr. The behavior of the following
instructions are conditioned by the contents of CCR.icc or CCR.xcc:

■ BPcc and Tcc instructions (conditional transfer of control)

RW RW RW RW

n z v c

xcc: 7 6 5 4
icc: 3 2 1 0

FIGURE 6-10 Integer Condition Codes (CCR.icc and CCR.xcc)

TABLE 6-10 Setting of Carry (Borrow) bits for Subtraction That Sets CCs

Unsigned Comparison of Operand Values Setting of Carry bits in CCR

R[rs1]{31:0} ≥ R[rs2]{31:0} CCR.icc.c ← 0

R[rs1]{31:0} < R[rs2]{31:0} CCR.icc.c ← 1

R[rs1]{63:0} ≥ R[rs2]{63:0} CCR.xcc.c ← 0

R[rs1]{63:0} < R[rs2]{63:0} CCR.xcc.c ← 1
70 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Bicc (conditional transfer of control, based on CCR.icc only)

■ MOVcc instruction (conditionally move the contents of an integer register)

■ FMOVcc instruction (conditionally move the contents of a floating-point register)

Extended (64-bit) integer condition codes (xcc). Bits 7 through 4 are the IU
condition codes, which indicate the results of an integer operation, with both of the
operands and the result considered to be 64 bits wide.

32-bit Integer condition codes (icc). Bits 3 through 0 are the IU condition codes,
which indicate the results of an integer operation, with both of the operands and the
result considered to be 32 bits wide.

6.5.3 Address Space Identifier (ASI) Register
(ASR 3)
The Address Space Identifier register (FIGURE 6-11) specifies the address space
identifier to be used for load and store alternate instructions that use the “rs1 +
simm13” addressing form.

The ASI register may be explicitly read and written by the RDASI and WRASI
instructions, respectively.

Software (executing in any privilege mode) may write any value into the ASI
register. However, values in the range 0016 to 7F16 are “restricted” ASIs; an attempt
to perform an access using an ASI in that range is restricted to software executing in
a mode with sufficient privileges for the ASI. When an instruction executing in
nonprivileged mode attempts an access using an ASI in the range 0016 to 7F16 or an
instruction executing in privileged mode attempts an access using an ASI the range
3016 to 7F16, a privileged_action exception is generated. See Chapter 10, Address Space
Identifiers (ASIs) for details.

6.5.4 Tick (TICK) Register (ASR 4)
FIGURE 6-12 illustrates the TICK register.

RW

ASI
7 0

FIGURE 6-11 Address Space Identifier Register

A1

A1
CHAPTER 6 • Registers 71

The counter field of the TICK register is a 63-bit counter that counts strand clock
cycles. Bit 63 of the TICK register is the nonprivileged trap (npt) bit, which controls
access to the TICK register by nonprivileged software.

Privileged software can always read the TICK register with either the RDPR or
RDTICK instruction.

Privileged software cannot write to the TICK register.

Nonprivileged software can read the TICK register by using the RDTICK instruction,
but only when nonprivileged access to TICK is enabled by hyperprivileged software.
If nonprivileged access is disabled, an attempt by nonprivileged software to read the
TICK register causes a privileged_action exception. Nonprivileged software cannot
write the TICK register. An attempt by nonprivileged software to read the TICK
register using the privileged RDPR instruction causes a privileged_opcode exception.

The difference between the values read from the TICK register on two reads is
intended to reflect the number of strand cycles executed between the reads.

IMPL. DEP. #105-V9: (a) If an accurate count cannot always be returned when TICK
is read, any inaccuracy should be small, bounded, and documented.
(b) An implementation may implement fewer than 63 bits in TICK.counter; however,
the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as zero.

6.5.5 Program Counters (PC, NPC) (ASR 5)
The PC contains the address of the instruction currently being executed. The least-
significant two bits of PC always contain zeroes.

R R

TICKPnpt npt counter

63 62 0

FIGURE 6-12 TICK Register

Programming
Note

If a single TICK register is shared among multiple virtual
processors, then the difference between subsequent reads of
TICK.counter reflects a shared cycle count, not a count specific to
the virtual processor reading the TICK register.

Programming
Note

TICK.npt may be used by a secure operating system to control
access by user software to high-accuracy timing information.
The operation of the timer might be emulated by the trap
handler, which could read TICK.counter and “fuzz” the value to
lower accuracy.

A1
72 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The PC can be read directly with the RDPC instruction. PC cannot be explicitly
written by any instruction (including Write State Register), but is implicitly written
by control transfer instructions. A WRasr to ASR 5 causes an illegal_instruction
exception.

The Next Program Counter, NPC, is a pseudo-register that contains the address of
the next instruction to be executed if a trap does not occur. The least-significant two
bits of NPC always contain zeroes.

NPC is written implicitly by control transfer instructions. However, NPC cannot be
read or written explicitly by any instruction.

PC and NPC can be indirectly set by privileged software that writes to TPC[TL]
and/or TNPC[TL] and executes a RETRY instruction.

See Chapter 7, Instruction Set Overview, for details on how PC and NPC are used.

6.5.6 Floating-Point Registers State (FPRS) Register
(ASR 6)
The Floating-Point Registers State (FPRS) register, shown in FIGURE 6-13, contains
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

The FPRS register may be explicitly read and written by the RDFPRS and WRFPRS
instructions, respectively.

Enable FPU (fef). Bit 2, fef, determines whether the FPU is enabled. If it is
disabled, executing a floating-point instruction causes an fp_disabled trap. If this bit
is set (FPRS.fef = 1) but the PSTATE.pef bit is not set (PSTATE.pef = 0), then
executing a floating-point instruction causes an fp_disabled exception; that is, both
FPRS.fef and PSTATE.pef must be set to 1 to enable floating-point operations.

RW RW RW

FPRS fef du dl

2 1 0

FIGURE 6-13 Floating-Point Registers State Register

Programming
Note

FPRS.fef can be used by application software to notify system
software that the application does not require the contents of the
F registers to be preserved. Depending on system software, this
may provide some performance benefit, for example, the F
registers would not have to be saved or restored during context
switches to or from that application. Once an application sets
FPRS.fef to 0, it must assume that the values in all F registers
are volatile (may change at any time).

A1
CHAPTER 6 • Registers 73

Dirty Upper Registers (du). Bit 1 is the “dirty” bit for the upper half of the
floating-point registers; that is, F[32]–F[62]. It is set to 1 whenever any of the upper
floating-point registers is modified. The du bit is cleared only by software.

IMPL. DEP. #403-S10(a): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.du pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

Dirty Lower Registers (dl). Bit 0 is the “dirty” bit for the lower 32 floating-point
registers; that is, F[0]–F[31]. It is set to 1 whenever any of the lower floating-point
registers is modified. The dl bit is cleared only by software.

IMPL. DEP. #403-S10(b): An UltraSPARC Architecture 2005 virtual processor may
set FPRS.dl pessimistically; that is, it may be set whenever an FPop is issued, even
though no destination F register is modified. The specific conditions under which a
dirty bit is set pessimistically are implementation dependent.

6.5.7 Performance Control Register (PCRP) (ASR 16)
The PCR is used to control performance monitoring events collected in counter
pairs, which are accessed via the Performance Instrumentation Counter (PIC)
register (ASR 17) (see page 75). Unused PCR bits read as zero; they should be
written only with zeroes or with values previously read from them.

When the virtual processor is operating in privileged mode (PSTATE.priv = 1), PCR
may be freely read and written by software.

When the virtual processor is operating in nonprivileged mode (PSTATE.priv = 0), an
attempt to access PCR (using a RDPCR or WRPCR instruction) results in a
privileged_opcode exception (impl. dep. #250-U3-Cs10).

The PCR is illustrated in FIGURE 6-14 and described in TABLE 6-11.

Implementation
Note

If an instruction that normally writes to the F registers is
executed and causes an fp_disabled exception, an UltraSPARC
Architecture 2005 implementation still sets the “dirty” bit
(FPRS.du or FPRS.dl) corresponding to the destination register
to ‘1’.

Forward
Compatibility

Note

It is expected that in future revisions to the UltraSPARC
Architecture, if an instruction that normally writes to the F
registers is executed and causes an fp_disabled exception the
“dirty” bit (FPRS.du or FPRS.dl) corresponding to the
destination register will be left unchanged.

D2
74 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

IMPL. DEP. #207-U3: The values and semantics of bits 47:32, 26:17, and bit 3 of the
PCR are implementation dependent.

6.5.8 Performance Instrumentation Counter (PIC)
Register (ASR 17)
PIC contains two 32-bit counters that count performance-related events (such as
instruction counts, cache misses, TLB misses, and pipeline stalls). Which events are
actively counted at any given time is selected by the PCR register.

The difference between the values read from the PIC register at two different times
reflects the number of events that occurred between register reads. Software can only
rely on the difference in counts between two PIC reads to get an accurate count, not
on the difference in counts between a PIC write and a PIC read.

PIC is normally a nonprivileged-access, read/write register. However, if the priv bit
of the PCR (ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.

RW RW RW RW RW

PCRP — impl. dep — impl. dep. su — sl
impl.
dep.

ut st priv

63 48 47 32 31 27 26 17 16 11 10 9 4 3 2 1 0

FIGURE 6-14 Performance Control Register (PCR) (ASR 16)

TABLE 6-11 PCR Bit Description

Bit Field Description

47:32 — These bits are implementation dependent (impl. dep #207-U3).

26:17 — These bits are implementation dependent (impl. dep. #207-U3).

16:11 su Six-bit field selecting 1 of 64 event counts in the upper half (bits {63:32}) of the PIC.

9:4 sl Six-bit field selecting 1 of 64 event counts in the lower half (bits {31:0}) of the PIC.

3 — This bit is implementation dependent (impl. dep. #207-U3).

2 ut User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.

1 st System Trace Enable. If set to 1, events in privileged (system) mode are counted.
Notes:
If both PCR.ut and PCR.st are set to 1, all selected events are counted.
If both PCR.ut and PCR.st are zero, counting is disabled.
PCR.ut and PCR.st are global fields which apply to all PIC pairs.

0 priv Privileged. Controls access to the PIC register (via RDPIC or WRPIC instructions). If
PCR.priv = 0, an attempt to access PIC will succeed regardless of the privilege state
(PSTATE.priv). If PCR.priv = 1, access to PIC is restricted to privileged software; that is, an
attempt to access PIC while PSTATE.priv = 1 will succeed, but an attempt to access PIC while
PSTATE.priv = 0 will result in a privileged_action exception.

A2
CHAPTER 6 • Registers 75

Multiple PICs may be implemented. Each is accessed through ASR 17, using an
implementation-dependent PIC pair selection field in PCR (ASR 16) (impl. dep.
#207-U3). Read/write access to the PIC will access the picu/picl counter pair selected
by PCR.

The PIC is described below and illustrated in FIGURE 6-15.

Counter Overflow. On overflow, the effective counter wraps to 0, SOFTINT
register bit 15 is set to 1, and an interrupt level 15 trap is generated if not masked by
PSTATE.ie and PIL. The counter overflow trap is triggered on the transition from
value FFFF FFFF16 to value 0.

6.5.9 General Status Register (GSR) (ASR 19)
The General Status Register1 (GSR) is a nonprivileged read/write register that is
implicitly referenced by many VIS instructions. The GSR can be read by the RDGSR
instruction (see Read Ancillary State Register on page 285) and written by the WRGSR
instruction (see Write Ancillary State Register on page 353).

If the FPU is disabled (PSTATE.pef = 0 or FPRS.fef = 0), an attempt to access this
register using an otherwise-valid RDGSR or WRGSR instruction causes an
fp_disabled trap.

The GSR is illustrated in FIGURE 6-16 and described in TABLE 6-12.

Bit Field Description

63:32 picu 32-bit counter representing the count of an event selected by the su field of the
Performance Control Register (PCR) (ASR 16).

31:0 picl 32-bit counter representing the count of an event selected by the sl field of the Performance
Control Register (PCR) (ASR 16).

RW RW

PICP picu picl

63 32 31 0

FIGURE 6-15 Performance Instrumentation Counter (PIC) (ASR 17)

1. This register was (inaccurately) referred to as the "Graphics Status Register" in early UltraSPARC
implementations

RW RW RW RW RW

GSRP mask — im irnd — scale align

63 32 31 28 27 26 25 24 8 7 3 2 0

FIGURE 6-16 General Status Register (GSR) (ASR 19)

A1
76 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.5.10 SOFTINTP Register (ASRs 20 , 21 , 22)
Software uses the privileged, read/write SOFTINT register (ASR 22) to schedule
interrupts (via interrupt_level_n exceptions).

SOFTINT can be read with a RDSOFTINT instruction (see Read Ancillary State
Register on page 285) and written with a WRSOFTINT, WRSOFTINT_SET, or
WRSOFTINT_CLR instruction (see Write Ancillary State Register on page 353). An
attempt to access to this register in nonprivileged mode causes a privileged_opcode
exception.

The SOFTINT register is illustrated in FIGURE 6-17 and described in TABLE 6-13.

TABLE 6-12 GSR Bit Description

Bit Field Description

63:32 mask This 32-bit field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 — Reserved.

27 im Interval Mode: If GSR.im = 0, rounding is performed according to FSR.rd; if
GSR.im = 1, rounding is performed according to GSR.irnd.

26:25 irnd IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.im = 1), as follows:

24:8 — Reserved.

7:3 scale 5-bit shift count in the range 0–31, used by the FPACK instructions for formatting.

2:0 align Least three significant bits of the address computed by the last-executed
ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

Programming
Note

To atomically modify the set of pending software interrupts, use
of the SOFTINT_SET and SOFTINT_CLR ASRs is
recommended.

RW RW RW

SOFTINTP — sm int_level tm

63 17 16 15 1 0

FIGURE 6-17 SOFTINT Register (ASR 22)

irnd Round toward …

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞

D2 D2 D1
CHAPTER 6 • Registers 77

Setting any of SOFTINT.sm, SOFTINT.int_level{13} (SOFTINT{14}), or SOFTINT.tm
to 1 causes a level-14 interrupt (interrupt_level_14). However, those three bits are
independent; setting any one of them does not affect the other two.

See Software Interrupt Register (SOFTINT) on page 442 for additional information
regarding the SOFTINT register.

6.5.10.1 SOFTINT_SETP Pseudo-Register (ASR 20)

A Write State register instruction to ASR 20 (WRSOFTINT_SET) atomically sets
selected bits in the privileged SOFTINT Register (ASR 22) (see page 77). That is, bits
16:0 of the write data are ored into SOFTINT; any ‘1’ bit in the write data causes the
corresponding bit of SOFTINT to be set to 1. Bits 63:17 of the write data are ignored.

Access to ASR 20 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 20 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

TABLE 6-13 SOFTINT Bit Description

Bit Field Description

16 sm When the STICK_CMPR (ASR 25) register’s int_dis (interrupt disable) field is 0 (that is,
System Tick Compare is enabled) and its stick_cmpr field matches the value in the
STICK register, then SOFTINT.sm (“STICK match”) is set to 1 and a level 14 interrupt
(interrupt_level_14) is generated. See System Tick Compare (STICK_CMPRP) Register (ASR
25) on page 81 for details. SOFTINT.sm can also be directly written to 1 by software.

15:1 int_level When SOFTINT.int_level{n−1} (SOFTINT{n}) is set to 1, an interrupt_level_n exception is
generated.

0 tm When the TICK_CMPR (ASR 23) register’s int_dis (interrupt disable) field is 0 (that is,
Tick Compare is enabled) and its tick_cmpr field matches the value in the TICK register,
then the tm (“TICK match”) field in SOFTINT is set to 1 and a level-14 interrupt
(interrupt_level_14) is generated. See Tick Compare (TICK_CMPRP) Register (ASR 23) on
page 79 for details. SOFTINT.tm can also be directly written to 1 by software.

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 20; it is just a programming interface to conveniently set
selected bits to ‘1’ in the SOFTINT register, ASR 22.

Notes: A level-14 interrupt (interrupt_level_14) can be triggered by
SOFTINT.sm, SOFTINT.tm, or a write to SOFTINT.int_level{13}
(SOFTINT{14}).

A level-15 interrupt (interrupt_level_15) can be triggered by a write to
SOFTINT.int_level{14} (SOFTINT{15}), or possibly by other
implementation-dependent mechanisms.

An interrupt_level_n exception will only cause a trap if (PIL < n) and
(PSTATE.ie = 1.

D2
78 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FIGURE 6-18 illustrates the SOFTINT_SET pseudo-register.

6.5.10.2 SOFTINT_CLRP Pseudo-Register (ASR 21)

A Write State register instruction to ASR 21 (WRSOFTINT_CLR) atomically clears
selected bits in the privileged SOFTINT register (ASR 22) (see page 77). That is, bits
16:0 of the write data are inverted and anded into SOFTINT; any ‘1’ bit in the write
data causes the corresponding bit of SOFTINT to be set to 0. Bits 63:17 of the write
data are ignored.

Access to ASR 21 is privileged and write-only. There is no instruction to read this
pseudo-register. An attempt to write to ASR 21 in non-privileged mode, using the
WRasr instruction, causes a privileged_opcode exception.

FIGURE 6-19 illustrates the SOFTINT_CLR pseudo-register.

6.5.11 Tick Compare (TICK_CMPRP) Register (ASR
23)
The privileged TICK_CMPR register allows system software to cause a trap when
the TICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
431).

The TICK_CMPR register is illustrated in FIGURE 6-20 and described in TABLE 6-14.

W1S

SOFTINT_SETP — ASR 22 bits to be set

63 17 16 0

FIGURE 6-18 SOFTINT_SET Pseudo-Register (ASR 20)

Programming
Note

There is no actual “register” (machine state) corresponding to
ASR 21; it is just a programming interface to conveniently clear
(set to ‘0’) selected bits in the SOFTINT register, ASR 22.

W1C

SOFTINT_CLRP — ASR 22 bits to be cleared

63 17 16 0

FIGURE 6-19 SOFTINT_CLR Pseudo-Register (ASR 21))

RW RW

TICK_CMPRP int_dis tick_cmpr

63 62 0

FIGURE 6-20 TICK_CMPR Register

D2

D1
CHAPTER 6 • Registers 79

6.5.12 System Tick (STICK) Register (ASR 24)
The System Tick (STICK) register provides a counter that is synchronized across a
system, useful for timestamping. The counter field of the STICK register is a 63-bit
counter that increments at a rate determined by a clock signal external to the
processor.

Bit 63 of the STICK register is the nonprivileged trap (npt) bit, which controls access
to the STICK register by nonprivileged software.

The STICK register is illustrated in FIGURE 6-21 and described below.

Privileged software can always read the STICK register with the RDSTICK
instruction. Privileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in privileged mode results in an illegal_instruction
exception.

Nonprivileged software can read the STICK register by using the RDSTICK
instruction, but only when nonprivileged access to STICK is enabled by
hyperprivileged software. If nonprivileged access is disabled, an attempt by
nonprivileged software to read the STICK register causes a privileged_action
exception. Nonprivileged software cannot write the STICK register; an attempt to
execute the WRSTICK instruction in nonprivileged mode results in an
illegal_instruction exception.

TABLE 6-14 TICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If int_dis = 0, TICK compare interrupts are enabled
and if int_dis = 1, TICK compare interrupts are disabled.

62:0 tick_cmpr Tick Compare Field. When this field exactly matches the value in
TICK.counter and TICK_CMPR.int_dis = 0, SOFTINT.tm is set to 1.
This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to determine
the source of the level-14 interrupt.

R R

STICKPnpt npt counter

63 62 0

FIGURE 6-21 STICK Register

D1
80 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.5.13 System Tick Compare (STICK_CMPRP) Register
(ASR 25)
The privileged STICK_CMPR register allows system software to cause a trap when
the STICK register reaches a specified value. Nonprivileged accesses to this register
cause a privileged_opcode exception (see Exception and Interrupt Descriptions on page
431).

The System Tick Compare Register is illustrated in FIGURE 6-22 and described in
TABLE 6-15.

6.6 Register-Window PR State Registers
The state of the register windows is determined by the contents of a set of privileged
registers. These state registers can be read/written by privileged software using the
RDPR/WRPR instructions. An attempt by nonprivileged software to execute a
RDPR or WRPR instruction causes a privileged_opcode exception. In addition, these
registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register
windows.

RW RW

STICK_CMPRP int_dis stick_cmpr

63 62 0

FIGURE 6-22 STICK_CMPR Register

TABLE 6-15 STICK_CMPR Register Description

Bit Field Description

63 int_dis Interrupt Disable. If set to 1, STICK_CMPR interrupts are disabled.

62:0 stick_cmpr System Tick Compare Field. When this field exactly matches
STICK.counter and STICK_CMPR.int_dis = 0, SOFTINT.sm is set to
1. This has the effect of posting a level-14 interrupt to the virtual
processor, which causes an interrupt_level_14 trap when (PIL < 14)
and (PSTATE.ie = 1). The level-14 interrupt handler must check
SOFTINT{14}, SOFTINT{0} (tm), and SOFTINT{16} (sm) to
determine the source of the level-14 interrupt.

D2
CHAPTER 6 • Registers 81

IMPL. DEP. #126-V9-Ms10: Privileged registers CWP, CANSAVE, CANRESTORE,
OTHERWIN, and CLEANWIN contain values in the range 0 to N_REG_WINDOWS − 1.
An attempt to write a value greater than N_REG_WINDOWS − 1 to any of these
registers causes an implementation-dependent value between 0 and
N_REG_WINDOWS − 1 (inclusive) to be written to the register. Furthermore, an attempt
to write a value greater than N_REG_WINDOWS − 2 violates the register window state
definition in Register Window State Definition on page 85.
Although the width of each of these five registers is architecturally 5 bits, the width
is implementation dependent and shall be between  log2(N_REG_WINDOWS) and 5
bits, inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits
shall read as 0 and writes to them shall have no effect. All five registers should have
the same width.
For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

For details of how the window-management registers are used, see Register Window
Management Instructions on page 116.

6.6.1 Current Window Pointer (CWPP) Register (PR 9)

The privileged CWP register, shown in FIGURE 6-23, is a counter that identifies the
current window into the array of integer registers. See Register Window Management
Instructions on page 116 and Chapter 12, Traps, for information on how hardware
manipulates the CWP register.

Programming
Note

CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN must
never be set to a value greater than N_REG_WINDOWS − 2 on an
UltraSPARC Architecture virtual processor. Setting any of these
to a value greater than N_REG_WINDOWS − 2 violates the register
window state definition in Register Window State Definition on
page 85. Hardware is not required to enforce this restriction; it is
up to system software to keep the window state consistent.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

RW RW

CWPP

4 3 2 0

FIGURE 6-23 Current Window Pointer Register

D1
82 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.6.2 Savable Windows (CANSAVEP) Register (PR 10)

The privileged CANSAVE register, shown in FIGURE 6-24, contains the number of
register windows following CWP that are not in use and are, hence, available to be
allocated by a SAVE instruction without generating a window spill exception.

6.6.3 Restorable Windows (CANRESTOREP) Register
(PR 11)
The privileged CANRESTORE register, shown in FIGURE 6-25, contains the number of
register windows preceding CWP that are in use by the current program and can be
restored (by the RESTORE instruction) without generating a window fill exception.

6.6.4 Clean Windows (CLEANWINP) Register (PR 12)

The privileged CLEANWIN register, shown in FIGURE 6-26, contains the number of
windows that can be used by the SAVE instruction without causing a clean_window
exception.

The CLEANWIN register counts the number of register windows that are “clean”
with respect to the current program; that is, register windows that contain only
zeroes, valid addresses, or valid data from that program. Registers in these windows
need not be cleaned before they can be used. The count includes the register
windows that can be restored (the value in the CANRESTORE register) and the

RW RW

CANSAVEP

4 3 2 0

FIGURE 6-24 CANSAVE Register, Figure 5-24, page 88

RW RW

CANRESTOREP

4 3 2 0

FIGURE 6-25 CANRESTORE Register

RW RW

CLEANWINP

4 3 2 0

FIGURE 6-26 CLEANWIN Register

D1

D1

D1
CHAPTER 6 • Registers 83

register windows following CWP that can be used without cleaning. When a clean
window is requested (by a SAVE instruction) and none is available, a clean_window
exception occurs to cause the next window to be cleaned.

6.6.5 Other Windows (OTHERWINP) Register (PR 13)

The privileged OTHERWIN register, shown in FIGURE 6-27, contains the count of
register windows that will be spilled/filled by a separate set of trap vectors based on
the contents of WSTATE.other. If OTHERWIN is zero, register windows are spilled/
filled by use of trap vectors based on the contents of WSTATE.normal.

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by use of separate spill/fill
vectors.

6.6.6 Window State (WSTATEP) Register (PR 14)
The privileged WSTATE register, shown in FIGURE 6-28, specifies bits that are inserted
into TT[TL]{4:2} on traps caused by window spill and fill exceptions. These bits are
used to select one of eight different window spill and fill handlers. If OTHERWIN = 0
at the time a trap is taken because of a window spill or window fill exception, then
the WSTATE.normal bits are inserted into TT[TL]. Otherwise, the WSTATE.other bits
are inserted into TT[TL]. See Register Window State Definition, below, for details of the
semantics of OTHERWIN.

6.6.7 Register Window Management
The state of the register windows is determined by the contents of the set of
privileged registers described in Register-Window PR State Registers on page 81.
Those registers are affected by the instructions described in Register Window
Management Instructions on page 116. Privileged software can read/write these state
registers directly by using RDPR/WRPR instructions.

RW RW

OTHERWINP

4 3 2 0

FIGURE 6-27 OTHERWIN Register

RW RW

WSTATEP other normal

5 3 2 0

FIGURE 6-28 WSTATE Register

D1

D1
84 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.6.7.1 Register Window State Definition

For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERWIN = N_REG_WINDOWS – 2

FIGURE 6-3 on page 51 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

■ The current window plus the window that must not be used because it overlaps
two other valid windows. In FIGURE 6-3, these are windows 0 and 5, respectively.
They are always present and account for the “2” subtracted from N_REG_WINDOWS

in the right-hand side of the above equation.

■ Windows that do not have valid contents and that can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 1–4 in
FIGURE 6-3) are counted in CANSAVE.

■ Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 6-3) are counted in CANRESTORE.

■ Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 6-3) are counted
in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

Programming
Note

System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will
cause undefined behavior. For example, CANSAVE,
CANRESTORE, and OTHERWIN must never be greater than or
equal to N_REG_WINDOWS – 1.
CHAPTER 6 • Registers 85

6.6.7.2 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

See Register Window Traps on page 436 for a detailed description of how fill, spill, and
clean_window traps support register windowing.

6.7 Non-Register-Window PR State
Registers
The registers described in this section are visible only to software running in
privileged mode (that is, when PSTATE.priv = 1), and may be accessed with the
WRPR and RDPR instructions. (An attempt to execute a WRPR or RDPR instruction
in nonprivileged mode causes a privileged_opcode exception.)

Each virtual processor provides a full set of these state registers.

6.7.1 Trap Program Counter (TPCP) Register (PR 0)
The privileged Trap Program Counter register (TPC; FIGURE 6-29) contains the
program counter (PC) from the previous trap level. There are MAXPTL instances of
the TPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TPC[TL] register is accessible. An attempt to read
or write the TPC register when TL = 0 causes an illegal_instruction exception.

During normal operation, the value of TPC[n], where n is greater than the current
trap level (n > TL), is undefined.

Implementation
Note

A write to any privileged register, including PR state registers,
may drain the CPU pipeline.

D1

TPC1
P

2

00

63 1 0

TPC2
P

00

TPC3
P 00

:

00

FIGURE 6-29 Trap Program Counter Register Stack

TPCMAXPTL
P

pc_high62 (PC{63:2} from trap while TL = MAXPTL − 1)

: :

pc_high62 (PC{63:2} from trap while TL = 0)

pc_high62 (PC{63:2} from trap while TL = 1)

pc_high62 (PC{63:2} from trap while TL = 2)

RW R
86 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE 6-16 lists the events that cause TPC to be read or written.

TABLE 6-16 Events that involve TPC, when executing with TL = n.

6.7.2 Trap Next PC (TNPCP) Register (PR 1)
The privileged Trap Next Program Counter register (TNPC; FIGURE 6-29) is the next
program counter (NPC) from the previous trap level. There are MAXPTL instances of
the TNPC, but only one is accessible at any time. The current value in the TL register
determines which instance of the TNPC register is accessible. An attempt to read or
write the TNPC register when TL = 0 causes an illegal_instruction exception.

During normal operation, the value of TNPC[n], where n is greater than the current
trap level (n > TL), is undefined.

TABLE 6-17 lists the events that cause TNPC to be read or written.

Event Effect

Trap TPC[n + 1] ← PC

RETRY instruction PC ← TPC[n]

RDPR (TPC) R[rd] ← TPC[n]

WRPR (TPC) TPC[n] ← value

TABLE 6-17 Events that involve TNPC, when executing with TL = n.

Event Effect

Trap TNPC[n + 1] ← NPC

DONE instruction PC ← TNPC[n]; NPC ← TNPC[n] + 4

RETRY instruction NPC ← TNPC[n]

RDPR (TNPC) R[rd] ← TNPC[n]

WRPR (TNPC) TNPC[n] ← value

D1

TNPC1
P

2

00

63 1 0

TNPC2
P

00

TNPC3
P 00

00

FIGURE 6-30 Trap Next Program Counter Register Stack

TNPCMAXPTL
P

npc_high62 (NPC{63:2} from trap while TL = MAXPTL − 1)

: : :

npc_high62 (NPC{63:2} from trap while TL = 0)

npc_high62 (NPC{63:2} from trap while TL = 1)

npc_high62 (NPC{63:2} from trap while TL = 2)

RW R
CHAPTER 6 • Registers 87

6.7.3 Trap State (TSTATEP) Register (PR 2)
The privileged Trap State register (TSTATE; FIGURE 6-31) contains the state from the
previous trap level, comprising the contents of the GL, CCR, ASI, CWP, and PSTATE
registers from the previous trap level. There are MAXPTL instances of the TSTATE
register, but only one is accessible at a time. The current value in the TL register
determines which instance of TSTATE is accessible. An attempt to read or write the
TSTATE register when TL = 0 causes an illegal_instruction exception.

FIGURE 6-31 Trap State (TSTATE) Register Stack

During normal operation the value of TSTATE[n], when n is greater than the current
trap level (n > TL), is undefined.

TABLE 6-19 lists the events that cause TSTATE to be read or written.

RW RW RW R RW R RW

TSTATE1
P gl

(GL from TL = 0)

ccl
(CCR from TL = 0)

asi
(ASI from TL = 0)

— pstate
(PSTATE from TL = 0)

— cwp
(CWP from TL = 0)

TSTATE2
P gl

(GL from TL = 1)

ccl
(CCR from TL = 1)

asi
(ASI from TL = 1

— pstate
(PSTATE from TL = 1)

— cwp
(CWP from TL = 1)

TSTATE3
P gl

(GL from TL = 2)

ccr
(CCR from TL = 2)

asi
(ASI from TL = 2

— pstate
(PSTATE from TL = 2)

— cwp
(CWP from TL = 2)

: P
: : : : : : :

TSTATEMAXPTL
P

gl
(GL from

TL = MAXPTL − 1)

ccr
(CCR from

TL = MAXPTL − 1)

asi
(ASI from

TL = MAXPTL − 1)

— pstate
(PSTATE from

TL = MAXPTL − 1)

— cwp
(CWP from

TL = MAXPTL − 1)

TSTATEMAXPTL+1
H

gl
(GL from

TL = MAXPTL)

ccr
(CCR from

TL = MAXPTL)

asi
(ASI from

TL = MAXPTL)

— pstate
(PSTATE from

TL = MAXPTL)

— cwp
(CWP from

TL = MAXPTL)
42 40 39 32 31 24 23 21 20 8 7 5 4 0

TABLE 6-18

V9 Compatibility
Note

Because of the addition of additional bits in the PSTATE register
in the UltraSPARC Architecture, a 13-bit PSTATE value is stored
in TSTATE instead of the 10-bit value specified in the SPARC V9
architecture.

TABLE 6-19 Events That Involve TSTATE, When Executing with TL = n

Event Effect

Trap TSTATE[n + 1] ← (registers)

DONE instruction (registers) ← TSTATE[n]

RETRY instruction (registers) ← TSTATE[n]

RDPR (TSTATE) R[rd] ← TSTATE[n]

WRPR (TSTATE) TSTATE[n] ← value

D1
88 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

6.7.4 Trap Type (TTP) Register (PR 3)
The privileged Trap Type register (TT; see FIGURE 6-32) contains the trap type of the
trap that caused entry to the current trap level. There are MAXPTL instances of the TT
register, but only one is accessible at a time. The current value in the TL register
determines which instance of the TT register is accessible. An attempt to read or
write the TT register when TL = 0 causes an illegal_instruction exception.

During normal operation, the value of TT[n], where n is greater than the current trap
level (n > TL), is undefined.

TABLE 6-20 lists the events that cause TT to be read or written.

TABLE 6-20 Events that involve TT, when executing with TL = n.

6.7.5 Trap Base Address (TBAP) Register (PR 5)
The privileged Trap Base Address register (TBA), shown in FIGURE 6-33, provides the
upper 49 bits (bits 63:15) of the virtual address used to select the trap vector for a
trap that is to be delivered to privileged mode. The lower 15 bits of the TBA always
read as zero, and writes to them are ignored.

Details on how the full address for a trap vector is generated, using TBA and other
state, are provided in Trap-Table Entry Address to Privileged Mode on page 419.

RW

TT1
P Trap type from trap while TL = 0

TT2
P Trap type from trap while TL = 1

:P :

TTMAXPTL
P Trap type from trap while TL = MAXPTL − 1

8 0

FIGURE 6-32 Trap Type Register Stack

Event Effect

Trap TT[n + 1] ← (trap type)

RDPR (TT) R[rd] ← TT[n]

WRPR (TT) TT[n] ← value

RW R

TBAP tba_high49 000 0000 0000 0000

63 15 14 0

FIGURE 6-33 Trap Base Address Register

D1

D1
CHAPTER 6 • Registers 89

6.7.6 Processor State (PSTATEP) Register (PR 6)
The privileged Processor State register (PSTATE), shown in FIGURE 6-34, contains
control fields for the current state of the virtual processor. There is only one instance
of the PSTATE register per virtual processor.

Writes to PSTATE are nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR
instructions are used to read and write PSTATE, respectively.

The following subsections describe the fields of the PSTATE register.

Current Little Endian (cle). This bit affects the endianness of data accesses
performed using an implicit ASI. When PSTATE.cle = 1, all data accesses using an
implicit ASI are performed in little-endian byte order. When PSTATE.cle = 0, all data
accesses using an implicit ASI are performed in big-endian byte order. Specific ASIs
used are shown in TABLE 7-3 on page 108. Note that the endianness of a data access
may be further affected by TTE.ie used by the MMU.

Instruction accesses are unaffected by PSTATE.cle and are always performed in big-
endian byte order.

Trap Little Endian (tle). When a trap is taken, the current PSTATE register is
pushed onto the trap stack.

During a virtual processor trap to privileged mode, the PSTATE.tle bit is copied into
PSTATE.cle in the new PSTATE register. This behavior allows system software to
have a different implicit byte ordering than the current process. Thus, if PSTATE.tle
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian.

The original state of PSTATE.cle is restored when the original PSTATE register is
restored from the trap stack.

RW RW RW RW RW RW RW RW

PSTATEP — — cle tle mm — pef am priv ie —

12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6-34 PSTATE Field

D1
90 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Memory Model (mm). This 2-bit field determines the memory model in use by
the virtual processor. The defined values for an UltraSPARC Architecture virtual
processor are listed in TABLE 6-21.

The current memory model is determined by the value of PSTATE.mm. Software
should refrain from writing the values 012, 102, or 112 to PSTATE.mm because they
are implementation-dependent or reserved for future extensions to the architecture,
and in any case not currently portable across implementations.

■ Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads or stores.

IMPL. DEP. #113-V9-Ms10: Whether memory models represented by
PSTATE.mm = 102 or 112 are supported in an UltraSPARC Architecture processor is
implementation dependent. If the 102 model is supported, then when
PSTATE.mm = 102 the implementation must correctly execute software that adheres
to the RMO model described in The SPARC Architecture Manual-Version 9. If the 112
model is supported, its definition is implementation dependent.

IMPL. DEP. #119-Ms10: The effect of writing an unimplemented memory model
designation into PSTATE.mm is implementation dependent.

TABLE 6-21 PSTATE.mm Encodings

mm Value Selected Memory Model

00 Total Store Order (TSO)

01 Reserved

10 Implementation dependent (impl. dep. #113-V9-Ms10)

11 Implementation dependent (impl. dep. #113-V9-Ms10)

SPARC V9
Compatibility

Notes

The PSO memory model described in SPARC V8 and SPARC V9
architecture specifications was never implemented in a SPARC
V9 implementation and is not included in the UltraSPARC
Architecture specification.

The RMO memory model described in the SPARC V9
specification was implemented in some non-Sun SPARC V9
implementations, but is not directly supported in UltraSPARC
Architecture 2005 implementations. All software written to run
correctly under RMO will run correctly under TSO on an
UltraSPARC Architecture 2005 implementation.
CHAPTER 6 • Registers 91

Enable FPU (pef). When set to 1, the PSTATE.pef bit enables the floating-point
unit. This allows privileged software to manage the FPU. For the FPU to be usable,
both PSTATE.pef and FPRS.fef must be set to 1. Otherwise, any floating-point
instruction that tries to reference the FPU causes an fp_disabled trap.

If an implementation does not contain a hardware FPU, PSTATE.pef always reads as
0 and writes to it are ignored.

Address Mask (am). The PSTATE.am bit is provided to allow 32-bit SPARC
software to run correctly on a 64-bit SPARC V9 processor, by masking out (zeroing)
bits 63:32 of virtual addresses at appropriate times.

When PSTATE.am = 0, the full 64 bits of all instruction and data addresses are
preserved at all times.

When PSTATE.am = 1, bits 63:32 of instruction and data virtual addresses are
masked out (treated as 0).

Instances in which the more-significant 32 bits of a virtual address are masked
include:

■ Before any (virtual or real) data address is sent out of the virtual processor
(notably, to the memory system, which includes MMU, internal caches, and
external caches); this includes ASI accesses using ASI_AS_IF_USER* in
privileged mode.

■ Before any instruction virtual address is sent out of the virtual processor (notably,
to the memory system, which includes MMU, internal caches, and external
caches)

■ When the value of PC is stored to a general-purpose register by a CALL, JMPL, or
RDPC instruction (closed impl.dep. #125-V9-Cs10)

■ When the values of PC and NPC are written to TPC[TL] and TNPC[TL]
(respectively) during a trap (closed impl.dep. #125-V9-Cs10)

Programming
Note

It is the responsibility of privileged software to manage the
setting of the PSTATE.am bit, since hardware masks virtual
addresses when PSTATE.am = 1.

Misuse of the PSTATE.am bit can result in undesirable behavior.
PSTATE.am should not be set to 1 in privileged mode.

The PSTATE.am bit should always be set to 1 when 32-bit
software is executed.
92 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Before any virtual address is sent to a watchpoint comparator

■ When a bypassing ASI (ASI_*REAL_*) is used in a load or store instruction (see
ASI 1416, ASI_REAL, for an example).

When PSTATE.am = 1, the more-significant 32 bits of a virtual address are explicitly
preserved and not masked out in the following cases:

■ When a target address is written to NPC by a control transfer instruction

■ When NPC is incremented to NPC + 4 during execution of an instruction that is
not a taken control transfer

■ When a WRPR instruction writes to TPC[TL] or TNPC[TL]

■ When a RDPR instruction reads from TPC[TL] or TNPC[TL]

If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed1,
it is implementation dependent whether the DONE or RETRY instruction masks
(zeroes) the more-significant 32 bits of the values it places into PC and NPC (impl.
dep. #417-S10).

Programming
Note

A 64-bit comparison is always used when performing a masked
watchpoint address comparison with the Instruction or Data VA
watchpoint register. When PSTATE.am = 1, the more significant
32 bits of the VA watchpoint register must be zero for a match
(and resulting trap) to occur.

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

Forward
Compatibility

Note

This behavior is expected to change in the next revision of the
architecture, such that implementations will explicitly mask out
(not preserve) the more-significant 32 bits, in this case.

Programming
Note

Since writes to PSTATE are nondelayed (see page 90), a change
to PSTATE.am can affect the address of the next instruction
executed. Specifically, if a WRPR to the PSTATE register
changes the value of PSTATE.am from ’0’ to ’1’, and the more-
significant 32 bits of NPC when the WRPR began execution were
nonzero, then the next instruction that executes after the WRPR
will not be from the address in NPC when the WRPR began
execution but rather from that address truncated to a 32-bit
address (NPC with its more-significant 32 bits set to zero).

1. which sets PSTATE.am to ’1’, by restoring the value from TSTATE[TL].pstate.am to PSTATE.am
CHAPTER 6 • Registers 93

Privileged Mode (priv). When PSTATE.priv = 1, the virtual processor is operating
in privileged mode.

When PSTATE.priv = 0, the processor is operating in nonprivileged mode

PSTATE_interrupt_enable (ie). PSTATE.ie controls when the virtual processor
can take traps due to disrupting exceptions (such as interrupts or errors unrelated to
instruction processing).

Outstanding disrupting exceptions that are destined for privileged mode can only
cause a trap when the virtual processor is in nonprivileged or privileged mode and
PSTATE.ie = 1. At all other times, they are held pending. For more details, see
Conditioning of Disrupting Traps on page 415.

6.7.7 Trap Level Register (TLP) (PR 7)
The privileged Trap Level register (TL; FIGURE 6-35) specifies the current trap level.
TL = 0 is the normal (nontrap) level of operation. TL > 0 implies that one or more
traps are being processed.

The maximum valid value that the TL register may contain is MAXPTL, which is
always equal to the number of supported trap levels beyond level 0.

IMPL. DEP. #101-V9-CS10: The architectural parameter MAXPTL is a constant for
each implementation; its legal values are from 2 to 6 (supporting from 2 to 6 levels of
saved trap state). In a typical implementation MAXPTL = MAXPGL (see impl. dep. #401-
S10). Architecturally, MAXPTL must be ≥ 2.

Programming
Note

Because of implementation dependency #417-S10, great care
must be taken in trap handler software if
TSTATE[TL].pstate.am = 1 and the trap handler wishes to write
a nonzero value to the more-significant 32 bits of TPC[TL] or
TNPC[TL].

SPARC V9
Compatibility

Note

Since the UltraSPARC Architecture provides a more general
“alternate globals” facility (through use of the GL register) than
does SPARC V9, an UltraSPARC Architecture processor does not
implement the SPARC V9 PSTATE.ag bit.

RW

TLP tl

2 0

FIGURE 6-35 Trap Level Register

D1
94 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

In an UltraSPARC Architecture 2005 implementation, MAXPTL = 2. See Chapter 12,
Traps, for more details regarding the TL register.

The effect of writing to TL with a WRPR instruction is summarized in TABLE 6-22.

Writing the TL register with a WRPR instruction does not alter any other machine
state; that is, it is not equivalent to taking a trap or returning from a trap.

6.7.8 Processor Interrupt Level (PILP) Register (PR 8)

The privileged Processor Interrupt Level register (PIL; see FIGURE 6-36) specifies the
interrupt level above which the virtual processor will accept an interrupt_level_n
interrupt. Interrupt priorities are mapped so that interrupt level 2 has greater
priority than interrupt level 1, and so on. See TABLE 12-4 on page 422 for a list of
exception and interrupt priorities.

TABLE 6-22 Effect of WRPR of Value x to Register TL

Value x Written with WRPR

Privilege Level when Executing WRPR

Nonprivileged Privileged

x ≤ MAXPTL
privileged_opcode

exception

TL ← x

x > MAXPTL TL ← MAXPTL

(no exception generated)

Programming
Note

An UltraSPARC Architecture implementation only needs to
implement sufficient bits in the TL register to encode the
maximum trap level value. In an implementation
whereMAXPTL ≤ 3, bits 63:2 of data written to the TL register
using the WRPR instruction are ignored; only the least-
significant two bits (bits 1:0) of TL are actually written. For
example, if MAXPTL = 2, writing a value of 0516 to the TL register
causes a value of 116 to actually be stored in TL.

Implementation
Note

MAXPTL =2 for all UltraSPARC Architecture 2005 processors.
Writing a value between 3 and 7 to the TL register in privileged
mode causes a 2 to be stored in TL.

Programming
Note

Although it is possible for privileged software to set TL > 0 for
nonprivileged software†, an UltraSPARC Architecture virtual
processor’s behavior when executing with TL > 0 in
nonprivileged mode is undefined.
† by executing a WRPR to TSTATE followed by DONE instruction or RETRY

instruction.

D1
CHAPTER 6 • Registers 95

6.7.9 Global Level Register (GLP) (PR 16)
The privileged Global Level (GL) register selects which set of global registers is
visible at any given time.

FIGURE 6-37 illustrates the Global Level register.

When a trap occurs, GL is stored in TSTATE[TL].gl, GL is incremented, and a new set
of global registers (R[1] through R[7]) becomes visible. A DONE or RETRY
instruction restores the value of GL from TSTATE[TL].

The valid range of values that the GL register may contain is 0 to MAXPGL, where
MAXPGL is one fewer than the number of global register sets available to the virtual
processor.

IMPL. DEP. #401-S10: The architectural parameter MAXPGL is a constant for each
implementation; its legal values are from 2 to 7 (supporting from 3 to 8 sets of global
registers). In a typical implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-
CS10). Architecturally, MAXPGL must be ≥ 2.

In all UltraSPARC Architecture 2005 implementations, MAXPGL = 2. (impl. dep. #401-
S10).

IMPL. DEP. #400-S10: Although GL is defined as a 3-bit register, an implementation
may implement any subset of those bits sufficient to encode the values from 0 to
MAXPGL for that implementation. If any bits of GL are not implemented, they read as
zero and writes to them are ignored.

RW

PILP pil

3 0

FIGURE 6-36 Processor Interrupt Level Register

V9 Compatibility
Note

On SPARC V8 processors, the level 15 interrupt is considered to
be nonmaskable, so it has different semantics from other
interrupt levels. SPARC V9 processors do not treat a level 15
interrupt differently from other interrupt levels.

RW

GLP gl

2 0

FIGURE 6-37 Global Level Register, GL

D1
96 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

GL operates similarly to TL, in that it increments during entry to a trap, but the
values of GL and TL are independent. That is, TL = n does not imply that GL = n,
and GL = n does not imply that TL = n. Furthermore, there may be a different total
number of global levels (register sets) than there are trap levels; that is, MAXPTL and
MAXPGL are not necessarily equal.

The GL register can be accessed directly with the RDPR and WRPR instructions (as
privileged register number 16). Writing the GL register directly with WRPR will
change the set of global registers visible to all instructions subsequent to the WRPR.

In privileged mode, attempting to write a value greater than MAXPGL to the GL
register causes MAXPGL to be written to GL.

The effect of writing to GL with a WRPR instruction is summarized in TABLE 6-23.

Since TSTATE itself is software-accessible, it is possible that when a DONE or
RETRY is executed to return from a trap handler, the value of GL restored from
TSTATE[TL] will be different from that which was saved into TSTATE[TL] when the
trap occurred.

TABLE 6-23 Effect of WRPR to Register GL

Value x Written with WRPR

Privilege Level when WRPR Is Executed

Nonprivileged Privileged

x ≤ MAXPGL

privileged_opcode
exception

GL ← x

x > MAXPGL

GL ← MAXPGL

(no exception generated)
CHAPTER 6 • Registers 97

98 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 7

Instruction Set Overview

Instructions are fetched by the virtual processor from memory and are executed,
annulled, or trapped. Instructions are encoded in 4 major formats and partitioned
into 11 general categories. Instructions are described in the following sections:

■ Instruction Execution on page 99.
■ Instruction Formats on page 100.
■ Instruction Categories on page 101.

7.1 Instruction Execution
The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible virtual
processor and/or memory state. As a side effect of its execution, new values are
assigned to the program counter (PC) and the next program counter (NPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 12, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the NPC is incremented by 4 (ignoring arithmetic
overflow if any). There are two types of control-transfer instructions (CTIs): delayed
and immediate. For a delayed CTI, at the end of the execution of the instruction,
NPC is copied to into the PC and the target address is copied into NPC. For an
immediate CTI, at the end of execution, the target is copied to PC and target + 4 is
copied to NPC. In the SPARC instruction set, many CTIs do not transfer control until
after a delay of one instruction, hence the term “delayed CTI” (DCTI). Thus, the two
program counters provide for a delayed-branch execution model.
99

For each instruction access and each normal data access, an 8-bit address space
identifier (ASI) is appended to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 108) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the
ASI register.

7.2 Instruction Formats
Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 7-1. For detailed formats for specific instructions, see individual
instruction descriptions in the Instructions chapter.

FIGURE 7-1 Summary of Instruction Formats

op = 012: CALL

op = 002: SETHI and Branches

1x rd op3 rs1 i=0 imm_asi rs2

op3rd rs1 i=1 simm131x

31 24 02530 29 19 18 14 13 12 5 4

op = 102 or 112: Arithmetic, Logical, Moves, Tcc, Loads, Stores, Prefetch, and Misc

01 disp30

31 030 29 8

00 rcond op2 rs1 d16lo

31 24 02530 29 19 18 14 13

a 0

22

d16hi p

21 2028 27

00 cond op2 disp19a cc1 pcc0

00 cond op2 disp22a

00 rd op2 imm22
100 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

7.3 Instruction Categories
UltraSPARC Architecture instructions can be grouped into the following categories:

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate
■ Implementation dependent
■ Reserved

These categories are described in the following subsections.

7.3.1 Memory Access Instructions
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the memory access instructions except CASA, CASXA, and
Partial Store use either two R registers or an R register and simm13 to calculate a 64-
bit byte memory address. For example, Compare and Swap uses a single R register
to specify a 64-bit byte memory address. To this 64-bit address, an ASI is appended
that encodes address space information.

The destination field of a memory reference instruction specifies the R or F
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the R register to be
exchanged atomically with the calculated memory location. For Compare and Swap,
an R register is specified, the value of which is compared with the value in memory
at the computed address. If the values are equal, then the destination field specifies
the R register that is to be exchanged atomically with the addressed memory
location. If the values are unequal, then the destination field specifies the R register
that is to receive the value at the addressed memory location; in this case, the
addressed memory location remains unchanged. The LDFSR/LDXFSR and the
STFSR/STXFSR are special load and store instructions that load or store the floating-
point status instead of acting on an R or F register.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of
the prefetch.
CHAPTER 7 • Instruction Set Overview 101

Memory is byte (8-bit) addressable. Integer load and store instructions support byte,
halfword (2 bytes), word (4 bytes), and doubleword/extended-word (8 bytes)
accesses. Floating-point load and store instructions support word, doubleword, and
quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, CASA
accesses words, and CASXA accesses doublewords. The LDTXA (load twin-
extended-word) instruction accesses a quadword (16 bytes) in memory. Block loads
and stores access 64-byte aligned data. PREFETCH accesses at least 64 bytes.

7.3.1.1 Memory Alignment Restrictions
A halfword access must be aligned on a 2-byte boundary, a word access (including
an instruction fetch) must be aligned on a 4-byte boundary, an extended-word (LDX,
LDXA, STX, STXA) or integer twin word (LDTW, LDTWA, STTW, STTWA) access
must be aligned on an 8-byte boundary,an integer twin-extended-word (LDTXA)
access must be aligned on a 16-byte boundary, and a Block Load (LDBLOCKF) or
Store (STBLOCKF) access must be aligned on a 64-byte boundary.

A floating-point doubleword access (LDDF, LDDFA, STDF, STDFA) should be
aligned on an 8-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point doubleword access to an address which is 4-byte aligned
but not 8-byte aligned may result in less efficient and nonatomic access (causes a
trap and is emulated in software (impl. dep. #109-V9-Cs10)), so 8-byte alignment is
recommended.

A floating-point quadword access (LDQF, LDQFA, STQF, STQFA) should be aligned
on a 16-byte boundary, but is only required to be aligned on a word (4-byte)
boundary. A floating-point quadword access to an address which is 4-byte or 8-byte
aligned but not 16-byte aligned may result in less efficient and nonatomic access
(causes a trap and is emulated in software (impl. dep. #111-V9-Cs10)), so 16-byte
alignment is recommended.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

■ An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an LDDF_mem_address_not_aligned exception
(impl. dep. #109-V9-Cs10).

■ An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned may cause an STDF_mem_address_not_aligned exception
(impl. dep. #110-V9-Cs10).

Programming
Note

For some instructions, by using simm13, any location in the
lowest or highest 4 Kbytes of an address space can be accessed
without using a register to hold part of the address.
102 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ An LDQF or LDQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an LDQF_mem_address_not_aligned exception
(impl. dep. #111-V9-Cs10a).

■ An STQF or STQFA instruction accessing an address that is word aligned but not
quadword aligned may cause an STQF_mem_address_not_aligned exception
(impl. dep. #112-V9-Cs10a).

7.3.1.2 Addressing Conventions

An UltraSPARC Architecture virtual processor uses big-endian byte order for all
instruction accesses and, by default, for data accesses. It is possible to access data in
little-endian format by using selected ASIs. It is also possible to change the default
byte order for implicit data accesses. See Processor State (PSTATEP) Register (PR 6) on
page 90 for more information.1

Big-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are described in TABLE 7-1
and illustrated in FIGURE 7-2.

Implementation
Note

Although the architecture provides for the
LDQF_mem_address_not_aligned exception,UltraSPARC
Architecture 2005 implementations do not currently generate it.

Implementation
Note

Although the architecture provides for the
STQF_mem_address_not_aligned exception, UltraSPARC
Architecture 2005 implementations do not currently generate it.

1. Readers interested in more background information on big- vs. little-endian can also refer to Cohen, D., “On
Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-54.

TABLE 7-1 Big-endian Addressing Conventions

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15–8) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 1.
CHAPTER 7 • Instruction Set Overview 103

word For a load/store word instruction, four bytes are accessed. The most
significant byte (bits 31–24) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The most significant byte (bits 63:56) is accessed
at the address specified in the instruction; the least significant byte (bits
7:0) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two big-endian words are accessed. The word
at the address specified in the instruction corresponds to the even register
specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.
†Note that the LDTXA instruction, which is not an LDTWA operation but does share

LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127–120) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the
address + 15.

TABLE 7-1 Big-endian Addressing Conventions

Term Definition
104 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

FIGURE 7-2 Big-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 7 • Instruction Set Overview 105

Little-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are defined in TABLE 7-2
and illustrated in FIGURE 7-3.

TABLE 7-2 Little-endian Addressing Convention

Term Definition

byte A load/store byte instruction accesses the addressed byte in both big-
and little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 15–8) is accessed at the
address + 1.

word For a load/store word instruction, four bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 31–24) is accessed at the
address + 3.

doubleword or
extended word

For a load/store extended or floating-point load/store double
instruction, eight bytes are accessed. The least significant byte (bits 7–0)
is accessed at the address specified in the instruction; the most significant
byte (bits 63–56) is accessed at the address + 7.
For the deprecated integer load/store twin word instructions (LDTW,
LDTWA†, STTW, STTWA), two little-endian words are accessed. The
word at the address specified in the instruction corresponds to the even
register in the instruction; the word at the address specified in the
instruction +4 corresponds to the following odd-numbered register. With
respect to little-endian memory, an LDTW/LDTWA (STTW/STTWA)
instruction behaves as if it is composed of two 32-bit loads (stores), each
of which is byte-swapped independently before being written into each
destination register (memory word).

†Note that the LDTXA instruction, which is not an LDTWA operation but does share
LDTWA’s opcode, is not deprecated.

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the
instruction; the most significant byte (bits 127–120) is accessed at the
address + 15.
106 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

000 001 010 011

100 101 110 111

Quadword 0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

FIGURE 7-3 Little-endian Addressing Conventions

Address{0} =

Address{1:0} =

Address{2:0} =

Address{2:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =

Address{3:0} =
CHAPTER 7 • Instruction Set Overview 107

7.3.1.3 Address Space Identifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use
for their data access; when i = 0, the explicit ASI is provided in the instruction’s
imm_asi field, and when i = 1, it is provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value
that depends on the current trap level (TL) and the value of PSTATE.cle. Instruction
fetches use an implicit ASI that depends only on the current trap level. The cases are
enumerated in TABLE 7-3.

*On some early SPARC V9 implementations, ASI_PRIMARY may have been used for this case.
**On some early SPARC V9 implementations, ASI_PRIMARY_LITTLE may have been used for this case.

TABLE 7-3 ASIs Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.cle ASI Used

Instruction Fetch = 0 any ASI_PRIMARY

> 0 any ASI_NUCLEUS*

Non-alternate-space
Load, Store, or
Load-Store

= 0 0 ASI_PRIMARY

1 ASI_PRIMARY_LITTLE

> 0 0 ASI_NUCLEUS*

1 ASI_NUCLEUS_LITTLE**

Alternate-space Load,
Store, or Load-Store

any any ASI explicitly specified in the instruction
(subject to privilege-level restrictions)
108 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

See also Memory Addressing and Alternate Address Spaces on page 369.

ASIs 0016 through 7F16 are restricted; only software with sufficient privilege is
allowed to access them. An attempt to access a restricted ASI by insufficiently-
privileged software results in a privileged_action exception (impl. dep #103-V9-
Ms10(6)). ASIs 8016 through FF16 are unrestricted; software is allowed to access them
regardless of the virtual processor’s privilege mode, as summarized in TABLE 7-4.

IMPL. DEP. #29-V8: Some UltraSPARC Architecture 2005 ASIs are implementation
dependent. See TABLE 10-1 on page 389 for details.

An UltraSPARC Architecture implementation decodes all 8 bits of ASI specifiers
(impl. dep. #30-V8-Cu3).

7.3.1.4 Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.

TABLE 7-4 Allowed Accesses to ASIs

Value Access Type
Processor Mode
(PSTATE.priv) Result of ASI Access

0016–7F16 Restricted Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016–FF16 Unrestricted Nonprivileged (0) Valid access

Privileged (1) Valid access

V9 Compatibility
Note

In SPARC V9, many ASIs were defined to be implementation
dependent.

V9 Compatibility
Note

In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier.

Programming
Note

A SPARC V9 program containing self-modifying code should
use FLUSH instruction(s) after executing stores to modify
instruction memory and before executing the modified
instruction(s), to ensure the consistency of program execution.
CHAPTER 7 • Instruction Set Overview 109

7.3.2 Memory Synchronization Instructions
Two forms of memory barrier (MEMBAR) instructions allow programs to manage
the order and completion of memory references. Ordering MEMBARs induce a
partial ordering between sets of loads and stores and future loads and stores.
Sequencing MEMBARs exert explicit control over completion of loads and stores (or
other instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in cmask and mmask fields.

7.3.3 Integer Arithmetic and Logical Instructions
The integer arithmetic and logical instructions generally compute a result that is a
function of two source operands and either write the result in a third (destination)
register R[rd] or discard it. The first source operand is R[rs1]. The second source
operand depends on the i bit in the instruction; if i = 0, then the second operand is
R[rs2]; if i = 1, then the second operand is the constant simm10, simm11, or simm13
from the instruction itself, sign-extended to 64 bits.

7.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (icc and xcc) as a side effect; the other does not affect the condition
codes. A special comparison instruction for integer values is not needed since it is
easily synthesized with the “subtract and set condition codes” (SUBcc) instruction.
See Synthetic Instructions on page 486 for details.

7.3.3.2 Shift Instructions

Shift instructions shift an R register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.

7.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an R register” instruction (SETHI) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.

Note The value of R[0] always reads as zero, and writes to it are
ignored.
110 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

7.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer
divide instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with
SPARC V8 processors, 32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide
instructions, and the Multiply Step instruction are provided. Division by zero causes
a division_by_zero exception.

7.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR.icc.v bit; if 64-bit arithmetic overflow
occurs, then they set the CCR.xcc.v bit.

The trapping versions (TADDccTV, TSUBccTV) of these instructions are deprecated.
See Tagged Add on page 339 and Tagged Subtract on page 345 for details.

7.3.4 Control-Transfer Instructions (CTIs)
The basic control-transfer instruction types are as follows:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (NPC) or by changing the value of both the program counter (PC) and the
next program counter (NPC). When only the next program counter, NPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers are of the delayed variety. The instruction following a delayed control-
transfer instruction is said to be in the delay slot of the control-transfer instruction.

Some control transfer instructions (branches) can optionally annul, that is, not
execute, the instruction in the delay slot, depending upon whether the transfer is
taken or not taken. Annulled instructions have no effect upon the program-visible
state, nor can they cause a trap.

TABLE 7-5 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
CHAPTER 7 • Instruction Set Overview 111

represented in the table by BA and BN, respectively. The effect of an annulled branch
is shown in the table through explicit transfers of control, rather than by fetching
and annulling the instruction.

Programming
Note

The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby
reducing the number of instructions executed by a program. For
example, the annul bit can be used to move an instruction from
within a loop to fill the delay slot of the branch that closes the
loop.

Likewise, the annul bit can be used to move an instruction from
either the “else” or “then” branch of an “if-then-else” program
block to the delay slot of the branch that selects between them.
Since a full set of conditions is provided, a compiler can arrange
the code (possibly reversing the sense of the condition) so that
an instruction from either the “else” branch or the “then” branch
can be moved to the delay slot. Use of annulled branches
provided some benefit in older, single-issue SPARC
implementations. On an UltraSPARC Architecture
implementation, the only benefit of annulled branches might be
a slight reduction in code size. Therefore, the use of annulled
branch instructions is no longer encouraged.

TABLE 7-5 Control-Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New NPC

Non-CTIs — — — — NPC NPC + 4

Bcc PC-relative Yes Yes 0 NPC EA

Bcc PC-relative Yes No 0 NPC NPC + 4

Bcc PC-relative Yes Yes 1 NPC EA

Bcc PC-relative Yes No 1 NPC + 4 NPC + 8

BA PC-relative Yes Yes 0 NPC EA

BA PC-relative No Yes 1 EA EA + 4

BN PC-relative Yes No 0 NPC NPC + 4

BN PC-relative Yes No 1 NPC + 4 NPC + 8

CALL PC-relative Yes — — NPC EA

JMPL, RETURN Register-indirect Yes — — NPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — NPC NPC + 4
112 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The effective address, EA in TABLE 7-5, specifies the target of the control-transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.

■ PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.

■ Register-indirect effective address — A register-indirect effective address
computes its target address as either R[rs1] + R[rs2] if i = 0, or
R[rs1] + sign_ext(simm13) if i = 1.

■ Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 or 8 bits of R[rs1] + R[rs2] if
i = 0, or as the least significant 7 or 8 bits of R[rs1] + imm_trap# if i = 1. Whether
7 or 8 bits is used depends on the privilege level — 7 bits are used in
nonprivileged mode and 8 bits are used in privileged mode. The trap level, TL, is
incremented. The hardware trap type is computed as 256 + the software trap
number and stored in TT[TL]. The effective address is generated by combining the
contents of the TBA register with the trap type and other data; see Trap Processing
on page 429 for details.

■ Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[TL] or TNPC[TL].

7.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is TRUE. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is executed only when the conditional branch is taken.

7.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed.

SPARC V8
Compatibility

Note

The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. The SPARC V9
architecture does not require the delay instruction to be fetched
if it is annulled.

Note The annuling behavior of a taken conditional branch is different
from that of an unconditional branch.

Note The annul behavior of an unconditional branch is different from
that of a taken conditional branch.
CHAPTER 7 • Instruction Set Overview 113

7.3.4.3 CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into R[15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into R[15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into R[rd] and then causes a register-indirect delayed transfer of
control to the address given by “R[rs1] + R[rs2]” or “R[rs1] + a signed immediate
value.” The value written into R[rd] is visible to the instruction in the delay slot.

When PSTATE.am = 1, the value of the high-order 32 bits transmitted to R[15] by the
CALL instruction or to R[rd] by the JMPL instruction is zero.

7.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a
JMPL instruction with R[0] specified as the destination register and the register-
window semantics of a RESTORE instruction.

7.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register stack.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of NPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.

7.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches
the current state of the condition code register specified in its cc field; otherwise, it
executes as a NOP. If the trap is taken, it increments the TL register, computes a trap
type that is stored in TT[TL], and transfers to a computed address in a trap table
pointed to by a trap base address register.

A Tcc instruction can specify one of 256 software trap types (128 when in
nonprivileged mode). When a Tcc is taken, 256 plus the 7 (in nonprivileged mode) or
8 (in privileged mode) least significant bits of the Tcc’s second source operand are
114 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

written to TT[TL]. The only visible difference between a software trap generated by
a Tcc instruction and a hardware trap is the trap number in the TT register. See
Chapter 12, Traps, for more information.

7.3.4.7 DCTI Couples

A delayed control transfer instruction (DCTI) in the delay slot of another DCTI is
referred to as a “DCTI couple”. The use of DCTI couples is deprecated in the
UltraSPARC Architecture; no new software should place a DCTI in the delay slot of
another DCTI, as on future UltraSPARC Architecture implementations that construct
may execute either slowly or differently than the programmer assumes it will.

7.3.5 Conditional Move Instructions
This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy
the contents of any integer or floating-point register to a destination integer or
floating-point register if a condition is satisfied. The condition to test is specified in
the instruction and may be any of the conditions allowed in conditional delayed
control-transfer instructions. This condition is tested against one of the six sets of
condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction.
For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register
%f22 if floating-point condition code number 2 (fcc2) indicates a greater-than
relation (FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation
(FSR.fcc2 ≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls
to privileged or hyperprivileged software. Tcc can also be used
for runtime checks, such as out-of-range array index checks or
integer overflow checks.

SPARC V8 and
SPARC V9

Compatibility
Note

The SPARC V8 architecture left behavior undefined for a DCTI
couple. The SPARC V9 architecture defined behavior in that
case, but as of UltraSPARC Architecture 2005, use of DCTI couples
is deprecated.

E2
CHAPTER 7 • Instruction Set Overview 115

cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, 1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer
or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 7-6.

Any of the integer registers (treated as a signed value) may be tested for one of the
conditions, and the result used to control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.

7.3.6 Register Window Management Instructions
This subsection describes the instructions that manage register windows in the
UltraSPARC Architecture. The privileged registers affected by these instructions are
described in Register-Window PR State Registers on page 81.

7.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window spill
exception, that is, one of the spill_n_<normal|other> exceptions.

TABLE 7-6 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero
116 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

If CANSAVE ≠ 0 but the number of clean windows is zero, that is,
(CLEANWIN − CANRESTORE) = 0, then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD
operation are from the old window (the one to which CWP pointed before the
SAVE), while the result is written into a register in the new window (the one to
which the incremented CWP points).

7.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing
the CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window fill
exception, that is, one of the fill_n_<normal|other> exceptions.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are
from the old window (the one to which CWP pointed before the RESTORE), and the
result is written into a register in the new window (the one to which the
decremented CWP points).

Programming
Note

This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL)
instruction. If the procedure requires a register window, it
executes a SAVE instruction in its prologue code. A routine that
does not allocate a register window of its own (possibly a leaf
procedure) should not modify any windowed registers except
out registers 0 through 6. This optimization, called “Leaf-
Procedure Optimization”, is routinely performed by SPARC
compilers.

A procedure that uses a register window returns by executing
both a RESTORE and a JMPL instruction. A procedure that has
not allocated a register window returns by executing a JMPL
only. The target address for the JMPL instruction is normally 8
plus the address saved by the calling instruction, that is, the
instruction after the instruction in the delay slot of the calling
instruction.

The SAVE and RESTORE instructions can be used to atomically
establish a new memory stack pointer in an R register and
switch to a new or previous register window.
CHAPTER 7 • Instruction Set Overview 117

7.3.6.3 SAVED Instruction

SAVED is a privileged instruction used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE and decrements
either OTHERWIN or CANRESTORE, depending on the conditions at the time
SAVED is executed.

See SAVED on page 300 for details.

7.3.6.4 RESTORED Instruction

RESTORED is a privileged instruction, used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE and decrements
either OTHERWIN or CANSAVE, depending on the conditions at the time
RESTORED is executed. RESTORED also manipulates CLEANWIN, which is used to
ensure that no address space’s data become visible to another address space through
windowed registers.

See RESTORED on page 292 for details.

7.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHW instruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as:

N_REG_WINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction continues causing spill traps until all the register windows
except the current window have been flushed.

7.3.7 Ancillary State Register (ASR) Access
The read/write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from R registers. A
read/write Ancillary State register instruction is privileged only if the accessed
register is privileged.

The supported RDasr and WRasr instructions are described in Ancillary State
Registers on page 67.
118 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

7.3.8 Privileged Register Access
The read/write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from R registers. The read/write privileged register instructions are
privileged.

7.3.9 Floating-Point Operate (FPop) Instructions
Floating-point operate instructions (FPops) compute a result that is a function of one
or two source operands and place the result in one or more destination F registers,
with one exception: floating-point compare operations do not write to an F register
but update one of the fccn fields of the FSR instead.

The term “FPop” refers to instructions in the FPop1, and FPop2 opcode spaces. FPop
instructions do not include FBfcc instructions, loads and stores between memory
and the F registers, or non-floating-point operations that read or write F registers.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
115.

The FMOVr instructions function for the floating-point registers as the MOVr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
116.

If no floating-point unit is present or if PSTATE.pef = 0 or FPRS.fef = 0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the fccn fields. All
FPop instructions that can generate IEEE exceptions set the cexc and aexc fields
unless they generate an exception. FABS<s|d|q>, FMOV<s|d|q>,
FMOVcc<s|d|q>, FMOVr<s|d|q>, and FNEG<s|d|q> cannot generate IEEE
exceptions, so they clear cexc and leave aexc unchanged.

IMPL. DEP. #3-V8: An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating an
fp_exception_other exception with FSR.ftt = unfinished_FPop or
FSR.ftt = unimplemented FPop. In this case, software running in a mode with
greater privileges must emulate any functionality not present in the hardware.

See ftt = 2 (unfinished_FPop) on page 62 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unfinished_FPop). See ftt = 3
(unimplemented_FPop) on page 62 to see which instructions can produce an
fp_exception_other exception (with FSR.ftt = unimplemented_FPop).
CHAPTER 7 • Instruction Set Overview 119

7.3.10 Implementation-Dependent Instructions
The SPARC V9 architecture provided two instruction spaces that are entirely
implementation dependent: IMPDEP1 and IMPDEP2.

In the UltraSPARC Architecture, the IMPDEP1 opcode space is used by VIS
instructions.

In the UltraSPARC Architecture, IMPDEP2 is subdivided into IMPDEP2A and
IMPDEP2B. IMPDEP2A remains implementation dependent. The IMPDEP2B opcode
space is reserved for implementation of floating-point multiply-add/multiply-
subtract instructions.

7.3.11 Reserved Opcodes and Instruction Fields
If a conforming UltraSPARC Architecture 2005 implementation attempts to execute
an instruction bit pattern that is not specifically defined in this specification, it
behaves as follows:

■ If the instruction bit pattern encodes an implementation-specific extension to the
instruction set, that extension is executed.

■ {r=1} If the instruction bit pattern does not encode an extension to the instruction
set, but would decode as a valid instruction if nonzero bits in reserved instruction
field(s) were ignored (read as 0):

■ The recommended behavior is to generate an illegal_instruction exception (or,
for FPop, an fp_exception_other exception with FSR.ftt = 3
(unimplemented_FPop)).

■ Alternatively, the implementation can ignore the nonzero reserved field bits
and execute the instruction as if those bits had been zero.

■ {r=1} If the instruction bit pattern does not encode an extension to the instruction
set and would still not decode as a valid instruction if nonzero bits in reserved
instruction field(s) were ignored, then the instruction bit pattern is invalid and
causes an exception. Specifically, attempting to execute an FPop instruction (see
Floating-Point Operate on page 30) causes an fp_exception_other exception (with
FSR.ftt = unimplemented_FPop); attempting to execute any other invalid
instruction bit pattern causes an illegal_instruction exception.

Forward
Compatibility

Note

To further enhance backward (and forward) binary
compatibility, the next revision of the UltraSPARC Architecture
is expected to require an illegal_instruction exception to be
generated by any instruction bit pattern that encodes neither a
known UltraSPARC Architecture instruction nor an
implementation-specific extension instruction (including those
with nonzero bits in reserved instruction fields).
120 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

{r>1} See Appendix A, Opcode Maps, for an enumeration of the reserved instruction
bit patterns (opcodes).

Implementation
Note

As described above, implementations are strongly encouraged,
but not strictly required, to trap on nonzero values in reserved
instruction fields.

Programming
Note

For software portability, software (such as assemblers, static
compilers, and dynamic compilers) that generates SPARC
instructions must always generate zeroes in instruction fields
marked “reserved” (“—”).
CHAPTER 7 • Instruction Set Overview 121

122 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 8

Instructions

UltraSPARC Architecture 2005 extends the standard SPARC V9 instruction set with
additional classes of instructions:

■ Enhanced functionality:
■ Instructions for alignment (Align Address on page 135)
■ Array handling (Three-Dimensional Array Addressing on page 138)
■ Byte-permutation instructions ()
■ Edge handling (Edge Handling Instructions on pages 156 and 158)
■ Logical operations on floating-point registers (F Register Logical Operate (1

operand) on page 211)
■ Partitioned arithmetic (Fixed-point Partitioned Add on page 203 andFixed-point

Partitioned Subtract on page 208)
■ Pixel manipulation (FEXPAND on page 172, FPACK on page 197, and

FPMERGE on page 206)

■ Efficient memory access

■ Partial store (Store Partial Floating-Point on page 325)
■ Short floating-point loads and stores (Store Short Floating-Point on page 328)
■ Block load and store (Block Load on page 232 and Block Store on page 312)

■ Efficient interval arithmetic: SIAM (Set Interval Arithmetic Mode on page 304) and
all instructions that reference GSR.im

TABLE 8-2 provides a quick index of instructions, alphabetically by architectural
instruction name.

TABLE 8-3 summarizes the instruction set, listed within functional categories.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
123

Within these tables and throughout the rest of this chapter, and in Appendix A,
Opcode Maps, certain opcodes are marked with mnemonic superscripts. The
superscripts and their meanings are defined in TABLE 8-1.

TABLE 8-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction

N Nonportable instruction

P Privileged instruction

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged instruction if the referenced ASR register is privileged

Pnpt Privileged action if PSTATE.priv = 0 and (S)TICK.npt = 1

PPIC Privileged action if PCR.priv = 1
124 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE 8-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (1 of 2)

Page Instruction

134 ADD (ADDcc) 180 FMOV(s,d,q)cc 236 LDQF

134 ADDC (ADDCcc) 185 FMOV(s,d,q)R 239 LDQFAPASI

135 ALIGNADDRESS{_LITTLE} 194 FMUL(s,d,q) 227 LDSB

136 ALLCLEAN 188 FMUL8(SU,UL)x16 229 LDSBAPASI

137 AND (ANDcc) 188 FMUL8x16 227 LDSH

138 ARRAY(8,16,32) 188 FMUL8x16(AU,AL) 229 LDSHAPASI

142 Bicc 188 FMULD8(SU,UL)x16 245 LDSHORTF

144 BMASK 214 FNAND{s} 247 LDSTUB

145 BPcc 196 FNEG(s,d,q) 248 LDSTUBAPASI

148 BPr 214 FNOR{s} 227 LDSW

144 BSHUFFLE 212 FNOT(1,2){s} 229 LDSWAPASI

150 CALL 211 FONE{s} 250 LDTXAN

151 CASAPASI 214 FORNOT(1,2){s} 253 LDTWD

151 CASXAPASI 214 FOR{s} 255 LDTWAD, PASI

154 DONEP 197 FPACK(16,32, FIX) 247 LDUB

156 EDGE(8,16,32){L}cc 203 FPADD<16,32>[S] 229 LDUBAPASI

158 EDGE(8,16,32){L}N 206 FPMERGE 227 LDUH

218 F(s,d,q)TO(s,d,q) 208 FPSUB<16,32>[S] 229 LDUHAPASI

216 F(s,d,q)TOi 194 FsMULd 227 LDUW

216 F(s,d,q)TOx 215 FSQRT(s,d,q) 229 LDUWAPASI

159 FABS(s,d,q) 212 FSRC(1,2){s} 227 LDX

160 FADD(s,d,q) 220 FSUB(s,d,q) 229 LDXAPASI

161 FALIGNDATA 214 FXNOR{s} 236 LDXFSR

214 FANDNOT(1,2){s} 214 FXOR{s} 258 MEMBAR

214 FAND{s} 221 FxTO(s,d,q) 262 MOVcc

162 FBfccD 211 FZERO{s} 266 MOVr

164 FBPfcc 222 ILLTRAP 268 MULSccD

169 FCMP(s,d,q) 223 IMPDEP2A 270 MULX

166 FCMP*<16,32> 223 IMPDEP2B 271 NOP

169 FCMPE(s,d,q) 225 INVALW 272 NORMALW

171 FDIV(s,d,q) 226 JMPL 273 OR (ORcc)

194 FdMULq 232 LDBLOCKF 273 ORN (ORNcc)

172 FEXPAND 236 LDDF 274 OTHERW

173 FiTO(s,d,q) 239 LDDFAPASI 275 PDIST

174 FLUSH 236 LDF 276 POPC

177 FLUSHW 239 LDFAPASI 278 PREFETCH

178 FMOV(s,d,q) 243 LDFSRD 278 PREFETCHAPASI
CHAPTER 8 • Instructions 125

285 RDASI 316 STDF 355 WRPRP

285 RDasrPASR 319 STDFAPASI 353 WRSOFTINT_CLRP

285 RDCCR 316 STF 353 WRSOFTINT_SETP

285 RDFPRS 319 STFAPASI 353 WRSOFTINTP

285 RDGSR 323 STFSRD 353 WRSTICK_CMPRP

307 STH 353 WRSTICKP

285 RDPC 308 STHAPASI 353 WRTICK_CMPRP

285 RDPCRP 325 STPARTIALF 353 WRYD

285 RDPICPPIC 316 STQF 358 XNOR (XNORcc)

288 RDPRP 319 STQFAPASI 358 XOR (XORcc)

285 RDSOFTINTP 328 STSHORTF

285 RDSTICK_CMPRP 330 STTWD

285 RDSTICKPnpt 332 STTWAD, PASI

285 RDTICK_CMPRP 307 STW

285 RDTICKPnpt 308 STWAPASI

292 RESTOREDP 307 STX

290 RESTOREP 308 STXAPASI

294 RETRYP 316 STXFSR

296 RETURN 335 SUB (SUBcc)

300 SAVEDP 335 SUBC (SUBCcc)

298 SAVEP 337 SWAPAD, PASI

348 SDIVD (SDIVccD) 336 SWAPD

270 SDIVX 339 TADDcc

302 SETHI 340 TADDccTVD

303 SHUTDOWND,P 342 Tcc

304 SIAM 345 TSUBcc

346 TSUBccTVD

305 SLL 348 UDIVD (UDIVccD)

305 SLLX 270 UDIVX

351 SMULD (SMULccD) 351 UMULD (UMULccD)

305 SRA 353 WRASI

305 SRAX 353 WRasrPASR

305 SRL 353 WRCCR

305 SRLX 353 WRFPRS

307 STB 353 WRGSR

308 STBAPASI

311 STBARD 353 WRPCRP

312 STBLOCKF 353 WRPICPPIC

TABLE 8-2 UltraSPARC Architecture 2005 Instruction Set - Alphabetical (2 of 2)

Page Instruction
126 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE 8-3 Instruction Set - by Functional Category (1 of 6)

Instruction Category and Function Page
Ext. to
V9?

Data Movement Operations, Between R Registers

MOVcc Move integer register if condition is satisfied 262

MOVr Move integer register on contents of integer register 266
Data Movement Operations, Between F Registers

FMOV(s,d,q) Floating-point move 178

FMOV(s,d,q)cc Move floating-point register if condition is satisfied 180

FMOV(s,d,q)R Move f-p reg. if integer reg. contents satisfy condition 185

FSRC(1,2){s} Copy source 212 VIS 1

Data Conversion Instructions

FiTO(s,d,q) Convert 32-bit integer to floating-point 173

F(s,d,q)TOi Convert floating point to integer 216

F(s,d,q)TOx Convert floating point to 64-bit integer 216

F(s,d,q)TO(s,d,q) Convert between floating-point formats 218

FxTO(s,d,q) Convert 64-bit integer to floating-point 221
Logical Operations on R Registers

AND (ANDcc) Logical and (and modify condition codes) 137

OR (ORcc) Inclusive-or (and modify condition codes) 273

ORN (ORNcc) Inclusive-or not (and modify condition codes) 273

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 358

XOR (XORcc) Exclusive-or (and modify condition codes) 358
Logical Operations on F Registers

FAND{s} Logical and operation 214 VIS 1

FANDNOT(1,2){s} Logical and operation with one inverted source 214 VIS 1

FNAND{s} Logical nand operation 214 VIS 1

FNOR{s} Logical nor operation 214 VIS 1

FNOT(1,2){s} Copy negated source 212 VIS 1

FONE{s} One fill 211 VIS 1

FOR{s} Logical or operation 214 VIS 1

FORNOT(1,2){s} Logical or operation with one inverted source 214 VIS 1

FXNOR{s} Logical xnor operation 214 VIS 1

FXOR{s} Logical xor operation 214 VIS 1

FZERO{s} Zero fill 211 VIS 1

Shift Operations on R Registers

SLL Shift left logical 305

SLLX Shift left logical, extended 305

SRA Shift right arithmetic 305

SRAX Shift right arithmetic, extended 305
CHAPTER 8 • Instructions 127

SRL Shift right logical 305

SRLX Shift right logical, extended 305
Special Addressing Operations

ALIGNADDRESS{_LITTLE} Calculate address for misaligned data 135 VIS 1

ARRAY(8,16,32) 3-D array addressing instructions 138 VIS 1

FALIGNDATA Perform data alignment for misaligned data 161 VIS 1

Control Transfers

Bicc Branch on integer condition codes 142

BPcc Branch on integer condition codes with prediction 145

BPr Branch on contents of integer register with prediction 148

CALL Call and link 150

DONEP Return from trap 154

FBfccD Branch on floating-point condition codes 162

FBPfcc Branch on floating-point condition codes with prediction 164

ILLTRAP Illegal instruction 222

JMPL Jump and link 226

RETRYP Return from trap and retry 294

RETURN Return 296

Tcc Trap on integer condition codes 342
Byte Permutation

BMASK Set the GSR.mask field 144 VIS 2

BSHUFFLE Permute bytes as specified by GSR.mask 144 VIS 2

Data Formatting Operations on F Registers

FEXPAND Pixel expansion 172 VIS 1

FPACK(16,32, FIX) Pixel packing 197 VIS 1

FPMERGE Pixel merge 206 VIS 1

Memory Operations to/from F Registers

LDBLOCKF Block loads 232 VIS 1

STBLOCKF Block stores 312 VIS 1

LDDF Load double floating-point 236

LDDFAPASI Load double floating-point from alternate space 239

LDF Load floating-point 236

LDFAPASI Load floating-point from alternate space 239

LDQF Load quad floating-point 236

LDQFAPASI Load quad floating-point from alternate space 239

LDSHORTF Short floating-point loads 245 VIS 1

STDF Store double floating-point 316

TABLE 8-3 Instruction Set - by Functional Category (2 of 6)

Instruction Category and Function Page
Ext. to
V9?
128 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STDFAPASI Store double floating-point into alternate space 319

STF Store floating-point 316

STFAPASI Store floating-point into alternate space 319

STPARTIALF Partial Store instructions 325 VIS 1

STQF Store quad floating point 316

STQFAPASI Store quad floating-point into alternate space 319

STSHORTF Short floating-point stores 328 VIS 1

Memory Operations — Miscellaneous

LDFSRD Load floating-point state register lower 243

LDXFSR Load floating-point state register 236

MEMBAR Memory barrier 258

PREFETCH Prefetch data 278

PREFETCHAPASI Prefetch data from alternate space 278

STFSRD Store floating-point state register 323

STXFSR Store extended floating-point state register 316
Atomic (Load-Store) Memory Operations to/from R Registers

CASAPASI Compare and swap word in alternate space 151

CASXAPASI Compare and swap doubleword in alternate space 151

LDSTUB Load-store unsigned byte 247

LDSTUBAPASI Load-store unsigned byte in alternate space 248

SWAPD Swap integer register with memory 336

SWAPAD, PASI Swap integer register with memory in alternate space 337
Memory Operations to/from R Registers

LDSB Load signed byte 227

LDSBAPASI Load signed byte from alternate space 229

LDSH Load signed halfword 227

LDSHAPASI Load signed halfword from alternate space 229

LDSW Load signed word 227

LDSWAPASI Load signed word from alternate space 229

LDTXAN Load integer twin extended word from alternate space 250 VIS 2+

LDTWD, PASI Load integer twin word 253

LDTWAD, PASI Load integer twin word from alternate space 255

LDUB Load unsigned byte 247

LDUBAPASI Load unsigned byte from alternate space 229

LDUH Load unsigned halfword 227

LDUHAPASI Load unsigned halfword from alternate space 229

LDUW Load unsigned word 227

TABLE 8-3 Instruction Set - by Functional Category (3 of 6)

Instruction Category and Function Page
Ext. to
V9?
CHAPTER 8 • Instructions 129

LDUWAPASI Load unsigned word from alternate space 229

LDX Load extended 227

LDXAPASI Load extended from alternate space 229

STB Store byte 307

STBAPASI Store byte into alternate space 308

STBARD Store barrier 311

STTWD Store twin word 330

STTWAD, PASI Store twin word into alternate space 332

STH Store halfword 307

STHAPASI Store halfword into alternate space 308

STW Store word 307

STWAPASI Store word into alternate space 308

STX Store extended 307

STXAPASI Store extended into alternate space 308
Floating-Point Arithmetic Operations

FABS(s,d,q) Floating-point absolute value 159

FADD(s,d,q) Floating-point add 160

FDIV(s,d,q) Floating-point divide 171

FdMULq Floating-point multiply double to quad 194

FMUL(s,d,q) Floating-point multiply 194

FNEG(s,d,q) Floating-point negate 196

FsMULd Floating-point multiply single to double 194

FSQRT(s,d,q) Floating-point square root 215

FSUB(s,d,q) Floating-point subtract 220
Floating-Point Comparison Operations

FCMP*<16,32> Compare four 16-bit signed values or two 32-bit signed values 166 VIS 1

FCMP(s,d,q) Floating-point compare 169

FCMPE(s,d,q) Floating-point compare (exception if unordered) 169
Register-Window Control Operations

ALLCLEAN Mark all register window sets as “clean” 136

INVALW Mark all register window sets as “invalid” 225

FLUSHW Flush register windows 177

NORMALW “Other” register windows become “normal” register windows 272

OTHERW “Normal” register windows become “other” register windows 274

RESTOREP Restore caller’s window 290

RESTOREDP Window has been restored 292

SAVEP Save caller’s window 298

TABLE 8-3 Instruction Set - by Functional Category (4 of 6)

Instruction Category and Function Page
Ext. to
V9?
130 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SAVEDP Window has been saved 300
Miscellaneous Operations

FLUSH Flush instruction memory 174

IMPDEP2A Implementation-dependent instructions 223

IMPDEP2B Implementation-dependent instructions (reserved) 223

NOP No operation 271

SHUTDOWND,P Shut down the virtual processor 303 VIS 1

Integer SIMD Operations on F Registers

FPADD<16,32>[S] Fixed-point partitioned add 203 VIS 1

FPSUB<16,32>[S] Fixed-point partitioned subtract 208 VIS 1

Integer Arithmetic Operations on R Registers

ADD (ADDcc) Add (and modify condition codes) 134

ADDC (ADDCcc) Add with carry (and modify condition codes) 134

MULSccD Multiply step (and modify condition codes) 268

MULX Multiply 64-bit integers 270

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 348

SDIVX 64-bit signed integer divide 270

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 351

SUB (SUBcc) Subtract (and modify condition codes) 335

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 335

TADDcc Tagged add and modify condition codes (trap on overflow) 339

TADDccTVD Tagged add and modify condition codes (trap on overflow) 340

TSUBcc Tagged subtract and modify condition codes (trap on overflow) 345

TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) 346

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 348

UDIVX 64-bit unsigned integer divide 270

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 351
Integer Arithmetic Operations on F Registers

FMUL8x16 8x16 partitioned product 188 VIS 1

FMUL8x16(AU,AL) 8x16 upper/lower α partitioned product 188 VIS 1

FMUL8(SU,UL)x16 8x16 upper/lower partitioned product 188 VIS 1

FMULD8(SU,UL)x16 8x16 upper/lower partitioned product 188 VIS 1

Miscellaneous Operations on R Registers

POPC Population count 276

SETHI Set high 22 bits of low word of integer register 302
Miscellaneous Operations on F Registers

EDGE(8,16,32){L}cc Edge handling instructions (and modify condition codes) 156 VIS 1

TABLE 8-3 Instruction Set - by Functional Category (5 of 6)

Instruction Category and Function Page
Ext. to
V9?
CHAPTER 8 • Instructions 131

EDGE(8,16,32){L}N Edge handling instructions 158 VIS 2

PDIST Pixel component distance 275 VIS 1

Control and Status Register Access

RDASI Read ASI register 285

RDasrPASR Read ancillary state register 285

RDCCR Read Condition Codes register (CCR) 285

RDFPRS Read Floating-Point Registers State register (FPRS) 285

RDGSR Read General Status register (GSR) 285

RDPC Read Program Counter register (PC) 285

RDPCRP Read Performance Control register (PCR) 285

RDPICPPIC Read Performance Instrumentation Counters register (PIC) 285

RDPRP Read privileged register 288

RDSOFTINTP Read per-virtual processor Soft Interrupt register (SOFTINT) 285

RDSTICKPnpt Read System Tick register (STICK) 285

RDSTICK_CMPRP Read System Tick Compare register (STICK_CMPR) 285

RDTICKPnpt Read Tick register (TICK) 285

RDTICK_CMPRP Read Tick Compare register (TICK_CMPR) 285

SIAM Set interval arithmetic mode 304 VIS 2

WRASI Write ASI register 353

WRasrPASR Write ancillary state register 353

WRCCR Write Condition Codes register (CCR) 353

WRFPRS Write Floating-Point Registers State register (FPRS) 353

WRGSR Write General Status register (GSR) 353

WRPCRP Write Performance Control register (PCR) 353

WRPICPPIC Write Performance Instrumentation Counters register (PIC) 353

WRPRP Write privileged register 355

WRSOFTINTP Write per-virtual processor Soft Interrupt register (SOFTINT) 353

WRSOFTINT_CLRP Clear bits of per-virtual processor Soft Interrupt register
(SOFTINT)

353

WRSOFTINT_SETP Set bits of per-virtual processor Soft Interrupt register (SOFTINT) 353

WRTICK_CMPRP Write Tick Compare register (TICK_CMPR) 353

WRSTICKP Write System Tick register (STICK) 353

WRSTICK_CMPRP Write System Tick Compare register (STICK_CMPR) 353

WRYD Write Y register 353

TABLE 8-3 Instruction Set - by Functional Category (6 of 6)

Instruction Category and Function Page
Ext. to
V9?
132 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

In the remainder of this chapter, related instructions are grouped into subsections.
Each subsection consists of the following sets of information:

(1) Instruction Table. This lists the instructions that are defined in the subsection,
including the values of the field(s) that uniquely identify the instruction(s), assembly
language syntax, and software and implementation classifications for the
instructions. (description of the Software Classes [letters] and Implementation Classes
[digits] will be provided in a later update to this specification)

(2) Illustration of Instruction Format(s). These illustrations show how the
instruction is encoded in a 32-bit word in memory. In them, a dash (—) indicates
that the field is reserved for future versions of the architecture and must be 0 in any
instance of the instruction. If a conforming UltraSPARC Architecture
implementation encounters nonzero values in these fields, its behavior is as defined
in Reserved Opcodes and Instruction Fields on page 120.

(3) Description. This subsection describes the operation of the instruction, its
features, restrictions, and exception-causing conditions.

(4) Exceptions. The exception that can occur as a consequence of attempting to
execute the instruction(s). Exceptions due to an instruction_access_exception, and
interrupts are not listed because they can occur on any instruction. An FPop that is
not implemented in hardware generates an fp_exception_other exception with
FSR.ftt = unimplemented_FPop when executed. A non-FPop instruction not
implemented in hardware generates an illegal_instruction exception and therefore
will not generate any of the other exceptions listed. Exceptions are listed in order of
trap priority (see Trap Priorities on page 428), from highest to lowest priority.

(5) See Also. A list of related instructions (on selected pages).

Note Instruction classes are subject to change, and are not yet defined in
this document. The classes will be defined in a later draft of this
document and in the meantime are subject to change.

Note This specification does not contain any timing information (in
either cycles or elapsed time), since timing is always
implementation dependent.
CHAPTER 8 • Instructions 133

ADD
8.1 Add

Description If i = 0, ADD and ADDcc compute “R[rs1] + R[rs2]”. If i = 1, they compute
“R[rs1] + sign_ext(simm13)”. In either case, the sum is written to R[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(icc.c) bit. That is, if i = 0, they compute “R[rs1] + R[rs2] + icc.c” and if i = 1, they
compute “R[rs1] + sign_ext(simm13) + icc.c”. In either case, the sum is written to
R[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different from that of the operands.

An attempt to execute an ADD, ADDcc, ADDC or ADDCcc instruction when i = 0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

ADD 00 0000 Add add regrs1, reg_or_imm, regrd A1

ADDcc 01 0000 Add and modify cc’s addcc regrs1, reg_or_imm, regrd A1

ADDC 00 1000 Add with 32-bit Carry addc regrs1, reg_or_imm, regrd A1

ADDCcc 01 1000 Add with 32-bit Carry and modify cc’s addccc regrs1, reg_or_imm, regrd A1

Programming
Note

ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

SPARC V8
Compatibility

Note

ADDC and ADDCcc were previously named ADDX and
ADDXcc, respectively, in SPARC V8.

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
134 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

ALIGNADDRESS
8.2 Align Address

Description ALIGNADDRESS adds two integer values, R[rs1] and R[rs2], and stores the result
(with the least significant 3 bits forced to 0) in the integer register R[rd]. The least
significant 3 bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s
complement of the least significant 3 bits of the result is stored in GSR.align.

A byte-aligned 64-bit load can be performed as shown below.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an ALIGNADDRESS or
ALIGNADDRESS_LITTLE instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Data on page 161

Instruction opf Operation Assembly Language Syntax Class

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned
data access

alignaddr regrs1, regrs2, regrd A1

ALIGNADDRESS_
LITTLE

0 0001 1010 Calculate address for misaligned
data access little-endian

alignaddrl regrs1, regrs2, regrd A1

Note ALIGNADDRESS_LITTLE generates the opposite-endian byte
ordering for a subsequent FALIGNDATA operation.

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 8 • Instructions 135

ALLCLEAN
8.3 Mark All Register Window Sets “Clean”

Description The ALLCLEAN instruction marks all register window sets as “clean”; specifically, it
performs the following operation:

CLEANWIN ← (N_REG_WINDOWS − 1)

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)
privileged_opcode

See Also INVALW on page 225
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292
SAVED on page 300

Instruction Operation Assembly Language Syntax Class

ALLCLEANP Mark all register window sets as “clean” allclean C1

Programming
Note

ALLCLEAN is used to indicate that all register windows are
“clean”; that is, do not contain data belonging to other address
spaces. It is needed because the value of N_REG_WINDOWS is not
known to privileged software.

31 1924 18 02530 29

10 fcn = 0 0010 11 0001 —
136 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

AND, ANDN
8.4 AND Logical Operation

Description These instructions implement bitwise logical and operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

ANDcc and ANDNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ANDN and ANDNcc logically negate their second operand before applying the
main (and) operation.

An attempt to execute an AND, ANDcc, ANDN or ANDNcc instruction when i = 0
and reserved instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

AND 00 0001 and and regrs1, reg_or_imm, regrd A1

ANDcc 01 0001 and and modify cc’s andcc regrs1, reg_or_imm, regrd A1

ANDN 00 0101 and not andn regrs1, reg_or_imm, regrd A1

ANDNcc 01 0101 and not and modify cc’s andncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 137

ARRAY<8|16|32>
8.5 Three-Dimensional Array Addressing

Description These instructions convert three-dimensional (3D) fixed-point addresses contained
in R[rs1] to a blocked-byte address; they store the result in R[rd]. Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32).

The second operand, R[rs2], specifies the power-of-2 size of the X and Y dimensions
of a 3D image array. The legal values for R[rs2] and their meanings are shown in
TABLE 8-4. Illegal values produce undefined results in the destination register, R[rd].

The array instructions facilitate 3D texture mapping and volume rendering by
computing a memory address for data lookup based on fixed-point x, y, and z
coordinates. The data are laid out in a blocked fashion, so that points which are near
one another have their data stored in nearby memory locations.

Instruction opf Operation Assembly Language Syntax Class

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address array8 regrs1, regrs2, regrd C3

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address array16 regrs1, regrs2, regrd C3

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address array32 regrs1, regrs2, regrd C3

TABLE 8-4 3D R[rs2] Array X and Y Dimensions
R[rs2] Value (n) Number of Elements

0 64
1 128
2 256
3 512
4 1024
5 2048

Implementation
Note

Architecturally, an illegal R[rs2] value (>5) causes the array
instructions to produce undefined results. For historic reference,
past implementations of these instructions have ignored
R[rs2]{63:3} and have treated R[rs2] values of 6 and 7 as if they
were 5.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
138 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

ARRAY<8|16|32>

If the texture data were laid out in the obvious fashion (the z = 0 plane, followed by
the z = 1 plane, etc.), then even small changes in z would result in references to
distant pages in memory. The resulting lack of locality would tend to result in TLB
misses and poor performance. The three versions of the array instruction, ARRAY8,
ARRAY16, and ARRAY32, differ only in the scaling of the computed memory offsets.
ARRAY16 shifts its result left by one position and ARRAY32 shifts left by two in
order to handle 16- and 32-bit texture data.

When using the array instructions, a “blocked-byte” data formatting structure is
imposed. The N × N × M volume, where N = 2n × 64, M = m × 32, 0 ≤ n ≤5, 1 ≤ m ≤ 16
should be composed of 64 × 64 × 32 smaller volumes, which in turn should be
composed of 4 × 4 × 2 volumes. This data structure is optimal for 16-bit data. For 16-
bit data, the 4 × 4 × 2 volume has 64 bytes of data, which is ideal for reducing cache-
line misses; the 64 × 64 × 32 volume will have 256 Kbytes of data, which is good for
improving the TLB hit rate. FIGURE 8-1 illustrates how the data has to be organized,
where the origin (0,0,0) is assumed to be at the lower-left front corner and the x
coordinate varies faster than y than z. That is, when traversing the volume from the
origin to the upper right back, you go from left to right, front to back, bottom to top.

FIGURE 8-1 Blocked-Byte Data Formatting Structure

The array instructions have 2 inputs:

0 4

4

2

Y

X

Z

16 × 4 = 64

M = m × 32

N = 2
n × 64

N = 2
n × 64

16 x 2 = 32
16 × 4 = 64
CHAPTER 8 • Instructions 139

ARRAY<8|16|32>

The (x,y,z) coordinates are input via a single 64-bit integer organized in R[rs1] as
shown in FIGURE 8-2.

FIGURE 8-2 Three-Dimensional Array Fixed-Point Address Format

Note that z has only 9 integer bits, as opposed to 11 for x and y. Also note that since
(x,y,z) are all contained in one 64-bit register, they can be incremented or
decremented simultaneously with a single add or subtract instruction (ADD or
SUB).

So for a 512 × 512 × 32 or a 512 × 512 × 256 volume, the size value is 3. Note that the
x and y size of the volume must be the same. The z size of the volume is a multiple
of 32, ranging between 32 and 512.

The array instructions generate an integer memory offset, that when added to the
base address of the volume, gives the address of the volume element (voxel) and can
be used by a load instruction. The offset is correct only if the data has been
reformatted as specified above.

The integer parts of x, y, and z are converted to the following blocked-address
formats as shown in FIGURE 8-3 for ARRAY8, FIGURE 8-4 for ARRAY16, and FIGURE 8-5
for ARRAY32.

FIGURE 8-3 Three-Dimensional Array Blocked-Address Format (ARRAY8)

FIGURE 8-4 Three-Dimensional Array Blocked-Address Format (ARRAY16)

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

LOWER

513 9

XYZ

MIDDLE

1717 17

XYZ

UPPER

+ n+2n
20
+ 2n

15 3

XYZ

LOWER

614 10

XYZ

MIDDLE

1818 18

XYZ

UPPER

+n+2n
21

+2n

0

0

140 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

ARRAY<8|16|32>
FIGURE 8-5 Three Dimensional Array Blocked-Address Format (ARRAY32)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by R[rs2] are ignored.

In the above description, if n = 0, there are 64 elements, so X_integer{6} and
Y_integer{6} are not defined. That is, result{20:17} equals Z_integer{8:5}.

The code fragment below shows assembly of components along an interpolated line
at the rate of one component per clock.

Exceptions None

TABLE 8-5 ARRAY8 Description

Result (R[rd]) Bits Source (R[rs1] Bits Field Information

1:0 12:11 X_integer{1:0}

3:2 34:33 Y_integer{1:0}

4 55 Z_integer{0}

8:5 16:13 X_integer{5:2}

12:9 38:35 Y_integer{5:2}

16:13 59:56 Z_integer{4:1}

17+n-1:17 17+n-1:17 X_integer{6+n-1:6}

17+2n-1:17+n 39+n-1:39 Y_integer{6+n-1:6}

20+2n:17+2n 63:60 Z_integer{8:5}

63:20+2n+1 n/a 0

Note To maximize reuse of external cache and TLB data, software
should block array references of a large image to the 64-Kbyte
level. This means processing elements within a 32 × 32 × 64
block.

add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] #ASI_FL8_PRIMARY, data
faligndata data, accum, accum

26 4

XYZ

LOWER

715 11

XYZ

MIDDLE

1919 19

XYZ

UPPER

+n+2n
22

+2n

00

0135
CHAPTER 8 • Instructions 141

Bicc Instructions
8.6 Branch on Integer Condition Codes
(Bicc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Unconditional branches and icc-conditional branches are described below:

■ Unconditional branches (BA, BN) — If its annul bit is 0 (a = 0), a BN (Branch
Never) instruction is treated as a NOP. If its annul bit is 1 (a = 1), the following
(delay) instruction is annulled (not executed). In neither case does a transfer of
control take place.

Opcode cond Operation icc Test
Assembly Language
Syntax Class

BA 1000 Branch Always 1 ba{,a} label A1

BN 0000 Branch Never 0 bn{,a} label A1

BNE 1001 Branch on Not Equal not Z bne†{,a} label A1

BE 0001 Branch on Equal Z be‡{,a} label A1

BG 1010 Branch on Greater not (Z or (N xor V)) bg{,a} label A1

BLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a} label A1

BGE 1011 Branch on Greater or Equal not (N xor V) bge{,a} label A1

BL 0011 Branch on Less N xor V bl{,a} label A1

BGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a} label A1

BLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a} label A1

BCC 1101 Branch on Carry Clear (Greater Than
or Equal, Unsigned)

not C bcc◊{,a} label A1

BCS 0101 Branch on Carry Set (Less Than, Unsigned) C bcs∇ {,a} label A1

BPOS 1110 Branch on Positive not N bpos{,a} label A1

BNEG 0110 Branch on Negative N bneg{,a} label A1

BVC 1111 Branch on Overflow Clear not V bvc{,a} label A1

BVS 0111 Branch on Overflow Set V bvs{,a} label A1

Programming
Note

To set the annul (a) bit for Bicc instructions, append “,a” to the
opcode mnemonic. For example, use “bgu,a label”. In the
preceding table, braces signify that the “,a” is optional.

31 24 02530 29 28 22 21

00 a cond 010 disp22
142 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Bicc Instructions

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp22))”. If the annul (a) bit of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul bit is
0 (a = 0), the delay instruction is executed.

■ icc-conditional branches — Conditional Bicc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (icc), according to the cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken,
that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 7, Instruction Set Overview.

Exceptions None

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
CHAPTER 8 • Instructions 143

BMASK / BSHUFFLE
8.7 Byte Mask and Shuffle

Description BMASK adds two integer registers, R[rs1] and R[rs2], and stores the result in the
integer register R[rd]. The least significant 32 bits of the result are stored in the
GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers FD[rs1] (more
significant half) and FD[rs2] (less significant half) to form a 128-bit (16-byte) value.
Bytes in the concatenated value are numbered from most significant to least
significant, with the most significant byte being byte 0. BSHUFFLE extracts 8 of
those 16 bytes and stores the result in the 64-bit floating-point register FD[rd]. Bytes
in FD[rd] are also numbered from most to least significant, with the most significant
being byte 0. The following table indicates which source byte is extracted from the
concatenated value to generate each byte in the destination register, FD[rd].

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute a BMASK or BSHUFFLE instruction causes an
fp_disabled exception.

Exceptions fp_disabled

Instruction opf Operation Assembly Language Syntax Class

BMASK 0 0001 1001 Set the GSR.mask field in preparation
for a subsequent BSHUFFLE instruction

bmask regrs1, regrs2, regrd C3

BSHUFFLE 0 0100 1100 Permute 16 bytes as specified by GSR.mask bshuffle fregrs1, fregrs2, fregrd C3

Destination Byte (in F[rd]) Source Byte

0 (most significant) (FD[rs1] :: FD[[rs2]){GSR.mask{31:28}}

1 (FD[[rs1] :: FD[[rs2]){GSR.mask{27:24}}

2 (FD[[rs1] :: FD[[rs2]){GSR.mask{23:20}}

3 (FD[[rs1] :: FD[[rs2]){GSR.mask{19:16}}

4 (FD[[rs1] :: FD[[rs2]){GSR.mask{15:12}}

5 (FD[[rs1] :: FD[[rs2]){GSR.mask{11:8}}

6 (FD[[rs1] :: FD[[rs2]){GSR.mask{7:4}}

7 (least significant) (FD[[rs1] :: FD[[rs2]){GSR.mask{3:0}}

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
144 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

BPcc
8.8 Branch on Integer Condition Codes with
Prediction (BPcc)

† synonym: bnz ‡ synonym: bz ◊ synonym: bgeu ∇ synonym: blu

Instruction cond Operation cc Test Assembly Language Syntax Class

BPA 1000 Branch Always 1 ba{,a}{,pt|,pn} i_or_x_cc, label A1

BPN 0000 Branch Never 0 bn{,a}{,pt|,pn} i_or_x_cc, label A1

BPNE 1001 Branch on Not Equal not Z bne†{,a}{,pt|,pn} i_or_x_cc, label A1

BPE 0001 Branch on Equal Z be‡{,a}{,pt|,pn} i_or_x_cc, label A1

BPG 1010 Branch on Greater not (Z or
(N xor V))

bg{,a}{,pt|,pn} i_or_x_cc, label A1

BPLE 0010 Branch on Less or Equal Z or (N xor V) ble{,a}{,pt|,pn} i_or_x_cc, label A1

BPGE 1011 Branch on Greater or Equal not (N xor V) bge{,a}{,pt|,pn} i_or_x_cc, label A1

BPL 0011 Branch on Less N xor V bl{,a}{,pt|,pn} i_or_x_cc, label A1

BPGU 1100 Branch on Greater Unsigned not (C or Z) bgu{,a}{,pt|,pn} i_or_x_cc, label A1

BPLEU 0100 Branch on Less or Equal Unsigned C or Z bleu{,a}{,pt|,pn} i_or_x_cc, label A1

BPCC 1101 Branch on Carry Clear
(Greater than or Equal, Unsigned)

not C bcc◊{,a}{,pt|,pn} i_or_x_cc, label A1

BPCS 0101 Branch on Carry Set
(Less than, Unsigned)

C bcs∇ {,a}{,pt|,pn} i_or_x_cc, label A1

BPPOS 1110 Branch on Positive not N bpos{,a}{,pt|,pn} i_or_x_cc, label A1

BPNEG 0110 Branch on Negative N bneg{,a}{,pt|,pn} i_or_x_cc, label A1

BPVC 1111 Branch on Overflow Clear not V bvc{,a}{,pt|,pn} i_or_x_cc, label A1

BPVS 0111 Branch on Overflow Set V bvs{,a}{,pt|,pn} i_or_x_cc, label A1

cc1 cc0 Condition Code

0 0 icc

0 1 —

1 0 xcc

1 1 —

00 a cond 001 cc1 p disp19cc0

31 1924 182530 29 28 22 21 20
CHAPTER 8 • Instructions 145

BPcc
Description Unconditional branches and conditional branches are described below.

■ Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)
instruction for this branch type (op2 = 1) may be used in the SPARC V9
architecture as an instruction prefetch; that is, the effective address (PC + (4 ×
sign_ext(disp19))) specifies an address of an instruction that is expected to be
executed soon. If the Branch Never’s annul bit is 1 (a = 1), then the following
(delay) instruction is annulled (not executed). If the annul bit is 0 (a = 0), then the
following instruction is executed. In no case does a Branch Never cause a transfer
of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19))”. If the annul
bit of the branch instruction is 1 (a = 1), then the delay instruction is annulled (not
executed). If the annul bit is 0 (a = 0), then the delay instruction is executed.

■ Conditional branches — Conditional BPcc instructions (except BPA and BPN)
evaluate one of the two integer condition codes (icc or xcc), as selected by cc0
and cc1, according to the cond field of the instruction, producing either a TRUE or
FALSE result. If TRUE, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19))”. If
FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 7, Instruction Set Overview.

An attempt to execute a BPcc instruction with cc0 = 1 (a reserved value) causes an
illegal_instruction exception.

Exceptions illegal_instruction

Programming
Note

To set the annul (a) bit for BPcc instructions, append “,a” to the
opcode mnemonic. For example, use bgu,a %icc, label. Braces in
the preceding table signify that the “,a” is optional. To set the
branch prediction bit, append to an opcode mnemonic either
“,pt” for predict taken or “,pn” for predict not taken. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate integer condition code, include “%icc” or
“%xcc” before the label.

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
146 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

BPcc

See Also Branch on Integer Register with Prediction (BPr) on page 148
CHAPTER 8 • Instructions 147

BPr
8.9 Branch on Integer Register with
Prediction (BPr)

* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, many
early implementations ignored the value of this bit and executed the opcode as a BPr instruction even if
bit 28 = 1.

Description These instructions branch based on the contents of R[rs1]. They treat the register
contents as a signed integer value.

A BPr instruction examines all 64 bits of R[rs1] according to the rcond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(d16hi :: d16lo))”. If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul (a) bit. If the branch is not taken and the annul bit is 1 (a = 1), the
delay instruction is annulled (not executed).

Instruction rcond Operation

Register
Contents
Test Assembly Language Syntax Class

— 000 Reserved — —

BRZ 001 Branch on Register Zero R[rs1] = 0 brz {,a}{,pt|,pn} regrs1, label A1

BRLEZ 010 Branch on Register Less Than or Equal
to Zero

R[rs1] ≤ 0 brlez {,a}{,pt|,pn} regrs1, label A1

BRLZ 011 Branch on Register Less Than Zero R[rs1] < 0 brlz {,a}{,pt|,pn} regrs1, label A1

— 100 Reserved — —

BRNZ 101 Branch on Register Not Zero R[rs1] ≠ 0 brnz {,a}{,pt|,pn} regrs1, label A1

BRGZ 110 Branch on Register Greater Than Zero R[rs1] > 0 brgz {,a}{,pt|,pn} regrs1, label A1

BRGEZ 111 Branch on Register Greater Than or
Equal to Zero

R[rs1] ≥ 0 brgez {,a}{,pt|,pn} regrs1, label A1

Programming
Note

To set the annul (a) bit for BPr instructions, append “,a” to the
opcode mnemonic. For example, use “brz,a %i3, label.” In the
preceding table, braces signify that the “,a” is optional. To set the
branch prediction bit p, append either “,pt” for predict taken or
“,pn” for predict not taken to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”.

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0* rcond 011 d16hi p rs1 d16lo
148 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

BPr

The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. If p = 1, the branch is expected to be taken; p = 0 indicates that the branch
is expected not to be taken.

An attempt to execute a BPr instruction when instruction bit 28 = 1 or rcond is a
reserved value (0002 or 1002) causes an illegal_instruction exception.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 7, Instruction Set Overview.

Exceptions illegal_instruction

See Also Branch on Integer Condition Codes with Prediction (BPcc) on page 145

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) bit and Z (zero) bit, the table below can be
used to determine if rcond is TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)
CHAPTER 8 • Instructions 149

CALL
8.10 Call and Link

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer
to address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is
30 bits wide, the target address lies within a range of –231 to +231 – 4 bytes. The PC-
relative displacement is formed by sign-extending the 30-bit word displacement field
to 62 bits and appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into R[15] (out register 7).

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system and in the address
written into R[15]. (closed impl. dep. #125-V9-Cs10)

Exceptions None

See Also JMPL on page 226

Instruction op Operation Assembly Language Syntax Class

CALL 01 Call and Link call label A1

31 030 29

01 disp30
150 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CASA / CASXA
8.11 Compare and Swap

Description Concurrent processes use these instructions for synchronization and memory
updates. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The last two can use wait-free
(nonlocking) protocols.

The CASXA instruction compares the value in register R[rs2] with the doubleword
in memory pointed to by the doubleword address in R[rs1]. If the values are equal,
the value in R[rd] is swapped with the doubleword pointed to by the doubleword
address in R[rs1]. If the values are not equal, the contents of the doubleword
pointed to by R[rs1] replaces the value in R[rd], but the memory location remains
unchanged.

The CASA instruction compares the low-order 32 bits of register R[rs2] with a word
in memory pointed to by the word address in R[rs1]. If the values are equal, then the
low-order 32 bits of register R[rd] are swapped with the contents of the memory
word pointed to by the address in R[rs1] and the high-order 32 bits of register R[rd]
are set to 0. If the values are not equal, the memory location remains unchanged, but
the contents of the memory word pointed to by R[rs1] replace the low-order 32 bits
of R[rd] and the high-order 32 bits of register R[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and
a swap. The overall instruction is atomic; that is, no intervening interrupts or
deferred traps are recognized by the virtual processor and no intervening update
resulting from a compare-and-swap, swap, load, load-store unsigned byte, or store
instruction to the doubleword containing the addressed location, or any portion of it,
is performed by the memory system.

Instruction op3 Operation Assembly Language Syntax Class

CASAPASI 11 1100 Compare and Swap Word from
Alternate Space

casa
casa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

CASXAPASI 11 1110 Compare and Swap Extended from
Alternate Space

casxa
casxa

[regrs1] imm_asi, regrs2, regrd
[regrs1] %asi, regrs2, regrd

A1

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
31 141924 18 13 12 5 4 02530 29
CHAPTER 8 • Instructions 151

CASA / CASXA

A compare-and-swap operation does not imply any memory barrier semantics.
When compare-and-swap is used for synchronization, the same consideration
should be given to memory barriers as if a load, store, or swap instruction were
used.

A compare-and-swap operation behaves as if it performs a store, either of a new
value from R[rd] or of the previous value in memory. The addressed location must
be writable, even if the values in memory and R[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if
i = 1, the address space is specified in the ASI register.

An attempt to execute a CASXA or CASA instruction when i = 1 and instruction bits
12:5 are nonzero causes an illegal_instruction exception.

A mem_address_not_aligned exception is generated if the address in R[rs1] is not
properly aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, CASXA and CASA
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3016 to 7F16, CASXA and CASA cause a privileged_action exception.

The compare-and-swap instructions do not affect the condition codes.

The compare-and-swap instructions can be used with any of the following ASIs,
subject to the privilege mode rules described for the privileged_action exception
above. Use of any other ASI with these instructions causes a data_access_exception
exception.

Compatibility
Note

An implementation might cause an exception because of an
error during the store memory access, even though there was no
error during the load memory access.

Programming
Note

Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big endian”
memory accesses. Compare and Swap Little (CASL) and Compare
and Swap Extended Little (CASXL) synthetic instructions are
available for “little endian” memory accesses. See Synthetic
Instructions on page 536 for the syntax of these synthetic
instructions.

ASIs valid for CASA and CASXA instructions

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
152 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CASA / CASXA

Exceptions illegal_instruction

mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception
CHAPTER 8 • Instructions 153

DONE
8.12 DONE

Description The DONE instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), sets PC and NPC, and decrements TL. DONE sets
PC←TNPC[TL] and NPC←TNPC[TL]+4 (normally, the value of NPC saved at the
time of the original trap and address of the instruction immediately after the one
referenced by the NPC).

If the saved TNPC[TL] was not altered by trap handler software, DONE causes
execution to resume immediately after the instruction that originally caused the trap
(as if that instruction was “done” executing).

Execution of a DONE instruction in the delay slot of a control-transfer instruction
produces undefined results.

If software writes invalid or inconsistent state to TSTATE before executing DONE,
virtual processor behavior during and after execution of the DONE instruction is
undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE instruction
is executed (which sets PSTATE.am to ’1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
DONE instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. In privileged mode (PSTATE.priv = 1), an attempt to execute DONE
while TL = 0 causes an illegal_instruction exception. An attempt to execute DONE
(in any mode) with instruction bits 18:0 nonzero causes an illegal_instruction
exception.

Instruction op3 Operation Assembly Language Syntax Class

DONEP 11 1110 Return from Trap (skip trapped instruction) done C1

Programming
Notes

The DONE and RETRY instructions are used to return from
privileged trap handlers.

Unlike RETRY, DONE ignores the contents of TPC[TL].

10 11 1110fcn =0 0000 —
31 1924 18 02530 29
154 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

DONE

In nonprivileged mode (PSTATE.priv = 0), an attempt to execute DONE causes a
privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also RETRY on page 294

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
CHAPTER 8 • Instructions 155

EDGE<8|16|32>{L}cc
8.13 Edge Handling Instructions

Description These instructions handle the boundary conditions for parallel pixel scan line loops,
where R[rs1] is the address of the next pixel to render and R[rs2] is the address of
the last pixel in the scan line.

EDGE8Lcc, EDGE16Lcc, and EDGE32Lcc are little-endian versions of EDGE8cc,
EDGE16cc, and EDGE32cc. They produce an edge mask that is bit-reversed from
their big-endian counterparts but are otherwise identical. This makes the mask
consistent with the mask produced by the Partial Store instruction (see Partial Store
on page 298) on little-endian data.

A 2-bit (EDGE32cc), 4-bit (EDGE16cc), or 8-bit (EDGE8cc) pixel mask is stored in the
least significant bits of R[rd]. The mask is computed from left and right edge masks
as follows:

1. The left edge mask is computed from the 3 least significant bits of R[rs1] and the
right edge mask is computed from the 3 least significant bits of R[rs2], according
to TABLE 8-6.

2. If a 32-bit address masking is disabled (PSTATE.am = 0, 64-bit addressing) and
the upper 61 bits of R[rs1] are equal to the corresponding bits in R[rs2], R[rd] is
set to the right edge mask anded with the left edge mask.

Instruction opf Operation Assembly Language Syntax † Class

EDGE8cc 0 0000 0000 Eight 8-bit edge boundary processing edge8cc regrs1, regrs2, regrd C3

EDGE8Lcc 0 0000 0010 Eight 8-bit edge boundary processing,
little-endian

edge8lcc regrs1, regrs2, regrd C3

EDGE16cc 0 0000 0100 Four 16-bit edge boundary processing edge16cc regrs1, regrs2, regrd C3

EDGE16Lcc 0 0000 0110 Four 16-bit edge boundary processing,
little-endian

edge16lcc regrs1, regrs2, regrd C3

EDGE32cc 0 0000 1000 Two 32-bit edge boundary processing edge32cc regrs1, regrs2, regrd C3

EDGE32Lcc 0 0000 1010 Two 32-bit edge boundary processing,
little-endian

edge32lcc regrs1, regrs2, regrd C3

† The original assembly language mnemonics for these instructions did not include the “cc” suffix, as appears in the names of all other
instructions that set the integer condition codes. The old, non-”cc” mnemonics are deprecated. Over time, assemblers will support
the new mnemonics for these instructions. In the meantime, some older assemblers may recognize only the mnemonics, without “cc”.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
156 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

EDGE<8|16|32>{L}cc

3. If 32-bit address masking is enabled (PSTATE.am = 1, 32-bit addressing) and bits

31:3 of R[rs1] match bits 31:3 of R[rs2], R[rd] is set to the right edge mask anded
with the left edge mask.

4. Otherwise, R[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBcc instruction with the
same operands (see Subtract on page 303).

TABLE 8-6 lists edge mask specifications.

Exceptions illegal_instruction

See Also EDGE(8,16,32){L}N on page 158

TABLE 8-6 Edge Mask Specification

Edge
Size

R[rsn]
{2:0}

Big Endian Little Endian

Left Edge Right Edge Left Edge Right Edge

8 000 1111 1111 1000 0000 1111 1111 0000 0001

8 001 0111 1111 1100 0000 1111 1110 0000 0011

8 010 0011 1111 1110 0000 1111 1100 0000 0111

8 011 0001 1111 1111 0000 1111 1000 0000 1111

8 100 0000 1111 1111 1000 1111 0000 0001 1111

8 101 0000 0111 1111 1100 1110 0000 0011 1111

8 110 0000 0011 1111 1110 1100 0000 0111 1111

8 111 0000 0001 1111 1111 1000 0000 1111 1111

16 00x 1111 1000 1111 0001

16 01x 0111 1100 1110 0011

16 10x 0011 1110 1100 0111

16 11x 0001 1111 1000 1111

32 0xx 11 10 11 01

32 1xx 01 11 10 11
CHAPTER 8 • Instructions 157

EDGE<8|16|32>{L}N
8.14 Edge Handling Instructions (no CC)

Description EDGE8[L]N, EDGE16[L]N, and EDGE32[L]N operate identically to EDGE8[L]cc,
EDGE16[L]cc, and EDGE32[L]cc, respectively, but do not set the integer condition
codes.

See Edge Handling Instructions on page 156 for details.

Exceptions illegal_instruction

See Also EDGE<8,16,32>[L]cc on page 156

Instruction opf Operation Assembly Language Syntax Class

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC edge8n regrs1, regrs2, regrd C3

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing,
little-endian, no CC

edge8ln regrs1, regrs2, regrd C3

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC edge16n regrs1, regrs2, regrd C3

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing,
little-endian, no CC

edge16ln regrs1, regrs2, regrd C3

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC edge32n regrs1, regrs2, regrd C3

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing,
little-endian, no CC

edge32ln regrs1, regrs2, regrd C3

VIS 2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
158 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FABS
8.15 Floating-Point Absolute Value

Description FABS copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit cleared (set to 0).

FABSs operates on single-precision (32-bit) floating-point registers, FABSd operates on
double-precision (64-bit) floating-point register pairs, and FABSq operates on quad-
precision (128-bit) floating-point register quadruples.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FABS instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FABS instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FABSq))

Instruction op3 opf Operation Assembly Language Syntax Class

FABSs 11 0100 0 0000 1001 Absolute Value Single fabss fregrs2, fregrd A1

FABSd 11 0100 0 0000 1010 Absolute Value Double fabsd fregrs2, fregrd A1

FABSq 11 0100 0 0000 1011 Absolute Value Quad fabsq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FABSq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 8 • Instructions 159

FADD
8.16 Floating-Point Add

Description The floating-point add instructions add the floating-point register(s) specified by the
rs1 field and the floating-point register(s) specified by the rs2 field. The instructions
then write the sum into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FADD instruction causes an fp_disabled exception.

If the FPU is enabled, FADDq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FADDq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

Instruction op3 opf Operation Assembly Language Syntax Class

FADDs 11 0100 0 0100 0001 Add Single fadds fregrs1, fregrs2, fregrd A1

FADDd 11 0100 0 0100 0010 Add Double faddd fregrs1, fregrs2, fregrd A1

FADDq 11 0100 0 0100 0011 Add Quad faddq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FADDq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions.

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
160 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FALIGNDATA
8.17 Align Data

Description FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1
and rs2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the
intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR.align specifies the number of the most significant byte to extract
(and, therefore, the least significant byte extracted is numbered GSR.align+7).

GSR.align is normally set by a previous ALIGNADDRESS instruction.

FIGURE 8-6 FALIGNDATA

A byte-aligned 64-bit load can be performed as shown below.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FALIGNDATA instruction causes an fp_disabled exception.

Exceptions fp_disabled

See Also Align Address on page 135

Instruction opf Operation Assembly Language Syntax Class

FALIGNDATA 0 0100 1000 Perform data alignment for
misaligned data

faligndata fregrs1, fregrs2, fregrd A1

alignaddr Address, Offset, Address !set GSR.align
ldd [Address], %d0
ldd [Address + 8], %d2
faligndata %d0, %d2, %d4 !use GSR.align to select bytes

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GSR.align

63 0

byte byte

101

FD[rs1] :: FD[rs2]

127 0
FD[rs1] FD[rs2]

FD[rd]
CHAPTER 8 • Instructions 161

FBfcc (Deprecated)
8.18 Branch on Floating-Point Condition
Codes (FBfcc)

† synonym: fbnz ‡ synonym: fbz

Description Unconditional and Fcc branches are described below:

The FBfcc instructions are deprecated and should not be used in new software.
The FBPfcc instructions should be used instead.

Opcode cond Operation fcc Test Assembly Language Syntax Class

FBAD 1000 Branch Always 1 fba{,a} label A1

FBND 0000 Branch Never 0 fbn{,a} label A1

FBUD 0111 Branch on Unordered U fbu{,a} label A1

FBGD 0110 Branch on Greater G fbg{,a} label A1

FBUGD 0101 Branch on Unordered or Greater G or U fbug{,a} label A1

FBLD 0100 Branch on Less L fbl{,a} label A1

FBULD 0011 Branch on Unordered or Less L or U fbul{,a} label A1

FBLGD 0010 Branch on Less or Greater L or G fblg{,a} label A1

FBNED 0001 Branch on Not Equal L or G or U fbne†{,a} label A1

FBED 1001 Branch on Equal E fbe‡{,a} label A1

FBUED 1010 Branch on Unordered or Equal E or U fbue{,a} label A1

FBGED 1011 Branch on Greater or Equal E or G fbge{,a} label A1

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U fbuge{,a} label A1

FBLED 1101 Branch on Less or Equal E or L fble{,a} label A1

FBULED 1110 Branch on Unordered or Less or Equal E or L or U fbule{,a} label A1

FBOD 1111 Branch on Ordered E or L or G fbo{,a} label A1

Programming
Note

To set the annul (a) bit for FBfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a label”. In the
preceding table, braces around “,a” signify that “,a” is
optional.

31 24 02530 29 28 22 21

cond00 a 110 disp22
162 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FBfcc (Deprecated)

■ Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch

Never) instruction acts like a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed) when the FBN is executed. In neither case
does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22))” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBfcc instructions (except FBA and
FBN) evaluate floating-point condition code zero (fcc0) according to the cond
field of the instruction. Such evaluation produces either a TRUE or FALSE result.
If TRUE, the branch is taken, that is, the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 × sign_ext(disp22))”. If FALSE, the branch
is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled

Note The annul bit has a different effect on conditional branches than
it does on unconditional branches.
CHAPTER 8 • Instructions 163

FBPfcc
8.19 Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

† synonym: fbnz ‡ synonym: fbz

Instruction cond Operation fcc Test Assembly Language Syntax Class

FBPA 1000 Branch Always 1 fba {,a}{,pt|,pn} %fccn, label A1

FBPN 0000 Branch Never 0 fbn {,a}{,pt|,pn} %fccn, label A1

FBPU 0111 Branch on Unordered U fbu {,a}{,pt|,pn} %fccn, label A1

FBPG 0110 Branch on Greater G fbg {,a}{,pt|,pn} %fccn, label A1

FBPUG 0101 Branch on Unordered or Greater G or U fbug {,a}{,pt|,pn} %fccn, label A1

FBPL 0100 Branch on Less L fbl {,a}{,pt|,pn} %fccn, label A1

FBPUL 0011 Branch on Unordered or Less L or U fbul {,a}{,pt|,pn} %fccn, label A1

FBPLG 0010 Branch on Less or Greater L or G fblg {,a}{,pt|,pn} %fccn, label A1

FBPNE 0001 Branch on Not Equal L or G or U fbne†{,a}{,pt|,pn} %fccn, label A1

FBPE 1001 Branch on Equal E fbe‡{,a}{,pt|,pn} %fccn, label A1

FBPUE 1010 Branch on Unordered or Equal E or U fbue {,a}{,pt|,pn} %fccn, label A1

FBPGE 1011 Branch on Greater or Equal E or G fbge {,a}{,pt|,pn} %fccn, label A1

FBPUGE 1100 Branch on Unordered or Greater
or Equal

E or G or U fbuge {,a}{,pt|,pn} %fccn, label A1

FBPLE 1101 Branch on Less or Equal E or L fble {,a}{,pt|,pn} %fccn, label A1

FBPULE 1110 Branch on Unordered or Less or
Equal

E or L or U fbule {,a}{,pt|,pn} %fccn, label A1

FBPO 1111 Branch on Ordered E or L or G fbo {,a}{,pt|,pn} %fccn, label A1

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
164 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FBPfcc
Description Unconditional branches and Fcc-conditional branches are described below.

■ Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the
Branch Never’s annul field is 0, the following (delay) instruction is executed; if
the annul (a) bit is 1, the following instruction is annulled (not executed). In no
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul (a) bit is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (fcc0, fcc1, fcc2,
fcc3) as selected by cc0 and cc1, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19))”. If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul (a) bit. If a conditional branch is not taken
and the annul bit is 1 (a = 1), the delay instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected
to be taken. A 1 in the p bit indicates that the branch is expected to be taken. A 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 7, Instruction Set Overview.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FBPfcc instruction causes an fp_disabled exception.

Exceptions fp_disabled

Programming
Note

To set the annul (a) bit for FBPfcc instructions, append “,a” to the
opcode mnemonic. For example, use “fbl,a %fcc3, label”. In
the preceding table, braces signify that the “,a” is optional. To set
the branch prediction bit, append either “,pt” (for predict taken)
or “pn” (for predict not taken) to the opcode mnemonic. If neither
“,pt” nor “,pn” is specified, the assembler defaults to “,pt”. To
select the appropriate floating-point condition code, include
“%fcc0”, “%fcc1”, “%fcc2”, or “%fcc3” before the label.

Note The annul bit has a different effect on conditional branches than it
does on unconditional branches.
CHAPTER 8 • Instructions 165

FCMP*<16|32> (SIMD)
8.20 SIMD Signed Compare

Description Either four 16-bit signed values or two 32-bit signed values in FD[rs1] and FD[rs2]
are compared. The 4-bit or 2-bit condition-code results are stored in the least
significant bits of the integer register R[rd]. The least significant 16-bit or 32-bit
compare result corresponds to bit zero of R[rd].

For FCMPGT{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is greater than the signed value in FD[rs2]. Less-than comparisons
are made by swapping the operands.

For FCMPLE{16,32}, each bit in the result is set to 1 if the corresponding signed value
in FD[rs1] is less than or equal to the signed value in FD[rs2]. Greater-than-or-equal
comparisons are made by swapping the operands.

For FCMPEQ{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is equal to the signed value in FD[rs2].

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FCMPLE16 0 0010 0000 Four 16-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple16 fregrs1, fregrs2, regrd C3

FCMPNE16 0 0010 0010 Four 16-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne16 fregrs1, fregrs2, regrd C3

FCMPLE32 0 0010 0100 Two 32-bit compare;
set R[rd] if src1 ≤ src2

f64 f64 i64 fcmple32 fregrs1, fregrs2, regrd C3

FCMPNE32 0 0010 0110 Two 32-bit compare;
set R[rd] if src1 ≠ src2

f64 f64 i64 fcmpne32 fregrs1, fregrs2, regrd C3

FCMPGT16 0 0010 1000 Four 16-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt16 fregrs1, fregrs2, regrd C3

FCMPEQ16 0 0010 1010 Four 16-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq16 fregrs1, fregrs2, regrd C3

FCMPGT32 0 0010 1100 Two 32-bit compare;
set R[rd] if src1 > src2

f64 f64 i64 fcmpgt32 fregrs1, fregrs2, regrd C3

FCMPEQ32 0 0010 1110 Two 32-bit compare;
set R[rd] if src1 = src2

f64 f64 i64 fcmpeq32 fregrs1, fregrs2, regrd C3

Note Bits 63:4 of the destination register R[rd] are set to zero for 16-bit
compares. Bits 63:2 of the destination register R[rd] are set to
zero for 32-bit compares.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
166 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FCMP*<16|32> (SIMD)

For FCMPNE{16,32}, each bit in the result is set to 1 if the corresponding signed
value in FD[rs1] is not equal to the signed value in FD[rs2].

FIGURE 8-7 and FIGURE 8-8 illustrate 16-bit and 32-bit pixel comparison operations,
respectively.

FIGURE 8-7 Four 16-bit Signed Fixed-point SIMD Comparison Operations

FIGURE 8-8 Two 32-bit Signed Fixed-point SIMD Comparison Operation

In all comparisons, if a compare condition is not true, the corresponding bit in the
result is set to 0.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIMD signed compare instruction causes an fp_disabled
exception.

Programming
Note

The results of a SIMD signed compare operation can be used
directly by both integer operations (for example, partial stores)
and partitioned conditional moves.

63

fcmp[gt, le, eq, ne, lt, ge]16

03

63 015314748 32 16

63 015314748 32 16

4

0 . . 0

FD[rs1]

FD[rs2]

R[rd]

63 0

63 031

fcmp[gt, le, eq, ne, lt ge]32

12

32

63 03132

0 . . 0

FD[rs1]

FD[rs2]

R[rd]
CHAPTER 8 • Instructions 167

FCMP*<16|32> (SIMD)

Exception fp_disabled

See Also STPARTIALF on page 325
168 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FCMP<s|d|q> / FCMPE<s|d|q>
8.21 Floating-Point Compare

Description These instructions compare the floating-point register(s) specified by the rs1 field
with the floating-point register(s) specified by the rs2 field, and set the selected
floating-point condition code (fccn) as shown below.

The “?” in the preceding table means that the comparison is unordered. The
unordered condition occurs when one or both of the operands to the compare is a
signalling or quiet NaN.

Instruction opf Operation Assembly Language Syntax Class

FCMPs 0 0101 0001 Compare Single fcmps %fccn, fregrs1, fregrs2 A1

FCMPd 0 0101 0010 Compare Double fcmpd %fccn, fregrs1, fregrs2 A1

FCMPq 0 0101 0011 Compare Quad fcmpq %fccn, fregrs1, fregrs2 C3

FCMPEs 0 0101 0101 Compare Single and Exception if
Unordered

fcmpes %fccn, fregrs1, fregrs2 A1

FCMPEd 0 0101 0110 Compare Double and Exception if
Unordered

fcmped %fccn, fregrs1, fregrs2 A1

FCMPEq 0 0101 0111 Compare Quad and Exception if
Unordered

fcmpeq %fccn, fregrs1, fregrs2 C3

cc1 cc0 Condition Code

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)

10 rs2— rs1
31 141924 18 13 02530 29 4

opf
52627

cc1 cc0 11 0101
CHAPTER 8 • Instructions 169

FCMP<s|d|q> / FCMPE<s|d|q>

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

An attempt to execute an FCMP instruction when instruction bits 29:27 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (FSR.ftt = unimplemented_FPop (FCMPq, FCMPEq only))

V8 Compatibility
Note

Unlike the SPARC V8 architecture, SPARC V9 and the
UltraSPARC Architecture do not require an instruction between a
floating-point compare operation and a floating-point branch
(FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to
have rd = 0. In SPARC V9 and the UltraSPARC Architecture, bits
26 and 25 of the instruction (rd{1:0}) specify the floating-point
condition code to be set. Legal SPARC V8 code will work on
SPARC V9 and the UltraSPARC Architecture because the zeroes
in the R[rd] field are interpreted as fcc0 and the FBfcc
instruction branches based on the value of fcc0.

Note UltraSPARC Architecture 2005 processors do not implement in
hardware the instructions that refer to quad-precision floating-
point registers. An attempt to execute FCMPq or FCMPEq
generates fp_exception_other (with
FSR.ftt = unimplemented_FPop), which causes a trap, allowing
privileged software to emulate the instruction.
170 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FDIV<s|d|q>
8.22 Floating-Point Divide

Description The floating-point divide instructions divide the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the quotient into the floating-
point register(s) specified by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FCMP or FCMPE instruction causes an fp_disabled exception.

If the FPU is enabled, FDIVq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FDIVq only))
fp_exception_other (FSR.ftt = unfinished_FPop (FDIVs, FDIV))
fp_exception_ieee_754 (OF, UF, DZ, NV, NX)

Instruction op3 opf Operation Assembly Language Syntax Class

FDIVs 11 0100 0 0100 1101 Divide Single fdivs fregrs1, fregrs2, fregrd A1

FDIVd 11 0100 0 0100 1110 Divide Double fdivd fregrs1, fregrs2, fregrd A1

FDIVq 11 0100 0 0100 1111 Divide Quad fdivq fregrs1, fregrs2, fregrd C3

Note For FDIVs and FDIVd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if the divide unit detects
unusual, implementation-specific conditions.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

CHAPTER 8 • Instructions 171

FEXPAND
8.23 FEXPAND

Description FEXPAND takes four 8-bit unsigned integers from FS[rs2], converts each integer to a
16-bit fixed-point value, and stores the four resulting 16-bit values in a 64-bit
floating-point register FD[rd]. FIGURE 7-10 illustrates the operation.

FIGURE 8-9 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by 4 and zero-extend each result to a 16-bit fixed value.

2. Store the result in the destination register, FD[rd].

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction

See Also FPMERGE on page 206
FPACK on page 197

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FEXPAND 0 0100 1101 Four 16-bit expands — f32 f64 fexpand fregrs2, fregrd C3

Programming
Note

FEXPAND performs the inverse of the FPACK16 operation.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

01516313263 4748

0151631 2324 78

5960 5152 4344 3536 2728 1920 1112 34

0000 0000 0000 0000 0000 0000 0000 0000

FS[rs2]

FD[rd]
172 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FiTO<s|d|q>
8.24 Convert 32-bit Integer to Floating Point

Description FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point
register FS[rs2] into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FiTOs.

An attempt to execute an FiTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FiTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FiTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FiTOq))
fp_exception_ieee_754 (NX (FiTOs only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to
Single

— f32 f32 fitos fregrs2, fregrd A1

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to
Double

— f32 f64 fitod fregrs2, fregrd A1

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to
Quad

— f32 f128 fitoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FiTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 8 • Instructions 173

FLUSH
8.25 Flush Instruction Memory

Description FLUSH ensures that the aligned doubleword specified by the effective address is
consistent across any local caches and, in a multiprocessor system, will eventually
(impl. dep. #122-V9) become consistent everywhere.

The SPARC V9 instruction set architecture does not guarantee consistency between
instruction memory and data memory. When software writes (stores) to a memory
location containing an instruction (self-modifying code1), a potential memory
consistency problem arises, which is addressed by the FLUSH instruction. Use of
FLUSH ensures that instruction and data memory are synchronized after instruction
memory has been modified.

The virtual processor waits until all previous (cacheable) stores have completed
before issuing a FLUSH instruction. For the purpose of memory ordering, a FLUSH
instruction behaves like a store instruction.

In the following discussion PFLUSH refers to the virtual processor that executed the
FLUSH instruction.

FLUSH causes a synchronization within a virtual processor which ensures that
instruction fetches from the specified effective address by PFLUSH appear to execute
after any loads, stores, and atomic load-stores to that address issued by PFLUSH prior
to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will
eventually become visible to the instruction fetches of all other virtual processors in
the system. With respect to MEMBAR-induced orderings, FLUSH behaves as if it
was a store operation (see Memory Barrier on page 258).

If i = 0, the effective address operand for the FLUSH instruction is “R[rs1] + R[rs2]”;
if i = 1, it is “R[rs1] + sign_ext (simm13)”. The three least-significant three bits of
the effective address are ignored; that is, the effective address always refers to an
aligned doubleword.

Instruction op3 Operation Assembly Language Syntax† Class

FLUSH 11 1011 Flush Instruction Memory flush [address] A1

† The original assembly language syntax for a FLUSH instruction (“flush address”) has been deprecated be-
cause of inconsistency with other SPARC assembly language syntax. Over time, assemblers will support the
new syntax for this instruction. In the meantime, some existing assemblers may only recognize the original syn-
tax.

1. practiced, for example, by software such as debuggers and dynamic linkers

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
174 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FLUSH

See implementation-specific documentation for details on specific implementations
of the FLUSH instruction.

On an UltraSPARC Architecture processor:

■ A FLUSH instruction causes a synchronization within the virtual processor on
which the FLUSH is executed, which flushes its instruction pipeline to ensure that
no instruction already fetched has subsequently been modified in memory. Any
other virtual processors on the same physical processor are unaffected by a
FLUSH.

■ Coherency between instruction and data memories may or may not be
maintained by hardware.

IMPL. DEP. #409-S10-Cs20: The implementation of the FLUSH instruction is
implementation dependent. If the implementation automatically maintains
consistency between instruction and data memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because

its effective address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

■ If the implementation contains instruction prefetch buffers:

■ the instruction prefetch buffer(s) are invalidated

■ instruction prefetching is suspended, but may resume starting with the
instruction immediately following the FLUSH

Programming
Note

For portability across all SPARC V9 implementations, software
must always supply the target effective address in FLUSH
instructions.

Programming
Notes

1.Typically, FLUSH is used in self-modifying code.
The use of self-modifying code is discouraged.

2. If a program includes self-modifying code, to be portable it must
issue a FLUSH instruction for each modified doubleword of
instructions (or make a call to privileged software that has an
equivalent effect) after storing into the instruction stream.
CHAPTER 8 • Instructions 175

FLUSH
An attempt to execute a FLUSH instruction when instruction bits 29:25 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

3. The order in which memory is modified can be controlled by
means of FLUSH and MEMBAR instructions interspersed
appropriately between stores and atomic load-stores. FLUSH is
needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may
concurrently modify live (that is, potentially executing) code, the
programmer must ensure that the order of update maintains the
program in a semantically correct form at all times.

4. The memory model guarantees in a uniprocessor that data loads
observe the results of the most recent store, even if there is no
intervening FLUSH.

5. FLUSH may be a time-consuming operation.
(see the Implementation Note below)

6. In a multiprocessor system, the effects of a FLUSH operation
will be globally visible before any subsequent store becomes
globally visible.

7. FLUSH is designed to act on a doubleword. On some
implementations, FLUSH may trap to system software. For these
reasons, system software should provide a service routine,
callable by nonprivileged software, for flushing arbitrarily-sized
regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might
issue a single trap to system software that would then flush the
entire region.

8. FLUSH operates using the current (implicit) context. Therefore,
a FLUSH executed in privileged mode will use the nucleus
context and will not necessarily affect instruction cache lines
containing data from a user (nonprivileged) context.

Implementation
Note

In a multiprocessor configuration, FLUSH requires all processors
that may be referencing the addressed doubleword to flush their
instruction caches, which is a potentially disruptive activity.

V9 Compatibility
Note

The effect of a FLUSH instruction as observed from the virtual
processor on which FLUSH executes is immediate. Other virtual
processors in a multiprocessor system eventually will see the
effect of the FLUSH, but the latency is implementation dependent.
176 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FLUSHW
8.26 Flush Register Windows

Description FLUSHW causes all active register windows except the current window to be
flushed to memory at locations determined by privileged software. FLUSHW
behaves as a NOP if there are no active windows other than the current window. At
the completion of the FLUSHW instruction, the only active register window is the
current one.

FLUSHW acts as a NOP if CANSAVE = N_REG_WINDOWS – 2. Otherwise, there is
more than one active window, so FLUSHW causes a spill exception. The trap vector
for the spill exception is based on the contents of OTHERWIN and WSTATE. The spill
trap handler is invoked with the CWP set to the window to be spilled (that is,
(CWP + CANSAVE + 2) mod N_REG_WINDOWS). See Register Window Management
Instructions on page 116.

An attempt to execute a FLUSHW instruction when instruction bits 29:25, 18:14, or
12:0 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
spill_n_normal
spill_n_other

Instruction op3 Operation Assembly Language Syntax Class

FLUSHW 10 1011 Flush Register Windows flushw A1

Programming
Note

The FLUSHW instruction can be used by application software to
flush register windows to memory so that it can switch memory
stacks or examine register contents from previous stack frames.

Programming
Note

Typically, the spill handler saves a window on a memory stack
and returns to reexecute the FLUSHW instruction. Thus, FLUSHW
traps and reexecutes until all active windows other than the
current window have been spilled.

31 24 02530 29 19 18

—10 op3 —
14 13 12

— i=0
CHAPTER 8 • Instructions 177

FMOV
8.27 Floating-Point Move

Description FMOV copies the source floating-point register(s) to the destination floating-point
register(s), unaltered.

FMOVs, FMOVd, and FMOVq perform 32-bit, 64-bit, and 128-bit operations,
respectively.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOV instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOV instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVq instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FMOVs 11 0100 0 0000 0001 Move (copy) Single fmovs fregrs2, fregrd A1

FMOVd 11 0100 0 0000 0010 Move (copy) Double fmovd fregrs2, fregrd A1

FMOVq 11 0100 0 0000 0011 Move (copy) Quad fmovq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

178 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMOV

See Also F Register Logical Operate (2 operand) on page 212
CHAPTER 8 • Instructions 179

FMOVcc
8.28 Move Floating-Point Register on
Condition (FMOVcc)

Instruction opf_low Operation Assembly Language Syntax Class

FMOVSicc 00 0001 Move Floating-Point Single,
based on 32-bit integer condition codes

fmovsicc %icc, fregrs2, fregrd A1

FMOVDicc 00 0010 Move Floating-Point Double,
based on 32-bit integer condition codes

fmovdicc %icc, fregrs2, fregrd A1

FMOVQicc 00 0011 Move Floating-Point Quad,
based on 32-bit integer condition codes

fmovqicc %icc, fregrs2, fregrd C3

FMOVSxcc 00 0001 Move Floating-Point Single,
based on 64-bit integer condition codes

fmovsxcc %xcc, fregrs2, fregrd A1

FMOVDxcc 00 0010 Move Floating-Point Double,
based on 64-bit integer condition codes

fmovdxcc %xcc, fregrs2, fregrd A1

FMOVQxcc 00 0011 Move Floating-Point Quad,
based on 64-bit integer condition codes

fmovqxcc %xcc, fregrs2, fregrd C3

FMOVSfcc 00 0001 Move Floating-Point Single,
based on floating-point condition codes

fmovsfcc %fccn, fregrs2, fregrd A1

FMOVDfcc 00 0010 Move Floating-Point Double,
based on floating-point condition codes

fmovdfcc %fccn, fregrs2, fregrd A1

FMOVQfcc 00 0011 Move Floating-Point Quad,
based on floating-point condition codes

fmovqfcc %fccn, fregrs2, fregrd C3

10 rd 110101 cond opf_cc opf_low rs20
31 1924 18 1314 11 5 4 010172530 29
180 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMOVcc

Encoding of the cond Field for F.P. Moves Based on Integer Condition Codes (icc or xcc)

cond Operation icc / xcc Test

icc/xcc name(s) in
Assembly Language

Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

1001 Move if Not Equal not Z ne (or nz)

0001 Move if Equal Z e (or z)

1010 Move if Greater not (Z or (N xor V)) g

0010 Move if Less or Equal Z or (N xor V) le

1011 Move if Greater or Equal not (N xor V) ge

0011 Move if Less N xor V l

1100 Move if Greater Unsigned not (C or Z) gu

0100 Move if Less or Equal Unsigned (C or Z) leu

1101 Move if Carry Clear (Greater or Equal, Unsigned) not C cc (or geu)

0101 Move if Carry Set (Less than, Unsigned) C cs (or lu)

1110 Move if Positive not N pos

0110 Move if Negative N neg

1111 Move if Overflow Clear not V vc

0111 Move if Overflow Set V vs
CHAPTER 8 • Instructions 181

FMOVcc

Encoding of the cond Field for F.P. Moves Based on Floating-Point Condition Codes (fccn)

Encoding of opf_cc Field (also see TABLE E-10 on page 484)

cond Operation fccn Test
fcc name(s) in Assembly

Language Mnemonics

1000 Move Always 1 a

0000 Move Never 0 n

0111 Move if Unordered U u

0110 Move if Greater G g

0101 Move if Unordered or Greater G or U ug

0100 Move if Less L l

0011 Move if Unordered or Less L or U ul

0010 Move if Less or Greater L or G lg

0001 Move if Not Equal L or G or U ne (or nz)

1001 Move if Equal E e (or z

1010 Move if Unordered or Equal E or U ue

1011 Move if Greater or Equal E or G ge

1100 Move if Unordered or Greater or Equal E or G or U uge

1101 Move if Less or Equal E or L le

1110 Move if Unordered or Less or Equal E or L or U ule

1111 Move if Ordered E or L or G o

opf_cc Instruction
Condition Code
to be Tested

1002 FMOV(S,D,Q)icc icc

1102 FMOV(S,D,Q)xcc xcc

0002
0012
0102
0112

FMOV(S,D,Q)fcc fcc0
fcc1
fcc2
fcc3

1012
1112

(illegal_instruction exception)
182 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMOVcc

Description The FMOVcc instructions copy the floating-point register(s) specified by rs2 to the

floating-point register(s) specified by rd if the condition indicated by the cond field is
satisfied by the selected floating-point condition code field in FSR. The condition
code used is specified by the opf_cc field of the instruction. If the condition is
FALSE, then the destination register(s) are not changed.

These instructions read, but do not modify, any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOVcc instruction when instruction bit 18 is nonzero or
opf_cc = 1012 or 1112 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVQicc, FMOVQxcc, or FMOVQfcc instruction causes an
fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVQicc, FMOVQxcc, or
FMOVQfcc instruction causes an illegal_instruction exception,
allowing privileged software to emulate the instruction.
CHAPTER 8 • Instructions 183

FMOVcc
Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (opf_cc = 1012 or 1112))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVQ instructions only))

Programming
Note

Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the
following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to
! constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble,a %fcc3,label
! following instructiononly executed if the
! preceding branch was taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches
and may boost performance significantly. Use MOVcc and
FMOVcc instead of branches wherever these instructions would
improve performance.
184 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMOVR
8.29 Move Floating-Point Register on Integer
Register Condition (FMOVR)

Instruction rcond opf_low Operation Test Class

— 000 0 0101 Reserved — —

FMOVRsZ 001 0 0101 Move Single if Register = 0 R[rs1] = 0 A1

FMOVRsLEZ 010 0 0101 Move Single if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRsLZ 011 0 0101 Move Single if Register < 0 R[rs1] < 0 A1

— 100 0 0101 Reserved — —

FMOVRsNZ 101 0 0101 Move Single if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRsGZ 110 0 0101 Move Single if Register > 0 R[rs1] > 0 A1

FMOVRsGEZ 111 0 0101 Move Single if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0110 Reserved — —

FMOVRdZ 001 0 0110 Move Double if Register = 0 R[rs1] = 0 A1

FMOVRdLEZ 010 0 0110 Move Double if Register ≤ 0 R[rs1] ≤ 0 A1

FMOVRdLZ 011 0 0110 Move Double if Register < 0 R[rs1] < 0 A1

— 100 0 0110 Reserved — —

FMOVRdNZ 101 0 0110 Move Double if Register ≠ 0 R[rs1] ≠ 0 A1

FMOVRdGZ 110 0 0110 Move Double if Register > 0 R[rs1] > 0 A1

FMOVRdGEZ 111 0 0110 Move Double if Register ≥ 0 R[rs1] ≥ 0 A1

— 000 0 0111 Reserved — —

FMOVRqZ 001 0 0111 Move Quad if Register = 0 R[rs1] = 0 C3

FMOVRqLEZ 010 0 0111 Move Quad if Register ≤ 0 R[rs1] ≤ 0 C3

FMOVRqLZ 011 0 0111 Move Quad if Register < 0 R[rs1] < 0 C3

— 100 0 0111 Reserved — —

FMOVRqNZ 101 0 0111 Move Quad if Register ≠ 0 R[rs1] ≠ 0 C3

FMOVRqGZ 110 0 0111 Move Quad if Register > 0 R[rs1] > 0 C3

FMOVRqGEZ 111 0 0111 Move Quad if Register ≥ 0 R[rs1] ≥ 0 C3

31 141924 18 13 12 9 5 4 0102530 29

10 rd 0 rcond opf_low rs2rs1110101
CHAPTER 8 • Instructions 185

FMOVR
Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy the contents of the floating-point register(s) specified
by the rs2 field to the floating-point register(s) specified by the rd field. If the
contents of R[rs1] do not satisfy the condition, the floating-point register(s) specified
by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they
do not modify any condition codes.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FMOVR instruction when instruction bit 13 is nonzero or
rcond = 0002 or 1002 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FMOVR instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMOVRq instruction causes an
fp_exception_other (with FSR.ftt = unimplemented_FPop), since that instruction is
not implemented in hardware in UltraSPARC Architecture 2005 implementations.

Assembly Language Syntax

fmovr{s,d,q}z regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}e)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}nz regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}ne)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMOVRq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.
186 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMOVR
Exceptions fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (rcond = 0002 or 1002))
fp_exception_other (FSR.ftt = unimplemented_FPop (FMOVRq))

Implementation
Note

If this instruction is implemented by tagging each register value
with an N (negative) and a Z (zero) condition bit, use the
following table to determine whether rcond is TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVRGEZ not N
FMOVRLZ N
FMOVRLEZ N or Z
FMOVRGZ N nor Z
CHAPTER 8 • Instructions 187

FMUL (partitioned)
8.30 Partitioned Multiply Instructions

Description The following sections describe the versions of partitioned multiplies.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FMUL8x16 0 0011 0001 Unsigned 8-bit by signed 16-bit
partitioned product

f32 f64 f64 fmul8x16 fregrs1, fregrs2, fregrd C3

FMUL8x16AU 0 0011 0011 Unsigned 8-bit by signed 16-bit
upper α partitioned product

f32 f32 f64 fmul8x16au fregrs1, fregrs2, fregrd C3

FMUL8x16AL 0 0011 0101 Unsigned 8-bit by signed 16-bit
lower α partitioned product

f32 f32 f64 fmul8x16al fregrs1, fregrs2, fregrd C3

FMUL8SUx16 0 0011 0110 Signed upper 8-bit by signed
16-bit partitioned product

f32 f64 f64 fmul8sux16 fregrs1, fregrs2, fregrd C3

FMUL8ULx16 0 0011 0111 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f64 f64 fmul8ulx16 fregrs1, fregrs2, fregrd C3

FMULD8SUx16 0 0011 1000 Signed upper 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8sux16 fregrs1, fregrs2, fregrd C3

FMULD8ULx16 0 0011 1001 Unsigned lower 8-bit by signed
16-bit partitioned product

f32 f32 f64 fmuld8ulx16 fregrs1, fregrs2, fregrd C3

Programming
Note

When software emulates an 8-bit unsigned by 16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit
value sign-extended before the multiplication.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
188 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMUL (partitioned)
8.30.1 FMUL8x16 Instruction
FMUL8x16 multiplies each unsigned 8-bit value (for example, a pixel component) in
the 32-bit floating-point register FS[rs1] by the corresponding (signed) 16-bit fixed-
point integer in the 64-bit floating-point register FD[rs2]. It rounds the 24-bit product
(assuming binary point between bits 7 and 8) and stores the most significant 16 bits
of the result into the corresponding 16-bit field in the 64-bit floating-point
destination register FD[rd]. FIGURE 8-10 illustrates the operation.

FIGURE 8-10 FMUL8x16 Operation

Note This instruction treats the pixel component values as fixed-point
with the binary point to the left of the most significant bit.
Typically, this operation is used with filter coefficients as the fixed-
point rs2 value and image data as the rs1 pixel value. Appropriate
scaling of the coefficient allows various fixed-point scaling to be
realized.

0151631 24 23 8 7

015163132474863

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

F[rs1]

F[rs2]

F[rd]
CHAPTER 8 • Instructions 189

FMUL (partitioned)
8.30.2 FMUL8x16AU Instruction
FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is
used as the multiplier for all four multiplies. This multiplier is the most significant
(“upper”) 16 bits of the 32-bit register FS[rs2] (typically an α pixel component
value). FIGURE 8-11 illustrates the operation.

FIGURE 8-11 FMUL8x16AU Operation

8.30.3 FMUL8x16AL Instruction
FMUL8x16AL is the same as FMUL8x16AU, except that the least significant
(“lower”) 16 bits of the 32-bit register FS[rs2] register are used as a multiplier.
FIGURE 8-12 illustrates the operation.

FIGURE 8-12 FMUL8x16AL Operation

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]

0151631 24 23 8 7

0151631

015163132474863

×MS16b ×MS16b ×MS16b ×MS16b

FS[rs1]

FS[rs2]

FD[rd]
190 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMUL (partitioned)
8.30.4 FMUL8SUx16 Instruction
FMUL8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in the 64-bit floating-point register FD[rs1] by the corresponding signed, 16-bit,
fixed-point, signed integer in the 64-bit floating-point register FD[rs2]. It rounds the
24-bit product toward the nearest representable value and then stores the most
significant 16 bits of the result into the corresponding 16-bit field of the 64-bit
floating-point destination register FD[rd]. If the product is exactly halfway between
two integers, the result is rounded toward positive infinity. FIGURE 8-13 illustrates the
operation.

FIGURE 8-13 FMUL8SUx16 Operation

8.30.5 FMUL8ULx16 Instruction
FMUL8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-bit
value in the 64-bit floating-point register FD[rs1] by the corresponding fixed-point
signed 16-bit integer in the 64-bit floating-point register FD[rs2]. Each 24-bit product
is sign-extended to 32 bits. The most significant (“upper”) 16 bits of the sign-
extended value are rounded to nearest and then stored in the corresponding 16-bit
field of the 64-bit floating-point destination register FD[rd]. If the result is exactly
halfway between two integers, the result is rounded toward positive infinity.
FIGURE 8-14 illustrates the operation; CODE EXAMPLE 8-1 exemplifies the operation.

015163132474863

015163132474863

015163132474863 56 55 40 39 24 23 8 7

×MS16b ×MS16b ×MS16b ×MS16b

FD[rs1]

FD[rs2]

FD[rd]
CHAPTER 8 • Instructions 191

FMUL (partitioned)
FIGURE 8-14 FMUL8ULx16 Operation

8.30.6 FMULD8SUx16 Instruction
FMULD8SUx16 multiplies the most significant (“upper”) 8 bits of each 16-bit signed
value in F[rs1] by the corresponding signed 16-bit fixed-point value in F[rs2]. Each
24-bit product is shifted left by 8 bits to generate a 32-bit result, which is then stored
in the 64-bit floating-point register specified by rd. FIGURE 8-15 illustrates the
operation.

FIGURE 8-15 FMULD8SUx16 Operation

CODE EXAMPLE 8-1 16-bit × 16-bit 16-bit Multiply

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

16

× sign-extended, × sign-extended, × sign-extended, × sign-extended,

015163132474863

015163132474863 56 55 40 39 24 23 8 7

MS16b MS16b MS16b MS16b

0153132474863

MS16b

FD[rd]

FD[rs2]

FD[rs1]

0783132394063

× ×

0000000000000000

0151631

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]
192 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMUL (partitioned)
8.30.7 FMULD8ULx16 Instruction
FMULD8ULx16 multiplies the unsigned least significant (“lower”) 8 bits of each 16-
bit value in F[rs1] by the corresponding 16-bit fixed-point signed integer in F[rs2].
Each 24-bit product is sign-extended to 32 bits and stored in the corresponding half
of the 64-bit floating-point register specified by rd. FIGURE 8-16 illustrates the
operation; CODE EXAMPLE 8-2 exemplifies the operation.

FIGURE 8-16 FMULD8ULx16 Operation

CODE EXAMPLE 8-2 16-bit x 16-bit 32-bit Multiply

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

0151631 24 23 8 7

0313263

0151631

× sign-extended × sign-extended

FS[rs1]

FS[rs2]

FD[rd]
CHAPTER 8 • Instructions 193

FMUL<s|d|q>
8.31 Floating-Point Multiply

Description The floating-point multiply instructions multiply the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the product into the floating-
point register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-
precision operands, without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision
operands.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any FMUL instruction causes an fp_disabled exception.

If the FPU is enabled, an attempt to execute an FMULq or FdMULq instruction
causes an fp_exception_other (with FSR.ftt = unimplemented_FPop), since that
instruction is not implemented in hardware in UltraSPARC Architecture 2005
implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Instruction op3 opf Operation Assembly Language Syntax Class

FMULs 11 0100 0 0100 1001 Multiply Single fmuls fregrs1, fregrs2, fregrd A1

FMULd 11 0100 0 0100 1010 Multiply Double fmuld fregrs1, fregrs2, fregrd A1

FMULq 11 0100 0 0100 1011 Multiply Quad fmulq fregrs1, fregrs2, fregrd C3

FsMULd 11 0100 0 0110 1001 Multiply Single to Double fsmuld fregrs1, fregrs2, fregrd A1

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad fdmulq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FMULq or FdMULq instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 rs2rd rs1
31 141924 18 13 02530 29 4

opf
5

194 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FMUL<s|d|q>

Exceptions illegal_instruction

fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FMULq, FdMULq only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (any: NV; FMUL(s,d,q) only: OF, UF, NX)
CHAPTER 8 • Instructions 195

FNEG
8.32 Floating-Point Negate

Description FNEG copies the source floating-point register(s) to the destination floating-point
register(s), with the sign bit complemented.

These instructions clear (set to 0) both FSR.cexc and FSR.ftt. They do not round, do
not modify FSR.aexc, and do not treat floating-point NaN values differently from
other floating-point values.

An attempt to execute an FNEG instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FNEG instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FNEGq only))

Instruction op3 opf Operation Assembly Language Syntax Class

FNEGs 11 0100 0 0000 0101 Negate Single fnegs fregrs2, fregrd A1

FNEGd 11 0100 0 0000 0110 Negate Double fnegd fregrs2, fregrd A1

FNEGq 11 0100 0 0000 0111 Negate Quad fnegq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FNEGq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

196 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPACK
8.33 FPACK

Description The FPACK instructions convert multiple values in a source register to a lower-
precision fixed or pixel format and stores the resulting values in the destination
register. Input values are clipped to the dynamic range of the output format. Packing
applies a scale factor from GSR.scale to allow flexible positioning of the binary
point.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FEXPAND on page 172
FPMERGE on page 206

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPACK16 0 0011 1011 Four 16-bit packs into 8
unsigned bits

— f64 f32 fpack16 fregrs2, fregrd C3

FPACK32 0 0011 1010 Two 32-bit packs into 8
unsigned bits

f64 f64 f64 fpack32 fregrs1, fregrs2, fregrd C3

FPACKFIX 0 0011 1101 Four 16-bit packs into 16
signed bits

— f64 f32 fpackfix fregrs2, fregrd C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 8 • Instructions 197

FPACK
8.33.1 FPACK16
FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register
FD[rs2], scales, truncates, and clips them into four 8-bit unsigned integers, and stores
the results in the 32-bit destination register, FS[rd]. FIGURE 8-17 illustrates the
FPACK16 operation.

FIGURE 8-17 FPACK16 Operation

This operation is carried out as follows:

1. Left-shift the value from FD[rs2] by the number of bits specified in GSR.scale
while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to
the left of the implicit binary point (that is, between bits 7 and 6 for each 16-bit
word). Truncation converts the scaled value into a signed integer (that is, round
toward negative infinity). If the resulting value is negative (that is, its most
significant bit is set), 0 is returned as the clipped value. If the value is greater than
255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, FS[rd].

For each 16-bit partition, the sequence of operations performed is shown in the
following example pseudo-code:
tmp ← source_operand{15:0} << GSR.scale;
// Pick off the bits from bit position 15+GSR.scale to

Note FPACK16 ignores the most significant bit of GSR.scale
(GSR.scale{4}).

0367

implicit binary pt

4 0

GSR.scale × 0100

19

723 15314763

31

0

0

15 14

48 32 16

(8 bits)

(16 bits)

00 00

FD[rs2]

FS[rd]

FS[rd]

FD[rs2]

16
198 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPACK

// bit position 7 from the shifted result
trunc_signed_value ← tmp{(15+GSR.scale):7};
If (trunc_signed_value < 0)

unsigned_8bit_result ← 0;
else if (trunc_signed_value > 255)

unsigned_8bit_result ← 255;
else

unsigned_8bit_result ← trunc_signed_value{14:7};

8.33.2 FPACK32
FPACK32 takes two 32-bit fixed values from the second source operand (64-bit
floating-point register FD[rs2]) and scales, truncates, and clips them into two 8-bit
unsigned integers. The two 8-bit integers are merged at the corresponding least
significant byte positions of each 32-bit word in the 64-bit floating-point register
FD[rs1], left-shifted by 8 bits. The 64-bit result is stored in FD[rd]. Thus, successive
FPACK32 instructions can assemble two pixels by using three or four pairs of 32-bit
fixed values. FIGURE 8-18 illustrates the FPACK32 operation.

FIGURE 8-18 FPACK32 Operation

This operation, illustrated in FIGURE 8-18, is carried out as follows:

1. Left-shift each 32-bit value in FD[rs2] by the number of bits specified in
GSR.scale, while maintaining clipping information.

015163132474863

04

GSR.scale

037 2223 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

56 55 40 39 24 23 8 7

30 6

(8 bits)

(32 bits)

FD[rs2]

FD[rs1]

FD[rd]

FD[rd]

FD[rs2]

31
CHAPTER 8 • Instructions 199

FPACK

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the

bit immediately to the left of the implicit binary point (that is, between bits 23 and
22 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
negative (that is, the most significant bit is 1), then 0 is returned as the clipped
value. If the value is greater than 255, then 255 is delivered as the clipped value.
Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from FD[rs1] by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least
significant byte positions in the left-shifted FD[rs2] value.

5. Store the result in the 64-bit destination register FD[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:
tmp ← source_operand2{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 23 from the shifted result
trunc_signed_value ← tmp{(31+GSR.scale):23};
if (trunc_signed_value < 0)

unsigned_8bit_value ← 0;
else if (trunc_signed_value > 255)

unsigned_8bit_value ← 255;
else

unsigned_8bit_value ← trunc_signed_value{30:23};
Final_32bit_Result ← (source_operand1{31:0} << 8) |

(unsigned_8bit_value{7:0});
200 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPACK
8.33.3 FPACKFIX
FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register
FD[rs2], scales, truncates, and clips them into two 16-bit unsigned integers, and then
stores the result in the 32-bit destination register FS[rd]. FIGURE 8-19 illustrates the
FPACKFIX operation.

FIGURE 8-19 FPACKFIX Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from FD[rs2]) by the number of bits specified in
GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 16 and
15 for each 32-bit word). Truncation is performed to convert the scaled value into
a signed integer (that is, round toward negative infinity). If the resulting value is
less than −32768, then −32768 is returned as the clipped value. If the value is
greater than 32767, then 32767 is delivered as the clipped value. Otherwise, the
scaled value is returned as the result.

3. Store the result in the 32-bit destination register FS[rd].

For each 32-bit partition, the sequence of operations performed is shown in the
following pseudo-code:
tmp ← source_operand{31:0} << GSR.scale;
// Pick off the bits from bit position 31+GSR.scale to
// bit position 16 from the shifted result

0151631

3263

04

GSR.scale

037 1516 5

implicit binary point

0 0 0 0 0 0

0 0 1 1 0

31 632

(16 bits)

(32 bits)

31 0

FD[rs2]

FD[rs2]

FS[rd]

FSrd]
CHAPTER 8 • Instructions 201

FPACK

trunc_signed_value ← tmp{(31+GSR.scale):16};
if (trunc_signed_value < -32768)

signed_16bit_result ← -32768;
else if (trunc_signed_value > 32767)

signed_16bit_result ← 32767;
else

signed_16bit_result ← trunc_signed_value{31:16};
202 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPADD
8.34 Fixed-point Partitioned Add

Description FPADD16 (FPADD32) performs four 16-bit (two 32-bit) partitioned additions
between the corresponding fixed-point values contained in the source operands
(FD[rs1], FD[rs2]). The result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPADD16S and FPADD32S) perform two
16-bit or one 32-bit partitioned additions.

Any carry out from each addition is discarded and a 2’s-complement arithmetic
result is produced.

FIGURE 8-20 FPADD16 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPADD16 0 0101 0000 Four 16-bit adds f64 f64 f64 fpadd16 fregrs1, fregrs2, fregrd A1

FPADD16S 0 0101 0001 Two 16-bit adds f32 f32 f32 fpadd16s fregrs1, fregrs2, fregrd A1

FPADD32 0 0101 0010 Two 32-bit adds f64 f64 f64 fpadd32 fregrs1, fregrs2, fregrd A1

FPADD32S 0 0101 0011 One 32-bit add f32 f32 f32 fpadd32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

+ + + +

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd] (sum)
CHAPTER 8 • Instructions 203

FPADD
FIGURE 8-21 FPADD32 Operation

FIGURE 8-22 FPADD16S Operation

FIGURE 8-23 FPADD32S Operation

63 031

+

+ +

32

63 03132

63 03132

FD[rs1]

FD[rs2]

FD[rd] (sum)

031 15

+ +

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd] (sum)

031

031

031

+

FS[rs1]

FS[rs2]

FS[rd] (sum)
204 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPADD

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPADD instruction causes an fp_disabled exception.

Exceptions fp_disabled
CHAPTER 8 • Instructions 205

FPMERGE
8.35 FPMERGE

Description FPMERGE interleaves eight 8-bit unsigned values in FS[rs1] and FS[rs2] to produce
a 64-bit value in the destination register FD[rd]. This instruction converts from
packed to planar representation when it is applied twice in succession; for example,
R1G1B1A1,R3G3B3A3 → R1R3G1G3A1A3 → R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in
succession; for example, R1R2R3R4,B1B2B3B4 → R1B1R2B2R3B3R4B4 →
R1G1B1A1R2G2B2A2.

FIGURE 8-24 illustrates the operation.

FIGURE 8-24 FPMERGE Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPMERGE 0 0100 1011 Two 32-bit merges f32 f32 f64 fpmerge fregrs1, fregrs2, fregrd C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

FS[rs1]

FS[rs2]

FD[rd]

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6

fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

R1 G1 B1 A1 R2 G2 B2 A2
R3 G3 B3 A3 R4 G4 B4 A4

!r1 R3 G1 G3 B1 B3 A1 A3
!r2 R4 G2 G4 B2 B4 A2 A4

!r1 R2 R3 R4 G1 G2 G3 G4
!B1 B2 B3 B4 A1 A2 A3 A4

 %d0
 %d2

fpmerge %f0, %f2, %d4
fpmerge %f1, %f3, %d6
fpmerge %f4, %f6, %d0
fpmerge %f5, %f7, %d2

!r1 B1 R2 B2 R3 B3 R4 B4
!G1 A1 G2 A2 G3 A3 G4 A4
!R1 G1 B1 A1 R2 G2 B2 A2
!R3 G3 B3 A3 R4 G4 B4 A4

} packed representation

} intermediate

} planar representation

} intermediate

} packed representation
206 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPMERGE

CODE EXAMPLE 8-3 FPMERGE

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction

See Also FPACK on page 197
FEXPAND on page 172
CHAPTER 8 • Instructions 207

FPSUB
8.36 Fixed-point Partitioned Subtract

Description FPSUB16 (FPSUB32) performs four 16-bit (two 32-bit) partitioned subtractions
between the corresponding fixed-point values contained in the source operands
(FD[rs1], FD[rs2]). The values in FD[rs2] are subtracted from those in FD[rs1], and
the result is placed in the destination register, FD[rd].

The 32-bit versions of these instructions (FPSUB16S and FPSUB32S) perform two 16-
bit or one 32-bit partitioned subtractions.

Any carry out from each subtraction is discarded and a 2’s-complement arithmetic
result is produced.

FIGURE 8-25 FPSUB16 Operation

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FPSUB16 0 0101 0100 Four 16-bit subtracts f64 f64 f64 fpsub16 fregrs1, fregrs2, fregrd A1

FPSUB16S 0 0101 0101 Two 16-bit subtracts f32 f32 f32 fpsub16s fregrs1, fregrs2, fregrd A1

FPSUB32 0 0101 0110 Two 32-bit subtracts f64 f64 f64 fpsub32 fregrs1, fregrs2, fregrd A1

FPSUB32S 0 0101 0111 One 32-bit subtract f32 f32 f32 fpsub32s fregrs1, fregrs2, fregrd A1

VIS 1

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

63 0153147

– – – –

48 32 16

63 015314748 32 16

63 015314748 32 16

FD[rs1]

FD[rs2]

FD[rd]
(difference)
208 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPSUB
FIGURE 8-26 FPSUB32 Operation

FIGURE 8-27 FPSUB16S Operation

FIGURE 8-28 FPSUB32S Operation

63 031

– –

32

63 03132

63 03132

FD[rd]
(difference)

FD[rs2]

FD[rs1]

031 15

– –

16

031 1516

031 1516

FS[rs1]

FS[rs2]

FS[rd]
(difference)

031

031

031

–

FS[rs1]

FS[rs2]

FS[rd]
(difference)
CHAPTER 8 • Instructions 209

FPSUB

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FPSUB instruction causes an fp_disabled exception.

Exceptions fp_disabled
210 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

F Register 1-operand Logical Ops
8.37 FRegister Logical Operate (1 operand)

Description FZERO and FONE fill the 64-bit destination register, FD[rd], with all ‘0’ bits or all ‘1’
bits (respectively).

FZEROs and FONEs fill the 32-bit destination register, FD[rd], with all ‘0’ bits or all
‘1’ bits (respectively.

An attempt to execute an FZERO or FONE instruction when instruction bits 18:14 or
bits 4:0 are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FZERO[s] or FONE[s] instruction causes an fp_disabled
exception.

Exceptions illegal_instruction
fp_disabled

See Also F Register 2-operand Logical Operations on page 212
F Register 3-operand Logical Operations on page 214

Instruction opf Operation Assembly Language Syntax Class

FZERO 0 0110 0000 Zero fill fzero fregrd A1

FZEROs 0 0110 0001 Zero fill, 32-bit fzeros fregrd A1

FONE 0 0111 1110 One fill fone fregrd A1

FONEs 0 0111 1111 One fill, 32-bit fones fregrd A1

VIS 1

rd10 110110 opf— —

31 24 02530 29 19 18 14 13 5 4
CHAPTER 8 • Instructions 211

F Register 2-operand Logical Ops
8.38 F Register Logical Operate (2 operand)

Description The standard 64-bit versions of these instructions perform one of four 64-bit logical
operations on the 64-bit floating-point register FD[rs1] (or FD[rs2]) and store the
result in the 64-bit floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations on FS[rs1] (or FS[rs2]) and store the result in FS[rd].

An attempt to execute an FSRC1(s) or FNOT1(s) instruction when instruction bits 4:0
are nonzero causes an illegal_instruction exception. An attempt to execute an
FSRC2(s) or FNOT2(s) instruction when instruction bits 18:14 are nonzero causes an
illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSRC1[s], FNOT1[s], FSRC1[s], or FNOT1[s] instruction causes
an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

FSRC1 0 0111 0100 Copy FD[rs1] to FD[rd] fsrc1 fregrs1, fregrd A1

FSRC1s 0 0111 0101 Copy FS[rs1] to FS[rd], 32-bit fsrc1s fregrs1, fregrd A1

FSRC2 0 0111 1000 Copy FD[rs2] to FD[rd] fsrc2 fregrs2, fregrd A1

FSRC2s 0 0111 1001 Copy FS[rs2] to FS[rd], 32-bit fsrc2s fregrs2, fregrd A1

FNOT1 0 0110 1010 Negate (1’s complement) FD[rs1] fnot1 fregrs1, fregrd A1

FNOT1s 0 0110 1011 Negate (1’s complement) FS[rs1], 32-bit fnot1s fregrs1, fregrd A1

FNOT2 0 0110 0110 Negate (1’s complement) FD[rs2] fnot2 fregrs2, fregrd A1

FNOT2s 0 0110 0111 Negate (1’s complement) FS[rs2], 32-bit fnot2s fregrs2, fregrd A1

Programming
Note

FSRC1s (FSRC1) functions similarly to FMOVs (FMOVd), except
that FSRC1s (FSRC1) does not modify the FSR register while
FMOVs (FMOVd) update some fields of FSR (see Floating-Point
Move on page 178). Programmers are encouraged to use FMOVs
(FMOVd) instead of FSRC1s (FSRC1) whenever practical.

VIS 1

rd10 110110 opfrs1 —

rd10 110110 opf— rs2

31 24 02530 29 19 18 14 13 5 4
212 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

F Register 2-operand Logical Ops

See Also Floating-Point Move on page 178

F Register 1-operand Logical Operations on page 211
F Register 3-operand Logical Operations on page 214
CHAPTER 8 • Instructions 213

F Register 3-operand Logical Ops
8.39 F Register Logical Operate (3 operand)

Description The standard 64-bit versions of these instructions perform one of ten 64-bit logical
operations between the 64-bit floating-point registers FD[rs1] and FD[rs2]. The result
is stored in the 64-bit floating-point destination register FD[rd].

The 32-bit (single-precision) versions of these instructions perform 32-bit logical
operations between FS[rs1] and FS[rs2], storing the result in FS[rd].

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute any 3-operand F Register Logical Operate instruction causes an
fp_disabled exception.

Exceptions fp_disabled

See Also F Register 1-operand Logical Operations on page 211
F Register 2-operand Logical Operations on page 212

Instruction opf Operation Assembly Language Syntax Class

FOR 0 0111 1100 Logical or for fregrs1, fregrs2, fregrd A1
FORs 0 0111 1101 Logical or, 32-bit fors fregrs1, fregrs2, fregrd A1
FNOR 0 0110 0010 Logical nor fnor fregrs1, fregrs2, fregrd A1
FNORs 0 0110 0011 Logical nor, 32-bit fnors fregrs1, fregrs2, fregrd A1
FAND 0 0111 0000 Logical and fand fregrs1, fregrs2, fregrd A1
FANDs 0 0111 0001 Logical and, 32-bit fands fregrs1, fregrs2, fregrd A1
FNAND 0 0110 1110 Logical nand fnand fregrs1, fregrs2, fregrd A1
FNANDs 0 0110 1111 Logical nand, 32-bit fnands fregrs1, fregrs2, fregrd A1
FXOR 0 0110 1100 Logical xor fxor fregrs1, fregrs2, fregrd A1
FXORs 0 0110 1101 Logical xor, 32-bit fxors fregrs1, fregrs2, fregrd A1
FXNOR 0 0111 0010 Logical xnor fxnor fregrs1, fregrs2, fregrd A1
FXNORs 0 0111 0011 Logical xnor, 32-bit fxnors fregrs1, fregrs2, fregrd A1
FORNOT1 0 0111 1010 (not F[rs1]) or F[rs2] fornot1 fregrs1, fregrs2, fregrd A1
FORNOT1s 0 0111 1011 (not F[rs1]) or F[rs2], 32-bit fornot1s fregrs1, fregrs2, fregrd A1
FORNOT2 0 0111 0110 F[rs1] or (not F[rs2]) fornot2 fregrs1, fregrs2, fregrd A1
FORNOT2s 0 0111 0111 F[rs1] or (not F[rs2]), 32-bit fornot2s fregrs1, fregrs2, fregrd A1
FANDNOT1 0 0110 1000 (not F[rs1]) and F[rs2] fandnot1 fregrs1, fregrs2, fregrd A1
FANDNOT1s 0 0110 1001 (not F[rs1]) and F[rs2], 32-bit fandnot1s fregrs1, fregrs2, fregrd A1
FANDNOT2 0 0110 0100 F[rs1] and (not F[rs2]) fandnot2 fregrs1, fregrs2, fregrd A1
FANDNOT2s 0 0110 0101 F[rs1] and (not F[rs2]), 32-bit fandnot2s fregrs1, fregrs2, fregrd A1

VIS 1

rd10 110110 opfrs1 rs2

31 24 02530 29 19 18 14 13 5 4
214 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FSQRT<s|d|q> Instructions
8.40 Floating-Point Square Root

Description These SPARC V9 instructions generate the square root of the floating-point operand
in the floating-point register(s) specified by the rs2 field and place the result in the
destination floating-point register(s) specified by the rd field. Rounding is performed
as specified by FSR.rd.

An attempt to execute an FSQRT instruction when instruction bits 18:14 are nonzero
causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSQRT instruction causes an fp_disabled exception.

If the FPU is enabled, an fp_exception_other (with FSR.ftt = unimplemented_FPop)
exception occurs, since the FSQRT instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FSQRT is not implemented

in hardware))

Instruction op3 opf Operation Assembly Language Syntax Class

FSQRTs 11 0100 0 0010 1001 Square Root Single fsqrts fregrs2, fregrd A1

FSQRTd 11 0100 0 0010 1010 Square Root Double fsqrtd fregrs2, fregrd A1

FSQRTq 11 0100 0 0010 1011 Square Root Quad fsqrtq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute an FSQRTq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —
31 141924 18 13 02530 29 4

opf
5

CHAPTER 8 • Instructions 215

F<s|d|q>TOi
8.41 Convert Floating-Point to Integer

Description FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 64-bit integer in the floating-point register FD[rd].

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 32-bit integer in the floating-point register FS[rd].

The result is always rounded toward zero; that is, the rounding direction (rd) field of
the FSR register is ignored.

An attempt to execute an F<s|d|q>TO<i|x> instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d|q>TO<i|x> instruction causes an fp_disabled
exception.

If the FPU is enabled, FqTOi and FqTOx cause fp_exception_other (with FSR.ftt =
unimplemented_FPop), since those instructions are not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

If the floating-point operand’s value is too large to be converted to an integer of the
specified size or is a NaN or infinity, then an fp_exception_ieee_754 “invalid”
exception occurs. The value written into the floating-point register(s) specified by rd
in these cases is as defined in Integer Overflow Definition on page 363.

Instruction opf Operation s1 s2 d Assembly Language Syntax Class

FsTOx 0 1000 0001 Convert Single to 64-bit Integer — f32 f64 fstox fregrs2, fregrd A1

FdTOx 0 1000 0010 Convert Double to 64-bit Integer — f64 f64 fdtox fregrs2, fregrd A1

FqTOx 0 1000 0011 Convert Quad to 64-bit Integer — f128 f64 fqtox fregrs2, fregrd C3

FsTOi 0 1101 0001 Convert Single to 32-bit Integer — f32 f32 fstoi fregrs2, fregrd A1

FdTOi 0 1101 0010 Convert Double to 32-bit Integer — f64 f32 fdtoi fregrs2, fregrd A1

FqTOi 0 1101 0011 Convert Quad to 32-bit Integer — f128 f32 fqtoi fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FqTOx or FqTOi instruction
causes an illegal_instruction exception, allowing privileged
software to emulate the instruction.

10 op3 = 11 0100 rs2rd — opf
31 141924 18 13 02530 29 45
216 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

F<s|d|q>TOi

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FqTOx, FqTOi only))
fp_exception_ieee_754 (NV, NX)
CHAPTER 8 • Instructions 217

F<s|d|q>TO<s|d|q>
8.42 Convert Between Floating-Point Formats

Description These instructions convert the floating-point operand in the floating-point register(s)
specified by rs2 to a floating-point number in the destination format. They write the
result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by these instructions.

An attempt to execute an F(s,d,q)TO(s,d,q) instruction when instruction bits 18:14
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an F<s|d|q>TO<s|d|q> instruction causes an fp_disabled
exception.

If the FPU is enabled, FsTOq, FdTOq, FqTOs, and FqTOd cause fp_exception_other
(with FSR.ftt = unimplemented_FPop), since those instructions are not implemented
in hardware in UltraSPARC Architecture 2005 implementations.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can cause
fp_exception_ieee_754 OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the
“widening” conversion instructions) cannot.

Any of these six instructions can trigger an fp_exception_ieee_754 NV exception if
the source operand is a signalling NaN.

Instruction op3 opf Operation s1 s2 d Assembly Language Syntax Class

FsTOd 11 0100 0 1100 1001 Convert Single to Double — f32 f64 fstod fregrs2, fregrd A1

FsTOq 11 0100 0 1100 1101 Convert Single to Quad — f32 f128 fstoq fregrs2, fregrd C3

FdTOs 11 0100 0 1100 0110 Convert Double to Single — f64 f32 fdtos fregrs2, fregrd A1

FdTOq 11 0100 0 1100 1110 Convert Double to Quad — f64 f128 fdtoq fregrs2, fregrd C3

FqTOs 11 0100 0 1100 0111 Convert Quad to Single — f128 f32 fqtos fregrs2, fregrd C3

FqTOd 11 0100 0 1100 1011 Convert Quad to Double — f128 f64 fqtod fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FsTOq, FdTOq, FqTOs, or
FqTOd instruction causes an illegal_instruction exception, allowing
privileged software to emulate the instruction.

10 op3 rs2rd — opf
31 141924 18 13 02530 29 45
218 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

F<s|d|q>TO<s|d|q>

Untrapped Result in Different Format from Operands on page 360 defines the rules for
converting NaNs from one floating-point format to another.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FsTOq, FqTOs, FdTOq,

and FqTOd only))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (NV)
fp_exception_ieee_754 (OF, UF, NX (FqTOd, FqTOs, and FdTOs))

Note For FdTOs and FsTOd, an fp_exception_other with
FSR.ftt = unfinished_FPop can occur if implementation-dependent
conditions are detected during the conversion operation.
CHAPTER 8 • Instructions 219

FSUB
8.43 Floating-Point Subtract

Description The floating-point subtract instructions subtract the floating-point register(s)
specified by the rs2 field from the floating-point register(s) specified by the rs1 field.
The instructions then write the difference into the floating-point register(s) specified
by the rd field.

Rounding is performed as specified by FSR.rd.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FSUB instruction causes an fp_disabled exception.

If the FPU is enabled, FSUBq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FSUBq))
fp_exception_other (FSR.ftt = unfinished_FPop)
fp_exception_ieee_754 (OF, UF, NX, NV)

Instruction op3 opf Operation Assembly Language Syntax Class

FSUBs 11 0100 0 0100 0101 Subtract Single fsubs fregrs1, fregrs2, fregrd A1

FSUBd 11 0100 0 0100 0110 Subtract Double fsubd fregrs1, fregrs2, fregrd A1

FSUBq 11 0100 0 0100 0111 Subtract Quad fsubq fregrs1, fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FSUBq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

Note An fp_exception_other with FSR.ftt = unfinished_FPop can occur
if the operation detects unusual, implementation-specific
conditions (for FSUBs or FSUBd).

10 op3 rs2rd rs1 opf
31 141924 18 13 02530 29 45
220 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FxTO(<s|d|q>
8.44 Convert 64-bit Integer to Floating Point

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-
point register FD[rs2] into a floating-point number in the destination format.

All write their result into the floating-point register(s) specified by rd.

The value of FSR.rd determines how rounding is performed by FxTOs and FxTOd.

An attempt to execute an FxTO(s,d,q) instruction when instruction bits 18:14 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an FxTO(s,d,q) instruction causes an fp_disabled exception.

If the FPU is enabled, FxTOq causes an fp_exception_other (with FSR.ftt =
unimplemented_FPop), since that instruction is not implemented in hardware in
UltraSPARC Architecture 2005 implementations.

For more details regarding floating-point exceptions, see Chapter 9, IEEE Std 754-
1985 Requirements for UltraSPARC Architecture 2005.

Exceptions illegal_instruction
fp_disabled
fp_exception_other (FSR.ftt = unimplemented_FPop (FxTOq only))
fp_exception_ieee_754 (NX (FxTOs and FxTOd only))

Instruction op3 opf Operation s1 s2 d
Assembly Language
Syntax Class

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to
Single

— i64 f32 fxtos fregrs2, fregrd A1

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to
Double

— i64 f64 fxtod fregrs2, fregrd A1

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to
Quad

— i64 f128 fxtoq fregrs2, fregrd C3

Note UltraSPARC Architecture 2005 processors do not implement in
hardware instructions that refer to quad-precision floating-point
registers. An attempt to execute a FxTOq instruction causes an
illegal_instruction exception, allowing privileged software to
emulate the instruction.

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

CHAPTER 8 • Instructions 221

ILLTRAP
8.45 Illegal Instruction Trap

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value
in the instruction is ignored by the virtual processor; specifically, this field is not
reserved by the architecture for any future use.

An attempt to execute an ILLTRAP instruction when reserved instruction bits 29:25
are nonzero (also) causes an illegal_instruction exception. However, software should
not rely on this behavior, because a future version of the architecture may use
nonzero values of bits 29:25 to encode other functions.

Exceptions illegal_instruction

Instruction op op2 Operation Assembly Language Syntax Class

ILLTRAP 00 000 illegal_instruction trap illtrap const22 A1

V9 Compatibility
Note

Except for its name, this instruction is identical to the SPARC V8
UNIMP instruction.

00 000 const22—

31 2124 02530 29 22
222 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

IMPDEP
8.46 Implementation-DependentInstructions

Description IMPL. DEP. #106-V9: The IMPDEP2A opcode space is completely implementation
dependent. Implementation-dependent aspects of IMPDEP2A instructions include
their operation, the interpretation of bits 29–25, 18–7, and 4–0 in their encodings,
and which (if any) exceptions they may cause.

IMPDEP2B opcodes are reserved; see IMDEP2B Opcodes on page 224.

See “Implementation-Dependent and Reserved Opcodes” in the "Extending the
UltraSPARC Architecture" section of the separate document UltraSPARC Architecture
Application Notes, for information about extending the instruction set by means of
implementation-dependent instructions.

Exceptions implementation-dependent (IMPDEP2A, IMPDEP2B)

8.46.1 IMPDEP1 Opcodes
All operands of instructions using IMPDEP1 opcodes are in floating-point registers,
unless otherwise specified. Pixel values are stored in single-precision floating point
registers and fixed values are stored in double-precision floating point registers,
unless otherwise specified.

Instruction op3 op4 Operation Class

IMPDEP1 11 0110 (any) Implementation-Dependent Instruction 1 N3

IMPDEP2A 11 0111 0 Implementation-Dependent Instruction 2A N3

IMPDEP2B 11 0111 1, 2, 3 Implementation-Dependent Instruction 2B N3

Compatibility
Note

IMPDEP2A and IMPDEP2B are subsets of the SPARC V9
IMPDEP2 opcode space. The IMPDEP1 opcode space from
SPARC V9 is occupied by various VIS instructions in the
UltraSPARC Architecture, so it should not be used for
implementation-dependent instructions.

Note All instructions, regardless of whether they use floating-point
registers or integer registers, leave FSR.cexc and FSR.aexc
unchanged.

10 op3 impl. dep.impl. dep.

31 1824 02530 29 19

impl. dep.

7 6 5 4

op4

VIS 1, 2
CHAPTER 8 • Instructions 223

IMPDEP
8.46.1.1 Opcode Formats
Most of the VIS instruction set maps to the opcode space reserved for the
Implementation-Dependent Instruction 1 (op3 = IMPDEP1 = 3616) instructions.

8.46.2 IMDEP2B Opcodes
No instructions are currently encoded in the IMPDEP2B opcode space; it is a
reserved opcode space.
224 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

INVALW
8.47 Mark Register Window Sets as “Invalid”

Description The INVALW instruction marks all register window sets as “invalid”; specifically, it
atomically performs the following operations:

CANSAVE ← (N_REG_WINDOWS − 2)
CANRESTORE ← 0
OTHERWIN ← 0

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an illegal_instruction exception, and are emulated
in software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 136
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292
SAVED on page 300

Instruction Operation Assembly Language Syntax Class

INVALWP Mark all register window sets as “invalid” invalw C1

Programming
Notes

INVALW marks all windows as invalid; after executing INVALW,
N_REG_WINDOWS-2 SAVEs can be performed without generating a
spill trap.

31 1924 18 02530 29

10 fcn = 0 0101 11 0001 —
CHAPTER 8 • Instructions 225

JMPL
8.48 Jump and Link

Description The JMPL instruction causes a register-indirect delayed control transfer to the
address given by “R[rs1] + R[rs2]” if i field = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register R[rd].

An attempt to execute a JMPL instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system or being written
into R[rd]. (closed impl. dep. #125-V9-Cs10)

Exceptions illegal_instruction
mem_address_not_aligned

See Also CALL on page 150
Bicc on page 142
BPCC on page 148

Instruction op3 Operation Assembly Language Syntax Class

JMPL 11 1000 Jump and Link jmpl address, regrd A1

Programming
Notes

A JMPL instruction with rd = 15 functions as a register-indirect
call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The
typical return address is “r[31] + 8” if a nonleaf routine (one that
uses the SAVE instruction) is entered by a CALL instruction, or
“R[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL
instruction with rd = 15.

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

226 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LD
8.49 Load Integer

† synonym: ld

Description The load integer instructions copy a byte, a halfword, a word, or an extended word
from memory. All copy the fetched value into R[rd]. A fetched byte, halfword, or
word is right-justified in the destination register R[rd]; it is either sign-extended or
zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

Load integer instructions access memory using the implicit ASI (see page 104). The
effective address is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

An attempt to execute a load integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

If the effective address is not halfword-aligned, an attempt to execute an LDUH or
LDSH causes a mem_address_not_aligned exception. If the effective address is not
word-aligned, an attempt to execute an LDUW or LDSW instruction causes a
mem_address_not_aligned exception. If the effective address is not doubleword-
aligned, an attempt to execute an LDX instruction causes a
mem_address_not_aligned exception.

A load integer twin word (LDTW) instruction exists, but is deprecated; see Load
Integer Twin Word on page 253 for details.

Instruction op3 Operation Assembly Language Syntax Class

LDSB 00 1001 Load Signed Byte ldsb [address], regrd A1

LDSH 00 1010 Load Signed Halfword ldsh [address], regrd A1

LDSW 00 1000 Load Signed Word ldsw [address], regrd A1

LDUB 00 0001 Load Unsigned Byte ldub [address], regrd A1

LDUH 00 0010 Load Unsigned Halfword lduh [address], regrd A1

LDUW 00 0000 Load Unsigned Word lduw† [address], regrd A1

LDX 00 1011 Load Extended Word ldx [address], regrd A1

V8 Compatibility
Note

The SPARC V8 LD instruction was renamed LDUW in the SPARC
V9 architecture. The LDSW instruction was new in the SPARC V9
architecture.

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
CHAPTER 8 • Instructions 227

LD

Exceptions illegal_instruction

mem_address_not_aligned (all except LDSB, LDUB)
VA_watchpoint
data_access_exception
228 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDA
8.50 Load Integer from Alternate Space

† synonym: lda

Description The load integer from alternate space instructions copy a byte, a halfword, a word,
or an extended word from memory. All copy the fetched value into R[rd]. A fetched
byte, halfword, or word is right-justified in the destination register R[rd]; it is either
sign-extended or zero-filled on the left, depending on whether the opcode specifies a
signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

A load integer twin word from alternate space (LDTWA) instruction exists, but is
deprecated; see Load Integer Twin Word from Alternate Space on page 255 for details.

An attempt to execute a load integer from alternate space instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSBAPASI 01 1001 Load Signed Byte from Alternate
Space

ldsba
ldsba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSHAPASI 01 1010 Load Signed Halfword from Alternate
Space

ldsha
ldsha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDSWAPASI 01 1000 Load Signed Word from Alternate
Space

ldswa
ldswa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate
Space

lduba
lduba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUHAPASI 01 0010 Load Unsigned Halfword from
Alternate Space

lduha
lduha

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDUWAPASI 01 0000 Load Unsigned Word from Alternate
Space

lduwa†
lduwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

LDXAPASI 01 1011 Load Extended Word from Alternate
Space

ldxa
ldxa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 8 • Instructions 229

LDA

If the effective address is not halfword-aligned, an attempt to execute an LDUHA or
LDSHA instruction causes a mem_address_not_aligned exception. If the effective
address is not word-aligned, an attempt to execute an LDUWA or LDSWA
instruction causes a mem_address_not_aligned exception. If the effective address is
not doubleword-aligned, an attempt to execute an LDXA instruction causes a
mem_address_not_aligned exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3016 to 7F16, these instructions cause a privileged_action exception.

LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA can be used with any
of the following ASIs, subject to the privilege mode rules described for the
privileged_action exception above. Use of any other ASI with these instructions
causes a data_access_exception xception.

LDXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASIs valid for LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASIs invalid for LDXA (cause data_access_exception exception)

2416 (aliased to 2716, ASI_LDTX_N) 2C16 (aliased to 2F16, ASI_LDTX_NL)
2216 (ASI_LDTX_AIUP) 2A16 (ASI_LDTD_AIUP_L)

2316 (ASI_LDTX_AIUS) 2B16 (ASI_LDTX_AIUS_L)

2616 (ASI_LDTX_REAL) 2E16 (ASI_LDTX_REAL_L)

2716 (ASI_LDTX_N) 2F16 (ASI_LDTX_NL)

ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE
230 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDA
Exceptions mem_address_not_aligned (all except LDSBA and LDUBA)
privileged_action
VA_watchpoint
data_access_exception

See Also LD on page 227
STA on page 308

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

E216 (ASI_LDTX_P) EA16 (ASI_LDTX_PL)

E316 (ASI_LDTX_S) EB16 (ASI_LDTX_SL)

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

ASIs invalid for LDXA (cause data_access_exception exception)
CHAPTER 8 • Instructions 231

LDBLOCKF
8.51 Block Load

Description A block load (LDBLOCKF) instruction uses one of several special block-transfer
ASIs. Block transfer ASIs allow block loads to be performed accessing the same
address space as normal loads. Little-endian ASIs (those with an ‘L’ suffix) access
data in little-endian format; otherwise, the access is assumed to be big-endian. Byte
swapping is performed separately for each of the eight 64-bit (double-precision) F
registers used by the instruction.

The LDBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is
executing.

Instruc-tion
ASI
Value Operation Assembly Language Syntax Class

LDBLOCKF 1616 64-byte block load from primary address
space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUP, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1716 64-byte block load from secondary
address space, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUS, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1E16 64-byte block load from primary address
space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUPL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF 1F16 64-byte block load from secondary
address space, little-endian, user privilege

ldda
ldda

[regaddr] #ASI_BLK_AIUSL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F016 64-byte block load from primary address
space

ldda
ldda

[regaddr] #ASI_BLK_P, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F116 64-byte block load from secondary
address space

ldda
ldda

[regaddr] #ASI_BLK_S, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F816 64-byte block load from primary address
space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_PL, fregrd
[reg_plus_imm] %asi, fregrd

B2

LDBLOCKF F916 64-byte block load from secondary
address space, little-endian

ldda
ldda

[regaddr] #ASI_BLK_SL, fregrd
[reg_plus_imm] %asi, fregrd

B2

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 I=1

rd11 110011 imm_asirs1 rs2I=0
232 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDBLOCKF

A block load instruction loads 64 bytes of data from a 64-byte aligned memory area
into the eight double-precision floating-point registers specified by rd. The lowest-
addressed eight bytes in memory are loaded into the lowest-numbered 64-bit
(double-precision) destination F register.

A block load only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes it accesses.

The block load instruction is intended to support fast block-copy operations.

IMPL. DEP. #410-S10: The following aspects of the behavior of block load
(LDBLOCKF) instructions are implementation dependent:
■ What memory ordering model is used by LDBLOCKF (LDBLOCKF is not

required to follow TSO memory ordering)
■ Whether LDBLOCKF follows memory ordering with respect to stores (including

block stores), including whether the virtual processor detects read-after-write and
write-after-read hazards to overlapping addresses

■ Whether LDBLOCKF appears to execute out of order, or follow LoadLoad
ordering (with respect to older loads, younger loads, and other LDBLOCKFs)

■ Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

■ Whether LDBLOCKFs to non-cacheable locations are (a) strictly ordered, (b) not
strictly ordered and cause an illegal_instruction exception, or (c) not strictly
ordered and silently execute without causing an exception (option (c) is strongly
discouraged)

■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKF (the recommended behavior), or only on the first eight bytes

■ Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses

Programming
Note

LDBLOCKF is intended to be a processor-specific instruction
(see the warning at the top of page 232). If LDBLOCKF must be
used in software intended to be portable across current and
previous processor implementations, then it must be coded to
work in the face of any implementation variation that is
permitted by implementation dependency #410-S10, described
below.
CHAPTER 8 • Instructions 233

LDBLOCKF
For further restrictions on the behavior of the block load instruction, see
implementation-specific processor documentation.

Exceptions. An illegal_instruction exception occurs if LDBLOCKF’s floating-point
destination registers are not aligned on an eight-double-precision register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the effective memory address in an LDBLOCKF
instruction are nonzero, a mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1616, 1716,
1E16, and 1F16), LDBLOCKF causes a privileged_action exception.

An access caused by LDBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#410-S10).

Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #410-S10)
data_access_exception

Programming
Note

If ordering with respect to earlier stores is important (for
example, a block load that overlaps a previous store) and read-
after-write hazards are not detected, there must be a MEMBAR
#StoreLoad instruction between earlier stores and a block
load.

If ordering with respect to later stores is important, there must
be a MEMBAR #LoadStore instruction between a block load
and subsequent stores.

If LoadLoad ordering with respect to older or younger loads or
other block load instructions is important and is not provided
by an implementation, an intervening MEMBAR #LoadLoad is
required.

Implementation
Note

In all UltraSPARC Architecture implementations, the MMU
ignores the side-effect bit (TTE.e) for LDBLOCKF accesses (impl.
dep. #410-S10).

Implementation
Note

LDBLOCKF shares an opcode with LDDFA and LDSHORTF; it
is distinguished by the ASI used.
234 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDBLOCKF

See Also STBLOCKF on page 312
CHAPTER 8 • Instructions 235

LDF / LDDF / LDQF / LDXFSR
8.52 Load Floating-Point

‡ Encoded floating-point register value, as described on page 51.

Description The load single floating-point instruction (LDF) copies a word from memory into 32-
bit floating-point destination register FS [rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned
doubleword from memory into a 64-bit floating-point destination register, FD [rd].
The unit of atomicity for LDDF is 4 bytes (one word).

The load quad floating-point instruction (LDQF) copies a word-aligned quadword
from memory into a 128-bit floating-point destination register, FQ [rd]. The unit of
atomicity for LDQF is 4 bytes (one word).

The load floating-point state register instruction (LDXFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a
doubleword from memory into the FSR. LDXFSR does not alter the ver, ftt, qne, or
reserved fields of FSR (see page 58).

These load floating-point instructions access memory using the implicit ASI (see
page 104).

If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and if i = 0,
the effective address is “R[rs1] + sign_ext(simm13)”.

Instruction op3 rd Operation Assembly Language Syntax Class

LDF 10 0000 0–31 Load Floating-Point Register ld [address], fregrd A1

LDDF 10 0011 ‡ Load Double Floating-Point Register ldd [address], fregrd A1

LDQF 10 0010 ‡ Load Quad Floating-Point Register ldq [address], fregrd C3

LDXFSR 10 0001 1 Load Floating-Point State Register ldx [address], %fsr A1

— 10 0001 2–31 Reserved

Programming
Note

For future compatibility, software should only issue an LDXFSR
instruction with a zero value (or a value previously read from
the same field) written into any reserved field of FSR.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
236 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDF / LDDF / LDQF / LDXFSR

Exceptions. An attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction
when i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception. An attempt to execute an instruction encoded as op = 2, op3 = 2116, and
rd > 1 causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDF, LDDF, LDQF, or LDXFSR instruction causes an
fp_disabled exception.

If the effective address is not word-aligned, an attempt to execute an LDF instruction
causes a mem_address_not_aligned exception. If the effective address is not
doubleword-aligned, an attempt to execute an LDXFSR instruction causes a
mem_address_not_aligned exception.

LDDF requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute an LDDF instruction
causes an LDDF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDDF instruction and return (impl. dep. #109-V9-
Cs10(a)).

LDQF requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQF instruction
causes an LDQF_mem_address_not_aligned exception. In this case, trap handler
software must emulate the LDQF instruction and return (impl. dep. #111-V9-
Cs10(a)).

An attempt to execute an LDQF instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Destination Register(s) when Exception Occurs. If aload floating-point
instruction generates an exception that causes a precise trap, the destination floating-
point register(s) remain unchanged.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including LDQF) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
CHAPTER 8 • Instructions 237

LDF / LDDF / LDQF / LDXFSR

IMPL. DEP. #44-V8-Cs10(a): If a load floating-point instruction generates an
exception that causes a non-precise trap, the contents of the destination floating-point
register(s) remain unchanged or are undefined.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (LDQF only))
VA_watchpoint
data_access_exception

See Also Load Floating-Point from Alternate Space on page 239
Load Floating-Point State Register on page 243
Store Floating-Point on page 316

Implementation
Note

LDXFSR shares an opcode with the LDFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.
238 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDFA / LDDFA / LDQFA
8.53 Load Floating-Point from Alternate
Space

‡ Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 51.

Description The load single floating-point from alternate space instruction (LDFA) copies a word
from memory into 32-bit floating-point destination register FS [rd].

The load double floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a 64-bit floating-point destination
register, FD [rd]. The unit of atomicity for LDDFA is 4 bytes (one word).

The load quad floating-point from alternate space instruction (LDQFA) copies a
word-aligned quadword from memory into a 128-bit floating-point destination
register, FQ [rd]. The unit of atomicity for LDQFA is 4 bytes (one word).

If i = 0, these instructions contain the address space identifier (ASI) to be used for the
load in the imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext(simm13)”.

Exceptions. If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no
FPU is present, an attempt to execute an LDFA, LDDFA, or LDQFA instruction
causes an fp_disabled exception.

LDFA causes a mem_address_not_aligned exception if the effective memory address
is not word-aligned.

Instruction op3 rd Operation Assembly Language Syntax Class

LDFAPASI 11 0000 0–31 Load Floating-Point Register
from Alternate Space

lda
lda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDDFAPASI 11 0011 ‡ Load Double Floating-Point
Register from Alternate Space

ldda
ldda

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

A1

LDQFAPASI 11 0010 ‡ Load Quad Floating-Point
Register from Alternate Space

ldqa
ldqa

[regaddr] imm_asi, fregrd
[reg_plus_imm] %asi, fregrd

C3

V9 Compatibility
Note

LDFA, LDDFA, and LDQFA cause a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 8 • Instructions 239

LDFA / LDDFA / LDQFA

LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA causes an
LDDF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDDFA instruction and return (impl. dep. #109-V9-Cs10(b)).

LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, LDQFA causes an
LDQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the LDQFA instruction and return (impl. dep. #111-V9-Cs10(b)).

An attempt to execute an LDQFA instruction when rd{1} ≠ 0 causes an
fp_exception_other (with FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASI is in the range 3016 to 7F16, this instruction causes a privileged_action exception.

LDFA and LDQFA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including LDQFA) that refer to quad-
precision floating-point registers, the
LDQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

Programming
Note

Some compilers issued sequences of single-precision loads for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9 processors, since emulation of
misaligned loads is expected to be fast, compilers should issue
sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

ASIs valid for LDFA and LDQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE
240 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDFA / LDDFA / LDQFA

LDDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the LDDFA instruction causes a data_access_exception exception.

Behavior with Partial Store ASIs. ASIs C016–C516 and C816–CD16 are only
defined for use in Partial Store operations (see page 325). None of them should be
used with LDDFA; however, if any of those ASIs is used with LDDFA, the LDDFA
behaves as follows:

1. IMPL. DEP. #257-U3: If an LDDFA opcode is used with an ASI of C016–C516 or
C816–CD16 (Partial Store ASIs, which are an illegal combination with LDDFA) and
a memory address is specified with less than 8-byte alignment, the virtual
processor generates an exceptoin. It is implementation dependent whether the
generated exception is a data_access_exception, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the virtual processor generates a
data_access_exception.

Destination Register(s) when Exception Occurs. If a load floating-point
alternate instruction generates an exception that causes a precise trap, the
destination floating-point register(s) remain unchanged.

IMPL. DEP. #44-V8-Cs10(b): If a load floating-point alternate instruction generates
an exception that causes a non-precise trap, it is implementation dependent whether
the contents of the destination floating-point register(s) are undefined or are
guaranteed to remain unchanged.

Exceptions illegal_instruction
fp_disabled
LDDF_mem_address_not_aligned
mem_address_not_aligned

ASIs valid for LDDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

Implementation
Note

LDDFA shares an opcode with the LDBLOCKF and LDSHORTF
instructions; it is distinguished by the ASI used.
CHAPTER 8 • Instructions 241

LDFA / LDDFA / LDQFA

fp_exception_other (FSR.ftt = invalid_fp_register (LDQFA only))
privileged_action
VA_watchpoint

See Also Load Floating-Point on page 236
Block Load on page 232
Store Short Floating-Point on page 328
Store Floating-Point into Alternate Space on page 319
242 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDFSR - Deprecated
8.54 Load Floating-Point State Register

Description The load floating-point state register lower instruction (LDFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a word
from memory into the less significant 32 bits of the FSR. The upper 32 bits of FSR
are unaffected by LDFSR. LDFSR does not alter the ver, ftt, qne, or reserved fields of
FSR (see page 58).

LDFSR accesses memory using the implicit ASI (see page 108).

An attempt to execute an LDFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDFSR instruction causes an fp_disabled exception.

LDFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

The LDFSR instruction is deprecated and should not be used in new software.
The LDXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

LDFSRD 10 0001 0 Load Floating-Point State Register Lower ld [address], %fsr C2

Programming
Note

For future compatibility, software should only issue an LDFSR
instruction with a zero value (or a value previously read from
the same field) in any reserved field of FSR.

V8 Compatibility
Note

The SPARC V9 architecture supports two different instructions
to load the FSR: the SPARC V8 LDFSR instruction is defined to
load only the less significant 32 bits of the FSR, whereas
LDXFSR allows SPARC V9 programs to load all 64 bits of the
FSR.w

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 8 • Instructions 243

LDFSR - Deprecated
Exceptions illegal_instruction
fp_disabled
mem_address_not_aligned
VA_watchpoint

Implementation
Note

LDFSR shares an opcode with the LDXFSR instruction (and
possibly with other implementation-dependent instructions);
they are differentiated by the instruction rd field. An attempt to
execute the op = 112, op3 = 10 00012 opcode with an invalid rd
value (rd > 1) causes an illegal_instruction exception.
244 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDSHORTF
8.55 Short Floating-Point Load

Description Short floating-point load instructions allow an 8- or 16-bit value to be loaded from
memory into a 64-bit floating-point register.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute an LDSHORTF instruction causes an fp_disabled exception.

An 8-bit load places the loaded value in the least significant byte of FD[rd] and
zeroes in the most-significant three bytes of FD[rd]. An 8-bit LDSHORTF can be
performed from an arbitrary byte address.

A 16-bit load places the loaded value in the least significant halfword of FD[rd] and
zeroes in the more-significant halfword of FD[rd]. A 16-bit LDSHORTF from an
address that is not halfword-aligned (an odd address) causes a
mem_address_not_aligned exception.

Instruction
ASI

Value Operation Assembly Language Syntax Class

LDSHORTF D016 8-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL8_P, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D116 8-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL8_S, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D816 8-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_PL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D916 8-bit load from secondary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL8_SL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D216 16-bit load from primary address space ldda
ldda

[regaddr] #ASI_FL16_P, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF D316 16-bit load from secondary address
space

ldda
ldda

[regaddr] #ASI_FL16_S, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF DA16 16-bit load from primary address space,
little-endian

ldda
ldda

[regaddr] #ASI_FL16_PL, fregrd
[reg_plus_imm] %asi, fregrd

C3

LDSHORTF DB16 16-bit load from secondary address
space, little-endian

ldda
ldda

[regaddr] #ASI_FL16_SL, fregrd
[reg_plus_imm] %asi, fregrd

C3

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
CHAPTER 8 • Instructions 245

LDSHORTF

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be in big-endian byte order.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause a data_access_exception exception, and are
emulated in software.

Exceptions VA_watchpoint
data_access_exception

Programming
Note

LDSHORTF is typically used with the FALIGNDATA instruction
(see Align Address on page 135) to assemble or store 64 bits from
noncontiguous components.

Implementation
Note

LDSHORTF shares an opcode with the LDBLOCKF and LDDFA
instructions; it is distinguished by the ASI used.
246 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDSTUB
8.56 Load-Store Unsigned Byte

Description The load-store unsigned byte instruction copies a byte from memory into R[rd], then
rewrites the addressed byte in memory to all 1’s. The fetched byte is right-justified in
the destination register R[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

LDSTUB accesses memory using the implicit ASI (see page 104). The effective
address for this instruction is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute an LDSTUB instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
VA_watchpoint
data_access_exception

Instruction op3 Operation Assembly Language Syntax Class

LDSTUB 00 1101 Load-Store Unsigned Byte ldstub [address], regrd A1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

25
CHAPTER 8 • Instructions 247

LDSTUBA
8.57 Load-Store Unsigned Byte to Alternate
Space

Description The load-store unsigned byte into alternate space instruction copies a byte from
memory into R[rd], then rewrites the addressed byte in memory to all 1’s. The
fetched byte is right-justified in the destination register R[rd] and zero-filled on the
left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more virtual
processors executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA
instructions addressing all or parts of the same doubleword simultaneously are
guaranteed to execute them in an undefined, but serial, order.

If i = 0, LDSTUBA contains the address space identifier (ASI) to be used for the load
in the imm_asi field. If i = 1, the ASI is found in the ASI register. In nonprivileged
mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction causes a
privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI is in the
range 3016 to 7F16, this instruction causes a privileged_action exception.

LDSTUBA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

Instruction op3 Operation Assembly Language Syntax Class

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into
Alternate Space

ldstuba
ldstuba

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

A1

ASIs valid for LDSTUBA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
248 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDSTUBA

Exceptions privileged_action

VA_watchpoint
data_access_exception
CHAPTER 8 • Instructions 249

LDTXA
8.58 Load Integer Twin Extended Word from
Alternate Space

The LDTXA instructions are not guaranteed to be implemented on all
UltraSPARC Architecture implementations. Therefore, they should only be
used in platform-specific dynamically-linked libraries or in software created by a
runtime code generator that is aware of the specific virtual processor
implementation on which it is executing.

Instruction
ASI
Value Operation Assembly Language Syntax † Class

LDTXAN 2216 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space

ldtxa [regaddr] #ASI_LDTX_AIUP, regrd N1

2316 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space

ldtxa [regaddr] #ASI_LDTX_AIUS, regrd N1

2616 Load Integer Twin Extended Word,
real address

ldtxa [regaddr] #ASI_LDTX_REAL, regrd N1

2716 Load Integer Twin Extended Word,
nucleus context

ldtxa [regaddr] #ASI_LDTX_N, regrd N1

2A16 Load Integer Twin Extended Word,
as if user (nonprivileged), Primary
address space, little endian

ldtxa [regaddr] #ASI_LDTX_AIUP_L, regrd N1

2B16 Load Integer Twin Extended Word,
as if user (nonprivileged), Secondary
address space, little endian

ldtxa [regaddr] #ASI_LDTX_AIUS_L, regrd N1

2E16 Load Integer Twin Extended Word,
real address, little endian

ldtxa [regaddr] #ASI_LDTX_REAL_L, regrd N1

2F16 Load Integer Twin Extended Word,
nucleus context, little-endian

ldtxa [regaddr] #ASI_LDTX_NL, regrd N1

LDTXAN E216 Load Integer Twin Extended Word,
Primary address space

ldtxa [regaddr] #ASI_LDTX_P, regrd N1

E316 Load Integer Twin Extended Word,
Secondary address space

ldtxa [regaddr] #ASI_LDTX_S, regrd N1

EA16 Load Integer Twin Extended Word,
Primary address space, little endian

ldtxa [regaddr] #ASI_LDTX_PL, regrd N1

EB16 Load Integer Twin Extended Word,
Secondary address space, little-endian

ldtxa [regaddr] #ASI_LDTX_SL, regrd N1

† The original assembly language syntax for these instructions used the “ldda” instruction mnemonic. That syntax is now deprecated.
Over time, assemblers will support the new “ldtxa” mnemonic for this instruction. In the meantime, some existing assemblers may
only recognize the original “ldda” mnemonic.

VIS 2+
250 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDTXA
Description ASIs 2616, 2E16, E216, E316, F016, and F116 are used with the LDTXA instruction to
atomically read a 128-bit data item into a pair of 64-bit R registers (a “twin extended
word”). The data are placed in an even/odd pair of 64-bit registers. The lowest-
address 64 bits are placed in the even-numbered register; the highest-address 64 bits
are placed in the odd-numbered register.

ASIs E216, E316, F016, and F116 perform an access using a virtual address, while ASIs
2616 and 2E16 use a real address.

An LDTXA instruction that performs a little-endian access behaves as if it comprises
two 64-bit loads (performed atomically), each of which is byte-swapped
independently before being written into its respective destination register.

Exceptions. An attempt to execute an LDTXA instruction with an odd-numbered
destination register (rd{0} = 1) causes an illegal_instruction exception.

An attempt to execute an LDTXA instruction with an effective memory address that
is not aligned on a 16-byte boundary causes a mem_address_not_aligned exception.

IMPL. DEP. #413-S10: It is implementation dependent whether
VA_watchpointexceptions are recognized on accesses to all 16 bytes of a LDTXA
instruction (the recommended behavior) or only on accesses to the first 8 bytes.

An attempted access by an LDTXA instruction to noncacheable memory causes an a
data_access_exception exception (impl. dep. #306-U4-Cs10).

The virtual processor MMU does not provide virtual-to-real translation for ASIs 2616
and 2E16; the effective address provided with either of those ASIs is interpreted
directly as a real address.

A mem_address_not_aligned trap is taken if the access is not aligned on a 128-byte
boundary.

Note Execution of an LDTXA instruction with rd = 0 modifies only
R[1].

Programming
Note

A key use for this instruction is to read a full TTE entry (128 bits,
tag and data) in a TSB directly, without using software
interlocks. The “real address” variants can perform the access
using a real address, bypassing the VA-to-RA translation.

Compatibility
Note

ASIs 2716, 2F16, 2616, and 2E16 are now standard ASIs that
replace (respectively) ASIs 2416, 2C16, 3416, and 3C16 that were
supported in some previous UltraSPARC implementations.

rd11 01 0011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4
CHAPTER 8 • Instructions 251

LDTXA
Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #413-S10)
data_access_exception

Implementation
Note

LDTXA shares an opcode with the “i = 0” variant of the
(deprecated) LDTWA instruction. See Load Integer Twin Word
from Alternate Space on page 255.
252 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDTW (Deprecated)
8.59 Load Integer Twin Word

Description The load integer twin word instruction (LDTW) copies two words (with doubleword
alignment) from memory into a pair of R registers. The word at the effective
memory address is copied into the least significant 32 bits of the even-numbered R
register. The word at the effective memory address + 4 is copied into the least
significant 32 bits of the following odd-numbered R register. The most significant 32
bits of both the even-numbered and odd-numbered R registers are zero-filled.

Load integer twin word instructions access memory using the implicit ASI (see
page 104). If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]” and
if i = 0, the effective address is “R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTW instruction behaves as if it comprises
two 32-bit loads, each of which is byte-swapped independently before being written
into its respective destination register.

IMPL. DEP. #107-V9a: It is implementation dependent whether LDTW is
implemented in hardware. If not, an attempt to execute an LDTW instruction will
cause an unimplemented_LDTW exception.

The LDTW instruction is deprecated and should not be used in new software. It
is provided only for compatibility with previous versions of the architecture.The
LDX instruction should be used instead.

Instruction op3 Operation Assembly Language Syntax † Class

LDTWD 00 0011 Load Integer Twin Word ldtw [address], regrd D2

† The original assembly language syntax for this instruction used an “ldd” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “ldtw” mnemonic for this instruction. In the mean-
time, some existing assemblers may only recognize the original “ldd” mnemonic.

Note Execution of an LDTW instruction with rd = 0 modifies only
R[1].

Programming
Note

LDTW is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 8 • Instructions 253

LDTW (Deprecated)
The least significant bit of the rd field in an LDTW instruction is unused and should
always be set to 0 by software. An attempt to execute an LDTW instruction that
refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

An attempt to execute an LDTW instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTW
instruction causes a mem_address_not_aligned exception.

A successful LDTW instruction operates atomically.

Exceptions unimplemented_LDTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint
data_access_exception

See Also LDW/LDX on page 227
STTW on page 330

SPARC V9
Compatibility

Note

LDTW was (inaccurately) named LDD in the SPARC V8 and
SPARC V9 specifications. It does not load a doubleword; it
loads two words (into two registers), and has been renamed
accordingly.
254 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDTWA (Deprecated)
8.60 Load Integer Twin Word from Alternate
Space

Description The load integer twin word from alternate space instruction (LDTWA) copies two
words (with doubleword alignment) from memory into a pair of R registers. The
word at the effective memory address is copied into the least significant 32 bits of
the even-numbered R register. The word at the effective memory address + 4 is
copied into the least significant 32 bits of the following odd-numbered R register.
The most significant 32 bits of both the even-numbered and odd-numbered R
registers are zero-filled.

If i = 0, the LDTWA instruction contains the address space identifier (ASI) to be used
for the load in its imm_asi field and the effective address for the instruction is
“R[rs1] + R[rs2]”. If i = 1, the ASI to be used is contained in the ASI register and the
effective address for the instruction is “R[rs1] + sign_ext(simm13)”.

With respect to little endian memory, an LDTWA instruction behaves as if it is
composed of two 32-bit loads, each of which is byte-swapped independently before
being written into its respective destination register.

The LDTWA instruction is deprecated and should not be used in new software.
The LDXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

LDTWAD, PASI 01 0011 Load Integer Twin Word from Alternate
Space

ldtwa
ldtwa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

‡

† The original assembly language syntax for this instruction used an “ldda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “ldtwa” mnemonic for this instruction. In the meantime, some assemblers may only recognize the
original “ldda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

Note Execution of an LDTWA instruction with rd = 0 modifies only
R[1].

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
CHAPTER 8 • Instructions 255

LDTWA (Deprecated)

IMPL. DEP. #107-V9b: It is implementation dependent whether LDTWA is
implemented in hardware. If not, an attempt to execute an LDTWA instruction will
cause an unimplemented_LDTW exception so that it can be emulated.

The least significant bit of the rd field in an LDTWA instruction is unused and
should always be set to 0 by software. An attempt to execute an LDTWA instruction
that refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

If the effective address is not doubleword-aligned, an attempt to execute an LDTWA
instruction causes a mem_address_not_aligned exception.

A successful LDTWA instruction operates atomically.

LDTWA causes a mem_address_not_aligned exception if the address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3016 to 7F16, these instructions cause a privileged_action exception.

LDTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

Programming
Note

LDTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties.

If LDTWA is emulated in software, an LDXA instruction
instruction should be used for the memory access in the
emulation code in order to preserve atomicity.

SPARC V9
Compatibility

Note

LDTWA was (inaccurately) named LDDA in the SPARC V8 and
SPARC V9 specifications.

ASIs valid for LDTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

2216‡ (ASI_LDTX_AIUP) 2A16‡ (ASI_LDTD_AIUP_L)

2316‡ (ASI_LDTX_AIUS) 2B16‡ (ASI_LDTX_AIUS_L)

2416‡ (aliased to 2716, ASI_LDTX_N) 2C16‡ (aliased to 2F16, ASI_LDTX_NL)
2616‡ (ASI_LDTX_REAL) 2E16‡ (ASI_LDTX_REAL_L)

2716‡ (ASI_LDTX_N) 2F16‡ (ASI_LDTX_NL)
256 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

LDTWA (Deprecated)
Exceptions unimplemented_LDTW illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception

See Also LDWA/LDXA on page 229
STTWA on page 332

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

E216‡ (ASI_LDTX_P) EA16‡ (ASI_LDTX_PL)

E316‡ (ASI_LDTX_S) EB16‡ (ASI_LDTX_SL)

‡ If this ASI is used with the opcode for LDTWA and i = 0, the LDTXA
instruction is executed instead of LDTWA. For behavior of
LDTXA, see Load Integer Twin Extended Word from Alternate Space on page

250.
If this ASI is used with the opcode for LDTWA and i = 1, behavior is

undefined.

Programming
Note

Nontranslating ASIs (see page 387) should only be accessed
using LDXA (not LDTWA) instructions. If an LDTWA
referencing a nontranslating ASI is executed, per the above
table, it generates a data_access_exceptionexception (impl. dep.
#300-U4-Cs10).

Implementation
Note

The deprecated instruction LDTWA shares an opcode with
LDTXA. LDTXA is not deprecated and has different address
alignment requirements than LDTWA. See Load Integer Twin
Extended Word from Alternate Space on page 250.

ASIs valid for LDTWA
CHAPTER 8 • Instructions 257

MEMBAR
8.61 Memory Barrier

Description The memory barrier instruction, MEMBAR, has two complementary functions: to
express order constraints between memory references and to provide explicit control
of memory-reference completion. The membar_mask field in the suggested assembly
language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references
appearing before the MEMBAR and memory references following it in a program.
The particular classes of memory references are specified by the mmask field.
Memory references are classified as loads (including load instructions LDSTUB[A],
SWAP[A], CASA, and CASX[A] and stores (including store instructions LDSTUB[A],
SWAP[A], CASA, CASXA, and FLUSH). The mmask field specifies the classes of
memory references subject to ordering, as described below. MEMBAR applies to all
memory operations in all address spaces referenced by the issuing virtual processor,
but it has no effect on memory references by other virtual processors. When the
cmask field is nonzero, completion as well as order constraints are imposed, and the
order imposed can be more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from
memory and cannot be modified by another virtual processor. A store has been
performed when the value stored has become visible, that is, when the previous
value can no longer be read by any virtual processor. In specifying the effect of
MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has
begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE 8-7 specifies
the order constraint that each bit of mmask (selected when set to 1) imposes on
memory references appearing before and after the MEMBAR. From zero to four
mask bits may be selected in the mmask field.

Instruction op3 Operation Assembly Language Syntax Class

MEMBAR 10 1000 Memory Barrier membar membar_mask A1

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask
258 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MEMBAR
The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask
field, described in TABLE 8-8, specify additional constraints on the order of memory
references and the processing of instructions. If cmask is zero, then MEMBAR
enforces the partial ordering specified by the mmask field; if cmask is nonzero, then
completion and partial order constraints are applied.

A MEMBAR instruction with both mmask = 0 and cmask = 0 is functionally a NOP.

For information on the use of MEMBAR, see Memory Ordering and Synchronization on
page 381 and Programming with the Memory Models contained in the separate volume
UltraSPARC Architecture Application Notes. For additional information about the
memory models themselves, see Chapter 9, Memory.

TABLE 8-7 MEMBAR mmask Encodings

Mask Bit
Assembly
Language Name Description

mmask{3} #StoreStore The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before the
effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction.

mmask{2} #LoadStore All loads appearing prior to the MEMBAR instruction must
have been performed before the effects of any stores following
the MEMBAR are visible to any other virtual processor.

mmask{1} #StoreLoad The effects of all stores appearing prior to the MEMBAR
instruction must be visible to all virtual processors before loads
following the MEMBAR may be performed.

mmask{0} #LoadLoad All loads appearing prior to the MEMBAR instruction must
have been performed before any loads following the MEMBAR
may be performed.

TABLE 8-8 MEMBAR cmask Encodings

Mask Bit Function
Assembly
Language Name Description

cmask{2} Synchronization
barrier

#Sync All operations (including nonmemory
reference operations) appearing prior to the
MEMBAR must have been performed and
the effects of any exceptions be visible before
any instruction after the MEMBAR may be
initiated.

cmask{1} Memory issue
barrier

#MemIssue All memory reference operations appearing
prior to the MEMBAR must have been
performed before any memory operation
after the MEMBAR may be initiated.

cmask{0} Lookaside barrier #Lookaside A store appearing prior to the MEMBAR
must complete before any load following the
MEMBAR referencing the same address can
be initiated.
CHAPTER 8 • Instructions 259

MEMBAR

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

An attempt to execute a MEMBAR instruction when instruction bits 12:7 are nonzero
causes an illegal_instruction exception.

8.61.1 Memory Synchronization
The UltraSPARC Architecture provides some level of software control over memory
synchronization, through use of the MEMBAR and FLUSH instructions for explicit
control of memory ordering in program execution.

IMPL. DEP. #412-S10: An UltraSPARC Architecture implementation may define the
operation of each MEMBAR variant in any manner that provides the required
semantics.

V9 Compatibility
Note

MEMBAR with mmask = 816 and cmask = 016 (MEMBAR
#StoreStore) is identical in function to the SPARC V8 STBAR
instruction, which is deprecated.

Implementation
Note

MEMBAR shares an opcode withRDasr and STBARD; it is
distinguished by rs1 = 15, rd = 0, i = 1, and bit 12 = 0.

Implementation
Note

For an UltraSPARC Architecture virtual processor that only
provides TSO memory ordering semantics, three of the ordering
MEMBARs would normally be implemented as NOPs. TABLE 8-9
shows an acceptable implementation of MEMBAR for a TSO-
only UltraSPARC Architecture implementation.

If an UltraSPARC Architecture implementation provides a less
restrictive memory model than TSO (for example, RMO), the
implementation of the MEMBAR variants may be different. See
implementation-specific documentation for details.

TABLE 8-9 MEMBAR Semantics for TSO-only implementation

MEMBAR variant Preferred Implementation

#StoreStore, STBAR NOP

#LoadStore NOP

#StoreLoad #Sync

#LoadLoad NOP

#Sync #Sync

#MemIssue #Sync

#Lookaside #Sync
260 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MEMBAR
8.61.2 Synchronization of the Virtual Processor
Synchronization of a virtual processor forces all outstanding instructions to be
completed and any associated hardware errors to be detected and reported before
any instruction after the synchronizing instruction is issued.

Synchronization can be explicitly caused by executing a synchronizing MEMBAR
instruction (MEMBAR #Sync) or by executing an LDXA/STXA/LDDFA/STDFA
instruction with an ASI that forces synchronization.

8.61.3 TSO Ordering Rules affecting Use of MEMBAR
For detailed rules on use of MEMBAR to enable software to adhere to the ordering
rules on a virtual processor running with the TSO memory model, refer to TSO
Ordering Rules on page 378.

Exceptions illegal_instruction

Programming
Note

Completion of a MEMBAR #Sync instruction does not
guarantee that data previously stored has been written all the
way out to external memory. Software cannot rely on that
behavior. There is no mechanism in the UltraSPARC
Architecture that allows software to wait for all previous stores
to be written to external memory.
CHAPTER 8 • Instructions 261

MOVcc
8.62 Move Integer Register on Condition
(MOVcc)

For Integer Condition Codes

† synonym: movnz ‡ synonym: movz ◊ synonym: movgeu ∇ synonym: movlu

Instruction op3 cond Operation icc / xcc Test Assembly Language Syntax Class

MOVA 10 1100 1000 Move Always 1 mova i_or_x_cc, reg_or_imm11, regrd A1

MOVN 10 1100 0000 Move Never 0 movn i_or_x_cc, reg_or_imm11, regrd A1

MOVNE 10 1100 1001 Move if Not Equal not Z movne† i_or_x_cc, reg_or_imm11, regrd A1

MOVE 10 1100 0001 Move if Equal Z move‡ i_or_x_cc, reg_or_imm11, regrd A1

MOVG 10 1100 1010 Move if Greater not (Z or
N xor V))

movg i_or_x_cc, reg_or_imm11, regrd A1

MOVLE 10 1100 0010 Move if Less or
Equal

Z or (N xor V) movle i_or_x_cc, reg_or_imm11, regrd A1

MOVGE 10 1100 1011 Move if Greater
or Equal

not (N xor V) movge i_or_x_cc, reg_or_imm11, regrd A1

MOVL 10 1100 0011 Move if Less N xor V movl i_or_x_cc, reg_or_imm11, regrd A1

MOVGU 10 1100 1100 Move if Greater,
Unsigned

not (C or Z) movgu i_or_x_cc, reg_or_imm11, regrd A1

MOVLEU 10 1100 0100 Move if Less or
Equal, Unsigned

(C or Z) movleu i_or_x_cc, reg_or_imm11, regrd A1

MOVCC 10 1100 1101 Move if Carry
Clear (Greater or
Equal, Unsigned)

not C movcc◊ i_or_x_cc, reg_or_imm11, regrd A1

MOVCS 10 1100 0101 Move if Carry Set
(Less than,
Unsigned)

C movcs∇ i_or_x_cc, reg_or_imm11, regrd A1

MOVPOS 10 1100 1110 Move if Positive not N movpos i_or_x_cc, reg_or_imm11, regrd A1

MOVNEG 10 1100 0110 Move if Negative N movneg i_or_x_cc, reg_or_imm11, regrd A1

MOVVC 10 1100 1111 Move if Overflow
Clear

not V movvc i_or_x_cc, reg_or_imm11, regrd A1

MOVVS 10 1100 0111 Move if Overflow
Set

V movvs i_or_x_cc, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %icc or %xcc before the reg_or_imm11 field.
262 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MOVcc

For Floating-Point Condition Codes

† synonym: movnz ‡ synonym: movz

Instruction op3 cond Operation fcc Test Assembly Language Syntax Class

MOVFA 10 1100 1000 Move Always 1 mova %fccn, reg_or_imm11, regrd A1

MOVFN 10 1100 0000 Move Never 0 movn %fccn, reg_or_imm11, regrd A1

MOVFU 10 1100 0111 Move if Unordered U movu %fccn, reg_or_imm11, regrd A1

MOVFG 10 1100 0110 Move if Greater G movg %fccn, reg_or_imm11, regrd A1

MOVFUG 10 1100 0101 Move if Unordered
or Greater

G or U movug %fccn, reg_or_imm11, regrd A1

MOVFL 10 1100 0100 Move if Less L movl %fccn, reg_or_imm11, regrd A1

MOVFUL 10 1100 0011 Move if Unordered
or Less

L or U movul %fccn, reg_or_imm11, regrd A1

MOVFLG 10 1100 0010 Move if Less or
Greater

L or G movlg %fccn, reg_or_imm11, regrd A1

MOVFNE 10 1100 0001 Move if Not Equal L or G or U movne† %fccn, reg_or_imm11, regrd A1

MOVFE 10 1100 1001 Move if Equal E move‡ %fccn, reg_or_imm11, regrd A1

MOVFUE 10 1100 1010 Move if Unordered
or Equal

E or U movue %fccn, reg_or_imm11, regrd A1

MOVFGE 10 1100 1011 Move if Greater or
Equal

E or G movge %fccn, reg_or_imm11, regrd A1

MOVFUGE 10 1100 1100 Move if Unordered
or Greater or Equal

E or G or U movuge %fccn, reg_or_imm11, regrd A1

MOVFLE 10 1100 1101 Move if Less or
Equal

E or L movle %fccn, reg_or_imm11, regrd A1

MOVFULE 10 1100 1110 Move if Unordered
or Less or Equal

E or L or U movule %fccn, reg_or_imm11, regrd A1

MOVFO 10 1100 1111 Move if Ordered E or L or G movo %fccn, reg_or_imm11, regrd A1

Programming
Note

In assembly language, to select the appropriate condition code,
include %fcc0, %fcc1, %fcc2, or %fcc3 before the reg_or_imm11
field.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
CHAPTER 8 • Instructions 263

MOVcc
Description These instructions test to see if cond is TRUE for the selected condition codes. If so,
they copy the value in R[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into R[rd].
The condition code used is specified by the cc2, cc1, and cc0 fields of the
instruction. If the condition is FALSE, then R[rd] is not changed.

These instructions copy an integer register to another integer register if the condition
is TRUE. The condition code that is used to determine whether the move will occur
can be either integer condition code (icc or xcc) or any floating-point condition code
(fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

An attempt to execute a MOVcc instruction when either instruction bits 10:5 are
nonzero or (cc2 :: cc1 :: cc0) = 1012 or 1112 causes an illegal_instruction exception.

cc2 cc1 cc0 Condition Code

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 Reserved (illegal_instruction)
1 1 0 xcc

1 1 1 Reserved (illegal_instruction)

Programming
Note

Branches cause the performance of many implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc
instructions can be used to avoid branches. For example, the C
language if-then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3! X = 1
or %g0,0,%i3! X = 0

label:...

The above sequence requires four instructions, including a branch.
With MOVcc this could be coded as:

cmp %i0,%i2
or %g0,1,%i3! assume X = 1
movle %xcc,0,%i3! overwrite with X = 0

This approach takes only three instructions and no branches and
may boost performance significantly. Use MOVcc and FMOVcc
instead of branches wherever these instructions would increase
performance.
264 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MOVcc

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a MOVcc instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled
CHAPTER 8 • Instructions 265

MOVr
8.63 Move Integer Register on Register
Condition (MOVr)

† synonym: movre ‡ synonym: movrne

Description If the contents of integer register R[rs1] satisfy the condition specified in the rcond
field, these instructions copy their second operand (if i = 0, R[rs2]; if i = 1,
sign_ext(simm10)) into R[rd]. If the contents of R[rs1] do not satisfy the condition,
then R[rd] is not modified.

These instructions treat the register contents as a signed integer value; they do not
modify any condition codes.

Instruction op3 rcond Operation Test Assembly Language Syntax Class

— 10 1111 000 Reserved (illegal_instruction) —

MOVRZ 10 1111 001 Move if Register Zero R[rs1] = 0 movrz† regrs1, reg_or_imm10, regrd A1

MOVRLEZ 10 1111 010 Move if Register Less
Than or Equal to Zero

R[rs1] ≤ 0 movrlez regrs1, reg_or_imm10, regrd A1

MOVRLZ 10 1111 011 Move if Register Less
Than Zero

R[rs1] < 0 movrlz regrs1, reg_or_imm10, regrd A1

— 10 1111 100 Reserved (illegal_instruction) —

MOVRNZ 10 1111 101 Move if Register Not
Zero

R[rs1] ≠ 0 movrnz‡ regrs1, reg_or_imm10, regrd A1

MOVRGZ 10 1111 110 Move if Register
Greater Than Zero

R[rs1] > 0 movrgz regrs1, reg_or_imm10, regrd A1

MOVRGEZ 10 1111 111 Move if Register
Greater Than or Equal
to Zero

R[rs1] ≥ 0 movrgez regrs1, reg_or_imm10, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
266 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MOVr
An attempt to execute a MOVr instruction when either instruction bits 9:5 are
nonzero or rcond = 0002 or 1002 causes an illegal_instruction exception.

Exceptions illegal_instruction

Implementation
Note

If this instruction is implemented by tagging each register value
with an n (negative) and a z (zero) bit, use the table below to
determine if rcond is TRUE.

Move Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ N or Z
MOVRGZ N nor Z
CHAPTER 8 • Instructions 267

MULScc - Deprecated
8.64 Multiply Step

Description MULScc treats the less-significant 32 bits of R[rs1] and the less-significant 32 bits of
the Y register as a single 64-bit, right-shiftable doubleword register. The least
significant bit of R[rs1] is treated as if it were adjacent to bit 31 of the Y register. The
MULScc instruction performs an addition operation, based on the least significant
bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1]
contains the most significant bits of the product, and R[rs2] contains the
multiplicand. Upon completion of the multiplication, the Y register contains the least
significant bits of the product.

MULScc operates as follows:

1. If i = 0, the multiplicand is R[rs2]; if i = 1, the multiplicand is sign_ext(simm13).

2. A 32-bit value is computed by shifting the value from R[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for
the previous partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y = 0, then 0 is added to
the shifted value from step (2).

The MULScc instruction is deprecated and should not be used in new software.
The MULX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

MULSccD 10 0100 Multiply Step and modify cc’s mulscc regrs1, reg_or_imm, regrd Y3

Note In a standard MULScc instruction, rs1 = rd.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
268 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

MULScc - Deprecated

4. MULScc writes the following result values:

5. The Y register is shifted right by one bit, with the least significant bit of the
unshifted R[rs1] replacing bit 31 of Y.

An attempt to execute a MULScc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Register field Value written by MULScc

CCR.icc updated according to the result of the addition in step (3)
above

R[rd]{63:32} undefined

R[rd]{31:0} the least-significant 32 bits of the sum from step (3) above

Y the previous value of the Y register, shifted right by one
bit, with Y{31} replaced by the value of R[rs1]{0} prior to
shifting in step (2)

CCR.xcc undefined
CHAPTER 8 • Instructions 269

MULX / SDIVX / UDIVX
8.65 Multiply and Divide (64-bit)

Description MULX computes “R[rs1] × R[rs2]” if i = 0 or “R[rs1] × sign_ext(simm13)” if i = 1,
and writes the 64-bit product into R[rd]. MULX can be used to calculate the 64-bit
product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “R[rs1] ÷ R[rs2]” if i = 0 or
“R[rs1] ÷ sign_ext(simm13)” if i = 1, and write the 64-bit result into R[rd]. SDIVX
operates on the operands as signed integers and produces a corresponding signed
result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the
largest negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

An attempt to execute a MULX, SDIVX, or UDIVX instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

Instruction op3 Operation Assembly Language Class

MULX 00 1001 Multiply (signed or unsigned) mulx regrs1, reg_or_imm, regrd A1

SDIVX 10 1101 Signed Divide sdivx regrs1, reg_or_imm, regrd A1

UDIVX 00 1101 Unsigned Divide udivx regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
270 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

NOP
8.66 No Operation

Description The NOP instruction changes no program-visible state (except that of the PC
register).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

NOP 100 No Operation nop A1

Programming
Note

There are many other opcodes that may execute as NOPs;
however, this dedicated NOP instruction is only one guaranteed
to implemented efficiently across all implementations.

00 op2 imm22 = 0rd = 0 0 0 0 0

31 24 02530 29 22 21
CHAPTER 8 • Instructions 271

NORMALW
8.67 NORMALW

Description NORMALWP is a privileged instruction that copies the value of the OTHERWIN
register to the CANRESTORE register, then sets the OTHERWIN register to zero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 136
INVALW on page 225
OTHERW on page 274
RESTORED on page 292
SAVED on page 300

Instruction Operation Assembly Language Syntax Class

NORMALWP “Other” register windows become “normal” register windows normalw C1

Programming
Notes

The NORMALW instruction is used when changing address
spaces. NORMALW indicates the current "other" windows are
now "normal" windows and should use the spill_n_normal and
fill_n_normal traps when they generate a trap due to window spill
or fill exceptions. The window state may become inconsistent if
NORMALW is used when CANRESTORE is nonzero.

31 1924 18 02530 29

10 fcn = 0 0100 11 0001 —
272 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

OR
8.68 OR Logical Operation

Description These instructions implement bitwise logical or operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

ORcc and ORNcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

ORN and ORNcc logically negate their second operand before applying the main
(or) operation.

An attempt to execute an OR[N][cc] instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

OR 00 0010 Inclusive or or regrs1, reg_or_imm, regrd A1

ORcc 01 0010 Inclusive or and modify cc’s orcc regrs1, reg_or_imm, regrd A1

ORN 00 0110 Inclusive or not orn regrs1, reg_or_imm, regrd A1

ORNcc 01 0110 Inclusive or not and modify cc’s orncc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 273

OTHERW
8.69 OTHERW

Description OTHERWP is a privileged instruction that copies the value of the CANRESTORE
register to the OTHERWIN register, then sets the CANRESTORE register to zero.

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction (not implemented in hardware in UltraSPARC Architecture 2005)

See Also ALLCLEAN on page 136
INVALW on page 225
NORMALW on page 272
RESTORED on page 292
SAVED on page 300

Instruction Operation Assembly Language Syntax Class

OTHERWP “Normal” register windows become “other”
register windows

otherw C1

Programming
Notes

The OTHERW instruction is used when changing address spaces.
OTHERW indicates the current "normal" register windows are
now "other" register windows and should use the spill_n_other
and fill_n_other traps when they generate a trap due to window
spill or fill exceptions. The window state may become inconsistent
if OTHERW is used when OTHERWIN is nonzero.

31 1924 18 02530 29

10 fcn = 0 0011 11 0001 —
274 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

PDIST
8.70 Pixel Component Distance

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
FD[rs1] and FD[rs2]. The corresponding 8-bit values in the source registers are
subtracted (that is, each byte in FD[rs2] is subtracted from the corresponding byte in
FD[rs1]). The sum of the absolute value of each difference is added to the integer in
FD[rd] and the resulting integer sum is stored in the destination register, FD[rd].

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

Exceptions illegal_instruction

Instruction opf Operation Assembly Language Syntax Class

PDIST 0 0011 1110 Distance between eight 8-bit components,
with accumulation

pdist fregrs1, fregrs2, fregrd C3

Programming
Notes

PDIST uses FD[rd] as both a source and a destination register.

Typically, PDIST is used for motion estimation in video
compression algorithms.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
CHAPTER 8 • Instructions 275

POPC
8.71 Population Count

Description POPC counts the number of one bits in R[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in R[rd]. This instruction does not
modify the condition codes.

Instruction op3 Operation Assembly Language Syntax Class

POPC 10 1110 Population Count popc reg_or_imm, regrd D3

V9 Compatibility
Note

Instruction bits 18 through 14 must be zero for POPC. Other
encodings of this field (rs1) may be used in future versions of the
SPARC architecture for other instructions.

Programming
Note

POPC can be used to “find first bit set” in a register. A ‘C’-
language program illustrating how POPC can be used for this
purpose follows:

int ffs(zz)/* finds first 1 bit, counting from the LSB */
unsigned zz;
{

return popc (zz ^ (∼ (–zz)));/* for nonzero zz */
}

Inline assembly language code for ffs() is:

neg %IN, %M_IN ! –zz(2’s complement)
xnor %IN, %M_IN, %TEMP ! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example computation:
 IN = ...00101000 !1st ‘1’ bit from right is
 –IN = ...11011000 ! bit 3 (4th bit)
 ~ –IN = ...00100111
 IN ^ ~ –IN = ...00001111
popc(IN ^ ~ –IN = 4

rd10 op3 0 0000 simm13i=1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0
276 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

POPC
In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and is emulated in
software.

An attempt to execute a POPC instruction when either instruction bits 18:14 are
nonzero, or i = 0 and instruction bits 12:5 are nonzero causes an illegal_instruction
exception.

Exceptions illegal_instruction

Programming
Note

POPC can be used to “centrifuge” all the ‘1’ bits in a register to the
least significant end of a destination register. Assembly-language
code illustrating how POPC can be used for this purpose follows:

popc %IN, %DEST
cmp %IN, -1 ! Test for pattern of all 1’s
mov -1, %TEMP ! Constant -1 -> temp register
sllx %TEMP,%DEST,%DEST ! (shift count of 64 same as 0)
not %DEST !
movcc %xcc, -1, %DEST ! If src was -1, result is -1

where IN, TEMP, and DEST are integer registers.
CHAPTER 8 • Instructions 277

PREFETCH
8.72 Prefetch

PREFETCH

PREFETCHA

Instruction op3 Operation Assembly Language Syntax Class

PREFETCH 10 1101 Prefetch Data prefetch [address],prefetch_fcn A1

PREFETCHAPASI 11 1101 Prefetch Data from
Alternate Space

prefetcha
prefetcha

[regaddr] imm_asi, prefetch_fcn
[reg_plus_imm] %asi,prefetch_fcn

A1

TABLE 8-10 Prefetch Variants, by Function Code

fcn Prefetch Variant

0 (Weak) Prefetch for several reads

1 (Weak) Prefetch for one read

2 (Weak) Prefetch for several writes and possibly reads

3 (Weak) Prefetch for one write

4 Prefetch page

5–15 (0516–0F16) Reserved (illegal_instruction)

16 (1016) Implementation dependent (NOP if not implemented)

17 (1116) Prefetch to nearest unified cache

18–19 (1216–1316) Implementation dependent (NOP if not implemented)

20 (1416) Strong Prefetch for several reads

21 (1516) Strong Prefetch for one read

22 (1616) Strong Prefetch for several writes and possibly reads

23 (1716) Strong Prefetch for one write

24-31 (1816–1F16) Implementation dependent (NOP if not implemented)

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

fcn11 op3 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1
278 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

PREFETCH

Description A PREFETCH[A] instruction provides a hint to the virtual processor that software

expects to access a particular address in memory in the near future, so that the
virtual processor may take action to reduce the latency of accesses near that address.
Typically, execution of a prefetch instruction initiates movement of a block of data
containing the addressed byte from memory toward the virtual processor or creates
an address mapping.

If i = 0, the effective address operand for the PREFETCH instruction is
“R[rs1] + R[rs2]”; if i = 1, it is “R[rs1] + sign_ext (simm13)”.

PREFETCH instructions access the primary address space
(ASI_PRIMARY[_LITTLE]).

PREFETCHA instructions access an alternate address space. If i = 0, the address
space identifier (ASI) to be used for the instruction is in the imm_asi field. If i = 1, the
ASI is found in the ASI register.

A prefetch operates much the same as a regular load operation, but with certain
important differences. In particular, a PREFETCH[A] instruction is non-blocking;
subsequent instructions can continue to execute while the prefetch is in progress.

When executed in nonprivileged or privileged mode, PREFETCH[A] has the same
observable effect as a NOP. A prefetch instruction will not cause a trap if applied to
an illegal or nonexistent memory address. (impl. dep. #103-V9-Ms10(e))

IMPL. DEP. #103-V9-Ms10(a): The size and alignment in memory of the data block
prefetched is implementation dependent; the minimum size is 64 bytes and the
minimum alignment is a 64-byte boundary.

Variants of the prefetch instruction can be used to prepare the memory system for
different types of accesses.

IMPL. DEP. #103-V9-Ms10(b): An implementation may implement none, some, or
all of the defined PREFETCH[A] variants. It is implementation-dependent whether
each variant is (1) not implemented and executes as a NOP, (2) is implemented and
supports the full semantics for that variant, or (3) is implemented and only supports
the simple common-case prefetching semantics for that variant.

Implementation
Note

A PREFETCH[A] instruction may be used by software to:

• prefetch a cache line into a cache
• prefetch a valid address translation into a TLB
•

Programming
Note

Software may prefetch 64 bytes beginning at an arbitrary address
address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn
CHAPTER 8 • Instructions 279

PREFETCH
8.72.1 Exceptions
Prefetch instructions PREFETCH and PREFETCHA generate exceptions under the
conditions detailed in TABLE 8-11. Only the implementation-dependent prefetch
variants (see TABLE 8-10) may generate an exception under conditions not listed in
this table; the predefined variants only generate the exceptions listed here.

TABLE 8-11 Behavior of PREFETCH[A] Instructions Under Exceptional Conditions

fcn Instruction Condition Result

any PREFETCH i = 0 and instruction bits 12:5 are
nonzero

illegal_instruction

any PREFETCHA reference to an ASI in the range
016-7F16, while in nonprivileged
mode (privileged_action condition)

executes as NOP

any PREFETCHA reference to an ASI in range
3016..7F16, while in privileged
mode (privileged_action condition)

executes as NOP

0-3
(weak)

PREFETCH[A] condition detected for MMU miss executes as NOP

0-4 PREFETCH[A] variant unimplemented executes as NOP

0-4 PREFETCHA reference to an invalid ASI
(ASI not listed in following table)

executes as NOP

0-4, 17,
20-23

PREFETCH[A] condition detected for ((TTE.cp = 0)
or ((fcn = 0) and TTE.cv = 0)), or
(TTE.e = 1)

executes as NOP

4, 20-23
(strong)

PREFETCH[A] prefetching the requested data
would be a very time-consuming
operation

executes as NOP

5–15
(0516–0F16)

PREFETCH[A] (always) illegal_instruction

16-31
(1816–1F16)

PREFETCH[A] variant unimplemented executes as NOP

ASIs valid for PREFETCHA (all others are invalid)

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_REAL ASI_REAL_LITTLE
280 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

PREFETCH
8.72.2 Weak versus Strong Prefetches
Some prefetch variants are available in two versions, “Weak” and “Strong”.

From software’s perspective, the difference between the two is the degree of
certainty that the data being prefetched will subsequently be accessed. That, in
turn, affects the amount of effort (time) it’s willing for the underlying hardware to
invest to perform the prefetch. If the prefetch is speculative (software believes the
data will probably be needed, but isn’t sure), a Weak prefetch will initiate data
movement if the operation can be performed quickly, but abort the prefetch and
behave like a NOP if it turns out that performing the full prefetch will be time-
consuming. If software has very high confidence that data being prefetched will
subsequently be accessed, then a Strong prefetch requests that the prefetch operation
will continue, even if the prefetch operation does become time-consuming.

From the virtual processor’s perspective, the difference between a Weak and a
Strong prefetch is whether the prefetch is allowed to perform a time-consuming
operation in order to complete. If a time-consuming operation is required, a Weak
prefetch will abandon the operation and behave like a NOP while a Strong prefetch
may pay the cost of performing the time-consuming operation so it can finish
initiating the requested data movement. Behavioral differences among loads and
prefetches are compared in TABLE 8-12.

8.72.3 Prefetch Variants
The prefetch variant is selected by the fcn field of the instruction. fcn values 5–15 are
reserved for future extensions of the architecture, and PREFETCH fcn values of 16–
19 and 24–31 are implementation dependent in UltraSPARC Architecture 2005.

TABLE 8-12 Comparative Behavior of Load and Weak Prefetch Operations

Condition

Behavior

Load Prefetch

Upon detection of privileged_action, data_access_exception
or VA_watchpoint exception…

Traps NOP‡

If page table entry has cp = 0, e = 1, and cv = 0 for Prefetch for
Several Reads

Traps NOP‡

If page table entry has nfo = 1 for a non-NoFault access… Traps NOP‡

If page table entry has w = 0 for any prefetch for write access
(fcn = 2, 3, 22, or 23)…

Traps NOP‡

Instruction blocks until cache line filled? Yes No
CHAPTER 8 • Instructions 281

PREFETCH

Each prefetch variant reflects an intent on the part of the compiler or programmer, a
“hint” to the underlying virtual processor. This is different from other instructions
(except BPN), all of which cause specific actions to occur. An UltraSPARC
Architecture implementation may implement a prefetch variant by any technique, as
long as the intent of the variant is achieved (impl. dep. #103-V9-Ms10(b)).

The prefetch instruction is designed to treat common cases well. The variants are
intended to provide scalability for future improvements in both hardware and
compilers. If a variant is implemented, it should have the effects described below. In
case some of the variants listed below are implemented and some are not, a
recommended overloading of the unimplemented variants is provided in the SPARC
V9 specification. An implementation must treat any unimplemented prefetch fcn
values as NOPs (impl. dep. #103-V9-Ms10).

8.72.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))

The intent of these variants is to cause movement of data into the cache nearest the
virtual processor.

There are Weak and Strong versions of this prefetch variant; fcn = 0 is Weak and
fcn = 20 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

8.72.3.2 Prefetch for One Read (fcn = 1, 21(1516))

The data to be read from the given address are expected to be read once and not
reused (read or written) soon after that. Use of this PREFETCH variant indicates
that, if possible, the data cache should be minimally disturbed by the data read from
the given address.

There are Weak and Strong versions of this prefetch variant; fcn = 1 is Weak and
fcn = 21 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

8.72.3.3 Prefetch for Several Writes (and Possibly Reads)
(fcn = 2, 22(1616))

The intent of this variant is to cause movement of data in preparation for multiple
writes.

Programming
Note

The intended use of this variant is for streaming relatively small
amounts of data into the primary data cache of the virtual
processor.

Programming
Note

The intended use of this variant is in streaming medium amounts
of data into the virtual processor without disturbing the data in
the primary data cache memory.
282 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

PREFETCH

There are Weak and Strong versions of this prefetch variant; fcn = 2 is Weak and
fcn = 22 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

8.72.3.4 Prefetch for One Write (fcn = 3, 23(1716))

The intent of this variant is to initiate movement of data in preparation for a single
write. This variant indicates that, if possible, the data cache should be minimally
disturbed by the data written to this address, because those data are not expected to
be reused (read or written) soon after they have been written once.

There are Weak and Strong versions of this prefetch variant; fcn = 3 is Weak and
fcn = 23 is Strong. The choice of Weak or Strong variant controls the degree of effort
that the virtual processor may expend to obtain the data.

8.72.3.5 Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for hardware (or
privileged or hyperprivileged software) to initiate asynchronous mapping of the
referenced virtual address (assuming that it is legal to do so).

In a non-virtual-memory system or if the addressed page is already mapped, this
variant has no effect.

8.72.4 Implementation-Dependent Prefetch Variants
(fcn = 16, 18, 19, and 24–31)
IMPL. DEP. #103-V9-Ms10(c): Whether and how PREFETCH fcns 16, 18, 19 and 24-
31 are implemented are implementation dependent. If a variant is not implemented,
it must execute as a NOP.

Programming
Note

An example use of this variant is to initialize a cache line, in
preparation for a partial write.

Implementation
Note

On a multiprocessor system, this variant indicates that exclusive
ownership of the addressed data is needed. Therefore, it may
have the additional effect of obtaining exclusive ownership of the
addressed cache line.

Programming
Note

Prefetch Page is used is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

Implementation
Note

The mapping required by Prefetch Page may be performed by
privileged software, hyperprivileged software, or hardware.
CHAPTER 8 • Instructions 283

PREFETCH
8.72.5 Additional Notes

Exceptions illegal_instruction

Programming
Note

Prefetch instructions do have some “cost to execute”. As long as
the cost of executing a prefetch instruction is well less than the
cost of a cache miss, use of prefetching provides a net gain in
performance.

It does not appear that prefetching causes a significant number of
useless fetches from memory, though it may increase the rate of
useful fetches (and hence the bandwidth), because it more
efficiently overlaps computing with fetching.

Programming
Note

A compiler that generates PREFETCH instructions should
generate each of the variants where its use is most appropriate.
That will help portable software be reasonably efficient across a
range of hardware configurations.

Implementation
Note

Any effects of a data prefetch operation in privileged code should
be reasonable (for example, no page prefetching is allowed within
code that handles page faults). The benefits of prefetching should
be available to most privileged code.

Implementation
Note

A prefetch from a nonprefetchable location has no effect. It is up
to memory management hardware to determine how locations
are identified as not prefetchable.
284 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RDasr
8.73 Read Ancillary State Register
Instruction rs1 Operation Assembly Language Syntax Class

RDYD 0 Read Y register (deprecated) rd %y, regrd C2

— 1 Reserved

RDCCR 2 Read Condition Codes register (CCR) rd %ccr, regrd A1

RDASI 3 Read ASI register rd %asi, regrd A1

RDTICKPnpt 4 Read TICK register rd %tick, regrd A1

RDPC 5 Read Program Counter (PC) rd %pc, regrd B2

RDFPRS 6 Read Floating-Point Registers Status (FPRS)
register

rd %fprs, regrd A1

— 7−14 Reserved

See text 15 STBAR, MEMBAR or Reserved; see text

RDPCRP 16 Read Performance Control registers (PCR) rd %pcr, regrd A1

RDPICPPIC 17 Read Performance Instrumentation Counters
register (PIC)

rd %pic, regrd A1

— 18 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDGSR 19 Read General Status register (GSR) rd %gsr, regrd A1

— 20–21 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

RDSOFTINTP 22 Read per-virtual processor Soft Interrupt register
(SOFTINT)

rd %softint, regrd N2

RDTICK_CMPRP 23 Read Tick Compare register (TICK_CMPR) rd %tick_cmpr, regrd N2

RDSTICKPnpt 24 Read System Tick Register (STICK) rd %sys_tick, regrd N2

RDSTICK_CMPRP 25 Read System Tick Compare register
(STICK_CMPR)

rd %sys_tick_cmpr, regrd N2

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-Cs20)

— 28-31 Implementation dependent
(impl. dep. #8-V8-Cs20, 9-V8-Cs20)

31 141924 18 13 02530 29

10 rd 10 1000 rs1 —
12

i=0
CHAPTER 8 • Instructions 285

RDasr

Description The Read Ancillary State Register (RDasr) instructions copy the contents of the state

register specified by rs1 into R[rd].

An RDasr instruction with rs1 = 0 is a (deprecated) RDY instruction (which should
not be used in new software).

RDPC copies the contents of the PC register into R[rd]. If PSTATE.am = 0, the full
64-bit address is copied into R[rd]. If PSTATE.am = 1, only a 32-bit address is saved;
PC{31:0} is copied to R[rd]{31:0} and R[rd]{63:32} is set to 0. (closed impl. dep. #125-
V9-Cs10)

RDFPRS waits for all pending FPops and loads of floating-point registers to
complete before reading the FPRS register.

The following values of rs1 are reserved for future versions of the architecture: 1, 7–
14, 18, 20-21, and 26-27.

IMPL. DEP. #47-V8-Cs20: RDasr instructions with rd in the range 28–31 are
available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For an RDasr
instruction with rs1 in the range 28–31, the following are implementation
dependent:
■ the interpretation of bits 13:0 and 29:25 in the instruction
■ whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20),

and
■ whether an attempt to execute the instruction causes an illegal_instruction

exception.

See Ancillary State Registers on page 67 for more detailed information regarding ASR
registers.

The RDY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Implementation
Note

See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set using read/
write ASR instructions.

Note Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

SPARC V8
Compatibility

Note

The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not
exist in the UltraSPARC Architecture, since the PSR, WIM, and
TBR registers do not exist.
286 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RDasr

Exceptions. An attempt to execute a RDasr instruction when any of the following
conditions are true causes an illegal_instruction exception:

■ rs1 = 15 and rd ≠ 0 (reserved for future versions of the architecture)
■ rs1 = 1, 7–14, 18, 20-21, or 26-27 (reserved for future versions of the architecture)
■ instruction bits 13:0 are nonzero

An attempt to execute a RDPCR (impl. dep. #250-U3-Cs10), RDSOFTINT,
RDTICK_CMPR, RDSTICK, or RDSTICK_CMPR instruction in nonprivileged mode
(PSTATE.priv = 0) causes a privileged_opcode exception (impl. dep. #250-U3-Cs10).

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a RDGSR instruction causes an fp_disabled exception.

In nonprivileged mode (PSTATE.priv = 0), the following cause a privileged_action
exception:

■ execution of RDTICK when TICK.npt = 1
■ execution of RDSTICK when STICK.npt = 1
■ execution of RDPIC when nonprivileged access to PIC is disabled (PCR.priv = 1)

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDPR on page 288
WRasr on page 353

Implementation
Note

RDasr shares an opcode withMEMBAR and STBARD; it is
distinguished by rs1 = 15 or rd = 0 or (i = 0, and bit 12 = 0).
CHAPTER 8 • Instructions 287

RDPR
8.74 Read Privileged Register

Description The rs1 field in the instruction determines the privileged register that is read. There
are MAXPTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of
these registers returns the value in the register indexed by the current value in the
trap level register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is
zero (TL = 0) causes an illegal_instruction exception.

An attempt to execute a RDPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ instruction bits 13:0 are nonzero
■ rs1 = 15, or 17 ≤ rs1 ≤ 31 (reserved rs1 values)
■ 0 ≤ rs1 ≤ 3 (attempt to read TPC, TNPC,TSTATE, or TT register) while TL = 0

(current trap level is zero) and the virtual processor is in privileged mode.

An attempt to execute a RDPR instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

Instruction op3 Operation rs1 Assembly Language Syntax Class

RDPRP 10 1010 Read Privileged register
TPC
TNPC
TSTATE
TT
TICK
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr
rdpr

rdpr

%tpc, regrd
%tnpc, regrd
%tstate, regrd
%tt, regrd
%tick, regrd
%tba, regrd
%pstate, regrd
%tl, regrd
%pil, regrd
%cwp, regrd
%cansave, regrd
%canrestore, regrd
%cleanwin, regrd
%otherwin, regrd
%wstate, regrd

%gl, regrd

C2

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rs1 ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.

31 141924 18 13 02530 29

10 rd op3 rs1 —
288 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RDPR
Exceptions illegal_instruction
privileged_opcode

See Also RDasr on page 285
WRPR on page 356

Historical Note On some early SPARC implementations, floating-point exceptions
could cause deferred traps. To ensure that execution could be
correctly resumed after handling a deferred trap, hardware
provided a floating-point queue (FQ), from which the address of
the trapping instruction could be obtained by the trap handler.
The front of the FQ was accessed by executing a RDPR instruction
with rs1 = 15.

On UltraSPARC Architecture implementations, all floating-point
traps are precise. When one occurs, the address of a trapping
instruction can be found by the trap handler in the TPC[TL], so no
floating-point queue (FQ) is needed or implemented (impl. dep.
#25-V8) and RDPR with rs1 = 15 generates an illegal_instruction
exception.
CHAPTER 8 • Instructions 289

RESTORE
8.75 RESTORE

Description The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window
become the out registers of the new window. The in and local registers in the new
window contain the previous values.

Furthermore, if and only if a fill trap is not generated, RESTORE behaves like a
normal ADD instruction, except that the source operands R[rs1] or R[rs2] are read
from the old window (that is, the window addressed by the original CWP) and the
sum is written into R[rd] of the new window (that is, the window addressed by the
new CWP).

Description (Effect on Privileged State)
If a RESTORE instruction does not trap, it decrements the CWP (mod
N_REG_WINDOWS) to restore the register window that was in use prior to the last
SAVE instruction executed by the current process. It also updates the state of the
register windows by decrementing CANRESTORE and incrementing CANSAVE.

Instruction op3 Operation Assembly Language Syntax Class

RESTORE 11 1101 Restore Caller’s Window restore regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a RESTORE instruction traps, the fill trap handler
returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the
instruction traps), it is performed the second time the instruction
executes. The same applies to changing the CWP.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 11 1101 —

14 13 12 5 4

rs1 rs2i=0

10 11 1101 rs1 simm13i=1rd
290 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RESTORE

If the register window to be restored has been spilled (CANRESTORE = 0), then a
fill trap is generated. The trap vector for the fill trap is based on the values of
OTHERWIN and WSTATE, as described in Trap Type for Spi ll/Fill Traps on page 428.
The fill trap handler is invoked with CWP set to point to the window to be filled,
that is, old CWP – 1.

An attempt to execute a RESTORE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)

See Also SAVE on page 298

Programming
Note

The vectoring of fill traps can be controlled by setting the value of
the OTHERWIN and WSTATE registers appropriately. For details,
see the section “Splitting the Register Windows” in Software
Considerations, contained in the separate volume UltraSPARC
Architecture Application Notes.

The fill handler normally will end with a RESTORED instruction
followed by a RETRY instruction.
CHAPTER 8 • Instructions 291

RESTORED
8.76 RESTORED

Description RESTORED adjusts the state of the register-windows control registers.

RESTORED increments CANRESTORE.

If CLEANWIN < (N_REG_WINDOWS−1), then RESTORED increments CLEANWIN.

If OTHERWIN = 0, RESTORED decrements CANSAVE. If OTHERWIN ≠ 0, it
decrements OTHERWIN.

If CANSAVE = 0 or CANRESTORE ≥ (N_REG_WINDOWS − 2) just prior to execution of
a RESTORED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can RESTORED generate a register window state that is both
valid (see Register Window State Definition on page 85) and consistent with the state
prior to the RESTORED.

An attempt to execute a RESTORED instruction when instruction bits 18:0 are
nonzero causes an illegal_instruction exception.

An attempt to execute a RESTORED instruction in nonprivileged mode (PSTATE.priv
= 0) causes a privileged_opcode exception.

Instruction Operation Assembly Language Syntax Class

RESTOREDP Window has been restored restored C1

Programming
Notes

Trap handler software for register window fills use the
RESTORED instruction to indicate that a window has been filled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a
RESTORED instruction from trap level zero (TL = 0). However, it
is not illegal to do so and doing so does not cause a trap.

Executing a RESTORED instruction outside of a window fill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0001 11 0001 —
292 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RESTORED

Exceptions illegal_instruction

privileged_opcode

See Also ALLCLEAN on page 136
INVALW on page 225
NORMALW on page 272
OTHERW on page 274
SAVED on page 300
CHAPTER 8 • Instructions 293

RETRY
8.77 RETRY

Description The RETRY instruction restores the saved state from TSTATE[TL] (GL, CCR, ASI,
PSTATE, and CWP), sets PC and NPC, and decrements TL. RETRY sets
PC←TPC[TL] and NPC←TNPC[TL] (normally, the values of PC and NPC saved at
the time of the original trap).

If the saved TPC[TL] and TNPC[TL] were not altered by trap handler software,
RETRY causes execution to resume at the instruction that originally caused the trap
(“retrying” it).

Execution of a RETRY instruction in the delay slot of a control-transfer instruction
produces undefined results.

If software writes invalid or inconsistent state to TSTATE before executing RETRY,
virtual processor behavior during and after execution of the RETRY instruction is
undefined.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

IMPL. DEP. #417-S10: If (1) TSTATE[TL].pstate.am = 1 and (2) a RETRY instruction
is executed (which sets PSTATE.am to ’1’ by restoring the value from
TSTATE[TL].pstate.am to PSTATE.am), it is implementation dependent whether the
RETRY instruction masks (zeroes) the more-significant 32 bits of the values it places
into PC and NPC.

Exceptions. An attempt to execute the RETRY instruction when the following
condition is true causes an illegal_instruction exception:
■ TL = 0 and the virtual processor is in privileged mode (PSTATE.priv = 1)

Instruction op3 Operation Assembly Language Syntax Class

RETRYP 11 1110 Return from Trap (retry trapped instruction) retry C1

Programming
Note

The DONE and RETRY instructions are used to return from
privileged trap handlers.

10 11 1110fcn =0 0001 —
31 1924 18 02530 29
294 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RETRY

An attempt to execute a RETRY instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

See Also DONE on page 154

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to TL = 0
does not occur. The privileged_opcode exception occurs instead,
regardless of the current trap level (TL).
CHAPTER 8 • Instructions 295

RETURN
8.78 RETURN

Description The RETURN instruction causes a delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the
register window prior to the last SAVE instruction. The target address is
“R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1. Registers R[rs1]
and R[rs2] come from the old window.

Like other DCTIs, all effects of RETURN (including modification of CWP) are visible
prior to execution of the delay slot instruction.

An attempt to execute a RETURN instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

A RETURN instruction may cause a window_fill exception as part of its RESTORE
semantics.

When PSTATE.am = 1, the more-significant 32 bits of the target instruction address
are masked out (set to 0) before being sent to the memory system.

Instruction op3 Operation Assembly Language Syntax Class

RETURN 11 1001 Return return address A1

Programming
Note

To reexecute the trapped instruction when returning from a user trap
handler, use the RETURN instruction in the delay slot of a JMPL
instruction, for example:

 jmpl%l6,%g0 !Trapped PC supplied to user trap handler
 return%l7 !Trapped NPC supplied to user trap handler

Programming
Note

A routine that uses a register window may be structured either as:
save %sp,-framesize, %sp
. . .
ret ! Same as jmpl %i7 + 8, %g0
restore ! Something useful like “restore

! %o2,%l2,%o0”
or as:

save %sp, -framesize, %sp
. . .
return %i7 + 8
nop ! Could do some useful work in the

! caller’s window, e.g., “or %o1, %o2,%o0”

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
296 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

RETURN

A RETURN instruction causes a mem_address_not_aligned exception if either of the
two least-significant bits of the target address is nonzero.

Exceptions illegal_instruction
fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)
mem_address_not_aligned
CHAPTER 8 • Instructions 297

SAVE
8.79 SAVE

Description The SAVE instruction provides the routine executing it with a new register window.
The out registers from the old window become the in registers of the new window.
The contents of the out and the local registers in the new window are zero or contain
values from the executing process; that is, the process sees a clean window.

Furthermore, if and only if a spill trap is not generated, SAVE behaves like a normal
ADD instruction, except that the source operands R[rs1] or R[rs2] are read from the
old window (that is, the window addressed by the original CWP) and the sum is
written into R[rd] of the new window (that is, the window addressed by the new
CWP).

Description (Effect on Privileged State)
If a SAVE instruction does not trap, it increments the CWP (mod N_REG_WINDOWS)
to provide a new register window and updates the state of the register windows by
decrementing CANSAVE and incrementing CANRESTORE.

Instruction op3 Operation Assembly Language Syntax Class

SAVE 11 1100 Save Caller’s Window save regrs1, reg_or_imm, regrd A1

Note CWP arithmetic is performed modulo the number of implemented
windows, N_REG_WINDOWS.

Programming
Notes

Typically, if a SAVE instruction traps, the spill trap handler returns
to the trapped instruction to reexecute it. So, although the ADD
operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes.
The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new
window in the register file and a new software stack frame in
memory. For details, see the section “Leaf-Procedure
Optimization” in Software Considerations, contained in the
separate volume UltraSPARC Architecture Application Notes.

There is a performance trade-off to consider between using SAVE/
RESTORE and saving and restoring selected registers explicitly.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
298 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SAVE

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is
generated. The trap vector for the spill trap is based on the value of OTHERWIN and
WSTATE. The spill trap handler is invoked with the CWP set to point to the window
to be spilled (that is, old CWP + 2).

An attempt to execute a SAVE instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is
zero, that is, (CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is
invoked with the CWP set to point to the window to be cleaned (that is, old
CWP + 1).

Exceptions illegal_instruction
spill_n_normal (n = 0–7)
spill_n_other (n = 0–7)
clean_window

See Also RESTORE on page 290

Programming
Note

The vectoring of spill traps can be controlled by setting the value
of the OTHERWIN and WSTATE registers appropriately. For
details, see the section “Splitting the Register Windows” in
Software Considerations, contained in the separate volume
UltraSPARC Architecture Application Notes.

The spill handler normally will end with a SAVED instruction
followed by a RETRY instruction.
CHAPTER 8 • Instructions 299

SAVED
8.80 SAVED

Description SAVED adjusts the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements
CANRESTORE. If OTHERWIN ≠ 0, it decrements OTHERWIN.

If CANSAVE ≥ (N_REG_WINDOWS − 2) or CANRESTORE = 0 just prior to execution of
a SAVED instruction, the subsequent behavior of the processor is undefined. In
neither of these cases can SAVED generate a register window state that is both valid
(see Register Window State Definition on page 85) and consistent with the state prior to
the SAVED.

An attempt to execute a SAVED instruction when instruction bits 18:0 are nonzero
causes an illegal_instruction exception.

An attempt to execute a SAVED instruction in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_opcode exception.

Exceptions illegal_instruction
privileged_opcode

Instruction Operation Assembly Language Syntax Class

SAVEDP Window has been saved saved C1

Programming
Notes

Trap handler software for register window spills uses the SAVED
instruction to indicate that a window has been spilled
successfully. For details, see the section “Example Code for Spill
Handler” in Software Considerations, contained in the separate
volume UltraSPARC Architecture Application Notes.

Normal privileged software would probably not execute a SAVED
instruction from trap level zero (TL = 0). However, it is not illegal
to do so and doing so does not cause a trap.

Executing a SAVED instruction outside of a window spill trap
handler is likely to create an inconsistent window state. Hardware
will not signal an exception, however, since maintaining a
consistent window state is the responsibility of privileged
software.

31 1924 18 02530 29

10 fcn = 0 0000 11 0001 —
300 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SAVED

See Also ALLCLEAN on page 136

INVALW on page 225
NORMALW on page 272
OTHERW on page 274
RESTORED on page 292
CHAPTER 8 • Instructions 301

SETHI
8.81 SETHI

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of R[rd] and
replaces bits 31 through 10 of R[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:

■ rd = 0 and imm22 = 0: defined to be a NOP instruction (described in No Operation)

■ rd = 0 and imm22 ≠ 0 may be used to trigger hardware performance counters in
some UltraSPARC Architecture implementations (for details, see implementation-
specific documentation).

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

SETHI 100 Set High 22 Bits of Low Word sethi
sethi

const22, regrd
%hi (value), regrd

A1

Programming
Note

The most common form of 64-bit constant generation is creating
stack offsets whose magnitude is less than 232. The code below can
be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note:
The immediate field of the xor instruction is sign extended and can
be used to place 1’s in all of the upper 32 bits. For example, to set the
negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0! part of imm. overlaps upper bits

31 2224 21 02530 29

00 rd op2 imm22
302 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SHUTDOWN (Deprecated)
8.82 SHUTDOWN

Description SHUTDOWN is a deprecated, privileged instruction that was used in early
UltraSPARC implementations to bring the virtual processor or its containing system
into a low-power state in an orderly manner. It had no effect on software-visible
virtual processor state.

On an UltraSPARC Architecture implementation operating in privileged mode,
SHUTDOWN behaves like a NOP (impl. dep. #206-U3-Cs10).

In an UltraSPARC Architecture 2005 implementation, this instruction is not
implemented in hardware, causes an illegal_instruction exception, and its effect is
emulated in software.

Exceptions illegal_instruction (instruction not implemented in hardware)

The SHUTDOWN instruction is deprecated and should not be used in new
software.

Instruction opf Operation Assembly Language Syntax Class

SHUTDOWND,P 0 1000 0000 Enter low-power mode shutdown D3

VIS 1

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— —
CHAPTER 8 • Instructions 303

SIAM
8.83 Set Interval Arithmetic Mode

Description The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:

GSR.im ← mode{2}

GSR.irnd ← mode{1:0}

An attempt to execute a SIAM instruction when instruction bits 29:25, 18:14, or 4:3
are nonzero causes an illegal_instruction exception.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a SIAM instruction causes an fp_disabled exception.

Exceptions illegal_instruction
fp_disabled

Instruction opf Operation Assembly Language Syntax Class

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR siam siam_mode B1

Note When GSR.im is set to 1, all subsequent floating-point
instructions requiring round mode settings derive rounding-
mode information from the General Status Register (GSR.irnd)
instead of the Floating-Point State Register (FSR.rd).

Note When GSR.im = 1, the processor operates in standard floating-
point mode regardless of the setting of FSR.ns.

VIS 2

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode
3 2
304 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SLL / SRL / SRA
8.84 Shift

Description These instructions perform logical or arithmetic shift operations.

When i = 0 and x = 0, the shift count is the least significant five bits of R[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of R[rs2]. When
i = 1 and x = 0, the shift count is the immediate value specified in bits 0 through 4 of
the instruction.
When i = 1 and x = 1, the shift count is the immediate value specified in bits 0
through 5 of the instruction.

TABLE 8-13 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in R[rs1] left by the number of bits
specified by the shift count, replacing the vacated positions with zeroes, and write
the shifted result to R[rd].

Instruction op3 x Operation Assembly Language Syntax Class

SLL 10 0101 0 Shift Left Logical – 32 bits sll regrs1, reg_or_shcnt, regrd A1

SRL 10 0110 0 Shift Right Logical – 32 bits srl regrs1, reg_or_shcnt, regrd A1

SRA 10 0111 0 Shift Right Arithmetic– 32 bits sra regrs1, reg_or_shcnt, regrd A1

SLLX 10 0101 1 Shift Left Logical – 64 bits sllx regrs1, reg_or_shcnt, regrd A1

SRLX 10 0110 1 Shift Right Logical – 64 bits srlx regrs1, reg_or_shcnt, regrd A1

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits srax regrs1, reg_or_shcnt, regrd A1

TABLE 8-13 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of R[rs2]

0 1 bits 5–0 of R[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1x=0

rd10 op3 —rs1 shcnt64i=1x=1

6

CHAPTER 8 • Instructions 305

SLL / SRL / SRA

SRL shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero,
and the result is written to R[rd].

SRLX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count. Zeroes are shifted into the vacated high-order bit positions, and the
shifted result is written to R[rd].

SRA shifts the low 32 bits of the value in R[rs1] right by the number of bits specified
by the shift count and replaces the vacated positions with bit 31 of R[rs1]. The high-
order 32 bits of the result are all set with bit 31 of R[rs1], and the result is written to
R[rd].

SRAX shifts all 64 bits of the value in R[rs1] right by the number of bits specified by
the shift count and replaces the vacated positions with bit 63 of R[rs1]. The shifted
result is written to R[rd].

No shift occurs when the shift count is 0, but the high-order bits are affected by the
32-bit shifts as noted above.

These instructions do not modify the condition codes.

An attempt to execute a SLL, SRL, or SRA instruction when instruction bits 11:5 are
nonzero causes an illegal_instruction exception.

An attempt to execute a SLLX, SRLX, or SRAX instruction when either of the
following conditions exist causes an illegal_instruction exception:

■ i = 0 or x = 0 and instruction bits 11:5 are nonzero
■ x = 1 and instruction bits 11:6 are nonzero

Exceptions illegal_instruction

Programming
Notes

“Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra regrs1,0,regrd” can be used to convert a 32-
bit value to 64 bits, with sign extension into the upper word. “srl
regrs1,0,regrd” can be used to clear the upper 32 bits of R[rd].
306 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STB / STH / STW / STX
8.85 Store Integer

† synonyms: stub, stsb ‡ synonyms: stuh, stsh ◊ synonyms: st, stuw, stsw

Description The store integer instructions (except store doubleword) copy the whole extended
(64-bit) integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

These instructions access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, STX) integer instruction operates atomically.

An attempt to execute a store integer instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

STH causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STW causes a mem_address_not_aligned exception if the effective
address is not word-aligned. STX causes a mem_address_not_aligned exception if
the effective address is not doubleword-aligned.

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint

See Also STTW on page 330

Instruction op3 Operation Assembly Language Syntax Class

STB 00 0101 Store Byte stb† regrd, [address] A1

STH 00 0110 Store Halfword sth‡ regrd, [address] A1

STW 00 0100 Store Word stw◊ regrd, [address] A1

STX 00 1110 Store Extended Word stx regrd, [address] A1

rd11 op3 rs1 simm13i=1

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 i=0 — rs2
CHAPTER 8 • Instructions 307

STBA / STHA / STWA / STXA
8.86 Store Integer into Alternate Space

† synonyms: stuba, stsba ‡ synonyms: stuha, stsha ◊ synonyms: sta, stuwa, stswa

Description The store integer into alternate space instructions copy the whole extended (64-bit)
integer, the less significant word, the least significant halfword, or the least
significant byte of R[rd] into memory.

Store integer to alternate space instructions contain the address space identifier (ASI)
to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, STXA) instruction operates atomically.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, these instructions
cause a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the ASI
is in the range 3016 to 7F16, these instructions cause a privileged_action exception.

STHA causes a mem_address_not_aligned exception if the effective address is not
halfword-aligned. STWA causes a mem_address_not_aligned exception if the
effective address is not word-aligned. STXA causes a mem_address_not_aligned
exception if the effective address is not doubleword-aligned.

Instruction op3 Operation Assembly Language Syntax Class

STBAPASI 01 0101 Store Byte into Alternate Space stba†

stba
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STHAPASI 01 0110 Store Halfword into Alternate Space stha‡

stha
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STWAPASI 01 0100 Store Word into Alternate Space stwa◊

stwa
regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

STXAPASI 01 1110 Store Extended Word into Alternate
Space

stxa
stxa

regrd, [regaddr] imm_asi
regrd, [reg_plus_imm] %asi

A1

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
308 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STBA / STHA / STWA / STXA

STBA, STHA, and STWA can be used with any of the following ASIs, subject to the
privilege mode rules described for the privileged_action exception above. Use of any
other ASI with these instructions causes a data_access_exception exception.

STXA can be used with any ASI (including, but not limited to, the above list), unless
it either (a) violates the privilege mode rules described for the privileged_action
exception above or (b) is used with any of the following ASIs, which causes a
data_access_exception exception.

ASIs valid for STBA, STHA, and STWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASIs invalid for STXA (cause data_access_exception exception)

2416 (aliased to 2716, ASI_LDTX_N) 2C16 (aliased to 2F16, ASI_LDTX_NL)
ASI_BLOCK_AS_IF_USER_PRIMARY ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

ASI_BLOCK_AS_IF_USER_SECONDARY ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

2416 (deprecated ASI_QUAD_LDD) 2C16 (deprecated ASI_QUAD_LDD_L)

ASI_PST8_PRIMARY ASI_PST8_PRIMARY_LITTLE

ASI_PST8_SECONDARY ASI_PST8_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

ASI_PST16_PRIMARY ASI_PST16_PRIMARY_LITTLE

ASI_PST16_SECONDARY ASI_PST16_SECONDARY_LITTLE

ASI_PST32_PRIMARY ASI_PST32_PRIMARY_LITTLE

ASI_PST32_SECONDARY ASI_PST32_SECONDARY_LITTLE

ASI_FL8_PRIMARY ASI_FL8_PRIMARY_LITTLE

ASI_FL8_SECONDARY ASI_FL8_SECONDARY_LITTLE

ASI_FL16_PRIMARY ASI_FL16_PRIMARY_LITTLE

ASI_FL16_SECONDARY ASI_FL16_SECONDARY_LITTLE

ASI_BLOCK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_SECONDARY

ASI_BLOCK_PRIMARY ASI_BLOCK_PRIMARY_LITTLE

ASI_BLOCK_SECONDARY ASI_BLOCK_SECONDARY_LITTLE

V8 Compatibility
Note

The SPARC V8 STA instruction was renamed STWA in the
SPARC V9 architecture.
CHAPTER 8 • Instructions 309

STBA / STHA / STWA / STXA

Exceptions mem_address_not_aligned (all except STBA)

privileged_action
VA_watchpoint

See Also LDA on page 229
STTWA on page 332
310 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STBAR - Deprecated
8.87 Store Barrier

Description The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by a virtual processor prior to the STBAR to complete their effects
on memory before any store or atomic load-store operations issued by that virtual
processor subsequent to the STBAR are executed by memory.

An attempt to execute a STBAR instruction when instruction bits 12:0 are nonzero
causes an illegal_instruction exception.

Exceptions illegal_instruction

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 Operation Assembly Language Syntax Class

STBARD 10 1000 Store Barrier stbar Y2

V8 Compatibility
Notes

STBAR is identical in function to a MEMBAR instruction with
mmask = 816. STBAR is retained for compatibility with existing
SPARC V8 software.

For correctness, it is sufficient for a virtual processor to stop
issuing new store and atomic load-store operations when an
STBAR is encountered and to resume after all stores have
completed and are observed in memory by all virtual
processors. More efficient implementations may take advantage
of the fact that the virtual processor is allowed to issue store and
load-store operations after the STBAR, as long as those
operations are guaranteed not to become visible before all the
earlier stores and atomic load-stores have become visible to all
virtual processors.

Implementation
Note

STBAR shares an opcode with MEMBAR, and RDasr; it is
distinguished by rs1 = 15, rd = 0, i = 0, and bit 12 = 0.

31 141924 18 13 02530 29

10 0 op3 0 1111 —
12

0

CHAPTER 8 • Instructions 311

STBLOCKF
8.88 Block Store

Description A block store instruction references one of several special block-transfer ASIs. Block-
transfer ASIs allow block stores to be performed accessing the same address space as
normal stores. Little-endian ASIs (those with an ‘L’ suffix) access data in little-endian

The STBLOCKF instruction is intended to be a processor-specific instruction,
which may or may not be implemented in future UltraSPARC Architecture
implementations. Therefore, it should only be used in platform-specific
dynamically-linked libraries or in software created by a runtime code generator
that is aware of the specific virtual processor implementation on which it is
executing.

Instruction
ASI
Value Operation Assembly Language Syntax Class

STBLOCKF 1616 64-byte block store to primary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUP
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1716 64-byte block store to secondary address
space, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUS
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1E16 64-byte block store to primary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUPL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF 1F16 64-byte block store to secondary address
space, little-endian, user privilege

stda
stda

fregrd, [regaddr] #ASI_BLK_AIUSL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F016 64-byte block store to primary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_P
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F116 64-byte block store to secondary address
space

stda
stda

fregrd, [regaddr] #ASI_BLK_S
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F816 64-byte block store to primary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_PL
fregrd, [reg_plus_imm] %asi

A2

STBLOCKF F916 64-byte block store to secondary address
space, little-endian

stda
stda

fregrd, [regaddr] #ASI_BLK_SL
fregrd, [reg_plus_imm] %asi

A2

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 I=1

rd11 110111 imm_asirs1 rs2I=0
312 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STBLOCKF

format; otherwise, the access is assumed to be big-endian. Byte swapping is
performed separately for each of the eight double-precision registers accessed by the
instruction.

STBLOCKF stores data from the eight double-precision floating-point registers
specified by rd to a 64-byte-aligned memory area. The lowest-addressed eight bytes
in memory are stored from the lowest-numbered double-precision rd.

While a STBLOCKF operation is in progress, any of the following values may be
observed in a destination doubleword memory locations: (1) the old data value, (2)
zero, or (3) the new data value. When the operation is complete, only the new data
values will be seen.

A Block Store only guarantees atomicity for each 64-bit (8-byte) portion of the 64
bytes that it stores.

Software should assume the following (where “load operation” includes load, load-
store, and LDBLOCKF instructions and “store operation” includes store, load-store,
and STBLOCKF instructions):

■ A STBLOCKF does not follow memory ordering with respect to earlier or later
load operations. If there is overlap between the addresses of destination memory
locations of a STBLOCKF and the source address of a later load operation, the
load operation may receive incorrect data. Therefore, if ordering with respect to
later load operations is important, a MEMBAR #StoreLoad instruction must be
executed between the STBLOCKF and subsequent load operations.

■ A STBLOCKF does not follow memory ordering with respect to earlier or later
store operations. Those instructions’ data may commit to memory in a different
order from the one in which those instructions were issued. Therefore, if ordering
with respect to later store operations is important, a MEMBAR #StoreStore
instruction must be executed between the STBLOCKF and subsequent store
operations.

■ STBLOCKFs do not follow register dependency interlocks, as do ordinary stores.

Programming
Note

The block store instruction, STBLOCKF, and its companion,
LDBLOCKF, were originally defined to provide a fast
mechanism for block-copy operations.

Compatibility
Note

Software written for older UltraSPARC implementations
that reads data being written by STBLOCKF instructions
may or may not allow for case (2) above. Such software
should be checked to verify that either it always waits
for STBLOCKF to complete before reading the values
written, or that it will operate correctly if an intermediate
value of zero (not the “old” or “new” data values) is
observed while the STBLOCKF operation is in progress.
CHAPTER 8 • Instructions 313

STBLOCKF
IMPL. DEP. #411-S10: The following aspects of the behavior of the block store
(STBLOCKF) instruction are implementation dependent:
■ The memory ordering model that STBLOCKF follows (other than as constrained

by the rules outlined above).
■ Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of

the STBLOCKF (the recommended behavior), or only on accesses to the first eight
bytes.

■ Whether STBLOCKFs to non-cacheable (TTE.cp = 0) pages execute in strict
program order or not. If not, a STBLOCKF to a non-cacheable page causes an
illegal_instruction exception.

■ Whether STBLOCKF follows register dependency interlocks (as ordinary stores
do).

■ Whether a STBLOCKF forces the data to be written to memory and invalidates
copies in all caches present.

■ Any other restrictions on the behavior of STBLOCKF, as described in
implementation-specific documentation.

Exceptions. An illegal_instruction exception occurs if the source floating-point
registers are not aligned on an eight-register boundary.

If the FPU is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if no FPU is present, an
attempt to execute a STBLOCKF instruction causes an fp_disabled exception.

If the least significant 6 bits of the memory address are not all zero, a
mem_address_not_aligned exception occurs.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0 (ASIs 1616, 1716,
1E16, and 1F16), STBLOCKF causes a privileged_action exception.

An access caused by STBLOCKF may trigger a VA_watchpoint exception (impl. dep.
#411-S10).

Exceptions illegal_instruction
mem_address_not_aligned
privileged_action
VA_watchpoint (impl. dep. #411-S10)

Programming
Note

STBLOCKF is intended to be a processor-specific instruction (see
the warning at the top of page 312). If STBLOCKF must be used
in software intended to be portable across current and previous
processor implementations, then it must be coded to work in the
face of any implementation variation that is permitted by
implementation dependency #411-S10, described below.

Implementation
Note

STBLOCKF shares an opcode with the STDFA, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.
314 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STBLOCKF

See Also LDBLOCKF on page 232
CHAPTER 8 • Instructions 315

STF / STDF / STQF / STXFSR
8.89 Store Floating-Point

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point instruction (STF) copies the contents of the 32-bit
floating-point register FS [rd] into memory.

The store double floating-point instruction (STDF) copies the contents of 64-bit
floating-point register FD[rd] into a word-aligned doubleword in memory. The unit
of atomicity for STDF is 4 bytes (one word).

The store quad floating-point instruction (STQF) copies the contents of 128-bit
floating-point register FQ[rd] into a word-aligned quadword in memory. The unit of
atomicity for STQF is 4 bytes (one word).

The store floating-point state register instruction (STXFSR) waits for any currently
executing FPop instructions to complete, and then it writes all 64 bits of the FSR into
memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

These instruction access memory using the implicit ASI (see page 104). The effective
address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. An attempt to execute a STF, STDF, or STXFSR instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Instruction op3 rd Operation Assembly Language Class

STF 10 0100 0–31 Store Floating-Point register st fregrd, [address] A1

STDF 10 0111 † Store Double Floating-Point register std fregrd, [address] A1

STQF 10 0110 † Store Quad Floating-Point register stq fregrd, [address] C3

STXFSR 10 0101 1 Store Floating-Point State register stx %fsr, [address] A1

— 10 0101 2–31 Reserved

Implementation
Note

FSR.ftt should not be zeroed by STXFSR until it is known that the
store will not cause a precise trap.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
316 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STF / STDF / STQF / STXFSR

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STF, STDF, or STXFSR instruction
causes an fp_disabled exception.

STF causes a mem_address_not_aligned exception if the effective memory address is
not word-aligned. STXFSR causes a mem_address_not_aligned exception if the
address is not doubleword-aligned.

STDF requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDF
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDF instruction and return (impl. dep. #110-V9-
Cs10(a)).

STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, an attempt to execute an STQF instruction causes
an STQF_mem_address_not_aligned exception. In this case, trap handler software
must emulate the STQF instruction and return (impl. dep. #112-V9-Cs10(a)).

An attempt to execute an STQF instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (not used in UltraSPARC Architecture 2005)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQF only))
VA_watchpoint

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including STQF) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.
CHAPTER 8 • Instructions 317

STF / STDF / STQF / STXFSR

See Also Load Floating-Point on page 236

Block Store on page 312
Store Floating-Point into Alternate Space on page 319
Store (Lower) Floating-Point Status Register on page 323
Store Short Floating-Point on page 328
Store Partial Floating-Point on page 325
318 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STFA / STDFA / STQFA
8.90 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described on page 51.

Description The store single floating-point into alternate space instruction (STFA) copies the
contents of the 32-bit floating-point register FS [rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies the
contents of 64-bit floating-point register FD[rd] into a word-aligned doubleword in
memory. The unit of atomicity for STDFA is 4 bytes (one word).

The store quad floating-point into alternate space instruction (STQFA) copies the
contents of 128-bit floating-point register FQ[rd] into a word-aligned quadword in
memory. The unit of atomicity for STQFA is 4 bytes (one word).

Store floating-point into alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

Exceptions. STFA causes a mem_address_not_aligned exception if the effective
memory address is not word-aligned.

Instruction op3 rd Operation Assembly Language Syntax Class

STFAPASI 11 0100 0–31 Store Floating-Point Register
to Alternate Space

sta
sta

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STDFAPASI 11 0111 † Store Double Floating-Point
Register to Alternate Space

stda
stda

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

A1

STQFAPASI 11 0110 † Store Quad Floating-Point
Register to Alternate Space

stqa
stqa

fregrd, [regaddr] imm_asi
fregrd, [reg_plus_imm] %asi

C3

Programming
Note

Some compilers issued sequences of single-precision stores for
SPARC V8 processor targets when the compiler could not
determine whether doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned
stores is expected to be fast, compilers should issue sets of single-
precision stores only when they can determine that double- or
quadword operands are not properly aligned.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 319

STFA / STDFA / STQFA

STDFA requires only word alignment in memory. However, if the effective address is
word-aligned but not doubleword-aligned, an attempt to execute an STDFA
instruction causes an STDF_mem_address_not_aligned exception. In this case, trap
handler software must emulate the STDFA instruction and return (impl. dep. #110-
V9-Cs10(b)).

STQFA requires only word alignment in memory. However, if the effective address is
word-aligned but not quadword-aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return (impl.
dep. #112-V9-Cs10(b)).

An attempt to execute an STQFA instruction when rd{1} ≠ 0 causes an
fp_exception_other (FSR.ftt = invalid_fp_register) exception.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASI is in the range 3016 to 7F16, this instruction causes a privileged_action exception.

STFA and STQFA can be used with any of the following ASIs, subject to the privilege
mode rules described for the privileged_action exception above. Use of any other ASI
with these instructions causes a data_access_exception exception.

Implementation
Note

STDFA shares an opcode with the STBLOCKF, STPARTIALF,
and STSHORTF instructions; it is distinguished by the ASI used.

Implementation
Note

Since UltraSPARC Architecture 2005 processors do not implement
in hardware instructions (including STQFA) that refer to quad-
precision floating-point registers, the
STQF_mem_address_not_aligned and fp_exception_other (with
FSR.ftt = invalid_fp_register) exceptions do not occur in
hardware. However, their effects must be emulated by software
when the instruction causes an illegal_instruction exception and
subsequent trap.

ASIs valid for STFA and STQFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE
320 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STFA / STDFA / STQFA

STDFA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
the STDFA instruction causes a data_access_exception exception.

Exceptions illegal_instruction
fp_disabled
STDF_mem_address_not_aligned
STQF_mem_address_not_aligned (STQFA only) (not used in UA-2005)
mem_address_not_aligned
fp_exception_other (FSR.ftt = invalid_fp_register (STQFA only))

ASIs valid for STDFA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_BLOCK_AS_IF_USER_PRIMARY † ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE †
ASI_BLOCK_AS_IF_USER_SECONDARY † ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE †
ASI_BLOCK_PRIMARY † ASI_BLOCK_PRIMARY_LITTLE †
ASI_BLOCK_SECONDARY † ASI_BLOCK_SECONDARY_LITTLE †
ASI_BLOCK_COMMIT_PRIMARY †
ASI_BLOCK_COMMIT_SECONDARY †

ASI_FL8_PRIMARY ‡ ASI_FL8_PRIMARY_LITTLE ‡
ASI_FL8_SECONDARY ‡ ASI_FL8_SECONDARY_LITTLE ‡
ASI_FL16_PRIMARY ‡ ASI_FL16_PRIMARY_LITTLE ‡
ASI_FL16_SECONDARY ‡ ASI_FL16_SECONDARY_LITTLE ‡

ASI_PST8_PRIMARY * ASI_PST8_PRIMARY_LITTLE *
ASI_PST8_SECONDARY * ASI_PST8_SECONDARY_LITTLE *
ASI_PST16_PRIMARY * ASI_PST16_PRIMARY_LITTLE *
ASI_PST16_SECONDARY * ASI_PST16_SECONDARY_LITTLE *
ASI_PST32_PRIMARY * ASI_PST32_PRIMARY_LITTLE *
ASI_PST32_SECONDARY * ASI_PST32_SECONDARY_LITTLE *

† If this ASI is used with the opcode for STDFA, the STBLOCKF instruction is
executed instead of STFA. For behavior of STBLOCKF, see Block Store on page 312.

‡ If this ASI is used with the opcode for STDFA, the STSHORTF instruction
is executed instead of STDFA. For behavior of STSHORTF, see
Store Short Floating-Point on page 328.

* If this ASI is used with the opcode for STDFA, the STPARTIALF instruction
is executed instead of STDFA. For behavior of STPARTIALF, see
Store Partial Floating-Point on page 325.
CHAPTER 8 • Instructions 321

STFA / STDFA / STQFA

privileged_action
VA_watchpoint

See Also Load Floating-Point from Alternate Space on page 239
Block Store on page 312
Store Floating-Point on page 316
Store Short Floating-Point on page 328
Store Partial Floating-Point on page 325
322 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STFSR (Deprecated)
8.91 Store (Lower) Floating-Point Status
Register

Description The Store Floating-point State register lower instruction (STFSR) waits for any
currently executing FPop instructions to complete, and then it writes the less
significant 32 bits of the FSR into memory.

STFSR zeroes FSR.ftt after writing the FSR to memory.

STFSR accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

An attempt to execute a STFSR instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STFSR instruction causes an
fp_disabled exception.

STFSR causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

The STFSR instruction is deprecated and should not be used in new software.
The STXFSR instruction should be used instead.

Opcode op3 rd Operation Assembly Language Syntax Class

STFSRD 10 0101 0 Store Floating-Point State Register Lower st %fsr, [address] D2

V9 Compatibility
Note

FSR.ftt should not be zeroed until it is known that the store will
not cause a precise trap.

V9 Compatibility
Note

Although STFSR is deprecated, UltraSPARC Architecture
implementations continue to support it for compatibility with
existing SPARC V8 software. The STFSR instruction is defined
to store only 32 bits of the FSR into memory, while STXFSR
allows SPARC V9 software to store all 64 bits of the FSR.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
CHAPTER 8 • Instructions 323

STFSR (Deprecated)

Exceptions illegal_instruction

fp_disabled
mem_address_not_aligned
VA_watchpoint

See Also Store Floating-Point on page 316
324 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STPARTIALF
8.92 Store Partial Floating-Point

Description The partial store instructions are selected by one of the partial store ASIs with the
STDFA instruction.

Instruction
ASI

Value Operation Assembly Language Syntax † Class

STPARTIALF C016 Eight 8-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_P C3

STPARTIALF C116 Eight 8-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST8_S C3

STPARTIALF C816 Eight 8-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_PL C3

STPARTIALF C916 Eight 8-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST8_SL C3

STPARTIALF C216 Four 16-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_P C3

STPARTIALF C316 Four 16-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST16_S C3

STPARTIALF CA16 Four 16-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_PL C3

STPARTIALF CB16 Four 16-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST16_SL C3

STPARTIALF C416 Two 32-bit conditional stores to
primary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_P C3

STPARTIALF C516 Two 32-bit conditional stores to
secondary address space

stda fregrd, regrs2, [regrs1] #ASI_PST32_S C3

STPARTIALF CC16 Two 32-bit conditional stores to
primary address space, little-endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_PL C3

STPARTIALF CD16 Two 32-bit conditional stores to
secondary address space, little-
endian

stda fregrd, regrs2, [regrs1] #ASI_PST32_SL C3

† The original assembly language syntax for a Partial Store instruction (“stda fregrd, [regrs1] regrs2, imm_asi”) has been dep-
recated because of inconsistency with the rest of the SPARC assembly language. Over time, assemblers will support the new syntax
for this instruction. In the meantime, some existing assemblers may only recognize the original syntax.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
CHAPTER 8 • Instructions 325

STPARTIALF

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register
FD[rd] are conditionally stored at the address specified by R[rs1], using the mask
specified in R[rs2]. STPARTIALF has the effect of merging selected data from its
source register, FD[rd], into the existing data at the corresponding destination
locations.

The mask value in R[rs2] has the same format as the result specified by the pixel
compare instructions (see SIMD Signed Compare on page 166). The most significant
bit of the mask (not of the entire register) corresponds to the most significant part of
FD[rd]. The data is stored in little-endian form in memory if the ASI name has an “L”
(or “_LITTLE”) suffix; otherwise, it is stored in big-endian format.

FIGURE 8-29 Mask Format for Partial Store

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Exceptions. An attempt to execute a STPARTIALF instruction when i = 1 causes an
illegal_instruction exception.

32-bit partial store mask
 01

mask for bits 63:32
mask for bits 31:0

16-bit partial store mask
01

mask for bits 63:48
mask for bits 47:32

23

mask for bits 31:16
mask for bits 15:0

8-bit partial store mask

mask for bits 63:56

mask for bits 7:0

01234567

mask for bits 55:48

mask for bits 15:8

. . .

for ASI_PST8_*

for ASI_PST16_*

for ASI_PST32_*

R[rs2]

R[rs2]

R[rs2]

..

.

326 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STPARTIALF

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STPARTIALF instruction causes an
fp_disabled exception.

STPARTIALF causes a mem_address_not_aligned exception if the effective memory
address is not word-aligned.

STPARTIALF requires only word alignment in memory for eight byte stores. If the
effective address is word-aligned but not doubleword-aligned, it generates an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDFA instruction and return.

IMPL. DEP. #249-U3-Cs10: For an STPARTIAL instruction, the following aspects of
data watchpoints are implementation dependent: (a) whether data watchpoint logic
examines the byte store mask in R[rs2] or it conservatively behaves as if every
Partial Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in the LSU
Control register DCUCR to determine which bytes are being watched or (when the
Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are being
watched.

ASIs C016–C516 and C816–CD16 are only used for partial store operations. In
particular, they should not be used with the LDDFA instruction; however, if any of
them is used, the resulting behavior is specified in the LDDFA instruction
description on page 241.

Exceptions illegal_instruction
fp_disabled
data_access_exception (not implemented in hardware in UA-2005)

Implementation
Note

STPARTIALF shares an opcode with the STBLOCKF, STDFA,
and STSHORTF instructions; it is distinguished by the ASI used.
CHAPTER 8 • Instructions 327

STSHORTF
8.93 Store Short Floating-Point

Description The short floating-point store instruction allows 8- and 16-bit stores to be performed
from the floating-point registers. Short stores access the low-order 8 or 16 bits of the
register.

Little-endian ASIs transfer data in little-endian format from memory; otherwise,
memory is assumed to be big-endian. Short stores are typically used with the
FALIGNDATA instruction (see Align Data on page 161) to assemble or store 64 bits
on noncontiguous components.

In an UltraSPARC Architecture 2005 implementation, these instructions are not
implemented in hardware, cause an data_access_exception exception, and are
emulated in software.

Instruction
ASI

Value Operation Assembly Language Syntax Class

STSHORTF D016 8-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL8_P
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D116 8-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL8_S
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D816 8-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_PL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D916 8-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL8_SL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D216 16-bit store to primary address space stda
stda

fregrd, [regaddr] #ASI_FL16_P
fregrd, [reg_plus_imm] %asi

C3

STSHORTF D316 16-bit store to secondary address space stda
stda

fregrd, [regaddr] #ASI_FL16_S
fregrd, [reg_plus_imm] %asi

C3

STSHORTF DA16 16-bit store to primary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_PL
fregrd, [reg_plus_imm] %asi

C3

STSHORTF DB16 16-bit store to secondary address space,
little-endian

stda
stda

fregrd, [regaddr] #ASI_FL16_SL
fregrd, [reg_plus_imm] %asi

C3

Implementation
Note

STSHORTF shares an opcode with the STBLOCKF, STDFA, and
STPARTIALF instructions; it is distinguished by the ASI used.

VIS 1

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
328 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STSHORTF

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a STSHORTF instruction causes an
fp_disabled exception.

STSHORTF causes a mem_address_not_aligned exception if the effective memory
address is not halfword-aligned.

An 8-bit STSHORTF (using ASI D016, D116, D816, or D916) can be performed to an
arbitrary memory address (no alignment requirement).

A 16-bit STSHORTF (using ASI D216, D316, DA16, or DB16) to an address that is not
halfword-aligned (an odd address) causes a mem_address_not_aligned exception.

Exceptions VA_watchpoint
data_access_exception
CHAPTER 8 • Instructions 329

STTW (Deprecated)
8.94 Store Integer Twin Word

Description The store integer twin word instruction (STTW) copies two words from an R register
pair into memory. The least significant 32 bits of the even-numbered R register are
written into memory at the effective address, and the least significant 32 bits of the
following odd-numbered R register are written into memory at the “effective
address + 4”.

The least significant bit of the rd field of a store twin word instruction is unused and
should always be set to 0 by software.

STTW accesses memory using the implicit ASI (see page 104). The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

A successful store twin word instruction operates atomically.

IMPL. DEP. #108-V9a: It is implementation dependent whether STTW is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTW is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTW instruction when either of the following conditions
exist causes an illegal_instruction exception:

■ destination register number rd is an odd number (is misaligned)
■ i = 0 and instruction bits 12:5 are nonzero

The STTW instruction is deprecated and should not be used in new software.
The STX instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax † Class

STTWD 00 0111 Store Integer Twin Word sttw regrd, [address] D2

 † The original assembly language syntax for this instruction used an “std” instruction mnemonic, which is now
deprecated. Over time, assemblers will support the new “sttw” mnemonic for this instruction. In the meantime,
some existing assemblers may only recognize the original “std” mnemonic.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
330 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STTW (Deprecated)

STTW causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

With respect to little-endian memory, an STTW instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned
VA_watchpoint

See Also STW/STX on page 307
STTWA on page 332

Programming
Notes

STTW is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and
register-access difficulties. Therefore, software should avoid
using STTW.

If STTW is emulated in software, STX instruction should be
used for the memory access in the emulation code to preserve
atomicity.
CHAPTER 8 • Instructions 331

STTWA (Deprecated)
8.95 Store Integer Twin Word into Alternate
Space

Description The store twin word integer into alternate space instruction (STTWA) copies two
words from an R register pair into memory. The least significant 32 bits of the even-
numbered R register are written into memory at the effective address, and the least
significant 32 bits of the following odd-numbered R register are written into memory
at the “effective address + 4”.

The least significant bit of the rd field of an STTWA instruction is unused and should
always be set to 0 by software.

Store integer twin word to alternate space instructions contain the address space
identifier (ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1]+sign_ext(simm13)” if i = 1.

A successful store twin word instruction operates atomically.

With respect to little-endian memory, an STTWA instruction behaves as if it is
composed of two 32-bit stores, each of which is byte-swapped independently before
being written into its respective destination memory word.

The STTWA instruction is deprecated and should not be used in new software.
The STXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

STTWAD, PASI 01 0111 Store Twin Word into Alternate Space sttwa
sttwa

regrd [regaddr] imm_asi
regrd [reg_plus_imm] %asi

‡

† The original assembly language syntax for this instruction used an “stda” instruction mnemonic, which is now deprecated. Over time,
assemblers will support the new “sttwa” mnemonic for this instruction. In the meantime, some existing assemblers may only recog-
nize the original “stda” mnemonic.

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
332 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

STTWA (Deprecated)

IMPL. DEP. #108-V9b: It is implementation dependent whether STTWA is
implemented in hardware. If not, an attempt to execute it will cause an
unimplemented_STTW exception. (STTWA is implemented in hardware in all
UltraSPARC Architecture 2005 implementations.)

An attempt to execute an STTWA instruction with a misaligned (odd) destination
register number rd causes an illegal_instruction exception.

STTWA causes a mem_address_not_aligned exception if the effective address is not
doubleword-aligned.

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASI is in the range 3016 to 7F16, this instruction causes a privileged_action exception.

STTWA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception (impl. dep. #300-U4-
Cs10).

Exceptions unimplemented_STTW
illegal_instruction
mem_address_not_aligned

ASIs valid for STTWA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE

ASI_REAL_IO ASI_REAL_IO_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

Programming
Note

Nontranslating ASIs (see page 387) may only be accessed using
STXA (not STTWA) instructions. If an STTWA referencing a
nontranslating ASI is executed, per the above table, it generates
a data_access_exception exception (impl. dep. #300-U4-Cs10).

Programming
Note

STTWA is provided for compatibility with existing SPARC V8
software. It may execute slowly on SPARC V9 machines because
of data path and register-access difficulties. Therefore, software
should avoid using STTWA.

If STTWA is emulated in software, the STXA instruction should
be used for the memory access in the emulation code to preserve
atomicity.
CHAPTER 8 • Instructions 333

STTWA (Deprecated)

privileged_action
VA_watchpoint

See Also STWA/STXA on page 308
STTW on page 330
334 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SUB
8.96 Subtract

Description These instructions compute “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1, and write the difference into R[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit
carry (icc.c) bit; that is, they compute “R[rs1] – R[rs2] – icc.c” or
“R[rs1] – sign_ext(simm13) – icc.c” and write the difference into R[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-
bit overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands
differs and bit 31 (the sign) of the difference differs from R[rs1]{31}. A 64-bit
overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs
and bit 63 (the sign) of the difference differs from R[rs1]{63}.

An attempt to execute a SUB instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

SUB 00 0100 Subtract sub regrs1, reg_or_imm, regrd A1

SUBcc 01 0100 Subtract and modify cc’s subcc regrs1, reg_or_imm, regrd A1

SUBC 00 1100 Subtract with Carry subc regrs1, reg_or_imm, regrd A1

SUBCcc 01 1100 Subtract with Carry and modify cc’s subccc regrs1, reg_or_imm, regrd A1

Programming
Notes

A SUBcc instruction with rd = 0 can be used to effect a signed or
unsigned integer comparison. See the cmp synthetic instruction in
Appendix C, Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

rd10 op3 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 335

SWAP (Deprecated)
8.97 Swap Register with Memory

Description SWAP exchanges the less significant 32 bits of R[rd] with the contents of the word at
the addressed memory location. The upper 32 bits of R[rd] are set to 0. The operation
is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more virtual processors executing CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of
the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

SWAP accesses memory using the implicit ASI (see page 104). The effective address
for these instructions is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

An attempt to execute a SWAP instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If the effective address is not word-aligned, an attempt to execute a SWAP instruction
causes a mem_address_not_aligned exception.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep. #120-V9).

Exceptions illegal_instruction
mem_address_not_aligned
VA_watchpoint

The SWAP instruction is deprecated and should not be used in new software.
The CASA or CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPD 00 1111 Swap Register with Memory swap [address], regrd D2

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
336 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

SWAPA (Deprecated)
8.98 Swap Register with Alternate Space
Memory

Description SWAPA exchanges the less significant 32 bits of R[rd] with the contents of the word
at the addressed memory location. The upper 32 bits of R[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more virtual processors
executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to
execute them in an undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the
load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address
for this instruction is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if
i = 1.

This instruction causes a mem_address_not_aligned exception if the effective
address is not word-aligned. It causes a privileged_action exception if
PSTATE.priv = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent (impl. dep #120-V9).

If the effective address is not word-aligned, an attempt to execute a SWAPA
instruction causes a mem_address_not_aligned exception.

The SWAPA instruction is deprecated and should not be used in new software.
The CASXA instruction should be used instead.

Opcode op3 Operation Assembly Language Syntax Class

SWAPAD, PASI 01 1111 Swap register with Alternate Space
Memory

swapa
swapa

[regaddr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

‡

 ‡ Y3 for restricted ASIs (0016-7F16); D2 for unrestricted ASIs (8016-FF16)

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 337

SWAPA (Deprecated)

In nonprivileged mode (PSTATE.priv = 0), if bit 7 of the ASI is 0, this instruction
causes a privileged_action exception. In privileged mode (PSTATE.priv = 1), if the
ASI is in the range 3016 to 7F16, this instruction causes a privileged_action exception.

SWAPA can be used with any of the following ASIs, subject to the privilege mode
rules described for the privileged_action exception above. Use of any other ASI with
this instruction causes a data_access_exception exception.

Exceptions mem_address_not_aligned
privileged_action
VA_watchpoint
data_access_exception

ASIs valid for SWAPA

ASI_NUCLEUS ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_REAL ASI_REAL_LITTLE
338 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TADDcc
8.99 Tagged Add

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TADDcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-
bit add.

An attempt to execute a TADDcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDccTVD on page 340
TSUBcc on page 345

Instruction op3 Operation Assembly Language Syntax Class

TADDcc 10 0000 Tagged Add and modify cc’s taddcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 339

TADDccTV (Deprecated)
8.100 Tagged Add and Trap on Overflow

Description This instruction computes a sum that is “R[rs1] + R[rs2]” if i = 0, or
“R[rs1] + sign_ext(simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

An attempt to execute a TADDccTV instruction when i = 0 and instruction bits 12:5
are nonzero causes an illegal_instruction exception.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and R[rd]
and the integer condition codes remain unchanged. If a TADDccTV does not cause a
tag overflow, the sum is written into R[rd] and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

The TADDccTV instruction is deprecated and should not be used in new
software. The TADDcc instruction followed by the BPVS instruction (with
instructions to save the pre-TADDcc integer condition codes if necessary) should
be used instead.

Opcode op3 Operation Assembly Language Syntax Class

TADDccTVD 10 0010 Tagged Add and modify cc’s,
or Trap on Overflow

taddcctv regrs1, reg_or_imm, regrd D2

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
340 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TADDccTV (Deprecated)
Exceptions illegal_instruction
tag_overflow

See Also TADDcc on page 339
TSUBccTVD on page 346

SPARC V8
Compatibility

Note

TADDccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.
CHAPTER 8 • Instructions 341

Tcc
8.101 Trap on Integer Condition Codes (Tcc)

† synonym: tnz ‡ synonym: tz ◊ synonym: tgeu ∇ synonym: tlu

Instruction op3 cond Operation cc Test Assembly Language Syntax Class

TA 11 1010 1000 Trap Always 1 ta i_or_x_cc, software_trap_number A1

TN 11 1010 0000 Trap Never 0 tn i_or_x_cc, software_trap_number A1

TNE 11 1010 1001 Trap on Not Equal not Z tne† i_or_x_cc, software_trap_number A1

TE 11 1010 0001 Trap on Equal Z te‡ i_or_x_cc, software_trap_number A1

TG 11 1010 1010 Trap on Greater not (Z or (N
xor V))

tg i_or_x_cc, software_trap_number A1

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V) tle i_or_x_cc, software_trap_number A1

TGE 11 1010 1011 Trap on Greater or
Equal

not (N xor V) tge i_or_x_cc, software_trap_number A1

TL 11 1010 0011 Trap on Less N xor V tl i_or_x_cc, software_trap_number A1

TGU 11 1010 1100 Trap on Greater,
Unsigned

not (C or Z) tgu i_or_x_cc, software_trap_number A1

TLEU 11 1010 0100 Trap on Less or
Equal, Unsigned

(C or Z) tleu i_or_x_cc, software_trap_number A1

TCC 11 1010 1101 Trap on Carry Clear
(Greater than or
Equal, Unsigned)

not C tcc◊ i_or_x_cc, software_trap_number A1

TCS 11 1010 0101 Trap on Carry Set
(Less Than, Unsigned)

C tcs∇ i_or_x_cc, software_trap_number A1

TPOS 11 1010 1110 Trap on Positive or
zero

not N tpos i_or_x_cc, software_trap_number A1

TNEG 11 1010 0110 Trap on Negative N tneg i_or_x_cc, software_trap_number A1

TVC 11 1010 1111 Trap on Overflow
Clear

not V tvc i_or_x_cc, software_trap_number A1

TVS 11 1010 0111 Trap on Overflow Set V tvs i_or_x_cc, software_trap_number A1

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 8 7

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 imm_trap_#
342 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Tcc
Description The Tcc instruction evaluates the selected integer condition codes (icc or xcc)
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE and no higher-priority exceptions or interrupt requests are pending,
then a trap_instruction or htrap_instruction exception is generated. If FALSE, the
trap_instruction (or htrap_instruction) exception does not occur and the instruction
behaves like a NOP.

For brevity, in the remainder of this section the value of the “software trap number”
used by Tcc will be referred to as “SWTN”.

In nonprivileged mode, if i = 0 the SWTN is specified by the least significant seven
bits of “R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant seven
bits of “R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in
nonprivileged mode is 0 to 127. The most significant 57 bits of SWTN are unused
and should be supplied as zeroes by software.

In privileged mode, if i = 0 the SWTN is specified by the least significant eight bits of
“R[rs1] + R[rs2]”. If i = 1, the SWTN is provided by the least significant eight bits of
“R[rs1] + imm_trap_#”. Therefore, the valid range of values for SWTN in privileged
mode is 0 to 255. The most significant 56 bits of SWTN are unused an should be
supplied as zeroes by software.

Generally, values of 0 ≤ SWTN ≤ 127 are used to trap to privileged-mode software
and values of 128 ≤ SWTN ≤ 255 are used to trap to hyperprivileged-mode software.
The behavior of Tcc, based on the privilege mode in effect when it is executed and
the value of the supplied SWTN, is as follows:

cc1 :: cc0 Condition Codes Evaluated

00 CCR.icc

01 — (illegal_instruction)

10 CCR.xcc

11 — (illegal_instruction)

Behavior of Tcc instruction

Privilege Mode in effect when Tcc is executed 0 ≤ SWTN ≤ 127 128 ≤ SWTN ≤ 255

Nonprivileged
(PSTATE.priv = 0)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

—
(not possible)

Privileged
(PSTATE.priv = 1)

trap_instruction exception
(to privileged mode)
(256 ≤ TT ≤ 383)

htrap_instruction exception
(to hyperprivileged mode)
(384 ≤ TT ≤ 511)
CHAPTER 8 • Instructions 343

Tcc
Exceptions. An attempt to execute a Tcc instruction when any of the following
conditions exist causes an illegal_instruction exception:

■ instruction bit 29 is nonzero
■ i = 0 and instruction bits 12:5 are nonzero
■ i = 1 and instruction bits 10:8 are nonzero
■ cc0 = 1

If a Tcc instruction causes a trap_instruction trap, 256 plus the SWTN value is written
into TT[TL]. Then the trap is taken and the virtual processor performs the normal
trap entry procedure, as described in Trap Processing on page 429.

Exceptions illegal_instruction
trap_instruction (0 ≤ SWTN ≤ 127)
htrap_instruction (128 ≤ SWTN ≤ 255)

Programming
Note

Tcc can be used to implement breakpointing, tracing, and calls to
privileged and hyperprivileged software. It can also be used for
runtime checks, such as for out-of-range array indexes and integer
overflow.
344 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TSUBcc
8.102 Tagged Subtract

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or
“R[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TSUBcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
ccr.xcc.v is set based on the 64-bit arithmetic overflow condition, like a normal 64-bit
subtract.

An attempt to execute a TSUBcc instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

See Also TADDcc on page 339
TSUBccTVD on page 346

Instruction op3 Operation Assembly Language Syntax Class

TSUBcc 10 0001 Tagged Subtract and modify cc’s tsubcc regrs1, reg_or_imm, regrd A1

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 345

TSUBccTV (Deprecated)
8.103 Tagged Subtract and Trap on Overflow

Description This instruction computes “R[rs1] – R[rs2]” if i = 0, or “R[rs1] – sign_ext(simm13)”
if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of R[rs1].

An attempt to execute a TSUBccTV instruction when i = 0 and instruction bits 12:5 are
nonzero causes an illegal_instruction exception.

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and
R[rd] and the integer condition codes remain unchanged. If a TSUBccTV does not
cause a tag overflow condition, the difference is written into R[rd] and the integer
condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and
all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only on the basis of the normal 64-bit arithmetic overflow condition,
like a normal 64-bit subtract.

The TSUBccTV instruction is deprecated and should not be used in new
software. The TSUBcc instruction followed by BPVS instead (with instructions to
save the pre-TSUBcc integer condition codes if necessary) should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or
Trap on Overflow

tsubcctv regrs1, reg_or_imm, regrd D2

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
346 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TSUBccTV (Deprecated)
Exceptions illegal_instruction
tag_overflow

See Also TADDccTVD on page 340
TSUBcc on page 345

SPARC V8
Compatibility

Note

TSUBccTV traps based on the 32-bit overflow condition, just as
in the SPARC V8 architecture. Although the tagged add
instructions set the 64-bit condition codes CCR.xcc, there is no
form of the instruction that traps on the 64-bit overflow
condition.
CHAPTER 8 • Instructions 347

UDIV / UDIVcc / SDIV / SDIVcc (Deprecated)
8.104 Divide (64-bit ÷ 32-bit)

Description The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i = 0, they compute “(Y :: R[rs1]{31:0}) ÷ R[rs2]{31:0}”. Otherwise (that is, if i = 1), the
divide instructions compute “(Y :: R[rs1]{31:0}) ÷ (sign_ext(simm13){31:0})”. In either
case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign- or zero-extended to 64 bits and are written into R[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Unsigned Divide
Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword
dividend (Y :: R[rs1]{31:0}) and an unsigned integer word divisor R[rs2{31:0}] or
(sign_ext(simm13){31:0}) and computes an unsigned integer word quotient (R[rd]).
Immediate values in simm13 are in the ranges 0 to 212 – 1 and 232 – 212 to 232 – 1 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated and should not
be used in new software. The UDIVX and SDIVX instructions should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

UDIVD 00 1110 Unsigned Integer Divide udiv regrs1, reg_or_imm, regrd C2

SDIVD 00 1111 Signed Integer Divide sdiv regrs1, reg_or_imm, regrd C2

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s udivcc regrs1, reg_or_imm, regrd C2

SDIVccD 01 1111 Signed Integer Divide and modify cc’s sdivcc regrs1, reg_or_imm, regrd C2

Programming
Note

The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the
result. For example, the rational quotient of 11/4 = 2.75 (integer
part = 2, fractional part = .75).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
348 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

UDIV / UDIVcc / SDIV / SDIVcc (Deprecated)

The result of an unsigned divide instruction can overflow the less significant 32 bits
of the destination register R[rd] under certain conditions. When overflow occurs, the
largest appropriate unsigned integer is returned as the quotient in R[rd]. The
condition under which overflow occurs and the value returned in R[rd] under this
condition are specified in TABLE 8-14.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written
into register R[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

Signed Divide Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y :: lower 32 bits of R[rs1]) and a signed integer word divisor (lower 32 bits of
R[rs2] or lower 32 bits of sign_ext(simm13)) and computes a signed integer word
quotient (R[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals
the rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward
zero.

The result of a signed divide can overflow the low-order 32 bits of the destination
register R[rd] under certain conditions. When overflow occurs, the largest
appropriate signed integer is returned as the quotient in R[rd]. The conditions under
which overflow occurs and the value returned in R[rd] under those conditions are
specified in TABLE 8-15.

TABLE 8-14 UDIV / UDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 232 232 − 1
(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.n Set if R[rd]{31} = 1

icc.z Set if R[rd]{31:0} = 0

icc.v Set if overflow (per TABLE 8-14)

icc.c Zero

xcc.n Set if R[rd]{63} = 1

xcc.z Set if R[rd]{63:0} = 0

xcc.v Zero

xcc.c Zero
CHAPTER 8 • Instructions 349

UDIV / UDIVcc / SDIV / SDIVcc (Deprecated)
When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written
into register R[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of R[rd] after it has been set to reflect overflow, if any.

An attempt to execute a UDIV, UDIVcc, SDIV, or SDIVcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction
division_by_zero

TABLE 8-15 SDIV / SDIVCC Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in R[rd]

Rational quotient ≥ 231 231 −1 (0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231 (FFFF FFFF 8000 000016)

Bit SDIVcc

icc.n Set to 1 if R[rd]{31} = 1; otherwise, set to 0

icc.z Set to 1 if R[rd]{31:0} = 0; otherwise, set to 0

icc.v Set to 1 if overflow (per TABLE 7-12); otherwise set to 0

icc.c Set to 0

xcc.n Set to 1 if R[rd]{63} = 1; otherwise, set to 0

xcc.z Set to 1 if R[rd]{63:0} = 0; otherwise, set to 0

xcc.v Set to 0

xcc.c Set to 0
350 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

UMUL / UMULcc / SMUL / SMULcc (Deprecated)
8.105 Multiply (32-bit)

Description The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “R[rs1]{31:0} × R[rs2]{31:0}” if i = 0, or “R[rs1]{31:0} ×
sign_ext(simm13){31:0}” if i = 1. They write the 32 most significant bits of the
product into the Y register and all 64 bits of the product into R[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer
word operands and compute an unsigned integer doubleword product. Signed
multiply instructions (SMUL, SMULcc) operate on signed integer word operands
and compute a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write
the integer condition code bits, icc and xcc, as shown below.

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated and
should not be used in new software. The MULX instruction should be used
instead.

Opcode op3 Operation Assembly Language Syntax Class

UMULD 00 1010 Unsigned Integer Multiply umul regrs1, reg_or_imm, regrd C2

SMULD 00 1011 Signed Integer Multiply smul regrs1, reg_or_imm, regrd C2

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s umulcc regrs1, reg_or_imm, regrd C2

SMULccD 01 1011 Signed Integer Multiply and modify cc’s smulcc regrs1, reg_or_imm, regrd C2

Bit UMULcc / SMULcc

icc.n Set to 1 if product{31} = 1; otherwise, set to 0
icc.z Set to 1 if product{31:0}= 0; otherwise, set to 0
icc.v Set to 0
icc.c Set to 0
xcc.n Set to 1 if product{63} = 1; otherwise, set to 0
xcc.z Set to 1 if product{63:0} = 0; otherwise, set to 0
xcc.v Set to 0
xcc.c Set to 0

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
CHAPTER 8 • Instructions 351

UMUL / UMULcc / SMUL / SMULcc (Deprecated)
An attempt to execute a UMUL, UMULcc, SMUL, or SMULcc instruction when i = 0
and instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Note 32-bit negative (icc.n) and zero (icc.z) condition codes are set
according to the less significant word of the product, not
according to the full 64-bit result.

Programming
Notes

32-bit overflow after UMUL/UMULcc is indicated by Y ≠ 0.

32-bit overflow after SMUL/SMULcc is indicated by
Y ≠ (R[rd] >> 31), where “>>” indicates 32-bit arithmetic right-
shift.
352 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

WRasr
8.106 Write Ancillary State Register
Instruction rd Operation Assembly Language Syntax Class

WRYD 0 Write Y register (deprecated) wr regrs1, reg_or_imm,%y C1

— 1 Reserved

WRCCR 2 Write Condition Codes
register

wr regrs1, reg_or_imm,%ccr A1

WRASI 3 Write ASI register wr regrs1, reg_or_imm,%asi A1

— 4 Reserved (read-only ASR (TICK))

— 5 Reserved (read-only ASR (PC))

WRFPRS 6 Write Floating-Point Registers Status
register

wr regrs1, reg_or_imm,%fprs A1

— 7–14 Reserved

— 24 used at higher privilege level

WRPCRP 16 Write Performance Control register
(PCR)

wr regrs1, reg_or_imm,%pcr A1

WRPICPPIC 17 Write Performance Instrumentation
Counters (PIC)

wr regrs1, reg_or_imm,%pic A1

— 18 Reserved (impl. dep. #8-V8-Cs20, #9-
V8-Cs20)

WRGSR 19 Write General Status register (GSR) wr regrs1, reg_or_imm,%gsr A1

WRSOFTINT_SETP 20 Set bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_set N1

WRSOFTINT_CLRP 21 Clear bits of per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm, %softint_clr N1

WRSOFTINTP 22 Write per-virtual processor Soft
Interrupt register

wr regrs1, reg_or_imm,%softint N1

WRTICK_CMPRP 23 Write Tick Compare register wr regrs1, reg_or_imm,%tick_cmpr N1

— 24 used at higher privilege level

WRSTICK_CMPRP 25 Write System Tick Compare register wr regrs1, reg_or_imm,%sys_tick_cmpr N1

— 26-27 Reserved (impl. dep. #8-V8-Cs20, 9-V8-
Cs20)

— 28–31 Implementation dependent (impl.
dep. #8-V8-Cs20, 9-V8-Cs20)
CHAPTER 8 • Instructions 353

WRasr
Description The WRasr instructions each store a value to the writable fields of the ancillary state
register (ASR) specified by rd.

The value stored by these instructions (other than the implementation-dependent
variants) is as follows: if i = 0, store the value “R[rs1] xor R[rs2]”; if i = 1, store
“R[rs1] xor sign_ext(simm13)”.

The WRasr instruction with rs1 = 0 is a (deprecated) WRY instruction (which should
not be used in new software). WRY is not a delayed-write instruction; the instruction
immediately following a WRY observes the new value of the Y register.

WRCCR, WRFPRS, and WRASI are not delayed-write instructions. The instruction
immediately following a WRCCR, WRFPRS, or WRASI observes the new value of
the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing
the FPRS register.

IMPL. DEP. #48-V8-Cs20: WRasr instructions with rd in the range 26–31 are
available for implementation-dependent uses (impl. dep. #8-V8-Cs20). For a WRasr
instruction with rd in the range 26–31, the following are implementation dependent:
■ the interpretation of bits 18:0 in the instruction
■ the operation(s) performed (for example, xor) to generate the value written to the

ASR
■ whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20),

and
■ whether an attempt to execute the instruction causes an illegal_instruction

exception.

Note The operation is exclusive-or.

The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Note See the section “Read/Write Ancillary State Registers (ASRs)” in
Extending the UltraSPARC Architecture, contained in the separate
volume UltraSPARC Architecture Application Notes, for a
discussion of extending the SPARC V9 instruction set by means of
read/write ASR instructions.

rd10 op3 = 11 0000 —rs1 rs2i=0

31 24 02530 29 19 18 14 13 12 5 4

rd10 op3 = 11 0000 rs1 simm13i=1
354 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

WRasr
See Ancillary State Registers on page 67 for more detailed information regarding ASR
registers.

Exceptions. An attempt to execute a WRasr instruction when any of the following
conditions exist causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 1, 4, 5, 7–14, 18, or 26-31
■ rd = 15 and ((rs1 ≠ 0) or (i = 0))

An attempt to execute a WRPCR (impl. dep. #250-U3-Cs10), WRSOFTINT_SET,
WRSOFTINT_CLR, WRSOFTINT, WRTICK_CMPR, or WRSTICK_CMPR instruction
in nonprivileged mode (PSTATE.priv = 0) causes a privileged_opcode exception.

If the floating-point unit is not enabled (FPRS.fef = 0 or PSTATE.pef = 0) or if the
FPU is not present, then an attempt to execute a WRGSR instruction causes an
fp_disabled exception.

An attempt to execute a WRPIC instruction in nonprivileged mode (PSTATE.priv = 0)
when PCR.priv = 1 causes a privileged_action exception.

Exceptions illegal_instruction
privileged_opcode
fp_disabled
privileged_action

See Also RDasr on page 285
WRPR on page 356
■

V9
Compatibility

Notes

Ancillary state registers may include (for example) timer, counter,
diagnostic, self-test, and trap-control registers.

The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in the UltraSPARC Architecture because
the IER, PSR, TBR, and WIM registers do not exist in the
UltraSPARC Architecture.
CHAPTER 8 • Instructions 355

WRPR
8.107 Write Privileged Register

Description This instruction stores the value “R[rs1] xor R[rs2]” if i = 0, or “R[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified privileged state
register.

The rd field in the instruction determines the privileged register that is written.
There are MAXPTL copies of the TPC, TNPC, TT, and TSTATE registers, one for each
trap level. A write to one of these registers sets the register, indexed by the current
value in the trap-level register (TL).

Instruction op3 Operation rd Assembly Language Syntax Class

WRPRP 11 0010 Write Privileged register
TPC
TNPC
TSTATE
TT
(illegal_instruction)
TBA
PSTATE
TL
PIL
CWP
CANSAVE
CANRESTORE
CLEANWIN
OTHERWIN
WSTATE
Reserved
GL
Reserved

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17–31

wrpr
wrpr
wrpr
wrpr

wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr
wrpr

wrpr

regrs1, reg_or_imm, %tpc
regrs1, reg_or_imm, %tnpc
regrs1, reg_or_imm, %tstate
regrs1, reg_or_imm, %tt

regrs1, reg_or_imm, %tba
regrs1, reg_or_imm, %pstate
regrs1, reg_or_imm, %tl
regrs1, reg_or_imm, %pil
regrs1, reg_or_imm, %cwp
regrs1, reg_or_imm, %cansave
regrs1, reg_or_imm, %canrestore
regrs1, reg_or_imm, %cleanwin
regrs1, reg_or_imm, %otherwin
regrs1, reg_or_imm, %wstate

regrs1, reg_or_imm, %gl

C1

Note The operation is exclusive-or.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
356 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

WRPR

A WRPR to TL only stores a value to TL; it does not cause a trap, cause a return from
a trap, or alter any machine state other than TL and state (such as PC, NPC, TICK,
etc.) that is indirectly modified by every instruction.

The WRPR instruction is a non-delayed-write instruction. The instruction
immediately following the WRPR observes any changes made to virtual processor
state made by the WRPR.

MAXPTL is the maximum value that may be written by a WRPR to TL; an attempt to
write a larger value results in MAXPTL being written to TL. For details, see TABLE 6-22
on page 95.

MAXPGL is the maximum value that may be written by a WRPR to GL; an attempt to
write a larger value results in MAXPGL being written to GL. For details, see TABLE 6-23
on page 97.

Exceptions. An attempt to execute a WRPR instruction in nonprivileged mode
(PSTATE.priv = 0) causes a privileged_opcode exception.

An attempt to execute a WRPR instruction when any of the following conditions
exist causes an illegal_instruction exception:
■ i = 0 and instruction bits 12:5 are nonzero
■ rd = 4
■ rd = 15, or 17-31 (reserved for future versions of the architecture)
■ 0 ≤ rd ≤ 3 (attempt to write TPC, TNPC,TSTATE, or TT register) while TL = 0

(current trap level is zero) and the virtual processor is in privileged mode.

Exceptions privileged_opcode
illegal_instruction

See Also RDPR on page 288
WRasr on page 353

Programming
Note

A WRPR of TL can be used to read the values of TPC, TNPC, and
TSTATE for any trap level; however, software must take care that
traps do not occur while the TL register is modified.

Implementation
Note

In nonprivileged mode, illegal_instruction exception due to
0 ≤ rd ≤ 3 and TL = 0 does not occur; the privileged_opcode
exception occurs instead.
CHAPTER 8 • Instructions 357

XOR / XNOR
8.108 XOR Logical Operation

Description These instructions implement bitwise logical xor operations. They compute “R[rs1]
op R[rs2]” if i = 0, or “R[rs1] op sign_ext(simm13)” if i = 1, and write the result into
R[rd].

XORcc and XNORcc modify the integer condition codes (icc and xcc). They set the
condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c are set to 0
■ icc.n is copied from bit 31 of the result
■ xcc.n is copied from bit 63 of the result
■ icc.z is set to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z is set to 1 if all 64 bits of the result are zero (otherwise to 0)

An attempt to execute an XOR, XORcc, XNOR, or XNORcc instruction when i = 0 and
instruction bits 12:5 are nonzero causes an illegal_instruction exception.

Exceptions illegal_instruction

Instruction op3 Operation Assembly Language Syntax Class

XOR 00 0011 Exclusive or xor regrs1, reg_or_imm, regrd A1

XORcc 01 0011 Exclusive or and modify cc’s xorcc regrs1, reg_or_imm, regrd A1

XNOR 00 0111 Exclusive nor xnor regrs1, reg_or_imm, regrd A1

XNORcc 01 0111 Exclusive nor and modify cc’s xnorcc regrs1, reg_or_imm, regrd A1

Programming
Note

XNOR (and XNORcc) is identical to the xor_not (and set condition
codes) xor_not_cc logical operation, respectively.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
358 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 9

IEEE Std 754-1985 Requirements for
UltraSPARC Architecture 2005

The IEEE Std 754-1985 floating-point standard contains a number of implementation
dependencies. This chapter specifies choices for these implementation dependencies,
to ensure that SPARC V9 implementations are as consistent as possible.

The chapter contains these major sections:

■ Traps Inhibiting Results on page 359.
■ NaN Operand and Result Definitions on page 360.
■ Trapped Underflow Definition (ufm = 1) on page 362.
■ Untrapped Underflow Definition (ufm = 0) on page 362.
■ Integer Overflow Definition on page 363.
■ Floating-Point Nonstandard Mode on page 364.

Exceptions are discussed in this chapter on the assumption that instructions are
implemented in hardware. If an instruction is implemented in software, it may not
trigger hardware exceptions but its behavior as observed by nonprivileged software
(other than timing) must be the same as if it was implemented in hardware.

9.1 Traps Inhibiting Results
As described in Floating-Point State Register (FSR) on page 58 and elsewhere, when a
floating-point trap occurs, the following conditions are true:

■ The destination floating-point register(s) (the F registers) are unchanged.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
359

■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR.aexc (accrued exceptions) field is unchanged.

■ The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to 1, corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished or
unimplemented FPops execute as if by hardware; that is, such a trap is undetectable
by application software, except that timing may be affected.

9.2 NaN Operand and Result Definitions
An untrapped floating-point result can be in a format that is either the same as, or
different from, the format of the source operands. These two cases are described
separately below.

9.2.1 Untrapped Result in Different Format from
Operands
■ F<sdq>TO<sdq> or F<sd>MUL<dq> with a quiet NaN operand — No

exception caused; result is a quiet NaN. The operand is transformed as follows:

Programming
Note

A user-mode trap handler invoked for an IEEE_754_exception,
whether as a direct result of a hardware fp_exception_ieee_754
trap or as an indirect result of privileged software handling of
an fp_exception_other trap with FSR.ftt = unfinished_FPop or
FSR.ftt = unimplemented_FPop, can rely on the following
behavior:

■ The address of the instruction that caused the exception will
be available.

■ The destination floating-point register(s) are unchanged from
their state prior to that instruction’s execution.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and
fcc3) are unchanged.

■ The FSR.aexc field is unchanged.

■ The FSR.cexc field contains exactly one bit set to 1,
corresponding to the exception that caused the trap.

■ The FSR.ftt, FSR.qne, and reserved fields of FSR are zero.
360 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. In conversion to a narrower
format, excess low-order bits of the operand fraction are discarded (which is not
considered a "rounding" operation). In conversion to a wider format, excess low-
order bits of the result fraction are set to 0. The quiet bit (the most significant bit
of the result fraction) is always set to 1, so the NaN transformation always
produces a quiet NaN. The sign bit is copied from the operand to the result
without modification.

■ F<sdq>TO<sdq> or F<sd>MUL<dq> with a signalling NaN operand — Invalid
exception; result is the signalling NaN operand processed by the NaN
transformation above to produce a quiet NaN.

■ FCMPE<sdq> with any NaN operand — Invalid exception; the selected floating-
point condition code is set to unordered.

■ FCMP<sdq> with any signalling NaN operand — Invalid exception; the selected
floating-point condition code is set to unordered.

■ FCMP<sdq> with any quiet NaN operand but no signalling NaN operand —
No exception; the selected floating-point condition code is set to unordered.

9.2.2 Untrapped Result in Same Format as Operands
■ No NaN operand — For an invalid operation such as sqrt(–1.0) or 0.0 ÷ 0.0, the

result is the quiet NaN with sign = zero, exponent = all 1’s, and fraction = all ones.
The sign is zero to distinguish such results from storage initialized to all ones.

■ One operand, a quiet NaN — No exception; result is the quiet NaN operand.

■ One operand, a signalling NaN — Invalid exception; result is the signalling NaN
with its quiet bit (most significant bit of fraction field) set to 1.

■ Two operands, both quiet NaNs — No exception; result is the rs2 (second source)
operand.

■ Two operands, both signalling NaNs — Invalid exception; result is the rs2
operand with the quiet bit set to 1.

■ Two operands, only one is a signalling NaN — Invalid exception; result is the
signalling NaN operand with the quiet bit set to 1.

■ Two operands, neither is a signalling NaN, only one is a quiet NaN — No
exception; result is the quiet NaN operand.

In TABLE 9-1, NaNn means that the NaN is in rsn, Q means quiet, S signalling.
CHAPTER 9 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005 361

QSNaNn means a quiet NaN produced by the NaN transformation on a signalling
NaN from rsn; the invalid exception is always indicated. The QNaNn results in the
table never generate an exception, but IEEE 754 specifies several cases of invalid
exceptions, and QNaN results from operands that are both numbers.

9.3 Trapped Underflow Definition (ufm = 1)
An UltraSPARC Architecture virtual processor detects tininess before rounding
occurs. (impl. dep. #55-V8-Cs10)

Since tininess is detected before rounding, trapped underflow occurs when the exact
unrounded result has magnitude between zero and the smallest normalized number
in the destination format.

9.4 Untrapped Underflow Definition
(ufm = 0)
On an implementation that detects tininess before rounding, untrapped underflow
occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded
result in the destination format is inexact.

TABLE 9-1 Untrapped Floating-Point Results

rs2 Operand

Number QNaN2 SNaN2

rs1
operand

None IEEE 754 QNaN2 QSNaN2

Number IEEE 754 QNaN2 QSNaN2

QNaN1 QNaN1 QNaN2 QSNaN2

SNaN1 QSNaN1 QSNaN1 QSNaN2

Note The wrapped exponent results intended to be delivered on
trapped underflows and overflows in IEEE 754 are irrelevant to
the SPARC V9 architecture at the hardware, and privileged
software levels. If they are created at all, it would be by user
software in a nonprivileged-mode trap handler.
362 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE 9-2 summarizes what happens on an implementation that detects tininess
before rounding, when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value.

9.5 Integer Overflow Definition
■ F<sdq>TOi — When a NaN, infinity, large positive argument ≥ 231 or large

negative argument ≤ –(231 + 1) is converted to an integer, the invalid_current
(nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754 should be raised.
If the floating-point invalid trap is disabled (FSR.tem.nvm = 0), no trap occurs
and a numerical result is generated: if the sign bit of the operand is 0, the result is
231 – 1; if the sign bit of the operand is 1, the result is –231.

■ F<sdq>TOx — When a NaN, infinity, large positive argument ≥ 263, or large
negative argument ≤ –(263 + 1) is converted to an extended integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.tem.nvm = 0),
no trap occurs and a numerical result is generated: if the sign bit of the operand is
0, the result is 263 – 1; if the sign bit of the operand is 1, the result is –263.

TABLE 9-2 Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap:
Inexact trap:

ufm = 1
nxm = x

ufm = 0
nxm = 1

ufm = 0
nxm = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

UF = fp_exception_ieee_754 trap with cexc.ufc = 1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1

uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
CHAPTER 9 • IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005 363

9.6 Floating-Point Nonstandard Mode
Please refer to Nonstandard Floating-Point (ns) on page 60 for information.
364 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 9

Memory

The UltraSPARC Architecture memory models define the semantics of memory
operations. The instruction set semantics require that loads and stores behave as if
they are performed in the order in which they appear in the dynamic control flow of
the program. The actual order in which they are processed by the memory may be
different. The purpose of the memory models is to specify what constraints, if any,
are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple virtual processors and input/output devices in a
shared memory configuration. Programming shared memory multiprocessors
requires a detailed understanding of the operative memory model and the ability to
specify memory operations at a low level in order to build programs that can safely
and reliably coordinate their activities. For additional information on the use of the
models in programming real systems, see Programming with the Memory Models,
contained in the separate volume UltraSPARC Architecture Application Notes.

This chapter contains a great deal of theoretical information so that the discussion of
the UltraSPARC Architecture TSO memory model has sufficient background.

This chapter describes memory models in these sections:

■ Memory Location Identification on page 366.
■ Memory Accesses and Cacheability on page 366.
■ Memory Addressing and Alternate Address Spaces on page 369.
■ SPARC V9 Memory Model on page 372.
■ The UltraSPARC Architecture Memory Model — TSO on page 376.
■ Nonfaulting Load on page 384.
■ Store Coalescing on page 385.
365

9.1 Memory Location Identification
A memory location is identified by an 8-bit address space identifier (ASI) and a 64-
bit memory address. The 8-bit ASI can be obtained from an ASI register or included
in a memory access instruction. The ASI used for an access can distinguish among
different 64-bit address spaces, such as Primary memory space, Secondary memory
space, and internal control registers. It can also apply attributes to the access, such as
whether the access should be performed in big- or little-endian byte order, or
whether the address should be taken as a virtual or real.

9.2 Memory Accesses and Cacheability
Memory is logically divided into real memory (cached) and I/O memory
(noncached with and without side effects) spaces.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location (or, in the case of a load or load-store, on the
destination register).

I/O locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on I/O locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on I/O locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation
dependent.

9.2.1 Coherence Domains
Two types of memory operations are supported in the UltraSPARC Architecture:
cacheable and noncacheable accesses. The manner in which addresses are
differentiated is implementation dependent. In some implementations, it is indicated
by the page translation (TTE.cp), while in other implementations, it is physical
address bit specific.
366 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Although SPARC V9 does not specify memory ordering between cacheable and
noncacheable accesses, the UltraSPARC Architecture maintains TSO ordering
between memory references regardless of their cacheability.

The UltraSPARC Architecture obeys the Sun-5 Ordering rules as documented in the
“Sun-4u/Sun-5 Ordering with TSO” specification.

9.2.1.1 Cacheable Accesses
Accesses within the coherence domain are called cacheable accesses. They have these
properties:

■ Data reside in real memory locations.
■ Accesses observe supported cache coherency protocol(s).
■ The cache line size is 2n bytes (where n ≥ 4), and can be different for each cache.

9.2.1.2 Noncacheable Accesses
Noncacheable accesses are outside of the coherence domain. They have the
following properties:

■ Data might not reside in real memory locations. Accesses may result in
programmer-visible side effects. An example is memory-mapped I/O control
registers.

■ Accesses do not observe supported cache coherency protocol(s).
■ The smallest unit in each transaction is a single byte.

The UltraSPARC Architecture MMU optionally includes an attribute bit in each page
translation, TTE.e, which when set signifies that this page has side effects.

Noncacheable accesses without side effects (TTE.e = 0) are processor consistent and
obey TSO memory ordering. In particular, processor consistency ensures that a
noncacheable load that references the same location as a previous noncacheable store
will load the data of the previous store.

Noncacheable accesses with side effects (TTE.e = 1) are processor consistent and are
strongly ordered. These accesses are described in more detail in the following
section.

9.2.1.3 Noncacheable Accesses with Side-Effect

Loads, stores, and load-stores to I/O locations might not behave with memory
semantics. Loads and stores could have side effects; for example, a read access could
clear a register or pop an entry off a FIFO. A write access could set a register address
port so that the next access to that address will read or write a particular internal
register. Such devices are considered order sensitive. Also, such devices may only
allow accesses of a fixed size, so store merging of adjacent stores or stores within a
16-byte region would cause an error (see Store Coalescing on page 385).
CHAPTER 9 • Memory 367

Noncacheable accesses (other than block loads and block stores) to pages with side
effects (TTE.e = 1) exhibit the following behavior:

■ Noncacheable accesses are strongly ordered with respect to each other. Bus
protocol should guarantee that IO transactions to the same device are delivered in
the order that they are received.

■ Noncacheable loads with the TTE.e bit = 1 will not be issued to the system until
all previous instructions have completed, and the store queue is empty.

■ Noncacheable store coalescing is disabled for accesses with TTE.e = 1.

■ A MEMBAR may be needed between side-effect and non-side-effect accesses. See
TABLE 9-3 on page 382.

Whether block loads and block stores adhere to the above behavior or ignore TTE.e
and always behave as if TTE.e = 0 is implementation-dependent (impl. dep. #410-
S10, #411-S10).

On UltraSPARC Architecture virtual processors, noncacheable and side-effect
accesses do not observe supported cache coherency protocols (impl. dep. #120).

Non-faulting loads (using ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]) with the TTE.e bit = 1 cause a trap.

Prefetches to noncacheable addresses result in nops.

The processor does speculative instruction memory accesses and follows branches
that it predicts are taken. Instruction addresses mapped by the MMU can be
accessed even though they are not actually executed by the program. Normally,
locations with side effects or that generate timeouts or bus errors are not mapped as
instruction addresses by the MMU, so these speculative accesses will not cause
problems.

IMPL. DEP. #118-V9: The manner in which I/O locations are identified is
implementation dependent.

IMPL. DEP. #120-V9: The coherence and atomicity of memory operations between
virtual processors and I/O DMA memory accesses are implementation dependent.

Systems supporting SPARC V8 applications that use memory-mapped I/O locations
must ensure that SPARC V8 sequential consistency of I/O locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
virtual processor to provide it.

IMPL. DEP. #121-V9: An implementation may choose to identify certain addresses
and use an implementation-dependent memory model for references to them.

V9 Compatibility
Note

Operations to I/O locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC
V8.
368 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

9.3 Memory Addressing and Alternate
Address Spaces
An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset within the specified address space. Memory is
byte-addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 102, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword1. Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

9.3.1 Memory Addressing Types
The UltraSPARC Architecture supports the following types of memory addressing:

Virtual Addresses (VA). Virtual addresses are addresses produced by a virtual
processor that maps all systemwide, program-visible memory. Virtual addresses can
be presented in nonprivileged mode and privileged mode

1. Two exceptions to this are the special ASI_TWIN_DW_NUCLEUS[_L] and ASI_LD_TWINX_REAL[_L]which
provide hardware support for an atomic quad load to be used for TTE loads from TSBs.

Notes The doubleword is the coherency unit for update, but
programmers should not assume that doubleword floating-point
values are updated as a unit unless they are doubleword-aligned
and always updated with double-precision loads and stores.
Some programs use pairs of single-precision operations to load
and store double-precision floating-point values when the
compiler cannot determine that they are doubleword aligned.

Also, although quad-precision operations are defined in the
SPARC V9 architecture, the granularity of loads and stores for
quad-precision floating-point values may be word or
doubleword.
CHAPTER 9 • Memory 369

Real addresses (RA). A real address is provided to privileged software to
describe the underlying physical memory allocated to it. Translation storage buffers
(TSBs) maintained by privileged software are used to translate privileged or
nonprivileged mode virtual addresses into real addresses. MMU bypass addresses in
privileged mode are also real addresses.

Nonprivileged software only uses virtual addresses. Privileged software uses virtual
and real addresses.

9.3.2 Memory Address Spaces
The UltraSPARC Architecture supports accessing memory using virtual or real
addresses. Multiple virtual address spaces within the same real address space are
distinguished by a context identifier (context ID).

Privileged software can create multiple virtual address spaces, using the primary
and secondary context registers to associate a context ID with every virtual address.
Privileged software manages the allocation of context IDs.

The full representation of a real address is as follows:

real_address = context_ID :: virtual_address

9.3.3 Address Space Identifiers
The virtual processor provides an address space identifier with every address. This
ASI may serve several purposes:

■ To identify which of several distinguished address spaces the 64-bit address offset
is addressing

■ To provide additional access control and attribute information, for example, to
specify the endianness of the reference

■ To specify the address of an internal control register in the virtual processor,
cache, or memory management hardware

Memory management hardware can associate an independent 264-byte memory
address space with each ASI. In practice, the three independent memory address
spaces (contexts) created by the MMU are Primary, Secondary, and Nucleus.

Alternate-space load, store, load-store and prefetch instructions specify an explicit
ASI to use for their data access. The behavior of the access depends on the current
privilege mode.

Programming
Note

Independent address spaces, accessible through ASIs, make it
possible for system software to easily access the address space of
faulting software when processing exceptions or to implement
access to a client program’s memory space by a server program.
370 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Non-alternate space load, store, load-store, and prefetch instructions use an implicit
ASI value that is determined by current virtual processor state (the current privilege
mode, trap level (TL), and the value of the PSTATE.cle). Instruction fetches use an
implicit ASI that depends only on the current mode and trap level.

The architecturally specified ASIs are listed in Chapter 10, Address Space Identifiers
(ASIs). The operation of each ASI in nonprivileged and privileged modes is
indicated in TABLE 10-1 on page 389.

Attempts by nonprivileged software (PSTATE.priv = 0) to access restricted ASIs (ASI
bit 7 = 0) cause a privileged_action exception. Attempts by privileged software
(PSTATE.priv = 1) to access ASIs 3016–7F16 cause a privileged_action exception.

When TL = 0, normal accesses by the virtual processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI_PRIMARY or
ASI_PRIMARY_LITTLE, depending on the setting of PSTATE.cle.

When TL = 1 or 2 (> 0 but ≤ MAXPTL), the implicit ASI in privileged mode is:

■ for instruction fetches, ASI_NUCLEUS

■ for loads and stores, ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE
if PSTATE.cle = 1 (impl. dep. #124-V9).

SPARC V9 supports the PRIMARY[_LITTLE], SECONDARY[_LITTLE], and
NUCLEUS[_LITTLE] address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register+register
addressing mode) or taken from the ASI register (for register+immediate
addressing).

ASIs are either nonrestricted or restricted-to-privileged:

■ A nonrestricted ASI (ASI range 8016 – FF16) is one that may be used
independently of the privilege level (PSTATE.priv) at which the virtual processor
is running.

■ A restricted-to-privileged ASI (ASI range 0016 – 2F16) requires that the virtual
processor be in privileged mode for a legal access to occur.
CHAPTER 9 • Memory 371

The relationship between virtual processor state and ASI restriction is shown in
TABLE 9-1.

Some restricted ASIs are provided as mandated by SPARC V9:
ASI_AS_IF_USER_PRIMARY[_LITTLE] and
ASI_AS_IF_USER_SECONDARY[_LITTLE]. The intent of these ASIs is to give
privileged software efficient, yet secure access to the memory space of nonprivileged
software.

The normal address space is primary address space, which is accessed by the
unrestricted ASI_PRIMARY[_LITTLE] ASIs. The secondary address space, which is
accessed by the unrestricted ASI_SECONDARY[_LITTLE] ASIs, is provided to allow
server software to access client software’s address space.

ASI_PRIMARY_NOFAULT[_LITTLE] and ASI_SECONDARY_NOFAULT[_LITTLE]
support nonfaulting loads. These ASIs may be used to color (that is, distinguish into
classes) loads in the instruction stream so that, in combination with a judicious
mapping of low memory and a specialized trap handler, an optimizing compiler can
move loads outside of conditional control structures.

9.4 SPARC V9 Memory Model
The SPARC V9 processor architecture specified the organization and structure of a
central processing unit but did not specify a memory system architecture. This
section summarizes the MMU support required by an UltraSPARC Architecture
processor.

The memory models specify the possible order relationships between memory-
reference instructions issued by a virtual processor and the order and visibility of
those instructions as seen by other virtual processors. The memory model is
intimately intertwined with the program execution model for instructions.

TABLE 9-1 Allowed Accesses to ASIs

ASI Value Type
Result of ASI
Access in NP Mode

Result of ASI
Access in P Mode

0016 –-
2F16

Restricted-to-
privileged

privileged_action
exception

Valid Access

8016 –
FF16

Nonrestricted Valid Access Valid Access
372 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

9.4.1 SPARC V9 Program Execution Model
The SPARC V9 strand model of a virtual processor consists of three units: an Issue
Unit, a Reorder Unit, and an Execute Unit, as shown in FIGURE 9-1.

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.

Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another virtual processor, be identical to the result
that would be observed if the instructions were performed in program order. In the
model in FIGURE 9-1, instructions are issued in program order and placed in the
reorder buffer. The virtual processor is allowed to reorder instructions, provided it
does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction that reads from or writes to a register cannot be performed until all
earlier instructions that write to that register have been performed (read-after-
write hazard; write-after-write hazard).

Memory

Data Path

Instruction Path
Issue Reorder Execute

FIGURE 9-1 Processor Model: Uniprocessor System

Unit Unit Unit
Reorder

Unit

Processor
CHAPTER 9 • Memory 373

2. An instruction cannot be performed that writes to a register until all earlier
instructions that read that register have been performed (write-after-read hazard).

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that uses (loads or stores) the value at a location
cannot be performed until all earlier memory-reference instructions that set (store
to) that location have been performed (read-after-write hazard, write-after-write
hazard).

2. A memory-reference instruction that writes (stores to) a location cannot be
performed until all previous instructions that read (load from) that location have
been performed (write-after-read hazard).

Memory-barrier instruction (MEMBAR) and the TSO memory model also constrain
the issue of memory-reference instructions. See Memory Ordering and Synchronization
on page 381 and The UltraSPARC Architecture Memory Model — TSO on page 376 for
a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.

V9 Compatibility
Note

An implementation can avoid blocking instruction execution in
case 2 and the write-after-write hazard in case 1 by using a
renaming mechanism that provides the old value of the register
to earlier instructions and the new value to later uses.
374 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

9.4.2 Virtual Processor/Memory Interface Model
Each UltraSPARC Architecture virtual processor in a multiprocessor system is
modeled as shown in FIGURE 9-2; that is, having two independent paths to memory:
one for instructions and one for data.

FIGURE 9-2 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. See Synchronizing Instruction and Data Memory on page 383 for
details. Memory is shared in terms of address space, but it may be nonhomogeneous
and distributed in an implementation.Caches are ignored in the model, since their
functions are transparent to the memory model1.

In real systems, addresses may have attributes that the virtual processor must
respect. The virtual processor executes loads, stores, and atomic load-stores in
whatever order it chooses, as constrained by program order and the memory model.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory
transactions to the memory. The memory performs transactions in memory order. The
memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered, unless the memory unit can still guarantee in-order
semantics.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to
a location preserve the per-virtual processor partial orderings. Memory transactions
1. The model described here is only a model; implementations of UltraSPARC Architecture systems are

unconstrained as long as their observable behaviors match those of the model.

Memory Transactions
in Memory Order

Memory

Instructions
Data

Virtual Processors

Instructions
Data

Instructions
Data
CHAPTER 9 • Memory 375

may complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that
preserves the partial orderings of each virtual processor’s transactions to this
address. There may be many legal total orders for a given program’s execution.

9.5 The UltraSPARC Architecture Memory
Model — TSO
The UltraSPARC Architecture is a model that specifies the behavior observable by
software on UltraSPARC Architecture systems. Therefore, access to memory can be
implemented in any manner, as long as the behavior observed by software conforms
to that of the models described here.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO).

All SPARC V9 processors must provide Total Store Order (or a more strongly
ordered model, for example, Sequential Consistency) to ensure compatibility for
SPARC V8 application software.

All UltraSPARC Architecture virtual processors implement TSO ordering. The PSO
and RMO models from SPARC V9 are not described in this UltraSPARC Architecture
specification. UltraSPARC Architecture 2005 processors do not implement the PSO
memory model directly, but all software written to run under PSO will execute
correctly on an UltraSPARC Architecture 2005 processor (using the TSO model).

Whether memory models represented by PSTATE.mm = 102 or 112 are supported in
an UltraSPARC Architecture processor is implementation dependent (impl. dep.
#113-V9-Ms10). If the 102 model is supported, then when PSTATE.mm = 102 the
implementation must correctly execute software that adheres to the RMO model
described in The SPARC Architecture Manual-Version 9. If the 112 model is supported,
its definition is implementation dependent and will be described in implementation-
specific documentation.

Programs written for Relaxed Memory Order will work in both Partial Store Order
and Total Store Order. Programs written for Partial Store Order will work in Total
Store Order. Programs written for a weak model, such as RMO, may execute more
quickly when run on hardware directly supporting that model, since the model
exposes more scheduling opportunities, but use of that model may also require extra
instructions to ensure synchronization. Multiprocessor programs written for a
stronger model will behave unpredictably if run in a weaker model.
376 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO. Sequential
consistency is not a SPARC V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all virtual processors are performed by memory in
a serial order that conforms to the order in which these instructions are issued by
individual virtual processors. A machine that implements sequential consistency
may deliver lower performance than an equivalent machine that implements TSO
order. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

9.5.1 Memory Model Selection
The active memory model is specified by the 2-bit value in PSTATE.mm,. The value
002 represents the TSO memory model; increasing values of PSTATE.mm indicate
increasingly weaker (less strongly ordered) memory models.

Writing a new value into PSTATE.mm causes subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

IMPL. DEP. #119-Ms10: The effect of an attempt to write an unsupported memory
model designation into PSTATE.mm is implementation dependent; however, it
should never result in a value of PSTATE.mm value greater than the one that was
written. In the case of an UltraSPARC Architecture implementation that only
supports the TSO memory model, PSTATE.mm always reads as zero and attempts to
write to it are ignored.

9.5.2 Programmer-Visible Properties of the UltraSPARC
Architecture TSO Model
Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.

The rules for TSO, in addition to those required for self-consistency (see page 373),
are:

■ Loads are blocking and ordered with respect to earlier loads

■ Stores are ordered with respect to stores.

■ Atomic load-stores are ordered with respect to loads and stores.

■ Stores cannot bypass earlier loads.

Programming
Note

Loads can bypass earlier stores to other addresses, which
maintains processor self-consistency.
CHAPTER 9 • Memory 377

Atomic load-stores are treated as both a load and a store and can only be applied to
cacheable address spaces.

Thus, TSO ensures the following behavior:

■ Each load instruction behaves as if it were followed by a MEMBAR #LoadLoad
and #LoadStore.

■ Each store instruction behaves as if it were followed by a MEMBAR
#StoreStore.

■ Each atomic load-store behaves as if it were followed by a MEMBAR #LoadLoad,
#LoadStore, and #StoreStore.

In addition to the above TSO rules, the following rules apply to UltraSPARC
Architecture memory models:

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order (as defined in The UltraSPARC Architecture
Memory Model — TSO on page 376) is desired.

■ Accesses that have side effects are all strongly ordered with respect to each other.

■ A MEMBAR #Lookaside is not needed between a store and a subsequent load to
the same noncacheable address.

■ Load (LDXA) and store (STXA) instructions that reference certain internal ASIs
perform both an intra-virtual processor synchronization (i.e. an implicit
MEMBAR #Sync operation before the load or store is executed) and an inter-
virtual processor synchronization (that is, all active virtual processors are brought
to a point where synchronization is possible, the load or store is executed, and all
virtual processors then resume instruction fetch and execution). The model-
specific PRM should indicate which ASIs require intra-virtual processor
synchronization, inter-virtual processor synchronization, or both.

9.5.3 TSO Ordering Rules
TABLE 9-2 summarizes the cases where a MEMBAR must be inserted between two
memory operations on an UltraSPARC Architecture virtual processor running in
TSO mode, to ensure that the operations appear to complete in a particular order.
Memory operation ordering is not to be confused with processor consistency or
deterministic operation; MEMBARs are required for deterministic operation of
certain ASI register updates.

TABLE 9-2 is to be read as follows: Reading from row to column, the first memory
operation in program order in a row is followed by the memory operation found in
the column. Symbols used as table entries:

Programming
Note

To ensure software portability across systems, the MEMBAR
rules in this section should be followed (which may be stronger
than the rules in SPARC V9).
378 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ # — No intervening operation is required.

■ M — an intervening MEMBAR #StoreLoad or MEMBAR #Sync or
MEMBAR #MemIssue is required

■ S — an intervening MEMBAR #Sync or MEMBAR #MemIssue is required

■ nc — Noncacheable

■ e — Side effect

■ ne — No side effect

9.5.4 Hardware Primitives for Mutual Exclusion
In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, the UltraSPARC Architecture
provides three hardware primitives for mutual exclusion:

■ Compare and Swap (CASA and CASXA)
■ Load Store Unsigned Byte (LDSTUB and LDSTUBA)
■ Swap (SWAP and SWAPA)

TABLE 9-2 Summary of UltraSPARC Architecture Ordering Rules (TSO Memory Model)

To Memory Operation C (column):

From Memory
Operation R (row): lo

ad

st
o

re

at
o

m
ic

b
lo

ad

b
st

o
re

lo
ad

_n
c_

e

st
o

re
_n

c_
e

lo
ad

_n
c_

n
e

st
o

re
_n

c_
n

e

b
lo

ad
_n

c

b
st

o
re

_n
c

load # # # S S # # # # S S

store M2 # # M S M # M # M S

atomic # # # M S # # # # M S

bload S S S S S S S S S S S

bstore M S M M S M S M S M S

load_nc_e # # # S S #1 #1 #1 #1 S S

store_nc_e S # # S S #1 #1 M2 #1 M S

load_nc_ne # # # S S #1 #1 #1 #1 S S

store_nc_ne S # # S S M2 #1 M2 #1 M S

bload_nc S S S S S S S S S S S

bstore_nc S S S S S M S M S M S

1. This table assumes that both noncacheable operations access the same device.

2. When the store and subsequent load access the same location, no intervening MEMBAR is required.
CHAPTER 9 • Memory 379

Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the TSO memory model
and may require barrier instructions to ensure proper data visibility.

Atomic load-store instructions can be used only in the cacheable domains (not in
noncacheable I/O addresses). An attempt to use an atomic load-store instruction to
access a noncacheable page results in a data_access_exception exception.

The atomic load-store alternate instructions can use a limited set of the ASIs. See the
specific instruction descriptions for a list of the valid ASIs. An attempt to execute an
atomic load-store alternate instruction with an invalid ASI results in a
data_access_exception exception.

9.5.4.1 Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a virtual
processor register to a value in memory and, if and only if they are equal, swaps the
value in memory with the value in a second virtual processor register. Both 32-bit
(CASA) and 64-bit (CASXA) operations are provided. The compare-and-swap
operation is atomic in the sense that once it begins, no other virtual processor can
access the memory location specified until the compare has completed and the swap
(if any) has also completed and is potentially visible to all other virtual processors in
the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. For examples, see Programming with the Memory
Models, contained in the separate volume UltraSPARC Architecture Application Notes.

9.5.4.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a virtual processor register with a
word in memory. SWAP has a consensus number of two; that is, it cannot resolve
more than two contending processes in a wait-free fashion.

9.5.4.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.
380 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

9.5.5 Memory Ordering and Synchronization
The UltraSPARC Architecture provides some level of programmer control over
memory ordering and synchronization through the MEMBAR and FLUSH
instructions.

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR,
the ordering MEMBAR, provides a way for the programmer to control the order of
loads and stores issued by a virtual processor. The other variant of MEMBAR, the
sequencing MEMBAR, enables the programmer to explicitly control order and
completion for memory operations. Sequencing MEMBARs are needed only when a
program requires that the effect of an operation becomes globally visible rather than
simply being scheduled.1 Because both forms are bit-encoded into the instruction, a
single MEMBAR can function both as an ordering MEMBAR and as a sequencing
MEMBAR.

The SPARCV9 instruction set architecture does not guarantee consistency between
instruction and data spaces. A problem arises when instruction space is dynamically
modified by a program writing to memory locations containing instructions (Self-
Modifying Code). Examples are Lisp, debuggers, and dynamic linking. The FLUSH
instruction synchronizes instruction and data memory after instruction space has
been modified.

9.5.5.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single virtual processor. Sets of loads and stores that appear before the MEMBAR in
program order are ordered with respect to sets of loads and stores that follow the
MEMBAR in program order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and
CASXA) are ordered by MEMBAR as if they were both a load and a store, since they
share the semantics of both. An STBAR instruction, with semantics that are a subset
of MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR
operate on all pending memory operations in the reorder buffer, independently of
their address or ASI, ordering them with respect to all future memory operations.
This ordering applies only to memory-reference instructions issued by the virtual
processor issuing the MEMBAR. Memory-reference instructions issued by other
virtual processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 9-3. For example,
MEMBAR 0116, written as “membar #LoadLoad” in assembly language, requires
that all load operations appearing before the MEMBAR in program order complete
before any of the load operations following the MEMBAR in program order
complete. Store operations are unconstrained in this case. MEMBAR 0816

1.Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBAR when one is
not needed may cause a degradation of performance. See Programming with the Memory Models, contained in
the separate volume UltraSPARC Architecture Application Notes, for examples of the use of sequencing
MEMBARs.
CHAPTER 9 • Memory 381

(#StoreStore) is equivalent to the STBAR instruction; it requires that the values
stored by store instructions appearing in program order prior to the STBAR
instruction be visible to other virtual processors before issuing any store operations
that appear in program order following the STBAR.

In TABLE 9-3 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

9.5.5.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations.
The three sequencing MEMBAR options each have a different degree of control and
a different application.

■ Lookaside Barrier — Ensures that loads following this MEMBAR are from
memory and not from a lookaside into a write buffer. Lookaside Barrier requires
that pending stores issued prior to the MEMBAR be completed before any load
from that address following the MEMBAR may be issued. A Lookaside Barrier
MEMBAR may be needed to provide lock fairness and to support some plausible
I/O location semantics. See the example in “Control and Status Registers” in
Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

■ Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new
memory operation may be initiated. See the example in “I/O Registers with Side
Effects” in Programming with the Memory Models, contained in the separate volume
UltraSPARC Architecture Application Notes.

TABLE 9-3 Ordering Relationships Selected by Mask

Ordering Relation,
Earlier <m Later

Assembly Language
Constant Mnemonic

Effective Behavior
in TSO model

Mask
Value

nmask
Bit #

Load <m Load #LoadLoad nop 0116 0

Store <m Load #StoreLoad #StoreLoad 0216 1

Load <m Store #LoadStore nop 0416 2

Store <m Store #StoreStore nop 0816 3

Implementation
Note

An UltraSPARC Architecture 2005 implementation that only
implements the TSO memory model may implement
MEMBAR #LoadLoad, MEMBAR #LoadStore, and
MEMBAR #StoreStore as nops and MEMBAR #Storeload
as a MEMBAR #Sync.
382 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier MEMBAR fully synchronizes the
virtual processor that issues it.

TABLE 9-4 shows the encoding of these functions in the MEMBAR instruction.

For more details, see the MEMBAR instruction on page 258 of Chapter 8, Instructions.

9.5.5.3 Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the virtual processor executing FLUSH. The
programmer must ensure that the modification sequence is robust under multiple
updates and concurrent execution. Since, in general, loads and stores may be
performed out of order, appropriate MEMBAR and FLUSH instructions must be
interspersed as needed to control the order in which the instruction data are
modified.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the virtual processor executing the FLUSH
appear to execute after any loads, stores, and atomic load-stores issued by the virtual
processor to that address prior to the FLUSH. FLUSH acts as a barrier for instruction
fetches in the virtual processor on which it executes and has the properties of a store
with respect to MEMBAR operations.

TABLE 9-4 Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

Implementation
Note

In UltraSPARC Architecture 2005 implementations,
MEMBAR #Lookaside and MEMBAR #MemIssue are
typically implemented as a MEMBAR #Sync.
CHAPTER 9 • Memory 383

IMPL. DEP. #122-V9: The latency between the execution of FLUSH on one virtual
processor and the point at which the modified instructions have replaced outdated
instructions in a multiprocessor is implementation dependent.

On an UltraSPARC Architecture virtual processor:

■ A FLUSH instruction causes a synchronization with the virtual processor, which
flushes the instruction pipeline in the virtual processor on which the FLUSH
instruction is executed.

■ Coherency between instruction and data memories may or may not be
maintained by hardware. If it is, an UltraSPARC Architecture implementation
may ignore the address in the operands of a FLUSH instruction.

For more details, see the FLUSH instruction on page 174 of Chapter 8, Instructions.

9.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, with the following exceptions:

■ A nonfaulting load from a location with side effects (TTE.e = 1) causes a
data_access_exception exception.

■ A nonfaulting load from a page marked for nonfault access only (TTE.nfo = 1) is
allowed; other types of accesses to such a page cause a data_access_exception
exception.

■ These loads are issued with ASI_PRIMARY_NO_FAULT[_LITTLE] or
ASI_SECONDARY_NO_FAULT[_LITTLE]. A store with a NO_FAULT ASI causes a
data_access_exception exception.

Programming
Note

Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system
software, it is recommended that system software provide a
user-callable service routine for flushing arbitrarily sized regions
of memory. On some implementations, this routine would issue
a series of FLUSH instructions; on others, it might issue a single
trap to system software that would then flush the entire region.

Programming
Note

UltraSPARC Architecture virtual processors are not required to
maintain coherency between instruction and data caches in
hardware. Therefore, portable software must do the following:

(1) must always assume that store instructions (except Block
Store with Commit) do not coherently update instruction
cache(s);

(2) must, in every FLUSH instruction, supply the address of the
instruction or instructions that were modified.
384 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Typically, optimizers use nonfaulting loads to move loads across conditional control
structures that guard their use. This technique potentially increases the distance
between a load of data and the first use of that data, in order to hide latency. The
technique allows more flexibility in instruction scheduling and improves
performance in certain algorithms by removing address checking from the critical
code path.

For example, when following a linked list, nonfaulting loads allow the null pointer
to be accessed safely in a speculative, read-ahead fashion; the page at virtual address
016 can safely be accessed with no penalty. The TTE.nfo bit marks pages that are
mapped for safe access by nonfaulting loads but that can still cause a trap by other,
normal accesses.

Thus, programmers can trap on “wild” pointer references—many programmers
count on an exception being generated when accessing address 016 to debug
software—while benefiting from the acceleration of nonfaulting access in debugged
library routines.

9.7 Store Coalescing
Cacheable stores may be coalesced with adjacent cacheable stores within an 8 byte
boundary offset in the store buffer to improve store bandwidth. Similarly non-side-
effect-noncacheable stores may be coalesced with adjacent non-side-effect
noncacheable stores within an 8-byte boundary offset in the store buffer.

In order to maintain strong ordering for I/O accesses, stores with side-effect
attribute (e bit set) will not be combined with any other stores.

Stores that are separated by an intervening MEMBAR #Sync will not be coalesced.
CHAPTER 9 • Memory 385

386 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 10

Address Space Identifiers (ASIs)

This appendix describes address space identifiers (ASIs) in the following sections:

■ Address Space Identifiers and Address Spaces on page 387.
■ ASI Values on page 387.
■ ASI Assignments on page 388.
■ Special Memory Access ASIs on page 397.

10.1 Address Space Identifiers and Address
Spaces
An UltraSPARC Architecture processor provides an address space identifier (ASI)
with every address sent to memory. The ASI does the following:

■ Distinguishes between different address spaces
■ Provides an attribute that is unique to an address space
■ Maps internal control and diagnostics registers within a virtual processor

The memory management unit uses a 64-bit virtual address and an 8-bit ASI to
generate a memory, I/O, or internal register address.

10.2 ASI Values
The range of address space identifiers (ASIs) is 0016-FF16. That range is divided into
restricted and unrestricted portions. ASIs in the range 8016–FF16 are unrestricted;
they may be accessed by software running in any privilege mode.
387

ASIs in the range 0016–7F16 are restricted; they may only be accessed by software
running in a mode with sufficient privilege for the particular ASI. ASIs in the range
0016–2F16 may only be accessed by software running in privileged or
hyperprivileged mode and ASIs in the range 3016–7F16 may only be accessed by
software running in hyperprivileged mode.

An attempt by nonprivileged software to access a restricted (privileged or
hyperprivileged) ASI (0016–7F16) causes a privileged_action trap.

An attempt by privileged software to access a hyperprivileged ASI (3016–7F16) also
causes a privileged_action trap.

An ASI can be categorized based on how it affects the MMU’s treatment of the
accompanying address, into one of three categories:

■ A Normal or Translating ASI is translated by the MMU.

■ A Nontranslating ASI is not translated by the MMU; instead the address is passed
through unchanged. Nontranslating ASIs are typically used for accessing internal
registers.

■ A Bypass ASI, like a nontranslating ASI, is not translated by the MMU and the
address is passed through unchanged. However, unlike a nontranslating ASI, an
access using a bypass ASI can cause exception(s) only visible in hyperprivileged
mode. Bypass ASIs are typically used by privileged software for directly
accessing memory using real (as opposed to virtual) addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See
implementation-specific documentation for detailed information about
implementation-dependent ASIs.

10.3 ASI Assignments
Every load or store address in an UltraSPARC Architecture processor has an 8-bit
Address Space Identifier (ASI) appended to the virtual address (VA). The VA plus
the ASI fully specify the address.

For instruction fetches and for data loads, stores, and load-stores that do not use the
load or store alternate instructions, the ASI is an implicit ASI generated by the
virtual processor.

SPARC V9
Compatibility

Note

In SPARC V9, the range of ASIs was evenly divided into
restricted (0016-7F16) and unrestricted (8016-FF16) halves.
388 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

If a load alternate, store alternate, or load-store alternate instruction is used, the
value of the ASI (an "explicit ASI") can be specified in the ASI register or as an
immediate value in the instruction.

In practice, ASIs are not only used to differentiate address spaces but are also used
for other functions like referencing registers in the MMU unit.

10.3.1 Supported ASIs
TABLE 10-1 lists architecturally-defined ASIs; some are in all UltraSPARC Architecture
implementations and some are only present in some implementations.

An ASI marked with a closed bullet (●) is required to be implemented on all
UltraSPARC Architecture 2005 processors.

An ASI marked with an open bullet (❍) is defined by the UltraSPARC Architecture
2005 but is not necessarily implemented in all UltraSPARC Architecture 2005
processors; its implemention is optional. Across all implementations on which it is
implemented, it appears to software to behave identically.

Some ASIs may only be used with certain load or store instructions; see table
footnotes for details.

The word “decoded” in the Virtual Address column of TABLE 10-1 indicates that the
the supplied virtual address is decoded by the virtual processor.

ASIs marked "Reserved" are set aside for use in future revisions to the architecture
and are not to be used by implemenations. ASIs marked "implementation
dependent" may be used for implementation-specific purposes.

Attempting to access an address space described as “Implementation dependent” in
TABLE 10-1 produces implementation-dependent results.

TABLE 10-1 UltraSPARC Architecture ASIs (1 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description

0016–
0316

❍ — —2,12 — — — Implementation dependent1

0416 ● ASI_NUCLEUS (ASI_N) RW2,4 (decoded) T — Implicit address space,
nucleus context, TL > 0

0516–
0B16

❍ — —2,12 — — — Implementation dependent1

0C16 ● ASI_NUCLEUS_LITTLE (ASI_NL) RW2,4 (decoded) T — Implicit address space,
nucleus context, TL > 0,
little-endian
CHAPTER 10 • Address Space Identifiers (ASIs) 389

-

0D16–
0F16

❍ — —2,12 — — — Implementation dependent1

1016 ● ASI_AS_IF_USER_PRIMARY
(ASI_AIUP)

RW2,4,18 (decoded) T — Primary address space, as if
user (nonprivileged)

1116 ● ASI_AS_IF_USER_SECONDARY
(ASI_AIUS)

RW2,4,18 (decoded) T — Secondary address space, as
if user (nonprivileged)

1216–
1316

❍ — —2,12 — — — Implementation dependent1

1416 ❍ ASI_REAL RW2,4 (decoded) B — Real address

1516 ❍ ASI_REAL_IOD RW2,5 (decoded) B — Real address, noncacheable,
with side effect (deprecated)

1616 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW2,8,14,18(decoded) T — Primary address space,
block load/store, as if user
(nonprivileged)

1716 ❍ ASI_BLOCK_AS_IF_USER_SECONDAR
Y
(ASI_BLK_AIUS)

RW2,8,14,18(decoded) T — Secondary address space,
block load/store, as if user
(nonprivileged)

1816 ● ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW2,4,18 (decoded) T — Primary address space, as if
user (nonprivileged), little-
endian

1916 ● ASI_AS_IF_USER_SECONDARY_
LITTLE (ASI_AIUSL)

RW2,4,18 (decoded) T — Secondary address space, as
if user (nonprivileged), little
endian

1A16–
1B16

❍ — —2,12 — — — Implementation dependent1

1C16 ❍ ASI_REAL_LITTLE
(ASI_REAL_L)

RW 2,4 (decoded) B — Real address, little-endian

1D16 ❍ ASI_REAL_IO_LITTLED

(ASI_REAL_IO_LD)
RW 2,5 (decoded) B — Physical address,

noncacheable, with side
effect, little-endian
(deprecated)

1E16 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE
(ASI_BLK_AIUPL)

RW2,8,14,18(decoded) T — Primary address space,
block load/store, as if user
(nonprivileged), little-endian

1F16 ❍ ASI_BLOCK_AS_IF_USER_
SECONDARY_LITTLE
(ASI_BLK_AIUS_L)

RW2,8,14,18(decoded) T — Secondary address space,
block load/store, as if user
(nonprivileged), little-endian

TABLE 10-1 UltraSPARC Architecture ASIs (2 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
390 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

2016 ❍ ASI_SCRATCHPAD RW2,6 (decoded;
see below)

N per
strand

Privileged Scratchpad
registers; implementation
dependent1

❍
" 016 " " Scratchpad Register 01

❍
" 816 " " Scratchpad Register 11

❍
" 1016 " " Scratchpad Register 21

❍
" 1816 " " Scratchpad Register 31

❍ 2016 " " Scratchpad Register 41

❍
" 2816 " " Scratchpad Register 51

❍
" 3016 " " Scratchpad Register 61

❍
" 3816 " " Scratchpad Register 71

2116 ❍ ASI_MMU_CONTEXTID RW2,6 (decoded;
see below)

N per
strand

MMU context registers

❍ " 816 " " I/D MMU Primary
Context ID register

❍ " 1016 " " I/D MMU Secondary
Context ID register

2216 ❍ ASI_LD_TWINX_AS_IF_USER_
PRIMARY
(ASI_LDTX_AIUP)

R2,7,11 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word, as if user
(nonprivileged)

2316 ❍ ASI_LD_TWINX_AS_IF_USER_
SECONDARY
(ASI_LDTX_AIUS)

R2,7,11 (decoded) T — Secondary address space,
128-bit atomic load twin
extended word, as if user
(nonprivileged)

2416 ❍ — — — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (3 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 391

2516 ❍ ASI_QUEUE (see
below)

(decoded;
see below)

N per
strand

❍ RW2,6
3C016

" " CPU Mondo Queue Head
Pointer

❍ RW2,6,17
3C816

" " CPU Mondo Queue Tail
Pointer

❍ RW2,6
3D016

" " Device Mondo Queue Head
Pointer

❍ RW2,6,17
3D816

" " Device Mondo Queue Tail
Pointer

❍ RW2,6
3E016

" " Resumable Error Queue
Head Pointer

❍ RW2,6,17
3E816

" " Resumable Error Queue Tail
Pointer

❍ RW2,6
3F016

" " Nonresumable Error Queue
Head Pointer

❍ RW2,6,17
3F816

" " Nonresumable Error Queue
Tail Pointer

2616 ❍ ASI_LD_TWINX_REAL
(ASI_LDTX_REAL)
ASI_QUAD_LDD_REALD†

R2,7,11 (decoded) B — 128-bit atomic twin
extended-word load from
real address

2716 ❍ ASI_LD_TWINX_NUCLEUS
(ASI_LDTX_N)

R2,7,11 (decoded) T — Nucleus context, 128-bit
atomic load twin extended-
word

2816–
2916

❍ — —2,12
— — — Implementation dependent1

2A16 ❍ ASI_LD_TWINX_AS_IF_USER_
PRIMARY_LITTLE
(ASI_LDTX_AIUPL)

R2,7,11 (decoded) T — Primary address space, 128-
bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2B16 ❍ ASI_LD_TWINX_AS_IF_USER_
SECONDARY_LITTLE
(ASI_LDTX_AIUS_L)

R2,7,11 (decoded) T — Secondary address space,
128-bit atomic load twin
extended-word, as if user
(nonprivileged), little-endian

2C16 ❍ — —2 — — — Implementation dependent1

2D16 ❍ — —2,12 — — — Implementation dependent1

2E16 ❍ ASI_LD_TWINX_REAL_LITTLE
(ASI_LDTX_REAL_L)
ASI_QUAD_LDD_REAL_LITTLED†

R2,7,11 (decoded) B — 128-bit atomic twin-
extended-word load from
real address, little-endian

TABLE 10-1 UltraSPARC Architecture ASIs (4 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
392 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

2F16 ❍ ASI_LD_TWINX_NUCLEUS_LITTLE
(ASI_LDTX_NL)

R2,7,11 (decoded) T — Nucleus context, 128-bit
atomic load twin extended-
word, little-endian

3016–
7F16

● — —3 — — — Reserved for use in
hyperprivilege mode

4516 ❍ — —3,13 — — — Implementation dependent1

4616–
4816

❍ — —3,13 — — — Implementation dependent1

4916 ❍ — —3,13 — — — Implementation dependent1

4A16–
4B16

❍ — —3,13 — — — Implementation dependent1

4C16 ❍ Error Status and Enable Registers Implementation dependent1

8016 ● ASI_PRIMARY (ASI_P) RW4 (decoded) T — Implicit primary address
space

8116 ● ASI_SECONDARY (ASI_S) RW4 (decoded) T — Secondary address space

8216 ● ASI_PRIMARY_NO_FAULT (ASI_PNF) R9,11 (decoded) T — Primary address space, no
fault

8316 ● ASI_SECONDARY_NO_FAULT
(ASI_SNF)

R9,11 (decoded) T — Secondary address space, no
fault

8416–
8716

● — —16 — — — Reserved

8816 ● ASI_PRIMARY_LITTLE (ASI_PL) RW4 (decoded) T — Implicit primary address
space, little-endian

8916 ● ASI_SECONDARY_LITTLE (ASI_SL) RW4 (decoded) T — Secondary address space,
little-endian

8A16 ● ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R9,11 (decoded) T — Primary address space, no
fault, little-endian

8B16 ● ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

R9,11 (decoded) T — Physical address,
noncacheable, with side
effect, little-endian

8C16–
BF16

● — —16 — — — Reserved

C016 ❍ ASI_PST8_PRIMARY (ASI_PST8_P) W8,10,14 (decoded) T — Primary address space, 8×8-
bit partial store

C116 ❍ ASI_PST8_SECONDARY
(ASI_PST8_S)

W8,10,14 (decoded) T — Secondary address space,
8x8-bit partial store

TABLE 10-1 UltraSPARC Architecture ASIs (5 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 393

-

-

-

C216 ❍ ASI_PST16_PRIMARY
(ASI_PST16_P)

W8,10,14 (decoded) T — Primary address space,
4×16-bit partial store

C316 ❍ ASI_PST16_SECONDARY
(ASI_PST16_S)

W8,10,14 (decoded) T — Secondary address space,
4×16-bit partial store

C416 ❍ ASI_PST32_PRIMARY
(ASI_PST32_P)

W8,10,14 (decoded) T — Primary address space, 2x32
bit partial store

C516 ❍ ASI_PST32_SECONDARY
(ASI_PST32_S)

W8,10,14 (decoded) T — Secondary address space,
2×32-bit partial store

C616–
C716

● — —15 — — — Implementation dependent1

C816 ❍ ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W8,10,14 (decoded) T — Primary address space, 8x8-
bit partial store, little-endian

C916 ❍ ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W8,10,14 (decoded) T — Secondary address space,
8×8-bit partial store, little-
endian

CA16 ❍ ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W8,10,14 (decoded) T — Primary address space, 4x16
bit partial store, little-endian

CB16 ❍ ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W8,10,14 (decoded) T — Secondary address space,
4×16-bit partial store, little-
endian

CC16 ❍ ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W8,10,14 (decoded) T — Primary address space,
2×32-bit partial store, little-
endian

CD16 ❍ ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W8,10,14 (decoded) T — Second address space, 2×32-
bit partial store, little-endian

CE16–
CF16

● — —15 — — — Implementation dependent1

D016 ❍ ASI_FL8_PRIMARY (ASI_FL8_P) RW8,14 (decoded) T — Primary address space, one
8-bit floating-point load/
store

D116 ❍ ASI_FL8_SECONDARY (ASI_FL8_S) RW8,14 (decoded) T — Second address space, one 8
bit floating-point load/store

D216 ❍ ASI_FL16_PRIMARY (ASI_FL16_P) RW8,14 (decoded) T — Primary address space, one
16-bit floating-point load/
store

D316 ❍ ASI_FL16_SECONDARY
(ASI_FL16_S)

RW8,14 (decoded) T — Second address space, one
16-bit floating-point load/
store

D416–
D716

● — —15 — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (6 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
394 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

-

D816 ❍ ASI_FL8_PRIMARY_LITTLE
(ASI_FL8_PL)

RW8,14 (decoded) T — Primary address space, one
8-bit floating point load/
store, little-endian

D916 ❍ ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW8,14 (decoded) T — Second address space, one 8
bit floating point load/store,
little-endian

DA16 ❍ ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW8,14 (decoded) T — Primary address space, one
16-bit floating-point load/
store, little-endian

DB16 ❍ ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW8,14 (decoded) T — Second address space, one
16-bit floating point load/
store, little-endian

DC16
–DF16

● — —15 — — — Implementation dependent1

E016–
E116

● — —15 — — — Reserved

E216 ❍ ASI_LD_TWINX_PRIMARY
(ASI_LDTX_P)

R19 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word

E316 ❍ ASI_LD_TWINX_SECONDARY
(ASI_LDTX_S)

R19 (decoded) T — Secondary address space,
128-bit atomic load twin
extended-word

E416–
E916

● — —15 — — — Implementation dependent1

EA16 ❍ ASI_LD_TWINX_PRIMARY_LITTLE
(ASI_LDTX_PL)

R19 (decoded) T — Primary address space, 128-
bit atomic load twin
extended word, little endian

EB16 ❍ ASI_LD_TWINX_SECONDARY_LITTLE

(ASI_LDTX_SL)
R19 (decoded) T — Secondary address space,

128-bit atomic load twin
extended word, little endian

EC16–
EF16

❍ — —15 — — — Implementation dependent1

F016 ❍ ASI_BLOCK_PRIMARY
(ASI_BLK_P)

RW8,14 (decoded) T — Primary address space, 8x8-
byte block load/store

F116 ❍ ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW8,14 (decoded) T — Secondary address space,
8x8- byte block load/store

F216–
F516

● — —15 — — — Implementation dependent1

F616–
F716

● — — — — — Implementation dependent1

TABLE 10-1 UltraSPARC Architecture ASIs (7 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
CHAPTER 10 • Address Space Identifiers (ASIs) 395

F816 ❍ ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW8,14 (decoded) T — Primary address space, 8x8-
byte block load/store, little
endian

F916 ❍ ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW8,14 (decoded) T — Secondary address space,
8x8- byte block load/store,
little endian

FA16–
FD16

● — —15 — — — Implementation dependent1

FE16–
FF16

● — —15 — — — Implementation dependent1

† This ASI name has been changed, for consistency; although use of this name is
deprecated and software should use the new name, the old name is listed here for
compatibility.

1 Implementation dependent ASI (impl. dep. #29); available for use by implementors.
Software that references this ASI may not be portable.

2 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode causes a privileged_action exception.

3 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in nonprivileged mode or privileged mode causes a
privileged_action exception.

4 May be used with all load alternate, store alternate, atomic alternate and prefetch
alternate instructions (CASA, CASXA, LDSTUBA, LDTWA, LDDFA, LDFA, LDSBA,
LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA, PREFETCHA, STBA, STTWA,
STDFA, STFA, STHA, STWA, STXA, SWAPA).

5 May be used with all of the following load alternate and store alternate instructions:
LDTWA, LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
STBA, STTWA, STDFA, STFA, STHA, STWA, STXA. Use with an atomic alternate or
prefetch alternate instruction (CASA, CASXA, LDSTUBA, SWAPA or PREFETCHA)
causes a data_access_exception exception.

6 May only be used in a LDXA or STXA instruction for RW ASIs, LDXA for read-only ASIs
and STXA for write-only ASIs. Use of LDXA for write-only ASIs, STXA for read-only
ASIs, or any other load alternate, store alternate, atomic alternate or prefetch alternate
instruction causes a data_access_exception exception.

7 May only be used in an LDTXA instruction. Use of this ASI in any other load alternate,
store alternate, atomic alternate or prefetch alternate instruction causes a
data_access_exception exception.

8 May only be used in a LDDFA or STDFA instruction for RW ASIs, LDDFA for read-only
ASIs and STDFA for write-only ASIs. Use of LDDFA for write-only ASIs, STDFA for
read-only ASIs, or any other load alternate, store alternate, atomic alternate or prefetch
alternate instruction causes a data_access_exception exception.

TABLE 10-1 UltraSPARC Architecture ASIs (8 of 8)

ASI
Value

req’d(●)
opt’l (❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address
(VA)

T/
Non-T/
Bypass

Shared
/per
strand Description
396 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

10.4 Special Memory Access ASIs
This section describes special memory access ASIs that are not described in other
sections.

10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816
(ASI_*AS_IF_USER_*)
These ASI are intended to be used in accesses from privileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are
subject to privilege-related exceptions. They are distinguished from each other by
the context from which the access is made, as described in TABLE 10-2.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a data_access_exception (privilege violation)
exception occurs

9 May be used with all of the following load and prefetch alternate instructions: LDTWA,
LDDFA, LDFA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, LDUWA, LDXA,
PREFETCHA. Use with an atomic alternate or store alternate instruction causes a
data_access_exception exception.

10 Write(store)-only ASI; an attempted load alternate, atomic alternate, or prefetch alternate
instruction to this ASI causes a data_access_exception exception.

11 Read(load)-only ASI; an attempted store alternate or atomic alternate instruction to this
ASI causes a data_access_exception exception.

12 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in privileged mode causes a data_access_exception exception.

14 An attempted access to this ASI may cause an exception (see Special Memory Access ASIs
on page 397 for details).

15 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to this ASI in any mode causes a data_access_exception exception if this ASI
is not implemented by the model dependent implementation.

16 An attempted load alternate, store alternate, atomic alternate or prefetch alternate
instruction to a reserved ASI in any mode causes a data_access_exception exception.

17 The Queue Tail Registers (ASI 2516) are read-only. An attempted write to the Queue Tail
Registers causes a data_access_exception exception
CHAPTER 10 • Address Space Identifiers (ASIs) 397

■ Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie = 0, the access is big-endian;
otherwise, it is little-endian.

10.4.2 ASIs 1816, 1916, 1E16, and 1F16
(ASI_*AS_IF_USER_*_LITTLE)
These ASIs are little-endian versions of ASIs 1016, 1116, 1616, and 1716
(ASI_AS_IF_USER_*), described in section 10.4.1. Each operates identically to the
corresponding non-little-endian ASI, except that if an access occurs its endianness is
the opposite of that for the corresponding non-little-endian ASI.

These ASI are intended to be used in accesses from privileged mode, but are
processed as if they were issued from nonprivileged mode. Therefore, they are
subject to privilege-related exceptions. They are distinguished from each other by
the context from which the access is made, as described in TABLE 10-3.

When one of these ASIs is specified in a load alternate or store alternate instruction,
the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ If U/DMMU TTE.p = 1, a data_access_exception (privilege violation)
exception occurs

■ Otherwise, the access occurs and its endianness is determined by the U/
DMMU TTE.ie bit. If U/DMMU TTE.ie = 0, the access is little-endian;
otherwise, it is big-endian.

TABLE 10-2 Privileged ASI_*AS_IF_USER_* ASIs

ASI Names
Addressing

(Context) Endianness of Access

1016 ASI_AS_IF_USER_PRIMARY (ASI_AIUP) Virtual
(Primary) Big-endian when

U/DMMU
TTE.ie = 0;
little-endian when
U/DMMU
TTE.ie = 1

1116 ASI_AS_IF_USER_SECONDARY (ASI_AIUS) Virtual
(Secondary)

1616 ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

Virtual
(Primary)

1716 ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

Virtual
(Secondary)
398 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

10.4.3 ASI 1416 (ASI_REAL)
When ASI_REAL is specified in any load alternate, store alternate or prefetch
alternate instruction, the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ In any other privilege mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

Even if data address translation is disabled, an access with this ASI is still a
cacheable access.

10.4.4 ASI 1516 (ASI_REAL_IO)
Accesses with ASI_REAL_IO bypass the external cache and behave as if the side
effect bit (TTE.e bit) is set. When this ASI is specified in any load alternate or store
alternate instruction, the virtual processor behaves as follows:

■ In nonprivileged mode, a privileged_action exception occurs

■ If used with a CASA, CASXA, LDSTUBA, SWAPA, or PREFETCHA instruction, a
data_access_exception exception occurs

■ Used with any other load alternate or store alternate instuction, in privileged
mode:

■ VA is passed through to RA

■ During the address translation, context values are disregarded.

TABLE 10-3 Privileged ASI_*AS_IF_USER_*_LITTLE ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

1816 ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

Virtual
(Primary) Little-endian

when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

1916 ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

Virtual
(Secondary)

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
(ASI_BLK_AIUP)

Virtual
(Primary)

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
(ASI_BLK_AIUSL)

Virtual
(Secondary)
CHAPTER 10 • Address Space Identifiers (ASIs) 399

■ The endianness of the access is dertermined by the U/DMMU TTE.ie bit; if U/
DMMU TTE.ie = 0, the access is big-endian, otherwise it is little-endian.

10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
ASI_REAL_LITTLE is a little-endian version of ASI 1416 (ASI_REAL). It operates
identically to ASI_REAL, except if an access occurs, its endianness the opposite of
that for ASI_REAL.

10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
ASI_REAL_IO_LITTLE is a little-endian version of ASI 1516 (ASI_REAL_IO). It
operates identically to ASI_REAL_IO, except if an access occurs, its endianness the
opposite of that for ASI_REAL_IO.

10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16
(Privileged Load Integer Twin Extended
Word)
ASIs 2216, 2316, 2716, 2A16, 2B16 and 2F16 exist for use with the (nonportable)
LDTXA instruction as atomic Load Integer Twin Extended Word operations (see Load
Integer Twin Extended Word from Alternate Space on page 250). These ASIs are
distinguished by the context from which the access is made and the endianness of
the access, as described in TABLE 10-4.
400 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin
Extended Word, Real Addressing)
ASIs 2616 and 2E16 exist for use with the LDTXA instruction as atomic Load Integer
Twin Extended Word operations using Real addressing (see Load Integer Twin
Extended Word from Alternate Space on page 250). These two ASIs are distinguished by
the endianness of the access, as described in TABLE 10-5.

TABLE 10-4 Privileged Load Integer Twin Extended Word / Block Store Init ASIs

ASI Names
Addressing

(Context)
Endianness of

Access

2216 ASI_LD_TWINX_AS_IF_USER_PRIMARY
(ASI_LDTX_AIUP)

Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0;
little-endian
when U/
DMMU
TTE.ie = 1

2316 ASI_LD_TWINX_AS_IF_USER_SECONDARY
(ASI_LDTX_AIUS)

Virtual
(Secondary)

2716 ASI_LD_TWINX_NUCLEUS (ASI_LDTX_N) Virtual
(Nucleus)

2A16 ASI_LD_TWINX_AS_IF_USER_PRIMARY_LITTL
E (ASI_LDTX_AIUP_L)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0;
big-endian
when U/
DMMU
TTE.ie = 1

2B16 ASI_LD_TWINX_AS_IF_USER_SECONDARY_
LITTLE (ASI_LDTX_AIUS_L)

Virtual
(Secondary)

2F16 ASI_LD_TWINX_NUCLEUS_LITTLE
(ASI_LDTX_NL)

Virtual
(Nucleus)

Compatibility
Note

These ASIs replaced ASIs 2416 and 2C16 used in earlier
UltraSPARC implementations; see the detailed Compatibility Note
on page 406 for details.
CHAPTER 10 • Address Space Identifiers (ASIs) 401

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.9 ASIs E216, E316, EA16, EB16
(Nonprivileged Load Integer Twin Extended
Word)
ASIs E216, E316, EA16, and EB16 exist for use with the (nonportable) LDTXA
instruction as atomic Load Integer Twin Extended Word operations (see Load Integer
Twin Extended Word from Alternate Space on page 250). These ASIs are distinguished
by the address space accessed (Primary or Secondary) and the endianness of the
access, as described in TABLE 10-6.

TABLE 10-5 Load Integer Twin Extended Word (Real) ASIs

ASI Name
Addressing

(Context) Endianness of Access

2616 ASI_LD_TWINX_REAL
(ASI_LDTX_REAL)

Real
(—)

Big-endian when U/DMMU
TTE.ie = 0; little-endian when U/
DMMU TTE.ie = 1

2E16 ASI_LD_TWINX_REAL_LITTLE
(ASI_LDTX_REAL_L)

Real
(—)

Little-endian when U/DMMU
TTE.ie = 0; big-endian when U/
DMMU TTE.ie = 1

Compatibility
Note

These ASIs replaced ASIs 3416 and 3C16 used in earlier
UltraSPARC implementations; see the Compatibility Note on
page 406 for details.
402 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

When these ASIs are used with LDTXA, a mem_address_not_aligned exception is
generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate, Store Alternate, Atomic Load-
Store Alternate, or PREFETCHA instruction, a data_access_exception exception is
always generated and mem_address_not_aligned is not generated.

10.4.10 Block Load and Store ASIs
ASIs 1616, 1716, 1E16, 1F16, F016, F116, F816, and F916 exist for use with LDDFA and
STDFA instructions as Block Load (LDBLOCKF) and Block Store (STBLOCKF)
operations (see Block Load on page 232 and Block Store on page 312).

When these ASIs are used with the LDDFA (STDFA) opcode for Block Load (Store),
a mem_address_not_aligned exception is generated if the operand address is not 64-
byte aligned.

If a Block Load or Block Store ASI is used with any other Load Alternate, Store
Alternate, Atomic Load-Store Alternate, or PREFETCHA instruction, a
data_access_exception exception is always generated and
mem_address_not_aligned is not generated.

TABLE 10-6 Load Integer Twin Extended Word ASIs

ASI Names
Addressing
(Context)

Endianness of
Access

E216 ASI_LD_TWINX_PRIMARY (ASI_LDTX_P) Virtual
(Primary)

Big-endian
when U/
DMMU
TTE.ie = 0,
little-endian
when U/
DMMU
TTE.ie = 1

E316 ASI_LD_TWINX_SECONDARY
(ASI_LDTX_S)

Virtual
(Secondary)

EA16 ASI_LD_TWINX_PRIMARY_LITTLE
(ASI_LDTX_PL)

Virtual
(Primary)

Little-endian
when U/
DMMU
TTE.ie = 0,
big-endian
when U/
DMMU
TTE.ie = 1

EB16 ASI_LD_TWINX_SECONDARY_LITTLE
(ASI_LDTX_SL)

Virtual
(Secondary)
CHAPTER 10 • Address Space Identifiers (ASIs) 403

10.4.11 Partial Store ASIs
ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction as Partial
Store (STPARTIALF) operations (see Store Partial Floating-Point on page 325).

When these ASIs are used with STDFA for Partial Store, a
mem_address_not_aligned exception is generated if the operand address is not 8-
byte aligned and an illegal_instruction exception is generated if i = 1 in the
instruction and the ASI register contains one of the Partial Store ASIs.

If one of these ASIs is used with a Store Alternate instruction other than STDFA, a
Load Alternate, Store Alternate, Atomic Load-Store Alternate, or PREFETCHA
instruction, a data_access_exception exception is generated and
mem_address_not_aligned, LDDF_mem_address_not_aligned, and
illegal_instruction (for i = 1) are not generated.

ASIs C016–C516 and C816–CD16 are only defined for use in Partial Store operations
(see page 325). None of them should be used with LDDFA; however, if any of those
ASIs is used with LDDFA, the resulting behavior is specified in the LDDFA
instruction description on page 241.

10.4.12 Short Floating-Point Load and Store ASIs
ASIs D016–D316 and D816–DB16 exist for use with the LDDFA and STDFA
instructions as Short Floating-point Load and Store operations (see Load Floating-
Point on page 236 and Store Floating-Point on page 316).

When ASI D216, D316, DA16, or DB16 is used with LDDFA (STDFA) for a 16-bit Short
Floating-point Load (Store), a mem_address_not_aligned exception is generated if
the operand address is not halfword-aligned.

If any of these ASIs are used with any other Load Alternate, Store Alternate, Atomic
Load-Store Alternate, or PREFETCHA instruction, a data_access_exception
exception is always generated and mem_address_not_aligned is not generated.

10.5 ASI-Accessible Registers
In this section the Data Watchpoint registers, and scratchpad registers are described.

A list of UltraSPARC Architecture 2005 ASIs is shown in TABLE 10-1 on page 389.
404 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

10.5.1 Privileged Scratchpad Registers
(ASI_SCRATCHPAD)
An UltraSPARC Architecture virtual processor includes eight Scratchpad registers
(64 bits each, read/write accessible) (impl.dep. #302-U4-Cs10). The use of the
Scratchpad registers is completely defined by software.

For conventional uses of Scratchpad registers, see “Scratchpad Register Usage” in
Software Considerations, contained in the separate volume UltraSPARC Architecture
Application Notes.

The Scratchpad registers are intended to be used by performance-critical trap
handler code.

The addresses of the privileged scratchpad registers are defined in TABLE 10-7.

IMPL. DEP. #404-S10: The degree to which Scratchpad registers 4–7 are accessible to
privileged software is implementation dependent. Each may be
(1) fully accessible,
(2) accessible, with access much slower than to scratchpad registers 0–3, or
(3) inaccessible (cause a data_access_exception).

10.5.2 ASI Changes in the UltraSPARC Architecture
The following Compatibility Note summarize the UltraSPARC ASI changes in
UltraSPARC Architecture.

TABLE 10-7 Scratchpad Registers

Assembly Language ASI Name ASI # Virtual Address
Privileged Scratchpad

Register #

ASI_SCRATCHPAD 2016

0016 0

0816 1

1016 2

1816 3

2016 4

2816 5

3016 6

3816 7

V9 Compatibility
Note

Privileged scratchpad registers are an UltraSPARC Architecture
extension to SPARC V9.

D1
CHAPTER 10 • Address Space Identifiers (ASIs) 405

Compatibility
Note

The names of several ASIs used in earlier UltraSPARC
implementations have changed in UltraSPARC Architecture. Their
functions have not changed; just their names have changed.

ASI# Previous UltraSPARC UltraSPARC Architecture

1416 ASI_PHYS_USE_EC ASI_REAL

1516 ASI_PHYS_BYPASS_EC_WITH_EBIT ASI_REAL_IO

1C16 ASI_PHYS_USE_EC_LITTLE ASI_REAL_LITTLE
(ASI_PHYS_USE_EC_L)

1D16 ASI_PHYS_BYPASS_EC_WITH_ ASI_REAL_IO_LITTLE
EBIT_LITTLE
(ASI_PHY_BYPASS_EC_WITH_EBIT_L)

Compatibility
Note

The names and ASI assignments (but not functions) changed
between earlier UltraSPARC implementations and UltraSPARC
Architecture, for the following ASIs:

Previous UltraSPARC UltraSPARC Architecture
ASI# Name ASI# Name

2416 ASI_NUCLEUS_QUAD_LDD 2716 ASI_LD_TWINX_NUCLEUS
(ASI_LDTX_N)

2C16 ASI_NUCLEUS_QUAD_LDD_ 2F16 ASI_LD_TWINX_NUCLEUS_
LITTLE LITTLE
(ASI_NUCLEUS_QUAD_LDD_L) (ASI_LDTX_NL)
406 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 11

Performance Instrumentation

(contents to be supplied in a later revision)
407

408 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 12

Traps

A trap is a vectored transfer of control to software running in a privilege mode (see
page 410) with (typically) greater privileges. A trap in nonprivileged mode can be
delivered to privileged mode or hyperprivileged mode. A trap that occurs while
executing in privileged mode can be delivered to privileged mode or
hyperprivileged mode.

The actual transfer of control occurs through a trap table that contains the first eight
instructions (32 instructions for clean_window, window spill, and window fill, traps)
of each trap handler. The virtual base address of the trap table for traps to be
delivered in privileged mode is specified in the Trap Base Address (TBA) register.
The displacement within the table is determined by the trap type and the current
trap level (TL). One-half of each table is reserved for hardware traps; the other half is
reserved for software traps generated by Tcc instructions.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following:

1. Save certain virtual processor state (such as program counters, CWP, ASI, CCR,
PSTATE, and the trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The virtual processor must appear to behave as though, before executing
each instruction, it determines if there are any pending exceptions or interrupt
requests. If there are pending exceptions or interrupt requests, the virtual processor
selects the highest-priority exception or interrupt request and causes a trap.
409

Thus, an exception is a condition that makes it impossible for the virtual processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the virtual processor when it changes the instruction flow
in response to the presence of an exception, interrupt, reset, or Tcc instruction.

An interrupt is a request for service presented to a virtual processor by an external
device.

Traps are described in these sections:

■ Virtual Processor Privilege Modes on page 410.
■ Virtual Processor States and Traps on page 412.
■ Trap Categories on page 412.
■ Trap Control on page 417.
■ Trap-Table Entry Addresses on page 418.
■ Trap Processing on page 429.
■ Exception and Interrupt Descriptions on page 431.
■ Register Window Traps on page 436.

12.1 Virtual Processor Privilege Modes
An UltraSPARC Architecture virtual processor is always operating in a discrete
privilege mode. The privilege modes are listed below in order of increasing
privilege:

■ Nonprivileged mode (also known as “user mode”)

■ Privileged mode, in which supervisor (operating system) software primarily
operates

■ Hyperprivileged mode (not described in this document)

The virtual processor’s operating mode is determined by the state of two mode bits,
as shown in TABLE 12-1.

V9 Compatibility
Note

Exceptions referred to as “catastrophic error exceptions” in the
SPARC V9 specification do not exist in the UltraSPARC
Architecture; they are handled using normal error-reporting
exceptions. (impl. dep. #31-V8-Cs10)

TABLE 12-1 Virtual Processor Privilege Modes

PSTATE.priv Virtual Processor Privilege Mode

0 Nonprivileged

1 Privileged
410 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

A trap is delivered to the virtual processor in either privileged mode or
hyperprivileged mode; in which mode the trap is delivered depends on:

■ Its trap type
■ The trap level (TL) at the time the trap is taken
■ The privilege mode at the time the trap is taken

Traps detected in nonprivileged and privileged mode can be delivered to the virtual
processor in privileged mode or hyperprivileged mode.

TABLE 12-4 on page 422 indicates in which mode each trap is processed, based on the
privilege mode at which it was detected.

A trap delivered to privileged mode uses the privileged-mode trap vector, based
upon the TBA register. See Trap-Table Entry Address to Privileged Mode on page 419 for
details.

The maximum trap level at which privileged software may execute is MAXPTL

(which, on an virtual processor, is 2)..

FIGURE 12-1 shows how a virtual processor transitions between privilege modes,
excluding transitions that can occur due to direct software writes to PSTATE.priv. In
this figure, indicates a “trap destined for privileged mode” and indicates a
“trap destined for hyperprivileged mode”.

FIGURE 12-1 Virtual Processor Privilege Mode Transition Diagram

Notes Execution in nonprivileged mode with TL > 0 is an invalid
condition that privileged software should never allow to occur.

 PT HT

 HT

Nonprivileged

 HT

@ TL < MAXPTL (2) PT

 HT@
TL < MAXPTL (2)

 PT HyperprivilegedPrivileged

DONE2,
RETRY2

DONE1,
RETRY1

1 if (TSTATE[TL].PSTATE.priv = 0) 2 if (TSTATE[TL].PSTATE.priv = 1)
CHAPTER 12 • Traps 411

12.2 Virtual Processor States and Traps
The value of TL affects the generated trap vector address. TL also determines where
(that is, into which element of the TSTATE array) the states are saved.

12.2.0.1 Usage of Trap Levels

If MAXPTL = 2 in an UltraSPARC Architecture implementation, the trap levels might
be used as shown in TABLE 12-2.

12.3 Trap Categories
An exception, error, or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

12.3.1 Precise Traps
A precise trap is induced by a particular instruction and occurs before any program-
visible state has been changed by the trap-inducing instructions. When a precise trap
occurs, several conditions must be true:

■ The PC saved in TPC[TL] points to the instruction that induced the trap and the
NPC saved in TNPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap have completed
execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

TABLE 12-2 Typical Usage for Trap Levels

TL
Corresponding

Execution Mode Usage

0 Nonprivileged Normal execution

1 Privileged System calls; interrupt handlers; instruction emulation

2 Privileged Window spill/fill handler
412 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Among the actions that trap handler software might take when processing a precise
trap are:

■ Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC ← old PC, NPC ← old NPC).

■ Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC ← old NPC,
NPC ← old NPC + 4).

■ Terminate the program or process associated with the trap.

12.3.2 Deferred Traps
A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

There are two classes of deferred traps:

■ Termination deferred traps — The instruction (usually a store) that caused the trap
has passed the retirement point of execution (the TPC has been updated to point
to an instruction beyond the one that caused the trap). The trap condition is an
error that prevents the instruction from completing and its results becoming
globally visible. A termination deferred trap has high trap priority, second only to
the priority of resets.

■ Restartable deferred traps — The program-visible state has been changed by the
trap-inducing instruction or by one or more other instructions after the trap-
inducing instruction.

The fundamental characteristic of a restartable deferred trap is that the state of the
virtual processor on which the trap occurred may not be consistent with any precise
point in the instruction sequence being executed on that virtual processor. When a
restartable deferred trap occurs, TPC[TL] and TNPC[TL] contain a PC value and an
NPC value, respectively, corresponding to a point in the instruction sequence being
executed on the virtual processor. This PC may correspond to the trap-inducing
instruction or it may correspond to an instruction following the trap-inducing
instruction. With a restartable deferred trap, program-visible updates may be
missing from instructions prior to the instruction to which TPC[TL] refers. The

Programming
Note

Not enough state is saved for execution of the instruction stream
to resume with the instruction that caused the trap. Therefore,
the trap handler must terminate the process containing the
instruction that caused the trap.

SPARC V9
Compatibility

Note

A restartable deferred trap is the “deferred trap” defined in the
SPARC V9 specification.
CHAPTER 12 • Traps 413

missing updates are limited to instructions in the range from (and including) the
actual trap-inducing instruction up to (but not including) the instruction to which
TPC[TL] refers. By definition, the instruction to which TPC[TL] refers has not yet
executed, therefore it cannot have any updates, missing or otherwise.

With a restartable deferred trap there must exist sufficient information to report the
error that caused the deferred trap. If system software can recover from the error
that caused the deferred trap, then there must be sufficient information to generate a
consistent state within the processor so that execution can resume. Included in that
information must be an indication of the mode (nonprivileged, privileged, or
hyperprivileged) in which the trap-inducing instruction was issued.

How the information necessary for repairing the state to make it consistent state is
maintained and how the state is repaired to a consistent state are implementation
dependent. It is also implementation dependent whether execution resumes at the
point of the trap-inducing instruction or at an arbitrary point between the trap-
inducing instruction and the instruction pointed to by the TPC[TL], inclusively.

Associated with a particular restartable deferred trap implementation, the following
must exist:

■ An instruction that causes a potentially outstanding restartable deferred trap
exception to be taken as a trap

■ Instructions with sufficient privilege to access the state information needed by
software to emulate the restartable deferred trap-inducing instruction and to
resume execution of the trapped instruction stream.

Software should resume execution with the instruction starting at the instruction to
which TPC[TL] refers. Hardware should provide enough information for software to
recreate virtual processor state and update it to the point just before execution of the
instruction to which TPC[TL] refers. After software has updated virtual processor
state up to that point, it can then resume execution by issuing a RETRY instruction.

IMPL. DEP. #32-V8-Ms10: Whether any restartable deferred traps (and, possibly,
associated deferred-trap queues) are present is implementation dependent.

Among the actions software can take after a restartable deferred trap are these:

■ Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated restartable
deferred trap state queue, and use RETRY to return control to the instruction at
which the deferred trap was invoked.

■ Terminate the program or process associated with the restartable deferred trap.

Programming
Note

Resuming execution may require the emulation of instructions
that had not completed execution at the time of the restartable
deferred trap, that is, those instructions in the deferred-trap
queue.
414 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

A deferred trap (of either of the two classes) is always delivered to the virtual
processor in hyperprivileged mode.

12.3.3 Disrupting Traps

12.3.3.1 Disrupting versus Precise and Deferred Traps

A disrupting trap is caused by a condition (for example, an interrupt) rather than
directly by a particular instruction. This distinguishes it from precise and deferred
traps.

When a disrupting trap has been serviced, trap handler software normally arranges
for program execution to resume where it left off. This distinguishes disrupting traps
from reset traps, since a reset trap vectors to a unique reset address and execution of
the program that was running when the reset occurred is generally not expected to
resume.

When a disrupting trap occurs, the following conditions are true:

1. The PC saved in TPC[TL] points to an instruction in the disrupted program
stream and the NPC value saved in TNPC[TL] points to the instruction that was
to be executed after that one.

2. All instructions issued before the instruction indicated by TPC[TL] have
retired.

3. The instruction to which TPC[TL] refers and any instruction(s) that were
issued after it remain unexecuted.

A disrupting trap may be due to an interrupt request directly related to a
previously-executed instruction; for example, when a previous instruction sets a bit
in the SOFTINT register.

12.3.3.2 Causes of Disrupting Traps

A disrupting trap may occur due to either an interrupt request or an error not
directly related to instruction processing. The source of an interrupt request may be
either internal or external. An interrupt request can be induced by the assertion of a
signal not directly related to any particular virtual processor or memory state, for
example, the assertion of an “I/O done” signal.

A condition that causes a disrupting trap persists until the condition is cleared.

12.3.3.3 Conditioning of Disrupting Traps

How disrupting traps are conditioned is affected by:
CHAPTER 12 • Traps 415

■ The privilege mode in effect when the trap is outstanding, just before the trap is
actually taken (regardless of the privilege mode that was in effect when the
exception was detected).

■ The privilege mode for which delivery of the trap is destined

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Privileged mode. An outstanding disrupting trap condition in either
nonprivileged mode or privileged mode and destined for delivery to privileged
mode is held pending while the Interrupt Enable (ie) field of PSTATE is zero
(PSTATE.ie = 0). interrupt_level_n interrupts are further conditioned by the Processor
Interrupt Level (PIL) register. An interrupt is held pending while either
PSTATE.ie = 0 or the condition’s interrupt level is less than or equal to the level
specified in PIL. When delivery of this disrupting trap is enabled by PSTATE.ie = 1,
it is delivered to the virtual processor in privileged mode if TL < MAXPTL (2, in
UltraSPARC Architecture 2005 implementations).

Outstanding in Nonprivileged or Privileged mode, destined for delivery in
Hyperprivileged mode. An outstanding disrupting trap condition detected while
in either nonprivileged mode or privileged mode and destined for delivery in
hyperprivileged mode is never masked; it is delivered immediately.

The above is summarized in TABLE 12-3.

12.3.3.4 Trap Handler Actions for Disrupting Traps

Among the actions that trap-handler software might take to process a disrupting
trap are:

■ Use RETRY to return to the instruction at which the trap was invoked
(PC ← old PC, NPC ← old NPC).

■ Terminate the program or process associated with the trap.

TABLE 12-3 Conditioning of Disrupting Traps

Type of Disrupting
Trap Condition

Current Virtual Processor
Privilege Mode

Disposition of Disrupting Traps, based on privilege
mode in which the trap is destined to be delivered

Privileged Hyperprivileged

Interrupt_level_n

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0 or
interrupt level ≤ PIL

—

All other disrupting
traps

Nonprivileged or
Privileged

Held pending while
PSTATE.ie = 0

Delivered
immediately
416 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

12.3.4 Uses of the Trap Categories
The SPARC V9 trap model stipulates the following:

1. Reset traps occur asynchronously to program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. See TABLE 12-4, TABLE 12-5, and
Exception and Interrupt Descriptions on page 431 for identification of which traps
are precise.

3. In an UltraSPARC Architecture implementation, all exceptions that occur as the
result of program execution are precise (impl. dep. #33-V8-Cs10).

4. An error detected after the initial access of a multiple-access load instruction (for
example, LDTX or LDBLOCKF) should be precise. Thus, a trap due to the second
memory access can occur. However, the processor state should not have been
modified by the first access.

5. Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

12.4 Trap Control
Several registers control how any given exception is processed, for example:

■ The interrupt enable (ie) field in PSTATE and the Processor Interrupt Level (PIL)
register control interrupt processing. See Disrupting Traps on page 415 for details.

■ The enable floating-point unit (fef) field in FPRS, the floating-point unit enable
(pef) field in PSTATE, and the trap enable mask (tem) in the FSR control floating-
point traps.

■ The TL register, which contains the current level of trap nesting, affects whether
the trap is processed in privileged mode or hyperprivileged mode.

■ PSTATE.tle determines whether implicit data accesses in the trap handler routine
will be performed using big-endian or little-endian byte order.

Between the execution of instructions, the virtual processor prioritizes the
outstanding exceptions, errors, and interrupt requests. At any given time, only the
highest-priority exception, error, or interrupt request is taken as a trap. When there
are multiple interrupts outstanding, the interrupt with the highest interrupt level is
selected. When there are multiple outstanding exceptions, errors, and/or interrupt
CHAPTER 12 • Traps 417

requests, a trap occurs based on the exception, error, or interrupt with the highest
priority (numerically lowest priority number in TABLE 12-5). See Trap Priorities on
page 428.

12.4.1 PIL Control
When an interrupt request occurs, the virtual processor compares its interrupt
request level against the value in the Processor Interrupt Level (PIL) register. If the
interrupt request level is greater than PIL and no higher-priority exception is
outstanding, then the virtual processor takes a trap using the appropriate
interrupt_level_n trap vector.

12.4.2 FSR.tem Control
The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (tem) field of the FSR. If a particular bit of
FSR.tem is 1, the associated IEEE_754_exception can cause an
fp_exception_ieee_754 trap.

If a particular bit of FSR.tem is 0, the associated IEEE_754_exception does not cause
an fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded
in the FSR ’s accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination F register, FSR.fccn, and FSR.aexc fields remain unchanged. However,
if an IEEE_754_exception does not result in a trap, then the F register, FSR.fccn, and
FSR.aexc fields are updated to their new values.

12.5 Trap-Table Entry Addresses
Traps are delivered to the virtual processor in either privileged mode or
hyperprivileged mode, depending on the trap type, the value of TL at the time the
trap is taken, and the privilege mode at the time the exception was detected. See
TABLE 12-4 on page 422 and TABLE 12-5 on page 426 for details.

Unique trap table base addresses are provided for traps being delivered in
privileged mode and in hyperprivileged mode.
418 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

12.5.1 Trap-Table Entry Address to Privileged Mode
Privileged software initializes bits 63:15 of the Trap Base Address (TBA) register (its
most significant 49 bits) with bits 63:15 of the desired 64-bit privileged trap-table
base address.

At the time a trap to privileged mode is taken:
■ Bits 63:15 of the trap vector address are taken from TBA{63:15}.
■ Bit 14 of the trap vector address (the “TL>0” field) is set based on the value of TL

just before the trap is taken; that is, if TL = 0 then bit 14 is set to 0 and if TL > 0
then bit 14 is set to 1.

■ Bits 13:5 of the trap vector address contain a copy of the contents of the TT
register (TT[TL]).

■ Bits 4:0 of the trap vector address are always 0; hence, each trap table entry is at
least 25 or 32 bytes long. Each entry in the trap table may contain the first eight
instructions of the corresponding trap handler.

FIGURE 12-2 illustrates the trap vector address for a trap delivered to privileged
mode. In FIGURE 12-2, the “TL>0” bit is 0 if TL = 0 when the trap was taken, and 1 if
TL > 0 when the trap was taken. This implies, as detailed in the following section,
that there are two trap tables for traps to privileged mode: one for traps from TL = 0
and one for traps from TL > 0.

FIGURE 12-2 Privileged Mode Trap Vector Address

63 15 14 013 45

TL>0 0 0000from TBA{63:15} (TBA.tba_high49) TT[TL]
CHAPTER 12 • Traps 419

12.5.2 Privileged Trap Table Organization
The layout of the privileged-mode trap table (which is accessed using virtual
addresses) is illustrated in FIGURE 12-3.

FIGURE 12-3 Privileged-mode Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL > 0 comprises 512 more thirty-two-byte entries. Therefore, the total size of a full
privileged trap table is 2 × 512 × 32 bytes (32 Kbytes). However, if privileged
software does not use software traps (Tcc instructions) at TL > 0, the table can be
made 24 Kbytes long.

12.5.3 Trap Type (TT)
When a normal trap occurs, a value that uniquely identifies the type of the trap is
written into the current 9-bit TT register (TT[TL]) by hardware. Control is then
transferred into the trap table to an address formed by the trap’s destination
privilege mode:
■ The TBA register, (TL > 0), and TT[TL] (see Trap-Table Entry Address to Privileged

Mode on page 419)

TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are
reserved for software traps (caused by execution of a Tcc instruction) to privileged-
mode trap handlers.

IMPL. DEP. #35-V8-Cs20: TT values 06016 to 07F16 were reserved for
implementation_dependent_exception_n exceptions in the SPARC V9 specification,
but are now all defined as standard UltraSPARC Architecture exceptions. See
TABLE 12-4 for details.

Trap Table
Offsetof TL

(before Contents of Trap Table
Trap Type

Hardware traps

Spill / fill traps

Software traps to Privileged level

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

Hardware traps

Spill / fill traps

Software traps to Privileged level

unassigned

unassigned

016– FE016

100016–1FE016

200016–2FE016

300016–3FE016

400016–4FE016

500016–5FE016

600016–6FE016

700016–7FE016

00016–07F16

08016–0FF16

10016–17F16

18016–1FF16

(from TBA)

Value Hardware

Type

—

—

016– 7F16

—

Trap

—

—

016– 7F16

—

trap)

Software

TL = 0

TL = 1
(TL =
MAXPTL−1)

(TT[TL])
420 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

The assignment of TT values to traps is shown in TABLE 12-4; TABLE 12-5 provides the
same list, but sorted in order of trap priority. The key to both tables follows:

Symbol Meaning

● This trap type is associated with a feature that is architecturally required in an
implementation of UltraSPARC Architecture 2005. Hardware must detect this
exception or interrupt, trap on it (if not masked), and set the specified trap type
value in the TT register.

❍ This trap type is associated with a feature that is architecturally defined in
UltraSPARC Architecture 2005, but its implementation is optional.

P Trap is taken via the Privileged trap table, in Privileged mode (PSTATE.priv = 1)

H Trap is taken in Hyperprivileged mode

-x- Not possible. Hardware cannot generate this trap in the indicated running mode.
For example, all privileged instructions can be executed in privileged mode,
therefore a privileged_opcode trap cannot occur in privileged mode.

— This trap is reserved for future use.

(ie) When the outstanding disrupting trap condition occurs in this privilege mode, it
may be conditioned (masked out) by PSTATE.ie = 0 (but remains pending).

(nm) Never Masked — when the condition occurs in this running mode, it is never
masked out and the trap is always taken.

(pend) Held Pending — the condition can occur in this running mode, but can’t be
serviced in this mode. Therefore, it is held pending until the mode changes to
one in which the exception can be serviced.
CHAPTER 12 • Traps 421

TABLE 12-4 Exception and Interrupt Requests, by TT Value (1 of 4)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv

— Reserved 00016 — — — —

● (used at higher privilege levels) 00116–
00516

— — — —

— Reserved 00516 — — — —

— implementation-dependent 00616 — — — —

● instruction_access_exception 00816 precise 3 H H

● (used at higher privilege levels) 00916 — — — —

● (used at higher privilege levels) 00A16 — — — —

— Reserved 00B16–
00D16

— — — —

— Reserved 00D16–
00E16

— — — —

— Reserved 00F16 — — — —

● illegal_instruction 01016 precise 6.2 H H

● privileged_opcode 01116 precise 7 P
(nm)

-x-

— Reserved 01216–
01316

— — — —

— Reserved 014B16–
01716

— — — —

— Reserved 01816–
01F16

— — — —

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

❍ fp_exception_ieee_754 02116 precise 11.1 P
(nm)

P
(nm)

❍ fp_exception_other 02216 precise 11.1 P
(nm)

P
(nm)

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)
422 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

● clean_window 02416
‡ precise 10.1 P

(nm)
P

(nm)

— Reserved 02516–
02716

— — — —

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

— Reserved 02C16 — — — —

— Reserved 02D16–
02F16

— — — —

● data_access_exception 03016 precise 12.01 H H

— Reserved 03216 — — — —

● mem_address_not_aligned 03416 precise 10.2 H H

● LDDF_mem_address_not_aligned 03516 precise 10.1 H H

● STDF_mem_address_not_aligned 03616 precise 10.1 H H

● privileged_action 03716 precise 11.1 H H

❍ LDQF_mem_address_not_aligned 03816 precise 10.1 H H

❍ STQF_mem_address_not_aligned 03916 precise 10.1 H H

— Reserved 03A16 — — — —

— Reserved 03B16 — — — —

— Reserved 03B16–
03D16

— — — —

— Reserved 04016 — — — —

● interrupt_level_n (n = 1–15) 04116 –
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

— Reserved 05016–
05D16

— — — —

● (used at higher privilege levels) 05F16–
06116

— — — —

— Reserved 06016 — — — —

— Reserved 06216 — — — —

TABLE 12-4 Exception and Interrupt Requests, by TT Value (2 of 4)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
CHAPTER 12 • Traps 423

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)

● (used at higher privilege levels) 06316–
06C16

— — — —

— Reserved 06D16–
06F16

— — — —

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016–
07516

— ∇ — —

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

077 — ∇ — —

❏ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07916–
07B16

— ∇ — —

— Reserved 07916 — — — —

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

❏ implementation_dependent_exception_15
(impl. dep. #35-V8-Cs20)

07F16 — ∇ — —

— nonresumable_error 07F16 — — — —

● spill_n_normal (n = 0–7) 08016
‡–

09C16
‡

precise 9 P
(nm)

P
(nm)

● (reserved for use by spill_7_normal;
see footnote for trap type 09C16)

09D16–
09F16

— — — —

● spill_n_other (n = 0–7) 0A016
‡–

0BC16
‡

precise 9 P
(nm)

P
(nm)

● (reserved for use by spill_7_other
see footnote for trap type 0BC16)

0BD16–
0BF16

— — — —

● fill_n_normal (n = 0–7) 0C016
‡–

0DC16
‡

precise 9 P
(nm)

P
(nm)

TABLE 12-4 Exception and Interrupt Requests, by TT Value (3 of 4)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
424 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

● (reserved for use by fill_7_normal;
see footnote for trap type 0DC16)

0DD16–
0DF16

— — — —

● fill_n_other (n = 0–7) 0E016
‡–

0FC16
‡

precise 9 P
(nm)

P
(nm)

● (reserved for use by fill_7_other
see footnote for trap type 0FC16)

0FD16–
0FF16

— — — —

● trap_instruction 10016–
17F16

precise 16.02 P
(nm)

P
(nm)

● htrap_instruction 18016–
1FF16

precise 16.02 -x-

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on page
428), including relative priorities within a given priority level.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved for
this exception.

∇ The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-4 Exception and Interrupt Requests, by TT Value (4 of 4)

UA-2005
● =Req’d.
❍ =Opt’l Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
CHAPTER 12 • Traps 425

TABLE 12-5 Exception and Interrupt Requests, by Priority (1 of 2)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv

● instruction_access_exception 00816 precise 3 H H

● illegal_instruction 01016 precise 6.2 H H

● privileged_opcode 01116 precise
7

P
(nm)

-x-

● fp_disabled 02016 precise 8 P
(nm)

P
(nm)

● spill_n_normal (n = 0–7) 08016
‡–

09C16
‡

precise

9

P
(nm)

P
(nm)

● spill_n_other (n = 0–7) 0A016
‡–

0BC16
‡

precise P
(nm)

P
(nm)

● fill_n_normal (n = 0–7) 0C016
‡–

0DC16
‡

precise P
(nm)

P
(nm)

● fill_n_other (n = 0–7) 0E016
‡–

0FC16
‡

precise P
(nm)

P
(nm)

● clean_window 02416
‡ precise

10.1

P
(nm)

P
(nm)

● LDDF_mem_address_not_aligned 03516 precise H H

● STDF_mem_address_not_aligned 03616 precise H H

❍ LDQF_mem_address_not_aligned 03816 precise H H

❍ STQF_mem_address_not_aligned 03916 precise H H

● mem_address_not_aligned 03416 precise 10.2 H H

❍ fp_exception_other 02216 precise

11.1

P
(nm)

P
(nm)

❍ fp_exception_ieee_754 02116 precise P
(nm)

P
(nm)

● privileged_action 03716 precise H H

❍ VA_watchpoint 06216 precise 11.2 P
(nm)

P
(nm)
426 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

● data_access_exception 03016 precise 12.01 H H

● tag_overflowD 02316 precise 14 P
(nm)

P
(nm)

● division_by_zero 02816 precise 15 P
(nm)

P
(nm)

● trap_instruction 10016–
17F16

precise

16.02

P
(nm)

P
(nm)

● htrap_instruction 18016–
1FF16

precise -x-

● cpu_mondo 07C16 disrupting 16.08 P
(ie)

P
(ie)

● dev_mondo 07D16 disrupting 16.11 P
(ie)

P
(ie)

● interrupt_level_n (n = 1–15) 04116–
04F16

disrupting 32-n
(31 to

17)

P
(ie)

P
(ie)

● resumable_error 07E16 disrupting 33.3 P
(ie)

P
(ie)

❍ implementation_dependent_exception_n
(impl. dep. #35-V8-Cs20)

07016 –
07516,
07716,
07916 –
07B16,
07F16

— ∇ — —

— nonresumable_error 07F16 — — — —

* Although these trap priorities are recommended, all trap priorities are implementation dependent (impl. dep. #36-V8 on
page 428), including relative priorities within a given priority level.

‡ The trap vector entry (32 bytes) for this trap type plus the next three trap types (total of 128 bytes) are permanently reserved
for this exception.

∇ The priority of an implementation_dependent_exception_n trap is implementation dependent (impl. dep. # 35-V8-Cs20)
D This exception is deprecated, because the only instructions that can generate it have been deprecated.

TABLE 12-5 Exception and Interrupt Requests, by Priority (2 of 2)

UA-2005
● =Req’d.
❍ =Opt’l
❏ .=Impl-
Specific Exception or Interrupt Request

TT
(Trap
Type)

Trap
Category

Priority
(0 =

High-
est)

Mode in which Trap is
Delivered and (and

Conditioning Applied),
based on Current

Privilege Mode

NP Priv
CHAPTER 12 • Traps 427

12.5.3.1 Trap Type for Spi ll/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of
the OTHERWIN and WSTATE registers as described below and shown in FIGURE 12-4.

FIGURE 12-4 Trap Type Encoding for Spill/Fill Traps

12.5.4 Trap Priorities
TABLE 12-4 on page 422 and TABLE 12-5 on page 426 show the assignment of traps to
TT values and the relative priority of traps and interrupt requests. A trap priority is
an ordinal number, with 0 indicating the highest priority and greater priority
numbers indicating decreasing priority; that is, if x < y, a pending exception or
interrupt request with priority x is taken instead of a pending exception or interrupt
request with priority y. Traps within the same priority class (0 to 33) are listed in
priority order in TABLE 12-5 (impl. dep. #36-V8).

IMPL. DEP. #36-V8: The relative priorities of traps defined in the UltraSPARC
Architecture are fixed. However, the absolute priorities of those traps are
implementation dependent (because a future version of the architecture may define
new traps). The priorities (both absolute and relative) of any new traps are
implementation dependent.

However, the TT values for the exceptions and interrupt requests shown in
TABLE 12-4 and TABLE 12-5 must remain the same for every implementation.

The trap priorities given above always need to be considered within the context of
how the virtual processor actually issues and executes instructions.

Bit Field Description

8:6 spill_or_fill 0102 for spill traps; 0112 for fill traps

5 other (OTHERWIN ≠ 0)
4:2 wtype If (other) then WSTATE.other; else WSTATE.normal

Trap Type

05 2

0spill_or_fill

1468

0wtypeother
428 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

12.6 Trap Processing
The virtual processor’s action during trap processing depends on various virtual
processor states, including the trap type, the current level of trap nesting (given in
the TL register), and PSTATE. When a trap occurs, the GL register is normally
incremented by one (described later in this section), which replaces the set of eight
global registers with the next consecutive set.

During normal operation, the virtual processor is in execute_state. It processes
traps in execute_state and continues.

TABLE 12-6 describes the virtual processor mode and trap-level transitions involved
in handling traps.

12.6.1 Normal Trap Processing
A trap is delivered in either privileged mode or hyperprivileged mode, depending
on the type of trap, the trap level (TL), and the privilege mode in effect when the
exception was detected.

During normal trap processing, the following state changes occur (conceptually, in
this order):

■ The trap level is updated. This provides access to a fresh set of privileged trap-
state registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ← TL + 1

■ Existing state is preserved.

■ TSTATE[TL].gl ← GL
TSTATE[TL].ccr ← CCR
TSTATE[TL].asi ← ASI
TSTATE[TL].pstate ← PSTATE
TSTATE[TL].cwp ← CWP
TPC[TL] ← PC // (upper 32 bits zeroed if PSTATE.am = 1)
TNPC[TL] ← NPC // (upper 32 bits zeroed if PSTATE.am = 1) The trap type is
preserved.

TT[TL] ← the trap type

TABLE 12-6 Trap Received While in execute_state

Original State
New State, After Receiving Trap

or Interrupt

execute_state
TL < MAXPTL – 1

execute_state
TL ← TL + 1
CHAPTER 12 • Traps 429

■ The Global Level register (GL) is updated. This normally provides access to a
fresh set of global registers:

GL ← min (GL + 1, MAXPGL)

■ The PSTATE register is updated to a predefined state:
PSTATE.mm is unchanged
PSTATE.pef ← 1 // if an FPU is present, it is enabled
PSTATE.am ← 0 // address masking is turned offPSTATE.priv ← 1 //
the virtual processor enters privileged mode

PSTATE.cle ← PSTATE.tle //set endian mode for traps
endif
PSTATE.ie ← 0 // interrupts are disabled
PSTATE.tle is unchanged
PSTATE.tct ← 0 // trap on CTI disabled

■ For a register-window trap (clean_window, window spill, or window fill) only,
CWP is set to point to the register window that must be accessed by the trap-
handler software, that is:

if TT[TL] = 02416 // a clean_window trap
then CWP ← CWP + 1
endif

if (08016 ≤ TT[TL] ≤ 0BF16) // window spill trap
then CWP ← CWP + CANSAVE + 2
endif

if (0C016 ≤ TT[TL] ≤ 0FF16) // window fill trap
then CWP ← CWP – 1
endif

For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:
// Note that at this point, TL has already been incremented (above)
if ((trap is to privileged mode) and (TL ≤ MAXPTL))
then

//the trap is handled in privileged mode
//Note: The expression “(TL > 1)” below evaluates to the
//value 02 if TL was 0 just before the trap (in which
//case, TL = 1 now, since it was incremented above,
//during trap entry). “(TL > 1)” evaluates to 12 if
//TL was > 0 before the trap.

PC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 00002
NPC ← TBA{63:15} :: (TL > 1) :: TT[TL] :: 0 01002

else { trap is handled in hyperprivileged mode }
endif
430 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Interrupts are ignored as long as PSTATE.ie = 0.

12.7 Exception and Interrupt Descriptions
The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model.

All other trap types are reserved.

The following traps are generally expected to be supported in all UltraSPARC
Architecture 2005 implementations. A given trap is not required to be supported in
an implementation in which the conditions that cause the trap can never occur.

■ clean_window [TT = 02416–02716] (Precise) — A SAVE instruction discovered
that the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102-V9: An implementation may choose either to implement
automatic cleaning of register windows in hardware or to generate a
clean_window trap, when needed, so that window(s) can be cleaned by software.
If an implementation chooses the latter option, then support for this trap type is
mandatory.

■ cpu_mondo [TT = 07C16] (Disrupting) — This interrupt is generated when
another virtual processor has enqueued a message for this virtual processor. It is
used to deliver a trap in privileged mode, to inform privileged software that an
interrupt report has been appended to the virtual processor’s CPU mondo queue.
A direct message between virtual processors is sent via a CPU mondo interrupt.
When the CPU mondo queue has a valid entry, a cpu_mondo exception is sent to
the target virtual processor.

■ data_access_exception [TT = 03016] (Precise) — An exception occurred on an
attempted data access.

The conditions that may cause a data_access_exception exception are:

Programming
Note

State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed
autonomously by the processor when a trap is taken while
TL = n –1; however, software can change any of these values
with a WRPR instruction when TL = n.

Note The encoding of trap types in the UltraSPARC Architecture
differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or
reset. Example exception conditions are included for each
exception type. Chapter 8, Instructions, enumerates which traps
can be generated by each instruction.
CHAPTER 12 • Traps 431

■ Privilege Violation — An attempt to access a privileged page (TTE.p = 1) by
any type of load, store, or load-store instruction when executing in
nonprivileged mode (PSTATE.priv = 0). This includes the special case of an
access by privileged software using one of the
ASI_AS_IF_USER_PRIMARY[_LITTLE] or
ASI_AS_IF_USER_SECONDARY[_LITTLE] ASIs.

■ Illegal Access to Noncacheable Page — An access to a noncacheable page
(TTE.cp = 0) was attempted by an atomic load-store instruction (CASA,
CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA) or an LDTXA instruction.

■ Illegal Access to Page That May Cause Side Effects — An attempt was made
to access a page which may cause side effects (TTE.e = 1) by any type of load
instruction with nonfaulting ASI.

■ Invalid ASI — An attempt was made to execute an invalid combination of
instruction and ASI. See the instruction descriptions in Chapter 8 for a detailed
list of valid ASIs for each instruction that can access alternate address spaces.
The following invalid combinations of instruction, ASI, and virtual address
cause a data_access_exception exception:

■ A load, store, load-store, or PREFETCHA instruction with either an invalid
ASI or an invalid virtual address for a valid ASI.

■ A disallowed combination of instruction and ASI (see Block Load and Store
ASIs on page 403 and Partial Store ASIs on page 404). This includes the
following:

■ An attempt to use a Load Twin Extended Word (LDTXA) ASI (see ASIs 1016,
1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*) on page 397) with any load
alternate opcode other than LDTXA’s (which is shared by LDTWA)

■ An attempt to use a nontranslating ASI value with any load or store alternate
instruction other than LDXA, LDDFA, STXA, or STDFA

■ An attempt to read from a write-only ASI-accessible register

■ An attempt to write to a read-only ASI-accessible register

■ Illegal Access to Non-Faulting-Only Page — An attempt was made to access a
non-faulting-only page (TTE.nfo = 1) by any type of load, store, or load-store
instruction with an ASI other than a nonfaulting ASI
(PRIMARY_NO_FAULT[_LITTLE] or SECONDARY_NO_FAULT[_LITTLE]).

■ dev_mondo [TT = 07D16] (Disrupting) — This interrupt causes a trap to be
delivered in privileged mode, to inform privileged software that an interrupt
report has been appended to its device mondo queue. When a virtual processor

Forward
Compatibility

Note

The next revision of the UltraSPARC Architecture is expected to
replace data_access_exception with several more specific
exceptions — one for each condition that currently can cause a
data_access_exception. This will support slightly faster trap
handling for these exceptions.
432 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

has appended a valid entry to a target virtual processor’s device mondo queue, it
sends a dev_mondo exception to the target virtual processor. The interrupt report
contents are device specific.

■ division_by_zero [TT = 02816] (Precise) — An integer divide instruction
attempted to divide by zero.

■ fill_n_normal [TT = 0C016–0DF16] (Precise)
■ fill_n_other [TT = 0E016–0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a
register window must be restored from memory.

■ fp_disabled [TT = 02016] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load/store instruction while an FPU was
disabled (PSTATE.pef = 0 or FPRS.fef = 0).

■ fp_exception_ieee_754 [TT = 02116] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (FSR.tem) bit was
1. The floating-point exception type, IEEE_754_exception, is encoded in the
FSR.ftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

■ fp_exception_other [TT = 02216] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented or execution of an FPop requires software assistance to complete.
The floating-point exception type is encoded in FSR.ftt.

■ htrap_instruction [TT = 18016–1FF16] (Precise) — A Tcc instruction was executed
in privileged mode, the trap condition evaluated to TRUE, and the software trap
number was greater than 127. The trap is delivered in hyperprivileged mode. See
also trap_instruction on page 435.

■ illegal_instruction [TT = 01016] (Precise) — An attempt was made to execute an
ILLTRAP instruction, an instruction with an unimplemented opcode, an
instruction with invalid field usage, or an instruction that would result in illegal
processor state.

Examples of cases in which illegal_instruction is generated include the following:

■ An instruction encoding does not match any of the opcode map definitions (see
Appendix A, Opcode Maps).

■ A non-FPop instruction is not implemented in hardware.

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be, but is not required to be, generated.
(See Reserved Opcodes and Instruction Fields on page 120.)

■ An illegal value is present in an instruction i field.

Note An unimplemented FPop instruction generates an
fp_exception_other exception with ftt = 3, instead of an
illegal_instruction exception.
CHAPTER 12 • Traps 433

■ An illegal value is present in a field that is explicitly defined for an instruction,
such as cc2, cc1, cc0, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or opf_cc.

■ Illegal register alignment (such as odd rd value in a doubleword load
instruction).

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR.

■ ILLTRAP instruction.

■ DONE or RETRY when TL = 0.

All causes of an illegal_instruction exception are described in individual
instruction descriptions in Chapter 8, Instructions.

■ instruction_access_exception [TT = 00816] (Precise) — An exception occurred
on an instruction access. The conditions that may cause an
instruction_access_exception exception are:
■ Privilege Violation — An attempt to fetch an instruction from a privileged

memory page (TTE.p = 1) while the virtual processor was executing in
nonprivileged mode.

■ Unauthorized Access — An attempt to fetch an instruction from a memory
page which was missing “execute” permission (TTE.ep = 0).

■ No-Fault Only Access — An attempt to fetch an instruction from a memory
page which was marked for access only by nonfaulting loads (TTE.nfo = 1).

■ interrupt_level_n [TT = 04116–04F16] (Disrupting) — SOFTINT{n} was set to 1 or
an external interrupt request of level n was presented to the virtual processor and
n > PIL.

■ LDDF_mem_address_not_aligned [TT = 03516] (Precise) — An attempt was
made to execute an LDDF or LDDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #109)

■ mem_address_not_aligned [TT = 03416] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Special Memory Access ASIs on page 397.)

■ nonresumable_error [TT = 07F16] (Disrupting) — There is a valid entry in the
nonresumable error queue. This interrupt is not generated by hardware, but is
used by hyperprivileged software to inform privileged software that an error
report has been appended to the nonresumable error queue.

■ privileged_action [TT = 03716] (Precise) — An action defined to be privileged has
been attempted while in nonprivileged mode (PSTATE.priv = 0), or an action
defined to be hyperprivileged has been attempted while in nonprivileged or
privileged mode. Examples:

Implementation
Note

interrupt_level_14 can be caused by (1) setting SOFTINT{14}
to 1, (2) occurrence of a "TICK match", or (3) occurrence of a
"STICK match" (see SOFTINTP Register (ASRs 20, 21, 22) on
page 77).
434 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ A data access by nonprivileged software using a restricted (privileged or
hyperprivileged) ASI, that is, an ASI in the range 0016 to 7F16 (inclusively)

■ A data access by nonprivileged or privileged software using a hyperprivileged
ASI, that is, an ASI in the range 3016 to 7F16 (inclusively)

■ Execution by nonprivileged software of an instruction with a privileged
operand value

■ An attempt to read the TICK register by nonprivileged software when
TICK.npt = 1

■ An attempt to access the PIC register (using RDPIC or WRPIC) while
PSTATE.priv = 0 and PCR.priv = 1

■ An attempt to execute a nonprivileged instruction with an operand value
requiring more privilege than available in the current privilege mode.

■ privileged_opcode [TT = 01116] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE.priv = 0.

■ resumable_error [TT = 07E16] (Disrupting) — There is a valid entry in the
resumable error queue. This interrupt is used to inform privileged software that
an error report has been appended to the resumable error queue, and the current
instruction stream is in a consistent state so that execution can be resumed after
the error is handled.

■ spill_n_normal [TT = 08016–09F16] (Precise)
■ spill_n_other [TT = 0A016–0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

■ STDF_mem_address_not_aligned [TT = 03616] (Precise) — An attempt was
made to execute an STDF or STDFA instruction and the effective address was not
doubleword aligned. (impl. dep. #110)

■ tag_overflow [TT = 02316] (Precise) (deprecated) — A TADDccTV or
TSUBccTV instruction was executed, and either 32-bit arithmetic overflow
occurred or at least one of the tag bits of the operands was nonzero.

■ trap_instruction [TT = 10016–17F16] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE, and the software trap number operand
of the instruction is 127 or less.

■ unimplemented_LDTW [TT = 01216] (Precise) — An attempt was made to execute
an LDTW instruction that is not implemented in hardware on this
implementation (impl. dep. #107-V9).

■ unimplemented_STTW [TT = 01316] (Precise) — An attempt was made to execute
an STTW instruction that is not implemented in hardware on this implementation
(impl. dep. #108-V9).

■ VA_watchpoint [TT = 06216] (Precise) — The virtual processor has detected an
attempt to access a virtual address specified by the VA Watchpoint register, while
VA watchpoints are enabled and the address is being translated from a virtual
address to a physical address. If the load or store address is not being translated

C2
CHAPTER 12 • Traps 435

from a virtual address (for example, the address is being treated as a real
address), then a VA_watchpoint exception will not be generated even if a match is
detected between the VA Watchpoint register and a load or store address.

12.7.1 SPARC V9 Traps Not Used in UltraSPARC
Architecture 2005
The following traps were optional in the SPARC V9 specification and are not used in
UltraSPARC Architecture 2005:

■ implementation_dependent_exception_n [TT = 07716 - 07A16] This range of
implementation-dependent exceptions has been replaced by a set of
architecturally-defined exceptions. (impl.dep. #35-V8-Cs20)

■ LDQF_mem_address_not_aligned [TT = 03816] (Precise) — An attempt was
made to execute an LDQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #111-V9-Cs10). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See Load Floating-Point on page 236. (impl. dep.
#111)

■ STQF_mem_address_not_aligned [TT = 03916] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112-V9-Cs10). A separate trap entry for the exception supports fast
software emulation of the STQF instruction when the effective address is word
aligned but not quadword aligned. See Store Floating-Point on page 316. (impl. dep.
#112)

12.8 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

12.8.1 Window Spill and Fill Traps
A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.
436 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a
fill trap that allows privileged software to load the registers from memory.

12.8.2 clean_window Trap
The virtual processor provides the clean_window trap so that system software can
create a secure environment in which it is guaranteed that data cannot inadvertently
leak through register windows from one software program to another.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, from software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANWIN register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows available to be used by the SAVE instruction is

CLEANWIN − CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

12.8.3 Vectoring of Fill/Spill Traps
To make handling of fill and spill traps efficient, the SPARC V9 architecture provides
multiple trap vectors for the fill and spill traps. These trap vectors are determined as
follows:

■ Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERWIN register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

■ Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE.normal field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.other field selects one of eight fill_n_other (spill_n_other) trap vectors.
CHAPTER 12 • Traps 437

See Trap-Table Entry Addresses on page 418, for more details on how the trap address
is determined.

12.8.4 CWP on Window Traps
On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows.

■ If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:

CWP ← (CWP + 2) mod N_REG_WINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused
windows (CANSAVE) in addition to the overlap window between the CWP and
the window to be spilled:

CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

■ On a fill trap, the window preceding CWP must be filled:

CWP ← (CWP – 1) mod N_REG_WINDOWS

■ On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod N_REG_WINDOWS

12.8.5 Window Trap Handlers
The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANWIN, CANSAVE, CANRESTORE, and
OTHERWIN must remain consistent. Follow these recommendations:

■ A spill trap handler should execute the SAVED instruction for each window that
it spills.

■ A fill trap handler should execute the RESTORED instruction for each window
that it fills.

■ A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ← (CLEANWIN + 1)

Note All arithmetic on CWP is done modulo N_REG_WINDOWS.

Implementation
Note

All spill traps can set CWP by using the calculation:
CWP ← (CWP + CANSAVE + 2) mod N_REG_WINDOWS

since CANSAVE is 0 whenever a trap occurs because of a SAVE
instruction.
438 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 12 • Traps 439

440 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 13

Interrupt Handling

Virtual processors and I/O devices can interrupt a selected virtual processor by
assembling and sending an interrupt packet. The contents of the interrupt packet are
defined by software convention. Thus, hardware interrupts and cross-calls can have
the same hardware mechanism for interrupt delivery and share a common software
interface for processing.

The interrupt mechanism is a two-step process:

■ sending of an interrupt request (through an implemenation-specific hardware
mechanism) to an interrupt queue of the target virtual processor

■ receipt of the interrupt request on the target virtual processor and scheduling
software handling of the interrupt request

Privileged software running on a virtual processor can schedule interrupts to itself
(typically, to process queued interrupts at a later time) by setting bits in the
privileged SOFTINT register (see Software Interrupt Register (SOFTINT) on page 442).

In the following sections, the following aspects of interrupt handling are described:

■ Interrupt Packets on page 442.

■ Software Interrupt Register (SOFTINT) on page 442.

■ Interrupt Queues on page 443.

Programming
Note

An interrupt request packet is sent by an interrupt source and is
received by the specified target in an interrupt queue. Upon
receipt of an interrupt request packet, a special trap is invoked
on the target virtual processor. The trap handler software
invoked in the target virtual processor then schedules itself to
later handle the interrupt request by posting an interrupt in the
SOFTINT register at the desired interrupt level.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
441

■ Interrupt Traps on page 445.

13.1 Interrupt Packets
Each interrupt is accompanied by data, referred to as an “interrupt packet”. An
interrupt packet is 64 bytes long, consisting of eight 64-bit doublewords. The
contents of these data are defined by software convention.

13.2 Software Interrupt Register (SOFTINT)
To schedule interrupt vectors for processing at a later time, privileged software
running on a virtual processor can send itself signals (interrupts) by setting bits in
the privileged SOFTINT register.

See SOFTINTP Register (ASRs 20, 21, 22) on page 77 for a detailed description of the
SOFTINT register.

13.2.1 Setting the Software Interrupt Register
SOFTINT{n} is set to 1 by executing a WRSOFTINT_SETP instruction (WRasr using
ASR 20) with a ‘1’ in bit n of the value written (bit n corresponds to interrupt level
n). The value written to the SOFTINT_SET register is effectively ored into the
SOFTINT register. This approach allows the interrupt handler to set one or more
bits in the SOFTINT register with a single instruction.

See SOFTINT_SETP Pseudo-Register (ASR 20) on page 78 for a detailed description of
the SOFTINT_SET pseudo-register.

Programming
Note

The SOFTINT register (ASR 1616) is used for communication
from nucleus (privileged, TL > 0) software to privileged software
running with TL = 0. Interrupt packets and other service
requests can be scheduled in queues or mailboxes in memory by
the nucleus, which then sets SOFTINT{n} to cause an interrupt
at level n.

Programming
Note

The SOFTINT mechanism is independent of the “mondo”
interrupt mechanism mentioned in Interrupt Queues on page 443.
The two mechanisms do not interact.
442 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

13.2.2 Clearing the Software Interrupt Register
When all interrupts scheduled for service at level n have been serviced, kernel
software executes a WRSOFTINT_CLRP instruction (WRasr using ASR 21) with a ‘1’
in bit n of the value written, to clear interrupt level n (impl. dep. 34-V8a). The
complement of the value written to the SOFTINT_CLR register is effectively anded
with the SOFTINT register. This approach allows the interrupt handler to clear one
or more bits in the SOFTINT register with a single instruction.

See SOFTINT_CLRP Pseudo-Register (ASR 21) on page 79 for a detailed description of
the SOFTINT_CLR pseudo-register.

13.3 Interrupt Queues
Interrupts are indicated to privileged mode via circular interrupt queues, each with
an associated trap vector. There are 4 interrupt queues, one for each of the following
types of interrupts:

■ Device mondos1

■ CPU mondos

■ Resumable errors

■ Nonresumable errors

New interrupt entries are appended to the tail of a queue and privileged software
reads them from the head of the queue.

13.3.1 Interrupt Queue Registers
The active contents of each queue are delineated by a 64-bit head register and a 64-
bit tail register.

Programming
Note

To avoid a race condition between operating system kernel
software clearing an interrupt bit and nucleus software setting
it, software should (again) examine the queue for any valid
entries after clearing the interrupt bit.

1. “mondo” is a historical term, referring to the name of the original UltraSPARC 1 bus transaction in which
these interrupts were introduced

Programming
Note

Software conventions for cooperative management of interrupt
queues and the format of queue entries are specified in the
separate Hypervisor API Specification document.
CHAPTER 13 • Interrupt Handling 443

The interrupt queue registers are accessed through ASI ASI_QUEUE (2516). The ASI
and address assignments for the interrupt queue registers are provided in TABLE 13-1.

The status of each queue is reflected by its head and tail registers:

■ A Queue Head Register indicates the location of the oldest interrupt packet in the
queue

■ A Queue Tail Register indicates the location where the next interrupt packet will
be stored

An event that results in the insertion of a queue entry causes the tail register for that
queue to refer to the following entry in the circular queue. Privileged code is
responsible for updating the head register appropriately when it removes an entry
from the queue.

A queue is empty when the contents of its head and tail registers are equal. A queue
is full when the insertion of one more entry would cause the contents of its head and
tail registers to become equal.

TABLE 13-1 Interrupt Queue Register ASI Assignments

Register
ASI

Virtual
Address

Privileged
mode

Access

CPU Mondo Queue Head 2516 (ASI_QUEUE) 3C016 RW

CPU Mondo Queue Tail 2516 (ASI_QUEUE) 3C816 R or RW†

Device Mondo Queue Head 2516 (ASI_QUEUE) 3D016 RW

Device Mondo Queue Tail 2516 (ASI_QUEUE) 3D816 R or RW†

Resumable Error Queue Head 2516 (ASI_QUEUE) 3E016 RW

Resumable Error Queue Tail 2516 (ASI_QUEUE) 3E816 R or RW†

Nonresumable Error Queue Head 2516 (ASI_QUEUE) 3F016 RW

Nonresumable Error Queue Tail 2516 (ASI_QUEUE) 3F816 R or RW†

† see IMPL. DEP.#422-S10
444 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

13.4 Interrupt Traps
The following interrupt traps are defined in the UltraSPARC Architecture 2005:
cpu_mondo, dev_mondo, resumable_error, and nonresumable_error. See
Chapter 12, Traps, for details.

UltraSPARC Architecture 2005 also supports the interrupt_level_n traps defined in
the SPARC V9 specification.

How interrupts are delivered is implementation-specific; see the relevant
implementation-specific Supplement to this specification for details.

Programming
Note

By current convention, the format of a Queue Head or Tail
register is as follows:

Under this convention:

■ updating a Queue Head register involves incrementing it by
64 (size of a queue entry, in bytes)

■ Queue Head and Tail registers are updated using modular
arithmetic (modulo the size of the circular queue, in bytes)

■ bits 5:0 always read as zeros, and attempts to write to them are
ignored

■ the maximum queue offset for an interrupt queue is
implementation dependent

■ behavior when a queue register is written with a value larger
than the maximum queue offset (queue length minus the
length of the last entry) is undefined

This is merely a convention and is subject to change.

63 6 5 0

 head/tail offset 000000
CHAPTER 13 • Interrupt Handling 445

446 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

CHAPTER 14

Memory Management

An UltraSPARC Architecture Memory Management Unit (MMU) conforms to the
requirements set forth in the SPARC V9 Architecture Manual. In particular, it supports
a 64-bit virtual address space, simplified protection encoding, and multiple page
sizes.

In UltraSPARC Architecture 2005, memory management is implementation-specific.
Basic concepts are described in this chapter, but see the relevant processor-specific
Supplement to this specification for a detailed description of a particular processor’s
memory management facilities.

This appendix describes the Memory Management Unit, as observed by privileged
software, in these sections:

■ Virtual Address Translation on page 447.
■ TSB Translation Table Entry (TTE) on page 448.
■ Translation Storage Buffer (TSB) on page 451.

14.1 Virtual Address Translation
The MMUs may support up to four page sizes: 8 KBytes, 64 KBytes, 4 MBytes, and
256 MBytes 8-KByte, 64-KByte and 4- MByte page sizes must be supported; other
page sizes are optional.

Privileged software manages virtual-to-real address translations.

Privileged software maintains translation information in an arbitrary data structure,
called the software translation table.

The Translation Storage Buffer (TSB) is an array of Translation Table Entries which
serves as a cache of the software translation table, used to quickly reload the TLB in
the event of a TLB miss.
447

A conceptual view of privileged-mode memory management the MMU is shown in
FIGURE 14-1. The software translation table is likely to be large and complex. The
translation storage buffer (TSB), which acts like a direct-mapped cache, is the
interface between the software translation table and the underlying memory
management hardware. The TSB can be shared by all processes running on a virtual
processor or can be process specific; the hardware does not require any particular
scheme. There can be several TSBs.

FIGURE 14-1 Conceptual View of the MMU

14.2 TSB Translation Table Entry (TTE)
The Translation Storage Buffer (TSB) Translation Table Entry (TTE) is the equivalent
of a page table entry as defined in the Sun4v Architecture Specification; it holds
information for a single page mapping. The TTE is divided into two 64-bit words
representing the tag and data of the translation. Just as in a hardware cache, the tag
is used to determine whether there is a hit in the TSB; if there is a hit, the data are
used by either the hardware tablewalker or privileged software.

The TTE configuration is illustrated in FIGURE 14-2 and described in TABLE 14-1.

FIGURE 14-2 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

Software
Translation

Table

Operating SystemMemory

← Managed by privileged →
mode software

Buffer

Translation

 RA ← VA

Storage

(TSB)

Data Structure

nfo

3 01163

epp

5 46 10 7 61 5662 8

v w

9

cv

 55 13 12

063 41424748

TTE

TTE

Tag

Data
soft szcpeiesoft2

context_id 000000 va

taddr
448 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE 14-1 TSB TTE Bit Description (1 of 3)

Bit Field Description

Tag– 63:48 context_id The 16-bit context ID associated with the TTE.

Tag– 47:42 — These bits must be zero for a tag match.

Tag– 41:0 va Bits 63:22 of the Virtual Address (the virtual page number). Bits 21:13 of the VA
are not maintained because these bits index the minimally sized, direct-mapped
TSBs.

Data – 63 v Valid. If v = 1, then the remaining fields of the TTE are meaningful, and the TTE
can be used; otherwise, the TTE cannot be used to translate a virtual address.

Data – 62 nfo No Fault Only. If nfo = 1, loads with ASI_PRIMARY_NO_FAULT{_LITTLE} or
ASI_SECONDARY_NO_FAULT{_LITTLE} are translated. Any other data access
with the D/UMMU TTE.nfo = 1 will trap with a data_access_exception. An
instruction fetch access to a page with the IMMU TTE.nfo = 1 results in an
instruction_access_exception exception.

Data – 61:56 soft2 Software-defined field, provided for use by the operating system. The soft2 field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (uTLB), it may
read as zero.

Data – 55:13 t_addr Target address from TSB (Real Address {55:13}).

IMPL. DEP. #224-U3: Physical address width support by the MMU is
implementation dependent in the UltraSPARC Architecture; minimum PA width
is 40 bits.
IMPL. DEP. #238-U3: When page offset bits for larger page sizes are stored in
the TLB, it is implementation dependent whether the data returned from those
fields by a Data Access read is zero or the data previously written to them.

Data – 12 ie Invert Endianness. If ie = 1 for a page, accesses to the page are processed with
inverse endianness from that specified by the instruction (big for little, little for
big).
Note: This bit is intended to be set to 1 primarily for noncacheable accesses. The
performance of cacheable accesses may be degraded as if the access missed the
D-cache.
IMPL. DEP. #__: The ie bit in the IMMU is ignored during ITLB operation. It is
implementation dependent if it is implemented and how it is read and written.

Programming
Note

The explicit Valid bit is (intentionally) redundant with the
software convention of encoding an invalid TTE with an unused
context ID. The encoding of the context_id field is necessary to
cause a failure in the TTE tag comparison, while the explicit
Valid bit in the TTE data simplifies the TTE miss handler.
CHAPTER 14 • Memory Management 449

Data – 11 e Side effect. If the side-effect bit is set to 1, loads with ASI_PRIMARY_NO_FAULT,
ASI_SECONDARY_NO_FAULT, and their *_LITTLE variations will trap for
addresses within the page, noncacheable memory accesses other than block
loads and stores are strongly ordered against other e-bit accesses, and
noncacheable stores are not merged. This bit should be set to 1 for pages that
map I/O devices having side effects. Note, also, that the e bit causes the prefetch
instruction to be treated as a nop, but does not prevent normal (hardware)
instruction prefetching.
Note: The e bit does not force a noncacheable access. It is expected, but not
required, that the cp and cv bits will be set to 0 when the e bit is set to 1. If both
the cp and cv bits are set to 1 along with the e bit, the result is undefined.
Note: The e bit and the nfo bit are mutually exclusive; both bits should never be
set to 1 in any TTE.

Data – 10
Data – 9

cp,
cv

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the cacheability of the page. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the cp and cv bits could be used:

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The cv bit in the IMMU is read as zero and
ignored when written.
IMPL. DEP. #226-U3: Whether the cv bit is supported in hardware is
implementation dependent in the UltraSPARC Architecture. The cv bit in
hardware should be provided if the implementation has virtually indexed
caches, and the implementation should support hardware unaliasing for the
caches.

Data – 8 p Privileged. If p = 1, only privileged software can access the page mapped by the
TTE. If p = 1 and an access to the page is attempted by nonprivileged mode
(PSTATE.priv = 0), then the MMU signals aninstruction_access_exception
exception ordata_access_exception exception.

Data – 7 ep Executable. If ep = 1, the page mapped by this TTE has execute permission
granted. Instructions may be fetched and executed from this page. If ep = 0, an
attempt to execute an instruction from this page results in an
instruction_access_exception exception.
IMPL. DEP. #___: Some UltraSPARC Architecture ITLB implementations may
not implement the ep bit, and present the instruction_access_exception
exception if there is an attempt to load an ITLB entry with ep = 0 during a
hardware tablewalk. In this case, the MMU miss trap handler software must also
detect the ep = 0 case when the IMMU miss is handled by software.

TABLE 14-1 TSB TTE Bit Description (2 of 3)

Bit Field Description

Cacheable
(cp, cv)

Meaning of TTE when placed in:

I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Noncacheable Noncacheable
10 Cacheable L2-cache, I-cache Cacheable L2-cache
11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache
450 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

14.3 Translation Storage Buffer (TSB)
The Translation Storage Buffer (TSB) is an array of Translation Table Entries
managed entirely by privileged software. It serves as a cache of the software
translation table, used to quickly reload the TLB in the event of a TLB miss.

14.3.1 TSB Indexing Support
Hardware TSB indexing support via TSB pointers should be provided for the TTEs.

14.3.2 TSB Cacheability
The TSB exists as a data structure in memory and therefore can be cached. Indeed,
the speed of the TLB miss handler relies on the TSB accesses hitting the level-2 cache
at a substantial rate. This policy may result in some conflicts with normal instruction
and data accesses, but the dynamic sharing of the level-2 cache resource will provide
a better overall solution than that provided by a fixed partitioning.

Data – 6 w IMPL. DEP. #Writable. If w = 1, the page mapped by this TTE has write
permission granted. Otherwise, write permission is not granted

Data – 5:4 soft Software-defined field, provided for use by the operating system. The soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in any TLB (or uTLB), so when it is read from the TLB (or uTLB), it may
read as zero.

Data – 3:0 sz The page size of this entry, encoded as shown below.
sz Page Size
0000 8 Kbyte
0001 64 Kbyte
0010 Reserved
0011 4 Mbyte
0100 Reserved
0101 256 Mbyte
0110 Reserved
0111 Reserved
1000-1111 Reserved

TABLE 14-1 TSB TTE Bit Description (3 of 3)

Bit Field Description
CHAPTER 14 • Memory Management 451

14.3.3 TSB Organization
The TSB is arranged as a direct-mapped cache of TTEs.

In each case, n least significant bits of the respective virtual page number are used as
the offset from the TSB base address, with n equal to log base 2 of the number of
TTEs in the TSB.

The TSB organization is illustrated in FIGURE 14-3. The constant n is determined by
the size field in the TSB register; it can range from 512 to an implementation-
dependent number.

FIGURE 14-3 TSB Organization

Tag1 (8 bytes) Data1 (8 bytes)

Tag2n (8 bytes) Data2n (8 bytes)

2n Lines in TSB
:
:

:
:

452 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

APPENDIX A

Opcode Maps

This appendix contains the UltraSPARC Architecture 2005 instruction opcode maps.
Also included are the optional UltraSPARC V instruction opcode maps; UltraSPARC
V opcodes are highlighted in bold face.

In this appendix and in Chapter 8, Instructions, certain opcodes are marked with
mnemonic superscripts. These superscripts and their meanings are defined in
TABLE 8-1 on page 124. For preferred substitute instructions for deprecated opcodes,
see the individual opcodes in Chapter 8 that are labeled “Deprecated”.

In the tables in this appendix, reserved (—) and shaded entries (as defined below)
indicate opcodes that are not implemented in UltraSPARC Architecture 2005 strands.

An attempt to execute a reserved opcode behaves as defined in Reserved Opcodes and
Instruction Fields on page 120.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.
An attempt to execute opcode will cause an fp_exception_other exception with
FSR.ftt = 3 (unimplemented_FPop).

TABLE A-1 op{1:0}

op {1:0}
0 1 2 3

Branches and SETHI
(See TABLE A-2)

CALL Arithmetic & Miscellaneous
(See TABLE A-3)

Loads/Stores
(See TABLE A-4)

TABLE A-2 op2{2:0} (op = 0)

op2 {2:0}
0 1 2 3 4 5 6 7

ILLTRAP BPcc (See
TABLE A-7)

BiccD(See
TABLE A-7)

BPr (bit 28 = 0)
(See TABLE A-8)

SETHI FBPfcc (See
TABLE A-7)

FBfccD (See
TABLE A-7)

—

— (bit 28 = 1)1

1. See the footnote regarding bit 28 on page 148.

NOP2

2. rd = 0, imm22 = 0
453

TABLE A-3 op3{5:0} (op = 102) (1 of 2)

op3{5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd = 1)
WRCCR (rd = 2
WRASI (rd = 3)
— (rd = 4, 5)
— (rd = 15, rs1 = 0, i = 1)
— (rd = 15) and (rs1 ≠ 0 or i ≠ 1))
— (rd = 7 − 14)
WRFPRS (rd = 6)
WRasrPASR (7 ≤ rd ≤ 14)
WRPCRP (rd = 16)
WRPIC (rd = 17)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 20)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICK_CMPRP (rd = 25)
— (rd = 26 - 31)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0)
RESTOREDP (fcn = 1)
ALLCLEANP (fcn = 2)
OTHERWP (fcn = 3)
NORMALWP (fcn = 4)
INVALWP (fcn = 5)
— (fcn ≥ 6)

2 OR ORcc TADDccTVD —
2 OR ORcc TADDccTVD WRPRP (rd = 0-14 or 16)

— (rd = 15 or 17−31)
3 XOR XORcc TSUBccTVD —
4 SUB SUBcc MULSccD FPop1 (See TABLE A-5)
5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 (See TABLE A-6)
6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) (See TABLE A-12)
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2
454 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0) JMPL
— (rs1 = 1, i = 0)
RDCCR (rs1= 2, i = 0)
RDASI (rs1 = 3, i = 0)
RDTICKPnpt (rs1 = 4, i = 0)
RDPC (rs1 = 5, i = 0)
RDFPRS (rs1 = 6, i = 0)
RDasrPASR (7 ≤ rd ≤ 14, i = 0)
MEMBAR (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 0)
— (rs1 = 15, rd = 0, i = 1,

instruction bit 12 = 1)
— (i = 1, (rs1 ≠ 15 or rd ≠ 0))
STBARD (rs1 = 15, rd = 0, i = 0)
— (rs1 = 15 and rd > 0 and i = 0)
RDPCRP (rs1 = 16 and i = 0)
RDPIC (rs1 = 17 and i = 0)
— (rs1 = 18 and i = 0)
RDGSR (rs1 = 19 and i = 0)
— (rs1 = 20 or 21) and (i = 0))
RDSOFTINTP (rs1 = 22 and i = 0)
RDTICK_CMPRP (rs1 = 23 and i = 0)
RDSTICK (rs1 = 24 and i = 0)
RDSTICK_CMPRP

(rs1 = 25 and i = 0)
— ((rs1 = 26 – 31) and (i = 0))

9 MULX — — RETURN
A UMULD UMULccD RDPRP (rs1 = 1–14 or 16) Tcc ((i = 0 and inst{10:5} = 0) or

((i = 1) and (inst{10:7} = 0)))
(See TABLE A-7)

— (rs1 = 15 or 17 – 30) — (bit 29 = 1)
— ((i = 0 and (inst{10:5} ≠ 0)) or

(i = 1 and (inst{10:7} ≠ 0))
B SMULD SMULccD FLUSHW FLUSH

op3
{3:0}

C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
E UDIVD UDIVccD POPC (rs1 = 0) DONEP (fcn = 0)

— (rs1 > 0) RETRYP (fcn = 1)
— (fcn = 2..15)
— (fcn = 16..31)

F SDIVD SDIVccD MOVr (See TABLE A-8) —

TABLE A-3 op3{5:0} (op = 102) (2 of 2)

op3{5:4}

0 1 2 3
APPENDIX A • Opcode Maps 455

TABLE A-4 op3{5:0} (op = 112)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —

— (rd > 1)

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDTWD LDTWAD, PASI LDDF LDDFAPASI

— (rd odd) LDBLOCKF

— (rd odd) LDSHORTF

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —

— (rd > 1)

6 STH STHAPASI STQF STQFAPASI

7 STTWD STTWAPASI STDF STDFAPASI

— (rd odd) — (rd odd) STLBLOCKF

STPARTIALF

STSHORTF

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

— (fcn = 5 − 15) — (fcn = 5 − 15)

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —
456 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE A-5 opf{8:0} (op = 102,op3 = 3416 = FPop1)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — — — — — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0516 — — — — — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FsTOx FdTOx FqTOx FxTOs — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — FiTOs — FdTOs FqTOs

0D16 — FsTOi FdTOi FqTOi — — — —

0E16–1F16 — — — — — — — —

8 9 A B C D E F

0016 — FABSs FABSd FABSq — — — —

0116 — — — — — — — —

0216 — FSQRTs FSQRTd FSQRTq — — — —

0316 — — — — — — — —

0416 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0516 — — — — — — — —

0616 — FsMULd — — — — FdMULq —

0716 — — — — — — — —

0816 FxTOd — — — FxTOq — — —

0916 — — — — — — — —

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D16 — — — — — — — —

0E16–1F16 — — — — — — — —
APPENDIX A • Opcode Maps 457

† Reserved variation of FMOVR

‡ bit 13 of instruction = 0

TABLE A-6 opf{8:0} (op = 102, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

0016 — FMOVs
(fcc0)

FMOVd
(fcc0)

FMOVq (fcc0) — † ‡ † ‡ † ‡ —

0116 — — — — — — — — —

0216 — — — — — FMOVRsZ ‡ FMOVRdZ ‡ FMOVRqZ ‡ —

0316 — — — — — — — — —

0416 — FMOVs
(fcc1)

FMOVd
(fcc1)

FMOVq (fcc1) — FMOVRsLEZ ‡ FMOVRdLEZ ‡ FMOVRqLEZ ‡ —

0516 — FCMPs FCMPd FCMPq — FCMPEs ‡ FCMPEd ‡ FCMPEq ‡ —

0616 — — — — — FMOVRsLZ ‡ FMOVRdLZ ‡ FMOVRqLZ ‡ —

0716 — — — — — — — — —

0816 — FMOVs
(fcc2)

FMOVd
(fcc2)

FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVRsNZ ‡ FMOVRdNZ ‡ FMOVRqNZ ‡ —

0B16 — — — — — — — — —

0C16 — FMOVs
(fcc3)

FMOVd
(fcc3)

FMOVq (fcc3) — FMOVRsGZ ‡ FMOVRdGZ ‡ FMOVRqGZ ‡ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVRsGEZ ‡ FMOVRdGEZ ‡ FMOVRqGEZ ‡ —

0F16 — — — — — — — — —

1016 — FMOVs
(icc)

FMOVd
(icc)

FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs
(xcc)

FMOVd
(xcc)

FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —
458 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE A-7 cond{3:0}

BPcc
op = 0
op2 = 1

Bicc
op = 0
op2 = 2

FBPfcc
op = 0
op2 = 5

FBfccD

op = 0
op2 = 6

Tcc
op = 2

op3 = 3a16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE A-8 Encoding of rcond{2:0} Instruction Field

BPr
op = 0
op2 = 3

MOVr
op = 2

op3 = 2F16

FMOVr
op = 2

op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVR<s|d|q>Z

2 BRLEZ MOVRLEZ FMOVR<s|d|q>LEZ

3 BRLZ MOVRLZ FMOVR<s|d|q>LZ

4 — — —

5 BRNZ MOVRNZ FMOVR<s|d|q>NZ

6 BRGZ MOVRGZ FMOVR<s|d|q>GZ

7 BRGEZ MOVRGEZ FMOVR<s|d|q>GEZ
APPENDIX A • Opcode Maps 459

TABLE A-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE A-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0
Condition Code

Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE A-11 cc Fields (BPcc and Tcc)

cc1 cc0
Condition Code

Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —
460 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

,P
TABLE A-12 IMPDEP1: opf{8:0} for VIS opcodes (op = 102, op3 = 3616)

opf {8:4}

00 01 02 03 04 05 06 07 08

opf
{3:0}

0
EDGE8 ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND SHUT

DOWND

1
EDGE8N — — FMUL

8x16
— FPADD16S FZEROS FANDS SIAM

2 EDGE8L ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR —

3
EDGE8LN — — FMUL

8x16AU
— FPADD32S FNORS FXNORS —

4 EDGE16 ARRAY32 FCMPLE32 — FPSUB16 FANDNOT2 FSRC1 —

5
EDGE16N — — FMUL

8x16AL
— FPSUB16S FANDNOT2S FSRC1S —

6
EDGE16L — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2 —

7
EDGE16LN — — FMUL

8ULx16
— FPSUB32S FNOT2S FORNOT2S —

8
EDGE32 ALIGN

ADDRESS
FCMPGT16 FMULD

8SUx16
FALIGN
DATA

— FANDNOT1 FSRC2 —

9
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1S FSRC2S —

A
EDGE32L ALIGN

ADDRESS
_LITTLE

FCMPEQ16 FPACK32 — — FNOT1 FORNOT1 —

B EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOT1S —

C — — FCMPGT32 — BSHUFFLE — FXOR FOR —

D — — — FPACKFIX FEXPAND — FXORS FORS —

E — — FCMPEQ32 PDIST — — FNAND FONE —

F — — — — — — FNANDS FONES —
APPENDIX A • Opcode Maps 461

TABLE A-14 IMPDEP1: opf{8:0} for VIS opcodes (op = 102, op3 = 3616) (3 of 3)

opf {8:4}

09–1F 10 11 12 13 14 15 16–1F

opf
{3:0}

0 — — — — — — —

1 — — — — — — — —

2 — — — — — — —

3 — — — — — — — —

4 — — — — — — — —

5 — — — — — — — —

6 — — — — — — — —

7 — — — — — — — —

8 — — — — — — —

9 — — — — — — — —

A — — — — — — —

B — — — — — — — —

C — — — — — — — —

D — — — — — — — —

E — — — — — — — —

F — — — — — — — —
462 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

APPENDIX B

Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9
standard. In SPARC V9, the notation “IMPL. DEP. #nn:” identifies the definition of
an implementation dependency; the notation “(impl. dep. #nn)” identifies a reference
to an implementation dependency. These dependencies are described by their
number nn in TABLE B-1 on page 465.

The appendix contains these sections:

■ Definition of an Implementation Dependency on page 463.
■ Hardware Characteristics on page 464.
■ Implementation Dependency Categories on page 464.
■ List of Implementation Dependencies on page 465.

B.1 Definition of an Implementation
Dependency
The SPARC V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC V9 systems. Therefore, it does not necessarily
describe the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An
attempt to execute a SPARC V9 instruction that is not implemented in hardware
generates a trap. Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
463

The two levels of SPARC V9 compliance are described in UltraSPARC Architecture
2005 Compliance with SPARC V9 Architecture on page 23.

Some elements of the architecture are defined to be implementation dependent.
These elements include certain registers and operations that may vary from
implementation to implementation; they are explicitly identified as such in this
appendix.

Implementation elements (such as instructions or registers) that appear in an
implementation but are not defined in this document (or its updates) are not
considered to be SPARC V9 elements of that implementation.

B.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on
SPARC V9 systems are not considered architectural implementation dependencies. A
hardware characteristic may be relevant to the user system design (for example, the
speed of execution of an instruction) or may be transparent to the user (for example,
the method used for achieving cache consistency). The SPARC International
document, Implementation Characteristics of Current SPARC V9-based Products, Revision
9.x, provides a useful list of these hardware characteristics, along with the list of
implementation-dependent design features of SPARC V9-compliant
implementations.

In general, hardware characteristics deal with

■ Instruction execution speed

■ Whether instructions are implemented in hardware

■ The nature and degree of concurrency of the various hardware units constituting
a SPARC V9 implementation

B.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories,
abbreviated by their first letters throughout this appendix:
■ Value (v)

The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations. A typical example
is the number of implemented register windows (impl. dep. #2-V8).
464 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

■ Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations and the actual
value is assigned by SPARC International. Typical examples are the impl field of
the Version register (VER) (impl. dep. #13-V8) and the FSR.ver field (impl. dep.
#19-V8).

■ Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several
possible semantics related to an architectural function. A typical example is the
treatment of a catastrophic error exception, which may cause either a deferred or
a disrupting trap (impl. dep. #31-V8-Cs10).

■ Total Unit (t)
The existence of the architectural unit or function is recognized, but details are
left to each implementation. Examples include the handling of I/O registers
(impl. dep. #7-V8) and some alternate address spaces (impl. dep. #29-V8).

B.4 List of Implementation Dependencies
TABLE B-1 provides a complete list of the SPARC V9 implementation dependencies.
The Page column lists the page for the context in which the dependency is defined;
bold face indicates the main page on which the implementation dependency is
described.

TABLE B-1 SPARC V9 Implementation Dependencies (1 of 9)

Nbr Category Description Page

1-V8 f Software emulation of instructions
Whether an instruction complies with UltraSPARC Architecture 2005 by being
implemented directly by hardware, simulated by software, or emulated by firmware is
implementation dependent.

23

2-V8 v Number of IU registers
An UltraSPARC Architecture implementation may contain from 72 to 640 general-
purpose 64-bit R registers. This corresponds to a grouping of the registers into
MAXPGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16
registers each, known as register windows. The number of register windows present
(N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32
(inclusive).

24, 48

3-V8 f Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop or FSR.ftt = unimplemented_FPop. In this case, software
running in a higher privilege mode shall emulate any functionality not present in the
hardware.

119

4, 5 Reserved.
APPENDIX B • Implementation Dependencies 465

6-V8 f I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is implementation
dependent.

27

7-V8 t I/O register definitions
The contents and addresses of I/O registers are implementation dependent.

27

8-V8-
Cs20

t RDasr/WRasr target registers
Ancillary state registers (ASRs) in the range 0–27 that are not defined in UltraSPARC
Architecture 2005 are reserved for future architectural use. ASRs in the range 28–31 are
available to be used for implementation-dependent purposes.

29, 67,
285, 353

9-V8-
Cs20

f RDasr/WRasr privileged status
Whether each of the implementation-dependent read/write ancillary state register
instructions (for ASRs 28–31) is privileged is implementation dependent.

29, 67,
285, 353

10-V8–12-V8 Reserved.

13-V8 a (this implementation dependency applies to execution modes with greater privileges)

14-V8–15-V8 Reserved.

16-V8-Cu3 Reserved.

17-V8 Reserved.

18-
V8-
Ms10

f Nonstandard IEEE 754-1985 results
UltraSPARC Architecture 2005 implementations do not implement a nonstandard
floating-point
mode. FSR.ns is a reserved bit; it always reads as 0 and writes to it are ignored.

60

19-V8 a FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

60

20-V8–21-V8 Reserved.

22-V8 f FPU tem, cexc, and aexc
An UltraSPARC Architecture implementation implements the tem, cexc, and aexc
fields in hardware, conformant to IEEE Std 754-1985.

67

23-V8 Reserved.

24-V8 Reserved.

25-V8 f RDPR of FQ with nonexistent FQ
An UltraSPARC Architecture implementation does not contain a floating-point queue
(FQ). Therefore, FSR.ftt = 4 (sequence_error) does not occur, and an attempt to read
the FQ with the RDPR instruction causes an illegal_instruction exception.

63, 289

26-V8–28-V8 Reserved.

29-V8 t Address space identifier (ASI) definitions
In SPARC V9, many ASIs were defined to be implementation dependent. Some of
those ASIs have been allocated for standard uses in the UltraSPARC Architecture.
Others remain implementation dependent in the UltraSPARC Architecture. See ASI
Assignments on page 388 and Block Load and Store ASIs on page 403 for details.

109

TABLE B-1 SPARC V9 Implementation Dependencies (2 of 9)

Nbr Category Description Page
466 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

30-
V8-
Cu3

f ASI address decoding
In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
specifier. In UltraSPARC Architecture implementations, all 8 bits of each ASI specifier
must be decoded. Refer to Chapter 10, Address Space Identifiers (ASIs), of this
specification for details.

109

31-
V8-
Cs10

f This implementation dependency is no longer used in the UltraSPARC Architecture,
since “catastrophic” errors are now handled using normal error-reporting
mechanisms.

—

32-
V8-
Ms10

t Restartable deferred traps
Whether any restartable deferred traps (and associated deferred-trap queues) are
present is implementation dependent.

414

33-
V8-
Cs10

f Trap precision
In an UltraSPARC Architecture implementation, all exceptions that occur as the result
of program execution are precise.

417

34-V8 f Interrupt clearing
a: The method by which an interrupt is removed is now defined in the UltraSPARC
Architecture (see Clearing the Software Interrupt Register on page 443).
b: How quickly a virtual processor responds to an interrupt request, like all timing-
related issues, is implementation dependent.

443

35-
V8-
Cs20

t Implementation-dependent traps
Trap type (TT) values 06016–07F16 were reserved for
implementation_dependent_exception_n exceptions in SPARC V9 but are now all
defined as standard UltraSPARC Architecture exceptions.

420

36-V8 f Trap priorities
The relative priorities of traps defined in the UltraSPARC Architecture are fixed.
However, the absolute priorities of those traps are implementation dependent (because
a future version of the architecture may define new traps). The priorities (both
absolute and relative) of any new traps are implementation dependent.

428

41-V8 Reserved.

42-
V8-
Cs10

t, f, v FLUSH instruction
FLUSH is implemented in hardware in all UltraSPARC Architecture 2005
implementations, so never causes a trap as an unimplemented instruction.

43-V8 Reserved.

44-
V8-
Cs10

f Data access FPU trap
a: If a load floating-point instruction generates an exception that causes a non-precise

trap, it is implementation dependent whether the contents of the destination
floating-point register(s) are undefined or are guaranteed to remain unchanged.

b: If a load floating-point alternate instruction generates an exception that causes a
non-precise trap, it is implementation dependent whether the contents of the
destination floating-point register(s) are undefined or are guaranteed to remain
unchanged.

238

241

45-V8–46-V8 Reserved.

TABLE B-1 SPARC V9 Implementation Dependencies (3 of 9)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 467

47-
V8-
Cs20

t RDasr
RDasr instructions with rd in the range 28–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For an RDasr instruction with rs1 in the
range 28–31, the following are implementation dependent:
• the interpretation of bits 13:0 and 29:25 in the instruction
• whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

286

48-
V8-
Cs20

t WRasr
WRasr instructions with rd in the range 26–31 are available for implementation-
dependent uses (impl. dep. #8-V8-Cs20). For a WRasr instruction with rd in the range
26–31, the following are implementation dependent:
• the interpretation of bits 18:0 in the instruction
• the operation(s) performed (for example, xor) to generate the value written to the

ASR
• whether the instruction is nonprivileged or privileged (impl. dep. #9-V8-Cs20)
• whether an attempt to execute the instruction causes an illegal_instruction exception

354

49-V8–54-V8 Reserved.

55-
V8-
Cs10

f Tininess detection
In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
detected before or after rounding. In all UltraSPARC Architecture implementations,
tininess is detected before rounding.

66

56–100 Reserved.

101-
V9-
CS10

v Maximum trap level (MAXPTL)
The architectural parameter MAXPTL is a constant for each implementation; its legal
values are from 2 to 6 (supporting from 2 to 6 levels of saved trap state). In a typical
implementation MAXPTL = MAXPGL (see impl. dep. #401-S10).
Architecturally, MAXPTL must be ≥ 2.

94, 96

102-
V9

f Clean windows trap
An implementation may choose either to implement automatic “cleaning” of register
windows in hardware or to generate a clean_window trap, when needed, for
window(s) to be cleaned by software.

431

TABLE B-1 SPARC V9 Implementation Dependencies (4 of 9)

Nbr Category Description Page
468 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

103-
V9-
Ms10

f Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA instructions are
implementation dependent:
a: the attributes of the block of memory prefetched: its size (minimum = 64 bytes)

and its alignment (minimum = 64-byte alignment)
b: whether each defined prefetch variant is implemented (1) as a NOP, (2) with its

full semantics, or (3) with common-case prefetching semantics
c: whether and how variants 16, 18, 19 and 24–31 are implemented; if not

implemented, a variant must execute as a NOP

279

279, 282

283C

The following aspects of the PREFETCH and PREFETCHA instructions used to be (but
are no longer) implementation dependent:
d: while in nonprivileged mode (PSTATE.priv = 0), an attempt to reference an ASI in

the range 016..7F16 by a PREFETCHA instruction executes as a NOP; specifically,
it does not cause a privileged_action exception.

e: PREFETCH and PREFETCHA have no observable effect in privileged code
g: while in privileged mode (PSTATE.priv = 1), an attempt to reference an ASI in the

range 3016..7F16 by a PREFETCHA instruction executes as a NOP (specifically, it
does not cause a privileged_action exception)

—

—
—

105-
V9

f TICK register
a: If an accurate count cannot always be returned when TICK is read, any inaccuracy

should be small, bounded, and documented.
b: An implementation may implement fewer than 63 bits in TICK.counter; however,

the counter as implemented must be able to count for at least 10 years without
overflowing. Any upper bits not implemented must read as 0.

72

106-
V9

f IMPDEP2A instructions
The IMPDEP2A instructions are completely implementation dependent.
Implementation-dependent aspects include their operation, the interpretation of bits
29:25 and 18:0 in their encodings, and which (if any) exceptions they may cause.

223

107-
V9

f Unimplemented LDTW(A) trap
a: It is implementation dependent whether LDTW is implemented in hardware. If

not, an attempt to execute an LDTW instruction will cause an
unimplemented_LDTW exception.

b: It is implementation dependent whether LDTWA is implemented in hardware. If
not, an attempt to execute an LDTWA instruction will cause an
unimplemented_LDTW exception.

253

256

108-
V9

f Unimplemented STTW(A) trap
a: It is implementation dependent whether STTW is implemented in hardware. If not,

an attempt to execute an STTW instruction will cause an unimplemented_STTW
exception.

b: It is implementation dependent whether STDA is implemented in hardware. If not,
an attempt to execute an STTWA instruction will cause an unimplemented_STTW
exception.

330

333

TABLE B-1 SPARC V9 Implementation Dependencies (5 of 9)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 469

109-
V9-
Cs10

f LDDF(A)_mem_address_not_aligned
a: LDDF requires only word alignment. However, if the effective address is word-

aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDF instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDF
instruction)

102, 102,
237, 434

b: LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) LDDFA instruction may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDFA instruction and return.
(In an UltraSPARC Architecture processor, the LDDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDDFA
instruction)

240

110-
V9-
Cs10

f STDF(A)_mem_address_not_aligned
a: STDF requires only word alignment in memory. However, if the effective address is

word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDF instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDF instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDF
instruction)

102,
317, 435

b: STDFA requires only word alignment in memory. However, if the effective address
is word-aligned but not doubleword-aligned, an attempt to execute a valid (i = 1 or
instruction bits 12:5 = 0) STDFA instruction may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
must emulate the STDFA instruction and return.
(In an UltraSPARC Architecture processor, the STDF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STDFA
instruction)

320

TABLE B-1 SPARC V9 Implementation Dependencies (6 of 9)

Nbr Category Description Page
470 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

111-
V9-
Cs10

f LDQF(A)_mem_address_not_aligned
a: LDQF requires only word alignment. However, if the effective address is word-

aligned but not quadword-aligned, an attempt to execute an LDQF instruction may
cause an LDQF_mem_address_not_aligned exception. In this case, the trap handler
software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQF instruction in
hardware)

103, 102,
237, 436

b: LDQFA requires only word alignment. However, if the effective address is word-
aligned but not quadword-aligned, an attempt to execute an LDQFA instruction
may cause an LDQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the LDQF instruction and return.
(In an UltraSPARC Architecture processor, the LDQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the LDQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the LDQFA instruction in
hardware)

240

112-
V9-
Cs10

f STQF(A)_mem_address_not_aligned
a: STQF requires only word alignment in memory. However, if the effective address is

word aligned but not quadword aligned, an attempt to execute an STQF instruction
may cause an STQF_mem_address_not_aligned exception. In this case, the trap
handler software must emulate the STQF instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQF
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQF instruction in
hardware)

103,
317, 436

b: STQFA requires only word alignment in memory. However, if the effective address
is word aligned but not quadword aligned, an attempt to execute an STQFA
instruction may cause an STQF_mem_address_not_aligned exception. In this case,
the trap handler software must emulate the STQFA instruction and return.
(In an UltraSPARC Architecture processor, the STQF_mem_address_not_aligned
exception occurs in this case and trap handler software emulates the STQFA
instruction)
(this exception does not occur in hardware on UltraSPARC Architecture 2005
implementations, because they do not implement the STQFA instruction in
hardware)

320

TABLE B-1 SPARC V9 Implementation Dependencies (7 of 9)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 471

113-
V9-
Ms10

f Implemented memory models
Whether memory models represented by PSTATE.mm = 102 or 112 are supported in an
UltraSPARC Architecture processor is implementation dependent. If the 102 model is
supported, then when PSTATE.mm = 102 the implementation must correctly execute
software that adheres to the RMO model described in The SPARC Architecture Manual-
Version 9. If the 112 model is supported, its definition is implementation dependent.

91, 376

118-
V9

f Identifying I/O locations
The manner in which I/O locations are identified is implementation dependent.

368

119-
Ms10

f Unimplemented values for PSTATE.mm
The effect of an attempt to write an unsupported memory model designation into
PSTATE.mm is implementation dependent; however, it should never result in a value
of PSTATE.mm value greater than the one that was written. In the case of an
UltraSPARC Architecture implementation that only supports the TSO memory model,
PSTATE.mm always reads as zero and attempts to write to it are ignored.

91, 377

120-
V9

f Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between virtual processors and
I/O DMA memory accesses are implementation dependent.

368

121-
V9

f Implementation-dependent memory model
An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

368

122-
V9

f FLUSH latency
The latency between the execution of FLUSH on one virtual processor and the point at
which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

174, 384

123-
V9

f Input/output (I/O) semantics
The semantic effect of accessing I/O registers is implementation dependent.

27

124-
V9

v Implicit ASI when TL > 0
In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all UltraSPARC Architecture implementations, when
TL > 0, the implicit ASI for instruction fetches is ASI_NUCLEUS; loads and stores will
use ASI_NUCLEUS if PSTATE.cle = 0 or ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

371

125-
V9-
Cs10

f Address masking
(1) When PSTATE.am = 1, only the less-significant 32 bits of the PC register are stored
in the specified destination register(s) in CALL, JMPL, and RDPC instructions, while
the more-significant 32 bits of the destination registers(s) are set to 0.
((2) When PSTATE.am = 1, during a trap, only the less-significant 32 bits of the PC and
NPC are stored (respectively) to TPC[TL] and TNPC[TL]; the more-significant 32 bits
of TPC[TL] and TNPC[TL] are set to 0.

92, 92,
150, 226,
286, 429

TABLE B-1 SPARC V9 Implementation Dependencies (8 of 9)

Nbr Category Description Page
472 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

TABLE B-2 provides a list of implementation dependencies that, in addition to those
in TABLE B-1, apply to UltraSPARC Architecture processors. Bold face indicates the
main page on which the implementation dependency is described. See Appendix C
in the Extensions Documents for further information.

126-
V9-
Ms10

Register Windows State registers width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0 to N_REG_WINDOWS − 1. An attempt to write a value
greater than N_REG_WINDOWS − 1 to any of these registers causes an implementation-
dependent value between 0 and N_REG_WINDOWS − 1 (inclusive) to be written to the
register. Furthermore, an attempt to write a value greater than N_REG_WINDOWS − 2
violates the register window state definition in Register Window Management
Instructions on page 116.
Although the width of each of these five registers is architecturally 5 bits, the width is
implementation dependent and shall be between  log2(N_REG_WINDOWS) and 5 bits,
inclusive. If fewer than 5 bits are implemented, the unimplemented upper bits shall
read as 0 and writes to them shall have no effect. All five registers should have the
same width.
For UltraSPARC Architecture 2005 processors, N_REG_WINDOWS = 8. Therefore, each
register window state register is implemented with 3 bits, the maximum value for
CWP and CLEANWIN is 7, and the maximum value for CANSAVE, CANRESTORE,
and OTHERWIN is 6. When these registers are written by the WRPR instruction, bits
63:3 of the data written are ignored.

82

127–199 Reserved. —

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (1 of 6)

Nbr Description Page

200–201 Reserved. —

203-U3-
Cs10

Dispatch Control register (DCR) bits 13:6 and 1
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

204-U3-
CS10

DCR bits 5:3 and 0
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

205-U3-
Cs10

Instruction Trap Register
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

206-U3-
Cs10

SHUTDOWN instruction
On an UltraSPARC Architecture implementation executing in privileged mode,
SHUTDOWN behaves like a NOP.

303

207-U3 PCR register bits 47:32, 26:17, and 3
The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR register are
implementation dependent.

75

208-U3 Ordering of errors captured in instruction execution
The order in which errors are captured in instruction execution is implementation
dependent. Ordering may be in program order or in order of detection.

—

TABLE B-1 SPARC V9 Implementation Dependencies (9 of 9)

Nbr Category Description Page
APPENDIX B • Implementation Dependencies 473

209-U3 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error of which recovery requires
software intervention is implementation dependent.

—

211-U3 Error logging registers’ information
The information that the error logging registers preserves beyond the reset induced by an
ERROR signal is implementation dependent.

—

212-U3-
Cs10

Trap with fatal error
This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

—

213-U3 AFSR.priv
The existence of the AFSR.priv bit is implementation dependent. If AFSR.priv is
implemented, it is implementation dependent whether the logged AFSR.priv indicates the
privileged state upon the detection of an error or upon the execution of an instruction that
induces the error. For the former implementation to be effective, operating software must
provide error barriers appropriately.

—

228-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

229-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.TSB
Base address generation
Whether the implementation generates the TSB Base address by exclusive-ORing the TSB
Base register and a TSB register or by taking the tsb_base field directly from a TSB register
is implementation dependent in UltraSPARC Architecture. This implementation
dependency existed for UltraSPARC III/IV, only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

—

230 Reserved. —

230-U3 data_access_exception trap
The causes of a data_access_exception trap are implementation dependent in UltraSPARC
Architecture 2005.

—

232-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

233-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

235-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

236-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.t —

239-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005.

240-U3-
Cs10

Reserved. —

243-U3 This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (2 of 6)

Nbr Description Page
474 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

244-U3-
Cs10

Data Watchpoint Reliability
Data Watchpoint traps are completely implementation-dependent in UltraSPARC
Architecture processors.

—

245-U3-
Cs10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

248-U3 Conditions for fp_exception_other with unfinished_FPop
The conditions under which an fp_exception_other exception with floating-point trap type
of unfinished_FPop can occur are implementation dependent. An implementation may
cause fp_exception_other with unfinished_FPop under a different (but specified) set of
conditions.

62

249-U3-
Cs10

Data Watchpoint for Partial Store Instruction
For an STPARTIAL instruction, the following aspects of data watchpoints are
implementation dependent: (a) whether data watchpoint logic examines the byte store
mask in R[rs2] or it conservatively behaves as if every Partial Store always stores all 8
bytes, and (b) whether data watchpoint logic examines individual bits in the Virtual
(Physical) Data Watchpoint Mask in the LSU Control register to determine which bytes are
being watched or (when the Watchpoint Mask is nonzero) it conservatively behaves as if
all 8 bytes are being watched.

327

250-U3-
Cs10

PCR accessibility when PSTATE.priv = 0
In an UltraSPARC Architecture implementation, PCR is never accessible to nonprivileged
software. Specifically, when a virtual processor is operating in nonprivileged mode
(PSTATE.priv = 0), an attempt to access PCR (using an RDPCR or a WRPCR instruction)
results in a privileged_opcode exception.

74, 287,
355

251 Reserved.

252-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

253-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

257-U3 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address
If an LDDFA opcode is used with an ASI of C016–C516 or C816–CD16 (Partial Store ASIs,
which are an illegal combination with LDDFA) and a memory address is specified with
less than 8-byte alignment, the virtual processor generates n exception. It is
implementation dependent whether the exception generated is data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned.

241

259–299 Reserved. —

300-U4-
Cs10

Attempted access to ASI registers with LDTWA
If an LDTWA instruction referencing a non-memory ASI is executed, it generates a
data_access_exception exception.

257

301-U4-
Cs10

Attempted access to ASI registers with STTWA
If an STTWA instruction referencing a non-memory ASI is executed, it generates a
data_access_exception exception.

333

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (3 of 6)

Nbr Description Page
APPENDIX B • Implementation Dependencies 475

302-U4-
Cs10

Scratchpad registers
An UltraSPARC Architecture processor includes eight privileged Scratchpad registers (64
bits each, read/write accessible).

405

303-U4-
CS10

This implementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

305-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

306-U4-
Cs10

Trap type generated upon attempted access to noncacheable page with LDTXA
When an LDTXA instruction attempts access from an address that is not mapped to
cacheable memory space, a data_access_exception exception is generated.

251

307-U4-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

308-U3-
Cs10

Thisimplementation dependency no longer applies, as of UltraSPARC Architecture 2005. —

309-U4-
Cs10

Reserved. —

311–319 Reserved.

327–399 Reserved

400-S10 Global Level register (GL) implementation
Although GL is defined as a 4-bit register, an implementation may implement any subset
of those bits sufficient to encode the values from 0 to MAXPGL for that implementation. If
any bits of GL are not implemented, they read as zero and writes to them are ignored.

96

401-S10 Maximum Global Level (MAXPGL)
The architectural parameter MAXPGL is a constant for each implementation; its legal values
are from 2 to 15 (supporting from 3 to 16 sets of global registers). In a typical
implementation MAXPGL = MAXPTL (see impl. dep. #101-V9-CS10).
Architecturally, MAXPTL must be ≥ 2.

94, 96

403-S10 Setting of “dirty” bits in FPRS
A “dirty” bit (du or dl) in the FPRS register must be set to ‘1’ if any of its corresponding F
registers is actually modified. The specific conditions under which a dirty bit is set are
implementation dependent.

74, 74

404-S10 Scratchpad registers 4 through 7
The degree to which Scratchpad registers 4–7 are accessible to privileged software is
implementation dependent. Each may be (1) fully accessible, (2) accessible, with access
much slower than to scratchpad register 0–3, or (3) inaccessible (cause a
data_access_exception exception).

405

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (4 of 6)

Nbr Description Page
476 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

405-S10 Virtual address range
An UltraSPARC Architecture implementation may support a full 64-bit virtual address
space or a more limited range of virtual addresses. In an implementation that does support
a full 64-bit virtual address space, the supported range of virtual addresses is restricted to
two equal-sized ranges at the extreme upper and lower ends of 64-bit addresses; that is, for
n-bit virtual addresses, the valid address ranges are 0 to 2n−1 − 1 and 264 − 2n−1 to 264 − 1.

26

409-S10-
Cs20

FLUSH instruction and memory consistency
The implementation of the FLUSH instruction is implementation dependent.
If the implementation automatically maintains consistency between instruction and data
memory,
(1) the FLUSH address is ignored and
(2) the FLUSH instruction cannot cause any data access exceptions, because its effective

address operand is not translated or used by the MMU.
On the other hand, if the implementation does not maintain consistency between
instruction and data memory, the FLUSH address is used to access the MMU and the
FLUSH instruction can cause data access exceptions.

175

410-S10 Block Load behavior
The following aspects of the behavior of block load (LDBLOCKF) instructions are
implementation dependent:
• What memory ordering model is used by LDBLOCKF (LDBLOCKF is not required to

follow TSO memory ordering)
• Whether LDBLOCKF follows memory ordering with respect to stores (including block

stores), including whether the virtual processor detects read-after-write and write-after-
read hazards to overlapping addresses

• Whether LDBLOCKF appears to execute out of order, or follow LoadLoad ordering
(with respect to older loads, younger loads, and other LDBLOCKFs)

• Whether LDBLOCKF follows register-dependency interlocks, as do ordinary load
instructions

• Whether LDBLOCKFs to non-cacheable locations are (a) strictly ordered, (b) not strictly
ordered and cause an illegal_instruction exception, or (c) not strictly ordered and silently
execute without causing an exception (option (c) is strongly discouraged)

233

• Whether the MMU ignores the side-effect bit (TTE.e) for LDBLOCKF accesses
(in which case, LDBLOCKFs behave as if TTE.e = 0)

368

• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a
LDBLOCKF (the recommended behavior), or only on accesses to the first eight bytes

234, 234

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (5 of 6)

Nbr Description Page
APPENDIX B • Implementation Dependencies 477

411-S10 Block Store behavior
The following aspects of the behavior of block store (STBLOCKF) instructions are
implementation dependent:
• The memory ordering model that STBLOCKF follows (other than as constrained by the

rules outlined on page 314).
• Whether VA_watchpoint exceptions are recognized on accesses to all 64 bytes of a

STBLOCKF (the recommended behavior), or only on accesses to the first eight bytes.
• Whether STBLOCKFs to non-cacheable pages execute in strict program order or not. If

not, a STBLOCKF to a non-cacheable page causes an illegal_instruction exception.
• Whether STBLOCKF follows register dependency interlocks (as ordinary stores do).
• Whether a non-Commit STBLOCKF forces the data to be written to memory and

invalidates copies in all caches present (as the Commit variants of STBLOCKF do).

314, 314

• Whether the MMU ignores the side-effect bit (TTE.e) for STBLOCKF accesses
(in which case, STBLOCKFs behave as if TTE.e = 0)

368

• Any other restrictions on the behavior of STBLOCKF, as described in implementation-
specific documentation.

412-S10 MEMBAR behavior
An UltraSPARC Architecture implementation may define the operation of each MEMBAR
variant in any manner that provides the required semantics.

260

413-S10 Load Twin Extended Word behavior
It is implementation dependent whether VA_watchpoint exceptions are recognized on
accesses to all 16 bytes of a LDTXA instruction (the recommended behavior) or only on
accesses to the first 8 bytes.

251

414 Reserved. —

417-S10 Behavior of DONE and RETRY when TSTATE[TL].pstate.am = 1
If (1) TSTATE[TL].pstate.am = 1 and (2) a DONE or RETRY instruction is executed (which
sets PSTATE.am to ’1’ by restoring the value from TSTATE[TL].pstate.am to PSTATE.am),
it is implementation dependent whether the DONE or RETRY instruction masks (zeroes)
the more-significant 32 bits of the values it places into PC and NPC.

93, 154294

441–449 Reserved for UltraSPARC Architecture 2005

450-499 Reserved for UltraSPARC Architecture 2006

451
and up

Reserved.

TABLE B-2 UltraSPARC Architecture Implementation Dependencies (6 of 6)

Nbr Description Page
478 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

APPENDIX C

Assembly Language Syntax

This appendix supports Chapter 8, Instructions. Each instruction description in
Chapter 8 includes a table that describes the suggested assembly language format
for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions provided by
UltraSPARC Architecture assemblers for the convenience of assembly language
programmers.

The appendix contains these sections:

■ Notation Used on page 479.
■ Syntax Design on page 485.
■ Synthetic Instructions on page 486.

C.1 Notation Used
The notations defined here are also used in the assembly language syntax
descriptions in Chapter 8, Instructions.

Items in typewriter font are literals to be written exactly as they appear. Items
in italic font are metasymbols that are to be replaced by numeric or symbolic values
in actual SPARC V9 assembly language code. For example, “imm_asi” would be
replaced by a number in the range 0 to 255 (the value of the imm_asi bits in the
binary instruction) or by a symbol bound to such a number.

Note: This chapter is undergoing final review; please check
back later for a copy of UltraSPARC Architecture
2005 containing the final version of this chapter.
479

Subscripts on metasymbols further identify the placement of the operand in the
generated binary instruction. For example, regrs2 is a reg (register name) whose
binary value will be placed in the rs2 field of the resulting instruction.

C.1.1 Register Names

reg. A reg is an integer register name. It can have any of the following values:1

%r0–%r31
%g0–%g7 (global registers; same as %r0–%r7)
%o0–%o7 (out registers; same as %r8–%r15)
%l0–%l7 (local registers; same as %r16–%r23)
%i0–%i7 (in registers; same as %r24–%r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of
the following:

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg. An freg is a floating-point register name. It may have the following values:
%f0, %f1, %f2–%f63

See Floating-Point Registers on page 52.

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrs3 (rs3 field)
fregrd (rd field)

asr_reg. An asr_reg is an Ancillary State Register name. It may have one of the
following values:

%asr16–%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.
480 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

i_or_x_cc. An i_or_x_cc specifies a set of integer condition codes, those based on
either the 32-bit result of an operation (icc) or on the full 64-bit result (xcc). It may
have either of the following values:

%icc
%xcc

fccn. An fccn specifies a set of floating-point condition codes. It can have any of
the following values:

%fcc0
%fcc1
%fcc2
%fcc3

C.1.2 Special Symbol Names
Certain special symbols appear in the syntax table in typewriter font. They must be
written exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space Identifier (ASI) register
%canrestore Restorable Windows register
%cansave Savable Windows register
%ccr Condition Codes register
%cleanwin Clean Windows register
%cwp Current Window Pointer (CWP) register
%fprs Floating-Point Registers State (FPRS) register
%fsr Floating-Point State register
%gsr General Status Register (GSR)
%otherwin Other Windows (OTHERWIN) register
%pc Program Counter (PC) register
%pcr Performance Control Register (PCR)
%pic Performance Instrumentation Counters
%pil Processor Interrupt Level register
%pstate Processor State register
%softint Soft Interrupt register
%softint_clr Soft Interrupt register (clear selected bits)
%softint_set Soft Interrupt register (set selected bits)
%sys_tick System Timer (STICK) register
%sys_tick_cmpr System Timer Compare (STICK_CMPR) register
%tba Trap Base Address (TBA) register
%tick Cycle count (TICK) register
APPENDIX C • Assembly Language Syntax 481

%tick_cmpr Timer Compare (TICK_CMPR) register
%tl Trap Level (TL) register
%tnpc Trap Next Program Counter (TNPC) register
%tpc Trap Program Counter (TPC) register
%tstate Trap State (TSTATE) register
%tt Trap Type (TT) register
%wstate Window State register
%y Y register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63:42 (high 22 bits of upper word) of its operand
%ulo or %hm Extracts bits 41:32 (low-order 10 bits of upper word) of its

operand
%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of

its operand
%lo Extracts bits 9:0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font.
They must be written exactly as they are shown, including the leading sharp sign
(#). The value names and the constant values to which they are bound are listed in
TABLE C-1.

TABLE C-1 Value Names and Values (1 of 2)

Value Name in Assembly Language Value Comments

for PREFETCH instruction “fcn” field

#n_reads 0

#one_read 1

#n_writes 2

#one_write 3

#page 4

#unified 17 (1116)

#n_reads_strong 20 (1416)

#one_read_strong 21 (1516)

#n_writes_strong 22 (1616)

#one_write_strong 23 (1716)

for MEMBAR instruction “mmask” field

#LoadLoad 0116

#StoreLoad 0216
482 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

C.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0–255)
siam_mode A 3-bit mode value for the SIAM instruction
simm7 A signed immediate constant that can be represented in 7 bits
simm8 A signed immediate constant that can be represented in 8 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0–31
shcnt64 A shift count from 0–63

C.1.4 Labels
A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with
upper and lower case distinct]), underscores (_), dollar signs ($), periods (.), and
decimal digits (0-9). A label may contain decimal digits, but it may not begin with
one. A local label contains digits only.

C.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_imm Can be any of the following:

#LoadStore 0416

for MEMBAR instruction “cmask” field

#StoreStore 0816

#Lookaside 1016

#MemIssue 2016

#Sync 4016

TABLE C-1 Value Names and Values (2 of 2)

Value Name in Assembly Language Value Comments
APPENDIX C • Assembly Language Syntax 483

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)

address Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1(equivalent to regrs1 + simm13)
regrs1 + regrs2

membar_mask Is the following:

const7 A constant that can be represented in 7 bits. Typically, this is an
expression involving the logical OR of some combination of
#Lookaside, #MemIssue, #Sync, #StoreStore, #LoadStore,
#StoreLoad, and #LoadLoad.

prefetch_fcn (prefetch function) Can be any of the following:

#n_reads
#one_read

#n_writes
#one_write

#page

0–31

regaddr (register-only address) Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (register or immediate value) Can be either of:

regrs2
simm13

reg_or_imm10 (register or immediate value) Can be either of:
484 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

regrs2
simm10

reg_or_imm11 (register or immediate value) Can be either of:

regrs2
simm11

reg_or_shcnt (register or shift count value) Can be any of:

regrs2
shcnt32
shcnt64

software_trap_number Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

regrs1 + simm8
regrs1 – simm8
simm8 (equivalent to %g0 + simm8)
simm8 + regrs1 (equivalent to regrs1 + simm8)

The resulting operand value (software trap number) must be in the range 0–255,
inclusive.

C.1.6 Comments
Two types of comments are accepted by the SPARC V9 assembler: C-style “/*...*/
” comments, which may span multiple lines, and “!...” comments, which extend
from the “!” to the end of the line.

C.2 Syntax Design
The SPARC V9 assembly language syntax is designed so that the following
statements are true:

■ The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.
APPENDIX C • Assembly Language Syntax 485

■ A reference to the contents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB[A], or SWAP[A] instruction) is always indicated by square brackets ([]);
a reference to the address of a memory location (such as in a JMPL, CALL, or
SETHI) is specified directly, without square brackets.

C.3 Synthetic Instructions
TABLE C-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to
actual instructions. These synthetic instructions are provided by the SPARC V9
assembler for the convenience of assembly language programmers.

Note: Synthetic instructions should not be confused with “pseudo ops,” which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC V9 instructions.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (1 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare.

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc,label Instruction prefetch.

tst regrs1 orcc %g0, regrs1, %g0 Test.

ret jmpl %i7+8, %g0 Return from subroutine.

retl jmpl %o7+8, %g0 Return from leaf subroutine.

restore restore %g0, %g0, %g0 Trivial RESTORE.

save save %g0, %g0, %g0 Trivial SAVE.
(Warning: trivial SAVE should
only be used in kernel code!)

setuw value,regrd sethi %hi(value), regrd (When ((value&3FF16) == 0).)

— or —

or %g0, value, regrd (When 0 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd; (Otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in
the delay slot of a DCTI.

set value,regrd synonym for setuw.

setsw value,regrd sethi %hi(value), regrd (When (value> = 0) and
((value & 3FF16) == 0).)

— or —
486 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

or %g0, value, regrd (When 4096 ≤ value ≤ 4095).

— or —

sethi %hi(value), regrd (Otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value < 0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in
the delay slot of a CTI.

setx value, reg, regrd sethi %uhi(value), reg Create 64-bit constant.

or reg, %ulo(value), reg (“reg” is used as a temporary
register.)sllx reg,32,reg

sethi %hi(value), regrd Note: setx optimizations are
possible but not enumerated
here. The worst case is shown.
Warning: do not use setx in the
delay slot of a CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd Sign-extend 32-bit value to
64 bits.signx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd One’s complement.

not regrd xnor regrd, %g0, regrd One’s complement.

neg regrs2, regrd sub %g0, regrs2, regrd Two’s complement.

neg regrd sub %g0, regrd, regrd Two’s complement.

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd Compare and swap.

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap, little-endian.

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd Compare and swap extended.

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap extended,
little-endian.

inc regrd add regrd, 1, regrd Increment by 1.

inc const13,regrd add regrd, const13, regrd Increment by const13.

inccc regrd addcc regrd, 1, regrd Increment by 1; set icc & xcc.

inccc const13,regrd addcc regrd, const13, regrd Incr by const13; set icc & xcc.

dec regrd sub regrd, 1, regrd Decrement by 1.

dec const13, regrd sub regrd, const13, regrd Decrement by const13.

decc regrd subcc regrd, 1, regrd Decrement by 1; set icc & xcc.

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (2 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
APPENDIX C • Assembly Language Syntax 487

deccc const13, regrd subcc regrd, const13, regrd Decr by const13; set icc & xcc.

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test.

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set.

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear.

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle.

clr regrd or %g0, %g0, regrd Clear (zero) register.

clrb [address] stb %g0, [address] Clear byte.

clrh [address] sth %g0, [address] Clear half-word.

clr [address] stw %g0, [address] Clear word.

clrx [address] stx %g0, [address] Clear extended word.

clruw regrs1, regrd srl regrs1, %g0, regrd Copy and clear upper word.

clruw regrd srl regrd, %g0, regrd Clear upper word.

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

TABLE C-2 Mapping Synthetic to SPARC V9 Instructions (3 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
488 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

Index
A
a (annul) instruction field

branch instructions, 142, 143, 145, 148, 163, 165
accesses

cacheable, 367
I/O, 367
restricted ASI, 371
with side effects, 367, 378

accrued exception (aexc) field of FSR register, 63,
418, 466

ADD instruction, 134
ADDC instruction, 134
ADDcc instruction, 134, 306
ADDCcc instruction, 134
address

operand syntax, 484
space identifier (ASI), 387

address mask (am) field of PSTATE register
description, 92

address space, 20
address space identifier (ASI), 366

appended to memory address, 25, 100
architecturally specified, 371
bypass, 388
bypassing, 93
changed in, 406
changed in UA

ASI_LD_TWINX_NUCLEUS_LITTLE, 406
ASI_LDTX_N, 406
ASI_LDTX_NL, 406
ASI_REAL, 406
ASI_REAL_IO, 406
ASI_REAL_IO_LITTLE, 406

ASI_REAL_LITTLE, 406
definition, 7
encoding address space information, 101
explicit, 108
explicitly specified in instruction, 108
implicit, See implicit ASIs
nontranslating, 12, 257, 333
nontranslating ASIs, 388
with prefetch instructions, 279
restricted, 371, 387

privileged, 371
restriction indicator, 71
SPARC V9 address, 369
translating ASIs, 388
unrestricted, 371, 387

address space identifier (ASI) register
for load/store alternate instructions, 71
address for explicit ASI, 108
and LDDA instruction, 239, 255
and LDSTUBA instruction, 248
load integer from alternate space

instructions, 229
with prefetch instructions, 279
for register-immediate addressing, 371
restoring saved state, 154, 294
saving state, 409
and STDA instruction, 332
store floating-point into alternate space

instructions, 319
store integer to alternate space instructions, 308
and SWAPA instruction, 337
after trap, 30
and TSTATE register, 88
and write state register instructions, 354
1

addressing modes, 20
ADDX instruction (SPARC V8), 134
ADDXcc instruction (SPARC V8), 134
alias

floating-point registers, 52
aliased, 7
ALIGNADDRESS instruction, 135
ALIGNADDRESS_LITTLE instruction, 135
alignment

data (load/store), 26, 102, 369
doubleword, 26, 102, 369
extended-word, 102
halfword, 26, 102, 369
instructions, 26, 102, 369
integer registers, 254, 256
memory, 369, 434
quadword, 26, 102, 369
word, 26, 102, 369

ALLCLEAN instruction, 136
alternate space instructions, 27, 71
ancillary state registers (ASRs)

access, 67
assembly language syntax, 480
I/O register access, 27
possible registers included, 286, 355
privileged, 29, 466
reading/writing implementation-dependent

processor registers, 29, 466
writing to, 354

AND instruction, 137
ANDcc instruction, 137
ANDN instruction, 137
ANDNcc instruction, 137
annul bit

in branch instructions, 148
in conditional branches, 163

annulled branches, 148
application program, 7, 67
architectural direction note, 4
architecture, meaning for SPARC V9, 19
arithmetic overflow, 70
ARRAY16 instruction, 138
ARRAY32 instruction, 138
ARRAY8 instruction, 138
ASI

invalid, and data_access_exception, 432
ASI register, 67
ASI, See address space identifier (ASI)
ASI_AIUP, 390, 398

ASI_AIUPL, 390, 399
ASI_AIUS, 390, 398
ASI_AIUS_L, 250
ASI_AIUSL, 390, 399
ASI_AS_IF_USER*, 92
ASI_AS_IF_USER_NONFAULT_LITTLE, 372
ASI_AS_IF_USER_PRIMARY, 390, 398
ASI_AS_IF_USER_PRIMARY_LITTLE, 372, 390,

399, 432
ASI_AS_IF_USER_SECONDARY, 372, 390, 398, 432
ASI_AS_IF_USER_SECONDARY_LITTLE, 372,

390, 399, 432
ASI_AS_IF_USER_SECONDARY_NOFAULT_LITT

LE, 372
ASI_BLK_AIUP, 390, 398
ASI_BLK_AIUPL, 390, 399
ASI_BLK_AIUS, 390, 398
ASI_BLK_AIUSL, 390, 399
ASI_BLK_P, 395
ASI_BLK_PL, 396
ASI_BLK_S, 395
ASI_BLK_SL, 396
ASI_BLOCK_AS_IF_USER_PRIMARY, 390, 398
ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE, 3

90, 399
ASI_BLOCK_AS_IF_USER_SECONDARY, 390, 398
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE,

390, 399
ASI_BLOCK_PRIMARY, 395
ASI_BLOCK_PRIMARY_LITTLE, 396
ASI_BLOCK_SECONDARY, 395
ASI_BLOCK_SECONDARY_LITTLE, 396
ASI_FL16_P, 394
ASI_FL16_PL, 395
ASI_FL16_PRIMARY, 394
ASI_FL16_PRIMARY_LITTLE, 395
ASI_FL16_S, 394
ASI_FL16_SECONDARY, 394
ASI_FL16_SECONDARY_LITTLE, 395
ASI_FL16_SL, 395
ASI_FL8_P, 394
ASI_FL8_PL, 395
ASI_FL8_PRIMARY, 394
ASI_FL8_PRIMARY_LITTLE, 395
ASI_FL8_S, 394
ASI_FL8_SECONDARY, 394
ASI_FL8_SECONDARY_LITTLE, 395
ASI_FL8_SL, 395
ASI_LD_TWINX_AS_IF_USER_PRIMARY, 391,
2 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

401
ASI_LD_TWINX_AS_IF_USER_PRIMARY_LITTL

E, 392, 401
ASI_LD_TWINX_AS_IF_USER_SECONDARY, 391,

401
ASI_LD_TWINX_AS_IF_USER_SECONDARY_LIT

TLE, 392, 401
ASI_LD_TWINX_NUCLEUS, 392, 401, 406
ASI_LD_TWINX_NUCLEUS[_L], 369
ASI_LD_TWINX_NUCLEUS_LITTLE, 393, 401, 406
ASI_LD_TWINX_PRIMARY, 395, 403
ASI_LD_TWINX_PRIMARY_LITTLE, 395, 403
ASI_LD_TWINX_REAL, 392, 402
ASI_LD_TWINX_REAL_LITTLE, 392, 402
ASI_LD_TWINX_REAL_REAL[_]L, 369
ASI_LD_TWINX_SECONDARY, 395, 403
ASI_LD_TWINX_SECONDARY_LITTLE, 395, 403
ASI_LDTX_AIUP, 250, 391, 401
ASI_LDTX_AIUP_L, 250, 401
ASI_LDTX_AIUPL, 392
ASI_LDTX_AIUS, 250, 401
ASI_LDTX_AIUS_L, 392, 401
ASI_LDTX_N, 250, 392, 406
ASI_LDTX_NL, 250, 393, 401, 406
ASI_LDTX_P, 250, 395
ASI_LDTX_PL, 250, 395
ASI_LDTX_R, 402
ASI_LDTX_REAL, 250, 392
ASI_LDTX_REAL_L, 392, 402
ASI_LDTX_S, 250, 395
ASI_LDTX_SL, 250, 395
ASI_MMU_CONTEXTID, 391
ASI_N, 389
ASI_NL, 389
ASI_NUCLEUS, 108, 389
ASI_NUCLEUS_LITTLE, 108, 389
ASI_NUCLEUS_QUAD_LDD, 406
ASI_NUCLEUS_QUAD_LDD_L, 406
ASI_NUCLEUS_QUAD_LDD_LITTLE, 406
ASI_P, 393
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 406
ASI_PHYS_BYPASS_EC_WITH_EBIT, 406
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 4

06
ASI_PHYS_USE_EC, 406
ASI_PHYS_USE_EC_L, 406
ASI_PHYS_USE_EC_LITTLE, 406
ASI_PL, 393
ASI_PNF, 393

ASI_PNFL, 393
ASI_PRIMARY, 108, 371, 372, 393
ASI_PRIMARY_LITTLE, 108, 371, 393
ASI_PRIMARY_NO_FAULT, 368, 384, 393, 432
ASI_PRIMARY_NO_FAULT_LITTLE, 368, 384,

393, 432
ASI_PRIMARY_NOFAULT_LITTLE, 372
ASI_PST16_P, 325, 394
ASI_PST16_PL, 325, 394
ASI_PST16_PRIMARY, 394
ASI_PST16_PRIMARY_LITTLE, 394
ASI_PST16_S, 325, 394
ASI_PST16_SECONDARY, 394
ASI_PST16_SECONDARY_LITTLE, 394
ASI_PST16_SL, 325
ASI_PST32_P, 325, 394
ASI_PST32_PL, 325, 394
ASI_PST32_PRIMARY, 394
ASI_PST32_PRIMARY_LITTLE, 394
ASI_PST32_S, 325, 394
ASI_PST32_SECONDARY, 394
ASI_PST32_SECONDARY_LITTLE, 394
ASI_PST32_SL, 325, 394
ASI_PST8_P, 393
ASI_PST8_PL, 394
ASI_PST8_PRIMARY, 393
ASI_PST8_PRIMARY_LITTLE, 394
ASI_PST8_S, 393
ASI_PST8_SECONDARY, 393
ASI_PST8_SECONDARY_LITTLE, 394
ASI_PST8_SL, 325, 394
ASI_QUAD_LDD_REAL_LITTLE, 392
ASI_QUAD_LOAD_REAL, 392
ASI_REAL, 390, 399, 406
ASI_REAL_IO, 390, 399, 406
ASI_REAL_IO_L, 390
ASI_REAL_IO_LITTLE, 390, 400, 406
ASI_REAL_L, 390
ASI_REAL_LITTLE, 390, 400, 406
ASI_S, 393
ASI_SECONDARY, 393
ASI_SECONDARY_LITTLE, 393
ASI_SECONDARY_NO_FAULT, 384, 393, 432
ASI_SECONDARY_NO_FAULT_LITTLE, 384, 393,

432
ASI_SECONDARY_NOFAULT, 372
ASI_SL, 393
ASI_SNF, 393
ASI_SNFL, 393
Index 3

asr_reg, 480
atomic

memory operations, 251, 380, 381
store doubleword instruction, 330, 332
store instructions, 307, 308

atomic load-store instructions
compare and swap, 151
load-store unsigned byte, 247, 337
load-store unsigned byte to alternate space, 248
simultaneously addressing doublewords, 336
swap R register with alternate space

memory, 337
swap R register with memory, 151, 336

atomicity, 368, 472

B
BA instruction, 142, 143, 459
BCC instruction, 142, 459
bclrg synthetic instruction, 488
BCS instruction, 142, 459
BE instruction, 142, 459
Berkeley RISCs, 22
BG instruction, 142, 459
BGE instruction, 142, 459
BGU instruction, 142, 459
Bicc instructions, 142, 453
big-endian, 7
big-endian byte order, 26, 90, 103
binary compatibility, 22
BL instruction, 459
BLD, See LDBLOCKF instruction
BLE instruction, 142, 459
BLEU instruction, 142, 459
block load instructions, 53, 232, 403
block store instructions, 53, 312, 403
blocked byte formatting, 139
BMASK instruction, 144
BN instruction, 142, 459
BNE instruction, 142, 459
BNEG instruction, 142, 459
BP instructions, 459
BPA instruction, 145, 459
BPCC instruction, 145, 459
BPcc instructions, 70, 71, 145, 460
BPCS instruction, 145, 459
BPE instruction, 145, 459
BPG instruction, 145, 459
BPGE instruction, 145, 459

BPGU instruction, 145, 459
BPL instruction, 145, 459
BPLE instruction, 145, 459
BPLEU instruction, 145, 459
BPN instruction, 145, 459
BPNE instruction, 145, 459
BPNEG instruction, 145, 459
BPOS instruction, 142, 459
BPPOS instruction, 145, 459
BPr instructions, 148, 459
BPVC instruction, 145, 459
BPVS instruction, 145, 459
branch

annulled, 148
delayed, 99
elimination, 115, 116
fcc-conditional, 163, 165
icc-conditional, 143
instructions

on floating-point condition codes, 162
on floating-point condition codes with

prediction, 164
on integer condition codes with prediction

(BPcc), 145
on integer condition codes, See Bicc instruc-

tions
when contents of integer register match

condition, 148
prediction bit, 148
unconditional, 142, 146, 163, 165
with prediction, 20

BRGEZ instruction, 148
BRGZ instruction, 148
BRLEZ instruction, 148
BRLZ instruction, 148
BRNZ instruction, 148
BRZ instruction, 148
bset synthetic instruction, 488
BSHUFFLE instruction, 144
BST, See STBLOCKF instruction
btog synthetic instruction, 488
btst synthetic instruction, 488
BVC instruction, 142, 459
BVS instruction, 142, 459
bypass ASIs, 388
byte, 7

addressing, 108
data format, 33
order, 26
4 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

order, big-endian, 26
order, little-endian, 26

byte order
big-endian, 90
implicit, 90
in trap handlers, 417
little-endian, 90

C
cache

coherency protocol, 367
data, 375
instruction, 375
miss, 284
nonconsistent instruction cache, 375

cacheable accesses, 366
caching, TSB, 451
CALL instruction

description, 150
displacement, 29
does not change CWP, 50
and JMPL instruction, 226
writing address into R[15], 52

call synthetic instruction, 486
CANRESTORE (restorable windows) register, 83

and clean_window exception, 117
and CLEANWIN register, 83, 85, 437
counting windows, 85
decremented by RESTORE instruction, 290
decremented by SAVED instruction, 300
detecting window underflow, 50
if registered window was spilled, 291
incremented by SAVE instruction, 298
modified by NORMALW instruction, 272
modified by OTHERW instruction, 274
range of values, 82, 473
RESTORE instruction, 117
specification for RDPR instruction, 288
specification for WRPR instruction, 356
window underflow, 437

CANSAVE (savable windows) register, 83
decremented by SAVE instruction, 298
detecting window overflow, 50
FLUSHW instruction, 177
if equals zero, 116
incremented by RESTORE, 290
incremented by SAVED instruction, 300
range of values, 82, 473

SAVE instruction, 438
specification for RDPR instruction, 288
specification for WRPR instruction, 356
window overflow, 436

CAS synthetic instruction, 381
CASA instruction, 151

32-bit compare-and-swap, 380
alternate space addressing, 27
and data_access_exception (noncacheable page)

exception, 432
atomic operation, 247
hardware primitives for mutual exclusion of

CASXA, 379
in multiprocessor system, 248, 336, 337
R register use, 101
word access (memory), 102

casn synthetic instructions, 487
CASX synthetic instruction, 380, 381
CASXA instruction, 151

64-bit compare-and-swap, 380
alternate space addressing, 27
and data_access_exception (noncacheable page)

exception, 432
atomic operation, 248
doubleword access (memory), 102
hardware primitives for mutual exclusion of

CASA, 379
in multiprocessor system, 247, 248, 336, 337
R register use, 101

catastrophic error exception, 410
cc0 instruction field

branch instructions, 145, 165
floating point compare instructions, 169
move instructions, 264, 460

cc1 instruction field
branch instructions, 145, 165
floating point compare instructions, 169
move instructions, 264, 460

cc2 instruction field
move instructions, 264, 460

CCR (condition codes) register, 69
32-bit operation (icc) bit of condition field, 70, 71
64-bit operation (xcc) bit of condition field, 70,

71
ADD instructions, 134
ASR for, 67
carry (c) bit of condition fields, 70
icc field, See CCR.icc field
MULScc instruction, 268
Index 5

negative (n) bit of condition fields, 70
overflow bit (v) in condition fields, 70
restored by RETRY instruction, 154, 294
saved after trap, 409
saving after trap, 30
TSTATE register, 88
write instructions, 354
xcc field, See CCR.xcc field
zero (z) bit of condition fields, 70

CCR.icc field
add instructions, 134, 339
bit setting for signed division, 350
bit setting for signed/unsigned multiply, 351
bit setting for unsigned division, 349
branch instructions, 143, 146, 264
integer subtraction instructions, 335
logical operation instructions, 137, 273, 358
MULScc instruction, 268
Tcc instruction, 343

CCR.xcc field
add instructions, 134, 339
bit setting for signed/unsigned divide, 349, 350
bit setting for signed/unsigned multiply, 351
branch instructions, 146, 264
logical operation instructions, 137, 273, 358
subtract instructions, 335
Tcc instruction, 343

clean register window, 298, 431
clean window, 8

and window traps, 86, 436
CLEANWIN register, 85
definition, 437
number is zero, 117
trap handling, 438

clean_window exception, 83, 117, 299, 431, 437, 468
CLEANWIN (clean windows) register, 83

CANSAVE instruction, 117
clean window counting, 83
incremented by trap handler, 438
range of values, 82, 473
specification for RDPR instruction, 288
specification for WRPR instruction, 356
specifying number of available clean

windows, 437
value calculation, 85

clock cycle, counts for virtual processor, 72
clock tick registers, See TICK and STICK registers
clock-tick register (TICK), 435
clrn synthetic instructions, 488

cmp synthetic instruction, 335, 486
coherence, 8

between processors, 472
data cache, 375
domain, 367
memory, 368
unit, memory, 369

compare and swap instructions, 151
comparison instruction, 110, 335
compatibility note, 4
completed (memory operation), 8
compliant SPARC V9 implementation, 23
cond instruction field

branch instructions, 143, 145, 163, 165
floating point move instructions, 180
move instructions, 264

condition codes
adding, 339
effect of compare-and-swap instructions, 152
extended integer (xcc), 71
floating-point, 163
icc field, 70
integer, 69
results of integer operation (icc), 71
subtracting, 335, 345
trapping on, 343
xcc field, 70

condition codes register, See CCR register
conditional branches, 143, 163, 165
conditional move instructions, 30
conforming SPARC V9 implementation, 23
const22 instruction field of ILLTRAP

instruction, 222
constants, generating, 302
context, 8

nucleus, 176
context identifier, 370
control transfer

pseudo-control-transfer via WRPR to
PSTATE.am, 93

control-transfer instructions (CTIs), 28, 154, 294
conventions

font, 2
notational, 2

conversion
between floating-point formats instructions, 218
floating-point to integer instructions, 216, 363
integer to floating-point instructions, 173, 221
planar to packed, 206
6 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

copyback, 8
CPI, 8
CPU, pipeline draining, 82, 86
cpu_mondo exception, 431
cross-call, 8
CTI, 8, 16
current exception (cexc) field of FSR register, 64,

119, 466
current window, 8
current window pointer register, See CWP register
current_little_endian (cle) field of PSTATE

register, 90, 371
CWP (current window pointer) register

and instructions
CALL and JMPL instructions, 50
FLUSHW instruction, 177
RDPR instruction, 288
RESTORE instruction, 117, 290
SAVE instruction, 116, 290, 298
WRPR instruction, 356

and traps
after spill trap, 438
after spill/fill trap, 30
on window trap, 438
saved by hardware, 409

CWP (current window pointer) register, 82
clean windows, 84
definition, 8
incremented/decremented, 49, 290, 298
overlapping windows, 49
range of values, 82, 473
restored during RETRY, 154, 294
specifying windows for use without

cleaning, 437
and TSTATE register, 88

D
D superscript on instruction name, 124
d16hi instruction field

branch instructions, 148
d16lo instruction field

branch instructions, 148
data

access, 8
cache coherence, 375
conversion between SIMD formats, 41
flow order constraints

memory reference instructions, 374

register reference instructions, 373
formats

byte, 33
doubleword, 33
halfword, 33
Int16 SIMD, 42
Int32 SIMD, 42
quadword, 33
tagged word, 33
Uint8 SIMD, 42
word, 33

memory, 383
types

floating-point, 33
signed integer, 33
unsigned integer, 33
width, 33

Data Cache Unit Control register, See DCUCR

data_access_exception (invalid ASI) exception
with load alternate instructions, 230

data_access_exception exception, 431
with compare-and-swap instructions, 153
with LD instructions, 228
with LDSHORTF instructions, 231, 234
with LDTXA instructions, 252
with load instructions, 238, 254, 257
with load instructions and ASIs, 241, 401, 402,

403, 404, 405
with store instructions and ASIs, 241, 401, 402,

403, 404, 405
with STPARTIALF instructions, 327
with SWAPA instruction, 338

DCTI couple, 115
DCTI instructions, 8

behavior, 99
RETURN instruction effects, 296

dec synthetic instructions, 487
decccg synthetic instructions, 487
deferred trap, 413

distinguishing from disrupting trap, 415
floating-point, 289
restartable

implementation dependency, 414
software actions, 414

delay instruction
and annul field of branch instruction, 163
annulling, 29
conditional branches, 165
DONE instruction, 154
Index 7

executed after branch taken, 148
following delayed control transfer, 29
RETRY instruction, 294
RETURN instruction, 296
unconditional branches, 165
with conditional branch, 146

delayed branch, 99
delayed control transfer, 148
delayed CTI, See DCTI
denormalized number, 8
deprecated, 8
deprecated exceptions

tag_overflow, 435
deprecated instructions

FBA, 162
FBE, 162
FBG, 162
FBGE, 162
FBL, 162
FBLE, 162
FBLG, 162
FBN, 162
FBNE, 162
FBO, 162
FBU, 162
FBUE, 162
FBUGE, 162
FBUL, 162
FBULE, 162
LDFSR, 243
LDTW, 253
LDTWA, 255
MULScc, 69, 268
RDY, 67, 69, 285
SDIV, 69, 348
SDIVcc, 69, 348
SMUL, 69, 351
SMULcc, 69, 351
STFSR, 323
STTW, 330
STTWA, 332
SWAP, 336
SWAPA, 337
TADDccTV, 340
TSUBccTV, 346
UDIV, 69, 348
UDIVcc, 69, 348
UMUL, 69, 351
UMULcc, 69, 351

WRY, 67, 69, 353
dev_mondo exception, 432
disp19 instruction field

branch instructions, 145, 165
disp22 instruction field

branch instructions, 142, 163
disp30 instruction field

word displacement (CALL), 150
dispatch, 9
disrupting trap, 415
divide instructions, 28, 270, 348
division_by_zero exception, 111, 270, 433
division-by-zero bits of FSR.aexc/FSR.cexc

fields, 66
DONE instruction, 154

effect on TNPC register, 87
effect on TSTATE register, 88
generating illegal_instruction exception, 434
modifying CCR.xcc condition codes, 70
return from trap, 409
return from trap handler with different GL

value, 97
target address, 29

doublet, 9
doubleword, 9

addressing, 106
alignment, 26, 102, 369
data format, 33
definition, 9

E
EDGE16 instruction, 156
EDGE16L instruction, 156
EDGE16LN instruction, 158
EDGE16N instruction, 158
EDGE32 instruction, 156
EDGE32L instruction, 156
EDGE32LN instruction, 158
EDGE32N instruction, 158
EDGE8 instruction, 156
EDGE8L instruction, 156
EDGE8LN instruction, 158
EDGE8N instruction, 158
emulating multiple unsigned condition codes, 116
enable floating-point

See FPRS register, fef field
See PSTATE register, pef field

even parity, 9
8 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

exception, 9
exceptions

See also individual exceptions
catastrophic error, 410
causing traps, 409
clean_window, 431, 468
cpu_mondo, 431
data_access_exception, 431
definition, 410
dev_mondo, 432
division_by_zero, 433
fill_n_normal, 433
fill_n_other, 433
fp_disabled

and GSR, 76
fp_disabled, 433
fp_exception_ieee_754, 433
fp_exception_other, 433
htrap_instruction, 433
illegal_instruction, 433
instruction_access_exception, 434, 434
interrupt_level_14

and SOFTINT.int_level, 78
and STICK_CMPR.stick_cmpr, 81
and TICK_CMPR.tick_cmpr, 80

interrupt_level_14, 434
interrupt_level_15

and SOFTINT.int_level, 78
interrupt_level_n

and SOFTINT register, 77
and SOFTINT.int_level, 78

interrupt_level_n, 416, 434
LDDF_mem_address_not_aligned, 434
LDQF_mem_address_not_aligned, 436
mem_address_not_aligned, 434
nonresumable_error, 434
pending, 31
privileged_action, 434
privileged_opcode

and access to register-window PR state
registers, 81, 86, 95, 97

and access to SOFTINT, 77
and access to SOFTINT_CLR, 79
and access to SOFTINT_SET, 78
and access to STICK_CMPR, 81
and access to TICK_CMPR, 79

privileged_opcode, 435
resumable_error, 435
spill_n_normal, 299, 435

spill_n_other, 299, 435
STDF_mem_address_not_aligned, 435
STQF_mem_address_not_aligned, 436
tag_overflow (deprecated), 435
trap_instruction, 435
unimplemented_LDTW, 435
unimplemented_STTW, 435
VA_watchpoint, 435

execute unit, 373
execute_state

trap processing, 429
explicit ASI, 9, 108, 389
extended word, 9

addressing, 106

F
F registers, 9, 24, 119, 359, 418
FABSd instruction, 159, 457, 458
FABSq instruction, 159, 457, 458
FABSs instruction, 159
FADD, 160
FADDd instruction, 160
FADDq instruction, 160
FADDs instruction, 160
FALIGNDATA instruction, 161
FAND instruction, 214
FANDNOT1 instruction, 214
FANDNOT1S instruction, 214
FANDNOT2 instruction, 214
FANDNOT2S instruction, 214
FANDS instruction, 214
FBA instruction, 162, 163, 459
FBE instruction, 162, 459
FBfcc instructions, 58, 162, 433, 453, 459
FBG instruction, 162, 459
FBGE instruction, 162, 459
FBL instruction, 162, 459
FBLE instruction, 162, 459
FBLG instruction, 162, 459
FBN instruction, 162, 163, 459
FBNE instruction, 162, 459
FBO instruction, 162, 459
FBPA instruction, 164, 165, 459
FBPE instruction, 164, 459
FBPfcc instructions, 58, 164, 453, 459, 460
FBPG instruction, 164, 459
FBPGE instruction, 164, 459
FBPL instruction, 164, 459
Index 9

FBPLE instruction, 164, 459
FBPLG instruction, 164, 459
FBPN instruction, 164, 165, 459
FBPNE instruction, 164, 459
FBPO instruction, 164, 459
FBPU instruction, 164, 459
FBPUE instruction, 164, 459
FBPUG instruction, 164, 459
FBPUGE instruction, 164, 459
FBPUL instruction, 164, 459
FBPULE instruction, 164, 459
FBU instruction, 162, 459
FBUE instruction, 162, 459
FBUG instruction, 162, 459
FBUGE instruction, 162, 459
FBUL instruction, 162, 459
FBULE instruction, 162, 459
fcc-conditional branches, 163, 165
fccn, 9
FCMP instructions, 460
FCMP* instructions, 58, 59, 169
FCMPd instruction, 169, 361, 458
FCMPE instructions, 460
FCMPE* instructions, 58, 59, 169
FCMPEd instruction, 169, 361, 458
FCMPEq instruction, 169, 361, 458
FCMPEQ16 instruction, 166
FCMPEQ32 instruction, 166
FCMPEs instruction, 169, 361, 458
FCMPGT instruction, 166
FCMPGT16 instruction, 166
FCMPGT32 instruction, 166
FCMPLE16 instruction, 166
FCMPLE16 instruction, 166
FCMPLE32 instruction, 166
FCMPLE32 instruction, 166
FCMPNE16 instruction, 166, 167
FCMPNE32 instruction, 166, 167
FCMPq instruction, 169, 361, 458
FCMPs instruction, 169, 361, 458
fcn instruction field

DONE instruction, 154
PREFETCH, 278
RETRY instruction, 294

FDIVd instruction, 171
FDIVq instruction, 171
FDIVs instructions, 171
FdMULq instruction, 194
FdTOi instruction, 216, 363

FdTOq instruction, 218
FdTOs instruction, 218
FdTOx instruction, 216, 458
fef field of FPRS register, 73

and access to GSR, 76
and fp_disabled exception, 433
branch operations, 163, 165
byte permutation, 144
comparison operations, 167, 170
data movement operations, 265
enabling FPU, 92
floating-point operations, 159, 160, 171, 173, 178,

183, 186, 194, 196, 215, 216, 218, 220, 221, 237,
239, 243, 245

integer arithmetic operations, 205, 210
logical operations, 211, 212, 214
memory operations, 234
read operations, 287, 304, 314
special addressing operations, 135, 161, 317, 323,

327, 329, 355
fef, See FPRS register, fef field
FEXPAND instruction, 172
FEXPAND operation, 172
fill handler, 291
fill register window, 433

overflow/underflow, 50
RESTORE instruction, 85, 290, 437
RESTORED instruction, 118, 292, 438
RETRY instruction, 438
selection of, 437
trap handling, 437, 438
trap vectors, 291
window state, 85

fill_n_normal exception, 291, 297, 433, 433
fill_n_other exception, 291, 297, 433
FiTOd instruction, 173
FiTOq instruction, 173
FiTOs instruction, 173
fixed values, 223
fixed-point scaling, 189
floating point

absolute value instructions, 159
add instructions, 160
compare instructions, 58, 59, 169, 169, 361
condition code bits, 163
condition codes (fcc) fields of FSR register, 61,

163, 165, 169
data type, 33
deferred-trap queue (FQ), 289
10 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

divide instructions, 171
exception, 9
exception, encoding type, 60
FPRS register, 354
FSR condition codes, 59
move instructions, 178
multiply instructions, 194
negate instructions, 196
operate (FPop) instructions, 9, 30, 60, 64, 119, 243
registers

destination F, 359
FPRS, See FPRS register
FSR, See FSR register
programming, 56

rounding direction, 59
square root instructions, 215
subtract instructions, 220
trap types, 9

IEEE_754_exception, 61, 62, 64, 67, 360
invalid_fp_register, 159, 160, 220
unfinished_FPop, 61, 62, 67, 160, 171, 195,

219, 220, 360
results after recovery, 62

unimplemented_FPop, 62, 67, 159, 160, 170,
171, 173, 178, 184, 187, 195, 196, 217, 219,
220, 360

traps
deferred, 289
precise, 289

floating-point condition codes (fcc) fields of FSR

register, 418
floating-point operate (FPop) instructions, 433
floating-point trap types

IEEE_754_exception, 418, 433
floating-point unit (FPU), 9, 24
FLUSH instruction, 175

memory ordering control, 260
FLUSH instruction

memory/instruction synchronization, 174
FLUSH instruction, 174, 383

data access, 8
immediacy of effect, 176
in multiprocessor system, 174
in self-modifying code, 175
latency, 472

flush instruction memory, See FLUSH instruction
flush register windows instruction, 177
FLUSHW instruction, 177, 435

effect, 30

management by window traps, 86, 436
spill exception, 118, 177, 438

FMOVcc instructions
conditionally moving floating-point register

contents, 71
conditions for copying floating-point register

contents, 115
copying a register, 58
encoding of opf<84> bits, 458
encoding of opf_cc instruction field, 460
encoding of rcond instruction field, 459
floating-point moves, 180
FPop instruction, 119
used to avoid branches, 184, 264

FMOVccd instruction, 458
FMOVccq instruction, 458
FMOVd instruction, 178, 457, 458
FMOVDfcc instructions, 180
FMOVdGEZ instruction, 185
FMOVdGZ instruction, 185
FMOVDicc instructions, 180
FMOVdLEZ instruction, 185
FMOVdLZ instruction, 185
FMOVdNZ instruction, 185
FMOVdZ instruction, 185
FMOVq instruction, 178, 457, 458
FMOVQfcc instructions, 180, 183
FMOVqGEZ instruction, 185
FMOVqGZ instruction, 185
FMOVQicc instructions, 180, 183
FMOVqLEZ instruction, 185
FMOVqLZ instruction, 185
FMOVqNZ instruction, 185
FMOVqZ instruction, 185
FMOVr instructions, 119, 459
FMOVRq instructions, 186
FMOVRsGZ instruction, 185
FMOVRsLEZ instruction, 185
FMOVRsLZ instruction, 185
FMOVRsNZ instruction, 185
FMOVRsZ instruction, 185
FMOVs instruction, 178
FMOVScc instructions, 182
FMOVSfcc instructions, 180
FMOVsGEZ instruction, 185
FMOVSicc instructions, 180
FMOVSxcc instructions, 180
FMOVxcc instructions, 180, 183
FMUL8SUx16 instruction, 188, 191
Index 11

FMUL8ULx16 instruction, 188, 191
FMUL8x16 instruction, 188, 189
FMUL8x16AL instruction, 188, 190
FMUL8x16AU instruction, 188, 190
FMULd instruction, 194
FMULD8SUx16 instruction, 188, 192
FMULD8ULx16 instruction, 188, 193
FMULq instruction, 194
FMULs instruction, 194
FNAND instruction, 214
FNANDS instruction, 214
FNEG instructions, 196
FNEGd instruction, 196, 457, 458
FNEGq instruction, 196, 457, 458
FNEGs instruction, 196
FNOR instruction, 214
FNORS instruction, 214
FNOT1 instruction, 212
FNOT1S instruction, 212
FNOT2 instruction, 212
FNOT2S instruction, 212
FONE instruction, 211
FONES instruction, 211
FOR instruction, 214
formats, instruction, 100
FORNOT1 instruction, 214
FORNOT1S instruction, 214
FORNOT2 instruction, 214
FORNOT2S instruction, 214
FORS instruction, 214
fp_disabled exception, 433

absolute value instructions, 159, 160, 220
and GSR, 76
FPop instructions, 119
FPRS.fef disabled, 73
PSTATE.pef not set, 73, 74
with branch instructions, 163, 165
with compare instructions, 168
with conversion instructions, 173, 217, 219, 221
with floating-point arithmetic instructions, 171,

195, 205, 210
with FMOV instructions, 178
with load instructions, 241
with move instructions, 184, 187, 265
with store instructions, 317, 321, 323, 324, 327,

329, 355
fp_exception exception, 64
fp_exception_ieee_754 "invalid" exception, 216
fp_exception_ieee_754 exception, 433

and tem bit of FSR, 60
cause encoded in FSR.ftt, 61
FSR.aexc, 64
FSR.cexc, 65
FSR.ftt, 64
generated by FCMP or FCMPE, 59
and IEEE 754 overflow/underflow

conditions, 64, 65
trap handler, 360
when FSR.tem = 0, 418
when FSR.tem =1, 418
with floating-point arithmetic instructions, 160,

171, 195, 220
fp_exception_other exception, 67, 433

absolute value instructions, 159
cause encoded in FSR.ftt, 61
FADDq instruction, 160, 220
FCMP{E}q instructions, 170
FDIVq instruction, 171
FdTOq, FqTOd instructions, 219
FiTOq instruction, 173
FMOVcc instruction, 184
FMOVq instruction, 178
FMOVRq instruction, 187
FMULq, FdMULq instructions, 195
FNEGq instruction, 196
FqTOx, FqTOi instructions, 217
FSQRT instructions, 215
FxTOq instruction, 221
incorrect IEEE Std 754-1985 result, 119, 465
occurrence, 133
supervisor handling, 360
trap type of unfinished_FPop, 62
unimplemented_FPop for quad FPops, 57
when quad FPop unimplemented in

hardware, 63
with floating-point arithmetic instructions, 171,

195
FPACK instruction, 77
FPACK instructions, 197–201
FPACK16 instruction, 197, 198
FPACK16 operation, 198
FPACK32 instruction, 197, 199
FPACK32 operation, 199
FPACKFIX instruction, 197, 201
FPACKFIX operation, 201
FPADD16 instruction, 203
FPADD16S instruction, 203
FPADD32 instruction, 203
12 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

FPADD32S instruction, 203
FPMERGE instruction, 206
FPop, 9
FPop instruction

unimplemented, 433
FPop, See floating-point operate (FPop) instructions
FPRS register

See also floating-point registers state (FPRS)
register

FPRS register, 73
ASR summary, 68
definition, 9
fef field, 119, 417
RDFPRS instruction, 286

FPRS register fields
dl (dirty lower fp registers), 74
du (dirty upper fp registers, 74
fef, 73
fef, See also fef field of FPRS register

FPSUB16 instruction, 208
FPSUB16S instruction, 208
FPSUB32 instruction, 208
FPSUB32S instruction, 208
FPU, 10
FqTOd instruction, 218
FqTOi instruction, 216, 363
FqTOs instruction, 218
FqTOx instruction, 216, 457, 458
freg, 480
FsMULd instruction, 194
FSQRTd instruction, 215
FSQRTq instruction, 215
FSQRTs instruction, 215
FSR (floating-point state) register

fields
aexc (accrued exception), 61, 62, 63, 64, 360
aexc (accrued exceptions)

in user-mode trap handler, 360
-- dza (division by zero) bit of aexc, 66
-- nxa (rounding) bit of aexc, 67
cexc (current exception), 59, 61, 62, 64, 64, 65,

360, 433
cexc (current exceptions)

in user-mode trap handler, 360
-- dzc (division by zero) bit of cexc, 66
-- nxc (rounding) bit of cexc, 67
fcc (condition codes), 58, 61, 62, 360, 481
fccn, 59
ftt (floating-point trap type), 60, 64, 119, 316,

323, 433
in user-mode trap handler, 360

not modified by LDFSR/LDXFSR
instructions, 58

qne (queue not empty), 63
in user-mode trap handler, 360

rd (rounding), 59
tem (trap enable mask), 59, 63, 65, 433
ver, 60

FSR (floating-point state) register, 58
after floating-point trap, 360
compliance with IEEE Std 754-1985, 67
LDFSR instruction, 243
reading/writing, 58
values in ftt field, 61
writing to memory, 316, 323

FSRC1 instruction, 212
FSRC1S instruction, 212
FSRC2 instruction, 212
FSRC2S instruction, 212
FsTOd instruction, 218
FsTOi instruction, 216, 363
FsTOq instruction, 218
FsTOx instruction, 216, 457, 458
FSUBd instruction, 220
FSUBq instruction, 220
FSUBs instruction, 220
functional choice, implementation-dependent, 465
FXNOR instruction, 214
FXNORS instruction, 214
FXOR instruction, 214
FXORS instruction, 214
FxTOd instruction, 221, 458
FxTOq instruction, 221, 458
FxTOs instruction, 221, 458
FZERO instruction, 211
FZEROS instruction, 211

G
General Status register, See GSR
generating constants, 302
GL register, 96

access, 97
during trap processing, 429
function, 96
reading with RDPR instruction, 288, 356
relationship to TL, 97
restored during RETRY, 154, 294
Index 13

SPARC V9 compatibility, 94
and TSTATE register, 88
value restored from TSTATE[TL], 97
writing to, 97

global level register, See GL register
global registers, 20, 24, 46, 48, 48, 465
Graphics Status register, See GSR
GSR (general status) register

fields
align, 77
im (interval mode) field, 77
irnd (rounding), 77
mask, 77
scale, 77

GSR (general status) register
ASR summary, 68

H
halfword, 10

alignment, 26, 102, 369
data format, 33

hardware
dependency, 464
traps, 420

hardware trap stack, 30
htrap_instruction exception, 344, 433

I
i (integer) instruction field

arithmetic instructions, 268, 270, 273, 348, 351
floating point load instructions, 236, 239, 243
flush memory instruction, 174
flush register instruction, 177
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 264, 266
POPC, 276
PREFETCH, 278
RETURN, 296

I/O
access, 367
memory, 366
memory-mapped, 367

IEEE 754, 10
IEEE Std 754-1985, 10, 19, 59, 62, 65, 67, 119, 359,

465

IEEE_754_exception floating-point trap type, 10, 61,
62, 64, 67, 360, 418, 433

IEEE-754 exception, 10
IER register (SPARC V8), 355
illegal_instruction

and OTHERW instruction, 303
illegal_instruction exception, 177, 433

attempt to write in nonprivileged mode, 80
DONE/RETRY, 155, 295, 296
ILLTRAP, 222
instruction not specifically defined in

architecture, 120
not implemented in hardware, 133
POPC, 277
PREFETCH, 284
RETURN, 297
with BPr instruction, 149
with branch instructions, 146, 149
with CASA and CASXA instructions, 152, 273
with CASXA instruction, 153
with DONE instruction, 154
with FMOV instructions, 178
with FMOVcc instructions, 184
with load instructions, 52, 234, 238, 254, 256, 404
with move instructions, 265, 267
with read hyperprivileged register

instructions, 288
with read instructions, 286, 287, 288, 357, 468
with store instructions, 317, 324, 330, 331, 333
with STQFA instruction, 321
with Tcc instructions, 344
with TPC register, 86
with TSTATE register, 88
with write instructions, 355, 357
write to ASR 5, 73
write to STICK register, 80

ILLTRAP instruction, 222, 433
imm_asi instruction field

explicit ASI, providing, 108
floating point load instructions, 239
load instructions, 248, 253, 255
PREFETCH, 278

immediate CTI, 99
I-MMU

and instruction prefetching, 368
IMPDEP1 instruction, 224
IMPDEP1 instructions, 223, 461, 462
IMPDEP2A instructions, 223, 434, 469
IMPDEP2B instructions, 120, 223, 434
14 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

implementation, 10
implementation dependency, 463
implementation dependent, 10
implementation note, 4
implementation-dependent functional choice, 465
implementation-dependent instructions, See

IMPDEP2A instructions
implicit ASI, 10, 108, 388
implicit ASI memory access

LDFSR, 243
LDSTUB, 247
load fp instructions, 236
load integer doubleword instructions, 253
load integer instructions, 227
STD, 330
STFSR, 323
store floating-point instructions, 316
store integer instructions, 307
SWAP, 336

implicit byte order, 90
in registers, 46, 49, 298
inccc synthetic instructions, 487
inexact accrued (nxa) bit of aexc field of FSR

register, 363
inexact current (nxc) bit of cexc field of FSR

register, 363
inexact quotient, 348, 349
infinity, 363
initiated, 10
input/output (I/O) locations

access by nonprivileged code, 466
behavior, 366
contents and addresses, 466
identifying, 472
order, 366
semantics, 472
value semantics, 366

instruction fields, 10
See also individual instruction fields
definition, 10

instruction group, 10
instruction MMU, See I-MMU
instruction prefetch buffer, invalidation, 175
instruction set architecture (ISA), 10, 10, 21
instruction_access_exception exception, 434
instructions

32-bit wide, 20
alignment, 102
alignment, 26, 135, 369

arithmetic, integer
addition, 134, 339
division, 28, 270, 348
multiplication, 28, 268, 270, 351
subtraction, 335, 345
tagged, 28

array addressing, 138
atomic

CASA/CASXA, 151
load twin extended word from alternate

space, 250
load-store, 101, 151, 247, 248, 336, 337
load-store unsigned byte, 247, 248
successful loads, 227, 229, 254, 256
successful stores, 307, 308

branch
branch if contents of integer register match

condition, 148
branch on floating-point condition codes, 162,

164
branch on integer condition codes, 142, 145

cache, 375
causing illegal instruction, 222
compare and swap, 151
comparison, 110, 335
conditional move, 30
control-transfer (CTIs), 28, 154, 294
conversion

convert between floating-point formats, 218
convert floating-point to integer, 216
convert integer to floating-point, 173, 221
floating-point to integer, 363

count of number of bits, 276
edge handling, 156
fetches, 102
floating point

compare, 58, 59, 169
floating-point add, 160
floating-point compare, 361
floating-point divide, 171
floating-point load, 101, 236
floating-point load from alternate space, 239
floating-point move, 178, 180, 185
floating-point operate (FPop), 30, 243
floating-point square root, 215
floating-point store, 101, 316
floating-point store to alternate space, 319
floating-point subtract, 220
operate (FPop), 60, 64
Index 15

short floating-point load, 245
short floating-point store, 328
status of floating-point load, 243

flush instruction memory, 174
flush register windows, 177
formats, 100
implementation-dependent, See IMPDEP2A

instructions
jump and link, 29, 226
loads

block load, 232
floating point, See instructions: floating point
integer, 101
simultaneously addressing doublewords, 336
unsigned byte, 151, 247
unsigned byte to alternate space, 248

logical operations
64-bit/32-bit, 212, 214
AND, 137
logical 1-operand ops on F registers, 211
logical 2-operand ops on F registers, 212
logical 3-operand ops on F registers, 214
logical XOR, 358
OR, 273

memory, 383
moves

floating point, See instructions: floating point
move integer register, 262, 266
on condition, 20

ordering MEMBAR, 110
permuting bytes specified by GSR.mask, 144
pixel component distance, 275, 275
pixel formatting (PACK), 197
prefetch data, 278
read privileged register, 288
read state register, 29, 285
register window management, 30
reordering, 373
reserved, 120
reserved fields, 133
RETRY

and restartable deferred traps, 414
RETURN vs. RESTORE, 296
sequencing MEMBAR, 110
set high bits of low word, 302
set interval arithmetic mode, 304
setting GSR.mask field, 144
shift, 28
shift, 305

shift count, 305
shut down to enter power-down mode, 303
SIMD, 15
simultaneous addressing of doublewords, 337
stores

block store, 312
floating point, See instructions: floating point
integer, 101, 307
integer (except doubleword), 307
integer into alternate space, 308
partial, 325
unsigned byte, 151
unsigned byte to alternate space, 248
unsigned bytes, 247

swap R register, 336, 337
synthetic (for assembly language

programmers), 486–488
tagged addition, 339
test-and-set, 380
timing, 133
trap on integer condition codes, 342
write privileged register, 356
write state register, 354

integer unit (IU)
condition codes, 71
definition, 10
description, 24

interrupt
enable (ie) field of PSTATE register, 416, 417
level, 95
request, 10, 31, 409

interrupt_level_14 exception, 78, 434
and SOFTINT.int_level, 78
and STICK_CMPR.stick_cmpr, 81
and TICK_CMPR.tick_cmpr, 80

interrupt_level_15 exception
and SOFTINT.int_level, 78

interrupt_level_n exception, 416, 434
and SOFTINT register, 77
and SOFTINT.int_level, 78

inter-strand operation, 11
intra-strand operation, 11
invalid accrued (nva) bit of aexc field of FSR

register, 66
invalid ASI

and data_access_exception, 432
invalid current (nvc) bit of cexc field of FSR

register, 66, 363
invalid_exception exception, 216
16 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

invalid_fp_register floating-point trap type, 159,
160, 170, 171, 173, 178, 184, 187, 215, 220

INVALW instruction, 225
iprefetch synthetic instruction, 486
ISA, 11
ISA, See instruction set architecture
issue unit, 373, 373
issued, 11
italic font, in assembly language syntax, 479
IU, 11
ixc synthetic instructions, 487
IXX>data_access_exception (invalid ASI)

with load alternate instructions, 256

J
jmp synthetic instruction, 486
JMPL instruction, 226

computing target address, 29
does not change CWP, 50
mem_address_not_aligned exception, 434
reexecuting trapped instruction, 296

jump and link, See JMPL instruction

L
LD instruction (SPARC V8), 227
LDBLOCKF instruction, 232, 403
LDD instruction (SPARC V8 and V9), 254
LDDA instruction, 402
LDDA instruction (SPARC V8 and V9), 256
LDDF instruction, 102, 236, 434
LDDF_mem_address_not_aligned exception, 434

address not doubleword aligned, 470
address not quadword aligned, 471
LDDF/LDDFA instruction, 102
load instruction with partial store ASI and

misaligned address, 241
with load instructions, 237, 240, 404
with store instructions, 320, 404

LDDF_mem_not_aligned exception, 57
LDDFA instruction, 239, 327

alignment, 102
ASIs for fp load operations, 404
behavior with partial store ASIs, 237–??, 241,

241–??, 404–??
causing LDDF_mem_address_not_aligned

exception, 102, 434
for block load operations, 403

used with ASIs, 403
LDF instruction, 57, 236
LDFA instruction, 57, 239
LDFSR instruction, 58, 60, 61, 243, 434
LDQF instruction, 236, 436
LDQF_mem_address_not_aligned exception, 436

address not quadword aligned, 471
LDQF/LDQFA instruction, 103
with load instructions, 240

LDQFA instruction, 239
LDSB instruction, 227
LDSBA instruction, 229
LDSH instruction, 227
LDSHA instruction, 229
LDSHORTF instruction, 245
LDSTUB instruction, 101, 247, 248, 380, 381

and data_access_exception (noncacheable page)
exception, 432

hardware primitives for mutual exclusion of
LDSTUB, 379

LDSTUBA instruction, 247, 248
alternate space addressing, 27
and data_access_exception exception, 432
hardware primitives for mutual exclusion of

LDSTUBA, 379
LDSW instruction, 227
LDSWA instruction, 229
LDTW instruction, 52, 102
LDTW instruction (deprecated), 253
LDTWA instruction, 52, 102
LDTWA instruction (deprecated), 255
LDTX instruction, 400
LDTXA instruction, 104, 106, 250, 401

access alignment, 102
access size, 102
and data_access_exception (noncacheable page)

exception, 432
LDUB instruction, 227
LDUBA instruction, 229
LDUH instruction, 227
LDUHA instruction, 229
LDUW instruction, 227
LDUWA instruction, 229
LDX instruction, 227
LDXA instruction, 229, 257, 378
LDXFSR instruction, 58, 60, 61, 236, 243, 300, 434
leaf procedure

modifying windowed registers, 117
little-endian byte order, 11, 26, 90
Index 17

load
block, See block load instructions
floating-point from alternate space

instructions, 239
floating-point instructions, 236, 243
from alternate space, 27, 71, 108
instructions, 11
instructions accessing memory, 101
nonfaulting, 372
short floating-point, See short floating-point load

instructions
LoadLoad MEMBAR relationship, 259
LoadLoad MEMBAR relationship, 382
LoadLoad predefined constant, 484
loads

nonfaulting, 384
load-store alignment, 26, 102, 369
load-store instructions

compare and swap, 151
definition, 11
load-store unsigned byte, 151, 247, 336, 337
load-store unsigned byte to alternate space, 248
memory access, 25
swap R register with alternate space

memory, 337
swap R register with memory, 151, 336

LoadStore MEMBAR relationship, 259, 382
LoadStore predefined constant, 484
local registers, 46, 49, 290
logical XOR instructions, 358
Lookaside predefined constant, 484
LSTPARTIALF instruction, 404

M
MAXPGL, 24, 46, 48, 94, 96, 96, 97, 476
MAXPTL

and MAXPGL, 97
instances of TNPC register, 87
instances of TPC register, 86
instances of TSTATE register, 88
instances of TT register, 89

may (keyword), 11
mem_address_not_aligned exception, 434

JMPL instruction, 226
LDTXA, 401, 402, 403
load instruction with partial store ASI and

misaligned address, 241
RETURN, 297

when recognized, 153
with CASA instruction, 152
with compare instructions, 153
with load instructions, 102–103, 227, 228, 230,

237, 243, 254, 256, 257, 403, 404
with store instructions, 102–103, 307, 308, 310,

321, 324, 331, 333, 403, 404
with swap instructions (deprecated), 336, 338

MEMBAR
#Sync

semantics, 261
instruction

atomic operation ordering, 381
FLUSH instruction, 174, 383
functions, 258, 381–383
memory ordering, 260
memory synchronization, 110
side-effect accesses, 368
STBAR instruction, 260

mask encodings
#LoadLoad, 259, 382
#LoadStore, 259, 382
#Lookaside, 259, 383
#MemIssue, 259, 383
#StoreLoad, 259, 382
#StoreStore, 259, 382
#Sync, 259, 383

predefined constants
#LoadLoad, 484
#LoadStore, 484
#Lookaside, 484
#MemIssue, 484
#StoreLoad, 484
#StoreStore, 484
#Sync, 484

MEMBAR
#Lookaside, 378
#StoreLoad, 378

membar_mask, 484
MemIssue predefined constant, 484
memory

access instructions, 25, 101
alignment, 369
atomic operations, 380
atomicity, 472
cached, 366
coherence, 368, 472
coherency unit, 369
data, 383
18 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

instruction, 383
location, 366
models, 365
ordering unit, 369
real, 366
reference instructions, data flow order

constraints, 374
synchronization, 260
virtual address, 366
virtual address 0, 385

Memory Management Unit
definition, 11

Memory Management Unit, See MMU
memory model

mode control, 377
partial store order (PSO), 376
relaxed memory order (RMO), 260, 376
sequential consistency, 377
strong, 376
total store order (TSO), 260, 376, 377
weak, 376

memory model (mm) field of PSTATE register, 91
memory order

pending transactions, 375
program order, 373

memory_model (mm) field of PSTATE register, 377
memory-mapped I/O, 367
mmask instruction field

store instructions, 311
MMU

definition, 11
page sizes, 447

mode
nonprivileged, 22
privileged, 24, 86, 371

motion estimation, 275
MOVA instruction, 262
MOVCC instruction, 262
MOVcc instructions, 262

conditionally moving integer register
contents, 71

conditions for copying integer register
contents, 115

copying a register, 58
encoding of cond field, 459
encoding of opf_cc instruction field, 460
used to avoid branches, 184, 264

MOVCS instruction, 262
move floating-point register if condition is true, 180

move floating-point register if contents of integer
register satisfy condition, 185

MOVE instruction, 262
move integer register if condition is satisfied

instructions, 262
move integer register if contents of integer register

satisfies condition instructions, 266
move on condition instructions, 20
MOVFA instruction, 263
MOVFE instruction, 263
MOVFG instruction, 263
MOVFGE instruction, 263
MOVFL instruction, 263
MOVFLE instruction, 263
MOVFLG instruction, 263
MOVFN instruction, 263
MOVFNE instruction, 263
MOVFO instruction, 263
MOVFU instruction, 263
MOVFUE instruction, 263
MOVFUG instruction, 263
MOVFUGE instruction, 263
MOVFUL instruction, 263
MOVFULE instruction, 263
MOVG instruction, 262
MOVGE instruction, 262
MOVGU instruction, 262
MOVL instruction, 262
MOVLE instruction, 262
MOVLEU instruction, 262
MOVN instruction, 262
movn synthetic instructions, 488
MOVNE instruction, 262
MOVNEG instruction, 262
MOVPOS instruction, 262
MOVr instructions, 116, 266, 459
MOVRGEZ instruction, 266
MOVRGZ instruction, 266
MOVRLEZ instruction, 266
MOVRLZ instruction, 266
MOVRNZ instruction, 266
MOVRZ instruction, 266
MOVVC instruction, 262
MOVVS instruction, 262
multiple unsigned condition codes, emulating, 116
multiply instructions, 28, 270, 351
multiprocessor synchronization instructions, 151,

336, 337
multiprocessor system, 12, 174, 283, 336, 337, 375,
Index 19

472
MULX instruction, 270
must (keyword), 12

N
N superscript on instruction name, 124
N_REG_WINDOWS, 12

integer unit registers, 24, 465
RESTORE instruction, 290
SAVE instruction, 298
value of, 46, 82

NaN (not-a-number)
conversion to integer, 363
converting floating-point to integer, 216
quiet, 169, 170, 361
signalling, 59, 169, 170, 218, 361
transformation, 361

neg synthetic instructions, 487
negative infinity, 363
nested traps, 21
next program counter register, See NPC register
NFO, 12
noncacheable

accesses, 366
nonfaulting load, 12, 372
nonfaulting loads

behavior, 384
use by optimizer, 385

nonleaf routine, 226
nonprivileged, 12

mode, 7, 12, 22, 24, 61
software, 73

nonprivileged trap (npt) field of TICK register, 72,
287

nonresumable_error exception, 434
nonstandard floating-point, See floating-point status

register (FSR) NS field
nontranslating ASI, 12, 257, 333
nontranslating ASIs, 388
nonvirtual memory, 283
NOP instruction, 142, 163, 165, 271, 279, 343
normal traps, 420
NORMALW instruction, 272
not synthetic instructions, 487
note

architectural direction, 4
compatibility, 4
general, 4

implementation, 4
programming, 4

NPC (next program counter) register, 73
control flow alteration, 16
definition, 12
DONE instruction, 154
instruction execution, 99
relation to TNPC register, 87
RETURN instruction, 294
saving after trap, 30

npt, 12
nucleus context, 176
nucleus software, 12
NUMA, 12
NWIN, See N_REG_WINDOWS

O
octlet, 12
odd parity, 13
op3 instruction field

arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351

floating point load instructions, 236, 239, 243
flush instructions, 174, 177
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 273, 358
PREFETCH, 278
RETURN, 296

opcode
definition, 13
format, 224

opf instruction field
floating point arithmetic instructions, 160, 171,

194, 215
floating point compare instructions, 169
floating point conversion instructions, 216, 218,

221
floating point instructions, 159
floating point integer conversion, 173
floating point move instructions, 178
floating point negate instructions, 196

opf_cc instruction field
floating point move instructions, 180
move instructions, 460

opf_low instruction field, 180
optional, 13
OR instruction, 273
20 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

ORcc instruction, 273
ordering MEMBAR instructions, 110
ordering unit, memory, 369
ORN instruction, 273
ORNcc instruction, 273
OTHERW instruction, 274
OTHERWIN (other windows) register, 84

FLUSHW instruction, 177
keeping consistent state, 85
modified by OTHERW instruction, 274
partitioned, 85
range of values, 82, 473
rd designation for WRPR instruction, 356
rs1 designation for RDPR instruction, 288
SAVE instruction, 299
zeroed by INVALW instruction, 225
zeroed by NORMALW instruction, 272

OTHERWIN register trap vectors
fill/spill traps, 437
handling spill/fill traps, 437
selecting spill/fill vectors, 437

out register #7, 52
out registers, 46, 49, 298
overflow

bits
(v) in condition fields of CCR, 111
accrued (ofa) in aexc field of FSR register, 66
current (ofc) in cexc field of FSR register, 66

causing spill trap, 436
tagged add/subtract instructions, 111

P
p (predict) instruction field of branch

instructions, 145, 148, 149, 165
P superscript on instruction name, 124
packed-to-planar conversion, 206
packing instructions, See FPACK instructions
page fault, 283
page table entry (PTE), See translation table entry

(TTE)
parity, even, 9
parity, odd, 13
partial store instructions, 325, 404
partial store order (PSO) memory model, 376, 376
partitioned

additions, 203
subtracts, 208

PASI superscript on instruction name, 124

PASR superscript on instruction name, 124
PC (program counter) register, 14, 68, 72

after instruction execution, 99
CALL instruction, 150
changed by NOP instruction, 271
copied by JMPL instruction, 226
saving after trap, 30
set by DONE instruction, 154
set by RETRY instruction, 294
Trap Program Counter register, 86

PCR

ASR summary, 68
PCR register fields

priv, 75
sl (select lower bits of PIC), 75
st (system trace enable), 75
su (select upper bits of PIC), 75
ut (user trace enable), 75

PDIST instruction, 275
pef field of PSTATE register

and access to GSR, 76
and fp_disabled exception, 433
and FPop instructions, 119
branch operations, 163, 165
byte permutation, 144
comparison operations, 167, 170
data movement operations, 265
enabling FPU, 73
floating-point operations, 159, 160, 171, 173, 178,

183, 186, 194, 196, 215, 216, 218, 220, 221, 237,
239, 243, 245

integer arithmetic operations, 205, 210
logical operations, 211, 212, 214
memory operations, 234
read operations, 287, 304, 314
special addressing operations, 135, 161, 317, 323,

327, 329, 355
trap control, 417

pef, See PSTATE, pef field
Performance Control register, See PCR
performance instrumentation counter register, See

PIC register
PIC (performance instrumentation counter)

register, 13, 75
accessing, 435
ASR summary, 68
and PCR, 74
picl field, 76
picu field, 76
Index 21

PIL (processor interrupt level) register, 95
interrupt conditioning, 416
interrupt request level, 418
interrupt_level_n, 434
specification of register to read, 288
specification of register to write, 356
trap processing control, 417

pipeline, 13
pipeline draining of CPU, 82, 86
pixel instructions

compare, 166
component distance, 275, 275
formatting, 197

pixel registers for storing values, 223
planar-to-packed conversion, 206
Pnpt superscript on instruction name, 124
POPC instruction, 276
POR, 13
positive infinity, 363
Ppic superscript on instruction name, 124
precise floating-point traps, 289
precise trap, 412

conditions for, 412
software actions, 413
vs. disrupting trap, 415

predefined constants
LoadLoad, 484
lookaside, 484
MemIssue, 484
StoreLoad, 484
StoreStore, 484
Sync, 484

predict bit, 149
prefetch

for one read, 282
for one write, 283
for several reads, 282
for several writes, 282
page, 283

prefetch data instruction, 278
PREFETCH instruction, 101, 278, 469
prefetch_fcn, 484
PREFETCHA instruction, 278, 469

and invalid ASI or VA, 432
prefetchable, 13
priority of traps, 417, 428
privilege violation

and data_access_exception, 432, 434

privileged, 13
mode, 24, 86
registers, 86
software, 23, 50, 61, 92, 109, 177, 420, 469

privileged (priv) field of PCR register, 287
privileged (priv) field of PSTATE register, 94, 152,

154, 155, 230, 234, 239, 240, 248, 256, 308, 314,
320, 333, 337, 338, 355, 371, 434, 435

privileged mode, 13
privileged_action exception, 434

accessing restricted ASIs, 371
PIC access, 75
restricted ASI access attempt, 109, 388
TICK register access attempt, 71
with CASA instruction, 152
with compare instructions, 153
with load alternate instructions, 230, 234, 240,

248, 256, 308, 314, 320, 333, 338, 355
with load instructions, 239
with RDasr instructions, 287
with read instructions, 287
with store instructions, 322
with swap instructions, 338

privileged_opcode exception, 435
DONE instruction, 155
RETRY instruction, 295
SAVED instruction, 300
with DONE instruction, 155, 288, 295, 357
with write instructions, 357

processor, 13
execute unit, 373
issue unit, 373, 373
privilege-mode transition diagram, 411
reorder unit, 373
self-consistency, 373

processor cluster, See processor module
processor interrupt level register, See PIL register
processor state register, See PSTATE register
processor states

execute_state, 429
program counter register, See PC register
program counters, saving, 409
program order, 373, 373
programming note, 4
PSO, See partial store order (PSO) memory model
PSR register (SPARC V8), 355
PSTATE register

fields
priv
22 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

and access to PCR, 74
PSTATE register

entering privileged execution mode, 409
restored by RETRY instruction, 154, 294
saved after trap, 409
saving after trap, 30
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and TSTATE register, 88

PSTATE register fields
ag

unimplemented, 94
am

CALL instruction, 150
description, 92
masked/unmasked address, 154, 226, 294,

296
cle

and implicit ASIs, 108
and PSTATE.tle, 90
description, 90

ie
description, 94
enabling disrupting traps, 416
interrupt conditioning, 416
masking disrupting trap, 421

mm
description, 91
implementation dependencies, 91, 376, 472
reserved values, 91

pef
and FPRS.fef, 92
description, 92
See also pef field of PSTATE register

priv
access to register-window PR state

registers, 86
accessing restricted ASIs, 371
description, 94
determining mode, 12, 13, 450

tle
description, 90

PTE (page table entry), See translation table entry
(TTE)

Q
quadword, 14

alignment, 26, 102, 369

data format, 33
quiet NaN (not-a-number), 59, 169, 170, 361

R
R register, 14

#15, 52
special-purpose, 52
alignment, 254, 256

rational quotient, 348
R-A-W, See read-after-write memory hazard
rcond instruction field

branch instructions, 148
encoding of, 459
move instructions, 266

rd (rounding), 14
rd instruction field, 15

arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351

floating point arithmetic, 160
floating point arithmetic instructions, 171, 194,

215
floating point conversion instructions, 216, 218,

221
floating point integer conversion, 173
floating point load instructions, 236, 239, 243
floating point move instructions, 178, 180
floating point negate instructions, 196
floating-point instructions, 159
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 264, 266
POPC, 276

RDASI instruction, 67, 71, 285
RDasr instruction, 285

accessing I/O registers, 27
implementation dependencies, 286, 468
reading ASRs, 67

RDCCR instruction, 67, 69, 285, 285
RDFPRS instruction, 68, 73, 285
RDGSR instruction, 68, 76, 285
RDPC instruction, 68, 285

reading PC register, 73
RDPCR instruction, 68, 285
RDPIC instruction, 68, 285, 435
RDPR instruction, 14, 68, 288

accessing GL register, 97
accessing non-register-window PR state
Index 23

registers, 86
accessing register-window PR state registers, 81
and register-window PR state registers, 81
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
effect on TT register, 89
reading privileged registers, 86
reading PSTATE register, 90
reading the TICK register, 72
registers read, 288

RDSOFTINT instruction, 68, 77, 285
RDSTICK instruction, 68, 80, 285
RDSTICK_CMPR instruction, 68, 285
RDTICK instruction, 68, 72, 285
RDTICK_CMPR instruction, 68, 285
RDY instruction, 69
read ancillary state register (RDasr)

instructions, 285
read state register instructions, 29
read-after-write memory hazard, 373, 374
real memory, 366
reference MMU, 479
reg, 480
reg_or_imm, 484, 485
reg_plus_imm, 483
regaddr, 484
register reference instructions, data flow order

constraints, 373
register window, 46, 48
register window management instructions, 30
register windows

clean, 83, 85, 86, 117, 431, 436, 437, 438
fill, 50, 85, 117, 118, 291, 292, 300, 433, 437, 438
management of, 22
overlapping, 49–51
spill, 50, 85, 116, 118, 299, 300, 435, 436, 437, 438

registers
See also individual register (common) names
address space identifier (ASI), 371
ASI (address space identifier), 71
chip-level multithreading, See CMT
clean windows (CLEANWIN), 83
clock-tick (TICK), 435
current window pointer (CWP), 82
F (floating point), 359, 418
floating-point, 24

programming, 56
floating-point registers state (FPRS), 73

floating-point state (FSR), 58
general status (GSR), 76
global, 20, 24, 46, 48, 48, 465
global level (GL), 96
IER (SPARC V8), 355
in, 46, 49, 298
local, 46, 49
next program counter (NPC), 73
other windows (OTHERWIN), 84
out, 46, 49, 298
out #7, 52
performance control (PCR), 74
performance instrumentation counter (PIC), 75
pixel storage registers, 223
processor interrupt level (PIL)

and PIC, 76
and PIC counter overflow, 76
and SOFTINT, 78
and STICK_CMPR, 81
and TICK_CMPR, 80

processor interrupt level (PIL), 95
program counter (PC), 72
PSR (SPARC V8), 355
R register #15, 52
renaming mechanism, 374
restorable windows (CANRESTORE), 83, 83
savable windows (CANSAVE), 83
scratchpad

privileged, 405
SOFTINT, 68
SOFTINT_CLR pseudo-register, 68, 79
SOFTINT_SET pseudo-register, 68, 78
STICK, 80
STICK_CMPR

ASR summary, 68
int_dis field, 78, 81
stick_cmpr field, 81
and system software trapping, 81

TBR (SPARC V8), 355
TICK, 71
TICK_CMPR

int_dis field, 78, 80
tick_cmpr field, 80

TICK_CMPR, 68, 79
trap base address (TBA), 89
trap base address, See registers: TBA

trap level (TL), 94
trap level, See registers: TL

trap next program counter (TNPC), 87
24 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

trap next program counter, See registers: TNPC

trap program counter (TPC), 86
trap program counter, See registers: TPC

trap state (TSTATE), 88
trap state, See registers: TSTATE

trap type (TT), 89, 420
trap type, See registers: TT

VA_WATCHPOINT, 435
visible to software in privileged mode, 86–97
WIM (SPARC V8), 355
window state (WSTATE), 84
window state, See registers: WSTATE

Y (32-bit multiply/divide), 69
relaxed memory order (RMO) memory model, 260,

376
renaming mechanism, register, 374
reorder unit, 373
reordering instruction, 373
reserved, 14

fields in instructions, 133
register field, 46

reset
reset trap, 415

restartable deferred trap, 413
restorable windows register, See CANRESTORE

register
RESTORE instruction, 50, 290–291

actions, 117
and current window, 52
decrementing CWP register, 49
fill trap, 433, 437
followed by SAVE instruction, 50
managing register windows, 30
operation, 290
performance trade-off, 290, 298
and restorable windows (CANRESTORE)

register, 83
restoring register window, 290
role in register state partitioning, 85

restore synthetic instruction, 486
RESTORED instruction, 118, 292

creating inconsistent window state, 292
fill handler, 291
fill trap handler, 118, 438
register window management, 30

restricted, 14
restricted address space identifier, 109
restricted ASI, 371, 387
resumable_error exception, 435

ret/ret1 synthetic instructions, 486
RETRY instruction, 294

and restartable deferred traps, 414
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
generating illegal_instruction exception, 434
modifying CCR.xcc, 70
reexecuting trapped instruction, 438
restoring gl value in GL, 97
return from trap, 409
returning to instruction after trap, 416
target address, return from privileged traps, 29

RETURN instruction, 296–297
computing target address, 29
fill trap, 433
mem_address_not_aligned exception, 434
operation, 296
reexecuting trapped instruction, 296

RETURN vs. RESTORE instructions, 296
RMO, 15
RMO, See relaxed memory order (RMO) memory

model
rounding

for floating-point results, 59
in signed division, 349

rounding direction (rd) field of FSR register, 160,
171, 194, 215, 216, 218, 220, 221

routine, nonleaf, 226
rs1 instruction field, 15

arithmetic instructions, 134, 146, 149, 151, 268,
270, 348, 351

branch instructions, 148
floating point arithmetic instructions, 160, 171,

194
floating point compare instructions, 169
floating point load instructions, 236, 239, 243
flush memory instruction, 174
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 273, 358
move instructions, 266
PREFETCH, 278
RETURN, 296

rs2 instruction field, 15
arithmetic instructions, 134, 146, 149, 151, 268,

270, 273, 348, 351
floating point arithmetic instructions, 160, 171,

194, 215
Index 25

floating point compare instructions, 169
floating point conversion instructions, 216, 218,

221
floating point instructions, 159
floating point integer conversion, 173
floating point load instructions, 236, 239, 243
floating point move instructions, 178, 180
floating point negate instructions, 196
flush memory instruction, 174
jump-and-link instruction, 226
load instructions, 227, 253, 255
logical operation instructions, 137, 358
move instructions, 264, 266
POPC, 276
PREFETCH, 278

RTO, 15
RTS, 15

S
savable windows register, See CANSAVE register
SAVE instruction, 49, 298

actions, 116
after RESTORE instruction, 296
clean_window exception, 431, 437
and current window, 52
decrementing CWP register, 49
effect on privileged state, 299
leaf procedure, 226
and local/out registers of register window, 50
managing register windows, 30
no clean window available, 84
number of usable windows, 83
operation, 298
performance trade-off, 298
role in register state partitioning, 85
and savable windows (CANSAVE) register, 83
spill trap, 435, 436, 438

save synthetic instruction, 486
SAVED instruction, 118, 300

creating inconsistent window state, 300
register window management, 30
spill handler, 299, 300
spill trap handler, 118, 438

scaling of the coefficient, 189
scratchpad registers

privileged, 405
SDIV instruction, 69, 348
SDIVcc instruction, 69, 348

SDIVX instruction, 270
self-consistency, processor, 373
self-modifying code, 174, 175
sequencing MEMBAR instructions, 110
sequential consistency memory model, 377
SETHI instruction, 110, 302

creating 32-bit constant in R register, 27
and NOP instruction, 271
with rd = 0, 302

setn synthetic instructions, 486
shall (keyword), 15
shared memory, 365
shift count encodings, 305
shift instructions, 28
shift instructions, 110, 305
short floating-point load and store instructions, 404
short floating-point load instructions, 245
short floating-point store instructions, 328
should (keyword), 15
SHUTDOWN instruction, 303
SIAM instruction, 304
side effect

accesses, 367
definition, 15
I/O locations, 366
instruction prefetching, 368
real memory storage, 366
visible, 367

signalling NaN (not-a-number), 59, 169, 170, 218,
361

signed integer data type, 33
signx synthetic instructions, 487
SIMD, 15

instruction data formats, 41–43
simm10 instruction field

move instructions, 266
simm11 instruction field

move instructions, 264
simm13 instruction field

floating point
load instructions, 236

simm13 instruction field
arithmetic instructions, 268, 270, 273, 348, 351
floating point load instructions, 239, 243
flush memory instruction, 174
jump-and-link instruction, 226
load instructions, 227, 247, 248, 253, 255
logical operation instructions, 137, 358
POPC, 276
26 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

PREFETCH, 278
RETURN, 296

single instruction/multiple data, See SIMD
SLL instruction, 305
SLLX instruction, 305
SMUL instruction, 69, 351
SMULcc instruction, 69, 351
SOFTINT register, 68, 77

clearing, 443
clearing of selected bits, 79
communication from nucleus code to kernel

code, 442
scheduling interrupt vectors, 441, 442
setting, 442

SOFTINT register fields
int_level, 78
sm (stick_int), 78
tm (tick_int), 78, 80

SOFTINT_CLR pseudo-register, 68, 79
SOFTINT_SET pseudo-register, 68, 78, 79
software

nucleus, 12
software translation table, 447
software trap, 343, 420
software trap number (SWTN), 343
software, nonprivileged, 73
software_trap_number, 485
source operands, 203, 208
SPA

ASI_TWIN_DW_NUCLEUS, 406
SPARC V8 compatibility

LD, LDUW instructions, 227
operations to I/O locations, 368
read state register instructions, 286
STA instruction renamed, 309
STBAR instruction, 260, 311
STD instruction, 331
STDA instruction, 333
tagged subtract instructions, 347
UNIMP instruction renamed, 222
window_overflow exception superseded, 433
write state register instructions, 355

SPARC V9
compliance, 13
features, 20

SPARC V9 Application Binary Interface (ABI), 22
speculative load, 15
spill register window, 435

FLUSH instruction, 118

overflow/underflow, 50
RESTORE instruction, 117
SAVE instruction, 85, 116, 298, 436
SAVED instruction, 118, 300, 438
selection of, 437
trap handling, 438
trap vectors, 299, 438
window state, 85

spill_n_normal exception, 299, 435
and FLUSHW instruction, 177

spill_n_other exception, 299, 435
and FLUSHW instruction, 177

SRA instruction, 305
SRAX instruction, 305
SRL instruction, 305
SRLX instruction, 305
stack frame, 298
state registers (ASRs), 67–81
STB instruction, 307
STBA instruction, 308
STBAR instruction, 260
STBAR instruction, 286, 354, 374, 381
STBLOCKF instruction, 312, 403
STDF instruction, 102, 316, 435
STDF_mem_address_not_aligned exception, 435

and store instructions, 317, 321
STDF/STDFA instruction, 102

STDFA instruction, 319
alignment, 102
ASIs for fp store operations, 404
causing data_access_exception exception, 404
causing mem_address_not_aligned or

illegal_instruction exception, 404
causing STDF_mem_address_not_aligned

exception, 102, 435
for block load operations, 403
for partial store operations, 404
used with ASIs, 403

STF instruction, 316
STFA instruction, 319
STFSR instruction, 58, 60, 61, 434
STH instruction, 307
STHA instruction, 308
STICK register, 68, 72, 80

counter field, 80
npt field, 72, 80
RDSTICK instruction, 285

STICK_CMPR register, 68, 81
int_dis field, 78, 81
Index 27

RDSTICK_CMPR instruction, 285
stick_cmpr field, 81

store
block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store

instructions
store buffer

merging, 367
store floating-point into alternate space

instructions, 319
store instructions, 15, 101
StoreLoad MEMBAR relationship, 259, 382
StoreLoad predefined constant, 484
stores to alternate space, 27, 71, 108
StoreStore MEMBAR relationship, 259, 382
StoreStore predefined constant, 484
STPARTIALF instruction, 325
STQF instruction, 103, 316, 436
STQF_mem_address_not_aligned exception, 436

STQF/STQFA instruction, 103
STQFA instruction, 103, 319, 319
strand, 15
strong consistency memory model, 377
strong ordering, 377
Strong Sequential Order, 378
strongly ordered page, illegal access to, 432
STSHORTF instruction, 328
STTW instruction, 52, 102
STTW instruction (deprecated), 330
STTWA instruction, 52, 102
STTWA instruction (deprecated), 332
STW instruction, 307
STWA instruction, 308
STX instruction, 307
STXA instruction, 308

accessing nontranslating ASIs, 333
mem_address_not_aligned exception, 308
referencing internal ASIs, 378

STXFSR instruction, 58, 60, 61, 316, 434
SUB instruction, 335, 335
SUBC instruction, 335, 335
SUBcc instruction, 110, 335, 335
SUBCcc instruction, 335, 335
subnormal number, 16
subtract instructions, 335
superscalar, 16
supervisor software

accessing special protected registers, 26

definition, 16
SWAP instruction, 336

accessing doubleword simultaneously with other
instructions, 337

and data_access_exception (noncacheable page)
exception, 432

hardware primitive for mutual exclusion, 379,
380

identification of R register to be exchanged, 101
in multiprocessor system, 247, 248
memory accessing, 336
ordering by MEMBAR, 381

swap R register
bit contents, 151
with alternate space memory instructions, 337
with memory instructions, 336

SWAPA instruction, 337
accessing doubleword simultaneously with other

instructions, 337
alternate space addressing, 27
and data_access_exception (noncacheable page)

exception, 432
hardware primitive for mutual exclusion, 379
in multiprocessor system, 247, 248
ordering by MEMBAR, 381

SWTN (software trap number), 343
Sync predefined constant, 484
synchonization, 261
synchronization, 16
synthetic instructions

mapping to SPARC V9 instructions, 486–488
for assembly language programmers, 486
mapping

bclrg, 488
bset, 488
btog, 488
btst, 488
call, 486
casn, 487
clrn, 488
cmp, 486
dec, 487
deccc, 487
inc, 487
inccc, 487
iprefetch, 486
jmp, 486
movn, 488
neg, 487
28 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

not, 487
restore, 486
ret/ret1, 486
save, 486
setn, 486
signx, 487
tst, 486

vs. pseudo ops, 486
system clock-tick register (STICK), 80
system software

accessing memory space by server program, 370
ASIs allowing access to memory space, 372
FLUSH instruction, 176, 384
processing exceptions, 370
trap types from which software must recover, 61

System Tick Compare register, See STICK_CMPR

register
System Tick register, See STICK register

T
TA instruction, 342, 459
TADDcc instruction, 111, 339
TADDccTV instruction, 111, 435
tag overflow, 111
tag_overflow exception, 111, 339, 340, 341, 345, 347
tag_overflow exception (deprecated), 435
tagged arithmetic, 111
tagged arithmetic instructions, 28
tagged word data format, 33
tagged words, 33
TBA (trap base address) register, 89, 411

establishing table address, 30, 409
initialization, 419
specification for RDPR instruction, 288
specification for WRPR instruction, 356
trap behavior, 16

TBR register (SPARC V8), 355
TCC instruction, 342
Tcc instructions, 342

at TL > 0, 420
causing trap, 409
causing trap to privileged trap handler, 420
CCR register bits, 70
generating htrap_instruction exception, 433
generating illegal_instruction exception, 433
generating trap_instruction exception, 435
opcode maps, 455, 459, 460
programming uses, 344

trap table space, 30
vector through trap table, 409

TCS instruction, 342, 459
TE instruction, 342, 459
termination deferred trap, 413
test-and-set instruction, 380
TG instruction, 342, 459
TGE instruction, 342, 459
TGU instruction, 342, 459
thread, 16
TICK register, 68

controlling access to timing information, 72
counter field, 72, 469
inaccuracies between two readings of, 469
npt field, 72
specification for RDPR instruction, 288

TICK_CMPR register, 68, 79
int_dis field, 78, 80
tick_cmpr field, 80

timer registers, See TICK register and STICK register
timing of instructions, 133
tininess (floating-point), 66
TL (trap level) register, 94, 411

affect on privilege level to which a trap is
delivered, 418

and implicit ASIs, 108
displacement in trap table, 409
executing RESTORED instruction, 292
executing SAVED instruction, 300
indexing for WRPR instruction, 356
indexing privileged register after RDPR, 288
setting register value after WRPR, 356
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and TBA register, 419
and TPC register, 86
and TSTATE register, 88
and TT register, 89
use in calculating privileged trap vector

address, 419
and WSTATE register, 84

TL instruction, 342, 459
TLB

and 3-dimensional arrays, 141
miss

reloading TLB, 447, 451
TLE instruction, 342, 459
TLEU instruction, 342, 459
TN instruction, 342, 459
Index 29

TNE instruction, 342, 459
TNEG instruction, 342, 459
TNPC (trap next program counter) register, 87

saving NPC, 412
specification for RDPR instruction, 288
specification for WRPR instruction, 356

total order, 376
total store order (TSO) memory model, 91, 260, 367,

376, 376, 377
TPC (trap program counter) register, 16, 86

address of trapping instruction, 289
number of instances, 86
specification for RDPR instructions, 288
specification for WRPR instruction, 356

TPOS instruction, 342, 459
translating ASIs, 388
Translation Table Entry, See TTE
trap

See also exceptions and traps
noncacheable accesses, 368
when taken, 16

trap enable mask (tem) field of FSR register, 417,
418, 466

trap handler
privileged mode, 420
regular/nonfaulting loads, 12
returning from, 154, 294
user, 62, 362

trap level register, See TL register
trap next program counter register, See TNPC register
trap on integer condition codes instructions, 342
trap program counter register, See TPC register
trap state register, See TSTATE register
trap type (TT) register, 420
trap type register, See TT register
trap_instruction (ISA) exception, 343, 344, 435
trap_little_endian (tle) field of PSTATE register, 90
traps, 16

See also exceptions and individual trap names
categories

deferred, 412, 413, 415
disrupting, 412, 415
precise, 412, 412, 415
priority, 417, 428
reset, 412, 415
restartable

implementation dependency, 414
restartable deferred, 413
termination deferred, 413

caused by undefined feature/behavior, 17
causes, 31, 31
definition, 30, 410
hardware, 420
hardware stack, 21
level specification, 94
model stipulations, 417
nested, 21
normal, 420
processing, 429
software, 343, 420
stack, 429
vector address, specifying, 89

TSB, 16, 451
cacheability, 451
caching, 451
indexing support, 451
organization, 452

TSO, 16
TSO, See total store order (TSO) memory model
tst synthetic instruction, 486
TSTATE (trap state) register, 88

DONE instruction, 154, 294
registers saved after trap, 30
restoring GL value, 97
specification for RDPR instruction, 288
specification for WRPR instruction, 356

tstate, See trap state (TSTATE) register
TSUBcc instruction, 111, 345
TSUBccTV instruction, 111, 435
TT (trap type) register, 89

and privileged trap vector address, 419
reserved values, 467
specification for RDPR instruction, 288
specification for WRPR instruction, 356
and Tcc instructions, 344
transferring trap control, 420
window spill/fill exceptions, 84
WRPR instruction, 356

TTE, 16
context ID field, 449
cp (cacheability) field, 366
cp field, 432, 450, 450
cv field, 450, 450
e field, 367, 384, 432, 450
ie field, 449
indexing support, 451
nfo field, 384, 432, 449, 450
p field, 432, 450
30 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

size field, 451
soft2 field, 449
SPARC V8 equivalence, 448
taddr field, 449
v field, 449
va_tag field, 449
w field, 451

TVC instruction, 342, 459
TVS instruction, 342, 459
typewriter font, in assembly language syntax, 479

U
UDIV instruction, 69, 348
UDIVcc instruction, 69, 348
UDIVX instruction, 270
UltraSPARC, previous ASIs

ASI_NUCLEUS_QUAD_LDD, 406
ASI_NUCLEUS_QUAD_LDD_L, 406
ASI_NUCLEUS_QUAD_LDD_LITTLE, 406
ASI_PHY_BYPASS_EC_WITH_EBIT_L, 406
ASI_PHYS_BYPASS_EC_WITH_EBIT, 406
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE,

406
ASI_PHYS_USE_EC, 406
ASI_PHYS_USE_EC_L, 406
ASI_PHYS_USE_EC_LITTLE, 406

UMUL instruction, 69, 351
UMULcc instruction, 69, 351
unassigned, 17
unconditional branches, 142, 146, 163, 165
undefined, 17
underflow

bits of FSR register
accrued (ufa) bit of aexc field, 66, 363
current (ufc) bit of cexc, 66
current (ufc) bit of cexc field, 363
mask (ufm) bit of FSR.tem, 66
mask (ufm) bit of tem field, 362

detection, 50
occurrence, 437

unfinished_FPop floating-point trap type, 62, 160,
171, 195, 219, 220, 360
handling, 67
in normal computation, 61
results after recovery, 62

UNIMP instruction (SPARC V8), 222
unimplemented, 17
unimplemented_FPop floating-point trap type, 62,

159, 160, 170, 171, 173, 178, 184, 187, 195, 196,
217, 219, 220, 360
handling, 67
result after recovery, 62

unimplemented_LDTW exception, 254, 435
unimplemented_STTW exception, 331, 435
uniprocessor system, 17
unrestricted, 17
unrestricted ASI, 387
unsigned integer data type, 33
user application program, 17
user trap handler, 62, 362

V
VA, 17
VA_watchpoint exception, 435
VA_WATCHPOINT register, 435
value clipping, See FPACK instructions
value semantics of input/output (I/O)

locations, 366
VER (version) register fields

impl, 60
virtual

address, 366
address 0, 385

virtual address, 17
virtual core, 17
virtual memory, 283
VIS, 17
VIS instructions

encoding, 461, 462
implicitly referencing GSR register, 76

Visual Instruction Set, See VIS instructions

W
W-A-R, See write-after-read memory hazard
watchpoint comparator, 93
W-A-W, See write-after-write memory hazard
WIM register (SPARC V8), 355
window fill exception, See also fill_n_normal

exception
window fill trap handler, 30
window overflow, 50, 436
window spill exception, See also spill_n_normal

exception
window spill trap handler, 30
window state register, See WSTATE register
Index 31

window underflow, 437
window, clean, 298
window_fill exception, 84, 117

RETURN, 296
window_spill exception, 84
word, 17

alignment, 26, 102, 369
data format, 33

WRASI instruction, 67, 71, 353
WRasr instruction, 353

accessing I/O registers, 27
attempt to write to ASR 5 (PC), 73
cannot write to PC register, 73
implementation dependencies, 468
writing ASRs, 67

WRCCR instruction, 67, 69, 70, 353
WRFPRS instruction, 68, 73, 353
WRGSR instruction, 68, 76, 353
WRIER instruction (SPARC V8), 355
write ancillary state register (WRasr)

instructions, 353
write ancillary state register instructions, See WRasr

instruction
write privileged register instruction, 356
write-after-read memory hazard, 374
write-after-write memory hazard, 373, 374
WRPCR instruction, 68, 353
WRPIC instruction, 68, 353, 435
WRPR instruction, 18

accessing non-register-window PR state
registers, 86

accessing register-window PR state registers, 81
and register-window PR state registers, 81
effect on TNPC register, 87
effect on TPC register, 87
effect on TSTATE register, 88
effect on TT register, 89
writing to GL register, 97
writing to PSTATE register, 90

WRPSR instruction (SPARC V8), 355
WRSOFTINT instruction, 68, 77, 353
WRSOFTINT_CLR instruction, 68, 77, 79, 353, 443
WRSOFTINT_SET instruction, 68, 77, 78, 353, 442
WRSTICK_CMPR instruction, 68, 353
WRTBR instruction (SPARC V8), 355
WRTICK_CMP instruction, 68, 353
WRWIM instruction (SPARC V8), 355
WRY instruction, 67, 69, 353
WSTATE (window state) register

description, 84
and fill/spill exceptions, 437
normal field, 437
other field, 437
overview, 81
reading with RDPR instruction, 288
spill exception, 177
spill trap, 299
writing with WRPR instruction, 356

X
XNOR instruction, 358
XNORcc instruction, 358
XOR instruction, 358
XORcc instruction, 358

Y
Y register, 67, 69

after multiplication completed, 268
content after divide operation, 348
divide operation, 348
multiplication, 268
unsigned multiply results, 351
WRY instruction, 354

Y register (deprecated), 69

Z
zero virtual address, 385
32 UltraSPARC Architecture 2005 • Draft D0.8.7, 27 Mar 2006

	UltraSPARC Architecture 2005
	Contents
	Preface
	1.1 What’s New?
	1.2 Acknowledgements

	Document Overview
	2.1 Navigating UltraSPARC Architecture 2005
	2.2 Fonts and Notational Conventions
	2.2.1 Implementation Dependencies
	2.2.2 Notation for Numbers
	2.2.3 Informational Notes

	2.3 Reporting Errors in this Specification

	Definitions
	Architecture Overview
	4.1 The UltraSPARC Architecture 2005
	4.1.1 Features
	4.1.2 Attributes
	4.1.2.1 Design Goals
	4.1.2.2 Register Windows

	4.1.3 System Components
	4.1.3.1 Binary Compatibility
	4.1.3.2 UltraSPARC Architecture 2005 MMU
	4.1.3.3 Privileged Software

	4.1.4 Architectural Definition
	4.1.5 UltraSPARC Architecture 2005 Compliance with SPARC V9 Architecture
	4.1.6 Implementation Compliance with UltraSPARC Architecture 2005

	4.2 Processor Architecture
	4.2.1 Integer Unit (IU)
	4.2.2 Floating-Point Unit (FPU)

	4.3 Instructions
	4.3.1 Memory Access
	4.3.1.1 Memory Alignment Restrictions
	4.3.1.2 Addressing Conventions
	4.3.1.3 Addressing Range
	4.3.1.4 Load/Store Alternate
	4.3.1.5 Separate I and D Memories
	4.3.1.6 Input/Output (I/O)
	4.3.1.7 Memory Synchronization

	4.3.2 Arithmetic / Logical / Shift Instructions
	4.3.3 Control Transfer
	4.3.4 State Register Access
	4.3.5 Floating-Point Operate
	4.3.6 Conditional Move
	4.3.7 Register Window Management

	4.4 Traps

	Data Formats
	5.1 Integer Data Formats
	5.1.1 Signed Integer Data Types
	5.1.1.1 Signed Integer Byte, Halfword, and Word
	5.1.1.2 Signed Integer Doubleword (64 bits)
	5.1.1.3 Signed Integer Extended-Word (64 bits)

	5.1.2 Unsigned Integer Data Types
	5.1.2.1 Unsigned Integer Byte, Halfword, and Word
	5.1.2.2 Unsigned Integer Doubleword (64 bits)
	5.1.2.3 Unsigned Extended Integer (64 bits)

	5.1.3 Tagged Word (32 bits)

	5.2 Floating-Point Data Formats
	5.2.1 Floating Point, Single Precision (32 bits)
	5.2.2 Floating Point, Double Precision (64 bits)
	5.2.3 Floating Point, Quad Precision (128 bits)
	5.2.4 Floating-Point Data Alignment in Memory and Registers

	5.3 SIMD Data Formats
	5.3.1 Uint8 SIMD Data Format
	5.3.2 Int16 SIMD Data Formats
	5.3.3 Int32 SIMD Data Format

	Registers
	6.1 Reserved Register Fields
	6.2 General-Purpose R Registers
	6.2.1 Global r Registers
	6.2.2 Windowed r Registers
	6.2.3 Special r Registers

	6.3 Floating-Point Registers
	6.3.1 Floating-Point Register Number Encoding
	6.3.2 Double and Quad Floating-Point Operands

	6.4 Floating-Point State Register (FSR)
	6.4.1 Floating-Point Condition Codes (fcc0, fcc1, fcc2, fcc3)
	6.4.2 Rounding Direction (rd)
	6.4.3 Trap Enable Mask (tem)
	6.4.4 Nonstandard Floating-Point (ns)
	6.4.5 FPU Version (ver)
	6.4.6 Floating-Point Trap Type (ftt)
	6.4.7 FQ Not Empty (qne)
	6.4.8 Accrued Exceptions (aexc)
	6.4.9 Current Exception (cexc)
	6.4.10 Floating-Point Exception Fields
	6.4.11 fsr Conformance

	6.5 Ancillary State Registers
	6.5.1 32-bit Multiply/Divide Register (y) (ASR 0)
	6.5.2 Integer Condition Codes Register (ccr) (ASR 2)
	6.5.2.1 Condition Codes (ccr.xcc and ccr.icc)

	6.5.3 Address Space Identifier (asi) Register (ASR 3)
	6.5.4 Tick (tick) Register (ASR 4)
	6.5.5 Program Counters (pc, npc) (ASR 5)
	6.5.6 Floating-Point Registers State (fprs) Register (ASR 6)
	6.5.7 Performance Control Register (pcrP) (ASR 16)
	6.5.8 Performance Instrumentation Counter (pic) Register (ASR 17)
	6.5.9 General Status Register (gsr) (ASR 19)
	6.5.10 softintP Register (ASRs 20, 21, 22)
	6.5.10.1 softint_setP Pseudo-Register (ASR 20)
	6.5.10.2 softint_clrP Pseudo-Register (ASR 21)

	6.5.11 Tick Compare (tick_cmprP) Register (ASR 23)
	6.5.12 System Tick (stick) Register (ASR 24)
	6.5.13 System Tick Compare (stick_cmprP) Register (ASR 25)

	6.6 Register-Window PR State Registers
	6.6.1 Current Window Pointer (cwpP) Register (PR 9)
	6.6.2 Savable Windows (cansaveP) Register (PR 10)
	6.6.3 Restorable Windows (canrestoreP) Register (PR 11)
	6.6.4 Clean Windows (cleanwinP) Register (PR 12)
	6.6.5 Other Windows (otherwinP) Register (PR 13)
	6.6.6 Window State (wstateP) Register (PR 14)
	6.6.7 Register Window Management
	6.6.7.1 Register Window State Definition
	6.6.7.2 Register Window Traps

	6.7 Non-Register-Window PR State Registers
	6.7.1 Trap Program Counter (tpcP) Register (PR 0)
	6.7.2 Trap Next PC (tnpcP) Register (PR 1)
	6.7.3 Trap State (tstateP) Register (PR 2)
	6.7.4 Trap Type (ttP) Register (PR 3)
	6.7.5 Trap Base Address (tbaP) Register (PR 5)
	6.7.6 Processor State (pstateP) Register (PR 6)
	6.7.7 Trap Level Register (tlP) (PR 7)
	6.7.8 Processor Interrupt Level (pilP) Register (PR 8)
	6.7.9 Global Level Register (glP) (PR 16)

	Instruction Set Overview
	7.1 Instruction Execution
	7.2 Instruction Formats
	7.3 Instruction Categories
	7.3.1 Memory Access Instructions
	7.3.1.1 Memory Alignment Restrictions
	7.3.1.2 Addressing Conventions
	7.3.1.3 Address Space Identifiers (ASIs)
	7.3.1.4 Separate Instruction Memory

	7.3.2 Memory Synchronization Instructions
	7.3.3 Integer Arithmetic and Logical Instructions
	7.3.3.1 Setting Condition Codes
	7.3.3.2 Shift Instructions
	7.3.3.3 Set High 22 Bits of Low Word
	7.3.3.4 Integer Multiply/Divide
	7.3.3.5 Tagged Add/Subtract

	7.3.4 Control-Transfer Instructions (CTIs)
	7.3.4.1 Conditional Branches
	7.3.4.2 Unconditional Branches
	7.3.4.3 CALL and JMPL Instructions
	7.3.4.4 RETURN Instruction
	7.3.4.5 DONE and RETRY Instructions
	7.3.4.6 Trap Instruction (Tcc)
	7.3.4.7 DCTI Couples

	7.3.5 Conditional Move Instructions
	7.3.6 Register Window Management Instructions
	7.3.6.1 SAVE Instruction
	7.3.6.2 RESTORE Instruction
	7.3.6.3 SAVED Instruction
	7.3.6.4 RESTORED Instruction
	7.3.6.5 Flush Windows Instruction

	7.3.7 Ancillary State Register (ASR) Access
	7.3.8 Privileged Register Access
	7.3.9 Floating-Point Operate (FPop) Instructions
	7.3.10 Implementation-Dependent Instructions
	7.3.11 Reserved Opcodes and Instruction Fields

	Instructions
	8.1 Add
	8.2 Align Address
	8.3 Mark All Register Window Sets “Clean”
	8.4 AND Logical Operation
	8.5 Three-Dimensional Array Addressing
	8.6 Branch on Integer Condition Codes (Bicc)
	8.7 Byte Mask and Shuffle
	8.8 Branch on Integer Condition Codes with Prediction (BPcc)
	8.9 Branch on Integer Register with Prediction (BPr)
	8.10 Call and Link
	8.11 Compare and Swap
	8.12 DONE
	8.13 Edge Handling Instructions
	8.14 Edge Handling Instructions (no CC)
	8.15 Floating-Point Absolute Value
	8.16 Floating-Point Add
	8.17 Align Data
	8.18 Branch on Floating-Point Condition Codes (FBfcc)
	8.19 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	8.20 SIMD Signed Compare
	8.21 Floating-Point Compare
	8.22 Floating-Point Divide
	8.23 FEXPAND
	8.24 Convert 32-bit Integer to Floating Point
	8.25 Flush Instruction Memory
	8.26 Flush Register Windows
	8.27 Floating-Point Move
	8.28 Move Floating-Point Register on Condition (FMOVcc)
	8.29 Move Floating-Point Register on Integer Register Condition (FMOVR)
	8.30 Partitioned Multiply Instructions
	8.30.1 FMUL8x16 Instruction
	8.30.2 FMUL8x16AU Instruction
	8.30.3 FMUL8x16AL Instruction
	8.30.4 FMUL8SUx16 Instruction
	8.30.5 FMUL8ULx16 Instruction
	8.30.6 FMULD8SUx16 Instruction
	8.30.7 FMULD8ULx16 Instruction

	8.31 Floating-Point Multiply
	8.32 Floating-Point Negate
	8.33 FPACK
	8.33.1 FPACK16
	8.33.2 FPACK32
	8.33.3 FPACKFIX

	8.34 Fixed-point Partitioned Add
	8.35 FPMERGE
	8.36 Fixed-point Partitioned Subtract
	8.37 f Register Logical Operate (1 operand)
	8.38 f Register Logical Operate (2 operand)
	8.39 f Register Logical Operate (3 operand)
	8.40 Floating-Point Square Root
	8.41 Convert Floating-Point to Integer
	8.42 Convert Between Floating-Point Formats
	8.43 Floating-Point Subtract
	8.44 Convert 64-bit Integer to Floating Point
	8.45 Illegal Instruction Trap
	8.46 Implementation-Dependent Instructions
	8.46.1 IMPDEP1 Opcodes
	8.46.1.1 Opcode Formats

	8.46.2 IMDEP2B Opcodes

	8.47 Mark Register Window Sets as “Invalid”
	8.48 Jump and Link
	8.49 Load Integer
	8.50 Load Integer from Alternate Space
	8.51 Block Load
	8.52 Load Floating-Point
	8.53 Load Floating-Point from Alternate Space
	8.54 Load Floating-Point State Register
	8.55 Short Floating-Point Load
	8.56 Load-Store Unsigned Byte
	8.57 Load-Store Unsigned Byte to Alternate Space
	8.58 Load Integer Twin Extended Word from Alternate Space
	8.59 Load Integer Twin Word
	8.60 Load Integer Twin Word from Alternate Space
	8.61 Memory Barrier
	8.61.1 Memory Synchronization
	8.61.2 Synchronization of the Virtual Processor
	8.61.3 TSO Ordering Rules affecting Use of MEMBAR

	8.62 Move Integer Register on Condition (MOVcc)
	8.63 Move Integer Register on Register Condition (MOVr)
	8.64 Multiply Step
	8.65 Multiply and Divide (64-bit)
	8.66 No Operation
	8.67 NORMALW
	8.68 OR Logical Operation
	8.69 OTHERW
	8.70 Pixel Component Distance
	8.71 Population Count
	8.72 Prefetch
	8.72.1 Exceptions
	8.72.2 Weak versus Strong Prefetches
	8.72.3 Prefetch Variants
	8.72.3.1 Prefetch for Several Reads (fcn = 0, 20(1416))
	8.72.3.2 Prefetch for One Read (fcn = 1, 21(1516))
	8.72.3.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2, 22(1616))
	8.72.3.4 Prefetch for One Write (fcn = 3, 23(1716))
	8.72.3.5 Prefetch Page (fcn = 4)

	8.72.4 Implementation-Dependent Prefetch Variants (fcn = 16, 18, 19, and 24-31)
	8.72.5 Additional Notes

	8.73 Read Ancillary State Register
	8.74 Read Privileged Register
	8.75 RESTORE
	8.76 RESTORED
	8.77 RETRY
	8.78 RETURN
	8.79 SAVE
	8.80 SAVED
	8.81 SETHI
	8.82 SHUTDOWN
	8.83 Set Interval Arithmetic Mode
	8.84 Shift
	8.85 Store Integer
	8.86 Store Integer into Alternate Space
	8.87 Store Barrier
	8.88 Block Store
	8.89 Store Floating-Point
	8.90 Store Floating-Point into Alternate Space
	8.91 Store (Lower) Floating-Point Status Register
	8.92 Store Partial Floating-Point
	8.93 Store Short Floating-Point
	8.94 Store Integer Twin Word
	8.95 Store Integer Twin Word into Alternate Space
	8.96 Subtract
	8.97 Swap Register with Memory
	8.98 Swap Register with Alternate Space Memory
	8.99 Tagged Add
	8.100 Tagged Add and Trap on Overflow
	8.101 Trap on Integer Condition Codes (Tcc)
	8.102 Tagged Subtract
	8.103 Tagged Subtract and Trap on Overflow
	8.104 Divide (64-bit ¸ 32-bit)
	8.105 Multiply (32-bit)
	8.106 Write Ancillary State Register
	8.107 Write Privileged Register
	8.108 XOR Logical Operation

	IEEE Std 754-1985 Requirements for UltraSPARC Architecture 2005
	9.1 Traps Inhibiting Results
	9.2 NaN Operand and Result Definitions
	9.2.1 Untrapped Result in Different Format from Operands
	9.2.2 Untrapped Result in Same Format as Operands

	9.3 Trapped Underflow Definition (ufm = 1)
	9.4 Untrapped Underflow Definition (ufm = 0)
	9.5 Integer Overflow Definition
	9.6 Floating-Point Nonstandard Mode

	Memory
	9.1 Memory Location Identification
	9.2 Memory Accesses and Cacheability
	9.2.1 Coherence Domains
	9.2.1.1 Cacheable Accesses
	9.2.1.2 Noncacheable Accesses
	9.2.1.3 Noncacheable Accesses with Side-Effect

	9.3 Memory Addressing and Alternate Address Spaces
	9.3.1 Memory Addressing Types
	9.3.2 Memory Address Spaces
	9.3.3 Address Space Identifiers

	9.4 SPARC V9 Memory Model
	9.4.1 SPARC V9 Program Execution Model
	9.4.2 Virtual Processor/Memory Interface Model

	9.5 The UltraSPARC Architecture Memory Model - TSO
	9.5.1 Memory Model Selection
	9.5.2 Programmer-Visible Properties of the UltraSPARC Architecture TSO Model
	9.5.3 TSO Ordering Rules
	9.5.4 Hardware Primitives for Mutual Exclusion
	9.5.4.1 Compare-and-Swap (CASA, CASXA)
	9.5.4.2 Swap (SWAP)
	9.5.4.3 Load Store Unsigned Byte (LDSTUB)

	9.5.5 Memory Ordering and Synchronization
	9.5.5.1 Ordering MEMBAR Instructions
	9.5.5.2 Sequencing MEMBAR Instructions
	9.5.5.3 Synchronizing Instruction and Data Memory

	9.6 Nonfaulting Load
	9.7 Store Coalescing

	Address Space Identifiers (ASIs)
	10.1 Address Space Identifiers and Address Spaces
	10.2 ASI Values
	10.3 ASI Assignments
	10.3.1 Supported ASIs

	10.4 Special Memory Access ASIs
	10.4.1 ASIs 1016, 1116, 1616, 1716 and 1816 (ASI_*AS_IF_USER_*)
	10.4.2 ASIs 1816, 1916, 1E16, and 1F16 (ASI_*AS_IF_USER_*_LITTLE)
	10.4.3 ASI 1416 (ASI_REAL)
	10.4.4 ASI 1516 (ASI_REAL_IO)
	10.4.5 ASI 1C16 (ASI_REAL_LITTLE)
	10.4.6 ASI 1D16 (ASI_REAL_IO_LITTLE)
	10.4.7 ASIs 2216, 2316, 2716, 2A16, 2B16, 2F16 (Privileged Load Integer Twin Extended Word)
	10.4.8 ASIs 2616 and 2E16 (Privileged Load Integer Twin Extended Word, Real Addressing)
	10.4.9 ASIs E216, E316, EA16, EB16 (Nonprivileged Load Integer Twin Extended Word)
	10.4.10 Block Load and Store ASIs
	10.4.11 Partial Store ASIs
	10.4.12 Short Floating-Point Load and Store ASIs

	10.5 ASI-Accessible Registers
	10.5.1 Privileged Scratchpad Registers (ASI_SCRATCHPAD)
	10.5.2 ASI Changes in the UltraSPARC Architecture

	Performance Instrumentation
	Traps
	12.1 Virtual Processor Privilege Modes
	12.2 Virtual Processor States and Traps
	12.2.0.1 Usage of Trap Levels

	12.3 Trap Categories
	12.3.1 Precise Traps
	12.3.2 Deferred Traps
	12.3.3 Disrupting Traps
	12.3.3.1 Disrupting versus Precise and Deferred Traps
	12.3.3.2 Causes of Disrupting Traps
	12.3.3.3 Conditioning of Disrupting Traps
	12.3.3.4 Trap Handler Actions for Disrupting Traps

	12.3.4 Uses of the Trap Categories

	12.4 Trap Control
	12.4.1 pil Control
	12.4.2 fsr.tem Control

	12.5 Trap-Table Entry Addresses
	12.5.1 Trap-Table Entry Address to Privileged Mode
	12.5.2 Privileged Trap Table Organization
	12.5.3 Trap Type (tt)
	12.5.3.1 Trap Type for Spi ll/Fill Traps

	12.5.4 Trap Priorities

	12.6 Trap Processing
	12.6.1 Normal Trap Processing

	12.7 Exception and Interrupt Descriptions
	12.7.1 SPARC V9 Traps Not Used in UltraSPARC Architecture 2005

	12.8 Register Window Traps
	12.8.1 Window Spill and Fill Traps
	12.8.2 clean_window Trap
	12.8.3 Vectoring of Fill/Spill Traps
	12.8.4 cwp on Window Traps
	12.8.5 Window Trap Handlers

	Interrupt Handling
	13.1 Interrupt Packets
	13.2 Software Interrupt Register (softint)
	13.2.1 Setting the Software Interrupt Register
	13.2.2 Clearing the Software Interrupt Register

	13.3 Interrupt Queues
	13.3.1 Interrupt Queue Registers

	13.4 Interrupt Traps

	Memory Management
	14.1 Virtual Address Translation
	14.2 TSB Translation Table Entry (TTE)
	14.3 Translation Storage Buffer (TSB)
	14.3.1 TSB Indexing Support
	14.3.2 TSB Cacheability
	14.3.3 TSB Organization

	Opcode Maps
	Implementation Dependencies
	B.1 Definition of an Implementation Dependency
	B.2 Hardware Characteristics
	B.3 Implementation Dependency Categories
	B.4 List of Implementation Dependencies

	Assembly Language Syntax
	C.1 Notation Used
	C.1.1 Register Names
	C.1.2 Special Symbol Names
	C.1.3 Values
	C.1.4 Labels
	C.1.5 Other Operand Syntax
	C.1.6 Comments

	C.2 Syntax Design
	C.3 Synthetic Instructions

	Index

