
OpenSplice DDS
Version 4.x

Getting Started Guide
�������	

OpenSplice DDS
GETTING STARTED GUIDE
Part Number: OS-GSG Doc Issue 30, 26 October 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Getting Started Guide

�������	

CONTENTS

Table of Contents
Preface

About the Getting Started Guide .vii
Contacts . viii

About OpenSplice DDS
Chapter 1 Why OpenSplice DDS 3

1.1 What is OpenSplice DDS? . 3
1.2 Why Use It? . 3

Chapter 2 Product Details 5
2.1 Key Components . 5
2.1.1 Services . 5
2.1.2 Tools . 5
2.2 Key Features . 5
2.3 Language Bindings . 5
2.4 Platforms . 6

Using OpenSplice DDS
Chapter 3 Documentation 9

Chapter 4 Information Sources 11
4.1 Product Information. 11
4.1.1 Knowledge Base . 11
4.1.2 Additional Technical Information . 11
4.2 Support . 11

Installation and Configuration
Chapter 5 Installation and Configuration 15

5.1 Prerequisites . 15
5.2 Installation for UNIX Platforms . 15
5.3 Installation for Windows Platforms . 16
5.4 Installation on other platforms . 17
5.5 Configuration . 17
5.6 Examples . 19
5.6.1 The PingPong Example . 21
5.6.2 The Tutorial Example . 22
5.6.3 Using the OpenSplice Tools . 23
v
Getting Started Guide

�������	

Table of Contents
5.7 Tailoring the C++ API . 24

Chapter 6 Licensing OpenSplice 25
6.1 General . 25
6.1.1 Development and Deployment Licenses . 25
6.2 Installing the License File . 25
6.3 Running the License Manager Daemon . 26
6.3.1 Utilities . 27

Platform-specific Information
Chapter 7 VxWorks 6.x 31

7.1 Installation. 31
7.2 VxWorks Kernel Requirements . 31
7.3 Deploying OpenSplice DDS . 32
7.4 OpenSplice Examples . 34
7.4.1 Importing Example Projects into Workbench . 34
7.4.2 Building Example Projects with Workbench . 34
7.4.3 Deploying OpenSplice Examples . 35
7.4.3.1 Deploying PingPong. 35
7.4.3.2 Deploying the Chat Tutorial . 36

Chapter 8 Integrity 39
8.1 The ospl_projgen command . 39
8.1.1 Description of the arguments. 39
8.1.2 Using mmstat and shmdump diagnostic tools on Integrity 40
8.2 PingPong Example . 40
8.3 Changing the ospl_projgen arguments . 43
8.3.1 Changing the generated OpenSplice DDS project using Multi. 43
8.4 The ospl_xml2int tool . 44
8.4.1 The ospl_xml2int command . 45
8.4.2 Description of the arguments. 45
8.5 Critical warning about Object 10 and Object 11. 47
8.6 Amending OpenSplice DDS configuration with Multi 48
vi
Getting Started Guide �������	

Preface
About the Getting Started Guide

The Getting Started Guide is included with the OpenSplice DDS Documentation
Set. This guide is the starting point for anyone using, developing or running
applications with OpenSplice DDS.

The Getting Started Guide contains:

• general information about OpenSplice DDS

• a list of documents and how to use them

• initial installation and configuration information (detailed information is provided
in the User and Deployment Guides)

• details of where additional information can be found, such as the OpenSplice
FAQs, Knowledge Base, bug reports, etc.

• a Bibliography listing background information, recommended texts and reference
material which users and developers may find useful

Intended Audience
The Getting Started Guide is intended to be used by anyone who wishes to use the
OpenSplice DDS product.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Getting Started Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references to other
parts of the document, e.g. Contacts on page viii, behave as hypertext links: users
can jump to that section of the document by clicking on the cross reference.

i
WIN

UNIX

C
C++
Java
vii
Getting Started Guide

�������	

Preface
Courier, Courier Bold, or Courier Italic fonts indicate programming code.
The Courier font can also be used to indicate file names (in order to distinguish the
file name from the standard text).
Extended code fragments are shown as small Courier font contained in shaded, full
width boxes (to allow for standard 80 column wide text), as shown below:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File > Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
viii
Getting Started Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

ABOUT

OPENSPLICE DDS

CHAPTER

1 Why OpenSplice DDS
1.1 What is OpenSplice DDS?

The purpose of OpenSplice DDS is to provide an infrastructure and middleware
layer for real-time distributed systems. This is a realisation of the OMG-DDS-DCPS
Specification for a Data Distribution Service based upon a Data Centric Publish
Subscribe architecture.

1.2 Why Use It?
OpenSplice DDS provides an infrastructure for real-time data distribution and offers
middleware services to applications. It provides a real-time data distribution service
that aims at:
• reducing the complexity of the real-time distributed systems
• providing an infrastructure upon which fault-tolerant real-time systems can be

built
• supporting incremental development and deployment of systems
3
 About OpenSplice DDS�������	

 1.2 Why Use It?

4
About OpenSplice DDS

�������	

CHAPTER

2 Product Details
2.1 Key Components

OpenSplice DDS’s include the key components listed here.

2.1.1 Services
• Domain Service (spliced) - manages a DDS domain
• Durability Service - responsible for handling non-volatile data
• Networking Service - responsible for handling communication between a node

and the rest of the nodes on ‘the network’
• Tuner Service - responsible for providing control and monitoring functionality for

OpenSplice DDS Systems

2.1.2 Tools
• IDL Preprocessor - generates topic types, type-specific readers and writers
• OpenSplice Tuner - provides monitor and control facilities on a specified DDS

domain
• OpenSplice Configurator - simplifies the process for configuring the services

2.2 Key Features
• OpenSplice DDS is the most complete second generation OMG DDS

implementation that supports all DCPS profiles.
• OpenSplice DDS is proven in the field for a decade of deployment in mission

critical environments.
• Targets both real-time embedded and large-scale fault-tolerant systems.
• Highly optimised implementation from DDS users for DDS users.
• Total lifecycle support from prototyping through to remote maintenance.

2.3 Language Bindings
OpenSplice DDS is available for the following languages:
• C (standalone C)
• C++ (standalone C++ and CORBA C++)
5
 About OpenSplice DDS�������	

 2.4 Platforms

• Java
OpenSplice can be used stand-alone for the C and Java languages, referred to as
StandAlone C (SAC) and StandAlone Java (SAJ) respectively.
The C++ language binding, referred to as CORBA C Plus Plus (CCPP) can only be
used in combination with a C++ ORB. The ORB and compiler combination used to
generate the default CCPP library (supplied with the OpenSplice release) is
mentioned in the Release Notes. See Section 5.7, Tailoring the C++ API, for
additional information.
The C++ language binding, referred to as StandAlone C Plus Plus (SACPP) can be
used without an ORB. The compiler used to generate the default library supplied
with the OpenSplice Release is mentioned in the Release Notes.
C++ applications can be developed without a dependency to a C++ ORB by using
the StandAlone C API (SAC) directly from the C++ application code.

2.4 Platforms
The platforms supported by OpenSplice DDS are listed in the Release Notes.
Please refer to Platform-specific Information (page 29 onwards) for information
about using OpenSplice DDS on specific platforms.
6
About OpenSplice DDS

�������	

USING

OPENSPLICE DDS

CHAPTER

3 Documentation
The OpenSplice DDS documentation set provides detailed information about
OpenSplice DDS, including its API, usage, installation and configuration.
The following table lists all of the documentation and manuals included with
OpenSplice DDS. The table includes brief descriptions of the documents and their
likely users.

OpenSplice DDS Documentation Set

Document Description and Use
Release Notes Lists the latest updates, bug fixes, and

last-minute information.
For product installers, administrators, and
developers, who need to be aware of the latest
changes which may affect the Service’s
performance and usage.
A link to the Release Notes is in index.html
located in the directory where OpenSplice is
installed.

Getting Started Guide General information about OpenSplice,
including installation instructions, initial
configuration requirements and instructions on
running the OpenSplice examples.
For managers, administrators, and developers
to gain an initial understanding of the product,
as well as for product installers for installing
and administering OpenSplice.

Deployment Guide A complete reference on how to configure and
tune the OpenSplice service.

Tutorial Guide A short course on developing applications
with OpenSplice in C. Includes example code
in C, C++ and Java.
9
 Using OpenSplice DDS�������	

Tuner Guide Describes how to use the Tuner tool for
monitoring and controlling OpenSplice.
For programmers, testers, system designers
and system integrators using OpenSplice.

IDL Pre-processor Guide Describes how to use the OpenSplice IDL
pre-processor for C, C++ and Java.

C Reference Guide
C++ Reference Guide
Java Reference Guide

Each of these reference guides describes the
OpenSplice DDS Application Programmers
Interface (API) for C, C++ and Java.
This is a detailed reference for developers to
help them to understand the particulars of each
feature of the OpenSplice DDS API.

Examples Examples, complete with source code,
demonstrating how applications using
OpenSplice can be written and used.
The examples and related instructions are
accessed through text files included with the
product distribution.

White Papers and Data Sheets Technical papers providing information about
OpenSplice DDS.
These technical papers are in Adobe Acrobat
PDF™ format and can be obtained from the
PrismTech web site at:
http://www.prismtech.com

OpenSplice DDS Documentation Set (Continued)

Document Description and Use
10
Using OpenSplice DDS

�������	

http://www.prismtech.com

CHAPTER

4 Information Sources
4.1 Product Information

Links to useful technical information for PrismTech’s products, including the
OpenSplice DDS and associated components, are listed below.

These links are provided for the reader’s convenience and may become out-of-date
if changes are made on the PrismTech Web site after publication of this guide.
Nonetheless, these links should still be reachable from the main PrismTech Web
page located at http://www.prismtech.com.

4.1.1 Knowledge Base
The PrismTech Knowledge Base is a collection of documents and resources
intended to assist our customers in getting the most out of the OpenSplice products.
The Knowledge Base has the most up-to-date information about bug fixes, product
issues and technical support for difficulties that you may experience. The
Knowledge Base can be found at:

http://kb.prismtech.com

4.1.2 Additional Technical Information
Information provided by independent publishers, newsgroups, web sites, and
organisations, such as the Object Management Group, can be found on the
Prismtech Web site:

http://www.prismtech.com

4.2 Support
PrismTech provides a range of product support, consultancy and educational
programmes to help you from product evaluation and development, through to
deployment of applications using OpenSplice DDS. The support programmes are
designed to meet customers’ particular needs and range from a basic Standard
programme to the Gold programme, which provides comprehensive, 24 x 7 support.
Detailed information about PrismTech’s product support services, general support
contacts and enquiries are described on the PrismTech Support page reached via the
PrismTech Home page at http://www.prismtech.com.
11
 Using OpenSplice DDS�������	

http://www.prismtech.com
http://kb.prismtech.com
http://www.prismtech.com
http://www.prismtech.com

 4.2 Support

12
Using OpenSplice DDS

�������	

INSTALLATION AND

CONFIGURATION

CHAPTER

5 Installation and Configuration
Follow the instructions in this chapter to install and configure OpenSplice DDS and
its tools. Information on running the OpenSplice examples are provided at the end
of the chapter under Section 5.6, Examples.

5.1 Prerequisites
The prerequisites for OpenSplice DDS are given in the Release Notes included with
your OpenSplice DDS product distribution. The Release Notes can be viewed by
opening the index.html located in the root (or base) directory of your OpenSplice
DDS installation and following the Release Notes link.

5.2 Installation for UNIX Platforms
Step 1: Install OpenSplice DDS

1. Ensure you have sufficient disk space
a) A minimum 60 MB of free disk space is required during installation for

the OpenSplice Host Development Environment (HDE) packages. This
package contains all services, libraries, header-files and tools needed to
develop applications using OpenSplice.

b) A minimum 35 MB of free disk space is required during installation for
the OpenSplice RunTime System (RTS) packages. This package contains
all services, libraries and tools to deploy applications using OpenSplice.

2. Install OpenSplice DDS by running the installation wizard for your particular
installation, using:
OpenSpliceDDS<version>-<platform>.<os>-<E>-installer.<ext>

where
<version> - the OpenSplice DDS version number, for example V2.0
<platform> - the platform architecture, for example sparc or x86
<os> - the operating system, for example solaris8 or linux2.6
<E> - the environment, either HDE or RTS
<ext> - the platform executable extension, either bin or exe
The directories in the OpenSplice DDS distribution are named after the
installation package they contain. Each package consists of an archive and its
installation procedure.

Step 2: Configure the OpenSplice DDS environment variables

15

 Installation and Configuration�������	

 5.3 Installation for Windows Platforms

1. Go to the <install_dir>/<E>/<platform> directory, where <E> is HDE
or RTS and <platform> is, for example, x86.linux2.6.

2. Source the release.com file from the shell command line.

This step performs all the required environment configuration.
Step 3: Install your desired ORB when the C++ language mapping is used with CORBA

coexistence. Ensure your chosen ORB and compiler is appropriate for the CCPP
library being used (either OpenSplice’s default library or other custom-built
library). Refer to the Release Notes for ORB and compiler information pertaining to
OpenSplice DDS’ default CCPP library.

5.3 Installation for Windows Platforms
Step 1: Install OpenSplice DDS

1. Ensure you have sufficient disk space
a) A minimum 60 MB of free disk space is required during installation for

the OpenSplice Host Development Environment (HDE) packages. This
package contains all services, libraries, header-files and tools needed to
develop applications using OpenSplice DDS.

b) A minimum 35 MB of free disk space is required during installation for
the OpenSplice RunTime System (RTS) packages. This package contains
all services, libraries and tools to deploy applications using OpenSplice
DDS.

2. Install OpenSplice DDS by running the installation wizard for your particular
installation, using:
OpenSpliceDDS<version>-<platform>.<os>-<E>-installer.<ext>

where
<version> - the OpenSplice DDS version number, for example V2.0
<platform> - the platform architecture, for example sparc or x86
<os> - the operating system, for example solaris8 or linux2.6
<E> - the environment, either HDE or RTS
<ext> - the platform executable extension, either bin or exe
The directories in the OpenSplice DDS distribution are named after the
installation package they contain. Each package consists of an archive and its
installation procedure.

% . ./release.com
16
Installation and Configuration

�������	

 5.4 Installation on other platforms

Step 2: Install your desired ORB when the C++ language mapping is used with CORBA
coexistence. Ensure your chosen ORB and compiler is appropriate for the CCPP
library being used (either OpenSplice’s default library or other custom-built
library). Refer to the Release Notes for ORB and compiler information pertaining to
OpenSplice DDS’ default CCPP library.

5.4 Installation on other platforms
Please refer to Platform-specific Information (page 29 onwards) for information
about using OpenSplice DDS on specific platforms.

5.5 Configuration
OpenSplice DDS is configured using an XML configuration file, as shown under
XML Configuration Settings on page 18.
The default configuration file is ospl.xml located in $OSPL_HOME/etc/config.
The default value of the environment variable OSPL_URI is set to this configuration
file.
The configuration file defines and configures the following OpenSplice services:
• spliced - the default service, also called the domain service; the domain service

is responsible for starting and monitoring all other services
• durability - responsible for storing non-volatile data and keeping it consistent

within the domain (optional)
• networking - realizes user-configured communication between the nodes in a

domain
• tuner - provides a SOAP interface for the OpenSplice Tuner to connect to the

node remotely from any other reachable node
The default Database Size that is mapped on a shared-memory segment is 10
Megabyte
The maximum user-creatable shared-memory segment is limited on certain
machines, including Solaris, so it must either be adjusted or OpenSplice must be
started as root.
A complete configuration file that enables durability as well as networking is shown
below. The bold parts are not enabled in the default configuration file, but editing
them will allow you to enable support for PERSISTENT data (instead of just
TRANSIENT or VOLATILE data) and to use multicast instead of broadcast.
17
Installation and Configuration�������	

 5.5 Configuration

Adding support for PERSISTENT data requires you to add the <Persistent>
element to the <DurabilityService> content (see the bold lines in the XML
example shown below). In this <Persistent> element you can then specify the
actual path to the directory for persistent-data storage (if it does not exist, the
directory will be created). In the example below this directory is /tmp/Pdata.
For the networking service, the network interface-address that is to be used is
specified by the <NetworkInterfaceAddress> element. The default value is set
to first available, meaning that OpenSplice will determine the first available
interface that is broadcast or multicast enabled. However, an alternative address
may be specified as well (specify as a.b.c.d).
The network service may use separate channels, each with their own name and their
own parameters (for example the port-number, the queue- size, and, if multicast
enabled, the multicast address). Channels are either reliable (all data flowing
through them is delivered reliably on the network level, regardless of QoS settings
of the corresponding writers) or not reliable (all data flowing through them is
delivered at most once, regardless of QoS settings of the corresponding writers).
The idea its that the network service chooses the most appropriate channel for each
DataWriter, i.e. the channel that fits its QoS settings the best.
Usually, networking shall be configured to support at least one reliable and one
non-reliable channel. Otherwise, the service might not be capable of offering the
requested reliability. If the service is not capable of selecting a correct channel, the
message is sent through the “default” channel. The example configuration defines
both a reliable and a non-reliable channel.
The current configuration uses broadcast as the networking distribution mechanism.
This is achieved by setting the Address attribute in the GlobalPartition
element to broadcast, which happens to be the default value anyway. This Address
attribute can be set to any multicast address in the notation a.b.c.d in order to use
multicast.
If multicast is required to be used instead of broadcast, then the operating system’s
multicast routing capabilities must be configured correctly.
See the OpenSplice DDS Deployment Manual for more advanced configuration
settings.

Example XML Configuration Settings

<OpenSpliceDDS>
 <Domain>
 <Name>OpenSpliceDDSV3.3</Name>
 <Database>
 <Size>10485670</Size>
 </Database>
 <Lease>
 <ExpiryTime update_factor=”0.5”>5.0</ExpiryTime>
18
Installation and Configuration

�������	

 5.6 Examples

5.6 Examples
The way to build and run the examples is dependent on the Platform you are using.
For VxWorks and Integrity, please refer to Chapter 7, VxWorks 6.x, on page 31, and
Chapter 8, Integrity, on page 39 in this Guide.

 </Lease>
 <Service name="networking">
 <Command>networking</Command>
 </Service>
 <Service name="durability">
 <Command>durability</Command>
 </Service>
 </Domain>
 <NetworkService name="networking">
 <General>
 <NetworkInterfaceAddress>
 first available
 </NetworkInterfaceAddress>
 </General>
 <Partitioning>
 <GlobalPartition Address="broadcast"/>
 </Partitioning>
 <Channels>
 <Channel name="BestEffort" reliable="false"
 default="true">
 <PortNr>3340</PortNr>
 </Channel>
 <Channel name="Reliable" reliable="true">
 <PortNr>3350</PortNr>
 </Channel>
 </Channels>
 </NetworkService>
 <DurabilityService name="durability">
 <Network>
 <InitialDiscoveryPeriod>2.0</InitialDiscoveryPeriod>
 <Alignment>
 <RequestCombinePeriod>
 <Initial>2.5</Initial>
 <Operational>0.1</Operational>
 </RequestCombinePeriod>
 </Alignment>
 <WaitForAttachment maxWaitCount="10">
 <ServiceName>networking</ServiceName>
 </WaitForAttachment>
 </Network>
 <NameSpaces>
 <NameSpace durabilityKind="Durable"
 alignmentKind="Initial_and_Aligner">
 <Partition>*</Partition>
 </NameSpace>
 </NameSpaces>
 <Persistent>
 <StoreDirectory>/tmp/Pdata</StoreDirectory>
 </Persistent>
 </DurabilityService>
</OpenSplice>
19
Installation and Configuration�������	

 5.6 Examples

For Unix/Linux based systems there is a shell script called BUILD which is available
for all supported languages.
For Windows use the following procedure:

Step 1: Set TAO environment
Required only if the C++ cohabitation examples are to built:

set TAO_ROOT=<install TAO path>
set PATH=%TAO_ROOT%\bin;%PATH%

Step 2: Set Microsoft Visual Studio Environment using VS supplied batch file
For VS 2008:

C:\ospl\HDE\X86~1.WIN\examples\dcps>"c:\Program Files\
Microsoft Visual Studio 9.0\Common7\Tools\vsvars32.bat"

For VS 2005:
C:\ospl\HDE\X86~1.WIN\examples\dcps>"c:\Program Files\
Microsoft Visual Studio 8\Common7\Tools\vsvars32.bat"

Step 3: Set OSPL runtime environment
cd <wherever>\HDE\x86.win32
release.bat

For example:
C:\ospl\HDE\X86~1.WIN>release.bat
"<<< OpenSplice HDE Release V4.1.1 For x86.win32, Date
2009-06-04 >>>"

Step 4: Change to the examples directory
C:\ospl\HDE\X86~1.WIN>cd examples

Step 5: Build examples
Either open the solution file and build using the Studio IDE:

C:\ospl\HDE\X86~1.WIN\examples>devenv /useenv examples.sln

Or build from the command line:
C:\ospl\HDE\X86~1.WIN\examples>devenv /useenv examples.sln
/Build Release

For debugging purposes, replace Release with Debug:
C:\ospl\HDE\X86~1.WIN\examples>devenv /useenv examples.sln
/Build Debug
20
Installation and Configuration

�������	

 5.6 Examples

5.6.1 The PingPong Example
The PingPong example is a small benchmarking program that bounces a topic back
and forth between ping and a pong applications. It measures and displays the
round-trip times of these topics, giving a first impression on some performance
characteristics of the product. Command line parameters control things like the
payload for the topics and partitions in which they write and read their information.

Step 1: Build the example applications
For the StandAlone C API (SAC):
1. Change to the $OSPL_HOME/examples/dcps/standalone/C/PingPong

directory (on Windows use the command prompt).
2. Check the usage and functioning by inspecting the ping.c file.
3. Build the applications using sh ./BUILD on the command line on Linux or

Solaris platforms. On Windows, follow the procedure starting at Step 1on
page 20.

4. Run the applications running sh ./RUN on the command line on Linux or
Solaris platforms or execute RUN.bat within the command prompt on the
Windows platform.

For the CORBA-coexistent C++ API (CCPP):
1. Change to the

$OSPL_HOME/examples/dcps/CORBA/C++/OpenFusion/PingPong
directory (on Windows use the command prompt).

2. Check the usage and functioning by inspecting the ping.cpp file.
3. Build the applications using sh ./BUILD on the command line on Linux or

Solaris platforms. On Windows, follow the procedure starting at Step 1on
page 20.

4. Run the applications running sh ./RUN on the command line on Linux/Solaris
platforms or execute RUN.bat in a command prompt on the Windows platform.

For the StandAlone Java API (SAJ)
1. Change to the

$OSPL_HOME/examples/dcps/standalone/Java/PingPong
directory (on Windows use the command prompt).

2. Check the usage and functioning by inspecting the ping.java file.
3. Build the applications using sh ./BUILD on the command line on Linux or

Solaris platforms or execute BUILD.bat in a command prompt on Windows.
4. Run the applications running sh ./RUN on the command line on Linux or

Solaris platforms or execute RUN.bat in a command prompt on Windows.

21

Installation and Configuration�������	

 5.6 Examples

For the StandAlone C++ API (C++ using SAC):
1. Change to the $OSPL_HOME/examples/dcps/standalone/C++/PingPong

directory (on Windows use the command prompt).
2. Check the usage and functioning by inspecting the ping.cpp file.
3. Build the applications using sh ./BUILD on the command line on Linux or

Solaris platforms. On Windows, follow the procedure starting at Step 1on
page 20.

4. Run the applications running sh ./RUN on the command line on Linux or
Solaris platforms or execute RUN.bat in a command prompt on Windows.

5.6.2 The Tutorial Example
The tutorial example consists of three separate executables that constitute a very
primitive Chatter application. The OpenSplice infrastructure should manually be
started before running the Chatter applications executables (see Section 5.6.3, Using
the OpenSplice Tools). Each Chatter executable can be started using different
configurations provided each is running in their own, separate terminal window: this
is to avoid having their screen outputs intermingled together in the same terminal
window.
The Chatter executables, Chatter, MessageBoard and UserLoad, are run from
the command line as shown below.
Chatter(.exe) [userID] [userName]

Starts sending Chat messages for a user with the specified ID and name. Ensure
the ID number is a unique and not used by any other user.

MessageBoard(.exe) [userID]
Starts a MessageBoard that displays the Chat messages it receives from all
users, except for the user with the specified ID.

UserLoad(.exe)
Starts an application that monitors new users who log on to the chat session and
currently connected users who log off. UserLoad prints its monitoring
information to the terminal for one minute then terminates.

You can experiment and observe the effects by running different Chatters with
different ID’s, using different MessageBoards and observing how each executable
interacts with the others. In particular, examine what happens if a MessageBoard is
started after one or more Chatters have already begun to send their messages.
Building the Tutorial examples is very similar to building the PingPong examples:
for Unix/Linux based systems there is a BUILD script that compiles and links the
executables; for Windows, follow the procedure starting at Step 1 on page 20. Also,
Project files are available for Microsoft Visual Studio for C and C++.
22
Installation and Configuration

�������	

 5.6 Examples

When running the examples in Java, ensure the correct CLASSPATH variable value is
used, for example:
On Unix or Linux-based platforms use:

On Windows-based platforms use:

5.6.3 Using the OpenSplice Tools

The RUN(.bat) command for the PingPong examples also starts and stops the
OpenSplice infrastructure. The tutorial examples (located in the Tutorial
directory that is on the same level as the as the PingPong example directory of the
specific language binding) can be built in the same way, but they do not provide a
RUN(.bat) script: instead each executable should be manually started in a separate
terminal window (to avoid mixing up their screen output) and the OpenSplice
infrastructure should be started and terminated manually.

Step 2: Manually start the OpenSplice infrastructure
1. Enter ospl start on the command line.1 This starts the OpenSplice services.
2. The default configuration file that comes with OpenSplice, which is network

enabled, is used.
a) The default configuration uses UDP-broadcast.
b) UDP-multicast can be used instead of UDP-broadcast, but requires that a

multicast address is added in the configuration file (see Section 5.5,
Configuration, on page 17).

3. These log files may be created in the current directory when OpenSplice is
started:
a) ospl-info.log - contains information and warning-reports
b) ospl-error.log - contains error reports

Step 3: Start the OpenSplice Tuner Tool
1. Read the OpenSplice Tuner Guide (TurnerGuide.pdf) before running the

Tuner Tool
2. Start the tool by entering ospltun on the command line.

The URI required to connect is set in the OSPL_URI environment variable
(default URI is: file://$OSPL_HOME/etc/config/ospl.xml).

% java -classpath $OSPL_HOME/jar/dcpssaj.jar:.

> java -classpath %OSPL_HOME%\jar\dcpssaj.jar:.

i

1. ospl is the command executable for OpenSplice.

23

Installation and Configuration�������	

 5.7 Tailoring the C++ API

3. The OpenSplice system can now be monitored.
Step 4: Experiment with the OpenSplice tools and applications

1. Start the C, C++ and Java publishers and subscribers and observe how they
perform

2. Use the OpenSplice Tuner to monitor all DDS entities and their (dynamic)
relationships

Step 5: Manually stop the OpenSplice infrastructure
1. Choose File -> Disconnect from the OpenSplice Tuner menu.
2. Enter ospl stop on the command line: this stops all OpenSplice services.

5.7 Tailoring the C++ API
The pre-compiled C++ API that is delivered with OpenSplice DDS only works in
combination with a specific ORB and compiler combination, as stated previously. If
another compiler version or another ORB is required, then a custom C++ API
l ib r a r y c a n b e b u i l t u s i n g t h e s o u r c e c o d e p r o v i d e d i n t h e
$OSPL_HOME/custom_lib/ccpp directory. Detailed instructions on how to create
t h e c us t o m A P I a r e p r o v i d e d i n t h e README.txt f i l e l o c a t e d i n
$OSPL_HOME/custom_lib/ccpp.
24
Installation and Configuration

�������	

CHAPTER

6 Licensing OpenSplice
6.1 General

OpenSplice DDS uses FLEXNet to manage licenses. This section describes how to
install a license file for OpenSplice DDS and how to use the license manager.
The licensing software is automatically installed on the host machine as part of the
OpenSplice distribution. The software consists of two parts:
• OpenSplice DDS binary files, which are installed in
<OpenSplice_Install_Dir>/<E>/<platform>.<os>/bin, where
OpenSplice_Install_Dir is the directory where OpenSplice DDS is installed

• License files which determine the terms of the license. These will be supplied by
PrismTech.

Licenses: PrismTech supplies an OpenSplice DDS license file, license.lic. This
file is not included in the software distribution, but is sent separately by PrismTech.

6.1.1 Development and Deployment Licenses
Development licenses are on a per Single Named Developer basis. This implies that
each developer using the product requires a license. OpenSplice DDS is physically
licensed for development purposes. OpenSplice DDS is also physically licensed on
enterprise platforms for deployment.
The OpenSplice Tuner is sold as a separate product. The development license only
includes IDL pre-processor support.

6.2 Installing the License File
Copy the license file to <OpenSplice_Install_Dir>/etc/license.lic,
where <OpenSplice_Install_Dir> is the directory where OpenSplice is
installed, on the machine that will run the license manager.
This is the recommended location for the license file but you can put the file in any
location that can be accessed by the license manager lmgrd.
If another location is used or the environment has not been setup, then an
environment variable, either LM_LICENSE_FILE or PTECH_LICENSE_FILE, must
be set to the full path and filename of the license file (either variable can be set;
there is no need to set both). For example:

i

25
 Installation and Configuration�������	

 6.3 Running the License Manager Daemon

PTECH_LICENSE_FILE=/my/lic/dir/license.lic

If licenses are distributed between multiple license files, the LM_LICENSE_FILE or
PTECH_LICENSE_FILE variable can be set to point to the directory which contains
the license files.

6.3 Running the License Manager Daemon
It is only necessary to run the License Manager Daemon for floating or counted
licenses. In this case, the license manager must be running before OpenSplice DDS
can be used. The license manager software is responsible for allocating licenses to
developers and ensuring that the allowed number of concurrent licenses is not
exceeded.
For node-locked licenses, as is the case with all evaluation licenses, then it is not
necessary to run the License Manager Daemon but the LM_LICENSE_FILE or
PTECH_LICENSE_FILE variable must be set to the correct license file location.
To run the license manager, use the following command:

where <location> is the full path and filename of the license file. If licenses are
distributed between multiple files, <location> should be the path to the directory
that contains the license files.
The lmgrd command will start the PrismTech vendor daemon PTECH, which
controls the licensing of the OpenSplice DDS software.
To obtain a license for OpenSplice DDS from a License Manager Daemon that is
running on a different machine, set ei ther the LM_LICENSE_FILE or
PTECH_LICENSE_FILE environment variable to point to the License Manager
Daemon, using the following syntax:

where <port> is the port the daemon is running on and <host> is the host the
daemon is running on.
The port and host values can be obtained from the information output when the
daemon is started. The format of this output is as shown in the following example:

1: 9:55:03 (lmgrd) lmgrd tcp-port 27001
2: 9:55:03 (lmgrd) Starting vendor daemons ...
3: 9:55:03 (lmgrd) Started PTECH (internet tcp_port xxxxx pid
xxxxx)
4: 9:55:03 (PTECH) FLEXlm version 9.2
5: 9:55:04 (PTECH) Server started on ultra5 for: licensedobj1
licensedobj2

% lmgrd -c <location>

% LM_LICENSE_FILE=<port>@<host>
26
Installation and Configuration

�������	

 6.3 Running the License Manager Daemon

The <port> value should be taken from the first line of the output. The <server>
value should be taken from the last line. From this example, the value for
LM_LICENSE_FILE or PTECH_LICENSE_FILE would be:

27001@ultra5

6.3.1 Utilities
A utility program, lmutil, is available for license server management and
administration. One feature of this utility is its ability to gracefully shut down the
license manager. To shut down the license manager, preventing the checkout of
licenses for the OpenSplice DDS software, run either of the following commands:

where <location> is the full path and filename of the license file.
The lmutil program is also used to generate a host identification code which is
used to generate your license key. To generate the code, run the following command
on the license server:

This returns an ID code for the server, which will look similar to:
8ac86d5

This ID code must be supplied to PrismTech so that your license key can be
generated.

The OpenSplice DDS licensing software also includes lmtools, a GUI front end to
the lmutil utility program.

% lmutil lmdown -vendor PTECH

% lmutil lmdown -c <location>

% lmutil lmhostid

WIN
27
Installation and Configuration�������	

 6.3 Running the License Manager Daemon

28
Installation and Configuration

�������	

PLATFORM-SPECIFIC

INFORMATION

CHAPTER

7 VxWorks 6.x
OpenSplice DDS is deployed on the VxWorks 6.x operating system as Real Time
Processes (RTPs). For more information about RTPs please refer to WindRiver’s
VxWorks documentation.

7.1 Installation
The following instructions describe installing OpenSplice DDS for VxWorks 6.x on
the Windows XP host environment.
Start the installation process by double-clicking the OpenSplice DDS Host
Development Environment (HDE) installer file. Follow the on-screen instructions
and complete the installation. When asked to configure the installation with a
license file, select No. The installer will create an OpenSplice DDS entry in Start >
Programs which contains links to the OpenSplice tools, documentation, and an
Uninstall option.
Please note that the installation process adds the variable OSPL_TARGET_HOME to
Windows’ system variables. This variable is referenced when building the
OpenSplice DDS examples using WindRiver’s Workbench GUI. It has been noted
that occasionally this variable may not become active immediately after installation.
Please ensure that it is indeed active (i.e. available to applications) before starting
the Workbench GUI. It can be verified that it is active by opening a command
prompt window and entering set, then checking that OSPL_TARGET_HOME appears
in the displayed list. Environment variables can usually be forced to take effect by
simply (re-)opening the dialog (Start > Settings > Control Panel > System >
Advanced > Environment Variables) and then clicking OK. (In rare cases it may
be neccessary to restart Windows.)

7.2 VxWorks Kernel Requirements
The VxWorks kernel required to support OpenSplice DDS on VxWorks 6.x is built
using the development kernel configuration profile with the additional posix thread
components enabled. A kernel based on this requirement can be built within
Workbench, by starting the Workbench GUI and selecting File > New > VxWorks
Image Project.

WIN
31
 Platform-specific Information�������	

 7.3 Deploying OpenSplice DDS

Type a name for the project then select the appropriate Board Support Package and
Tool Chain (for example mcpn805 and gnu). Leave the kernel options to be used as
blank, and on the Configuration Profile dialog select PROFILE_DEVELOPMENT
from the drop-down list.
Once the kernel configuration project has been generated, the additional required
functionality can be enabled:
• POSIX threads (INCLUDE_POSIX_PTHREADS)
• POSIX thread scheduler in RTPs (INCLUDE_POSIX_PTHREAD_SCHEDULER)
• built-in symbol table (INCLUDE_STANDALONE_SYM_TBL)
Note that the Workbench GUI should be used to enable these components so that
dependent components are automatically added to the project.

7.3 Deploying OpenSplice DDS
As described in Section 5.5, Configuration, OpenSplice DDS is started with the
OpenSplice domain service spliced and a number of optional services described
within the OpenSplice configuration file (ospl.xml). On VxWorks 6.x, a Real
Time Process for each of these services is deployed on to the target hardware. The
sample ospl.xml configuration file provided with the VxWorks 6.x edition of
OpenSplice has particular settings so that these RTPs can operate effectively.
The instructions below describe how to deploy these RTPs using the Workbench
GUI and the Target Server File System (TSFS), although the processes can be
deployed by using commands and other file system types.

Step 1: Start the Workbench and create a connection to the target hardware using the
Remote Systems view.

Step 2: Create a connection to the host machine. In the Properties for the connection, make
part of the host’s file system available to VxWorks using the TSFS by specifying
both the -R and -RW options to tgtsvr. For example, connecting with the option
-R c:\x -RW will enable read and write access to the contents of the c:\x
directory from the target hardware under the mount name /tgtsvr.

Step 3: Activate the new connection by selecting it and clicking Connect.
Step 4: With a connection to the target hardware established, create a new RTP deployment

configuration for the connection by right-clicking on the connection and selecting
Run > Run RTP on Target....

Step 5: Create a new configuration for the spliced deployment that points to the
spliced.vxe executable from the OpenSplice installation. The following
parameters should be set in the dialog:
32
Platform-specific Information

�������	

 7.3 Deploying OpenSplice DDS

RTP configuration for spliced.vxe

For simplicity it has been assumed that spliced.vxe and the other executables
(located in the bin directory of the installation) and ospl.xml (located in the
etc/config directory of the installation) have been copied to the directory made
available as /tgtsvr described above. It is possible, if required, to copy the entire
OpenSplice installation directory to the /tgtsvr location so that all files are
available, but please be aware that log and information files will be written to the
same /tgtsvr location when the spliced.vxe is deployed.
The screen shot from Workbench in Figure 1 shows this configuration.

Figure 1 Workbench showing spliced deployment configuration
The configuration can be deployed by clicking Run, where an RTP for each service
described in the configuration file should be created. These can be seen in
Workbench in the Real Time Processes list for the target connection. An example is
shown below in Figure 2. (The list may need to be refreshed with the F5 key.)

Exec Path
on Target

/tgtsvr/spliced.vxe

Arguments file:///tgtsvr/ospl.xml

Environ-
ment

LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml
PATH=/tgtsvr

Priority 100

Stack Size 0x10000
33
Platform-specific Information�������	

 7.4 OpenSplice Examples

Deployment problems are listed in ospl-error.txt and ospl-info.txt, which
are created in the /tgtsvr directory if the configuration described above is used.

Figure 2 Workbench showing deployed OpenSplice RTPs

7.4 OpenSplice Examples
PrismTech provides PingPong and Tutorial examples both for C and C++ that are
described in Section 5.6, Examples, on page 19. These example are provided in the
form of Workbench projects which can be easily built and then deployed on to the
target hardware in a similar process to above.
The PingPong example described on page 21 consists of the ping and pong
projects, and the Tutorial example described on page 22 consists of projects for
chatter, messageboard and userload. Each project contains a README file
briefly explaining the example and the parameters required to run it.

7.4.1 Importing Example Projects into Workbench
The example projects can be imported into Workbench by clicking File > Import... >
General > Existing Projects into Workspace.
In the Import Projects dialog, browse to the examples directory of the OpenSplice
installation. Select the required projects for importing from the list that Workbench
has detected.
Ensure that the Copy projects into workspace box is checked, so that any changes
made to these projects do not affect the initial installation.
If prompted to convert project files to the new Workbench format, select Yes.

7.4.2 Building Example Projects with Workbench
Projects in a workspace can be built individually or as a group.
34
Platform-specific Information

�������	

 7.4 OpenSplice Examples

Build a single project by selecting it and then click Project > Build Project.
Build all projects in the current workspace by clicking Project > Build All.

7.4.3 Deploying OpenSplice Examples
The PingPong and the Tutorial examples are run in identical ways with the same
parameters for both C and C++. These should be deployed onto the VxWorks target
with the arguments described in the README files for each project.

7.4.3.1 Deploying PingPong
The PingPong example consists of the ping.vxe and pong.vxe executables. If
these executables have been copied to the directory made available as /tgtsvr as
described in Section 7.3, Deploying OpenSplice DDS, RTP configurations should
have the following parameters:

RTP configuration for pong

RTP configuration for ping

When deployment is successful, the console shows output from both the ping and
pong executables. The console view can be switched to show the output for each
process by clicking the Display Selected Console button.

Exec Path on
Target

/tgtsvr/pong.vxe

Arguments PongRead PongWrite

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/ping.vxe

Arguments 10 10 s PongRead PongWrite

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000
35
Platform-specific Information�������	

 7.4 OpenSplice Examples

7.4.3.2 Deploying the Chat Tutorial
The Chat Tutorial consists of the chatter.vxe, messageboard.vxe and
userload.vxe executables. If these executables have been copied to the directory
made available as /tgtsvr as described in Section 7.3, Deploying OpenSplice
DDS, RTP configurations should have the following parameters:

RTP configuration for userload

RTP configuration for messageboard

RTP configuration for chatter

When deployment is successful, the console will show output from each RTP. In
particular the message board will show the messages sent by the chatter process.
The console view can be switched to show the output for each process by clicking
the Display Selected Console button.

Exec Path on
Target

/tgtsvr/userload.vxe

Arguments
Environment LD_BIND_NOW=1

OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/messageboard.vxe

Arguments
Environment LD_BIND_NOW=1

OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000

Exec Path on
Target

/tgtsvr/chatter.vxe

Arguments 1 User1

Environment LD_BIND_NOW=1
OSPL_URI=file:///tgtsvr/ospl.xml

Priority 100

Stack Size 0x10000
36
Platform-specific Information

�������	

 7.4 OpenSplice Examples

37
Platform-specific Information�������	

 7.4 OpenSplice Examples

38
Platform-specific Information

�������	

CHAPTER

8 Integrity
The ospl_projgen tool is in the HDE/bin directory of the DDS distribution. It is
a convenience tool provided for the Integrity platform in order to aid in the creation
of GHS Multi projects for running the DDS-supplied PingPong example, the
Touchstone performance suite, and the Chatter Tutorial. If desired, these generated
projects can be adapted to suit user requirements by using Multi and the
ospl_xml2int tool, which is also described in this chapter.

8.1 The ospl_projgen command
The ospl_projgen tool has the following command line arguments:
 ospl_projgen -h
 ospl_projgen [-s <flash|ram>|-d] [-n] [-v] [-t <target>]
 [-l <c|c++>|c++onc] [-u <URI>] -b <bsp name>

[-m <board model>] -o <directory> [-f]

Arguments shown between square brackets [] are optional; other arguments are
mandatory. Arguments may be supplied in any order. All of the arguments are
described in detail below.

8.1.1 Description of the arguments
-h List the command line arguments and give brief reminders of their functions.
-s <flash|ram> Use this argument if you wish to generate a project that will be

statically linked with the kernel. The two options for this argument determine
whether the resulting kernel image will be a flashable image or a loadable
image. If both this argument and the -d argument are omitted the default of a
statically-linked ram-loadable image will be generated.

-d Use this argument to produce a project file that will yield a dynamic download
image.
NOTE: Arguments -s and -d are mutually exclusive.

-n Use this argument if you want to include the GHS network stack in your project
-v Use this argument if you want to include filesystem support in your project.
-t <target> Use this argument to specify which address spaces to include in

your project. Use -t list to show a list of available targets. (Targets available
initially are examples supplied with OpenSplice DDS and Integrity itself.)
39
 Platform-specific Information�������	

 8.2 PingPong Example

-l <c | c++ | c++onc> Use this argument to specify the language for your
project. The default is c++.

-u <URI> Use this argument to identify which configuration file to use. You can
omit this argument if you have the environment variable OSPL_URI set, or use it
if you want to use a different configuration file from the one referred to by
OSPL_URI . The default is $OSPL_URI . The xml2int tool uses this
configuration file when generating the Integrate file for your project.

-b <bsp name> Use this argument to specify the BSP name of your target board.
Use -b list to show a list of supported target boards.

-m <board model> Use this argument to specify the model number for the target
board. Use -b <bsp name> -m list to show a list of supported model
numbers. (There are no separate model numbers for pcx86 boards.)

-o <directory> Use this argument to specify the output directory for the project
files. The name you supply here will also be used as the name for the image file
that will be downloaded/flashed onto the Integrity board.

-f Use this argument to force overwrite of the output directory.
When you run the tool, the output directory specified with the -o argument will be
created. Go into this directory, run GHS Multi, and load the generated project.
If the output directory already exists and the -f argument has been omitted,
ospl_projgen will exit without generating any code and will notify you that it has
stopped.
NOTE: The NetworkInterfaceAddress configuration parameter is required for
Integrity nodes which have more than one ethernet interface, as it is not possible to
determine which are broadcast/multicast enabled. (See sections 3.5.2.1 and 3.9.2.1
Element NetworkInterfaceAddress in the Deployment Guide.)

8.1.2 Using mmstat and shmdump diagnostic tools on Integrity
When mmstat or shmdump targets are specified to ospl_projgen an address
space will be added to the generated project. There will also be an appropriate
mmstat.c or shmdump.c file generated into the project. In order to configure
these, the command line arguments can be edited in the generated .c files. The
shmdump tool can be controlled via telnet on port 2323 (by default).

8.2 PingPong Example
(Please refer to 5.6.1, The PingPong Example, on page 21 for a description of this
example application.)
To generate a project for the C++ PingPong example, follow these steps:
40
Platform-specific Information

�������	

 8.2 PingPong Example

Step 1: The I_INSTALL_DIR environment variable must be set to point to the Integrity
installation directory on the host machine before running ospl_projgen. For
example:

Step 2: Navigate to the examples/dcps/standalone/C++/PingPong directory
Step 3: Run ospl_projgen with the following arguments:

Step 4: Go into the projgen directory, which contains default.gpj and a src directory.
(default.gpj is the default Multi project that will build all the sub-projects found
in the src directory, and the src directory contains all the sub-projects and
generated files produced by the tool.)

Step 5: Start Multi:

You should see a screen similar to the one in Figure 3 below:

% export I_INSTALL_DIR=/usr/ghs/int509

% ospl_projgen -s ram -v -n -t pingpong -l c++ -b pcx86 -o projgen

% multi default.gpj
41
Platform-specific Information�������	

 8.2 PingPong Example

Figure 3 Integrity: project defaults
Step 6: If no changes are required to the project, right-click on default.gpj and then

click Build to build the project.
Upon successful completion of the build process, an image is generated (in our case
called projgen) in the src directory and you are now ready to either dynamically
download the resulting image to the board or load the kernel image onto the board
(depending on the arguments you have specified) and run the PingPong example.
If ospl_projgen is run and the project built as described above, the generated
image will contain:
• GHS Integrity OS (Kernel, Networking, and Filesystem support)
• OpenSplice DDS (including spliced and the services described in the
ospl.xml file)

• the PingPong example
42
Platform-specific Information

�������	

 8.3 Changing the ospl_projgen arguments

Once the image has been downloaded to the board, the pong “Initial task” should be
started and then the ping AddressSpace can be started in the same way, so that the
example begins the data transfer. Parameters are not required to be passed to the
Integrity processes because the ospl_projgen tool generates code with particular
values that simulate the passing of parameters.
This also applies to the Chat Tutorial (see 5.6.2, The Tutorial Example, on page 22),
if ospl_projgen is run with the -t chat argument.

8.3 Changing the ospl_projgen arguments
If changes are subsequently required to the arguments that were originally specified
to the ospl_projgen tool, there are two choices:

a) Re-run the tool and amend the arguments accordingly, or
b) Make your changes through the Multi tool.

The first method guarantees that your project files will be produced correctly and
build without needing manual changes to the project files. To use this method,
simply follow the procedure described above but supply different arguments.
The second method is perhaps a more flexible approach, but as well as making some
changes using Multi you will have to make other changes by hand in order for the
project to build correctly.
The following section describes the second method.

8.3.1 Changing the generated OpenSplice DDS project using Multi
You can make changes to any of the settings you specified with ospl_projgen by
following these steps:

Step 1: Right-click on the highlighted ospl.xml file (as shown above) and click Set
Options....

Step 2: Select the All Options tab and expand the Advanced section.
Step 3: Select Advanced OpenSplice DDS XML To Int Convertor Options. In the

right-hand pane you will see the options that you have set with the ospl_projgen
tool with their values, similar to Figure 4 below.
43
Platform-specific Information�������	

 8.4 The ospl_xml2int tool

Figure 4 Integrity: changing project options in Multi
Step 4: Right-click on the parameter that you want to change. For example, if you don’t

need filesystem support to be included in the kernel image, right-click on Include
filesystem support and set the option to Off.
The arguments for xml2int in the bottom pane are updated to reflect any changes
that you make. If you switch off filesystem support, the -v argument is removed
from the arguments. (The xml2int tool is used to generate the ospl.int Integrate
file that will be used during the Integrate phase of the project. For more information
on xml2int, please see section 8.4.1, The ospl_xml2int command, below.)
Note that if you do remove filesystem support from the kernel image you should
also remove all references to the ivfs library, and make appropriate changes to the
ospl_log.c file as well. See section 8.6, Amending OpenSplice DDS
configuration with Multi, on page 48, for information about ospl_log.c.
Similarly you can change any other option and the changes are applied instantly.

Step 5: When the changes are complete, rebuild the project by right-clicking on
default.gpj and then click Build to build the project.

8.4 The ospl_xml2int tool
The ospl_xml2int tool is used to inspect your OpenSplice DDS configuration file
(ospl.xml) and generate an appropriate Integrate file (ospl.int). For more
information on Integrate files please consult the Integrity manual.
44
Platform-specific Information

�������	

 8.4 The ospl_xml2int tool

8.4.1 The ospl_xml2int command
The ospl_xml2int tool can be run with the following command line arguments:

ospl_xml2int -h
ospl_xml2int [-s|-d] [-v] [-n] [-t <target>] [-u <URI>]

[-o <file>]

Arguments shown between square brackets [] are optional; other arguments are
mandatory. Arguments may be supplied in any order. All of the arguments are
described in detail below.

8.4.2 Description of the arguments
-h List the command line arguments and give brief reminders of their functions
-s Generate for static linkage with kernel.
-d Use this argument to generate an Integrate file that will yield a dynamic

download image. If both this argument and the -s argument are omitted the
default of a statically-linked image will be generated.
NOTE: arguments -s and -d are mutually exclusive.

-v Include filesystem support.
-n Include network support.
-t <target> Available targets:

chat include chat tutorial
pingpong include PingPong example
touchstone include Touchstone
mmstat include mmstat
shmdump include shmdump

Multiple -t arguments may be given. This enables you to use mmstat and/or
shmdump (see Using mmstat and shmdump diagnostic tools on Integrity on
page 40) in conjunction with one of the examples.

-u <URI> Identifies the configuration file to use (default: ${OSPL_URI}).
-o <file> Name of the generated Integrate file.
Applications linking with OpenSplice DDS must comply with the following
requirements:
• The First and Length parameters must match those of spliced address space

(these are generated from ospl.xml).
• The address space entry for your application in the Integrate file must include

entries as shown in the example below.
Have a look at the ospl.int for the PingPong example if in doubt as to what the
format should be. (Make sure that you have built the project first or else the file will
be empty).
45
Platform-specific Information�������	

 8.4 The ospl_xml2int tool

Example ospl.int contents

NOTE: If you make any changes to the ospl.int file generated by the project and
then you make any changes to the ospl.xml file and rebuild the project, the
changes to the ospl.int file will be overwritten.
Make sure that you also edit the global_table.c and mounttable.c files to
ma tch you r s e tup . These f i l e s c a n b e f o u n d u n d e r
src/projgen/kernel.gpj/kernel_kernel.gpj a n d
src/projgen.gpj/kernel.gpj/ivfs_server.gpj as shown in Figure 5
below:

AddressSpace
 .
 .
 .

 Object 10
 Link ResourceStore
 Name ResCon
 OtherObjectName DDS_Connection
 EndObject

 Object 11
 Link ResourceStore
 Name ConnectionLockLink
 OtherObjectName DDS_ConnectionLock
 EndObject

 Object 12
 MemoryRegion your_app_name_database
 MapTo splice_database
 First 0x20000000
 Length 33554432
 Execute true
 Read true
 Write true

 EndObject
 .
 .
 .
EndAddressSpace
46
Platform-specific Information

�������	

 8.5 Critical warning about Object 10 and Object 11

Figure 5 Integrity: changing global_table.c and mounttable.c

Once you have made all of the required changes to ospl.int, you must rebuild the
whole project. Your changes will be picked up by OpenSplice DDS automatically.

8.5 Critical warning about Object 10 and Object 11
We have used Object 10 and Object 11 in various address spaces to declare a
semaphore and a connection object, but they may already be in use on your system.
You can change these numbers, in the ospl.int file, but if you do then you must
change all of the address spaces where Object 10 and Object 11 are defined
(except those for ResourceStore as noted below). The value replacing 10 must be
the same for every address space, and likewise for the value replacing 11. You must
change all references in order for OpenSplice DDS to work correctly.
The only exception is the ResourceStore address space. Object 10 and
Object 11 are unique to the OpenSplice DDS ResourceStore and they MUST
NOT be altered. If you do change them, OpenSplice DDS WILL NOT WORK!
47
Platform-specific Information�������	

 8.6 Amending OpenSplice DDS configuration with Multi

8.6 Amending OpenSplice DDS configuration with Multi
You can make changes to the OpenSplice DDS configuration from Multi by editing
t he f i l e s u nd e r t he p ro j e c t
src/projgen.gpj/opensplice_configuration.gpj/libospl_cfg.gpj.
See Figure 6 below:

Figure 6 Integrity: changing OpenSplice DDS configuration in Multi

There are five files here but you may only change ospl.xml and ospl_log.c.
The others must NOT be altered!
ospl.xml This is your OpenSplice DDS configuration file. (See Section 5.5,

Configuration, on page 17 for more information about the options an
OpenSplice DDS configuration file may have.)

ospl_log.c This file determines where the log entries (errors, warnings and
informational messages) from OpenSplice DDS go. The way the default file is
generated by ospl_projgen depends on whether you have specified
filesystem support or not. (See comments within the file for more information.)
48
Platform-specific Information

�������	

	Getting Started Guide
	Table of Contents
	Preface
	About the Getting Started Guide
	Contacts

	About OpenSplice DDS
	1 Why OpenSplice DDS
	1.1 What is OpenSplice DDS?
	1.2 Why Use It?

	2 Product Details
	2.1 Key Components
	2.1.1 Services
	2.1.2 Tools

	2.2 Key Features
	2.3 Language Bindings
	2.4 Platforms

	Using OpenSplice DDS
	3 Documentation
	4 Information Sources
	4.1 Product Information
	4.1.1 Knowledge Base
	4.1.2 Additional Technical Information

	4.2 Support

	Installation and Configuration
	5 Installation and Configuration
	5.1 Prerequisites
	5.2 Installation for UNIX Platforms
	5.3 Installation for Windows Platforms
	5.4 Installation on other platforms
	5.5 Configuration
	5.6 Examples
	5.6.1 The PingPong Example
	5.6.2 The Tutorial Example
	5.6.3 Using the OpenSplice Tools

	5.7 Tailoring the C++ API

	6 Licensing OpenSplice
	6.1 General
	6.1.1 Development and Deployment Licenses

	6.2 Installing the License File
	6.3 Running the License Manager Daemon
	6.3.1 Utilities

	Platform-specific Information
	7 VxWorks 6.x
	7.1 Installation
	7.2 VxWorks Kernel Requirements
	7.3 Deploying OpenSplice DDS
	7.4 OpenSplice Examples
	7.4.1 Importing Example Projects into Workbench
	7.4.2 Building Example Projects with Workbench
	7.4.3 Deploying OpenSplice Examples
	7.4.3.1 Deploying PingPong
	7.4.3.2 Deploying the Chat Tutorial

	8 Integrity
	8.1 The ospl_projgen command
	8.1.1 Description of the arguments
	8.1.2 Using mmstat and shmdump diagnostic tools on Integrity

	8.2 PingPong Example
	8.3 Changing the ospl_projgen arguments
	8.3.1 Changing the generated OpenSplice DDS project using Multi

	8.4 The ospl_xml2int tool
	8.4.1 The ospl_xml2int command
	8.4.2 Description of the arguments

	8.5 Critical warning about Object 10 and Object 11
	8.6 Amending OpenSplice DDS configuration with Multi

