
OpenSplice DDS
Version 4.x

IDL Pre-processor Guide
�������	

OpenSplice DDS
IDL PRE-PROCESSOR GUIDE
Part Number: OS-IDLP Doc Issue 14, 11 November 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
IDL Pre-processor Guide

�������	

CONTENTS

Table of Contents
Preface

About the IDL Pre-processor Guide .vii
Contacts . viii

The IDL Pre-processor
Chapter 1 Description and Use 3

1.1 Introduction. 3
1.2 Prerequisites . 4
1.3 IDL Pre-processor Command Line Options . 5
1.4 OpenSplice DDS Modes and Languages. 7
1.5 IDL Pre-processor Grammar . 8
1.5.1 Key Definitions . 16
1.6 Modes, Languages and Processing steps . 16
1.6.1 Integrated C++ ORB . 16
1.6.2 C++ Standalone . 18
1.6.3 C Standalone . 18
1.6.4 Java Standalone . 20
1.6.5 Integrated Java ORB . 21
1.7 Built-in DDS data types . 21

Bibliography 25

Glossary 29

Index 33
v
IDL Pre-processor Guide

�������	

Table of Contents
vi
IDL Pre-processor Guide �������	

Preface
About the IDL Pre-processor Guide

The IDL Pre-processor Guide describes what the OpenSplice DDS IDL
Pre-processor included with the OpenSplice DDS product is and how to use it.

Intended Audience
The IDL Pre-processor Guide is intended to be used by developers creating
applications which use OpenSplice DDS.

Organisation
Section 1.1, Introduction, provides a high-level description and brief introduction of
the IDL Pre-processor.
Section 1.2, Prerequisites, describes the prerequisites needed to run the
pre-processor.
Section 1.3, IDL Pre-processor Command Line Options, provides the options which
are available for running the pre-processor.
Section 1.4, OpenSplice DDS Modes and Languages, provides a summary of
OpenSplice’s supported modes and languages, as well as an overview of the
applicable OpenSplice DDS libraries.
Section 1.5, IDL Pre-processor Grammar, shows the IDL grammar that is supported
by the OpenSplice DDS IDL Pre-processor.
Section 1.6, Modes, Languages and Processing steps describes the steps required
for creating programs for each of the modes and languages supported by the
Pre-processor.
Section 1.7, Built-in DDS data types describes the built-in DDS data types and
provides language-specific guidelines on how to use them.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the IDL Pre-processor Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific

i
WIN

UNIX

C
C++
vii
IDL Pre-processor Guide

�������	

Preface
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page viii, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

Java

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
viii
IDL Pre-processor Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

THE IDL PRE-PROCESSOR

CHAPTER

1 Description and Use
The OpenSplice DDS IDL Pre-processor plays a role in generating code for
DDS/DCPS specialized interfaces (TypeSupport, DataReader and DataWriter) from
application data definitions defined in IDL for all supported languages.

1.1 Introduction
The OpenSplice DDS IDL Pre-processor supports two modes:
• Standalone mode where the application is only used with OpenSplice DDS
• ORB integrated mode where the application is used with an ORB as well as with

OpenSplice DDS
In a standalone context, OpenSplice DDS provides, apart from the DDS/DCPS
related artifacts, all the artifacts implied by the lDL language specific mapping. In
this case the used name space is DDS instead of the name space implied by the IDL
language specific mapping.
In an ORB integrated context, the ORB pre-processor will provide for the artifacts
implied by the lDL language specific mapping, while OpenSplice DDS only
provides the DDS/DCPS related artifacts. The application data type representation
provided by the ORB is also used within the OpenSplice DDS context. In this way
application data types can be shared between the ORB and OpenSplice DDS within
one application program.
The OpenSplice DDS IDL Pre-processor accepts IDL which complies with the
OMG CORBA specification, to specify application data types. Additionally it
allows specifying keys on data types.
A number of DDS data types defined in the DCPS API (for example, Time_t) are
available for use with application IDL data types and can be seen as OpenSplice
DDS IDL Pre-processor “built-in” definitions.
Figure 1, OpenSplice DDS IDL Pre-processor High Level Processes, on page 4
shows the OpenSplice DDS IDL Pre-processor high-level processing.
The OpenSplice DDS IDL Pre-processor scans and parses the IDL input file
containing the application data type definitions.
For the selected language, the OpenSplice DDS IDL Pre-processor generates the
specialized interfaces for TypeSupport, the DataReader and the DataWriter
from specialized class template files which are provided by OpenSplice. Note that
3
 The IDL Pre-processor�������	

1 Description and Use 1.2 Prerequisites

the OpenSplice DDS IDL Pre-processor will only generate specialized interfaces for
application data types for which a key list is defined. If it is not, the OpenSplice
DDS IDL Pre-processor assumes that the data type will only be used enclosed in
other data types.
The OpenSplice DDS IDL Pre-processor also generates language specific support
functions, which are needed to allow the OpenSplice DDS system to handle the
application data types.
For the standalone context the OpenSplice DDS IDL Pre-processor generates the
language specific application data types according the OMG IDL language mapping
that is applicable for the specific target language.

Figure 1 OpenSplice DDS IDL Pre-processor High Level Processes

1.2 Prerequisites
The OpenSplice DDS environment must be set correctly for UNIX-based platforms
before the OpenSplice DDS IDL Pre-processor can be used. Run release.com
from a shell command line to set the environment. release.com is located in the
root directory of the OpenSplice DDS installation (<OSPL_HOME>):

The OpenSplice DDS IDL Pre-processor, idlpp, can be invoked by running it from
a command shell:

Language specific
specialized class
templates

Application IDL data
types

IDL scanner and parser

Application Foo
classes

Application language
specific support
functions

Application language
specific data types

Language specific data type
generator

Language specific support
functions generator

Language specific typed Foo
classes generator

% . <OSPL_HOME>/release.com

% idlpp

UNIX
4
The IDL Pre-processor

�������	

1 Description and Use 1.3 IDL Pre-processor Command Line Options

The idlpp command line options are describe in Section 1.3, IDL Pre-processor
Command Line Options, below.

1.3 IDL Pre-processor Command Line Options
The OpenSplice DDS IDL Pre-processor, idlpp, can be run with the following
command line options:

[-h]
[-b <ORB-template-path>]
[-I <path>]
[-D <macro>[=<definition>]]
< -S | -C >
< -l (c | c++ | cpp | java) >
[-j [old]:<new>]
[-o <dds-types>]
[-d <output-directory>]
[-P <dll_macro_name>[,<header_file>]]
<filename>

These options are described in detail, below. Options shown between angle
brackets, < and >, are mandatory. Options shown between square brackets, [and],
are optional.
-h - List the command line options and information.
-b <ORB-template-path> - Specifies the ORB specific path within the template

path for the specialized class templates (in case the template files are ORB
specific). The ORB specific template path can also be set via the environment
variable OSPL_ORB_PATH, the command line option is however leading. To
complete the path to the templates, the value of the environment variable
OSPL_TMPL_PATH is prepended to the ORB path.

-I <path> - Passes the include path directives to the C pre-processor.
-D <macro> - Passes the specified macro definition to the C pre-processor.
-S - Specifies standalone mode, which allows application programs to be build and

run without involvement of any ORB. The name space for standard types will
be DDS instead of the name space implied by the IDL language mapping.

-C - Specifies ORB integrated mode, which allows application programs to be build
and run integrated with an ORB.

-l (c | c++ | cpp | java) - Selects the target language. Note that the
OpenSplice DDS IDL Pre-processor does not support every combination of
modes and languages. This option is mandatory; when no language is selected
the OpenSplice DDS IDL Pre-processor reports an error.
5
The IDL Pre-processor�������	

1 Description and Use 1.3 IDL Pre-processor Command Line Options

 - For the Standalone mode in C (when using the -S flag and the c language
option), OSPL_ORB_PATH will by default be set to value SAC, which is the
default location for the standalone C specialized class template files.

 - For the CORBA cohabitation mode in C++ (when using the -C flag and the
c++ or cpp language option) the OSPL_ORB_PATH will, by default, be set to:
— CCPP/DDS_OpenFusion_1_4_1 for Unix-based platforms.
— CCPP\DDS_OpenFusion_1_5_1 for Windows platforms.
These are the default locations for the IDL to C++ specialized class template
files of the OpenSplice-Tao ORB. Class templates for other ORBS are also
available in separate sub-directories of the CCPP directory, but for more
information about using a different ORB, consult the README file in the
custom_lib/ccpp directory.

 - For the Standalone mode in C++ (when using the -S flag and the c++ or cpp
language option), OSPL_ORB_PATH will by default be set to value SACPP,
which is the default location for the standalone C++ specialized class template
files.

 - For the Standalone mode in Java (when using the -S flag and the java language
option), OSPL_ORB_PATH will by default be set to the value of SAJ, which is
the default location for the standalone Java specialized class template files.

 - For the CORBA cohabitation mode in Java (when using the -C flag and the
java language option), OSPL_ORB_PATH will by default be set to the value of
SAJ, which is the default location for the CORBA Java specialized class
template files. This means that the CORBA cohabitated Java API and
StandAlone Java API share the same template files.
See also Section 1.4, OpenSplice DDS Modes and Languages, on page 7 for the
supported modes and languages.

-j [old]:<new> - Only applicable to Java. Specifies that the (partial) package
name which matches [old] will be replaced by the package name which
matches <new> (the package <new> is substituted for the package [old]). If
[old] is not included then the package name defined by <new> is prefixed to
all Java packages. The package names may only be separated by '.' characters.
A trailing '.' character is not required, but may be used.
Example usage: -j :org.opensplice (prefixes all Java packages).
Example usage: -j com.opensplice.:org.opensplice. (substitutes).

-o dds-types - Enables the built-in DDS data types. In the default mode, the
built-in DDS data types are not available to the application IDL definitions.
When this option is activated, the built-in DDS data types will become
available. Refer to Section 1.7, Built-in DDS data types, on page 21.

UNIX
WINWIN

Java

Java

Java
6
The IDL Pre-processor

�������	

1 Description and Use 1.4 OpenSplice DDS Modes and Languages

-d <output-directory> - Specifies the outputdirectory for the generated
code.

-P <dll_macro_name>[,<header_file>] - This option is only available on
Windows platforms. This option controls the signature for every external
function/class interface. If you want to use the generated code for creating a
DLL, then interfaces that need to be accessable from the outside need to be
exported. When accessing these operations outside of the DLL, then these
external interfaces need to be imported. In case the generated code is statically
linked, this option can be omitted.
The first argrument <dll_macro_name> specifies the text that is prepended to
the signature of every external function and/or class. For example: defining
D D S _ A P I a s t h e m a c r o , t h e u se r c an de f ine t h i s ma c ro a s
__declspec(dllexport) when building the DLL containing the generated
code and define the macro as __declspec(dllimport) when using the DLL
containing the generated code.
Addtionally a header file can be specified, which contains controls to define the
macro. For example the external interface of the generated code is exported
when the macro BUILD_MY_DLL is defined, then this file could look like:

 #ifdef BUILD_MY_DLL
 #define DDS_API __declspec(dllexport)
 #else /* !BUILD_MY_DLL */
 #define DDS_API __declspec(dllimport)
 #endif /* BUILD_MY_DLL */

<filename> - Specifies the IDL input file to process.

1.4 OpenSplice DDS Modes and Languages
The OpenSplice DDS IDL Pre-processor supports two modes:
• Standalone mode where the application is only used with OpenSplice DDS
• ORB integrated mode where the application is used with an ORB as well as with

OpenSplice DDS
In a standalone context, OpenSplice DDS provides, apart from the DDS/DCPS
related artifacts, all the artifacts implied by the lDL language specific mapping. In
this case the used name space is DDS instead of the name space implied by the IDL
language specific mapping.
In an ORB integrated context, the ORB pre-processor will provide for the artifacts
implied by the lDL language specific mapping, while OpenSplice DDS only
provides the DDS/DCPS related artifacts. The application data type representation
provided by the ORB is also used within the OpenSplice DDS context. In this way
application data types can be shared between the ORB and OpenSplice DDS within
one application program.

WIN
7
The IDL Pre-processor�������	

1 Description and Use 1.5 IDL Pre-processor Grammar

The languages and modes that OpenSplice DDS supports are listed in Table 1 below.

1.5 IDL Pre-processor Grammar
The OpenSplice DDS IDL Pre-processor accepts the grammar which complies with
the CORBA Specification. The OpenSplice DDS IDL Pre-processor accepts the
complete grammar, but will ignore elements not relevant to the definition of data
types. In the following specification of the grammar (similar to EBNF), elements
that are processed by the OpenSplice DDS IDL Pre-processor are highlighted in
bold italic. Note that OpenSplice DDS does not support all base types that are
specified by the OMG.
The idlpp also takes into account all C pre-processor directives that are common to
ANSI-C, like #include, #define, #ifdef, etc.

Table 1 Supported Modes and Languages

Language Mode OpenSplice
Library

ORB Template Path

C Standalone dcpssac.so

dcpsac.lib

SAC

C++ ORB
Integrated

dcpsccpp.so CCPP/DDS_OpenFusion_1_4_1

for UNIX-like platforms, and
CCPP\DDS_OpenFusion_1_5_1

for the Windows platform
C++ Standalone dcpssacpp.so SACPP

Java Standalone dcpssaj.jar SAJ

Java ORB
integrated

dcpscj.jar SAJ

The language mappings for each language are in accordance with their respective
OMG Language Mapping Specifications (see Bibliography on page 25).
8
The IDL Pre-processor

�������	

9
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

except_dcl> ";"

alue> ";"
> ";"
e_dcl> ";"

on>+ "}"

> "}"

identifier>

identifier>

cept_dcl> ";"
e_id_dcl> ";"

name> }*

e_box_dcl>

>

<value_inheritance_spec>]

}"

 <value_inheritance_spec>]
re-processor

tion and Use

<specification> ::= <import>* <definition>+

<definition> ::= <type_dcl> ";" | <const_dcl> ";" | <
| <interface> ";" | <module> ";" | <v
| <type_id_dcl> ";" | <type_prefix_dcl
| <event> ";" | <component> ";" | <hom

<module> ::= "module" <identifier> "{" <definiti

<interface> ::= <interface_dcl> | <forward_dcl>

<interface_dcl> ::= <interface_header> "{" <interface_body

<forward_dcl> ::= ["abstract" | "local"] "interface" <

<interface_header> ::= ["abstract" | "local"] "interface" <
[<interface_inheritance_spec>]

<interface_body> ::= <export>*

<export> ::= <type_dcl> ";" | <const_dcl> ";" | <ex
| <attr_dcl> ";" | <op_dcl> ";" | <typ
| <type_prefix_dcl> ";"

<interface_inheritance_spec> ::= ":" <interface_name> { "," <interface_

<interface_name> ::= <scoped_name>

<scoped_name> ::= <identifier> | "::" <identifier>
| <scoped_name> "::" <identifier>

<value> ::= (<value_dcl> | <value_abs_dcl> | <valu
| <value_forward_dcl>)

<value_forward_dcl> ::= ["abstract"] "valuetype" <identifier

<value_box_dcl> ::= "valuetype" <identifier> <type_spec>

<value_abs_dcl> ::= "abstract" "valuetype" <identifier> [
"{" <export>* "}"

<value_dcl> ::= <value_header> "{" < value_element>* "

<value_header> ::= ["custom"] "valuetype" <identifier> [

10
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

 "," <value_name> }*]
nterface_name> }*]

>

larators>";"

am_decls>]

cl> }*

c> <simple_declarator>

=" <const_exp>

e_char_type> |

 | <string_type> |
ype> | <scoped_name> |

r>

pr>

t_expr>

_expr>

expr> |

ry_expr> |
t_expr> "%" <unary_expr>

primary_expr>
re-processor

tion and Use

<value_inheritance_spec> ::= [":" ["truncatable"] <value_name> {
["supports" <interface_name> { "," <i

<value_name> ::= <scoped_name>

<value_element> ::= <export> | < state_member> | <init_dcl

<state_member> ::= ("public" | "private")<type_spec> <dec

<init_dcl> ::= "factory" <identifier> "(" [<init_par
 ")" [<raises_expr>] ";"

<init_param_decls> ::= <init_param_decl> { "," <init_param_de

<init_param_decl> ::= <init_param_attribute> <param_type_spe

<init_param_attribute> ::= "in"

<const_dcl> ::= "const" <const_type> <identifier> "

<const_type> ::= <integer_type> | <char_type> | <wid
<boolean_type> | <floating_pt_type>
<wide_string_type> | <fixed_pt_const_t

<octet_type>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr> | <or_expr> "|" <xor_exp

<xor_expr> ::= <and_expr> | <xor_expr> "^" <and_ex

<and_expr> ::= <shift_expr> | <and_expr> "&" <shif

<shift_expr> ::= <add_expr> | <shift_expr> ">>" <add
| <shift_expr> "<<" <add_expr>

<add_expr> ::= <mult_expr> | <add_expr> "+" <mult_
<add_expr> "-" <mult_expr>

<mult_expr> ::= <unary_expr> | <mult_expr> "*" <una
<mult_expr> "/" <unary_expr> | <mul

<unary_expr> ::= <unary_operator> <primary_expr> | <

<unary_operator> ::= "-" | "+" | "~"

11
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

nst_exp> ")"

> |
teral> |
iteral> |
eral>

ct_type> |
" <simple_declarator> |

pec>

pec> | <scoped_name>

 | <char_type>
 <octet_type>
base_type>

wide_string_type>

m_type>

arator>

nt> |
re-processor

tion and Use

<primary_expr> ::= <scoped_name> | <literal> | "(" <co

<literal> ::= <integer_literal> | <string_literal
<wide_string_literal> | <character_li
<wide_character_literal> | <fixed_pt_l
<floating_pt_literal> | <boolean_lit

<boolean_literal> ::= "TRUE" | "FALSE"

<positive_int_const> ::= <const_exp>

<type_dcl> ::= "typedef" <type_declarator> | <stru
<union_type> | <enum_type> | "native
<constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>

<type_spec> ::= <simple_type_spec> | <constr_type_s

<simple_type_spec> ::= <base_type_spec> | <template_type_s

<base_type_spec> ::= <floating_pt_type> | <integer_type>
| <wide_char_type> | <boolean_type> |
| <any_type> | <object_type> | <value_

<template_type_spec> ::= <sequence_type> | <string_type> | <
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type> | <union_type> | <enu

<declarators> ::= <declarator> { "," <declarator> }*

<declarator> ::= <simple_declarator> | <complex_decl

<simple_declarator> ::= <identifier>

<complex_declarator> ::= <array_declarator>

<floating_pt_type> ::= "float" | "double" | "long" "double"

<integer_type> ::= <signed_int> | <unsigned_int>

<signed_int> ::= <signed_short_int> | <signed_long_i
<signed_longlong_int>

12
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

ng_int>

ist> "}"

switch_type_spec> ")"

lean_type>

:"
re-processor

tion and Use

<signed_short_int> ::= "short"

<signed_long_int> ::= "long"

<signed_longlong_int> ::= "long" "long"

<unsigned_int> ::= <unsigned_short_int> | <unsigned_lo
| <unsigned_longlong_int>

<unsigned_short_int> ::= "unsigned" "short"

<unsigned_long_int> ::= "unsigned" "long"

<unsigned_longlong_int> ::= "unsigned" "long" "long"

<char_type> ::= "char"

<wide_char_type> ::= "wchar"

<boolean_type> ::= "boolean"

<octet_type> ::= "octet"

<any_type> ::= "any"

<object_type> ::= "Object"

<struct_type> ::= "struct" <identifier> "{" <member_l

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> ";"

<union_type> ::= "union" <identifier> "switch" "(" <
"{" <switch_body> "}"

<switch_type_spec> ::= <integer_type> | <char_type> | <boo
| <enum_type> | <scoped_name>

<switch_body> ::= <case>+

<case> ::= <case_label>+ <element_spec> ";"

<case_label> ::= "case" <const_exp> ":" | "default" "

<element_spec> ::= <type_spec> <declarator>

13
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

> { "," <enumerator>}*

," <positive_int_const>
pec> ">"

>" | "string"

 | "wstring"

 "}"

ntifier> <parameter_dcls>

)" | "(" ")"

imple_declarator>

ed_name> }* ")"

string_literal> }* ")"

de_string_type>

positive_int_const> ">"

ifier>
re-processor

tion and Use

<enum_type> ::= "enum" <identifier> "{" <enumerator
"}"

<enumerator> ::= <identifier>

<sequence_type> ::= "sequence" "<" <simple_type_spec> "
">" | "sequence" "<" <simple_type_s

<string_type> ::= "string" "<" <positive_int_const> "

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"

<array_declarator> ::= <identifier> <fixed_array_size>+

<fixed_array_size> ::= "[" <positive_int_const> "]"

<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<except_dcl> ::= "exception" <identifier> "{" <member>*

<op_dcl> ::= [<op_attribute>] <op_type_spec> <ide
[<raises_expr>] [<context_expr>]

<op_attribute> ::= "oneway"

<op_type_spec> ::= <param_type_spec> | "void"

<parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> }* "

<param_dcl> ::= <param_attribute> <param_type_spec> <s

<param_attribute> ::= "in" | "out" | "inout"

<raises_expr> ::= "raises" "(" <scoped_name> { "," <scop

<context_expr> ::= "context" "(" <string_literal> { "," <

<param_type_spec> ::= <base_type_spec> | <string_type> | <wi
| <scoped_name>

<fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <

<fixed_pt_const_type> ::= "fixed"

<value_base_type> ::= "ValueBase"

<constr_forward_decl> ::= "struct" <identifier> | "union" <ident

14
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

>

eral>

c>

clarator> }*

clarator>

clarator> }*

} * ")"

cl>

> "}"

inheritance_spec>]

_name> }*

<emits_dcl> ";"
 ";" | <attr_dcl> ";"

r>
re-processor

tion and Use

<import> ::= "import" <imported_scope> ";"

<imported_scope> ::= <scoped_name> | <string_literal>

<type_id_dcl> ::= "typeid" <scoped_name> <string_literal

<type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_lit

<readonly_attr_spec> ::= "readonly" "attribute" <param_type_spe
<readonly_attr_declarator>

<readonly_attr_declarator > ::= <simple_declarator> <raises_expr>
| <simple_declarator> { "," <simple_de

<attr_spec> ::= "attribute" <param_type_spec> <attr_de

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> { "," <simple_de

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> ::= "getraises" <exception_list>

<set_excep_expr> ::= "setraises" <exception_list>

<exception_list> ::= "(" <scoped_name> { "," <scoped_name>

<component> ::= <component_dcl> | <component_forward_d

<component_forward_dcl> ::= "component" <identifier>

<component_dcl> ::= <component_header> "{" <component_body

<component_header> ::= "component" <identifier> [<component_
[<supported_interface_spec>]

<supported_interface_spec> ::= "supports" <scoped_name> { "," <scoped

<component_inheritance_spec> ::= ":" <scoped_name>

<component_body> ::= <component_export>*

<component_export> ::= <provides_dcl> ";" | <uses_dcl> ";" |
| <publishes_dcl> ";" | <consumes_dcl>

<provides_dcl> ::= "provides" <interface_type> <identifie

15
The IDL P

1 Descrip 1.5 IDL Pre-processor Grammar

�������	

> <identifier>

e_spec>]
s" <scoped_name>

_dcl> ";"

am_decls>] ")"

m_decls>] ")"

t_forward_dcl>)

>

rt>* "}"

"

eric and underscore characters. The
acters are significant. An identifier
acter to prevent collisions with new
the generated output.
re-processor

tion and Use

<interface_type> ::= <scoped_name> | "Object"

<uses_dcl> ::= "uses" ["multiple"] < interface_type

<emits_dcl> ::= "emits" <scoped_name> <identifier>

<publishes_dcl> ::= "publishes" <scoped_name> <identifier>

<consumes_dcl> ::= "consumes" <scoped_name> <identifier>

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= "home" <identifier> [<home_inheritanc
[<supported_interface_spec>] "manage
[<primary_key_spec>]

<home_inheritance_spec> ::= ":" <scoped_name>

<primary_key_spec> ::= "primarykey" <scoped_name>

<home_body> ::= "{" <home_export>* "}"

<home_export ::= <export> | <factory_dcl> ";" | <finder

<factory_dcl> ::= "factory" <identifier> "(" [<init_par
[<raises_expr>]

<finder_dcl> ::= "finder" <identifier> "(" [<init_para
[<raises_expr>]

<event> ::= (<event_dcl> | <event_abs_dcl> | <even

<event_forward_dcl> ::= ["abstract"] "eventtype" <identifier

<event_abs_dcl> ::= "abstract" "eventtype" <identifier>
[<value_inheritance_spec>] "{" <expo

<event_dcl> ::= <event_header> "{" <value_element>* "}

<event_header> ::= ["custom"] "eventtype" <identifier>
[<value_inheritance_spec>]

<identifier> ::= Arbitrarily long sequence of ASCII alphabetic, num
first character must be ASCII alphabetic. All char
may be escaped with a prepended underscore char
IDL keywords. The underscore does not appear in

1 Description and Use 1.6 Modes, Languages and Processing steps

1.5.1 Key Definitions
The OpenSplice DDS IDL Pre-processor also provides a mechanism to define a list
of keys (space or comma separated) with a specific data type. The syntax for that
definition is:

#pragma keylist <data-type-name> <key>*

The identifier <data-type-name> is the identification of a struct or a union
definition.
The identifier <key> is the member of a struct. For a struct either no key list is
defined, in which case no specialized interfaces (TypeSupport, DataReader and
DataWriter) are generated for the struct, or a key list with or without keys is
defined, in which case the specialized interfaces are generated for the struct. For a
union either no key list is defined, in which case no specialized interfaces are
generated for the union, or a key list without keys is defined, in which case the
specialized interfaces are generated for the union. It is not possible to define keys
for a union because a union case may only be addressed when the discriminant is set
accordingly, nor is it possible to address the discriminant of a union. The keylist
must be defined in the same name scope or module as the referred struct or union.

1.6 Modes, Languages and Processing steps
1.6.1 Integrated C++ ORB

The generic diagram for the ORB integrated C++ context is shown in Figure 2. The
OpenSplice DDS IDL Pre-processor generates IDL code for the specialized
TypeSupport, DataReader and DataWriter, as well as C++ implementations
and support code. The ORB pre-processor generates from the generated IDL
interfaces the C++ specialized interfaces for that specific ORB. These interfaces are
included by the application C++ code as well as the OpenSplice DDS generated
specialized C++ implementation code. The application C++ code as well as the
specialized C++ implementation code (with the support functions) is compiled into
object code and linked together with the applicable OpenSplice libraries and the
ORB libraries.
OpenSplice DDS libraries are provided for linking with TAO OpenFusion. However
the source code of the C++ API is also available to build against your own ORB
and/or compiler version.

i

16
The IDL Pre-processor

�������	

1 Description and Use 1.6 Modes, Languages and Processing steps

Figure 2 Integrated C++ ORB
The role of the OpenSplice DDS IDL Pre-processor functionality is expanded in
Figure 3. It shows in more detail which files are generated, given an input file (in
this example foo.idl).

Figure 3 Integrated C++ ORB OpenSplice DDS IDL Pre-processor Details
The file foo.h is the only file that needs to be included by the application. It
includes all files needed by the application to interact with the DCPS interface.

include

include

include

Application IDL data
types

ORB pre-processor

C++ compiler

ORB generated
Application datatypes and
Foo C++ interfaces

OpenSplice Foo
implementation and support
functions object code

Application C++ code

C++ compiler

Application object code

linker

Application executable

OpenSplice libraries ORB libraries

OpenSplice generated
Foo interfaces (IDL)

OpenSplice interface
(IDL)

OpenSplice Foo C++
implementation code and
support functions

OpenSplice IDL
pre-processor

 OpenSplice IDL
pre-processor

Application IDL data
types (foo.idl)

foo.h

fooDcps.idl

fooSplDcps.h

fooSplDcps.cpp

fooDcps_impl.h

fooDcps_impl.cpp

17
The IDL Pre-processor�������	

1 Description and Use 1.6 Modes, Languages and Processing steps

The file fooDcps.idl is an IDL definition of the specialized TypeSupport,
DataReader and DataWriter interfaces, which will be used to generate ORB specific
C++ interface files.
The fooDcps_impl.* files contain the specialized TypeSupport, DataReader
and DataWriter implementation classes needed to communicate the type via
OpenSplice DDS.
The fooSplDcps.* files contain support functions required by OpenSplice DDS in
order to be able to handle the specific data types.

1.6.2 C++ Standalone
The C++ standalone mode provides an OpenSplice DDS context which does not
need an ORB. OpenSplice DDS resolves all implied IDL to C++ language mapping
functions and requirements. The only difference when using the standalone mode is
that DDS is used as the naming scope for definitions and functions instead of the
CORBA naming scope1.
Figure 4 is an overview of the artifacts and processing stages related to the C
standalone context. For C++ the different stages are equal to the C standalone
context. Because there is no ORB involved, all pre-processing is performed by the
OpenSplice DDS IDL Pre-processor. The generated specialized implementations
and the application’s C++ code must be compiled into object code, plus all objects
must be linked with the appropriate OpenSplice DDS libraries.

1.6.3 C Standalone
The C standalone mode provides an OpenSplice DDS context which does not need
an ORB. OpenSplice DDS resolves all implied IDL to C language mapping
functions and requirements. The only difference when using the standalone mode is
that DDS is used as the naming scope for definitions and functions.
Figure 4 shows an overview of the artifacts and processing stages related to the C
standalone context. Because there is no ORB involved, all the pre-processing is
done by the OpenSplice DDS IDL Pre-processor. The generated specialized class
implementations and the application’s C code must be compiled into object code,
plus all objects must be linked with the appropriate OpenSplice DDS libraries.

1. The CORBA namespace is still supported, for compatibility purposes.

18
The IDL Pre-processor

�������	

1 Description and Use 1.6 Modes, Languages and Processing steps

Figure 4 C Standalone
The role of the OpenSplice DDS IDL Pre-processor functionality is expanded in
Figure 5, providing more detail about the files generated when provided with an
input file (foo.idl this example).

Figure 5 C Standalone OpenSplice DDS IDL Pre-processor Details
The file foo.h is the only file that needs to be included by the application. It itself
includes all necessary files needed by the application in order to interact with the
DCPS interface.
The file fooDcps.h contains all definitions related to the IDL input file in
accordance with the OMG’s C Language Mapping Specification (IDL to C).

include include

Application IDL data
types

OpenSplice IDL
pre-processor

C application data types Foo classes and support
functions

C compiler

Foo classes and support
functions object code

Application C code

C compiler

Application object code

linker

Application executable

OpenSplice libraries

 OpenSplice IDL
pre-processor

Application IDL data
types (foo.idl)

foo.h fooSacDcps.h fooSplDcps.h

fooSplDcps.c fooSacDcps.c fooDcps.h
19
The IDL Pre-processor�������	

1 Description and Use 1.6 Modes, Languages and Processing steps

The fooSacDcps.* files contain the specialized TypeSupport, DataReader and
DataWriter classes needed to communicate the type via OpenSplice DDS.
The fooSplDcps.* files contain support functions required by OpenSplice DDS in
order to be able to handle the specific data types.

1.6.4 Java Standalone
The Java standalone mode provides a OpenSplice DDS context without the need of
an ORB, which still enables portability of application code because all IDL Java
language mapping implied functions and requirements are resolved by OpenSplice
DDS.
Figure 6 shows an overview of the artifacts and processing stages related to the Java
standalone context. The OpenSplice DDS IDL Pre-processor generates the
application data classes from IDL according the language mapping. The OpenSplice
DDS IDL Pre-processor additionally generates classes for the specialized
TypeSupport, DataReader and DataWriter interfaces. All generated code must
be compiled with the Java compiler as well as the application Java code.

Figure 6 Java Standalone
The role of the OpenSplice DDS IDL Pre-processor functionality is more magnified
in Figure 7. It shows in more detail which files are generated based upon input file
(in this example foo.idl).

import import

Application IDL data
types

OpenSplice IDL
pre-processor

Java compiler

Foo classes intermediate
code

Java compiler

Application intermediate
code

Java Virtual Machine

Application process

OpenSplice libraries

Java compiler

Java application data
intermediate code

Java application data
classes

Application Java code Foo classes
20
The IDL Pre-processor

�������	

1 Description and Use 1.7 Built-in DDS data types

Figure 7 Java Standalone OpenSplice IDL Pre-Processor Details

1.6.5 Integrated Java ORB
The Java CORBA mode provides an OpenSplice DDS context for the JacORB
ORB. The OpenSplice DDS IDL Pre-processor generates IDL code for the
specialized TypeSupport, DataReader and DataWriter, as well as Java
implementations and support code. The ORB pre-processor generates the Java ‘Foo’
classes, which must be done manually. These classes are included with the
application Java code as well as the OpenSplice DDS generated specialized Java
implementation code. The application Java code as well as the specialized Java
implementation code (with the support functions) is compiled into class files and
can be used together with the applicable OpenSplice libraries and the ORB libraries.
The artifacts and processing stages related to the Java CORBA cohabitation context
are similar to those of the standalone mode, with one exception: the ‘Foo classes’
will not be generated by the OpenSplice DDS IDL Pre-processor. Instead these
classes should be generated by the JacORB IDL Pre-processor.

1.7 Built-in DDS data types
The OpenSplice DDS IDL Pre-processor and the OpenSplice DDS runtime system
supports the following DDS data types to be used in application IDL definitions:
• Duration_t
• Time_t
When building C or Java application programs, no special actions have to be taken
other than enabling the OpenSplice DDS IDL Pre-processor built-in DDS data types
using the -o dds-types option.
For C++, however, attention must be paid to the ORB IDL compiler, which is also
involved in the application building process. The ORB IDL compiler is not aware of
any DDS data types, so the supported DDS types must be provided by means of

 OpenSplice IDL
pre-processor

Application IDL data
types (foo.idl)

data type classes TypeSupport,
DataReader, DataWriter
interface

TypeSupport,
DataReader, DataWriter
implementation

data type holder classes
21
The IDL Pre-processor�������	

1 Description and Use 1.7 Built-in DDS data types

inclusion of an IDL file (dds_dcps.idl) that defines these types. This file must
not be included for the OpenSplice DDS IDL Pre-processor, which has the type
definitions built-in. Therefore dds_dcps.idl must be included conditionally. The
condition can be controlled via the macro definition OSPL_IDL_COMPILER, which
is defined when the OpenSplice DDS IDL Pre-processor is invoked, but not when
the ORB IDL compiler is invoked:

#ifndef OSPL_IDL_COMPILER
#include <dds_dcps.idl>
#endif

module example {
struct example_struct {

Time_ttime;
};

};

The ORB IDL compiler must be called with the -I$OSPL_HOME/etc/idlpp
option in order to define the include path for the dds_dcps.idl file. The
OpenSplice DDS IDL Pre-processor must be called without this option.
22
The IDL Pre-processor

�������	

BIBLIOGRAPHY

Bibl iography
The following documents are referred to in the text:
[1] Data Distribution Service for Real-Time Systems Specification, Final Adopted Specification,

ptc/04-04-12, Object Management Group (OMG).
[2] The Common Object Request Broker: Architecture and Specification, Version 3.0,

formal/02-06-01, OMG
[3] C Language Mapping Specification, Version 1.0, formal/99-07-35, OMG
[4] C++ Language Mapping Specification, Version 1.1, formal/03-06-03, OMG
[5] Java Language Mapping Specification, Version 1.2, formal/02-08-05, OMG
25
IDL Pre-processor Guide�������	

Bibliography
26
IDL Pre-processor Guide �������	

GLOSSARY

Glossary
Acronyms
Acronym Meaning

ASCII American Standard Code for Information Interchange
BOF Business Object Facility
CORBA Common Object Request Broker Architecture
COS Common Object Services
DCPS Data Centric Publish Subscribe
DDS Data Distribution System
EBNF Extended Backus-Naur Format
IDL Interface Definition Language

OMG Object Management Group
ORB Object Request Broker
29
IDL Pre-processor Guide�������	

Glossary
30
IDL Pre-processor Guide �������	

INDEX

Index

B
Built-in DDS data types 21

C
C Standalone. 18, 19
C Standalone OpenSplice IDL Pre-processor

Details . 19

I
IDL Pre-processor Command Line Options. 5
IDL Pre-processor Grammer 8
Integrated C++ ORB 16, 17

Integrated C++ ORB OpenSplice IDL
Pre-processor Details 17

Introduction . 3

J
Java Standalone . 20
Java Standalone OpenSplice IDL Pre-Processor

Details . 21

K
Key Definitions . 16

M
Modes, Languages and Processing steps 16

P
Prerequisites . 4

S
Supported Modes and Languages. 8
33
IDL Pre-processor Guide�������	

 Index
34
IDL Pre-processor Guide

�������	

	IDL Pre-processor Guide
	Table of Contents
	Preface
	About the IDL Pre-processor Guide
	Contacts

	The IDL Pre-processor
	1 Description and Use
	1.1 Introduction
	1.2 Prerequisites
	1.3 IDL Pre-processor Command Line Options
	1.4 OpenSplice DDS Modes and Languages
	1.5 IDL Pre-processor Grammar
	1.5.1 Key Definitions

	1.6 Modes, Languages and Processing steps
	1.6.1 Integrated C++ ORB
	1.6.2 C++ Standalone
	1.6.3 C Standalone
	1.6.4 Java Standalone
	1.6.5 Integrated Java ORB

	1.7 Built-in DDS data types

	Bibliography
	Glossary
	Index

