
OpenSplice DDS
Version 4.x

Migration Guide
�������	

OpenSplice DDS
MIGRATION GUIDE
Part Number: OS-MG4 Doc Issue 02, 08 Sep 09
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Migration Guide

�������	

Preface
About this Migration Guide

This Migration Guide is intended to help users migrate their existing code from
OpenSplice DDS version 3.x to OpenSplice DDS version 4.x.
This guide is only intended for customers who are currently using OpenSplice V3.x
and who want to migrate to OpenSplice V4.x. Migration from V2.x to V3.x is
covered by a separate Migration Guide.
This guide does not cover all of the differences which exist between the OpenSplice
DDS V4.x and previous versions, only those which are needed for compatibility.
The C language binding is provided with a special legacy mode which enables
pre-version 3.x code to be used without modification.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Migration Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page iv, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold indicate new terms, or emphasise an item.

i

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

C
C++
Java
iii
Migration Guide

�������	

Preface
Arial Bold indicate Graphical User Interface (GUI) elements and commands, for
example, File > Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
iv
Migration Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

MIGRATION TO

VERSION 4.X

CHAPTER

1 Incompatibilities and Solutions
This guide is intended to help users of OpenSplice DDS Version 3 with the migration
of their existing code-base to the new version of OpenSplice DDS (V4.x).
Not all changes in the product are described here, as this document is focused on
those changes that cause incompatibilities between existing code and the new
version of OpenSplice.
A complete list of all changes in the product can be found in the release notes.

1.1 Data Structure Changes

SampleRejectedStatusKind
The values of SampleRejectedStatusKind have changed. This datatype is used
for sampleRejectedStatus.last_reason.
V3:
enum SampleRejectedStatusKind {
 DDS_REJECTED_BY_INSTANCE_LIMIT,
 DDS_REJECTED_BY_TOPIC_LIMIT
 };

V4:
enum SampleRejectedStatusKind {
 DDS_NOT REJECTED,
 DDS_REJECTED_BY_INSTANCE_LIMIT,
 DDS_REJECTED_BY_SAMPLES_LIMIT,
 DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
 };

In the old situation there was no proper value when a sample was not rejected. Now
the values indicate exactly which of the resource limits caused the sample to be
rejected.
If the sampleRejectedStatus.last_reason field is examined in your
application, the code should be adapted to these new values.
3
 Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

OwnershipQosPolicy
The OwnershipQosPolicy is only part of the TopicQos in V3. This implies that
DataWriters and DataReaders automatically behave as specified in the TopicQos.
In V4, the interface and according behavior are compliant with OMG/DDS
specification V1.2. This means that the OwnershipQosPolicy now is also part of
t he DataWriterQos and t he DataReaderQos . Bes ide s t ha t , t he
OwnershipQosPolicy is now also part of the PublicationInfo and
SubscriptionInfo built-in topics.
The OwnershipQosPolicy is RxO and the kind is, by default, SHARED. If existing
applications use COPY_FROM_TOPIC_QOS the application will not have problems,
otherwise it is possible that the writer will not be connected with the reader, because
they specify different OwnershipQosPolicy values.

V3:
struct DataWriterQos {
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 WriterDataLifecycleQosPolicy writer_data_lifecycle;
};

struct DataReaderQos {
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 ReaderDataLifecycleQosPolicy reader_data_lifecycle;
 SubscriptionKeyQosPolicy subscription_keys;
};

struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
4
Migration to Version 4.x

�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
};

struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
};

V4:
struct DataWriterQos {
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
5
Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

 OwnershipQosPolicy ownership;
 OwnershipStrengthQosPolicy ownership_strength;
 WriterDataLifecycleQosPolicy writer_data_lifecycle;
};

struct DataReaderQos {
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 TimeBasedFilterQosPolicy time_based_filter;
 ReaderDataLifecycleQosPolicy reader_data_lifecycle;
 SubscriptionKeyQosPolicy subscription_keys;
};

struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
};

struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
6
Migration to Version 4.x

�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

 ReliabilityQosPolicy reliability;
 OwnershipQosPolicy ownership;
 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
};

Subscrtiption and publication match status
V3:
/* legacy*/
typedef struct DDS_PublicationMatchStatus_s
DDS_PublicationMatchStatus;
struct DDS_PublicationMatchStatus_s {
 DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_subscription_handle;
};
typedef struct DDS_SubscriptionMatchStatus_s
DDS_SubscriptionMatchStatus;
struct DDS_SubscriptionMatchStatus_s {
 DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_publication_handle;
};

struct DDS_PublisherListener {
 void *listener_data;
 DDS_PublisherListener_OfferedDeadlineMissedListener
on_offered_deadline_missed;
 DDS_PublisherListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos;
 DDS_PublisherListener_LivelinessLostListener on_liveliness_lost;
 DDS_PublisherListener_PublicationMatchListener
on_publication_match; /*legacy*/
 DDS_PublisherListener_PublicationMatchedListener
on_publication_matched;
};

struct DDS_SubscriberListener {
 void *listener_data;
 DDS_SubscriberListener_RequestedDeadlineMissedListener
on_requested_deadline_missed;
 DDS_SubscriberListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos;
7
Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

 DDS_SubscriberListener_SampleRejectedListener on_sample_rejected;
 DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
 DDS_SubscriberListener_DataAvailableListener on_data_available;
 DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_match; /*legacy*/
 DDS_SubscriberListener_SubscriptionMatchedListener
on_subscription_matched;
 DDS_SubscriberListener_SampleLostListener on_sample_lost;
 DDS_SubscriberListener_DataOnReadersListener on_data_on_readers;
};

struct DDS_DomainParticipantListener {
 void *listener_data;
 DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;
 DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered_deadline_missed;
 DDS_DomainParticipantListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos;
 DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost;
 DDS_DomainParticipantListener_PublicationMatchListener
on_publication_match; /* legacy */
 DDS_DomainParticipantListener_PublicationMatchedListener
on_publication_matched;
 DDS_DomainParticipantListener_RequestedDeadlineMissedListener
on_requested_deadline_missed;
 DDS_DomainParticipantListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos;
 DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
 DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
 DDS_DomainParticipantListener_DataAvailableListener
on_data_available;
 DDS_DomainParticipantListener_SubscriptionMatchListener
on_subscription_match; /* legacy */
 DDS_DomainParticipantListener_SubscriptionMatchedListener
on_subscription_matched;
 DDS_DomainParticipantListener_SampleLostListener on_sample_lost;
 DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers;
};

V4:
struct DDS_PublisherListener {
 void *listener_data;
8
Migration to Version 4.x

�������	

1 Incompatibilities and Solutions 1.1 Data Structure Changes

 DDS_PublisherListener_OfferedDeadlineMissedListener
on_offered_deadline_missed;
 DDS_PublisherListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos;
 DDS_PublisherListener_LivelinessLostListener on_liveliness_lost;
 DDS_PublisherListener_PublicationMatchedListener
on_publication_matched;
};

struct DDS_SubscriberListener {
 void *listener_data;
 DDS_SubscriberListener_RequestedDeadlineMissedListener
on_requested_deadline_missed;
 DDS_SubscriberListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos;
 DDS_SubscriberListener_SampleRejectedListener on_sample_rejected;
 DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
 DDS_SubscriberListener_DataAvailableListener on_data_available;
 DDS_SubscriberListener_SubscriptionMatchedListener
on_subscription_matched;
 DDS_SubscriberListener_SampleLostListener on_sample_lost;
 DDS_SubscriberListener_DataOnReadersListener on_data_on_readers;
};

struct DDS_DomainParticipantListener {
 void *listener_data;
 DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;
 DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered_deadline_missed;
 DDS_DomainParticipantListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos;
 DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost;
 DDS_DomainParticipantListener_PublicationMatchedListener
on_publication_matched;
 DDS_DomainParticipantListener_RequestedDeadlineMissedListener
on_requested_deadline_missed;
 DDS_DomainParticipantListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos;
 DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
 DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
 DDS_DomainParticipantListener_DataAvailableListener
on_data_available;
 DDS_DomainParticipantListener_SubscriptionMatchedListener
on_subscription_matched;
 DDS_DomainParticipantListener_SampleLostListener on_sample_lost;
9
Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.2 Return code changes

 DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers;
};

Duration definition
The following V2 compatible duration definitions, which were available in V3 with
and without the OSPLV2_LEGACY_API compiler flag, have been removed and are
no longer supported:

DDS_DURATION_INFINITY_SEC
DDS_DURATION_INFINITY_NSEC
DDS_DURATION_INFINITY

1.2 Return code changes
Some calls will return a different return value under the same circumstances,
compared with previous versions. If an existing application explicitly checks these
return values, the code should be adapted to correctly handle the new values.

*.write()
All write..() calls will be able to return RETCODE_BAD_PARAMETER if the
associated data type contains bounded elements (e.g., bounded string or bounded
sequence) and the supplied data violates these bounds.
In V3 these boundary violations were only checked in the Java language binding,
and would throw an exception. These exceptions will no longer be thrown, but an
error code is returned instead.
For C and C++ the bounds checking must be enabled by defining the
OSPL_BOUNDS_CHECK macro.

#define OSPL_BOUNDS_CHECK

Without this definition, bound checking is not enabled for C and C++.

Waitset.detach_condition()
If the condition parameter for this call is not attached to the Waitset, than this call
will now return RETCODE_PRECONDITION_NOT_MET instead of BAD_PARAMETER.

*.delete_contained_entities()
If any of the contained entities still have outstanding loans, this call will now return
RETCODE_PRECONDITION_NOT_MET. In this case the contained entities that still
have outstanding loans are not deleted.
10
Migration to Version 4.x

�������	

1 Incompatibilities and Solutions 1.3 Behavioral Changes

*.set_qos() /set_default_qos() (PresentationQos)
When unsupported values for the PresentationQos are supplied, these calls will
return RETCODE_UNSUPPORTED. In V3 these values were simply ignored and the
call would return RETCODE_OK.

1.3 Behavioral Changes

WRITER_DATA_LIFECYCLE QoS policy
The autodispose_unregistered_instances a t t r i b u t e o f t h e
WRITER_DATA_LIFECYCLE QoS policy of the DataWriterQoS specifies whether
an instance should be automatically disposed at the time it is unregistered.
In V3 this behavior is only achieved when an instance is implicitly unregistered (for
instance, by the deletion of the DataWriter) and not when the instance is explicitly
unregistered by calling unregister_instance().
In V4 the instance is also disposed when explicitly unregistering the instance. The
resulting state of the instance in all connected DataReaders will become
NOT_ALIVE_DISPOSED after unregistering.

DEADLINE QoS policy
On the publishing side the DEADLINE QoS policy establishes a contract that the
application must meet. On the subscribing side the policy establishes a minimum
requirement for the remote publishers that are expected to supply the data values.
In V3 the DataWriter notifies itself when it detects a violation of the deadline
contract and automatically unregisters the instance for which the contract is violated
in case the OWNERSHIP QoS policy is set to EXCLUSIVE. The DataReader notifies
itself when it detects a violation of the contract. This implementation is not
according to the OMG DDS specification. The ownership of an instance should be
determined by each DataReader itself. It is a DataReader-specific view on the
instance.
In V4 the DataWriter only notifies itself when it detects a violation of the deadline
contract and no longer unregisters the instance. The DataReader also notifies itself
and additionally resets the ownership of the instance in case the DataReader
OWNERSHIP QoS policy is set to EXCLUSIVE.

V2 Compatibility Mode
In V3 the old syntax of several calls would still be accepted when the
OSPLV2_LEGACY_API compiler flag was set (please refer to OpenSplice V2 to V3
Migration Guide).
11
Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.4 DLRL profile changes

This compatibility mode is no longer available in V4. It is therefore necessary to
use the new syntax for these calls. Use the solutions from OpenSplice V2 to V3
Migration Guide to adapt your applications accordingly, if you still use the
compatibility mode.

Thread-priorities
In V3 a thread priority is set to the average value of the maximum and minimum
allowed for the platform. In V4 the thread priority is set to the nearest valid value in
such a case. This will result in either the minimum or the maximum value.

DataWriter bounds checking
The IDL pre-processor generates copy routines to copy application data to shared
memory. Until now, the copy routines did not validate the contents of the data with
respect to sequence and string bounds. V4.1 copy routines do check bounds of
supplied application data. All DDS DataWriter functions that have application data
as (one of) the input parameter now return BAD_PARAMETER in case invalid
application data is provided.
In V3 these boundary violations were only checked in the Java language binding,
and would throw an exception. These exceptions will no longer be thrown
For C and C++ this bounds checking must be enabled by defining a
OSPL_BOUNDS_CHECK macro.

#define OSPL_BOUNDS_CHECK

Without this definition, bound checking is not enabled for C and C++.

1.4 DLRL profile changes

Change in liveliness behavior.
OpenSplice V3 liveliness behavior:
When an Object in DLRL no longer has any writers it enters a final lifecycle state
internally. It can only exit this state if a new sample for that instance arrives. When
this occurs the DLRL destroys the ‘old’ Object and creates a new Object to signal
that this has taken place. As a result the user will see an Object in the
created_objects list and an Object in the deleted_object list that represents
the same instance.
This is rather confusing when used in applications as it means an Object can be
destroyed in the Cache without ever receiving a dispose event. Basically the
no_writers situation is treated as a ‘postponed’ dispose event, to be processed
when a new sample for that instance arrives! It makes management of such
scenarios at application level rather tedious.
12
Migration to Version 4.x

�������	

1 Incompatibilities and Solutions 1.4 DLRL profile changes

New behavior for liveliness in OpenSplice V4:
The DCPS concepts of NOT_ALIVE_DISPOSED and NOT_ALIVE_NO_WRITERS
will now be treated differently on DLRL level. Only an explicit dispose leads to
Objects being destroyed and changes from NOT_ALIVE_NO_WRITERS back to
ALIVE and vice versa only lead to Object modifications (if a new sample is
available of course).
It is important to realize that DLRL objects may still be contained within the
created_objects and deleted_objects lists within the same update round, if
for example a dispose event and a new creation is processed in one update round.

OSPLDCG: sacpp generates is_xxx_modified functions for simple types with
wrong parameter, should not have no parameter at all

The DCG generates the is_xxx_modified operations wrongly for simple types
for the SACPP language binding. For example for an idl attribute of a valuetype
string message, it generates:
 DDS::Boolean
 is_message_modified(
 DDS::ObjectScope scope);

which should in fact be:
 DDS::Boolean
 is_message_modified(
);

Application code will need to be adapted and then recompiled whereever such
operations were used to reflect the removal of the parameter.

DLRL error log file renamed
The e r ro r log genera ted by the DLRL component i s renamed f rom
splice-dds-dlrl-error.log to ospl-dlrl-error.log.

OSPLDCG: The DCG will no longer rename generated implementation classes
For DLRL it is possible to specify custom operations onto objects. By default the
OSPLDCG tool will generate an implementation class containing dummy
implementations for any specified operations, so that the generated code always
compiles for a good out-of-the-box experience.
In subsequent runs using OpenSplice V3 however the DCG will not overwrite the
generated implementation class, but rename it to a .old file, to prevent overwriting
any manual edits done by the user (e.g., adding specific code to the implementation
class operations).
13
Migration to Version 4.x�������	

1 Incompatibilities and Solutions 1.4 DLRL profile changes

This renaming feature has been disabled in OpenSplice V4, so that the DCG will
now always overwrite the generated implementation class. The preferred and only
supported way to add implementation code for the custom operations specified onto
objects is to use the implClass and implPath attributes within the XML file to
specify a pre-existing file containing the implementation class with the implemented
operations. This feature is fully described within the DLRL Code Generator Guide;
refer to the section regarding adding local operations to DLRL valuetypes.
14
Migration to Version 4.x

�������	

	OpenSplice DDS
	Preface
	About this Migration Guide
	Contacts

	Migration to Version 4.x
	1 Incompatibilities and Solutions
	1.1 Data Structure Changes
	1.2 Return code changes
	1.3 Behavioral Changes
	1.4 DLRL profile changes

