OpenSplice DDS

Version 4.x

C Reference Guide

v PRISMTECH

OpenSplice DDS

C Reference Guide

& PRISMTECH

Part Number; OS-CREFG Doc Issue 22, 8 September 2009

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

ii
& PRISMTECH C Reference Guide

CONTENTS

Table of Contents

Preface

I ntroduction

List of Figures XiX
About theC Reference Guide. e XXi
CONtACES . . . e XXiii

About the C Reference Guide 3
Document SIrUCTUr e ..o e e 3
e aliONS . .ot e 4
API Reference
Chapter 1 DCPSAPI General Description 7
L1 Thread Safetyo 8
1.2 Signal Handling.o 8
1.3 Memory Managementt e 9
1.3.1 IDL Mapping Rulesfor Sequences.ovviieiin i, 9
1.3.1.1 Standard Defined TYpe. . ..o oo v it e e 10
1312 User Defined Type . .o oot e e e e 10
1.3.1.3 DataDistribution Service Defined Type ..., 10
1.3.2 Plain SEQUENCES. . . . oottt e e ettt e e 10
1.3.3 Sequences Embedded in QosPolicy Objects.ooou... 11
1.3.4 Sequences Embeddedin StatusObjects 12
1.3.5 Resourcesand operationsvv ittt e 12
1.3.5.1 Sequences DDS <SequeNCE-NaME>ot ii i 13
1.352 DDS sequence Set releaseo i 16
14 Listenersinterfacest 22
1.4.1 Struct DDS _<Entity>Listener.. ...t 24
1.4.2 DDS DomainParticipantListeneroviiiiiienan.n. 27
1.4.3 DDS TOpiCLIStENer. . ..ot 29
1.4.4 DDS PublisherListener.t 30
1.4.5 DDS DataWriterListener 31
1.4.6 DDS SubscriberListener. ... 32
1.4.7 DDS DataReaderListener 34
1.5 Inheritance of Abstract Operations, 35
Chapter 2 DCPSModules 37
21 Functionality 37
& PRISMTECH v

C Reference Guide

Table of Contents

vi
C Reference Guide

InfrastructureModule. 38
Domain Module. 39
Topic-DefinitionModule 40
Publication Module. 42
Subscription Module 44
DCPS Classes and Oper ations a7
InfrastructureModule. 48
ClassDDS Entity (abstract)o 48
DDS Entity enable 49
DDS Entity get instance handle................. 51
DDS Entity get listener (abstract) i, 52
DDS Entity get qos(abstract)o 52
DDS Entity get_status changes. 53
DDS Entity_get_statuscondition. 54
DDS Entity_set_listener (abstract) ... 54
DDS Entity set qos(abstract) ... 55
ClassDDS DomainEntity (abstract)., 55
Struct QOSPOlICYo 55
DDS DeadlineQosPoliCy v 63
DDS DesdtinationOrderQosPolicyoviiiii i 66

DDS DurabilityQosPolicy . ..o 67
DDS DurabilityServiceQosPolicy. oo i i 70
DDS EntityFactoryQosPolicy 73
DDS _GroupDataQosPoliCyovoe i 73
DDS HistoryQosPolicy 74
DDS LatencyBudgetQosPoliCyo 77
DDS LifespanQosPolicy 78
DDS LivelinessQosPolicy. ... 79
DDS OwnershipQosPolicyocv i 81
DDS _OwnershipStrengthQosPolicy 84

DDS PartitionQosPolicy 84

DDS PresentationQosPolicy 85
DDS ReaderDatal ifecycleQosPolicy 87
DDS RedliabilityQosPolicy.c i 88
DDS ResourceLimitsQosPalicy 90
DDS SchedulingQosPolicy i 92
DDS TimeBasedFilterQosPolicy. 93
DDS TopicDataQosPOoliCy.o oo 93

DDS TransportPriorityQosPolicy ..., 94
DDS UserDataQosPolicy 95
DDS WriterDataLifecycleQosPolicyt 95

& PRISMTECH

Table of Contents

DDS Listenerinterface. ... 96
SIrUCt DDS StatusS.o 98
DDS InconsistentTopicStatuso v v i e e e 101
DDS LivelinessChangedStatus 102
DDS LivelinessLostStatus. oo v oo e 104
DDS OfferedDeadlineMissedStatuso i i iinant. 105
DDS OfferedincompatibleQosStatus. 106
DDS PublicationMatchedStatuso 108
DDS_RequestedDeadlineMissedStatuso 109
DDS_RequestedincompatibleQosStatus L. 109
DDS _SampleLostStatuso v 111
DDS_SampleRgectedStatus.o 112
DDS SubscriptionMatchedStatus 113
ClassDDS WaitSet.o it e 114
DDS WaitSet_ aloCoo i 114
DDS WaitSet_attach condition., 115
DDS WaitSet_detach condition, 116
DDS WaitSet get conditionsco i 118
DDS WaitSet Wall.ot 119
ClassDDS Condition . ..ot e e e 121
DDS Condition_get_trigger_ value 122
ClassDDS GuardCondition ... 122
DDS_GuardCondition__alloc. 123
DDS GuardCondition_get_trigger_value (inherited) 124
DDS GuardCondition_set_trigger value. 124
ClassDDS StatusConditionov it it 125
DDS _StatusCondition_get_enabled statuses. 127
DDS StatusCondition_get_entity. 128
DDS _StatusCondition_get_trigger_value (inherited) 129
DDS StatusCondition_set enabled statuses. 129
Domain Module. 131
ClassDDS DomainParticipant, 131
DDS DomainParticipant_assert_liveliness 136
DDS _DomainParticipant_contains entity 137
DDS _DomainParticipant_create contentfilteredtopic............... 138
DDS DomainParticipant_create multitopic 139
DDS DomainParticipant_create publisher 141
DDS DomainParticipant_create subscriber 143
DDS DomainParticipant_create topic., 146
DDS _DomainParticipant_delete_contained entities. 149
DDS _DomainParticipant_delete_contentfilteredtopic............... 150
DDS DomainParticipant_delete multitopic 152

VII

& PRISMTECH C Reference Guide

Table of Contents

viii

C Reference Guide

DDS DomainParticipant_delete publisher 153
DDS DomainParticipant_delete subscriber 154
DDS DomainParticipant_delete topic 156
DDS _DomainParticipant_enable (inherited) 157
DDS DomainParticipant_find_topic.................. 158
DDS _DomainParticipant_get_builtin_subscriber 159
DDS DomainParticipant_get_current_time. 160
DDS DomainParticipant_get default publisher qos.............. 161
DDS DomainParticipant_get default subscriber qos............. 163
DDS _DomainParticipant_get_default_topic qos 164
DDS_DomainParticipant_get_discovered participants. 165
DDS _DomainParticipant_get_discovered_participant data 166
DDS DomainParticipant_get_discovered topics 166
DDS DomainParticipant_get discovered topic data.............. 166
DDS DomainParticipant_get domain_id 166
DDS DomainParticipant_get_listener.......................... 167
DDS DomainParticipant_get_ goS.covvviiininiiaan.. 168
DDS DomainParticipant_get_status changes (inherited) 169
DDS DomainParticipant_get_statuscondition (inherited). 169
DDS DomainParticipant_ignore participant. 169
DDS _DomainParticipant_ignore publication 169
DDS _DomainParticipant_ignore_subscription 170
DDS DomainParticipant_ignore topiccovviiin.... 170
DDS DomainParticipant_lookup_topicdescription................ 170
DDS DomainParticipant_set default_publisher qos.............. 171
DDS DomainParticipant_set_default subscriber qos 172
DDS _DomainParticipant_set_default_topic_ gos. 174
DDS DomainParticipant_set_listener 175
DDS DomainParticipant_set gOSo vv v i 178
Class DDS_DomainParticipantFactory, 179
DDS _DomainParticipantFactory _create participant................ 180
DDS _DomainParticipantFactory _delete participant................ 183
DDS_DomainParticipantFactory _get default_participant_qos. 184
DDS _DomainParticipantFactory _get_instance 186
DDS_DomainParticipantFactory get_goS.covvennn.. 186
DDS_DomainParticipantFactory |lookup participant. 187
DDS DomainParticipantFactory _set default_participant_qgos........ 188
DDS DomainParticipantFactory set qos..............covvivn... 190
DDS _DomainParticipantListener interface. 191
DDS DomainParticipantListener__aloc......................... 193
DDS _DomainParticipantListener_on_data_available
(inherited, abstract). 194
& PRISMTECH

Table of Contents

& PRISMTECH

DDS DomainParticipantListener_on data on_readers

(inherited, abstract) 194
DDS DomainParticipantListener_on_inconsistent_topic
(inherited, abstract) 195
DDS DomainParticipantListener_on _liveliness_changed
(inherited, abstract) 195
DDS DomainParticipantListener_on _liveliness lost
(inherited, abstract)o 195
DDS DomainParticipantListener_on_offered deadline_missed
(inherited, abstract) 196
DDS _DomainParticipantListener_on_offered_incompatible_gos
(inherited, abstract). 196
DDS DomainParticipantListener_on_publication_matched
(inherited, abstract) o 196
DDS DomainParticipantListener_on requested deadline missed
(inherited, abstract) 196
DDS DomainParticipantListener_on_requested incompatible_gos
(inherited, abstract) 197
DDS DomainParticipantListener_on_sample lost
(inherited, abstract) 197
DDS _DomainParticipantListener_on_sample_rejected
(inherited, abstract) 197
DDS _DomainParticipantListener_on_subscription_matched
(inherited, abstract) o 198
Topic-Definition Module i 198
Class DDS TopicDescription (abstract)coviiiinin. .. 199
DDS TopicDescription get name.oiiieiinaan.. 200
DDS TopicDescription_get_participant 201
DDS TopicDescription get type namecovvvnnn.. 201
ClassDDS TOPIC ..o v ettt e e e 202
DDS Topic_enable (inherited). o 203
DDS Topic_get_inconsistent_topic status 204
DDS Topic_get listener ... 205
DDS Topic_get name(inherited) 205
DDS Topic_get participant (inherited) 205
DDS TOPIC GEL QOS. .« ot o e it et e et e 206
DDS Topic_get status changes (inherited) 207
DDS Topic_get_statuscondition (inherited) 207
DDS Topic_get_type name (inherited). 207
DDS Topic_set listener. 207
DDS TOPIC SBL gOS. « o v vt e ettt et et 209
Class DDS _ContentFilteredTopiC. ... 211
IX

C Reference Guide

Table of Contents

X
C Reference Guide

DDS ContentFilteredTopic_get_expression parameters 212
DDS ContentFilteredTopic_get filter expresson 213
DDS ContentFilteredTopic_get name (inherited) 214
DDS_ContentFilteredTopic_get_participant (inherited) 214
DDS ContentFilteredTopic_get related topic 214
DDS_ContentFilteredTopic_get_type name (inherited) 215
DDS ContentFilteredTopic_set_expression_parameters. 215
ClassDDS MUItITOPIC. ..o v it e et e e e e 217
DDS MultiTopic_get expression_parameters 218
DDS MultiTopic_get_name (inherited). 219
DDS MultiTopic_get_participant (inherited) 219
DDS MultiTopic_get_subscription_expression 220
DDS MultiTopic_get type name(inherited) 220
DDS MultiTopic_set_expression parameters.covn... 221
DDS TopicListenerInterface. 222
DDS TopicListener_alloc i 223
DDS TopicListener_on_inconsistent_topic (abstract). 223
Topic-Definition Type SpecificClassest 224
Class DDS TypeSupport (abstract) . ..o, 225
DDS TypeSupport__aloc (abstract), 226
DDS TypeSupport_get_type name (abstract). 226
DDS TypeSupport_register_type (abstract) 226
Class SPACE_FooTypeSupport. ovv e 226
SPACE_FooTypeSupport_aloc. ..., 227
SPACE_FooTypeSupport_ get type name ..o, 228
SPACE_FooTypeSupport_register type ..., 229
Publication Module. 231
ClassDDS Publisher ... e 232
DDS Publisher_begin_coherent_ changes........................ 234
DDS Publisher_copy from topic qoS. ..., 236
DDS Publisher_create datawriter................. ..., 237
DDS Publisher_delete contained_entities 240
DDS Publisher_delete datawriter............... 241
DDS Publisher_enable (inherited)., 242
DDS Publisher_end coherent changes. 243
DDS Publisher_get default_datawriter qos...................... 243
DDS Publisher get listenert 245
DDS Publisher_get participant................, 245
DDS Publisher get qos. 246
DDS Publisher_get_status changes (inherited) 247
DDS Publisher_get_statuscondition (inherited) 247
DDS Publisher_lookup_datawriter, 248

& PRISMTECH

Table of Contents

& PRISMTECH

DDS Publisher_resume publications 248
DDS Publisher_set default datawriter qos..................... 249
DDS Publisher set listener. 251
DDS Publisher_set goS.t 253
DDS Publisher_suspend publications. 255
DDS Publisher_wait_for_acknowledgments. 256
Publication Type SpecificClasses. 257
Class DDS DataWriter (abstract).t 257
DDS DataWriter_assert liveliness, 261
DDS DataWriter_dispose(abstract) ... 263
DDS DataWriter_dispose w_timestamp (abstract). 263
DDS_DataWriter_enable (inherited)t 263
DDS DataWriter_get_key value (abstract)....................... 264
DDS DataWriter get listener i 264
DDS DataWriter_get liveliness lost status. 264
DDS DataWriter_get_matched_subscription_data. 266
DDS DataWriter_get_matched_subscriptions. 266
DDS DataWriter_get_offered deadline missed status 266
DDS DataWriter_get_offered incompatible gos status 267
DDS DataWriter_get publication matched status. 269
DDS DataWriter_get_publisher. 269
DDS DataWriter_ get_ goSo i et 269
DDS_DataWriter_get_status changes (inherited) 270
DDS DataWriter_get_statuscondition (inherited) 271
DDS DataWriter get topiC.vvv it 271
DDS DataWriter_lookup instance (abstract) 272
DDS DataWriter_register_instance (abstract) 272
DDS DataWriter_register_instance_w_timestamp (abstract) 272
DDS DataWriter_set listener ... 273
DDS DataWriter Set g0S ..o v 275
DDS DataWriter_unregister_instance (abstract). 276
DDS DataWriter_unregister_instance w_timestamp (abstract) 277
DDS DataWriter_wait_for_acknowledgments 277
DDS DataWriter_write (abstract) o i 278
DDS DataWriter_write_ w_timestamp (abstract) 278
DDS DataWriter_writedispose (abstract) 279
DDS DataWriter_writedispose w_timestamp (abstract) 279
Class SPACE _FooDataWriter ... 279
SPACE_FooDataWriter_assert_liveliness (inherited) 283
SPACE_FooDataWriter dispose.covviiiiiiiiia. 284
SPACE_FooDataWriter_dispose w_timestamp 288
SPACE_FooDataWriter_enable (inherited) 289
Xl

C Reference Guide

Table of Contents

Xii
C Reference Guide

SPACE_FooDataWriter get key value 290
SPACE_FooDatawriter_get listener (inherited). 291
SPACE_FooDatawriter_get liveliness lost status (inherited). 291
SPACE_FooDataWriter_get_matched_subscription_data (inherited) . . 291
SPACE_FooDataWriter_get_matched_subscriptions (inherited) 292
SPACE_FooDataWriter_get_offered _deadline_missed_status
(inherited) 292
SPACE _FooDatawriter_get offered incompatible gos status
(inherited) 292
SPACE_FooDataWriter_get_publication_matched_status
(inherited) 292
SPACE_FooDataWriter_get_publisher (inherited) 293
SPACE_FooDataWriter_get_gos(inherited)..................... 293
SPACE_FooDataWriter_get status changes (inherited). 293
SPACE_FooDatawriter_get statuscondition (inherited). 293
SPACE_FooDataWriter_get_topic (inherited). 294
SPACE_FooDataWriter_lookup_instance. 294
SPACE_FooDataWriter_register instance 295
SPACE_FooDataWriter_register_instance w_timestamp. 298
SPACE_FooDataWriter_set_listener (inherited) 299
SPACE_FooDataWriter_set_qos(inherited) 299
SPACE_FooDataWriter_unregister_instance 299
SPACE_FooDataWriter_unregister_instance w_timestamp. 303
SPACE_FooDataWriter_wait_for_acknowledgments (inherited). 305
SPACE_FooDataWriter write.ccciiiiiinnnnn.n. 305
SPACE_FooDataWriter_write w timestamp 308
SPACE_FooDataWriter_writedispose., 309
SPACE_FooDataWriter_writedispose w_timestamp 314
DDS PublisherListenerinterface 315
DDS PublisherListener_aloc, 317
DDS PublisherListener_on_liveliness lost (inherited, abstract). 317
DDS PublisherListener_on_offered deadline_missed
(inherited, abstract). 318
DDS PublisherListener_on_offered_incompatible_qgos
(inherited, abstract). o 318
DDS PublisherListener_on_publication_matched
(inherited, abstract). 318
DDS DataWriterListenerinterface. oo 319
DDS DataWriterListener _alloc............o, 320
DDS DataWriterListener_on_liveliness lost (abstract) 321

DDS DataWriterListener_on_offered _deadline_missed (abstract). 322
DDS DataWriterListener_on_offered_incompatible_gos (abstract). . . . 323

& PRISMTECH

Table of Contents

DDS DataWriterListener_on_publication_matched (abstract) 324
SubscriptionModule 325
ClassDDS Subscriber. 326
DDS Subscriber_begin access 329
DDS Subscriber_copy _from topic oS 329
DDS Subscriber_create datareader. 330
DDS Subscriber_delete contained entities. 333
DDS Subscriber _delete datareader. 335
DDS Subscriber_enable (inherited). 336
DDS Subscriber end acCess. 336
DDS Subscriber_get datareaders i 336
DDS Subscriber_get_default_datareader qos..................... 337
DDS Subscriber_get listener. ... 338
DDS Subscriber get participant. i 339
DDS Subscriber get gos. 339
DDS Subscriber_get_status changes (inherited) 340
DDS Subscriber_get_statuscondition (inherited) 341
DDS Subscriber_lookup datareader 341
DDS Subscriber_notify datareaders. 342
DDS Subscriber_set_default datareader gos.................... 343
DDS Subscriber set listener. ... 345
DDS Subscriber_set qoS.o 347
Subscription Type SpecificClasses. 349
ClassDDS DataReader (abstract)oviiii it 349
DDS DataReader create querycondition........................ 355
DDS DataReader create readcondition 356
DDS DataReader delete contained entities. 358
DDS DataReader delete readcondition 359
DDS DataReader_enable (inherited)t 360
DDS DataReader get key value(abstract) 360
DDS DataReader get listener.. ..., 361
DDS DataReader get liveliness changed status. 361
DDS DataReader_get_matched publication data 362
DDS DataReader_get_matched publications. 363
DDS DataReader get g0S. ovvvvi it 363
DDS DataReader_get_requested deadline_ missed status.......... 364
DDS DataReader get requested_incompatible qos status......... 365
DDS DataReader get sample lost status 366
DDS DataReader_get sample rejected status. 368
DDS DataReader_get_status changes (inherited). 369
DDS_DataReader_get_statuscondition (inherited) 369
DDS DataReader _get subscriber 369
X

& PRISMTECH C Reference Guide

Table of Contents

Xiv
C Reference Guide

DDS DataReader_get subscription_matched status 370
DDS DataReader get topicdescription. 370
DDS DataReader lookup instance (abstract). 371
DDS DataReader_read (abstract), 371
DDS DataReader_read instance(abstract)...................... 372
DDS DataReader_read next_instance (abstract) 372
DDS DataReader_read next_instance w_condition (abstract) 373
DDS DataReader read next sample(abstract) 373
DDS DataReader read w_condition (abstract) 373
DDS DataReader_return_loan (abstract). oLt 374
DDS DataReader_set listener. ..., 374
DDS DataReader St 00S.o vvi v e 377
DDS DataReader_take(abstract)., 378
DDS DataReader take instance (abstract) 379
DDS DataReader take next_instance (abstract). 379
DDS DataReader_take next_instance_w_condition (abstract). 380
DDS DataReader_take next_sample(abstract) 380
DDS DataReader_take w_condition (abstract). 380
DDS DataReader_wait for_historical data..................... 381
ClassSPACE _FooDataReader., 383
SPACE_FooDataReader_create_guerycondition (inherited). 388
SPACE_FooDataReader_create readcondition (inherited). 389
SPACE_FooDataReader_delete_contained_entities (inherited) 389
SPACE_FooDataReader_delete readcondition (inherited).......... 389
SPACE_FooDataReader_enable (inherited) 389
SPACE _FooDataReader get key value........................ 390
SPACE_FooDataReader_get_listener (inherited) 390

SPACE_FooDataReader_get_liveliness_changed_status (inherited) . . 390
SPACE_FooDataReader_get_matched publication_data (inherited) . . 390

SPACE_FooDataReader_get_matched publications (inherited). 391
SPACE_FooDataReader_get qos (inherited) 391
SPACE_FooDataReader_get_requested deadline missed status
(inherited) e 391
SPACE_FooDataReader_get_requested_incompatible_gos_status
(inherited) 391
SPACE_FooDataReader_get sample lost_status (inherited) 392
SPACE_FooDataReader_get sample rejected_status (inherited). 392
SPACE_FooDataReader _get_status changes (inherited) 392
SPACE_FooDataReader_get_statuscondition (inherited) 392
SPACE_FooDataReader_get_subscriber (inherited) 393
SPACE_FooDataReader_get_subscription_matched status
(inherited) 393
& PRISMTECH

Table of Contents

& PRISMTECH

SPACE_FooDataReader_get_topicdescription (inherited) 393
SPACE_FooDataReader lookup_instance. 393
SPACE FooDataReader read, 394
SPACE _FooDataReader read instance. 399
SPACE_FooDataReader read next_instance 401
SPACE_FooDataReader _read next_instance w_condition 404
SPACE_FooDataReader read next sample..................... 406
SPACE_FooDataReader read w_condition 406
SPACE FooDataReader return loan 408
SPACE_FooDataReader_set_listener (inherited). 410
SPACE_FooDataReader_set_qos (inherited). 410
SPACE _FooDataReader take, 411
SPACE_FooDataReader_take instance......................... 412
SPACE_FooDataReader _take next instance 414
SPACE_FooDataReader_take next_instance w_condition 416
SPACE_FooDataReader_take next_ sample 418
SPACE_FooDataReader_take w_condition 419
SPACE_FooDataReader_wait_for_historical_data (inherited) 420
ClassDDS DataSample e e 421
Struct DDS Samplelnfo 421
DDS Samplelnfo 421
DDS SubscriberListener Interfaceco oL 425
DDS_SubscriberListener_aloc ... 427
DDS SubscriberListener_on_data available (inherited, abstract). 427
DDS SubscriberListener_on data on_readers(abstract) 428

DDS SubscriberListener_on_liveliness changed (inherited, abstract) . . 429
DDS_SubscriberListener_on_requested_deadline_missed

(inherited, abstract) 429
DDS SubscriberListener_on_requested_incompatible_gos

(inherited, abstract) 429
DDS SubscriberListener_on_sample lost (inherited, abstract). 430

DDS SubscriberListener_on_sample rejected (inherited, abstract)430
DDS_SubscriberListener_on_subscription_matched

(inherited, abstract) 430

DDS DataReaderListenerinterface o i i .. 431
DDS DataReaderListener_aloc............ ...t 432
DDS DataReaderListener_on_data_available (abstract) 433
DDS DataReaderListener_on liveliness changed (abstract) 434

DDS DataReaderListener_on_requested_deadline_missed (abstract) . .435
DDS DataReaderListener_on_requested_incompatible_qos (abstract) .436

DDS_DataReaderListener_on_sample_lost (abstract)............... 437
DDS DataReaderListener_on_sample rejected (abstract) 437
XV

C Reference Guide

Table of Contents

XVi
C Reference Guide

DDS DataReaderListener_on_subscription_matched (abstract). 438

ClassDDS ReadCondition. ...t 439

DDS ReadCondition_get datareader 440

DDS _ReadCondition_get_instance state mask 440

DDS ReadCondition_get sample state mask 41
DDS_ReadCondition_get_trigger_value (inherited) 442

DDS ReadCondition_get view state mask 442

ClassDDS QueryCondition.t 443

DDS QueryCondition_get_datareader (inherited). 444

DDS _QueryCondition_get_instance_state mask (inherited). 444

DDS QueryCondition_get_query parameters. 445
DDS_QueryCondition_get_query _expression. 446

DDS QueryCondition_get sample_state mask (inherited) 446

DDS QueryCondition_get_trigger value (inherited) 447

DDS QueryCondition_get_view_state mask (inherited) 447

DDS _QueryCondition_set_query parameters. 447
Quality Of Service 451
Affected ENtitieso 451
BasiCUSage.o 451
DDS DataReaderQOS . . . oo ottt 453
DDS DataWriterQoS. . .. oottt 456
DDS DomainParticipantFactoryQosooi i 458
DDS DomainParticipantQos. oot 459
DDS PublisherQOSottt 461
DDS SUBSCHibErQOSot e 462
DDS TOPICQOS . . v vttt ettt e 463
API Constantsand Types 467
Platform Specific IDL Interface 471
dds depsidl. e e 471
SampleStates, ViewStates and | nstanceStates 499
Samplelnfo Class.o 499
sample State. e 499
INStANCE StalB. . . ot ittt e e 501
VIO SIal . .. e e e 502
St MasKS . . .o 504
Operations Concerning StateS.o oottt e et 505
& PRISMTECH

Table of Contents

ClassInheritance 509
Listeners, Conditions and Waitsets 511
Communication StatuSEvent i e 513
LIS NN, . .o e 516
Conditionsand Waitsets it 517
DDS_StatusCondition Trigger State oo i e e 521
DDS ReadCondition and DDS_QueryCondition Trigger State. 521
DDS GuardCondition Trigger State.t i 522
DDS Topic Definitions 523
DDS Topic DefinitionExample. 523
CoMPIEX TOPICS. .« vt vttt et e e 524
DL PrE-PrOCESSOr .« . v vt ettt e e e 524
DCPS Queriesand Filters 529
SOL Grammar inBNF. e 529
SQL TOKeN EXPreSsiono ottt 530
SOL EXamples. . .o 531
Bibliography 535
Glossary 539
Index 543

Xvii

& PRISMTECH C Reference Guide

Table of Contents

XViii &
C Reference Guide PRISMTECH

List of Figures

&4 PRISMTECH

Figurel
Figure?2
Figure3
Figure4
Figure5
Figure6
Figure?7
Figure8
Figure9
Figure 10
Figurell
Figure12
Figure 13
Figure14
Figure 15
Figure 16
Figure 17

Figure 18
Figure 19

Figure 20:
Figure 21:
Figure 22:

Figure23

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Figure 29

Figure 30:

C Reference Guide Document Structure 3
DCPSModule Compositionovuiiiiiiinenn 37
DCPSInfrastructureModule'sClassModel 38
DCPSDomain ModulesClassModdl 40
DCPS Topic-Definition Module'sClassModel 41
Data Type*“Foo” Typed Classes Pre-processor Generation 42
DCPS Publication Module sClassModel 43
DCPS Subscription Module sClassModel 44
DCPSInfrastructureModule'sClassModel 48
QosPalicy SEttingsot e 56
DCPS LiStenersS . ..ot 97
DCPSDDS StatusValuesoiiiiiii i, 100
DCPSDDS WaitSets . ..o oot 114
DCPSDDS Conditionsoviiiii i 121
DCPSDomain ModulesClassModel 131
DCPS Topic-Definition Module ClassModel 198
Pre-processor Generation of the Typed Classes for
Data Type“Fo0"o 199
The DCPS Publication Module sClassModel 231
The DCPS Subscription Module'sClassModel 325
State Chart of the sample_statefor aSingleSample 500
State Chart of theinstance_statefor aSinglelnstance 502
State Chart of theview_statefor a Singlelnstance 503
DCPSInheritance.......... . 509
Plain Communication StatusStateChart 514
Read Communication Status DDS DataReader Statecraft515
DDS Subscriber Statecraft for a Read Communication Status .516
DCPS LISteNers ..o 517
DCPSDDS WaitSetsii i 518
DCPSDDS Conditionscoviiiiiiiii i 520
Blocking Behaviour of a Waitset StateChart 521
Xix

C Reference Guide

List of Figures

XX k4 PRISMTECH
C Reference Guide

Preface
About the C Reference Guide

The C Reference Guide provides a detailed explanation of the OpenSplice DDS
(Subscription Paradigm for the Logical I nterconnection of Concurrent Engines)
Application Programming Interfaces for the C language.

Thisreference guide is based on the OMG'’s Data Distribution Service Specification
and C Language Mapping Specification.

The C Reference Guide focuses on the Data Centric Publish Subscribe (DCPS) layer
and does not cover the DLRL layer. The purpose of the DCPS is the distribution of
data (publish/subscribe). The structure of the DCPS is divided into five modules.
Each module consists of several classes, which in turn generally contain several
operations.

Intended Audience

The C Reference Guide is intended to be used by C programmers who are using
OpenSplice DDS to devel op applications.

Organisation

& PRISMTECH

The C Reference Guide is organised into the following topics.
The Introduction describes the details of the document structure.

Chapter 1, DCPS API General Description, is a general description of the DCPS
APl and its error codes.

Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.

Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.

The following appendices are included, as well a Bibliography containing
references material and Glossary:

Appendix A, Quality Of Service

Appendix B, API Constants and Types

Appendix C, Platform Specific IDL Interface

Appendix D, SampleSates, ViewSates and InstanceSates
Appendix E, Class Inheritance

Appendix F, Listeners, Conditions and Waitsets
Appendix G, DDS Topic Definitions

Appendix H, DCPS Queries and Filters

XXi
C Reference Guide

Preface

Conventions

The conventions listed below are used to guide and assist the reader in
understanding the C Reference Guide.

& Item of special significance or where caution needs to be taken.
I Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information appliesto Unix based systems (e.g. Solaris) only.
C C language specific
C++ C++language specific
Java Javalanguage specific
Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xxiii, are as hypertext links: click on the reference to go to the
item.

% Commands or input which the user enters on the
command line of their computer terminal

Courier fontsindicate programming code and file names.
Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set i1d field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from amenu.

Sep 1: Oneof several steps required to complete a task.

XXii
C Reference Guide & PRISMTECH

Preface

Contacts

PrismTech can be reached at the following contact points for information and

& PRISMTECH

technical support.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited

6 Lincoln Knoll Lane PrismTech House

Suite 100 5th Avenue Business Park
Burlington, MA Gateshead

01803 NE11 ONG

USA UK

Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //Amww.prismtech.com

Genera Enquiries: info@prismtech.com

XXiii
C Reference Guide

http://www.prismtech.com
mailto: info@prismtech.com

Preface

XXiV

C Reference Guide & PRISMTECH

INTRODUCTION

About the C Reference Guide

Document Structure

The C Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.

Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, asindicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific IDL Interface). These structs are described in the respective
chapters.

* In the classes as described in the PIM, which are implemented as a class in the

PSM, the operations are described in detail.

In the classes as described in the PIM, which are implemented as a struct in the
PSM, the struct contents are described in detail .

The order of the modules and classes is conform the PIM part.
The order of the operations or struct contents is al phabetical.
 Each description of aclass or struct starts with the API description header file.

DDS-DCPS
detailed description

Modules . ..

Structs . .. Classes . ..

Operations . . .

Figurel C Reference Guide Document Sructure

3

& PRISMTECH C Reference Guide

Introduction

Operations

4
C Reference Guide

Several types of operations are described in this manual. The different types of
operations are: basic, inherited, abstract and abstract interface. All operations of any
type can be found in their respective class. The details of their description depends
on the type of operation.

Basic operations are described in detail in the class they are implemented in.

* Inherited operations only refer to the operation in the class they are inherited
from. The detailed description is not repeated.

» Abstract operations only refer to the type specific implementations in their
respective derived class. The detailed description is not repeated.

» Abstract operations which are implemented as an interface (Listeners), are
described in detail in their class. These operations must be implemented in the
application.

In the API description header file, the inherited and abstract operations are
commented out since they are not implemented in this class.

Inheritancein the C API isimplemented by prefixing the name of the operation with
DDS_ and the name of the class they arein. For example, the operation get_name
in the class Topic is hamed DDS_Topic_get_name. Since this operation is
actually inherited from the class Topicbescription the operation refers to the
TopicDescription class for more information. However, in the
TopicDescription class this operation is named
DDS_TopicDescripton_get_name.

& PRISMTECH

AP| REFERENCE

CHAPTER

1 DCPS API General Description

The structure of the DCPS is divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain

several operations.

Some of these operations have an operation return code of type
DDS_ReturnCode_t, which is defined in the next table:

Table 1 Return Codes

DDS ReturnCode t

Return Code Description

DDS_RETCODE_OK

Successful return

DDS_RETCODE_ERROR

Generic, unspecified error

DDS_RETCODE_BAD_PARAMETER

Illegal parameter value

DDS_RETCODE_UNSUPPORTED

Unsupported operation or DDS_QosPolicy setting. Can
only be returned by operations that are optional or
operations that uses an optional
DDS_<DDS_Entity>QoS asaparameter

DDS_RETCODE_ALREADY_ DELETED

The object target of this operation has already been deleted

DDS_RETCODE_OUT_OF_RESOURCES

Service ran out of the resources needed to complete the
operation

DDS_RETCODE_NOT_ENABLED

Operation invoked on an DDS_Entity that is not yet
enabled

DDS_RETCODE_IMMUTABLE_POLICY

Application attempted to modify an immutable
DDS_QosPolicy

DDS_RETCODE_INCONSISTENT_POLICY

Application specified aset of policiesthat are not consistent
with each other

DDS_RETCODE_PRECONDITION_NOT_MET

A pre-condition for the operation was not met

& PRISMTECH

7
API Reference

1 DCPS API General Description 1.1 Thread Safety

Table 1 Return Codes

DDS ReturnCode t Return Code Description
DDS_RETCODE_TIMEOUT The operation timed out
DDS_RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate object or at

an inappropriate time (as determined by QosPolicies that
control the behaviour of the object in question). There is no
precondition that could be changed to make the operation
succeed.

DDS_RETCODE_NO_DATA Indicates a situation where the operation did not return any

data

The name scope (name space) of these return codes is DDS. The operation return
codes DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_
ILLEGAL_OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED and DDS_RETCODE_ALREADY_DELETED are default for operations
that return an operation return code and are therefore not explicitly mentioned in the
DDS specification. However, in this manual they are mentioned along with each
operation.

Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return
DDS_RETCODE_UNSUPPORTED When called from the application. All constants and
types are given in Appendix B, APl Constants and Types.

Thread Safety

All operations are thread safe apart from the
DDS_DomainParticipantFactory_get_instance operation. It isthe
applications responsibility to call DDS_DomainParticipantFactory_
get_instance only from one application thread. This restriction only applies to
thefirst call of DDS_DomainParticipantFactory get_instance.

Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources

8
API Reference

are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.

If the application needs to set signal handlers for its own use, two situations can
occur. In the first case the application sets a signal handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it's own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

the second case the Data Distribution Service has already set asignal handler for a
specific signal and the application program redefines the signal handling by setting
itsown handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed aslast) or to call the exit function itself when
the cached signal is meant to terminate the application process.

The Data Distribution Service service will conditionally set the signal handlers
when creating the bomainParticipantFactory, Which is the first call to
DDS_DomainParticipantFactory get_instance for C.

The Data Distribution Service only sets signal handlers for signals that have the
default behaviour of terminating the process without dumping a core.

Memory M anagement

When objects are being created, they occupy memory space. To avoid memory leaks
when they are not used any more, these objects have to be deleted in order to release
the memory space. However, when using pointers, it is difficult to keep track of
which object has been released and which has not. When objects are not being
released, the memory leak finally uses up all the resources and the application fails.
On the other hand, when an object is being released twice because there were two
pointers to the same object, the application fails. This implementation is based on
the OMG C Language Mapping Specification. Accordingly, the CORBA ruleslisted
below apply.

IDL Mapping Rulesfor Sequences

&4 PRISMTECH

The names of the operations and types are given by the IDL mapping rules. For
sequences severd rules apply. The basic IDL definition of a sequence is defined by:

module name-space {
typedef sequence<<sequence-element-type>>
<sequence-name>;

3
In the C language, this results in the following type definition of the sequence:

typedef
DDS_sequence_<name-space-prefix><sequence-element-type>
<name-space>_<sequence-name>

In this type definition, the <sequence-element-type> isthe type of the objects
in the sequence. This <sequence-element-type> may be a standard type or a
Data Distribution Service defined type. The <name-space-prefix> represents
the name space in which the <sequence-element-type> is defined. The
standard types have an empty prefix. In the Data Distribution Service all the

9
API Reference

1 DCPS API General Description 1.3 Memory Management

typedefs are set within the module DDS block, therefore defined types have the
prefix DDS_. Finally, the <sequence-name> is name of the sequence and is
aways prefixed by DDS .

Sandard Defined Type
The standard defined types are the types as defined in the Data Distribution Service
specification. For example, for the standard defined <sequence-element-type>
of type string with a <sequence-name> of StringSeq, the following IDL
definition is given:
typedef sequence<string> StringSeq

In C, this results in the following type definition of the sequence:
typedef DDS_sequence_string DDS_StringSeq

User Defined Type

The user defined types are the types as defined in the application. For example, for
the user defined <sequence-element-type> Of type Foo with a
<sequence-name> Of Nname FooSeq in the module spack, the following IDL
definition is given:
module SPACE {
typedef sequence<Foo> FooSeq;

}
In C, this results in the following type definition of the sequence:
typedef DDS_sequence_SPACE_Foo SPACE_FooSeq

Data Distribution Service Defined Type

For example, for the Data Distribution Service defined
<sequence-element-type> Of type SampleInfo With a<sequence-name> of
name sampleInfoSeq, thefollowing IDL definitionis given:

typedef sequence<SampleInfo> SampleInfoSeqg
In C, this results in the following type definition of the sequence:
typedef DDS_sequence_DDS_SampleInfo DDS_SamplelInfoSeq

Plain Sequences
The following table shows the sequences for which the resources have to be
managed. In other words, for these sequences DDS_<sequence-name>__alloc
and DDS_<sequence-name>_allocbuf operations are available. For sequences,
which are only used as an out parameter, the application does not need to use these
allocation operations, since the Data Distribution Service allocates them. In this
case, the application may use these operations for its own sequences. Furthermore to
free the resources allocated with DDS_<sequence-name>__alloc and

10

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS_<sequence-name>_allocbuf the application must use the bps_free
operation. It does not make any difference whether the application or the Data
Distribution Service does the allocation. When the application does not use the
DDS_ free operation, the application will fail. The DDS_free operation operates
recursively, in other words all embedded structures are rel eased.

Sequences and buffers can also be allocated on stack. However in case the
application allocates a sequence or buffer on stack, the bbs_free operation may
not be used on this object, otherwise the application will fail.

Table 2 Sequences
Sequence Name Parameter Type
In Out | Inout | Return

DDS_ConditionSeqg X
DDS_StringSeq X X
DDS_DataReaderSeq X
DDS_InstanceHandleSeq X
DDS_QosPolicyCountSeq |Used in status struct only.
DDS_SampleInfoSeqg ‘ ‘ X ‘
DDS_sequence_octet Used in QosPolicy struct only.

1.3.3 Sequences Embedded in QosPolicy Objects

The following table shows the QosPolicy objects for which the resources have to
be managed because they contain sequences. In other words, for these QosPolicy
objects DDS_<QosPolicy>__alloc operations are available. The buffers used in
these QospPolicy objects must be allocated wusing the
DDS_<sequence-name>_allocbuf operations. The bbs_free operation takes
care of the embedded sequences and the buffersin agospPolicy.

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
In | Out |Inout | Return Sequence
DDS_DomainParticipantQos X X DDS_sequence_octet
DDS_TopicQos X X DDS_sequence_octet
DDS_PublisherQos X X DDS_sequence_octet
DDS_StringSeq
DDS_DataWriterQos X X DDS_sedquence_octet
& PRISMTECH 1

API Reference

1 DCPS API General Description 1.3 Memory Management

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
In | Out |Inout | Return Sequence
DDS_SubscriberQos X X DDS_sequence_octet

DDS_StringSeqg

DDS_DataReaderQos X X DDS_sequence_octet

Sequences Embedded in Satus Objects

The following table shows the status objects for which the resources have to be
managed because they contain sequences. In other words, for these status objects
DDS_<Status>__alloc operations are available. The buffers used in these
Status oObjects must be allocated using the DDs_<sequence-name>_allocbuf
operations. The DDS_free operation takes care of the embedded sequences and the
buffersinastatus.

Table 4 Status Objects

Status Name Parameter Type Contains

In | Out |Inout | Return Sequence
DDS_OfferedIncompatibleQosStatus X X DDS_QosPolicyCountSeqg
DDS_RequestedIncompatibleQosStatus| X X DDS_QosPolicyCountSeqg

Resources and oper ations
The interface description of the memory management operationsis as follows:

/* interface Memory management */
typedef struct {
DDS_unsigned_long _maximum;
DDS_unsigned_long _length;
DDS_<sequence-element-type> *_buffer;
DDS_boolean _release;
} DDS_sequence_<name-space-prefix><sequence-element-type>;
typedef
DDS_sequence_<name-space-prefix><sequence-element-type>
DDS_ <sequence-name>

/* implemented API operations */
void
DDS_sequence_set_release
(void *sequence,
DDS_boolean release) ;
DDS_boolean

12

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS_sequence_get_release
(void *sequence) ;
DDS_<sequence-name> *
DDS_<sequence-name>__alloc
(void) ;
DDS_<sequence-element-type> *
DDS_<sequence-name>_allocbuf
(DDS_unsigned_long len);
DDS_<QosPolicy>
DDS_<QosPolicy>__alloc
(void) ;
DDS_<Status>
DDS_<Status>_ _alloc

(void) ;
void
DDS_free
(void *);

The following paragraphs describe the usage of all memory management
operations.

Sequences DDS_<sequence-name>

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
typedef struct {
DDS_unsigned_long _maximum;
DDS_unsigned_long _length;
DDS_<sequence-element-type> *_buffer;
DDS_boolean _release;
} DDS_sequence_<name-space-prefix>
<sequence-element-type>;
typedef DDS_sequence_<name-space-prefix>
<sequence-element-type> DDS_<sequence-name>

Description

The typedef DDS_<sequence-name> represents the sequence which contains the
objects of <sequence-element-type>.

Attributes

DDS_unsigned_long _maximum - the maximum number of elements that can be
contained in the sequence.

DDS_unsigned_long _length - the actual number of elementsin the sequence.
DDS_<sequence-element-type> *_buffer - apointer to the sequence buffer.

13
API Reference

1 DCPS API General Description 1.3 Memory Management

14
API Reference

DDS_boolean _release - indicates whether this sequence owns the memory of
_buffer.

Detailed Description

The typedef DDS_<sequence-name> represents the sequence struct that holds the
seguence attributes associated with the sequence buffer, which contains the objects
of <sequence-element-type>. This sequence is allocated by calling
DDS_<sequence-name>__alloc. The sequence buffer must be allocated
separately by calling DDS_<sequence-name>_allocbuf. In other words when
using a sequence, the memory space must be allocated for both the sequence struct
and the sequence buffer. Whether, the application must allocate the resources or the
Data Distribution Service alocates the resources, depends on the type of usage.

In or Inout Parameter

In case the sequence is passed as an in or inout parameter, both the sequence and the
buffer must be allocated by the application. The application must set the attributes
of the sequence according to the size and ownership of the buffer. Furthermore, for
an inout parameter the application can control whether the Data Distribution Service
must replace the elements in the sequence, the application can allow this by setting
the release dttribute.

* When set to TRUE the Data Distribution Service is allowed to free any pointer
types. The Data Distribution Service sets the _length attribute to the number of
returned elements. The number of elements never exceeds the number set by the
application in the _maximum attribute.

» When set to FALSE the Data Distribution Serviceis not alowed to free the pointer
types. In this case, the Data Distribution Service allocates exactly the amount of
elements and set the _length and the _maximum attributes of the sequence to
that amount.

* In either case, the sequence and the buffer must be released by the application by
calling pps_free on the sequence. In this case also the buffer is released, since
the DDS_free Operation is recursive.

Out or Return Parameter

In case the sequence is used as an out parameter or a sequence is returned by a
function, both the sequence and the buffer are allocated by the Data Distribution
Service. The attributes of the sequence are set by the Data Distribution Service
according to the size and ownership of the buffer. The sequence and the buffer must
be released by the application by calling bbs_free on the sequence. In this case
also the buffer isreleased, since the DDS_free operation is recursive.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

&4 PRISMTECH

In case the Data Distribution Service has no data to return, it returns an empty
sequence with the _length and the _maximum attributes of the sequence set to
zero, the _buffer attribute set to bbs_oBJECT_NIL and the _release attribute
Set to FALSE.

Allocation on the Sack

In case the sequence is allocated by the application. The application may also
allocate the sequence on stack for performance reason instead of calling
DDS_<sequence-name>__alloc. When the buffer is allocated on the stack the
application must also set the _release attribute to FAL SE as described below. In case
the buffer is allocated using pDS_<sequence-name>_allocbuf then the
application must release the buffer separately by calling pps_free on _buffer of
the sequence.

Attributes

The attributes of the bDs_ <sequence-name> struct must be set after allocation. In
case of an out parameter or the sequence is returned by a function, the attributes are
set by the Data Distribution Service. In case of an in parameter or inout parameter,
the attributes must be set by the application.

The _length attribute of the sequence must be set to the current length of the
sequence. In other words equal to the number of valid sequence elements.

The _maximum attribute of the sequence must be set to the size of the allocated
sequence buffer. In other words equal to the 1en parameter used in the call to
DDS_<sequence-element-type>_allocbuf.

The _buffer attribute of the sequence must be set to the pointer to the allocated
sequence buffer. In other words equal to the returned pointer from the call to
DDS_ <sequence-element-type>_allocbuf. Or in case of alocation on stack,
the pointer to the variable.

The _release flag of the sequence may not be set directly. The _release flag of
the sequence must be set by using DDS_sequence_set_release and may only be
read by using DDS_sequence_get_release. DDS_sequence_set_release
may only be used by the creator of the sequence. If it is not called for a given
seguence instance, then the default value of the _release flag for that instance is
FALSE.

If the _release flag of the sequence is set to TRUE, the sequence effectively
“owns” the resource pointed to by _buffer; if the flag is set to FALSE, the
application is responsible for the resource. If, for example, a sequence is returned
from an operation with its release flag set to FALSE, calling DDS_free on the
returned sequence pointer does not deall ocate the memory pointed to by _buffer.

15
API Reference

1 DCPS API General Description 1.3 Memory Management

Before calling pps_free on the _buffer member of a sequence directly, the
application should check the _release flag using
DDS_sequence_get_release. If it returns FALSE, the application should not
invoke pDs_free on the _buffer member; doing so produces undefined
behaviour.

DDS sequence _set_release

Synopsis
#include <dds_dcps.h>
void
DDS_sequence_set_release
(void *sequence, DDS_boolean release) ;

Description
This operation sets the state of the _release flag of the sequence.

Parameters
in void *sequence - apointer to the bps_<sequence-name>.

in DDS_boolean release - the new state of the _release flag of the
sequence.

Return Value
<none>

Detailed Description

This operation sets the state of the _release flag of the sequence. If theflag is set
to TRUE, the sequence effectively “owns’ the resource pointed to by _buffer; if
the flag is set to FALSE, the application is responsible for the resource. If, for
example, asequence is returned from an operation with its release flag set to FALSE,
calling pDs_free on the returned sequence pointer does not deall ocate the memory
pointed to by _buffer. Passing a DbDS_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_set_release produces
undefined behaviour.

DDS_sequence_set_release should only be used by the creator of the sequence.
If it is not called for a given sequence instance, then the default value of the
_release flagfor that instance is FALSE. The _release flag of the sequence may
not be set directly. It may only be changed by this operation.

16

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS sequence get release

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_sequence_get_release
(void *sequence) ;

Description
This operation gets the state of the _release flag of the sequence.

Parameters
in void *sequence - apointer to the pps_<segquence-name>.

Return Value
DDS_boolean - thepresent state of the release flag of the sequence.

Detailed Description

This operation gets the present state of the _release flag of the sequence. If the
flag returned is TRUE, the sequence effectively “owns’ the resource pointed to by
_buffer; if the flag returned is FALSE, the application is responsible for the
resource. If, for example, a sequence is returned from an operation with its release
flag set to FALSE, calling DDs_free on the returned sequence pointer does not
deallocate the memory pointed to by _buffer. Before calling bps_free on the
_buffer member of a sequence directly, the application should check the
_release flag using DDS_sequence_get_release. If it returns FALSE, the
application should not invoke DDs_free on the _buffer member; doing so
produces undefined behaviour. Passing a bbs_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_get_release produces
undefined behaviour.

DDS <sequence-name>__dloc

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ <sequence-name>
DDS_<sequence-name>__alloc
(void) ;

Description
This operation alocates anew DDS_<sequence-name>.

17
API Reference

1 DCPS API General Description 1.3 Memory Management

18
API Reference

Parameters
<none>

Return Value

DDS_<sequence-name> - the pointer to the newly created empty
DDS_<Ssequence-name>. In case of an error, a DbS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation allocates a new empty DDS_<sequence-name>. This operation
does not allocate the buffer and |eave the sequence empty by setting the _length
and _maximum attributes to zero and the _buf fer attribute to DDS_OBJECT_NIL.
The application may also allocate the bps_<sequence-name> as avariable on
stack. In this case the application may not use bDs_free on the sequence. In case
the DDS_<sequence-name> was allocated by this operation, and the application
wants to release the DDS_<sequence-name> it must be released using pps_free
on the sequence.

In case there are insufficient resources available to allocate the
DDS_<sequence-name>, aDDS_OBJECT_NIL pointer isreturned instead.

DDS <sequence-element-type>_dlocbuf

Synopsis
#include <dds_dcps.h>
DDS_<sequence-element-type> *
DDS_ <sequence-name>_allocbuf
(DDS_unsigned_long len) ;

Description
This operation allocates a new DDS_<sequence-element-type> buffer.

Parameters
<none>

Return Value

DDS_<sequence-element-type> - the pointer to the newly created buffer of
DDS_<sequence-element-type>. In case of an error, a DDS_OBJECT_NTIL
pointer is returned.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

Detailed Description

This operation allocates a new buffer of DDS_<sequence-element-type>. The
application may also allocate the buffer of DDS_ <sequence-element-type>asa
variable on stack. In this case the application may not use bDS_free on the buffer.
Furthermore, the application may only use bbs_free on the sequence when the
_release flag of the sequenceis set to FALSE and/or the _buf fer pointer is set to
DDS_OBJECT_NIL to prevent the buffer from being released. In case the buffer of
DDS_<sequence-element-type> Was allocated by this operation, and the
application wants to release the buffer of bDs_<sequence-element-type> it
must be released using DDS_free.

In case there are insufficient resources available to allocate the buffer of
DDS_<sequence-element-type>, aDDS_OBJECT_NIL pointer is returned
instead.

DDS <QosPalicy>__aloc
Synopsis

#include <dds_dcps.h>
DDS_<QosPolicy>
DDS_<QosPolicy>__alloc
(void) ;

Description
This operation alocates anew DDS_<QosPolicy>.

Parameters
<none>

Return Value

DDS <QosPalicy> - the handle to the newly created bps_<QosPolicy>. In case of
an error, abbS_OBJECT_NIL pointer isreturned.

Detailed Description

This operation alocates a new bps_<QosPolicy>. The behaviour isidentical to
DDS_<sequence-name>__alloc except that it creates a QosPolicy Structure
including its embedded sequences. Further, the embedded buffers are not allocated.

DDS <Satus>__dloc

Synopsis
#include <dds_dcps.h>
DDS_<Status>

19

&4 PRISMTECH AP| Reference

1 DCPS API General Description 1.3 Memory Management

20
API Reference

DDS_<Status>__alloc
(void) ;
Description
This operation allocates anew DDS_<Status>.

Parameters
<none>

Return Value

DDS_<Status> - the handle to the newly created pps_<Satus>. In case of an
error, abDS_OBJECT_NIL pointer is returned.

Detailed Description

This operation allocates a new pps_<Status>. The behaviour isidentical to
DDS_<sequence-name>__alloc except that it creates a status structure
including its embedded sequences. Further, the embedded buffers are not allocated.

DDS dtring_dloc

Synopsis
#include <dds_dcps.h>
DDS_char *
DDS_string_alloc
(DDS_unsigned_long len) ;
Description

This operation dynamically allocates a string of a specified length.

Parameters

in DDS_unsigned_long len - thelength of the string to alocate. The allocated
string has length len+1 (1 character is allocated extra for the terminating NUL
character).

Return Value

DDS_char * - the pointer to the allocated string. If there are insufficient resources
available, aDDsS_OBJECT_NIL pointer isreturned.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

Detailed Description

This operation dynamically allocates a string of a specified length. The allocated
string has length 1en+1 (1 character is allocated extra for the terminating * 0’
character). If there are insufficient resources available, aDDs_0OBJECT_NTIL pointer
is returned.

A string that isallocated viaDDS_string_alloc must befreed using the operation
DDS_free.

DDS free

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_free
(void *);

Description
This operation releases the allocated resources for the object in the parameter.

Parameters
in void * - contains the object which resources should be released.

Return Value
<none>

Detailed Description

This operation releases the allocated resources for the object in the parameter. The
parameter may be a sequence in which case both the sequence and the sequence
buffer are released since this operation operates recursively. Or the parameter may
be a sequence buffer in case only the buffer is released. In both cases, the
application is responsible to call this operation on the proper object in order to
release the resources.

This operation may only be used when the resource was allocated using one of the
_alloc operations. In case the object was declared as a variable on stack, the
application may not use bbs_ free 0n this object.

This means, there are four combinations of allocation possible:

Both the sequence and the buffer is allocated using the
DDS_<sequence-name>__alloc aujDDS_<sequence—name>_a1locbuf
operation. In this case the DDs_ free operation must be used on the sequence to
release both.

21
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

» The sequence is dlocated on stack and the buffer is allocated using the
DDS_<sequence-name>_allocbuf operation. In this case the sequence may
not be released using the pps_free operation but the buffer must be released
using the DDS_ free operation (operated on the buffer).

» The sequence is allocated using the DDS_<sequence-name>__alloc operation
and the buffer is allocated on stack. In this case the DDs_free operation must be
used on the sequence but the buffer may not be released using the DDS_free
operation. Since the Dps_ free operation works recursively, the application must
put the _release flag of the sequence to FALSE and/or the _buffer pointer to
DDS_OBJECT_NTL to prevent the buffer from being rel eased.

» Both the sequence and the buffer are allocated on stack. In this case the
DDS_free operation may not be used.

Lisenersinterfaces

22
API Reference

The Listener provides a generic mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous status
change events, such as a missed deadline, violation of a bbs_QosPolicy Setting,
etc. The Listener isrelated to changes in communication status.

TheListener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. These operations must be provided by the application. All Listener
operations must be implemented, it is up to the application whether an operation is
empty or contains some functionality.

Each DCPS pps_Entity supports its own specialized kind of Listener.
Therefore, the following Listeners are available:

* DDS_DomainParticipantListener
* DDS_TopicListener

* DDS_PublisherListener

* DDS_DataWriterListener

* DDS_SubscriberListener

* DDS_DataReaderListener

For example, since aDpDS_DataReader isakind of DDs_Entity, it has the ability
to have aListener associated with it. In this case, the associated 1.i stener must
be of type DDS_DataReaderListener. Thisinterface must be implemented by the
application. All DDS_DataReaderListener operations must be implemented, it is
up to the application whether an operation is empty or contains some functionality.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

As an example, one of the operationsin the bbs_bataReaderListener isthe
DDS_DataReaderListener_on_liveliness_changed. This operation
(implemented by the application) will be called by the Data Distribution Service
when the liveliness of the associated DDS_Datawriter has changed. In other
words, it serves as a callback function to the event of a change in liveliness. The
parameters of the operation are supplied by the Data Distribution Service. In this
example, the pointer to the bps_bpataReader and the status of the liveliness are
provided.

| mplementation
The struct DDS_<Entity>Listener represents the implementation of the
Listener for an <entity>. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the appropriate DDS_<Entity>Listener__alloc
operation. Each pointer must point to the appropriate callback operation defined in
the application (when the status is enabled). It is up to the application whether an
operation is empty or contains some functionality. An example is presented of the
allocation and initialization of apbs_DataReaderListener which isonly
enabled for the on_liveliness_changed. The on_liveliness_changed
operation is provided by the application:
#include "dds_dcps.h"
static struct DDS_DataReaderListener msgListener;
DDS_FooDataReader FooDR;
/* at this point, it is not important how to create the FooDR
*/
DataWriterListenerData UserDefined_ListenerData;
/* at this point, it is not important how
UserDefined_ListenerData is implemented.
This parameter can be used for Listener identification.
If not used, the parameter may be NULL. */
/* Prepare a listener for the Foo DataReader. */
msgListener = DDS_DataReaderListener_ _alloc();
msgListener.listener_data = UserDefined_ListenerData;
msgListener.on_requested_deadline_missed = NULL;
msgListener.on_requested_incompatible_gos = NULL;
msgListener.on_sample_rejected = NULL;
msgListener.on_liveliness_changed =
(void (*) (void *, DDS_DataReader)) on_live_change;
msgListener.on_data_available = NULL;
msgListener.on_subscription_matched = NULL;
msgListener.on_sample_lost = NULL;

/* Set the Listener with a mask only

23
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

to trigger on on_liveliness_changed. */
status = DDS_DataReader_set_listener
(FooDR,
&msglListener,
DDS_LIVELINESS_CHANGED_STATUS) ;

1.4.1 Sruct DDS <Entity>Listener

The struct DDS_<Entity>Listener represents the implementation of a
Listener.

The interface description applies to the different types of <entity>, that isthe
DomainParticipant, Topic, Publisher, DataWriter, Subscriber Or
DataReader. The actual attributes depends on the <entity>. Only for the
DomainParticipant all the fields are applicable. the description of these structs
isasfollows:

typedef struct DDS_DomainParticipantListener
*DDS_DomainParticipantListener;
struct DDS_DomainParticipantListener
{
void *listener_data;
DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;

DDS_DomainParticipantListener_ OfferedDeadlineMissedListener
on_offered deadline missed;

DDS_DomainParticipantListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness lost;
DDS_DomainParticipantListener_ PublicationMatchListener
on_publication_matched;

DDS_DomainParticipantListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DomainParticipantListener_
RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DomainParticipantListener_DataAvailablelListener
on_data_availlable;
DDS_DomainParticipantListener_SubscriptionMatchListener

24

API Reference & PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

on_subscription_matched;
DDS_DomainParticipantListener_ SampleLostListener
on_sample_lost;
DDS_DomainParticipantListener_ DataOnReadersListener
on_data_on_readers;
Y
typedef struct DDS_TopicListener
*DDS_TopicListener;
struct DDS_TopicListener
{
vold *listener_ data;
DDS_TopicListener_InconsistentTopicListener
on_inconsistent_topic;
Y
typedef struct DDS_PublisherListener
*DDS_PublisherListener;
struct DDS_PublisherListener
{
vold *listener data;
DDS_PublisherListener_ OfferedDeadlineMissedListener
on_offered deadline missed;
DDS_PublisherListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_PublisherListener_LivelinessLostListener
on_liveliness_ lost;
DDS_PublisherListener_ PublicationMatchListener
on_publication_matched;
Y
typedef struct DDS_DataWriterListener
*DDS_DataWriterListener;
struct DDS_DataWriterListener
{
volid *listener data;
DDS_DataWriterListener_ OfferedDeadlineMissedListener
on_offered deadline missed;
DDS_DataWriterListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DataWriterListener_LivelinessLostListener
on_liveliness_lost;
DDS_DataWriterListener_PublicationMatchListener
on_publication_matched;
Y
typedef struct DDS_SubscriberListener
*DDS_SubscriberListener;
struct DDS_SubscriberListener

25
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

volid *listener data;
DDS_SubscriberListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_SubscriberListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_SubscriberListener_SampleRejectedListener
on_sample_rejected;
DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
DDS_SubscriberListener_DataAvailablelListener
on_data_availlable;
DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched;
DDS_SubscriberListener_SamplelLostListener
on_sample_lost;
DDS_SubscriberListener_DataOnReadersListener
on_data_on_readers;
Y
typedef struct DDS_DataReaderListener
*DDS_DataReaderListener;
struct DDS_DataReaderListener
{
vold *listener data;
DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DataReaderListener_ RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DataReaderListener_SampleRejectedListener
on_sample_rejected;
DDS_DataReaderListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DataReaderListener_DataAvailablelListener
on_data_availlable;
DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DataReaderListener_SamplelLostListener
on_sample_lost;
Y
/* implemented API operations
* <no operations> */

The next paragraphs describes the usage of the DDS_<Entity> Listener structs.

26

API Reference & PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

1.4.2 DDS _DomainParticipantListener
Synopsis

#include <dds_dcps.h>
struct DDS_DomainParticipantListener

&4 PRISMTECH

{

Y

void *listener_data;
DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;
DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered _deadline_missed;
DDS_DomainParticipantListener OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost;
DDS_DomainParticipantListener_PublicationMatchListener
on_publication_matched;
DDS_DomainParticipantListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DomainParticipantListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DomainParticipantListener_DataAvailablelListener
on_data_available;
DDS_DomainParticipantListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DomainParticipantListener_ SampleLostListener
on_sample_lost;
DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers;

Description

The struct DDS_DomainParticipantListener represents the implementation of
the DomainParticipantListener.

Attributes
void *1istener_data - apointer to auser defined object, which may be used

for identification of the Listener.

DDS_DomainParticipantListener_InconsistentTopicListener

on_inconsistent_topic - a pointer to the cal back function
implemented by the application.

27
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

28
API Reference

DDS_DomainParticipantListener_ OfferedDeadlineMissedListener
on_offered _deadline missed - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener OfferedIncompatibleQosListener
on_offered_incompatible gos - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.
DDS_DomainParticipantListener_ PublicationMatchListener
on_publication_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener. RequestedDeadlineMissedListener
on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_ RequestedIncompatible
QosListener on_requested_incompatible_gos -apointer to the call
back function implemented by the application.

DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.
DDS_DomainParticipantListener LivelinessChangedListener
on_liveliness _changed - a pointer to the cal back function
implemented by the application.

DDS _DomainParticipantListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by
the application.

DDS_DomainParticipantListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener. SampleLostListener
on_sample_lost - apointer to the call back function implemented by the
application.

DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers - apointer to the call back function implemented
by the application.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

Detailed Description

The struct DDS_DomainParticipantListener represents the implementation of
the Listener for the DomainParticipant. SinceaListener isimplemented as
a struct of pointers, the application must allocate this struct and initialise these
pointers. The Listener IS allocated using the
DDS_DomainParticipantListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The
listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operationsin each Listener.

DDS TopicListener

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

struct DDS_TopicListener

{
vold *listener_ data;
DDS_TopicListener_InconsistentTopicListener

on_inconsistent_topic;
Y

Description

The struct DDS_TopicListener represents the implementation of the
TopicListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_TopicListener_InconsistentTopicListener
on_inconsistent_topic - a pointer to the cal back function
implemented by the application.

Detailed Description

The struct DDS_TopicListener represents the implementation of the Listener
for the Topic. Since aListener iSimplemented as a struct of pointers, the
application must allocate this struct and initialise these pointers. The Listener is
alocated using the DDS_TopicListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The

29
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operationsin each Listener.

DDS PublisherListener

30
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_publisherListener
{
volid *listener_data;
DDS_publisherListener_OfferedDeadlineMissedListener
on_offered _deadline_missed;
DDS_publisherListener_OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_publisherListener_LivelinessLostListener
on_liveliness_lost;
DDS_publisherListener_PublicationMatchListener
on_publication_matched;

Y

Description

The struct DDS_publisherListener represents the implementation of the
publisherListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS _publisherListener_ OfferedDeadl ineMissedListener
on_offered deadline missed - a pointer to the call back function
implemented by the application.

DDS _publisherListener._OfferedIncompatibleQosListener
on_offered_incompatible_gos - a pointer to the call back function
implemented by the application.
DDS _publisherListener_LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.
DDS _publisherListener_PublicationMatchListener
on_publication_matched - a pointer to the call back function
implemented by the application.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

Detailed Description

The struct DbDs_publisherListener represents the implementation of the
Listener for the publisher. Since a Listener iSimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the Dbs_publisherListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> calback operationsin each Listener.

DDS DataWriterLListener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener

{
DDS_DataWriterListener OfferedDeadlineMissedListener
on_offered deadline_missed;
DDS_DataWriterListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DataWriterListener LivelinessLostListener
on_liveliness_lost;
DDS_DataWriterListener PublicationMatchListener
on_publication_matched;
Y

Description

The struct DDS_DataWriterListener represents the implementation of the
DataWriterListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_DataWriterListener OfferedDeadlineMissedListener
on_offered deadline missed - a pointer to the cal back function
implemented by the application.

DDS_DataWriterListener OfferedIncompatibleQosListener
on_offered_incompatible_gos - a pointer to the call back function
implemented by the application.

31
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

DDS DataWriterListener LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.

DDS _DataWriterListener PublicationMatchListener
on_publication _matched - a pointer to the cal back function
implemented by the application.

Detailed Description

The struct DDS_DataWriterListener represents the implementation of the
Listener for the DatawWriter. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isallocated using the DDS_DataWriterListener__alloc Operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each L.i stener.

DDS SubscriberListener

32
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberListener
{
volid *listener data;
DDS_SubscriberListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_SubscriberListener_ RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_SubscriberListener_SampleRejectedListener
on_sample_rejected;
DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
DDS_SubscriberListener_DataAvailablelListener
on_data_available;
DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched;
DDS_SubscriberListener_SamplelLostListener
on_sample_lost;
DDS_SubscriberListener_DataOnReadersListener
on_data_on_readers;

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

Description

The struct DDS_SubscriberListener represents the implementation of the
SubscriberListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_SubscriberListener RequestedDeadlineMissedListener
on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_ RequestedIncompatibleQosListener
on_requested_incompatible gos - apointer to the call back function
implemented by the application.

DDS_SubscriberListener SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.

DDS_SubscriberListener_LivelinessChangedListener
on_liveliness changed - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by
the application.

DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_ SampleLostListener on_sample_lost-a

pointer to the call back function implemented by the application.

DDS _SubscriberListener DataOnReadersListener
on_data_on_readers - a pointer to the call back function implemented
by the application.

Detailed Description

The struct DDS_SubscriberListener represents the implementation of the
Listener for the subscriber. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the DDS_sSubscriberListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application

33
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each Listener.

1.4.7 DDS DataReaderL istener

34
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderListener
{
volid *listener_data;
DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DataReaderListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DataReaderListener_SampleRejectedListener
on_sample_rejected;
DDS_DataReaderListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DataReaderListener DataAvailablelListener
on_data_available;
DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DataReaderListener_SamplelLostListener
on_sample_lost;
Y

Description

The struct DDS_DataReaderListener represents the implementation of the
DataReaderListener

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline missed - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener RequestedIncompatibleQosListener
on_requested_incompatible_gos - apointer to the call back function
implemented by the application.

DDS _DataReaderListener SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.

& PRISMTECH

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

DDS_DataReaderListener_ LivelinessChangedListener
on_liveliness_changed - a pointer to the cal back function
implemented by the application.

DDS_DataReaderListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by the
application.

DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener SampleLostListener on_sample_lost-a

pointer to the call back function implemented by the application.

Detailed Description

The struct DDS_DataReaderListener represents the implementation of the
Listener for the DataReader. Since aListener iSimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the DDS_DataReaderListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each Listener.

I nheritance of Abgtract Operations

&4 PRISMTECH

The information provided here conforms to the

e PIM part of the DDS-DCPS specification (for module descriptions)

* PSM part of the DDS-DCPS specification (for class and operation descriptions).
For detailed information refer to the OMG C Language Mapping Specification.

At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM defines the interface for an application to interact with the Data
Distribution Service. The DCPS API for the C programming language conforms to
the IDL to C mapping as specified in the OMG C Language Mapping Specification.

Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective
derived class (e.g. DDS_<Entity>_get_gos and DDS_<Entity>_set_gos).
These operations are commented out in the IDL PSM.

35
API Reference

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

36

API Reference & PRISMTECH

CHAPTER

DCPS Modules

DCPSis divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.

Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces,
structs and operations are described in the next chapter.

Domain Module

N

e
- |]
Publication Subscription
Module ‘ Module
}
N ~
[Topic-Definition
Module
\
Infrastructure
Module

Figure2 DCPS Module Composition

Functionality

& PRISMTECH

The modules have the following function in the Data Distribution Service:

* Infrastructure Module: This module defines the abstract classes and interfaces,
which are refined by the other modules. It aso provides the support for the
interaction between the application and the Data Distribution Service (state-based
and event-based)

37
API Reference

2 DCPS Modules

2.2 InfrastructureModule

e Domain Module - This module contains the DDS_DomainParticipant class,

the
and

the
class

which is the entry point of
DDS_DomainParticipantFactory

DDS_DomainParticipantListener interface

» Topic-Definition Module - This module contains the bDDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic classes. It also contains
the DDS_TopicListener interface and all support to define bps_Topic objects
and assign QosPolicy settingsto them

e Publication Module - This module contains the DDS Publisher and
DDS_DataWriter classes. It also contains the bDS_PublisherListener and
DDS_DataWriterListener interfaces

* Subscription Module -
DDS_DataReader, DDS_ReadCondition
classes. It daso contains the DDS_SubscriberListener
DDS_DataReaderListener interfaces

application,

This module contains the DDS_Subscriber,
and DDS_QueryCondition
and

I nfrastructure M odule

38
API Reference

This modul e defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by DDS_Listeners, the
state-based interaction is supported by DDS_waitSets and DDS_Conditions.

QosPolicy qos Entity listener <<Interface>>
name : string Listener
enable() * 0.1
<<abstract>> get_listener()
<<abstract>> get_qos() .
status get_status_changes() WaitSet
get_statuscondition() -
— 1| <<abstract>> set_listener() attach_condition()
<<abstract>> set_qos() detach_condition()
get_conditions()
wait()
Condition ReadCondition
—1 (from Subscription Module)
get_trigger_value()
statuscondition
DomainParticipant 1 . —‘7
(from Domain Module) ‘ DomainEntity ‘ StatusCondition —
I 1 GuardCondition QueryCondition
(from Subscription Module)
get_enabled_statuses() K
get_entity() set_trigger_value()
set_enabled_statuses()
H J
Figure3 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
& PRISMTECH

2 DCPS Modules

2.3 DomainModule

e DDS_Entity (abstract)

* DDS_DomainEntity (abstract)

* DDS_QosPolicy (abstract, struct)
* DDS_Listener (interface)

* DDS_Status (abstract, struct)

* DDS_WaitSet

* DDS_Condition

* DDS_GuardCondition

* DDS_StatusCondition

Domain Module

&4 PRISMTECH

This module contains the class DDS_DomainParticipant, which acts as an entry
point of the Data Distribution Service and acts as a factory for many of the classes.
The DDS_DomainParticipant also acts as acontainer for the other objects that
make up the Data Distribution Service. It isolates applications within the same
Domain from other applications in a different bomain on the same set of
computers. A Domain is a “virtual network” and applications with the same
domainId areisolated from applications with a different domainzd. In this way,
several independent distributed applications can coexist in the same physical
network without interfering, or even being aware of each other.

39
API Reference

2 DCPS Modules

40

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Entity

(from Infrastructure Module)

i

2.4 Topic-Definition Module

DomainParticipant

<<Interface>>

TopicListener

on_inconsistent_topic()

i

DomainParticipantListener

<<implicit>>

0.1

<<implicit>> qos

*

o
default_publisher_gos
* default_topic_gos
>

QosPolicy

(from Infrastructure Module)

default_participant_qos default_subscriber_gos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_gos()
get_instance()
lookup_participant()
set_default_participant_gos()

<<create>>

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gos()
get_default_subscriber_gos()
get_default_topic_gos()
get_domain_id()
get_listener()

get_gos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gos()
set_default_subscriber_gos()
set_default_topic_qgos()
set_listener()

set_gos()

<<create>>
<<create>> Publisher Subscriber

(from Publication Module) (from Subscription Module)

/

/
/
g X
DomainEntity
(from Infrastructure Module)
*
1 T
<<create>> Topic

(from Topic-Definition Module)

i <<implicit>>

TopicDescription
(from Topic-Definition Module)

< /

MultiTopic

(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

<<create>>

<<create>>

Figure4 DCPSDomain Module's Class M odel

This module contains the following classes:

* DDS_DomainParticipant

* DDS_DomainParticipantFactory

* DDS_DomainParticipantListener (interface)

2.4 Topic-Definition Module

This module contains the DDS_Topic, DDS_ContentFilteredTopic and
DDS_MultiTopic classes. It dso containsthe Dbs_TopicListener interface and
all support to define bps_Topic objects and assign QosPol icy Settings to them.

API Reference

& PRISMTECH

2 DCPS Modules

DomainEntity
(from Infrastructure Module)

DataWriter

(from Publication Module)

*

2.4 Topic-Definition Module

(from Subscription Module)

DataReader

ContentFilteredTopic

get_expression_parameters()

DomainParticipant
(from Domain Module)

get_filter_expression()

<<create>> get_rEIated__topic()
/ set_expression_parameters()

*

1

TopicDescription

get_name()
get_participant()
get_type_name()

<<create>>

<<create>>

MultiTopic

Topic *

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

1 |get_inconsistent_topic_status()

*

QosPolicy

(from Infrastructure Module)

get_listener()
get_qos()
set_listener()
set_qos()

0.1 *

1

<<Interface>>
TypeSupport

get_type_name()
register_type()

<<Interface>>

L StatusCondition
TopicListener

(from Infrastructure Module)

WaitSet

>{ (from Infrastructure Module)

Figure5 DCPS Topic-Definition Module's Class M odel

on_inconsistent_topic()

This module contains the following classes:

* DDS_TopicDescription (abstract)

* DDS_Topic

* DDS_ContentFilteredTopic

* DDS_MultiTopic

* DDS_TopicListener (interface)
* Topic-Definition type specific classes

Topic-Definition type specific classes contain the generic class and the generated
data type specific classes. In case of the user defined data type Foo (thisalso applies
to other types), defined in the module spacEk; “Topic-Definition type specific
classes’ contains the following classes:

* DDS_TypeSupport (abstract)

* SPACE_FooTypeSupport

&4 PRISMTECH

41
API Reference

2 DCPS Modules

42
API Reference

<<Interface>>
TypeSupport

DataWriter
(from Publication Module)

get_type_name()
register_type()

7

FooTypeSupport

2.5 PublicationModule

DataReader
(from Subscription Module)

FooDataWriter

FooDataReader

get_type_name()
register_type()

dispose()
dispose_w_timestamp()
get_key_value()

register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

get_key_value()

read()

read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()

return_loan()

take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Figure 6 Data Type“Foo” Typed Classes Pre-processor Generation

Publication Module

This module supports writing of the data, it contains the pps_publisher and
DDS_DataWriter classes. It also contains the DDS_PublisherListener and
DDS_DataWriterListener interfaces. Furthermore, it contains all support

needed for publication.

& PRISMTECH

2 DCPS Modules

&4 PRISMTECH

2.5 PublicationModule

DataWriter

assert_liveliness()

<<create>>
’77777777777777777777‘\
N\ |
QosPolicy <<implicit>> Publisher
(from Infrastructure Module)
- . gos

<<abstract>> dispose()

<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()

get_qgos()

get_topic()

<<abstract>> register()

<<abstract>> register_w_timestamp()
set_listener()

set_qgos()

<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()

<<abstract>> write_w_timestamp()

<<implicit>>

Topic
(from Topic-Definition Module)

0.1

<<implicit>>

0.1

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<implicit>>
1 >

0.1 <<implicit>>

StatusCondition
(from Infrastructure Module)

*

default_datawriter_qos

<<create>> /

begin_coherent_changes()
copy_from_topic_gos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()

get qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()

set_qos()
suspend_publications()

-

/4 .

<<implicit>>

WaitSet

(from Infrastructure Module)

DomainParticipant
(from Domain Module)

1

<<Interface>>
PublisherListener

Figure7 DCPS Publication Modul€e's Class M odel
This module contains the following classes:

* DDS_Publisher

* DDS_PublisherListener (interface)

e DDS_DataWriterListener (interface)

* Publication type specific classes

Publication type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also appliesto
other types), defined in the module spaAcE; “Publication type specific classes”
contains the following classes:

* DDS_DataWriter (abstract)

* SPACE_FooDataWriter

43
API Reference

2 DCPS Modules 2.6 Subscription Module

2.6 Subscription Module

This module supports access to the data, it contains the bDs_Subscriber,
DDS_DataReader, DDS_ReadCondition and DDS_QueryCondition classes.
It also contains the DDS_SubscriberListener and
DDS_DataReaderListener interfaces. Furthermore, it contains all support
needed for subscription.

Samplelnfo
DataSample sample_state
view state DomainParticipant
i (from Domain Module)
instance_state
* 1 |source_timestamp

instance_handle
disposed_generation_count

<<create>>

DataReader no_writers_generation_count <cimplicits>
sample_rank QosPolicy <implicit> Subscriber
create_querycondition() generation_rank qos

create_readcondition() absolute_generation_rank name : string
delete_contained_entities()

delete_readcondition()

begin_access()
copy_from_topic_qos()
create_datareader()

* * *

<<abstract>> get_key_value()
get_listener()

delete_contained_entities()
delete_datareader()

get_liveliness_changed_status() <<implicit>> default_datareader_qos™gng access()
get_matched_publication_data() get_datareaders()
get_matched_publications() ! get_default_datareader_qos()
get_gos() TopicDescription Toplc) ‘ get_listener()
get_requested_deadline_missed_status() (from Topic-Definition Module) —|___(from Topic-Definition Module) get_participant()
get_requested_incompatible_qos_status() get_qgos()

get_sample_lost_status() A
get_sample_rejected_status() 1 | * 1
get_subscriber()
get_subscription_match_status()
get_topicdescription()

<<abstract>> lookup_instance()

<<abstract>> read()

<<abstract>> read_instance()

<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()

<<abstract>> read_w_condition()

<<abstract>> return_loan()

set_listener()

set_qos()

<<abstract>> take()

<<abstract>> take_instance()

<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()

<<abstract>> take_w_condition()

lookup_datareader()
notify_datareaders()
set_default_datareader_gos()
set_listener()

set_qos()

<<implicit>> <<implicit>> <<implicit>>

WaitSet

(from Infrastructure Module)
1 * *

<<create>> * N
* <<implicit>>
*

ReadCondition

StatusCondition
(from Infrastructure Module)

<<implicit>>

0.1

<<Interface>>
SubscriberListener

QueryCondition

get_datareader()
get_instance_state_mask() < get_query_arguments()

get_query_expression()
get_sample_state_mask()
get_view_state_mask() set_query_arguments()

on_data_on_readers()

<<create>>

0.1

<<create>>

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

Figure 8 DCPS Subscription Modul€e's Class M odel
This module contains the following classes:

* DDS_Subscriber
* DDS_DataSample
* DDS_SampleInfo (Struct)

44

API Reference & PRISMTECH

2 DCPS Modules

&4 PRISMTECH

* DDS_SubscriberListener (interface)
* DDS_DataReaderListener (interface)
* DDS_ReadCondition

* DDS_QueryCondition

* Subscription type specific classes

2.6 Subscription Module

Subscription type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also applies to
other types), defined in the module spacE; “ Subscription type specific classes’

contains the following classes:
* DDS_DataReader (abstract)
* SPACE_FooDataReader

45
API Reference

2 DCPS Modules 2.6 Subscription Module

46

API Reference & PRISMTECH

CHAPTER

& PRISMTECH

DCPS Classes and Operations

This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.

The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.

The Listener interfaces in the C API are implemented as structs containing
function pointers. All the function pointer attributes within the struct must be
assigned to a function. It is up to the application whether a function is empty or
contains some functionality.

Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.

The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.

General note for type space: The name space. h is derived from the IDL file
Space.idl, that defines Foo.

47
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1 Infrastructure M odule

QosPolicy qos Entity listener <<|n_terface>>
name : string Listener

enable() * 0..1
<<abstract>> get_listener()

<<abstract>> get_qos()

status get_status_changes() WaitSet

get_statuscondition() —
— Y 1 |<<abstract>> set_listener() attach_condition()
<<abstract>> set_qos() detach_condition()

get_conditions()
wait()

Condition ReadCondition
(from Subscription Module)
get_trigger_value()
statuscondition
DomainParticipant 1 . —‘7
(from Domain Module) | o ‘ DomainEntity ‘ StatusCondition — -
@ T 1 GuardCondition QueryCondition
1 (from Subscription Module)
get_enabled_statuses() K
get_entity() set_trigger_value()
set_enabled_statuses()

Figure9 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
* DDS_Entity (abstract)
* DDS_DomainEntity (abstract)
* DDS_QosPolicy (abstract, struct)
* DDS_Listener (interface)
* DDS_Status (abstract, struct)
- DDS_WaitSet
e DDS_Condition
e DDS_GuardCondition
* DDS_StatusCondition.

3.1.1 ClassDDS Entity (abstract)

Thisclassisthe abstract base classfor all the DCPS objects. It acts as ageneric class
for DDS_Entity objects.

The interface description of this classis asfollows:

/* interface DDS_Entity */
/* abstract operations (implemented in class
DDS_DomainParticipant,
* DDS_Topic, DDS_Publisher, DDS_DataWriter, DDS_Subscriber and
* DDS_DataReader)
*/
/*
48
AP| Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* % % % ok X %

*

~
* % % E O R

*

*

/*

DDS_ReturnCode_t
DDS_Entity_set_gos
(DDS_Entity _this,
const DDS_EntityQos *gos) ;

DDS_ReturnCode_t
DDS_Entity_get_gos
(DDS_Entity _this,
DDS_EntityQos *gos) ;

DDS_ReturnCode_t
DDS_Entity_set_listener
(DDS_Entity _this,
const struct DDS_EntityListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_EntityListener
DDS_Entity_get_listener
(DDS_Entity _this);

* implemented API operations

*/

DDS_ReturnCode_t
DDS_Entity_enable
(DDS_Entity _this);
DDS_StatusCondition
DDS_Entity_get_statuscondition
(DDS_Entity _this);
DDS_StatusMask
DDS_Entity_get_status_changes
(DDS_Entity _this);
DDS_InstanceHandle_t
DDS_Entity_get_instance_handle
(DDS_Entity _this);

The abstract operations are listed but not fully described because they are not
implemented in this specific class. The full description of these operationsis given
in the subclasses, which contain the type specific implementation of these
operations.

3.1.1.1 DDS Entity enable
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t

&4 PRISMTECH

49
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

50
API Reference

DDS_Entity_enable
(DDS_Entity _this);

Description

This operation enables the bps_gEntity on which it is being called when the
DDS_Entity was created with the DDs_EntityFactoryQosPolicy Set to
FALSE.

Parameters

in DDS_Entity _this -theDDS_Entity object on which the operation is
operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation enables the bbs_Eentity. Created DDS_Entity objects can start in
either an enabled or disabled state. This is controlled by the value of the
DDS_EntityFactoryQosPolicy on the corresponding factory for the
DDS_Entity. Enabled entities are immediately activated at creation time meaning
all their immutabl e QoS settings can no longer be changed. Disabled Entities are not
yet activated, so it isstill possible to change their immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.

Creating disabled entities can make sense when the creator of the bps_Entity
does not yet know which QoS settings to apply, thus allowing another piece of code
to set the QoS later on. Thisis for example the case in the DLRL, where the
ObjectHomes create all underlying DCPS entities but do not know which QoS
settings to apply. The user can then apply the required QoS settings afterwards.

The default setting of DDS_EntityFactoryQosPolicy issuch that, by default,
entities are created in an enabled state so that it is not necessary to explicitly call
DDS_<Entity>_enable ON newly created entities.

The DDsS_<Entity>_enable operation produces the same results no matter how
many times it is performed. Calling bDS_<Entity>_enable 0On an already
enabled DDS_Entity returns DDS_RETCODE_OK and has no effect.

If abps_Entity has not yet been enabled, the only operations that can be invoked
on it are: the ones to set, get or copy the QosPalicy settings (including the default
QosPalicy settings on factories), the ones that set (or get) the listener, the ones that
get the DDS_StatusCondition, the DDS_Entity_get_status_changes

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or Iookup1 other pDs_Entities. Other operations
will return the error DDS_RETCODE_NOT_ENABLED.

Entities created from afactory that is disabled, are created disabled regardless of
the setting of the DDS_EntityFactoryQosPolicy.

Cdling DDS_<Entity>_enable ON an DDS_Entity Whose factory is not enabled
will fail and return DDS_RETCODE_PRECONDITION NOT MET.

If the DDS_EntityFactoryQosPolicy haSautoenable_created_entities
set to TRUE, the DDS_<Entity>_enable operation on the factory will
automatically enable all Entities created from the factory.

The Listeners associated with an DDs_Entity are not called until the
DDS_Entity isenabled. DDS_conditions associated with an DDs_Entity that
isnot enabled are "inactive", that is, have a trigger_value which iSFALSE.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the application enabled the bps_Entity (or it was aready
enabled)

* DDS RETCODE_ERROR - an internal error has occurred

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation

* DDS_RETCODE_PRECONDITION_NOT_MET - the factory of the DDS_Entity is
not enabled

DDS Entity get_instance handle

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
DDS_Entity_get_instance_handle
(DDS_Entity _this);

Description

This operation returns the instance_handle of the builtin topic sample that
represents the specified bDS_Entity.

1. Thisincludesthe lookup_topicdescription, but notthe find_topic.

51
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_InstanceHandle t - Result valueisthe instance_handle of the builtin
topic sample that represents the state of thispps_Entity.

Detailed Description

The relevant state of some DDS_Enti ty objects are distributed using builtin topics.
Each builtin topic sample represents the state of a specific bps_Entity and has a
unique instance_handle. This operation returnsthe instance_handle of the
builtin topic sample that represents the specified Dbs_Entity.

Some DDS_Entities (DDS_Publisher and DDS_Subscriber) do not have a
corresponding builtin topic sample, but they still have an instance_handle that
uniquely identifiesthe DDS_Entity.

The instance_handles obtained this way can also be used to check whether a
specific DDS_Entity islocated in a specific DDS_DomainParticipant. (See
Section 3.2.1.2, DDS _DomainParticipant_contains_entity, on page 137.)

DDS Entity_get_listener (abstract)

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, bDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
struct DDS_EntityListener
DDS_Entity_get_listener
(DDS_Entity _this);

DDS Entity_get_qos (abstract)

52
API Reference

This abstract operation is defined as a generic operation to access a struct with the
QosPolicy settings. Each subclass derived from this class,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t
DDS_Entity_get_gos

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

(DDS_Entity _this,
DDS_EntityQos *gos) ;

DDS Entity_get_status _changes

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_Entity_get_status_changes
(DDS_Entity _this);

Description

This operation returns a mask with the communication statuses in the bbs_Entity
that are “triggered”.

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_StatusMask - Result is a bit-mask in which each bit shows which value has
changed.

Detailed Description

This operation returns a mask with the communication statuses in the bbs_Entity
that are “triggered”. That is the set of communication statuses whose value have
changed since the last time the application called this operation. This operation
shows whether a change has occurred even when the status seems unchanged
because the status changed back to the original status.

When the pps_Entity isfirst created or if the bbs_Entity isnot enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.

The result value is a bit-mask in which each bit shows which value has changed.
The relevant bits represent one of the following statuses:

« DDS_INCONSISTENT_TOPIC_STATUS

+ DDS_OFFERED_DEADLINE_MISSED_STATUS

« DDS_REQUESTED_DEADLINE_MISSED_STATUS

+ DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

« DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

+ DDS_SAMPLE_LOST_STATUS

« DDS_SAMPLE_REJECTED_STATUS

« DDS_DATA_ON_READERS_STATUS

53
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

e DDS_DATA_ AVAILABLE_STATUS

e DDS_LIVELINESS_LOST_STATUS

e DDS_LIVELINESS_CHANGED_STATUS

e DDS_PUBLICATION_MATCHED_STATUS
e DDS_SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type bps_statusMask. Not al statuses are
relevant to all pps_Entity objects. See the respective Listener interfaces for
each DDS_Ent ity for more information.

DDS Entity get statuscondition

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_Entity_get_statuscondition
(DDS_Entity _this);
Description

This operation allows access to the DDS_StatusCondition associated with the
DDS_Entity.

Parameters

in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_StatusCondition - Result value isthe DDS_StatusCondition of the
DDS_Entity.

Detailed Description

Each pDs_Entity has a DDS_StatusCondition associated with it. This
operation allows access to the Dbs_statusCondition associated with the
DDS_Entity. Thereturned condition can then be added to a bbs_waitSet So that
the application can wait for specific status changes that affect the bps_Entity.

DDS Entity set_listener (abstract)

54
API Reference

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, bDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Entity_set_listener
(DDS_Entity _this,
const struct DDS_Listener *a_listener,
const DDS_StatusMask mask) ;

DDS Entity_set_qos (abstract)

This abstract operation is defined as a generic operation to modify a struct with the
QosPolicy settings. Each subclass derived from this class,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Entity_set_gos
(DDS_Entity _this,
const DDS_EntityQos *gos) ;

ClassDDS DomainEntity (abstract)

This class is the abstract base class for the all entities except
DDS_DomainParticipant. The main purpose is to express that
DDS_DomainParticipant isaspecia kind of bps_Entity, which acts as a
container of all other bpps_Entity objects, but cannot contain another
DDS_DomainParticipant withinitself. Therefore, thisclassisnot part of the IDL
interface in the DCPS PSM description.

The class bbs_DomainEntity doesnot contain any operations.

Sruct QosPolicy

&4 PRISMTECH

Each DDS_Entity provides a <DDS_Entity>Qos Structure that implements the
basic mechanism for an application to specify Quality of Service attributes. This
structure consists of DDS_Ent ity specific QosPolicy attributes. QospPolicy
attributes are structured types where each type specifies the information that
controls an DDS_Enti ty related (configurable) property of the Data Distribution
Service.

All gosPolicies applicableto apps_Entity are aggregated in a corresponding
<DDS_Entity>Qos, which isacompound structure that is set atomically so that it
represents a coherent set of QosPolicy attributes.

55
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Compound types are used whenever multiple attributes must be set coherently to
define a consistent attribute for agospPolicy.

See Appendix A, Quality Of Service for details of the <pDs_Entity>Qos, aong
with acomplete list of individual QosPolicy settings and their meanings.

QosPolicy
name : string
HistoryQosPolicy UserDataQosPolicy PartitionQosPolicy
kind : HistoryQosPolicyKind value [*] : octet] namef[*] : string —
depth : long

TopicDataQosPolic ReliabilityQosPolicy
P Y kind : ReliabilityQosPolicyKind

value [*] : octet max_blocking_time : Duration_t

LifespanQosPolicy
—duration : Duration_t

OwnershipQosPolicy GroupDataQosPolicy LivelinessQosPolicy

—kind : OwnershipQosPolicyKind value [*] : octet — kind : LivelinessQosPolicyKind
lease_duration : Duration_t

OwnershipStrengthQosPolicy

LatencyBudgetQosPolicy
duration : Duration_t —

DurabilityQosPolicy
kind : DurabilityQosPolicyKind —

—value : long

WriterDataLifecycleQosPolicy DeadlineQosPolicy
—autodispose_unregistered_instances : boolean period : Duration_t ResourceLimitsQosPolicy

max_samples : long
max_instances : long —
1\ max_samples_per_instance : long

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TimeBasedFilterQosPolicy
minimum_separation : Duration_t —

DestinationOrderQosPolicy
kind : DestinationOrderQosPolicyKind +——

EntityFactoryQosPolicy
PresentationQosPolicy autoenable_created_entities : boolean ——
access_scope : PresentationQosPolicyAccessScopeKind TransportPriorityQosPolicy
L——coherent_access : boolean value : long —

ordered_access : boolean

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long

max_samples : long
max_instances : long
max_samples_per_instance : long

Figure 10 QosPoalicy Settings
Requested/Offered

In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy on the offering side. For example, if a DDS_DataReader requeststo

56

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

receive data reliably while the corresponding pps_patawriter defines a
best-effort gospPolicy, communication will not happen as requested. This means,
the specification for gosPo1licy follows the requested/offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. In this pattern:

* the requesting side can specify a“requested” attribute for aparticular gospPolicy
« the offering side specifies an “offered” attribute for that gospPolicy.

The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPo1icy Settings are compatible, communication is established. If
the two QosPolicy Settings are not compatible, the Data Distribution Service will
not establish communication between the two DDS_Entity objects and notify this
fact by means of the bbs_OFFERED_INCOMPATIBLE_QOS status on the offering
side and the DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side.

The application can detect this fact by means of aListener Or DDS_Condition.
The interface description of these gosPolicysare asfollows:
/ *
* struct DDS_<DDS_Entity>Qos
* see appendix
*x/
/ *
* struct DDS_<name>QosPolicy
*/
struct DDS_UserDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_TopicDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_GroupDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_TransportPriorityQosPolicy
{ DDS_long value; };
struct DDS_LifespanQosPolicy
{ DDS_Duration_t duration; };
enum DDS_DurabilityQosPolicyKind
{ DDS_VOLATILE_DURABILITY_ QOS,
DDS_TRANSIENT LOCAL_DURABILITY_QOS,
DDS_TRANSIENT DURABILITY QOS,
DDS_PERSISTENT_DURABILITY_QOS };
struct DDS_DurabilityQosPolicy
{ DDS_DurabilityQosPolicyKind kind; };
enum DDS_PresentationQosPolicyAccessScopeKind
{ DDS_INSTANCE_PRESENTATION_QOS,
DDS_TOPIC_PRESENTATION_QOS,
DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy

57
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

58
API Reference

{ DDS_PresentationQosPolicyAccessScopeKind
access_scope;
DDS_boolean coherent_access;
DDS_boolean ordered_access; };
struct DDS_DeadlineQosPolicy
{ DDS_Duration_t period; };
struct DDS_LatencyBudgetQosPolicy
{ DDS_Duration_t duration; };
enum DDS_OwnershipQosPolicyKind
{ DDS_SHARED_OWNERSHIP_QOS,
DDS_EXCLUSIVE_OWNERSHIP_QOS 1};
struct DDS_OwnershipQosPolicy
{ DDS_OwnershipQosPolicyKind kind; };
struct DDS_OwnershipStrengthQosPolicy
{ DDS_long value; };
enum DDS_LivelinessQosPolicyKind
{ DDS_AUTOMATIC_LIVELINESS_QOS,
DDS_MANUAL_BY_ PARTICIPANT_ LIVELINESS_QOS,
DDS_MANUAL_BY_ TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
{ DDS_LivelinessQosPolicyKind kind;
DDS_Duration_t lease_duration; };
struct DDS_TimeBasedFilterQosPolicy
{ DDS_Duration_t minimum_separation; };
struct DDS_PartitionQosPolicy
{ DDS_StringSeq name; };
enum DDS_ReliabilityQosPolicyKind
{ DDS_BEST_EFFORT_RELIABILITY_ QOS,
DDS_RELIABLE_RELIABILITY QOS };
struct DDS_ReliabilityQosPolicy
{ DDS_ReliabilityQosPolicyKind kind;
DDS_Duration_t max_blocking time; };
enum DDS_DestinationOrderQosPolicyKind
{ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
DDS_BY_ SOURCE_TIMESTAMP_DESTINATIONORDER_QOS 1};
struct DDS_DestinationOrderQosPolicy
{ DDS_DestinationOrderQosPolicyKind kind; };
enum DDS_HistoryQosPolicyKind
{ DDS_KEEP_LAST HISTORY_QOS,
DDS_KEEP_ALL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
{ DDS_HistoryQosPolicyKind kind;
DDS_long depth; };
struct DDS_ResourceLimitsQosPolicy
{ DDS_long max_samples;
DDS_long max_instances;
DDS_long max_samples_per_instance; };
struct DDS_EntityFactoryQosPolicy
{ DDS_boolean autoenable_created_entities; };
struct DDS_WriterDataLifecycleQosPolicy

& PRISMTECH

3 DCPS Classes and Operations

enum

{ DDS_boolean autodispose_unregistered_instances;
struct DDS_ReaderDatalifecycleQosPolicy

3.1 InfrastructureModule

Y

{ DDS_Duration_t autopurge_nowriter_samples_delay;
DDS_Duration_t autopurge_disposed_samples_delay; };
struct DurabilityServiceQosPolicy

{ DDS_Duration_t service_cleanup_delay;
DDS_HistoryQosPolicyKind history_kind;
history_depth;
max_samples;
max_instances;
max_samples_per_instance;
DDS_SchedulingClassQosPolicyKind
{ DDS_SCHEDULE_DEFAULT,

DDS_long
DDS_long
DDS_long
DDS_long

DDS_SCHEDULE_TIMESHARING,

DDS_SCHEDULE_REALTIME };

struct DDS_SchedulingClassQosPolicy

{ DDS_SchedulingClassQosPolicyKind kind;

enum DDS_SchedulingPriorityQosPolicyKind

{ DDS_PRIORITY_RELATIVE,
DDS_PRIORITY_ABSOLUTE };

struct DDS_SchedulingPriorityQosPolicy

{ DDS_SchedulingPriorityQosPolicyKind kind;

struct DDS_SchedulingQosPolicy

* implemented API operations

*/

{ DDS_SchedulingClassQosPolicy scheduling class;

Y

Y

DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
DDS_long scheduling_priority;

<no operations>

Default attributes

The default attributes of each QospPolicy arelisted in the next table:
Table 5 QosPolicy Default Attributes

QosPolicy Attribute Value

user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE

durability kind DDS_VOLATILE_DURABILITY_QOS

presentation access_scope DDS_INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

& PRISMTECH 59

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 5 QosPolicy Default Attributes (Continued)

QosPalicy Attribute Value
deadline period DDS_DURATION_INFINITE
latency_ budget duration 0
ownership_strength value 0
ownership kind DDS_SHARED_OWNERSHIP_QOS
liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration

DDS_DURATION_INFINITE

time_based_filter

minimum_separation

0

partition

name.length

0

reliability

kind

DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking time

100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS
history kind DDS_KEEP_LAST_HISTORY_QOS
depth 1

resource_limits

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_ per_instance

DDS_LENGTH_UNLIMITED

instances

entity_factory autoenable_ TRUE
created_entities
writer_data_lifecycle |autodispose_unregistered_ | TRUE

reader_data_lifecycle

autopurge_
nowriter_samples_delay

DDS_DURATION_INFINITE

autopurge_
disposed_samples_delay

DDS_DURATION_INFINITE

durability_service

history kind

KEEP_LAST

history depth

1

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_ per_instance

LENGTH_UNLIMITED

service_cleanup_delay

0

watchdog_scheduling,
listener_scheduling

scheduling_class.kind

DDS_SCHEDULE_DEFAULT

scheduling priority_ kind.
kind

DDS_PRIORITY_RELATIVE

scheduling priority

60
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

RxO

The gosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxO”
(Requested/Offered) property. The “RxQO” property of each QospPolicy islistedin
Table 6 on page 62

* A "RxO” setting of “Yes’ indicates that the gosPolicy can be set at both ends
(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined

¢ A “RxO” setting of “No” indicates that the gosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible

* A “RxO" setting of “Not applicable” indicates that the gosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply.

Changeable

The “changeable” property determines whether the gosPolicy can be changed
after the pDs_Entity isenabled. In other words, a QosPol1cy with “changeable”
setting of “No” is considered “immutable” and can only be specified either at
DDS_Entity creation time or prior to calling the bDS_Entity_ enable Operation
ontheDbps_Entity.

When the application tries to change a gosPo1licy with “changeable” setting of
“No”, the Data Distribution Service will notify this by returning a
DDS_RETCODE_IMMUTABLE_POLICY.

The basic way to modify or set the <DDs_Entity>Qos iS by using a
DDS_<Entity>_get_gos and DDS_<Entity>_set_gos operation to get all
QosPolicy settings from this DDS_Entity (that isthe <DDS_Entity>Qos),
modify several specific QosPolicy Settings and put them back using an user
operation to set all gosPolicy settings on this bbs_Entity (that isthe
<DDS_Entity>Qos). An example of these operations for the bps_Datawriter
are DDS_DataWriter_get_gos and DDS_DataWriter_ set_gos, Which take
the DatawriterQos asaparameter.

The “Rx0O” setting and the “changeable” setting of each gospPolicy arelisted in
the next table:

61
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 6 QosPolicy Basics

QosPalicy ConcernsDDS_Entity RxO Changeable
After
Enabling
user_data DDS_DomainParticipant No Yes
DDS_DataReader
DDS_DataWriter
topic_data DDS_Topic No Yes
group_data DDS_Publisher No Yes

DDS_Subscriber

transport_priority DDS_Topic

DDS_DataWriter

Not applicable | Yes

lifespan DDS_Topic Not applicable Yes
DDS_DataWriter

durability DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter

presentation DDS_Publisher Yes No
DDS_Subscriber

deadline DDS_Topic Yes Yes

DDS_DataReader
DDS_DataWriter

DDS_Topic Yes Yes
DDS_DataReader
DDS_DataWriter

DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter

latency_budget

ownership

ownership_strength DDS_Datalriter Not applicable | Yes
liveliness DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
time_based filter DDS_DataReader Notappﬁcdje Yes
partition DDS_Publisher No Yes
DDS_Subscriber
reliability DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
62 & PRISMTECH

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 6 QosPolicy Basics (Continued)

QosPalicy Concerns DDS Entity RxO Changeable
After
Enabling
destination_order DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
history DDS_Topic No No
DDS_DataReader
DDS_DataWriter
resource_limits DDS_Topic No No
DDS_DataReader
DDS_DataWriter
entity_factory DDS_DomainParticipantFactory No Yes
DDS_DomainParticipant
DDS_Publisher
DDS_Subscriber
writer_data_lifecycle|DDS_DataWriter Not applicable | Yes
reader_data_lifecycle|DDS_DataReader Notappﬁcdﬂe Yes
durability_ service DDS_Topic No No
scheduling DDS_DomainParticipant Not applicable No

The next paragraphs describe the usage of each gosPolicy struct.

3.1.3.1 DDS DeadlineQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DeadlineQosPolicy
{ DDS_Duration_t period; };

Description

This QosPolicy defines the period within which a new sample is expected by the
DataReader Or to be written by the batawriter.

Attributes

DDS_Duration_t period - Specifiesthe period within which a new sample is

expected or to be written.

63
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

64
API Reference

Detailed Description

This gosPolicy will set the period within which a DDS_DataReader expects a
new sample or, in case of a DDS_DataWriter, the period in which it expects
applications to write the sample. The default value of the period is
DDS_DURATION_INFINITE, indicating that there is no deadline. The QosPolicy
may be used to monitor the real-time behaviour, a Dbs_Listener Or a
DDS_StatusCondition may be used to catch the event that is generated when a
deadline is missed.

DDS_DeadlineQosPolicy isinstance oriented (i.e. the period is monitored for
each individual instance).

The exact consequences of a missed deadline depend on the Dbs_Entity in which
it occured, and the DDS_OwnershipQosPolicy value of that DDS_Entity:

* In case a DDS_DataWriter Misses an instance deadline (regardless of its
DDS_OwnershipQosPolicy setting), an
offered_deadline_missed_status IS raised, which can be detected by
either a DDS_Listener OF a DDS_StatusCondition. There are no further
conseguences.

eIn case a DDS_DataReader mMisses an instance deadline, a
requested_deadline_missed_status iS raised, which can be detected by
either a DDS_Listener OF a DDS_StatusCondition. In case the
DDS_OwnershipQosPolicy IS set to SHARED, there are no further
consequences. In case the DDS_OwnershipQosPolicy iS Set t0 EXCLUSIVE, the
ownership of that instance on that particular bDS_DataReader iS transferred to
the next available highest strength DDS_Datawriter, but this will have no
impact on the instance_state whatsoever. So even when a deadline is missed
for an instance that has no other (lower-strength) bbs_bpatawriters to transfer
ownership to, the instance_state remains unchanged. See also Section
3.1.3.11, DDS OwnershipQosPolicy.

This QosPolicy isapplicable to abps_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bps_Entity, thisQosPolicy may
be changed by using the Dbs_<DDs_Entity>_set_qgos operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 7 DDS_DeadlineQosPoalicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of thebDs_Datawriter
and ppS_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a DDs_DataReader specifiesisnot allowed
to send its data to that specific DDS_DataReader. A DDS_DataReader that hasan
incompatible Qos with respect to what a DDS_Datawriter Specifies does not get
any data from that particular DDS_Datawriter.

Changing an existing deadline period using the set_qgos operation on either the
DDS_DataWriter Or DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their rx0 values. (See dso
in Section 3.1.3, Sruct QosPolicy, the paragraph entitled Requested/Offered.)
Consider a writer with deadline period pw and a reader with deadline period pr,
where pw <= Pr. In this case a connection between that reader and that writer is
established. Now suppose pw is changed so that pw > Pr, then the existing
connection between reader and writer will be lost, and the reader will behave as if
the writer unregistered all its instances, transferring the ownership of these instances
when appropriate. See also Section 3.1.3.11, DDS Owner shipQosPolicy.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bbs_Datawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

65
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS DestinationOrder QosPolicy

66
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_DestinationOrderQosPolicyKind
{ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
DDS_BY_ SOURCE_TIMESTAMP_DESTINATIONORDER_QOS };
struct DDS_DestinationOrderQosPolicy
{ DDS_DestinationOrderQosPolicyKind kind; };

Description
This QosPolicy controlsthe order in which the DDS_DataReader stores the data.

Attributes

DDS_DestinationOrderQosPolicyKind kind - controls the order in which
the DDS_DataReader storesthe data.

Detailed Description

ThisQosPolicy controlsthe order in which the DDs_DataReader stores the data
The order of storage is controlled by the timestamp. However a choice can be made
to use the timestamp of the bps_DataReader (time of reception) or the timestamp
of the DDS_Datalriter (Sourcetimestamp).

ThisQosPolicy isapplicableto abbs_bDatawWriter, DDS_DataReader and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy cannot
be changed any more.

Attribute

The gosPolicy iscontrolled by the attribute kind which may be:

« DDS BY_ RECEFTION_TIMESTAMP_DESTINATIONORDER QOS
» DDS BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

When set to DDS_BY_ RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the
order is based on the timestamp, at the moment the sample was received by the
DDS_DataReader.

When set to DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order
is based on the timestamp, which was set by the DDs_batawriter. This meansthat
the system needs some time synchronisation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 8 Requested/Offered DDS_DestinationOr der QosPolicy

\g@ted BY RECEPTION_ | BY _SOURCE_TIM
Offer TIMESTAMP ESTAMP
BY_RECEPTION_TIMESTAMP compati ble | Ncompati ble
BY_SOURCE_TIMESTAMP CompaIi ble CompaIi ble

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gosPolicy of thebps_bpatawriter
and pps_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a DDS_DataReader Specified, is not
allowed to send its data to that specific DDS_DataReader. A DDS_DataReader
that has an incompatible gos with respect to what a bDS_Datawriter specified,
does not get any data from that particular bDS_DatawWriter.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bbsS_Datawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS DurabilityQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_DurabilityQosPolicyKind
{ DDS_VOLATILE_DURABILITY_ QOS,
DDS_TRANSTIENT_ LOCAL_DURABILITY_ QOS,
DDS_TRANSIENT DURABILITY QOS,
DDS_ PERSISTENT DURABILITY QOS };
struct DDS_DurabilityQosPolicy
{ DDS_DurabilityQosPolicyKind kind; };

Description

This QosPolicy controls whether the data should be stored for late joining readers.
67
APl Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

68
API Reference

Attributes

DDS_DurabilityQosPolicyKind kind - specifiesthe type of durability from
DDS_VOLATILE_DURABILITY_QOS (short life) to
DDS_PERSISTENT_DURABILITY_QOS (long life).

Detailed Description

The decoupling between pbs_bpataReader and DDS_DataWriter offered by the
Data Distribution Service allows an application to write data even if there are no
current readers on the network. Moreover, a DDS_DataReader that joins the
network after some data have been written could potentially be interested in
accessing the most current values of the data as well as some history. This
QosPolicy controls whether the Data Distribution Service will actually make data
availableto late-joining DDS_DataReaders.

This QosPolicy isapplicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning pbs_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which may be:

* DDS_VOLATILE_DURABILITY_Q0S - the samples are not available to
late-joining DDS_DataReaders. In other words, only DDS_DataReaders,
which were present at the time of the writing and have subscribed to this
DDS_Topic, Will receive the sample. When a DpDS_DataReader subscribes
afterwards (late-joining), it will only be able to read the next written sample. This
setting is typically used for data, which is updated quickly;

* DDS_TRANSIENT LOCAL_DURABILITY_Q0S - the functionality behind this
setting is not yet implemented. It is scheduled for afuture release;

* DDS_TRANSIENT_DURABILITY_QOS - SOme samplesare availableto late-joining
DDS_DataReaders (stored in memory). This means that the late-joining
DDS_DataReaders are able to read these previously written samples. The
DDS_DataReader does not necessarily have to exist at the time of writing. Not
al samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the bbs_Datawriter and
will outlivethe bbs_Datawriter. Thismay be used to implement reallocation of
applications because the datais saved in the Data Distribution Service (not in the
DDS_DataWriter). Thissetting istypically used for state related information of
an application. In this case also the burabilityServiceQosPolicy Settings
are relevant for the behaviour of the Data Distribution Service;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.1 InfrastructureModule

DDS_PERSISTENT _DURABILITY_QOS - the datais stored in permanent storage
(e.g. hard disk). This means that the samples are also available after a system
restart. The samples not only outlives the bbs_batavwriters, but even the Data
Distribution Service and the system. This setting is typically used for attributes
and settings for an application or the system. In this case adso the
DurabilityServiceQosPolicy Settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered

n case the Requested/Offered gosPolicy are incompatible, the notification

DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 9 Requested/Offered DDS DurabilityQosPolicy

Requestec|| VOLATILE TRANSIENT PERSISTENT
%@1\
VOLATILE compatible INcompatible INcompatible
TRANSIENT compatible compatible INcompatible
PERSISTENT compatible compatible compatible

This means that the Request/Offering mechanism is applicable between:

the DDS_DatawWriter and the DDS_DataReader: if the QosPolicy settings
between DDS DataWriter and DDS DataReader are inconsistent, no
communication between them is established. In addition the DDs_Datawriter
will be informed viaa bbs_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS status change

the DDs_bpatawriter and the Data Distribution Service (as a built-in
DDS_DataReader): if the QosPolicy Settings between ppbs_bpatawriter and
the Data Distribution Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late
joining bDS_DataReaders. The QosPolicy of the Data Distribution Service in
the role of DDS_DataReader is specified by the DDS_Topic QosPolicy

the Data Distribution Service (as a built-in DDS_DatawWriter) and the
DDS_DataReader: if the QosPolicy settings between the Data Distribution
Service and the bDs_DataReader are inconsistent, no communication between
them is established. In that case the Data Distribution Service will not publish
historical data to late joining DDS_DataReaders. The QospPolicy of the Data
Didtribution Service in the role of pps_patawriter is specified by the
DDS_Topic QosPolicy.
69
APl Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Cleanu

The DDS_DurabilityQosPolicy kind setting DDS_TRANSIENT_
DURABILITY_QOS and DDS_PERSISTENT_ DURABILITY_QOS determine that the
DDS_DurabilityServiceQosPolicy appliesfor the bDs_Topic. It controls
amongst others at which time the durability service is allowed to remove all
information regarding a data-instance. Information on a data-instance is maintained
until the following conditions are met:

* the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE),

 and the system detects that there are no more “live” DDS_Dataliriter oObjects
writing the instance, that is, @&l DDS_Datawriter either
unregister_instance the instance (call
DDS_DataWriter_unregister_instance operation) or lose ther
liveliness,

» and atimeinterval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the DDS_DurabilityServiceQosPolicy attribute
service_cleanup_delay IS apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_ copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS DurabilityServiceQosPolicy

70
API Reference

Scope
DDS

Synopsis
#include <dds_dcps.h>
struct DDS_DurabilityServiceQosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

{ DDS_Duration_t service_cleanup_delay;
DDS_HistoryQosPolicyKind history_kind;
DDS_long history_depth;

DDS_long max_samples;
DDS_long max_instances;
DDS_long max_samples_per_instance; };

Description

ThisQosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data.

Attributes

DDS_Duration_t service_cleanup_delay - Specifies how long the durability
service must wait before it is alowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

DDS_HistoryQosPolicyKind history_ kind - Specifies the type of history,
which may be DDS_KEEP_LAST_HISTORY_QOS, or
DDS_KEEP_ALL_HISTORY_QOS the durability service must apply for the
transient or persistent topic data-instances.

DDS_long history._depth - specifies the number of samples of each instance of
data (identified by its key) that is managed by the durability service for the
transient or persistent topic data-instances. If history_kind is
KEEP_LAST_HTISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_instance for thisQosPolicy to be consistent.

DDS_long max_samples - Specifies the maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_instances - specifies the maximum number of instances the
durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_samples_per_instance - specifies the maximum number of
samples of any single instance the durability service will manage for the
transient or persistent topic data-instances. If history_kind isbps_KEEP_LAST_
HISTORY_QOS, max_samples_per_instance must be greater than or equal
tohistory_depth for thisQosPolicy to be consistent.

Detailed Description

This gosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limitsit must apply.

71
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

72
API Reference

Cleanu

The setting of the DDS_DurabilityServiceQosPolicy only applieswhen kind
of the DDS_DurabilityQosPolicy iS either DDS_TRANSIENT_
DURABILITY_QOS OF DDS_PERSISTENT_DURABILITY_QOS. The
service_cleanup_delay Setting controls at which time the durability serviceis
allowed to remove all information regarding a data-instance. Information on a
data-instance is maintained until the following conditions are met:

* the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE)

+ and the system detects that there are no more “live” Datawriter objectswriting
the instance, that is, al Datawriter either unregister_instance the
instance (call unregister_instance operation) or losetheir 1iveliness

» and atime interval longer than service_cleanup_delay haselapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met

The use of the attribute service_cleanup_delay IS apparent in the situation
where an application disposes an instance and it crashes before having a chance
to complete additional tasks related to the disposal of the instance. Upon re-start
the application may ask for initial datato regain its state and the delay introduced by
the service_cleanup_delay allows the re-started application to receive the
information of the disposed instance and complete the interrupted tasks.

History

Theattributeshistory_kind and history_ depth apply to the history settings of
the durability service’s internal DDS_DataWriter and DDS_DataReader
managing the topic. The DDS_HistoryQosPolicy behaviour, as described in
Section 3.1.3.7, DDS _HistoryQosPolicy, applies to these attributes.

Resource Limits

The attributes max_samples, max_instances and max_samples_
per_instance apply to the resource limits of the durability service's internal
DDS_DataWriter and DDS_DataReader managing the topic. The
DDS_ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(DDS_ResourcelimitsQosPolicy) appliesto these attributes.

TopicQos

ThisQosPolicy canbeset onapps_Topic only. After enabling of the concerning
DDS_Topic, thisQosPolicy can not be changed any more.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_EntityFactoryQosPalicy
Synopsis

#include <dds_dcps.h>

struct DDS_EntityFactoryQosPolicy
{ DDS_boolean autoenable_created_entities; };

Description

This gosPolicy controls the behaviour of the Entity as afactory for other
entities.

Attributes

DDS_boolean autoenable_ created _entities - Specifies whether the entity
acting as a factory automatically enables the instances it creates. If
autoenable created entities is TRUE the factory will automatically enable each
created Entity, otherwiseit will not.

Detailed Description

This gosPolicy controls the behaviour of the Entity as afactory for other
entities. It concerns only bDS_DomainParticipantFactory (as factory for
DDS_DomainParticipant), DDS_DomainParticipant (as factory for
DDS_Publisher, DDS_Subscriber, and DDS_Topic), DDS_Publisher (as
factory for DDS_DataWriter), and DDS_Subscriber (as factory for
DDS_DataReader).

This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.

The setting of autoenable_created_entities to TRUE indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time a new DDS_Entity is created. Therefore, the bps_Entity
returned by create_<entity> will already be enabled. A setting of FALSE
indicates that the pps_Entity will not be automatically enabled: the application
will need to enable it explicitly by means of the enable operation. See Section
3.1.1.1, DDS Entity_enable for a detailed description about the differences between
enabled and disabled entities.

The default setting of autoenable _created_entities iSTRUE meaning that by
default it is not necessary to explicitly call enable on newly created entities.

DDS_GroupDataQosPolicy
Synopsis

#include <dds_dcps.h>
struct DDS_GroupDataQosPolicy
73

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

{ DDS_sequence_octet value; };

Description

This gospPolicy allows the application to attach additional information to a
DDS_Publisher Or DDS_Subscriber DDS_Entity. Thisinformationis
distributed with the bps_BuiltinTopics.

Attributes

DDS_sequence_octet value - asequence of octets that holds the application
group data. By default, the sequence has length 0.

Detailed Description

This gosPolicy allows the application to attach additional information to a
DDS_Publisher Or DDS_Subscriber DDS_Entity. Thisinformationis
distributed with the DDS_BuiltinTopic. An application that discovers a new
DDS_Entity of the listed kind, can use this information to add additional
functionality. The bbs_cGroupbataQosPolicy is changeable and updates of the
DDS_BuiltinTopic instance must be expected. Note that the Data Distribution
Service is not aware of the real structure of the group data (the Data Distribution
System handles it as an opaque type) and that the application is responsible for
correct mapping on structural types for the specific platform.

DDS HistoryQosPolicy

74
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_HistoryQosPolicyKind
{ DDS_KEEP_LAST HISTORY_QOS,
DDS_KEEP_ALIL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
{ DDS_HistoryQosPolicyKind kind;
DDS_long depth; 1};

Description

This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes

DDS_HistoryQosPolicyKind kind - specifiesthetype of history, which may be
DDS_KEEP_LAST_HISTORY_QOS Of DDS_KEEP_ALL_HISTORY_QOS.

DDS_long depth - specifies the number of samples of each instance of data
(identified by its key) managed by thisDDS_Entity.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Detailed Description

ThisQosPolicy controlswhether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver al samples, or do something in between.
In other words, how the bDs_DatawWriter Or DDS_DataReader should store
samples. Normally, only the most recent sample is available but some history can be
stored.

DDS DataWriter

On the publishing side this gosPolicy controls the samples that should be
maintained by the DDs_batawriter on behalf of existing Dbs_DataReader
objects. The behaviour with respect to aDDS_DataReader Objects discovered after
asampleiswritten is controlled by the bps_burabilityQosPolicy.

DDS DataReader

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service.

This gosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning bDS_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute kind which can be:

* DDS_KEEP_LAST_HISTORY_0Q0S - the Data Distribution Service will only
attempt to keep the latest values of the instance and discard the older ones. The
attribute “depth” determines how many samples in history will be stored. In
other words, only the most recent samplesin history are stored. On the publishing
side, the Data Distribution Service will only keep the most recent “depth”
samples of each instance of data (identified by its key) managed by the
DDS_DataWriter. On the subscribing side, the pps_bpataReader will only
keep the most recent “depth” samples received for each instance (identified by
its kxey) until the application “takes’ them via the DDS_DataReader_take
operation. DDS_KEEP_LAST_HISTORY_QOS is the default kind. The default
value of depth is 1, indicating that only the most recent value should be
delivered. If a depth other than 1 is specified, it should be compatible with the
settings of the DDS_ResourceLimitsQosPolicy max_samples_
per_instance. For these two QosPolicy Settings to be compatible, they must
verify that depth <= max_samples per instance, Otherwise a
DDS_RETCODE_INCONSISTENT POLICY iSgenerated on relevant operations;

e DDS_KEEP_ALL_HISTORY_QO0S - al samples are stored, provided, the resources
are available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data

75
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

76
API Reference

(identified by its key) managed by the pps_batawriter until they can be
delivered to all subscribers. On the subscribing side, the Data Distribution
Service will attempt to keep all samples of each instance of data (identified by its
key) managed by the DDS_DataReader. These samples are kept until the
application “takes” them from the Data Distribution Service via the
DDS_DataReader_take operation. The setting of depth has no effect. Its
implied value is DDS_LENGTH_UNLIMITED. The resources that the Data
Distribution Service can use to keep this history are limited by the settings of the
DDS_ResourceLimitsQosPolicy. If the limit is reached, the behaviour of the
Data Distribution Service will depend on the bDs_ReliabilityQosPolicy. If
the DDS_ReliabilityQosPolicy IS DDS_BEST EFFORT_RELIABILITY_
Qos, the old vaues are discarded. If DDS_ReliabilityQosPolicy IS
DDS_RELIABLE_RELIABILITY_QOS, the Data Distribution Service will block
the DDS_DataWriter until it can deliver the necessary old values to all
subscribers.

On the subscribing side it controls the samples that should be maintained until the
application “takes’” them from the Data Distribution Service. On the publishing side
this gospPolicy controls the samples that should be maintained by the
DDS_DataWriter on behalf of DDS_DataReader objects. The behaviour with
respect to a Dbs_DataReader Objects discovered after a sample is written is
controlled by the bbs_burabilityQosPolicy. In more detail, this QosPolicy
specifies the behaviour of the Data Distribution Service in case the value of a
sample changes (one or more times) before it can be successfully communicated to
one or more DDS_Subscribers.

Requested/Offered

The setting of the gosPolicy offered isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting side will not be
raised.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bDS_bDatawriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS L atencyBudgetQosPoalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>

struct DDS_LatencyBudgetQosPolicy
{ DDS_Duration_t duration; };

Description

Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the DDS DataReader
and the application is notified of thisfact.

Attributes

DDS_Duration_t duration - pecifiesthe maximum acceptable additional delay
from the time the data is written until the datais delivered.

Detailed Description

This gosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DDS_DataReader and the application is notified of this fact. ThisQospPolicy
provides a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimise its internal operation. The default value of the
duration iSzero, indicating that the delay should be minimized.

This QosPolicy isapplicable to a bDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning pbs_Entity, thiSQosPolicy may
be changed by using the DDS_<DDS_Entity>_set_qgos operation.

Requested/Offered

ThisgosPolicy isconsidered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered gospPolicy are incompatible, the
notification bbs_OFFERED_INCOMPATIBLE_QOS Status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 10 DDS L atencyBudgetQosPoalicy

Duration Compatibility
offered duration < requested duration compatible
offered duration = requested duration compatible
offered duration > requested duration INcompatible

77
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.

Changing an existing latency budget using the set_qos operation on either the
DDS_DataWriter OF DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their rxo values. (See aso
in Section 3.1.3, Sruct QosPolicy the paragraph entitled Requested/Offered.)
Consider awriter with budget Bw and a reader with budget Br, where Bw <= Br. In
this case a connection between that reader and that writer is established. Now
suppose Bw is changed so that Bw > Br, then the existing connection between
reader and writer will be lost, and the reader will behave asif the writer unregistered
al itsinstances, transferring the ownership of these instances when appropriate. See
also Section 3.1.3.11, DDS _OwnershipQosPolicy.

DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS LifespanQosPolicy

78
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LifespanQosPolicy
{ DDS_Duration_t duration; };

Description

This QosPolicy specifies the duration of the validity of the data written by the

DDS_DataWriter.

Attributes

DDS_Duration_t duration - Specifiesthe length in time of the validity of the
data.

Detailed Description

This gosPolicy specifies the duration of the validity of the data written by the
DDS_DataWriter. When thistime has expired, the datawill be removed or if it has
not been delivered yet, it will not be delivered at all. In other words, the duration
is the time in which the data is still valid. This means that during this period a

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_DataReader can access the data or if the data has not been delivered yet, it
still will be delivered. The default value of the duration is
DDS_DURATION_INFINITE, indicating that the data does not expire.

ThisQosPolicy isapplicable to aDpDs_DataWriter and a DDS_Topic. After
enabling of the concerning DDS_Entity, thisQosPolicy may be changed by using
the DDS_<DDS_Entity>_set_gos operation.

Requested/Offered

The setting of this gosPolicy isonly applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
will not be rejected on account of this gosPolicy. The notification
DDS_OFFERED_TNCOMPATIBLE_QOS status on the offering side will not be raised.

DDS TopicQos

This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_qgos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_Dataliriter are consistent.

DDS LivelinessQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_LivelinessQosPolicyKind
{ DDS_AUTOMATIC_LIVELINESS_QOS,
DDS_MANUAL_BY PARTICIPANT LIVELINESS_QOS,
DDS_MANUAL_BY_ TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
{ DDS_LivelinessQosPolicyKind kind;
DDS_Duration_t lease_duration; };

Description

This QosPolicy controls the way the liveliness of an DbDs_Entity is being
reported.

Attributes

DDS_LivelinessQosPolicyKind kind - controlsthe way the liveliness of an
DDS_Entity iSreported.

DDS_Duration_t lease_duration - specifiesthe duration of the interval
within which the liveliness must be reported.

79
API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Detailed Description

This gosPolicy controls the way the liveliness of an pbs_Entity is being
determined. The liveliness must be reported periodically before the
lease_duration expires.

ThisQosPolicy isapplicableto aDpDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bDs_Entity, thiSQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which can be:

* DDS_AUTOMATIC_LIVELINESS_QO0S - the Data Distribution Service will take
care of reporting the Liveliness automatically with a rate determined by the
lease_duration

* DDS_MANUAL_BY_PARTICIPANT LIVELINESS_QOS - the application must take
care of reporting the liveliness before the lease_duration expires. If a
DDS_Entity reports its liveliness, al DDS_Entities within the same
DDS_DomainParticipant that have their liveliness kind set to
DDS_MANUAL_BY_ PARTICIPANT LIVELINESS_QOS, can be considered alive
by the Data Distribution Service. Liveliness can reported explicitly by calling the
operation DDS_DomainParticipant_assert_liveliness or implicitly by
writing some data

* DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the 1ease_duration expires. This can explicitly
be done by calling the operation DDS_DataWriter_ assert_liveliness Of
implicitly by writing some data

The lease_duration specifies the duration of the interval within which the

liveliness should be reported.

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 11 DDS LivelinessQosPalicy

80
API Reference

Requestec AUTOMATIC | MANUAL_BY_ | MANUAL_BY_
m PARTICIPANT TOPIC
AUTOMATIC compatible INcompatible INcompatible
MANUAL_BY_PARTICIPANT | compatible compatible INcompatible
MANUAL_BY_TOPIC compatible compatible compatible
& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of thebDs_Datalriter
and pDS_DataReader. In other words, the communication between any
DDS_DatalWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a Dbs_DataReader Specified is not allowed
to send its data to that specific Dbs_DataReader. A DDS_DataReader that hasan
incompatible gos with respect to what a DDS_Datatwriter Specified does not get
any datafrom that particular pDs_DataWriter.

DDS TopicQos

This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS <DDS_Entity> copy_ from topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DatalWriter are consistent.

DDS_Owner shipQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_OwnershipQosPolicyKind
{ DDS_SHARED OWNERSHIP_QOS,
DDS_EXCLUSIVE_OWNERSHIP_QOS };
struct DDS_OwnershipQosPolicy
{ DDS_OwnershipQosPolicyKind kind; };

Description

This QosPolicy specifies whether a DDs_DataWriter exclusively owns an

instance.

Attributes

DDS_OwnershipQosPolicyKind kind - specifieswhether aDDS_DataWriter
exclusively owns an instance.

Detailed Description

This QosPolicy specifies whether aDDs_Datawriter exclusively may own an
instance. In other words, whether multiple DDS_Datawriter oObjects can write the
same instance at the same time. The DDS_DataReader objects will only read the
modifications on an instance from the bps_patawriter owning the instance.

81
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

82
API Reference

Exclusive ownership is on an instance-by-instance basis. That is, a
DDS_Subscriber can receive values written by a lower strength
DDS_DataWriter aslong as they affect instances whose values have not been
written or registered by a higher-strength bps_bpatawriter.

ThisQosPolicy isapplicableto abpDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bDs_Entity, thisQosPolicy
cannot be changed any more.

Attribute
The QosPolicy iscontrolled by the attribute kind which can be:

* DDS_SHARED_OWNERSHIP_QO0S (default) - the same instance can be written by
multiple DDs_batawriter objects. All updates will be made available to the
DDS_DataReader Objects. In other words it does not have a specific owner

* DDS_EXCLUSIVE_OWNERSHIP_QOS - theinstance will only be accepted from one
DDS_DataWriter which is the only one whose modifications will be visible to
the DDS_DataReader Objects

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TINCOMPATIBLE_QOS status on the requesting side is raised.

Table 12 Requested/Offered DDS_Owner shipQosPalicy

\ig@ted SHARED EXCLUSIVE
Offer

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of theDbs_bpatawriter
and pbs_DataReader. The value of the owNERsHIP Kind offered must exactly
match the one requested or else they are considered incompatible. As a
consequence, a DDS_DataWriter that has an incompatible gos with respect to
what a DDS_DataReader specified is not allowed to send its data to that specific
DDS_DataReader. A DDS_DataReader that has an incompatible gos with respect
to what apps_batawWriter specified does not get any data from that particular
DDS_DataWriter.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Exclusive Ownership

The DDS_Datawriter with the highest bbs_oOwnershipStrengthQosPolicy
value and being alive (depending on the bbs_LivelinessQosPolicy) and
which has not violated its DDS_DeadlineQosPolicy contract with respect to the
instance, will be considered the owner of the instance. Consequently, the ownership
can change as aresult of:

e a DDS_DataWriter in the system with a higher value of the
DDS_OwnershipStrengthQosPolicy modifiesthe instance

e achangeinthe bbs_oOwnershipStrengthQosPolicy value (becomesless) of
the DDS_Datawriter owning the instance

 achange in the liveliness (becomes not alive) of the DDs_Datawriter owning
the instance

« a deadline with respect to the instance that is missed by the bbs_batawriter
that owns the instance.

Time-line

Each pps_pataReader may detect the change of ownership at a different time. In
other words, at a particular point in time, the DDS_DataReader objects do not have
a consistent picture of who owns each instance for that DDS_Topic. Outside this
grey area in time all bDS_DataReader Objects will consider the same
DDS_DataWriter to bethe owner.

If multiple DDS_DatawWriter oObjects with the same
DDS_OwnershipStrengthQosPolicy modify the same instance, all
DDS_DataReader Objects will make the same choice of the particular
DDS_DataWriter that isthe owner. The DDS_DataReader IS aso notified of this
via a status change that is accessible by means of the Listener or
DDS_Condi tion mechanisms.

Owner ship of an Instance

DDS_DataWriter Objects are not aware whether they own a particular instance.
There is no error or notification given to abps_batawWriter that modifies an
instance it does not currently own.

TopicQos

This QosPolicy can be set on a pps_Topic. The bps_bDatawriter and/or
DDS_DataReader can copy this gos by using the operations
DDS_Publisher/Subscriber_copy_from_topic_gos and then
DDS_DataWriter/DataReader_set_gos. That way the application can
relatively easily ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent

83
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_Owner shipStrengthQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_OwnershipStrengthQosPolicy
{ DDS_long value; };

Description

This QosPolicy specifies the value of the ownership strength of a
DDS_DataWriter used to determine the ownership of an instance.

Attributes
DDS_long value - Specifiesthe ownership strength of the DDS_Datawriter.

Detailed Description

This gosPolicy specifies the value of the ownership strength of a
DDS_DataWriter used to determine the ownership of an instance. This ownership
is used to arbitrate among multiple bDS_Datawriter Objects that attempt to
modify the same instance. This QosPolicy only applies if the
DDS_OwnershipQosPolicy iSOf kind DDS_EXCLUSIVE_OWNERSHIP_QOS. For
more information, see DDS_OwnershipQosPolicy.

ThisQosPolicy isapplicable to apps_bpatawriter only. After enabling of the
concerning pbs_Entity, thisgosPolicy may be changed by using the
DDS_DataWriter_set_gos operation. When changed, the ownership of the
instances may change with it.

DDS_PartitionQosPolicy

84
API Reference

Synopsis
#include <dds_dcps.h>

struct DDS_PartitionQosPolicy
{ DDS_StringSeq name; };

Description

This QosPolicy specifies the logical partitions in which the
DDS_Subscribers and DDS_Publishers are active.

Attributes

DDS_StringSeqg name - holds the sequence of strings, which specifies the
partitions

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This gosPolicy specifiesthelogical partitions inside the domain in which the
DDS_Subscribers and DDS_Publishers are active. This QosPolicy iS
particularly used to create a separate subspace, like areal domain versus a
simulation domain. A DDS_Publisher and/or DDS_Subscriber can participate
in more than one partition. Each string in the sequence of strings name defines a
partition name. A partition name may contain wildcards. Sharing a
partition means that at least one of the partition names in the sequence
matches. When none of the partition names match, it is not considered an
“incompatible” QoS and does not trigger any 1isteners Of conditions. It only
means, no communication is established. The default value of the attribute is an
empty (zero-sized) sequence. Thisis treated as a special value that matches the
partition.

ThisQosPolicy isapplicableto abps_publisher and DDS_Subscriber. After
enabling of the concerning DDS_Entity, thisQosPolicy may bechanged by using
the DDsS_<DDS_Entity>_set_gos operation. When changed, it modifies the
association of DDS_DataReader and DDS_DataWriter objects. It may establish
new associations or break existing associations. By default, DDS_Datawriter and
DDS_DataReader Objects belonging to a DDS_Publisher Of DDS_Subscriber
that do not specify aDDS_PartitionQosPolicy, will participate in the default

partition. Inthiscase the partition name is“”.

Requested/Offered

The offered setting of this QosPolicy isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised

DDS_PresentationQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_PresentationQosPolicyAccessScopeKind
{ DDS_INSTANCE_PRESENTATION_QOS,
DDS_TOPIC_PRESENTATION_QOS,
DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy
{ DDS_PresentationQosPolicyAccessScopeKind access_scope;
DDS_boolean coherent_access;
DDS_boolean ordered_access; };

Note: ThisQospPolicy isnot yet implemented. It is scheduled for afuture release.

85
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

86
API Reference

Description

This gosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes

DDS_PresentationQosPolicyAccessScopeKind access_scope - Specifies
the samples controlled by this policy.

DDS_boolean coherent_access - thefunctionality behind this setting is not yet
implemented. It is scheduled for afuture release.

DDS_boolean ordered_access - the functionality behind this setting is not yet
implemented. It is scheduled for afuture release.

Detailed Description

This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
DDS_Entity objects for which the order and coherency of changes can be
preserved.

ThisQospPolicy isapplicableto abps_publisher and DDS_Subscriber. After
enabling of the concerning pps_Entity, this QosPolicy cannot be changed any
more.

Attributes

The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only DDS_INSTANCE_
PRESENTATION_QOS (the lowest level) is implemented, coherent access and
ordered access are not applicable.

The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. Thisis the case even if the same application thread
makes the changes using the same DDS_DataWriter. Thisis the default
access__scope.

Note that this gosPolicy controls the ordering at which related changes are made
available to the pps_subscriber. In other words the pbs_subscriber can
access the changes in the proper order. However, it does not necessarily imply that

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

the pps_subscriber will indeed access the changes in the correct order. For that
to occur, the application at the DDs_subscriber end must use the proper logic in
reading the bbs_DataReader.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 13 Requested/Offered DDS_PresentationQosPolicy

Requested INSTANCE Topic Group
M
instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Only the default settings for this policy are currently supported. Deviations from the
default will beignored by the Publisher and/or Subscriber.

DDS _ReaderDatalL ifecycleQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_ReaderDatalLifecycleQosPolicy
{ DDS_Duration_t autopurge_nowriter_samples_delay;
DDS_Duration_t autopurge_disposed_samples_delay; 1};

Description

This QosPolicy specifies the maximum duration for which the bDs_bataReader
will maintain information regarding a data instance for which the instance_state
becomes either bbDsS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes

DDS_Duration_t autopurge_nowriter_samples_delay - Specifiesthe
duration for which the bps_bataReader Will maintain information regarding a
data instance for which the instance_state becomes
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration
valueisDDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

87
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_Duration_t autopurge_disposed_samples_delay - Specifies the
duration for which the DDs_DataReader Will maintain information regarding a
data instance for which the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration
valueis DDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

Detailed Description

This QosPolicy specifies the maximum duration for which the bps_bpataReader
will maintain information regarding a data instance for which the
instance_state becomes either pDs_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE or DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. The
DDS_DataReader manages resources for instances and samples of those instances.
The amount of resources managed depends on other gosPolicies like the
DDS_HistoryQosPolicy and the DDS_ResourceLimitsQosPolicy. The
DDS_DataReader can only release resources for data instances for which all
samples have been taken and the instance_state has become
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE. If an application does not take the samples
belonging to a data instance with such an instance_state, the
DDS_DataReader Will never be able to rel ease the maintained resources. By means
of this QosPolicy the application can instruct the bDs_DataReader to release al
resources related to the concerning data instance after a specified duration.

ThisgosPolicy isapplicable to aDpDS_DataReader only. After enabling of the
concerning bbs_DataReader, thiSQosPolicy can be changed using the set_qgos
operation.

DDS RdliabilityQosPolicy

88
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_ReliabilityQosPolicyKind
{ DDS_BEST_EFFORT_RELIABILITY_ QOS,
DDS_RELIABLE_RELIABILITY QOS };
struct DDS_ReliabilityQosPolicy
{ DDS_ReliabilityQosPolicyKind kind;
DDS_Duration_t max_blocking time; };

Description

This gosPolicy controlsthe level of reliability of the data distribution offered or
reguested by the bDs_DataWriters and DDS_DataReaders.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Attributes

DDS_ReliabilityQosPolicyKind kind - specifiesthetype of reliability which
may be DDS_BEST_EFFORT_RELIABILITY_QOS Of
DDS_RELIABLE_RELIABILITY_QOS.

DDS_Duration_t max_blocking time - specifies the maximum time the
DDS_DataWriter_write operation may block when the DDs_batawriter
does not have space to store the value written.

Detailed Description

This gosPolicy controlsthe level of reliability of the data distribution requested
by aDbs_DataReader or offered by abps_bpatawriter. In other words, it
controls whether datais allowed to get lost in transmission or not.

This gosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which can be:

* DDS_RELIABLE_RELIABILITY_QOS - the DataDistribution Service will attempt
to deliver all samples in the pps_patawriters history; arrival-checks are
performed and data may get re-transmitted in case of lost data. In the steady-state
(no modifications communicated via the DDS_Datawriter) the Data
Distribution Service guarantees that all samplesin the bbs_batawriter history
will eventualy be delivered to the all bps_bpataReader objects. Outside the
steady-state the DDS_HistoryQosPolicy and
DDS_ResourceLimitsQosPolicy determine how samples become part of the
history and whether samples can be discarded from it. In this case also the
max_blocking_ time must be set

* DDS _BEST EFFORT_RELIABILITY QoS - the Data Distribution Service will
only attempt to deliver the data; no arrival-checks are being performed and any
lost data is not re-transmitted (non-reliable). Presumably new values for the
samples are generated often enough by the application so that it is not necessary to
resent or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. In case the
DDS_HistoryQosPolicy kind iS Set to DDS_KEEP_ALL_HISTORY_QOS, the
DDS_Dataliriter_write operation on the DDS_DatawWriter may block if the
modification would cause one of the limits, specified in the
DDS_ResourceLimitsQosPolicy, to be exceeded. Under these circumstances,

89
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

the max_blocking_time attribute of the bDS_ReliabilityQosPolicy
configures the maximum duration the DDS_Datalriter_write operation may
block.

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 14 Requested/Offered DDS_ReliabilityQosPolicy

\\\\\\\ggffffed BEST EFFORT | RELIABLE
Offer

BEST_EFFORT compatible INcompatible
RELIABLE compatible compatible
DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS Resourcel imitsQosPalicy

90
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_ResourceLimitsQosPolicy
{ DDS_long max_samples;

DDS_long max_instances;

DDS_long max_samples_per_instance; };
Note: This gosPolicy isnot yet fully implemented. Missing features are
scheduled for afuture rel ease.

Description
ThisQosPolicy will specify the maximum amount of resources, which can be used
byaDDS_DataWriterOrDDS_DataReadeL

Attributes

DDS_long max_samples - Specifies the maximum number of data samples for all
instances for any single DDS_DataWriter (Or DDS_DataReader). By default,
DDS_LENGTH_UNLIMITED.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_long max_instances - $pecifiesthe maximum number of instances for any
single pDs_DataWriter (Or DDS_DataReader). By default,
DDS_LENGTH_UNLIMITED. Any other value than bbs_LENGTH_UNLIMITED
will currently be ignored.

DDS_long max_samples_per instance - Specifies the maximum number of
samples of any single instance for any single DbS_DataWriter (Or
DDS_DataReader). By default, DDS_LENGTH_UNLIMITED.

Detailed Description

This gosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy settings.

ThisQosPolicy is applicableto aDDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning pps_Entity, thisSQosPolicy
cannot be changed any more.

Requested/Offered

The value of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised.

Resource limits

If the DDS_pDatawriter objects are publishing samples faster than they are taken
by the DDS_DataReader objects, the Data Distribution Service will eventually hit
against some of the QosPolicy-imposed resource limits. Note that this may occur
when just a single bDs_DataReader cannot keep up with its corresponding
DDS_DataWriter.

In case the DDS_HistoryQosPolicy iSDDS_KEEP_LAST_HISTORY_QOS, the
setting of DDS_ResourcelLimitsQosPolicy max_samples_per_instance
must be compatible with the bps_HistoryQosPolicy depth. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance.

DDS TopicQos

This QosPolicy can be set on a pps_Topic. The bbs_bDatawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then

91
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS SchedulingQosPoalicy
Scope

DDS

Synopsis
#include <dds_dcps.h>
enum DDS_SchedulingClassQosPolicyKind
{ DDS_SCHEDULE_DEFAULT,
DDS_SCHEDULE_TIMESHARING,
DDS_SCHEDULE_REALTIME };
struct DDS_SchedulingClassQosPolicy
{ DDS_SchedulingClassQosPolicyKind kind; };
enum DDS_SchedulingPriorityQosPolicyKind
{ DDS_PRIORITY_RELATIVE,
DDS_PRIORITY_ABSOLUTE };
struct DDS_SchedulingPriorityQosPolicy
{ DDS_SchedulingPriorityQosPolicyKind kind; };
struct DDS_SchedulingQosPolicy
{ DDS_SchedulingClassQosPolicy scheduling class;
DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
DDS_long scheduling priority; 1};

Description

This gosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the bbs_DomainParticipant

& Note that some scheduling parameters may not be supported by the underlying
Operating System or that you may need special privileges to select particular
settings.

Attributes

DDS_SchedulingClassQosPolicyKind scheduling class.kind - Specifies
the scheduling class used by the Operating System, which may be
DDS_SCHEDULE_DEFAULT, DDS_SCHEDULE_TIMESHARING Of
DDS_SCHEDULE_REALTIME. Threads can only be spawned within the
scheduling classes that are supported by the underlying Operating System.

DDS_SchedulingPriorityQosPolicyKind scheduling priority kind.kind -
specifies the priority type, which may be either DDS_PRIORITY RELATIVE Of
DDS_PRIORITY_ABSOLUTE.

92
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_long scheduling priority - Specifiesthe priority that will be assigned to
threads spawned by the bbDs_DomainParticipant. Threads can only be
spawned with priorities that are supported by the underlying Operating System.

Detailed Description

This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the DDS_DomainParticipant. Notethat some scheduling parameters
may not be supported by the underlying Operating System or that you may need
special privileges to select particular settings. Refer to the documentation of your
OS for more details on this subject.

Although the behaviour of the scheduling class is highly dependent on the
underlying OS, in general when running in a Timesharing class your thread will
need to regularly yield execution to other threads of equal priority. In a Realtime
class, your thread normally runs until completion and can only be pre-empted by
higher priority threads. Often, the highest range of priorities is not accessible
through aTimesharing Class.

The scheduling_priority_kind determines whether the specified
scheduling priority should beinterpreted as an absolute priority or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DDS_DomainParticipant.

DDS TimeBasedFilter QosPolicy

Synopsis
#include <dds_dcps.h>
struct DDS_TimeBasedFilterQosPolicy
{ DDS_Duration_t minimum_separation; };

Note: ThisgosPolicy isnot yet implemented. It is scheduled for afuture release.

DDS _TopicDataQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_TopicDataQosPolicy
{ DDS_sequence_octet wvalue; };

Description

This gosPolicy allows the application to attach additional information to a
DDS_Topic DDS_Entity. Thisinformation is distributed with the
DDS_BuiltinTopics.

93
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes

DDS_sequence_octet value - asequence of octets that holds the application
topic data. By default, the sequence has length 0.

Detailed Description

This QosPolicy allows the application to attach additional information to a
DDS_Topic Entity. Thisinformation is distributed with the BuiltinTopic. An
application that discovers a new DDS_Topic entity, can use this information to add
additional functionality. The bbs_TopicDataQosPolicy IS changeable and
updates of the BuiltinTopic instance must be expected. Note that the Data
Distribution Service is not aware of the real structure of the topic data (the Data
Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

DDS TransportPriorityQosPolicy

94
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_TransportPriorityQosPolicy
{ DDS_long value; };

Description

ThisQosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by the DDS_Datawriter.

Attributes

DDS_long value - Specifiesthe priority with which the Data Distribution System
can handle the data produced by the bDS_Datawriter.

Detailed Description

This gosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by abps_batatiriter. ThiSQospPolicy isconsidered to
be a hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
typeis supported. By default the transport priority is set to O.

The DDS_TransportPriorityQosPolicy isapplicable to both pbs_Topic and
DDS_DataWriter entities. After enabling of the concerning pps_Entities, this
QosPolicy may be changed by using the set_qos operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

TopicQos

Note that changing this QosPolicy for the bbs_Topic does not influence the
behaviour of the Data Distribution System for existing DDs_batawWriter entities
because this gosPolicy isonly used by the operation copy_from_topic_gos
and when specifying DDS_DATAWRITER_QOS_USE_TOPIC_QOS when creating the
DataWriter.

DDS _User DataQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_UserDataQosPolicy
{ DDS_sequence_octet value; };

Description

This gosPolicy allows the application to attach additional information to a
DDS_DomainParticipant, DDS_DataReader Or DDS_DataWriter
DDS_Entity. Thisinformation is distributed with the Builtin Topics.

Attributes

DDS_sequence_octet value - iSasequence of octets that holds the application
user data. By default, the sequence has length O.

Detailed Description

This QosPolicy allows the application to attach additional information to a
DDS_DomainParticipant, DDS_DataReader Of DDS_DataWriter entity. This
information is distributed with the Builtin Topics. An application that discovers a
new pDS_Entity oOf the listed kind, can use this information to add additional
functionality. The DDS_UserDataQosPolicy iS changeable and updates of the
Builtin Topic instance must be expected. Note that the Data Distribution Serviceis
not aware of thereal structure of the user data (the Data Distribution System handles
it as an opaque type) and that the application is responsible for correct mapping on
structural types for the specific platform.

DDS Writer Datal ifecycleQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_WriterDataLifecycleQosPolicy
{ DDS_boolean autodispose_unregistered_instances; };
Note: The functionality behind this gosPolicy isnot yet fully implemented.
Missing features are scheduled for afuture release.

95
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description

This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the bbs_Datawriter.

Attributes

DDS_boolean autodispose_unregistered_instances - Specifies whether
the Data Distribution Service should automatically dispose instances that are
unregistered by thispps_batawriter.

Detailed Description

This QosPolicy controls the behaviour of the bps_bpatawriter with regardsto
the lifecycle of the data-instances it manages, that is, the data-instances that have
been registered either explicitly using one of the register operations or implicitly
by directly writing the data using the special DDS_HANDLE_NIL parameter. (See
also Section 3.4.2.50, SPACE_FooDataWriter_register_instance, on page 295).

The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the DDS_Datawriter:

* If the DDsS_Datawriter unregisters the instance explicitly using either
SPACE_FooDataWriter_unregister_instance or
SPACE_FooDataWriter_unregister_ instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

* If the DDS_Datawriter unregisters its instances implicitly because it is deleted
or if a DDs_bDataReader detects a loss of liveliness of a connected
DDS_DataWriter, then the auto_dispose_unregistered_instances flag
determines whether the concerned instances are automatically disposed (TRUE) or
not (FALSE).

The default value for the autodispose_unregistered_instances flagis
TRUE. FOr TRANSIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when aloss of
itslivelinessis detected.

DDS Ligtener interface

96
API Reference

This interface is the abstract base interface for all .istener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of aQosPolicy setting, etc. Each DCPS DDS_Entity
supports its own specialized kind of Listener. Listeners are related to changes

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

in communication status. For each DDs_Entity type, one specific Listener is
derived from this interface. In the following modules, the following Listeners are
derived from this interface:

« DDS DomainParticipantListener

DDS TopicListener
DDS PublisherListener

DDS DatawriterListener

DDS_SubscriberListener

DDS_DataReaderListener.

The DDS_Entity type specific Listener interfaces are part of the application
which must implement the interface operations. A user defined class for these
operations must be provided by the application which must extend from the specific
Listener class. All Listener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

&4 PRISMTECH

<<Interface>>
Listener
(from Infrastructure Module)

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_gos()
on_publication_match()

<<Interface>>
PublisherListener

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

DomainParticipantListener

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure 11 DCPSListeners
The base class DDS_Listener does not contain any operations.

97
API Reference

3 DCPS Classes and Operations

3.1.5 Sruct DDS Satus
Each concrete bps_Entity class has a set of Dbs_Status attributes and for each
attribute the pps_Ent ity class provides an operation to read the value. Changes to
DDS_Status attributes will affect associated Dbs_StatusCondition and
(invoked and associated) Listener Objects.

The communi cation statuses whose changes can be communicated to the application
depend on the ppbs_gntity. The following table shows the relevant statuses for
each DDS_Entity.

Table 15 Satus Description Per DDS _Entity

3.1 InfrastructureModule

DDS _Entity

Satus Name

M eaning

DDS_Topic

DDS_INCONSISTENT__
TOPIC_STATUS

Another DDS_Topic exists with the same name
but with different characteristics.

DDS_Subscriber

DDS_DATA_ON_
READERS_ STATUS

New information is available.

DDS_DataReader

DDS_SAMPLE_
REJECTED_STATUS

A (received) sample has been rejected.

DDS_LIVELINESS_
CHANGED_STATUS

The liveliness of one or more
DDS_DataWriter objects that were writing
instances read through the DDS_DataReader
has changed. Some DDS_DataWriter have
become “alive’ or “not alive’.

DDS_REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataReader was
expecting through its
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DDS_DATA_AVAILABLE_STATUS

New information is available.

DDS_SAMPLE_LOST_STATUS

A sample has been lost (never received).

DDS_SUBSCRIPTION_
MATCHED_STATUS

The DDS_DataReader has found a
DDS_DataWriter that matches the
DDS_Topic and has compatible Qos.

98
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Table 15 Satus Description Per DDS _Entity (Continued)

DDS Entity Satus Name Meaning
DDS_DataWriter DDS_LIVELINESS_ Theliveliness that the DDS_DataWriter
LOST_STATUS has committed through its

DDS_LivelinessQosPolicy Was not
respected; thus DDS_DataReader Objects
will consider the DDS_DataWriter asno
longer “alive’.

DDS_OFFERED_ Thedeadlinethat thepps_Datawriter has
DEADLINE_MI SSED_STATUS Commltted through ItS
DDS_DeadlineQosPolicy Was not
respected for a specific instance.

DDS_OFFERED_ A QosPolicy setting was incompatible
INCOMPATIBLE_QOS_STATUS | jth what was requested.
DDS_PUBLICATION_ Thepps_bpatawriter hasfound a
MATCHED_STATUS DDS_DataReader that matches the

DDS_Topic and has compatible Qos.

&4 PRISMTECH

A DDS_status attribute can be retrieved with the operation
get_<status_name>_status. For example, to get the
DDS_TInconsistentTopicStatus value, the application must call the operation
DDS_Topic_get_inconsistent_topic_status.

Conceptually associated with each DDS_Entity communication statusis alogical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The statusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.

For the plain communication DDS_Status, the StatusChangedrFlag isinitialy
set to FALSE. It becomes TRUE whenever the plain communication DDS_Status
changes and it is reset to FALSE each time the application accesses the plain
communication DDS_Status Viathe proper get_<status_name>_status
operation on the bDS_Entity.

A flag set means that a change has occurred since the last time the application has
read its value.

99
API Reference

3 DCPS Classes and Operations

SampleLostStatus

total_count : long
total_count_change : long

InconsistentTopicStatus

total_count : long
total_count_change : long

SampleRejectedStatus

o Status <
—

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

OfferedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

total_count : long

total_count_change : long

last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

PublicationMatchStatus

SubscriptionMatchStatus

3.1 InfrastructureModule

LivelinessLostStatus

[[total_count
total_count_change

RequestedincompatibeQosStatus

total_count

last_policy_id
policies [*]

total_count_change L

OfferedincompatibleQosStatus

total_count

last_policy_id
policies [*]

total_count_change

total_count : long

total_count : long

QosPolicyCount

total_count_change : long policy_id

—|total_count_change : long L
last_publication_handle : InstanceHandle_t count

last_subscription_handle : InstanceHandle_t

Figure12 DCPSDDS Status Values

Each pps_status attribute is implemented as a struct and therefore does not

provide any operations. The interface description of these structsis as follows:
/ *
* struct DDS_<name>Status
*/
struct DDS_InconsistentTopicStatus
{ DDS_long total_count;
DDS_long total_count_change; };
struct DDS_SampleLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };
enum DDS_SampleRejectedStatusKind
{ DDS_NOT_REJECTED,
DDS_REJECTED_BY_INSTANCES_LIMIT,
DDS_REJECTED_BY_SAMPLES_LIMIT,
DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT };
struct DDS_SampleRejectedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_SampleRejectedStatusKind last_reason;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_LivelinessLostStatus
{ DDS_long total_count;

100

API Reference & PRISMTECH

3 DCPS Classes and Operations

/~k
*

*

*/

DDS_long total_count_change; };
struct DDS_LivelinessChangedStatus
{ DDS_long alive_count;
DDS_long not_alive_count;
DDS_long alive_count_change;
DDS_long not_alive_count_change;
DDS_InstanceHandle_t last_publication_handle;
struct DDS_OfferedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_RequestedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_OfferedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_QosPolicyId_t last_policy_id;
DDS_QosPolicyCountSeq policies; };
struct DDS_RequestedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_QosPolicyId_t last_policy_ id;
DDS_QosPolicyCountSeq policies; };
struct DDS_PublicationMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_subscription_handle;
struct DDS_SubscriptionMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_publication_handle;

implemented API operations
<no operations>

The sections describe the usage of each DDS_<name>Status struct.

3.1.5.1 DDS InconsistentTopicSatus
Synopsis

#include <dds_dcps.h>
struct DDS_InconsistentTopicStatus

&4 PRISMTECH

{ DDS_long total_count;

3.1 InfrastructureModule

Y

Y

Y

101
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_long total_count_change; };

Description

This struct contains the statistics about attempts to create other bDs_Topics with
the same name but with different characteristics.

Attributes

DDS_long total_count - the total detected cumulative count of DDS_Topic
creations, whose name matches the pps_Topic to which thispps_status is
attached and whose characteristics are inconsi stent.

DDS_long total_count_change - the changein total_count since the last
timethe Listener was caled or the DDS_Status wasread.

Detailed Description

This struct contains the statistics about attempts to create other bDs_Topics with
the same name but with different characteristics.

The attribute total_count holds the total cumulative count of bDS_Topic
creations, whose name matches the pps_Topic to which thisDbDs_Status is
attached and whose characteristics are inconsistent .

The attribute total_count_change holds the incremental number of inconsistent
DDS_Topics, Sincethelast timethe Listener was called or the bDS_status was
read.

DDS LivelinessChangedStatus

102
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessChangedStatus
{ DDS_long alive_count;
DDS_long not_alive_count;
DDS_long alive_count_change;
DDS_long not_alive_count_change;
DDS_InstanceHandle_t last_publication_handle; };

Description

This struct contains the statistics about whether the liveliness of one or more
connected DDS_Datalriter objects has changed.

Attributes

DDS_long alive_count - thetotal count of currently alive DDS_DataWriter
objects that write the topic read by the bDs_DataReader to which this
DDS_Status is attached.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_long not_alive_count - the total count of currently not alive
DDS_DataWriter objects that wrote the topic read by the bDs_DpataReader
to which thispps_status is attached.

DDS_long alive count_change - the changein alive_count since the last
timethe Listener wascaled or the bDs_status was read.

DDS_long not_alive_count_change - the change in not_alive_count
since the last timethe Listener wascalled or the bbs_status was read.

DDS _InstanceHandle t last publication_handle - handle to the last
DDS_DataWriter whose changein liveliness caused this status to change.

Detailed Description

This struct contains the statistics about whether the liveliness of one or more
connected DDS_DataWriter objects that were writing instances read through the
DDS_DataReader has changed. In other words, some DDS_DataWriters have
become “alive” or “not alive”.

The attribute alive_count holds the total number of currently alive
DDS_DataWriter oObjects that write the topic read by the bDS_DataReader to
which this pps_status is attached. This count increases when a newly matched
DDS_DataWriter assertsits liveliness for the first time or when a
DDS_DataWriter previously considered to be not alive reassertsits liveliness. The
count decreases when a DDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive, whether because it was deleted normally or for
some other reason.

The attribute not_alive_count holds the total count of currently not alive
DDS_DataWriters that wrote the topic read by the bbs_DataReader to which
this DDS_Status is attached, and that are no longer asserting their liveliness. This
count increases when a bDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive for some reason other than the normal deletion of
that DDS_DataWriter. It decreases when a previously not alive DDS_DataWriter
either reassertsits liveliness or is deleted normally.

The attribute a1ive_count_change holdsthe changein alive count sincethe
last timethe Listener was called or the DDS_Status was read.

The attribute not_alive_count_change holds the change in
not_alive count Since the last time the Listener was called or the
DDS_Status wasread.

The attribute 1ast_publication_handle contains the instance handle to the
DDS_PublicationBuiltinTopicData instance that represents the last
datawriter whose change in liveliness caused this status to change. Be aware that
this handle belongs to another datareader, the

103
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

A

DDS_PublicationBuiltinTopicDataDataReader in the builtin-subscriber,
and has no meaning in the context of the datareader from which the
DDS_LivelinessChangedStatus was obtained. If the builtin-subscriber has not
explicitly been obtained using
DDS_DomainParticipant_get_builtin_subscriber, then thereis no
DDS_PublicationBuiltinTopicDataDataReader aswell, in which case the
last_publication_handle will be set to DDS_HANDLE NIL.

DDS LivelinessL ostSatus

104
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };

Description

This struct contains the statistics about whether the liveliness of the
DDS_DataWriter to which thispDDs Status is attached has been committed
through its DDS_TLivelinessQosPolicy.

Attributes

DDS_long total_count - the total cumulative count of times the
DDS_DataWriter to which this DDS_status is attached failed to actively
signal its liveliness within the offered liveliness period.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascaled or the bDS_status wasread.

Detailed Description

This struct contains the statistics about whether the liveliness of the
DDS_DataWriter to which this DDs_status is attached has been committed
through its DDS_LivelinessQosPolicy. In other words, whether the
DDS_DataWriter failed to actively signal its liveliness within the offered
liveliness period. In such a case, the connected pbs_DataReader objects will
consider the DDS_DataWriter asno longer “aive’.

The attribute total_count holds the total cumulative number of times that the
previously-alive bps_bDatawriter became not alive due to a failure to actively
signdl its liveliness within its offered liveliness period. This count does not change
when an already not alive bDS_Datawriter Simply remains not alive for another
liveliness period.

The attribute total_count_change holds the changein total_count since the
last timethe Listener was called or the DDS_Status was read.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS OfferedDeadlineMissedSatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };

Description

This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which thisbDs_Status is attached has committed through
itsDDS_DeadlineQosPolicy, Was not respected for a specific instance.

Attributes

DDS_long total_count - the total cumulative count of times the
DDS_DataWriter to which thisDDsS_sStatus is attached failed to write within
its offered deadline.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascalled or the bDS_status wasread.

DDS_InstanceHandle t last_instance_handle - the handle to the last
instance in the DDS_Datawriter to which thisbps_Status is attached, for
which an offered deadline was missed.

Detailed Description

This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which thisbps_Status is attached has committed through
its DDS_DeadlineQosPolicy, Was not respected for a specific instance.

The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the bps_batawriter to which thisbps_status is
attached failed to provide data. Missed deadlines accumulate; that is, each deadline
period the total_count will beincremented by one.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDs_status was read.

The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataWriter to which this bDs_status is attached, for which an offered
deadline was missed.

105
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_OfferedlncompatibleQosStatus

106
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies; };

Description

This struct contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested QosPolicy Setting.

Attributes

DDS_long total_count - the total cumulative count of DDS_DataReader
objects discovered by the bbs_batawriter with the same DDS_Topic and
Partition and with areguested DDS_DataReaderQos that wasincompatible
with the one offered by the DDS_Dataviriter.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascaled or the bDS_status wasread.

QosPolicyId_t last_policy_id -theid of one of the QosPolicy settings
that was found to be incompatible with what was offered, the last time an
incompatibility was detected.

QosPolicyCountSeq policies - alist containing for each QosPolicy the total
number of times that the concerned bbs_DataWriter discovered a
DDS_DataReader for the same pDs_Topic and a requested
DDS_DataReaderQos that is incompatible with the one offered by the
DDS_DataWriter.

Detailed Description

This struct contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested gosPolicy Setting.

The Request/Offering mechanism is applicable between:

* the DDS_Datawriter and the DDS_DataReader. If the QosPolicy Settings
between DDS_bDatawriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDS_Datawriter
will beinformed viaaDbbs_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS Status change.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

e the DDS_Datawriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between pps_batawriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late
joining DDS_DataReaders. The QosPolicy of the Durability Servicein therole
of DDs_DataReader isspecified by the Dbs_DurabilityServiceQosPolicy
inthe bbs_Topic.

e the Durability Service (as a built-in DDS_bDatawriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDsS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
latejoining DDS_DataReaders. The QosPolicy of the Durability Servicein the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy inthe DDS_Topic.

The attribute total_count holdsthe total cumulative count of DDS_DataReader
objects discovered by the pps_batawriter with the same bps_Topic and a
requested DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.

The attribute total_count_change holdsthe changein total_count since the
last timethe Listener was called or the DDS_Status was read.

The attribute 1ast_policy_id holdstheid of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last time an
incompatibility was detected.

The attribute policies holds alist containing for each QosPo1licy the total
number of times that the concerned DDS_Datawriter discovered an incompatible
DDS_DataReader for the same DDS_Topic. Each element in the list represents a
counter for a different gospPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constantsin the
API. See, for an overview of all these constants.

Table 16 Overview of All Named QosPolicy | ndexes

Index Name Index Value
DDS_INVALID_ QOS_POLICY_ID 0

DDS_USERDATA_QOS_POLICY_ID

DDS_DURABILITY_ QOS_POLICY_ID

1
2
DDS_PRESENTATION_QOS_POLICY_ID 3
DDS_DEADLINE_QOS_POLICY_ID 4

107
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 16 Overview of All Named QaosPolicy | ndexes

Index Name Index Value
DDS_LATENCYBUDGET QOS_POLICY_ ID 5
DDS_OWNERSHIP_QOS_POLICY_ID 6
DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ID 7
DDS_LIVELINESS_QOS_POLICY ID 8
DDS_TIMEBASEDFILTER_QOS_POLICY_ID 9
DDS_PARTITION_QOS_POLICY_ ID 10
DDS_RELIABILITY QOS_POLICY_ ID 11
DDS_DESTINATIONORDER_QOS_POLICY_ID 12
DDS_HISTORY_QOS_POLICY_ ID 13
DDS_RESOURCELIMITS_QOS_POLICY_ ID 14
DDS_ENTITYFACTORY_QOS_POLICY_ID 15
DDS_WRITERDATALIFECYCLE_QOS_POLICY_ ID 16
DDS_READERDATALIFECYCLE_QOS_POLICY_ ID 17
DDS_TOPICDATA_QOS_POLICY_ID 18
DDS_GROUPDATA_QOS_POLICY_ID 19
DDS_TRANSPORTPRIORITY_ QOS_POLICY ID 20
DDS_LIFESPAN_QOS_POLICY_ID 21
DDS_DURABILITYSERVICE_QOS_POLICY_ ID 22

3.1.5.6 DDS PublicationM atchedStatus
Synopsis

#include <dds_dcps.h>
struct DDS_PublicationMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_subscription_handle; };

Description

The functionality behind the bDs_pPublicationMatchedStatus iS not yet
implemented. It is scheduled for afuture release.

108

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS _RequestedDeadlineMissedStatus
Synopsis

#include <dds_dcps.h>
struct DDS_RequestedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about whether the deadline that the

DDS_DataReader to which thisDDS_Status isattached was expecting through its
DDS_DeadlineQosPolicy, Was not respected for a specific instance.

Attributes

DDS_long total_count - the total cumulative count of the missed deadlines
detected for any instance read by the bDs_DataReader to which this
DDS_Status isattached.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascalled or the bDS_status wasread.

DDS_InstanceHandle t last_instance_handle - the handle to the last
instance in the bDs_DataReader to which thisDDs_Status is attached for
which a missed deadline was detected.

Detailed Description

This struct contains the statistics about whether the deadline that the
DDS_DataReader to Which thispps_status isattached was expecting through its
DDS_DeadlineQosPolicy, Was not respected for a specific instance. Missed
deadlines accumulate, that is, each deadline period the total_count will be
incremented by one for each instance for which data was not received.

The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the bDs_DataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDs_status was read.

The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataReader for which a missed deadline was detected.

DDS_Requestedl ncompatibleQosSatus
Synopsis
#include <dds_dcps.h>

109

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

110
API Reference

struct DDS_RequestedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies; 1};

Description

This struct contains the statistics about whether a requested QosPo1licy Setting was
incompatible with the offered gosPo1licy setting.

Attributes

DDS_long total_count - holdsthe total cumulative count of DDS_DatawWriter
objects, discovered by the pDs_pataReader to which thispps_status is
attached, with the same bbs_Topic and an offered DDS_DatawWriterQos that
was incompatible with the one requested by the bbs_DataReader.

DDS_long total_count_change - holdsthe changein total_count since the
last timethe Listener was caled or the DDS_Status was read.

QosPolicyId t last_policy_ id - holdsthe DDS_<name> Q0S_POLICY ID
of one of the gosPolicies that was found to be incompatible with what was
requested, the last time an incompatibility was detected.

QosPolicyCountSeq policies - alist containing (for each gospPolicy) the
total number of times that the concerned pDs_DbDataReader discovered a
DDS_DataWriter with the same pbps_Topic and an offered
DDS_DataWriterQos that isincompatible with the one requested by the
DDS_DataReader.

Detailed Description

This struct contains the statistics about whether a requested QosPolicy Setting was
incompatible with the offered gosPolicy Setting.

The Request/Offering mechanism is applicable between:

* the DDS_DataWriter and the DDS_DataReader. If the QosPolicy settings
between DDS_Datawriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDs_Datawriter
will be informed viaa bps_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS Status change.

» the DDs_patawriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between pps_batawriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

joining DDS_DataReaders. The QosPolicy of the Durability Servicein therole
of DDS_DataReader is specified by the DDS_DurabilityServiceQosPolicy
inthe bbs_Topic.

e the Durability Service (as a built-in DDS_DatawWriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
latejoining DDS_DataReaders. The QosPolicy of the Durability Servicein the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy inthe DDS_Topic.

The attribute total_count holdsthe total cumulative count of DDS_Datawriter
objects discovered by the DDS_DataReader with the same DDs_Topic and an
offered DDS_DatawriterQos that was incompatible with the one requested by the
DDS_DataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener was called or the DDS_Status was read.

The attribute 1ast_policy_ id holdsthe pps_<name>_Qos_PoLICy_ID of one
of the QosPolicies that was found to be incompatible with what was requested,
the last time an incompatibility was detected.

The attribute policies holds alist containing for each QosPolicy: the total
number of times that the concerned pps_bataReader discovered an incompatible
DDS_DataWriter for the same DDS_Topic. Each element in the list represents a
counter for a different gospPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constantsin the
API. See Table 16, Overview of All Named QosPolicy Indexes, on page 107 for an
overview of all these constants.

DDS _Samplel ostSatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_SamplelLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };

Description

This struct contains the statistics about whether a sample has been lost (never
received).

111
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes

DDS_long total_count - holds the total cumulative count of all samples lost
across al instances of data published under the bbs_Topic.

DDS_long total_count_change - holdsthe changein total_count since the
last timethe Listener was caled or the DDs_status was read.

Detailed Description

This struct contains the statistics about whether a sample has been lost (never
received). The statusis independent of the differencesin instances, in other words, it
includes all samples lost across all instances of data published under the
DDS_Topic.

total_count holds the total cumulative count of all samples lost across all
instances of data published under the bps_Topic.

total_count_change holdsthe changein total_count since the last time the
Listener wascaled or thepps_ status wasread.

DDS _SampleRe ectedSatus

112
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_SampleRejectedStatusKind
{ DDS_NOT_REJECTED,
DDS_REJECTED_BY INSTANCES LIMIT,

DDS_REJECTED_BY SAMPLES_LIMIT,
DDS_REJECTED_BY_ SAMPLES_PER_INSTANCE LIMIT };

struct DDS_SampleRejectedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_SampleRejectedStatusKind last_reason;
DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about samples that have been rejected.

Attributes

DDS_long total_ count - holdsthetotal cumulative count of samples rejected by
the DDS_DataReader to which thisDDS_status is attached.

DDS_long total_count_change - holds the changein total_count since the
|ast timethe Listener was cdled or the DDS_Status was read.

DDS_SampleRejectedStatusKind last_reason - holds the reason for
rejecting the last sample.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_InstanceHandle t last_instance_handle - holds the handle to the
instance which would have updated by the last sample that was rejected.

Detailed Description
This struct contains the statistics about whether a received sample has been rejected.

The attribute total_count holdsthe total cumulative count of samples rejected by
the DDS_DataReader to Which thispps_status is attached.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDS_status was read.

The attribute 1ast_reason holds the reason for rejecting the last sample. The
attribute can have the following values:

* DDS_NOT_REJECTED - N0 sample has been rejected yet.

* DDS_REJECTED_BY_ INSTANCES_LIMIT - the sample was rejected because it
would exceed the maximum number of instances set by the
DDS_ResourceLimitsQosPolicy.

* DDS_REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it
would exceed the maximum number of samples set by the
DDS_ResourceLimitsQosPolicy.

* DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was
rejected because it would exceed the maximum number of samples per instance
set by the DDS_ResourceLimitsQosPolicy

The attribute 1ast_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

DDS_SubscriptionM atchedStatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriptionMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_publication_handle; };

Description

The functionality behind the pps_subscriptionMatchedStatus IS not yet
implemented. It is scheduled for afuture release.

113
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

ClassDDS WaitSet

A DDs_waitSet object allows an application to wait until one or more of the
attached DDs_Condi tion objects evaluates to TRUE or until the timeout expires.

The pps_waitSet has no factory and must be created by the application. It is
directly created as an object by using bbs_waitSet constructors.

WaitSet
Condition n
attach_condition()
. . .| detach_condition()
get_trigger_value() get_conditions()

wait()

Figure 13 DCPSDDS WaitSets
The interface description of this classis asfollows:
/ *
* interface DDS_WaitSet
*/
/ *
* implemented API operations
*/
DDS_WaitSet
DDS_WaitSet_ _alloc
(void) ;
DDS_ReturnCode_t
DDS_WaitSet_wait
(DDS_WaitSet _this,
DDS_ConditionSeqg *active_conditions,
const DDS_Duration_t *timeout) ;
DDS_ReturnCode_t
DDS_WaitSet_attach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;
DDS_ReturnCode_t
DDS_WaitSet_detach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;
DDS_ReturnCode_t
DDS_WaitSet_get_conditions
(DDS_WaitSet _this,
DDS_ConditionSeq *attached_conditions) ;

The following sections describe the usage of all bpbs_waitSet operations.
DDS WaitSet _ alloc

Synopsis

#include <dds_dcps.h>

114

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_WaitSet
DDS_WaitSet__alloc
(void) ;

Description
This operation creates anew DDS_WaitsSet.

Parameters
<none>

Return Value

DDS_waitSet - handle to the newly created DDS_waitSet. In case of an error, a
DDS_OBJECT_NIL pointer isreturned.

Detailed Description

This operation creates a new DDS_WaitSet. The Dbs_waitSet must be created
using this operation. In other words, the application is not allowed to declare an
object of type pps_waitset. When the application wants to release the
DDS_WaitSet it must bereleased using bps_free.

In case there are insufficient resources available to allocate the bps_waitset, a
DDS_OBJECT_NIL pointer isreturned instead.

DDS WaitSet_attach_condition

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_attach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;

Description
This operation attachesabDS_Condition tothe DDS_waitSet.

Parameters

in DDS_WaitSet _this-theDDS_WaitSet object on which the operation is
operated.

in const DDS_Condition cond - apointerto apps_Condition.

115
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER Of DDS_RETCODE_OUT_OF_
RESOURCES.

Detailed Description

This operation attaches a DDS_Condition to the bbs_waitset. The parameter
cond must be either a bbs_ReadCondition, DDS_QueryCondition,
DDS_StatusCondition Of DDS_GuardCondition. TO get this parameter see:

* DDS_ReadCondition created by
DDS_DataReader_create_readcondition

* DDS_QueryCondition created by
DDS_DataReader_create_qguerycondition

* DDS_StatusCondition retrieved by
DDS_<Entity>_get_statuscondition ONanN DDS_<Entity>

* DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc.

When apDs_Guardcondition isinitially created, the trigger_value iSFALSE.
When aDbs_condition, Whose trigger_value evaluates to TRUE, is attached
to a DDsS_wWaitSet that is currently being waited on (using the
DDS_WaitSet_wait operation), the DDs_waitSet will unblock immediately.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Condition is attached to the bps_waitset.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter cond is not a valid
DDS_Condition.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS WaitSet_detach_condition
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
116

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_WaitSet_detach_condition
(DDS_WaitSet _this,
const DDS_Condition cond)

Description
This operation detaches aDpDS_Condition fromthe bbs_waitset.

Parameters

in DDS_WaitSet _this -theDDS_WaitSet object on which the operationis
operated.

in const DDS_Condition cond - apointer to apps_condition inthe
DDS_WaitSet.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation detaches a DDS_Condition from the DbDs_waitset. If the
DDS_Condition Was hot attached to this pps_waitset, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Condition is detached from the bbs_waitsSet.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter cond is not a valid
DDS_Condition.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_PRECONDITION NOT MET - the DDS_Condition was not
attached to thispbs_waitSet.

117
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS WaitSet_get_conditions

118
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_get_conditions
(DDS_WaitSet _this,
DDS_ConditionSeq *attached_conditions) ;

Description
This operation retrieves the list of attached conditions.

Parameters

in DDS_WwaitSet _this-theDDS_WaitSet object on which the operationis
operated.

inout DDS_ConditionSeq *attached_conditions - theinout parameter
attached_conditions is a Sequence, which is used to pass the list of
attached conditions.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation retrieves the list of attached conditions in the bps_waitset. The
parameter attached_conditions iSapointer to a sequence which afterwards
will point to the sequence of attached conditions. The attached_conditions
sequence and its buffer may be pre-allocated by the application and therefore must
either be re-used in a subsequent invocation of the
DDS_WaitSet_get_conditions operation or be released by calling bps_free
on the returned attached_conditions. If the pre-allocated sequence is not big
enough to hold the number of attached pps_conditions, the sequence will
automatically be (re-)allocated to fit the required size. The resulting sequence will
either be an empty sequence, meaning there were no conditions attached, or will
contain a list of bbDS_ReadCondition, DDS_QueryCondition,
DDS_StatusCondition and DDS_GuardCondition. These conditions
previously have been attached by DDS_waitSet_attach_condition and were
created by there respective create operation:

* DDS_ReadCondition created by
DDS_DataReader_create_readcondition

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* DDS_QueryCondition created by
DDS_DataReader_create_querycondition

e DDS_StatusCondition retrieved by
DDS_<Entity>_get_statuscondition ONan DDS_<Entity>

* DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc.

Return Code

When the operation returns:

e DDS_RETCODE_OK - thelist of attached conditions is returned

e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS WaitSet_wait

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_wait
(DDS_WaitSet _this,
DDS_ConditionSeqg *active_conditions,
const DDS_Duration_t *timeout)

Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to the bps_waitset.

Parameters

in DDS_WaitSet _this-theDDS_WaitSet object on which the operationis
operated.

inout DDS_ConditionSeq *active_conditions - asegquencewhichisused
to pass the list of all the attached conditions that have a trigger_value of
TRUE.

in const DDS_Duration_t *timeout - themaximum duration to block for
the DDS_waitSet_wait, after which the application thread is unblocked. The
special constant DDS_DURATION_INFINITE can be used when the maximum
waiting time does not need to be bounded.

119
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

120
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_TIMEOUT
Or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluate to TRUE that is attached to the bDs_waitset. If al
of the conditions attached to the DDs_waitSet have atrigger_value Of FALSE,
the DDS_waitSet_wait operation will block the calling thread. The result of the
operation is the continuation of the application thread after which the result isleft in
active_conditions. Thisis asequence, which will contain the list of all the
attached conditions that have a trigger_value of TRUE. The
active_conditions sequence and its buffer may be pre-allocated by the
application and therefore must either be re-used in a subsequent invocation of the
DDS_WaitSet_wait operation or be released by calling bps_free on the returned
active_conditions. If the pre-allocated sequence is not big enough to hold the
number of triggered pps_conditions, the sequence will automatically be
(re-)allocated to fit the required size. The parameter timeout specifies the
maximum duration for the bDs_waitSet_wait to block the calling application
thread (when none of the attached conditions has a trigger_value Of TRUE). In
that case the return value is DDS_RETCODE_TIMEOUT and the
active_conditions sequenceisleft empty. Sinceit is not allowed for more than
one application thread to be waiting on the same pps_waitSet, the operation
returns immediately with the value bDS_RETCODE_PRECONDITION_NOT_MET
when the DDS_waitSet_wait operation isinvoked on a bps_waitSet which
already has an application thread blocking on it.

Return Code

When the operation returns:

* DDS RETCODE OK - a least one of the aftached conditions has a
trigger_value Of TRUE.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming TRUE.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* DDS_RETCODE_PRECONDITION_NOT_MET - the pDs_waitset aready has an
application thread blocking onit.

ClassDDS_Condition

This class is the base class for all the conditions that may be attached to a
DDS_WaitSet. This base class is specialized in three classes by the Data
Distribution Service: DDS_GuardCondition, DDS_StatusCondition and
DDS_ReadCondition (also thereis a DDS_QueryCondition Whichis a
specialized DDS_ReadCondition).

Each DDS_condition hasatrigger_value that can be TRUE or FALSE and is
set by the Data Distribution Service (except a DDS_GuardCondition) depending
on the evaluation of the bbs_condition.

Condition

get_trigger_value()

StatusCondition GuardCondition
get_enabled_statuses() set_trigger_value()
ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
statuscondition

get_datareader()
get_instance_state_mask()

get_sample_state_mask() .
get_view_state_mask() entity
1
/ QueryCondition Entity
<<create>> ‘ enable()
get_query_arguments() <<abstract>> get_listener()
L get_query_expression() <<abstract>> get_qos()
set_query_arguments() get_status_changes()
1 ~ get_statuscondition()
DataReader <<abstract>> set_listener() -
- <<create>J <<abstract>> set_qos() DataWriter
Subscriber \ % - Publisher
- DomainEntity
Topic

Figure 14 DCPSDDS Conditions
The interface description of this classis asfollows:
/*

121
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.1 Infrastructure Module

* interface DDS_Condition

*/

/~k

* implemented API operations

*/

DDS_boolean
DDS_Condition_get_trigger_value
(DDS_Condition _this);

The next paragraph describes the usage of the bDS_Condition operation.

DDS Condition_get_trigger value

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_Condition_get_trigger_value
(DDS_Condition _this);

Description
This operation returnsthe trigger_value of the DDS_Condition.

Parameters

in DDS_Condition _this -the DDS_Condition object on which the
operation is operated.

Return Value

DDS_boolean - thetrigger value.

Detailed Description

A DDS_Condition hasatrigger_wvalue that can be TRUE or FALSE and is set
by the Data Distribution Service (except a pDS_GuardCondition). Thisoperation
returnsthe trigger value Of the DDS_Condition.

ClassDDS GuardCondition

122
API Reference

A DDS_GuardCondition oObject is a specific DDS_Condition whose
trigger_value is completely under the control of the application. The
DDS_GuardCondition has no factory and must be created by the application. The
DDS_GuardCondition is directly created as an object by using the
DDS_GuardCondition constructor. When a bDS_GuardCondition isinitially
created, the trigger_value IS FALSE. The purpose of the
DDS_GuardCondition iSto provide the means for an application to manually

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

wake up a pps_waitSet. This is accomplished by attaching the
DDS_GuardCondition to the waitset and setting the trigger_value by
means of the DDS_GuardCondition_set_trigger_value operation.
The interface description of this classis asfollows:
/*
* interface DDS_GuardCondition
*/
/*
* inherited from DDS_Condition
*/
/* DDS_boolean
* DDS_GuardCondition_get_trigger_value

* (DDS_GuardCondition _this);
*/
/*

* implemented API operations

*/

DDS_GuardCondition
DDS_GuardCondition__alloc
(void) ;
DDS_ReturnCode_t
DDS_GuardCondition_set_trigger_value
(DDS_GuardCondition _this,
const DDS_boolean value) ;
The following sections describe the usage of all bDS_GuardCondition
operations.

The inherited operation is listed but not fully described since it is not implemented
inthis class. The full description of this operation is given in the class from which it
isinherited. Thisis described in their respective paragraph.

DDS GuardCondition__alloc
Synopsis

#include <dds_dcps.h>
DDS_GuardCondition
DDS_GuardCondition__alloc
(void) ;

Description
This operation creates a new bbs_GuardCondition.

Parameters
<none>

123
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value

DDS_GuardCondition - Return value is the handle to the newly created
DDS_GuardCondition. In case of an error, a DDS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates anew DDS_GuardCondition. The DDS_GuardCondition
must be created using this operation. In other words, the application is not allowed
to declare an object of type DDS_GuardcCondi tion. When the application wantsto
release the bDS_GuardCondition it must bereleased using Dps_free.

In case there are insufficient resources available to allocate the
DDS_GuardCondition, aDDS_OBJECT_NIL pointer isreturned instead.

DDS _GuardCondition_get_trigger _value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_GuardCondition_get_trigger_value
(DDS_GuardCondition _this);

DDS GuardCondition_set_trigger _value

124
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_GuardCondition_set_trigger_value
(DDS_GuardCondition _this,
const DDS_boolean value) ;

Description
This operation setsthe trigger_value Of the DDS_GuardCondition.

Parameters

in DDS_GuardCondition _this -theDDS_GuardCondition object on
which the operation is operated.

in const DDS_boolean value - the boolean value to which the
DDS_GuardCondition iS Set.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR Of DDS_RETCODE_
ILLEGAL_OPERATION.

Detailed Description

A DDS_GuardCondition Object is a specific bbs_condition which
trigger_value iscompletely under the control of the application. This operation
must be used by the application to manually wake-up a bps_waitSet. This
operation setsthe trigger_value Of the DDS_GuardCondi tion to the parameter
value. The DDS_GuardCondition is directly created using the
DDS_GuardCondition constructor. When aDpDS_GuardCondition isinitialy
created, the trigger_valueisFALSE.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the specified trigger_value hassuccessfully been applied
* DDS_RETCODE_ERROR - an internal error has occurred

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object

ClassDDS SatusCondition

&4 PRISMTECH

DDS_Entity Objects that have status attributes also have a
DDS_StatusCondition, access is provided to the application by the
DDS_<Entity>_get_statuscondition operaIi on.

The communication statuses whose changes can be communicated to the application
depend on the pps_Eentity. The following table shows the relevant statuses for
each DDS_Entity.

Table 17 Status Per DDS_Entity

DDS Entity Satus Name
DDS_Topic DDS_INCONSISTENT TOPIC_STATUS
DDS_Subscriber DDS_DATA_ON_READERS_STATUS

125
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

126
API Reference

Table 17 Satus Per DDS _Entity
DDS Entity Satus Name

DDS_DataReader DDS_SAMPLE_REJECTED_STATUS

DDS_LIVELINESS_CHANGED_STATUS

DDS_REQUESTED_DEADLINE_MISSED_STATUS

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

DDS_DATA_AVAILABLE_STATUS

DDS_SAMPLE_LOST_STATUS

DDS_SUBSCRIPTION_MATCHED_STATUS

DDS_DataWriter DDS_LIVELINESS_LOST_STATUS

DDS_OFFERED_DEADLINE_MISSED_STATUS

DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

DDS_PUBLICATION_MATCHED_STATUS

The trigger_value oOf the DDS_StatusCondition depends on the
communication statuses of that bpDs_Entity (e.g., missed deadline) and also
depends on the value of the bDS_StatusCondition attribute mask
(enabled_statuses mask). A DDS_StatusCondition can be attached to a
DDS_WaitSet in order to allow an application to suspend until the
trigger_value hasbecome TRUE.

The trigger_value Of aDDS_StatusCondition Will be TRUE if one of the
enabled statusChangedFlags isset. That is, trigger_value==FALSE only if
al the values of the statusChangedFlags are FALSE.

The sensitivity of the bbs_statusCondition to a particular communication
status is controlled by the list of enabled_statuses Set on the condition by
means of the DDS_StatusCondition_set_enabled_statuses operation.

When the enabled_statuses are not changed by the
DDS_StatusCondition_set_enabled_statuses operation, all statuses are
enabled by default.

The interface description of this classis asfollows:

/*

* interface DDS_StatusCondition

*/

/*

* inherited from DDS_Condition

*/

/* DDS_boolean

* DDS_StatusCondition_get_trigger_value
* (DDS_StatusCondition _this);

*/

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

/ *
* implemented API operations
*/
DDS_StatusMask
DDS_StatusCondition_get_enabled_statuses
(DDS_StatusCondition _this);
DDS_ReturnCode_t
DDS_StatusCondition_set_enabled_statuses
(DDS_StatusCondition _this,
const DDS_StatusMask mask) ;
DDS_Entity
DDS_StatusCondition_get_entity
(DDS_StatusCondition _this) ;

The next paragraphs describe the usage of al DDS_StatusCondition Operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS SatusCondition_get_enabled_statuses

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_StatusCondition_get_enabled_statuses
(DDS_StatusCondition _this);

Description

This operation returns the list of enabled communication statuses of the

DDS_StatusCondition.

Parameters

in DDS_StatusCondition _this-theDDS_StatusCondition object on
which the operation is operated.

Return Value

DDS_StatusMask - Result isa bit-mask in which each bit shows which statusis
taken into account for the bps_StatusCondition.

Detailed Description

The trigger_value Of the DDS_StatusCondition depends on the
communication status of that pps_Eentity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.

127
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

This operation returns the list of communication statuses that are taken into account
to determine the trigger_value Of the DDS_StatusCondition. Thisoperation
returns the statuses that were explicitly set on the last call to
DDS_StatusCondition_set_enabled_statuses or, if
DDS_StatusCondition_set enabled statuses Was never caled, the default
list.

The result value is a bit-mask in which each bit shows which status is taken into
account for the DDS_StatusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type Dps_statusMask. Not al statuses are
relevant to all Dps_Entity objects. See the respective Listener objects for each
DDS_Entity for moreinformation.

DDS SatusCondition_get_entity

128
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Entity
DDS_StatusCondition_get_entity
(DDS_StatusCondition _this);

Description

This operation returns the bppDs_Entity associated with the
DDS_StatusCondition Or the DDS_OBJECT NIL pointer.

Parameters

in DDS_StatusCondition _this -theDDS_StatusCondition object on
which the operation is operated.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Return Value

DDS_Entity - a pointer to the pps_Entity associated with the
DDS_StatusCondition Or the DDS_OBJECT_NIL pointer.

Detailed Description

This operation returns the DDS_Entity associated with the
DDS_StatusCondition. Note that there is exactly one pps_Ent ity associated
with each DDs_StatusCondition. When the DDs_Entity was already deleted
(there is no associated DDS_Entity any more), the DDS_OBJECT_NIL pointer is
returned.

DDS_SatusCondition_get_trigger_value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_StatusCondition_get_trigger_value
(DDS_StatusCondition _this);

DDS SatusCondition_set_enabled_statuses

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_StatusCondition_set_enabled_statuses
(DDS_StatusCondition _this,
const DDS_StatusMask mask) ;

Description

This operation sets the list of communication statuses that are taken into account to
determinethe trigger value Of theDDS_StatusCondition.

Parameters

in DDS_StatusCondition _this-theDDS_StatusCondition object on
which the operation is operated.

in const DDS_StatusMask mask - abit-mask inwhich each bit setsthe status
which istaken into account for the DDS_StatusCondition.

129
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

130
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_ALREADY_DELETED.

Detailed Description

The trigger_value Of the DDS_sStatusCondition depends on the
communication status of that bbs_Entity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.

This operation sets the list of communication statuses that are taken into account to
determine the trigger_value Of the DDS_StatusCondition. This operation
may changethe trigger_value Of the DDS_StatusCondition.

DDS_WaitSet objects behaviour depend on the changes of the trigger_value of
their attached DDS_Conditions. Therefore, any bps_waitSet to which the
DDS_StatusCondition isattached is potentially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all
the statuses.

The parameter mask is abit-mask in which each bit shows which statusis taken into
account for the bbs_statusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS

Each status hit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type DDS_StatusMask. Not all statuses are
relevant to all pps_Entity objects. See the respective Listener objects for each
DDS_Entity for moreinformation.

Return Code

When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS RETCODE_OK - thelist of communication statuses is set.
e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_StatusCondition has aready
been deleted.

3.2 Domain Module

Entity

<<Interface>> <<Interface>> (rom Infrastruciure Module) <<create>>
SubscriberListener PublisherListener {rom fnfrastruetare Modue
(from Subscription Module) (from Publication Module)
<<create>> Publisher Subscriber
(from Publication Module) (from Subscription Module)

DomainParticipant

<<Interface>>
TopicListener

assert_liveliness() };r: X
contains_entity() S z
on_inconsistent_topic() create_contentfilteredtopic() DomainEntity

create_multitopic() (from Infrastructure Module)
Z% create:publisher() *
create_subscriber()
DomainParticipantListener <<implicit>> create_topic() —"

delete_contained_entities() 1
0.1 delete_contentfilteredtopic()

delete_multitopic() <<create>> Topic
<<implicit>> gos delete_publisher() > (from Topic-Definition Module)
— delete_subscriber() *
delete_topic()
* find_topic| < >>
QosPolicy mos get}uﬁtir?_subscriber() v/ <<implicit>>
get_current_time()
*\dew/ get_default_publisher_gos() TopicDescription
* - - get_default_subscriber_qos() (from Topic-Definition Module)
* get_default_topic_qos()

default_subscriber_gos |9€t-domain_id()
get_listener()

*

(from Infrastructure Module)

default_participant_qos

get_gos()
ignore_participant() ~
" - ignore_publication() ContentFilteredTopic MultiTopic
DomainParticipantFactory ignore_subscription() (from Topic-Definition Module) (from Topic-Definition Module)

ignore_topic()

create_participant() <<create>> lookup_topic_description()

delete_participant() set_default_publisher_gos() <<create>>

get_default_participant_qgos() set_default_subscriber_gos()

get_instance() set_default_topic_qos() <<create>>

lookup_participant() set_listener()

set_default_participant_gos() set_gos()

Figure 15 DCPS Domain Modul€e's Class M odéel
This module contains the following classes:
DDS_DomainParticipant
DDS_DomainParticipantFactory

DDS_DomainParticipantListener (interface).

3.2.1 ClassDDS DomainParticipant
All the DCPS DDs_Entity objects are attached to aDDS_DomainParticipant.

A DDS_DomainParticipant representsthe local membership of the application
in abomain.

131

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

132
API Reference

A pomain isadistributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
DDS_Publishers and the DDS_Subscribers attached to the same bomain can
interact.

This class implements several functions:
* |t actsasacontainer for all other bbs_Entity objects

* It acts as a factory for the DDS_Publisher, DDS_Subscriber, DDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic Objects

* It provides access to the built-in bbs_Topic objects
* It provides information about DDS_Topic objects

* It isolates applications within the same Domain (sharing the same domainId)
from other applications in a different Domain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other

* It provides administration services in the pomain, offering operations, which
alow the application to ignore localy any information about a given
Participant, Publication, Subscription OF Topic.

The interface description of this classis as follows:

/*

* interface DDS_DomainParticipant

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* DDS_DomainParticipant_get_statuscondition
* (DDS_DomainParticipant _this);
*/

/* DDS_StatusMask

* DDS_DomainParticipant_get_status_changes
* (DDS_DomainParticipant _this);
*/

/* DDS_ReturnCode_t

* DDS_DomainParticipant_enable

* (DDS_DomainParticipant _this);
*/

/*

* implemented API operations

*/

DDS_Publisher
DDS_DomainParticipant_create_publisher
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_publisher
(DDS_DomainParticipant _this,
const DDS_Publisher p);
DDS_Subscriber
DDS_DomainParticipant_create_subscriber
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *qgos,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_subscriber
(DDS_DomainParticipant _this,
const DDS_Subscriber s);
DDS_Subscriber
DDS_DomainParticipant_get_builtin_subscriber
(DDS_DomainParticipant _this);
DDS_Topic
DDS_DomainParticipant_create_topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_char *type_name,
const DDS_TopicQos *gos,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_topic
(DDS_DomainParticipant _this,
const DDS_Topic a_topic);
DDS_Topic
DDS_DomainParticipant_find_ topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_Duration_t *timeout) ;
DDS_TopicDescription
DDS_DomainParticipant_lookup_topicdescription
(DDS_DomainParticipant _this,
const DDS_char *name) ;
DDS_ContentFilteredTopic
DDS_DomainParticipant_create_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_Topic related_topic,
const DDS_char *filter_expression,
const DDS_StringSeq *expression_parameters) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contentfilteredtopic
(DDS_DomainParticipant _this,

133
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

const DDS_ContentFilteredTopic
a_contentfilteredtopic) ;
DDS_MultiTopic
DDS_DomainParticipant_create_multitopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_char *type_name,
const DDS_char *subscription_expression,
const DDS_StringSeq *expression_parameters) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_multitopic
(DDS_DomainParticipant _this,
const DDS_MultiTopic a_multitopic);
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contained_entities
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_set_gos
(DDS_DomainParticipant _this,
const DDS_DomainParticipantQos *qos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_gos
(DDS_DomainParticipant _this,
DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_listener
(DDS_DomainParticipant _this,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_DomainParticipantListener
DDS_DomainParticipant_get_listener
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_participant
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_topic
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_publication
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_subscription
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DomainId_t
DDS_DomainParticipant_get_domain_id

134

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participants
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *participant_handles) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participant_data
(DDS_DomainParticipant _this,
DDS_ParticipantBuiltinTopicData *participant_data,
DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topics
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *topic_handles) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topic_data
(DDS_DomainParticipant _this,
DDS_TopicBuiltinTopicData *topic_data,
DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_assert_liveliness
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_publisher_gos
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos);
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_publisher_gos
(DDS_DomainParticipant _this,
DDS_PublisherQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_subscriber_gos
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_subscriber_gos
(DDS_DomainParticipant _this,
DDS_SubscriberQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_topic_gos
(DDS_DomainParticipant _this,
const DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_topic_gos
(DDS_DomainParticipant _this,
DDS_TopicQos *gos) ;
DDS_boolean
contains_entity
(DDS_InstanceHandle_t a_handle) ;
DDS_ReturnCode_t

135
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_current_time
(DDS_Time_t *current_time);
The following sections describe the usage of all bDS_DomainParticipant
operations. The inherited operations are listed but not fully described because they
are not implemented in this class. The full description of these operationsisgivenin
the classes from which they are inherited.

DDS DomainParticipant_assert_liveliness

136
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_assert_liveliness
(DDS_DomainParticipant _this);

Description
This operation asserts the liveliness for the bDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this - the DDS_DomainParticipant object
on which the operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the
DDS_DomainParticipant. Thisway, the Data Distribution Service is informed
that the Dbs_DomainParticipant is still alive. This operation only needs to be
used when the DDS_DomainParticipant contains bDS_DataWriters with the
DDS_LivelinessQosPolicy set to
DDS_MANUAL_BY_ PARTICIPANT LIVELINESS_QOS, and it will only affect the
liveliness of those bDS_DatawWriters.

Writing data viathe DDS_DataWriter_write Operation of aDDS_DataWriter
will assert the liveliness on the pbs_patawriter itself and its
DDS_DomainParticipant. DDS_DomainParticipant_assert_liveliness
subseguently is only needed when datais not written regularly.

The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Code
When the operation returns:

e DDS _RETCODE_OK - the liveliness of this DDS_DomainParticipant has
successfully been asserted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ ENABLED - the DDS_DomainParticipant iSnot enabled.
DDS DomainParticipant_contains_entity
Synopsis

#include <dds_dcps.h>
DDS_boolean
contains_entity
(DDS_DomainParticipant _this,
DDS_InstanceHandle_t a_handle);

Description

This operation checks whether or not the given Entity represented by a_handle
is created by the Dps_DomainParticipant or any of its contained entities.
Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in DDS_InstanceHandle_t a_handle - representsapDS_Entity inthe Data
Distribution System.

Return Value

DDS_boolean - Returnvalueis TRUE if a_handle representsaDDS_Entity
that is created by the DDS_DomainParticipant Or any of its contained
DDS_Entites. Otherwise the return valueis FALSE.

137

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation checks whether or not the given Entity represented by a_handle
is created by the DDS_DomainParticipant itself (DDS_TopicDescription,
DDS_Publisher Or DDS_Subscriber) or created by any of its contained entities
(DDS_DataReader, DDS_ReadCondition, DDS_QueryCondition,
DDS_DataWriter, €tC.).

Return value is TRUE if a_handle representsabDS_Entity that is created by the
DDS_DomainParticipant Or any of its contained DDS_Entites. Otherwise the
return value iSFALSE.

DDS DomainParticipant_create contentfilteredtopic

138
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ContentFilteredTopic
DDS_DomainParticipant_create_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_Topic related_topic,
const DDS_char *filter_ expression,
const DDS_StringSeq *expression_parameters) ;

Description
This operation creates a DDS_ContentFilteredTopic for a

DDS_DomainParticipant inorder to allow DDS_DataReaders to subscribeto a
subset of the topic content.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - contains the name of the
DDS_ContentFilteredTopic.

in const DDS_Topic related_topic - thehandleto the base bDs_Topic
on which the filtering will be applied. Therefore, afiltered topic is based on an
existing DDS_Topic.

in const DDS_char *filter_expression - holdsthe SQL expression
(subset of SQL), which defines the filtering.

in const DDS_StringSeqg *expression_parameters - thehandletoa
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of valuesin
expression_parameters must be equal or greater than the highest

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

referenced %ontokeninthe filter_expression (eg.if $1 and ¢8 are used as
parameter inthe filter_expression, the expression_parameters
should at least containn+1 = 9 values).

Return Value

DDS_ContentFilteredTopic - Returnvaueisthe handleto the newly created
DDS_ContentFilteredTopic. In caseof an error, anil pointer isreturned.

Detailed Description

This operation creates a DDS_ContentFilteredTopic for a
DDS_DomainParticipant in order to allow DDS_DataReaders to subscribeto a
subset of the topic content. The base topic, which is being filtered is defined by the
parameter related_topic. Theresulting DDS_ContentFilteredTopic only
relates to the samples published under the related_topic, which have been
filtered according to their content. The resulting DDS_ContentFilteredTopic
only exists at the bbs_bpataReader Side and will never be published. The samples
of the related_topic are filtered according to the SQL expression, which is a
subset of SQL as defined in the parameter filter_expression (See Appendix H,
DCPS Queries and Filters).

The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
parameter expression_parameters. The number of values in
expression_parameters Must be equal or greater than the highest referenced
%n token inthe filter_expression (e.g. if %1 and %8 are used as parameter in
thefilter_expression, the expression_parameters should at least containn+1 =
9 values).

The filter_expression isastring that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated DDS_Topics. Itisan SQL expression where the wHERE clause gives the
content filter.

DDS _DomainParticipant_create_multitopic

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_MultiTopic
DDS_DomainParticipant_create_multitopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_char *type_name,
const DDS_char *subscription_expression,
const DDS_StringSeq *expression_parameters) ;
Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

139
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

140
API Reference

Description

This operation creates a bDS_MultiTopic for abDbs_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - containsthename of theDDS_MultiTopic.

in const DDS_char *type_name - containsthe name of the type of the
DDS_MultiTopic. This type_name must have been registered using
DDS_TypeSupport_register_type prior to calling this operation.

in const DDS_char *subscription_expression -the SQL expression
(subset of SQL), which defines the selection, filtering, combining and
re-arranging of the sample data.

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of valuesin
expression_parameters mMmust be equal or greater than the highest
referenced %n token in the subscription_expression (e.g.if $1 and %8
are used as parameter in the subscription_expression, the
expression_parameters should at least containn+1 = 9 values).

Return Value

DDS_MultiTopic - Return value is the handle to the newly created
DDS_MultiTopic. In case of an error, anil pointer is returned.

Detailed Description

This operation creates a bDS_MultiTopic for aDbDDsS_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics. Before the
DDS_MultiTopic Can be created, the type_name of the DDS_MultiTopic must
have been registered prior to calling this operation. Registering is done, using the
DDS_TypeSupport_register_type operation from bbs_TypeSupport. The
list of topics and the logic, which defines the selection, filtering, combining and
re-arranging of the sample data, is defined by the SQL expression, a subset of SQL
defined in subsciption_expression. The subscription_expression may
also contain parameters, which appear as %n tokens in the expression. These
parameters are defined in expression_parameters. The number of valuesin
expression_parameters mMmust be equal or greater than the highest referenced

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

%n token in the subscription_expression (€.g. if $1 and ¢8 are used as
parameter in the subscription_expression, the expression_parameters
should at least containn+1 = 9 values).

The subscription_expression isastring that specifiesthe criteriato select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated DDS_Topics. It isan SQL expression where the
SELECT clause provides the fields to be kept, the FroM part provides the names of
the Dbs_Topics that are searched for those fields, and the wHERE clause gives the
content filter. The bDs_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN operation must
be the same.

The pps_DataReader, Which is associated with a bbs_MultiTopic only
accesses information which exist locally in the bbs_DataReader, based on the
DDS_Topics used in the subscription_expression. The actual
DDS_MultiTopic will never be produced, only the individual pps_Topics.

DDS DomainParticipant_create publisher

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_Publisher

DDS_DomainParticipant_create_publisher
(DDS_DomainParticipant _this,

const DDS_PublisherQos *qgos,
const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates aDDS_Publisher with the desired QosPolicy Settings and
if applicable, attaches the optionally specified DDS_PublisherListener tOit.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_PublisherQos *gos - acollection of QosPolicy settingsfor
the new pDS_Publisher. In case these settings are not self consistent, no
DDS_Publisher iScreated.

in const struct DDS_PublisherListener *a_listener - apointertothe
DDS_PublisherListener instance which will be attached to the new
DDS_Publisher. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDs_PublisherListener Whose operations
perform no action.

141
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

142
API Reference

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_PublisherListener for acertain status.

Return Value

DDS_Publisher - Return valueis a pointer to the newly created DDS_Publisher.
In case of an error, the DDs_OBJECT_NIL pointer is returned.

Detailed Description

This operation creates abps_Publ isher With the desired QosPolicy Settings and
if applicable, attaches the optionally specified DDS_PublisherListener toit.
When the bbs_PublisherListener isnot applicable, the bDs_OBJECT_NIL
pointer must be supplied instead. To delete the DDs_pPublisher the operation
DDS_DomainParticipant_delete_publisher or DDS_
DomainParticipant_delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, N0 bbs_Publisher IS
created and the bDS_OBJECT_NIL pointer is returned.

Default QoS

The constant DDS_PUBLISHER_QOS_DEFAULT can be used as parameter gos to
create a bDS_Publisher with the default bDs_PublisherQos as set in the
DDS_DomainParticipant. The effect of using bbs_PUBLISHER_QOS_DEFAULT
is the same as calling the operation
DDS_DomainParticipant_get_default_publisher_gos and using the
resulting bps_PublisherQos to create the bbs_Publisher.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_PublisherListener operation isinvoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_PublisherListener:

* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated).
&4 PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_ANY_STATUS can be
used to select all statuses applicable to the bDs_PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataWriterListener of a contained bpbs_batawriter, the
DDS_DataWriterListener on that contained DDS_Datawriter iSinvoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DatawWriter only invokes the DDS_PublisherListener if the
contained DDS_Datawriter itself does not handle the trigger event generated by
the status change.

In case a communication status is not activated in the mask of the
DDS_PublisherListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a bbs_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener iSaso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

DDS DomainParticipant_create subscriber

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_Subscriber

DDS_DomainParticipant_create_subscriber
(DDS_DomainParticipant _this,

const DDS_SubscriberQos *gos,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a DDS_Subscriber with the desired QosPolicy settings
and if applicable, attaches the optionally specified DDS_SubscriberListener to
it.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

143
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

144
API Reference

in const DDS_SubscriberQos *gos - acollection of QosPolicy settings
for the new DDS_Subscriber. In case these settings are not self consistent, no
DDS_Subscriber IS created.

in const struct DDS_SubscriberListener *a_listener - apointerto
the DDS_SubscriberListener instance which will be attached to the new
DDS_Subscriber. It ispermitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_SubscriberListener Whose operations
perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_ SubscriberListener for acertain status.

Return Value

DDS_Subscriber - Return value is a pointer to the newly created
DDS_Subscriber. In case of an error, the bbs_0OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a bbS_Subscriber with the desired QospPolicy Settings
and if applicable, attaches the optionally specified DDS_SubscriberListener t0O
it. When the bDs_SubscriberListener isnot applicable, the bbs_0OBJECT _NIL
pointer must be supplied instead. To delete the bbs_subscriber the operation
DDS_DomainParticipant_delete_subscriber or DDS_
DomainParticipant_delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, no bbs_Subscriber
is created and the DDS_OBJECT_NIL pointer isreturned.

Default QoS

The constant bDS_SUBSCRIBER_QOS_DEFAULT can be used as parameter gos to
create aDDS_Subscriber with the default DDS_SubscriberQos as set in the
Domainparticipant. The effect of using bbDs_SUBSCRIBER_QOS_DEFAULT iS
the same as calling the operation
DDS_DomainParticipant_get_default_subscriber_gos and using the
resulting pps_SubscriberQos to create the bDS_Subscriber.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_SubscriberListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

parameter to that operation. The fact that the statusis reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_SubscriberListener:

* DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_CHANGED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated)

* DDS_DATA_ON_READERS_STATUS

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_ANY_STATUS can be
used to select all statuses applicable to the bDs_SubscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataReaderListener Of a contained pDs_DataReader, the
DDS_DataReaderListener on that contained bDs_DataReader iSinvoked
instead of the DDS_SubscriberListener. This means that a status change on a
contained DDS_DataReader only invokes the bDS_SubscriberListener if the
contained DDS_DataReader itself does not handle the trigger event generated by
the status change.

In case a communication status is not activated in the mask of the
DDS_SubscriberListener, the DDS_DomainParticipantListener oOf the
containing bbS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a DDS_Subscriber specific behaviour when
needed. In case the DDS_DomainParticipantListener iSalso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’” and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are

145
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener Of DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_ STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

DDS DomainParticipant_create topic

146
API Reference

Synopsis

#include <dds_dcps.h>

DDS_Topic

DDS_DomainParticipant_create_topic
(DDS_DomainParticipant _this,

const DDS_char *topic_name,
const DDS_char *type_name,
const DDS_TopicQos *gos,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a pointer to a new or existing bDS_Topic under the given
name, for a specific type, with the desired QosPolicy settings and if applicable,
attaches the optionally specified bDS_TopicListener toit.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_char *topic_name - the name of the DDsS_Topic to be created
A new DDS_Topic Will only be created, when no pps_Topic, with the same
name, is found within the bbDS_DomainParticipant.

in const DDS_char *type_name - alocal aias of the data type, which must
have been registered before creating the bps_Topic.

in const DDS_TopicQos *gos - acollection of QosPolicy settingsfor the
new DDS_Topic. In case these settings are not self consistent, no bbs_Topic
is created.

in const struct DDS_TopicListener *a_listener - apointer tothe
DDS_TopicListener instance which will be attached to the new DDs_Topic.
It is permitted to use DDS_OBJECT_NTIL as the value of the listener: this
behaves asaDDS_TopicListener Whose operations perform no action.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the bbs_TopicListener for acertain status.

Return Value

DDS_Topic - Returnvalueisapointer to the new or existing pps_Topic. In case
of an error, the bbs_OBJECT_NIL pointer isreturned.

Detailed Description

This operation creates a pointer to a new or existing bbs_Topic under the given
name, for a specific type, with the desired gosPolicy settings and if applicable,
attaches the optionally specified bpDs_TopicListener to it. When the
DDS_TopicListener is not applicable, the bbDs_0OBJECT_NIL pointer must be
supplied instead. In case the specified QosPolicy Settings are not consistent, no
DDS_Topic iscreated and the DDS_OBJECT NIL pointer is returned. To delete the
DDS_Topic the operation DDS_DomainParticipant_delete_topic Or
DDS_DomainParticipant_delete contained_entities must be used.

Default QoS

The constant DDS_TOPTC_QOS_DEFAULT can be used as parameter gos to create a
DDS_Topic with the default pDDS_TopicQos as set in the
DDS_DomainParticipant. The effect of using bps_ToPIC_Q0S_DEFAULT iSthe
same as calling the operation
DDS_DomainParticipant_get_default_topic_gos and using the resulting
DDS_TopicQos to create the DDS_Topic.

The pps_Topic is bound to the type type_name. Prior to creating the
DDS_Topic, the type_name must have been registered with the Data Distribution
Service. Registering the type_name IS done using the data type specific
DDS_TypeSupport_register_type operation.

Existing DDS Topic name

Before creating a new bpbps_Topic, this operation performs a
DDS_DomainParticipant_lookup_topicdescription for the specified
topic_name. When aDpbps_Topic isfound with the same name in the current
domain, the QoS and type_name of the found DDS_Topic are matched against the
parameters gos and type_name. When they are the same, no bps_Topic is
created but a new proxy of the existing pps_Topic isreturned. When they are not
exactly the same, no bps_Topic is created and the DDS_OBJECT_NIL pointer is
returned.

147
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

148
API Reference

When aDbDs_Topic is obtained multiple times, it must also be deleted that same
number of times using DDS_DomainParticipant_delete_topic oOr caling
DDS_DomainParticipant delete contained _entities once to delete all
the proxies.

Local proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to alocally created proxy. The Data Distribution Service
propagates DDS_Topics and makes remotely created pDs_Topics locally
available through this proxy. For each create, a new proxy is created. Therefore the
DDS_Topic must be deleted the same number of times, as the bbs_Topic was
created with the same topic_name per Domain. In other words, each pointer (local
proxy) must be deleted separately.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DDS_TopicListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the bbs_TopicListener:
* DDS_INCONSISTENT TOPIC_STATUS

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select al statuses applicable to the DDS_TopicListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_TopicListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant iSinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and aDbbs_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener iS also not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_delete contained_entities

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contained_entities
(DDS_DomainParticipant _this);

Description

This operation deletes all the bps_Entity objects that were created on the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the bps_Entity objects that were created on the
DDS_DomainParticipant. In other words, it deletes all bDs_Publisher,
DDS_Subscriber, DDS_Topic, DDS_ContentFilteredTopic and
DDS_MultiTopic objects. Prior to deleting each contained bps_Entity, this
operation regressively calls the corresponding
DDS_<Entity>_delete_contained_entities Operation on each
DDS_Entity (if applicable). In other words, all bpDs_Entity objectsin the
DDS_Publisher and DDS_Subscriber are deleted, including the
DDS_DataWriter and DDS_DataReader. Also the DDS_QueryCondition and
DDS_ReadCondi tion objects contained by the DDS_DataReader are deleted.

DDS Topic

Since aDDS_Topic isagloba concept in the system, access is provided through a
local proxy. The Data Distribution Service propagates bbs_Topics and makes
remotely created DDS_Topics locally available through this proxy. Such aproxy is
created by the DDS_DomainParticipant_create_topic Or
DDS_DomainParticipant_find_topic operation. When a pointer to the same
DDS_Topic was created multiple times (either by

149
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipant_create_topic or
DDS_DomainParticipant_find_topic), al pointers(local proxies) are deleted.
With the last proxy, the bbs_Topic itself is aso removed from the system.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DDS_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_1loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pps_entity oObjects are deleted and the
application may delete the bDS_DomainParticipant.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e DDS_RETCODE_PRECONDITION_NOT_ MET - oneor more of the contained entities
arein a state where they cannot be deleted.

DDS DomainParticipant_delete_contentfilteredtopic

150
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_ContentFilteredTopic
a_contentfilteredtopic);

Description
This operation deletesabDs_ContentFilteredTopic.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS ContentFilteredTopic a_contentfilteredtopic - a
pointer to the DDS_ContentFilteredTopic, Which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletesaDDS_ContentFilteredTopic.

The deletion of abps_ContentFilteredTopic isnot allowed if there are any
existing DDS_DataReader Objects that are wusing the
DDS_ContentFilteredTopic.

If the DDS_DomainParticipant_delete_contentfilteredtopic operation
iscalled on aDpps_ContentFilteredTopic With existing bDDS_bDataReader
objects attached to it, it will return PRECONDITTON_NOT_MET.

The DDS_DomainParticipant_delete_contentfilteredtopic operation
must be called on the same bDS_DomainParticipant object used to create the
DDS_ContentFilteredTopic.

If DDS_DomainParticipant_delete_contentfilteredtopic iscaled ona
different bDs_DomainParticipant the operation will have no effect and it will
return PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_ContentFilteredTopic iSdeleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_contentfilteredtopic
isnot avalid DDS_ContentFilteredTopic.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

151
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the bDS_ContentFilteredTopic
was created, or the DDS_ContentFilteredTopic iSbeng used by one or more
DDS_DataReader Objects.

DDS DomainParticipant_delete multitopic

152
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_multitopic
(DDS_DomainParticipant _this,
const DDS_MultiTopic a_multitopic);

Note: This operation is not yet implemented. It is scheduled for afuture release.

Description
This operation deletesapps_MultiTopic.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS_MultiTopic a_multitopic - a pointer to the
DDS_MultiTopic, which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletesapps_MultiTopic.

The deletion of abpps_MultiTopic is not allowed if there are any existing
DDS_DataReader Objects that are using the pps_MultiTopic. If the
DDS_DomainParticipant_delete multitopic operationiscalled on a
DDS_MultiTopic With existing DDS_DataReader Objects attached to it, it will
return DDS_RETCODE_PRECONDITION_NOT_MET.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

The DDS_DomainParticipant_delete_multitopic operation must be called
on the same pbs_DomainParticipant Object used to create the
DDS_MultiTopic. If DDS_DomainParticipant delete multitopic iS
called on a different DDS_DomainParticipant the operation will have no effect
and it will return DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_MultiTopic is deleted.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_multitopic isnot avalid
DDS_MultiTopic.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, asused whenthe bbs_MultiTopic was created, or
the DDsS_MultiTopic isbeing used by one or more bDS_DataReader Objects.

DDS DomainParticipant_delete publisher

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_publisher
(DDS_DomainParticipant _this,
const DDS_Publisher p);

Description
This operation deletes apps_Publisher.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_Publisher p - apointer tothe pbs_publisher, whichisto
be del eted.

153
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a Dbs_Publisher. A DDS_Publisher cannot be deleted
when it has any attached pDs_Datawriter objects. When the operation is called
on apbS_Publisher With DDS_DatawWriter objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the bDsS_Publisher was
created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher iSdeleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter p is not a valid
DDS_Publisher.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the operation is called on adifferent
DDS_DomainParticipant, as used when the bDs_Publisher was created, or
the DDS_Publisher cONtains one Or More DDS_DataWriter Objects.

DDS DomainParticipant_delete subscriber

154
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_subscriber
(DDS_DomainParticipant _this,
const DDS_Subscriber s);

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Description
This operation deletes apps_subscriber.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_Subscriber s - apointer tothe pps_subscriber, whichis
to be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletesapps_Subscriber. A DDS_Subscriber cannot be deleted
when it has any attached bps_DataReader objects. When the operation is called
0on aDDS_Subscriber With DDS_DataReader oObjects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the DbDs_subscriber was
created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Subscriber is deleted.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAIL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter s is not a valid
DDS_Subscriber.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

155
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, asused whenthe Dbs_Subscriber was created, or
the DDS_Subscriber contains one or more bDS_DataReader Objects.

DDS DomainParticipant_delete topic

156
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_topic
(DDS_DomainParticipant _this,
const DDS_Topic a_topic);

Description
This operation deletes a DDS_Topic.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS_Topic a_topic - apointer tothe pbs_Topic, whichisto be
deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a bps_Topic. A DDS_Topic cannot be deleted when there
areany DDS_DataReader, DDS_DataWriter, DDS_ContentFilteredTopic Or
DDS_MultiTopic objects, which are using the bDs_Topic. When the operation is
called on apps_Topic pointed to by any of these objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the bDS_Topic was created,
the operation has no effect and returns DDS_RETCODE_PRECONDITION_NOT_MET.

Local Proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer is actually not a pointer to abps_Topic but
to the local proxy. The Data Distribution Service propagates bbs_Topics and

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

makes remotely created DDs_Topics locally available through this proxy. Such a
proxy is created by the Dbs_DomainParticipant_create_topic Of
DDS_DomainParticipant_find_topic operation. Thisoperation will delete the
local proxy. When a pointer to the same pDS_Topic was created multiple times
(either by DDS_DomainParticipant_create_topic or
DDS_DomainParticipant_find_topic), each pointer (local proxy) must be
deleted separately. When this proxy is the last proxy for this bps_Topic, the
DDS_Topic itself is aso removed from the system. As mentioned, a proxy may
only be deleted when there are no other entities attached to it. However, it is
possible to delete a proxy while there are entities attached to a different proxy.

Return Code

When the operation returns:

* DDS _RETCODE_OK - the DDS_Topic is deleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter a_topic is not a valid
DDS_Topic.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the operation is called on adifferent
DDS_DomainParticipant, as used when the pbs_Topic was created, or the
DDS_Topic isstill pointed to by other abjects.

DDS DomainParticipant_enable (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_enable
(DDS_DomainParticipant _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

157
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_find_topic

158
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_DomainParticipant_find_topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_Duration_t *timeout) ;

Description

This operation gives access to an existing (or ready to exist) enabled pps_Topic,
based on its topic_name.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *topic_name - thename of the DDS_Topic that the
application wants access to.

iNn const DDS Duration_t *timeout - the maximum duration to block for
the DDS_DomainParticipant_find_topic, after which the application
thread is unblocked. The special constant DDS_DURATION_INFINITE can be
used when the maximum waiting time does not need to be bounded.

Return Value
DDS_Topic - Returnvalueisapointer to the bbs_Topic found.

Detailed Description

This operation gives access to an existing DDS_Topic, based on its topic_name.
The operation takes as arguments the topic_name of the DDS_Topic and a
timeout.

If abps_Topic of the same topic_name already exists, it gives access to this
DDS_Topic. Otherwise it waits (blocks the caller) until another mechanism creates
it. This other mechanism can be another thread, a configuration tool, or some other
Data Distribution Service utility. If after the specified t imeout the DDS_Topic can
still not be found, the caller gets unblocked and DDS_HANDLE_NTL is returned.

A DDS_Topic obtained by means of DDS_DomainParticipant_find_topic,
must also be deleted by means of DDS_DomainParticipant_delete_topic SO
that the local resources can be released. If abps_Topic is obtained multiple times
it must also be deleted that same number of times using

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipant_delete_topic or calling
DDS_DomainParticipant delete contained entities once to delete all
the proxies.

A DDS_Topic that is obtained by means of
DDS_DomainParticipant_find_topic in a specific

DDS_DomainParticipant can only be used to create DDS_DataReaders and
DDS_DataWriters in that DDS_DomainParticipant if its corresponding
DDS_TypeSupport has been registered to that same DDS_DomainParticipant.

Local Proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to alocally created proxy. The Data Distribution Service
propagates bps_Topics and makes remotely created pps_Topics locally
available through this proxy. For each time this operation is called, a new proxy is
created. Thereforethe bbs_Topic must be deleted the same number of times, asthe
DDS_Topic was created with the same topic_name per Domain. In other words,
each pointer (local proxy) must be deleted separately.

DDS DomainParticipant_get_builtin_subscriber
Synopsis

#include <dds_dcps.h>
DDS_Subscriber
DDS_DomainParticipant_get_builtin_subscriber
(DDS_DomainParticipant _this);
Description

This operation returns the built-in DDS_subscriber associated with the

DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

Return Value

DDS_Subscriber - Result valueisapointer to the built-in DDS_Subscriber
associated with the bDS_DomainParticipant.

159

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation returns the built-in bbs_subscriber associated with the
DDS_DomainParticipant. Each DDS_DomainParticipant contains several
built-in bDS_Topic objects. The built-in bDS_Subscriber contains the
corresponding DDS_DataReader Objects to access them. All these
DDS_DataReader Objects belong to asingle built-in bps_subscriber. Note that
there is exactly one built-in DDS_subscriber associated with each
DDS_DomainParticipant.

DDS DomainParticipant_get_current_time

160
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
get_current_time
(DDS_DomainParticipant _this,
DDS_Time_t *current_time) ;

Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well asreceived datain current_time.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_Time_t *current_time - the value of the current time as used by
the Data Distribution System. The input value of current_time iSignored.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of
DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received datain current_time.
Theinput value of current_time isignored by the operation.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OK - the value of the current timeisreturned in current_time.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD_PARAMETER - the parameter current_time isnot avalid
reference.

* DDS_RETCODE_ALREADY_DELETED - the DomainParticipant has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the DDS_DomainParticipant iSnotenabled.
DDS DomainParticipant_get_default_publisher _gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_publisher_gos
(DDS_DomainParticipant _this,
DDS_PublisherQos *gos) ;

Description

This operation gets the struct with the default bDS_Publisher QosPolicy
settings of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_PublisherQos *gos - apointertothebps_publisherQos struct
(provided by the application) in which the default QosPolicy settings for the
DDS_ Publisher arewritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT MET.

161

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

162
API Reference

Detailed Description

This operation gets the struct with the default bbs_pPublisher QosPolicy
settings of the DDS_DomainParticipant (that isthe bps_pPublisherQos)
which is used for newly created bps_pPublisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT isused. The default DDS_PublisherQos isonly
used when the constant is supplied as parameter gos to specify the
DDS_PublisherQos inthe DDS_DomainParticipant_create_publisher
operation. The application must provide the bps_pPublisherQos struct in which
the QosPolicy settings can be stored and pass the gos pointer to the operation.
The operation writes the default gosPolicy settingsto the struct pointed to by gos.
Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_publisher_gos,
or, if the call was never made, the default values as specified for each QosPolicy
setting as defined in Table 5 on page 59.

Note: The operation will return bbDs_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained bDs_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the default DDS_Publisher QosPolicy Settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_PublisherQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e DDS RETCODE_PRECONDITION NOT MET - oneor more of the contained entities
arein a state where they cannot be deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get_default_subscriber _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_subscriber_gos
(DDS_DomainParticipant _this,
DDS_SubscriberQos *gos) ;

Description

This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_SubscriberQos *gos - apointer tothe QospPolicy struct
(provided by the application) in which the default QosPolicy settings for the
DDS_Subscriber iswritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant (that isthe DDS_SubscriberQos)
which is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter gos to specify the
DDS_SubscriberQos inthe DDS_DomainParticipant create subscriber
operation. The application must provide the QoS struct in which the policy can be
stored and pass the gos pointer to the operation. The operation writes the default
QosPolicy to the struct pointed to by gos. Any settings in the struct are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_subscriber gos,
or, if the call was never made, the default values as specified for each QospPolicy
defined in Table 5 on page 59.

163
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Code
When the operation returns:

* DDS_RETCODE_OK - the default DDs_Subscriber QosPolicy Settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_SubscriberQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipant_get_default_topic_qos

164
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_topic_gos
(DDS_DomainParticipant _this,
DDS_TopicQos *gos) ;

Description

This operation gets the struct with the default bbs_Topic QosPolicy settings of
the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_TopicQos *gos - apointertothe QospPolicy struct (provided by
the application) in which the default gosPolicy settings for the bps_Topic is
written.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation gets the struct with the default DDS_Topic QosPolicy Settings of
the DDS_DomainParticipant (that isthe bDS_TopicQos) which is used for
newly created DDS_Topic oObjects, in case the constant
DDS_TOPIC_QOS_DEFAULT isused. The default bDs_TopicQos isonly used when
the constant is supplied as parameter gos to specify the pps_TopicQos in the
DDS_DomainParticipant_create_topic operation. The application must
provide the QoS struct in which the policy can be stored and pass the gos pointer to
the operation. The operation writes the default gosPolicy to the struct pointed to
by qgos. Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant set default topic_gos, Of, if
the call was never made, the default values as specified for each QosPolicy
defined in Table 5 on page 59.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the default DDS_Topic QosPolicy settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_TopicQos parameter.

* DDS RETCODE _ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_get_discovered_participants

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participants
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *participant_handles);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

165
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get_discovered_participant_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participant_data
(DDS_DomainParticipant _this,
DDS_ParticipantBuiltinTopicData *participant_data,
DDS_InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DomainParticipant_get_discovered_topics
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topics
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *topic_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_get_discovered_topic_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topic_data
(DDS_DomainParticipant _this,
DDS_TopicBuiltinTopicData *topic_data,
DDS_InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_get_domain_id
Synopsis

#include <dds_dcps.h>
DomainId_t
DDS_DomainParticipant_get_domain_id
(DDS_DomainParticipant _this);

Description

This operation returns the bomainId of the Domain to which this
DDS_DomainParticipant iSattached.

166

PRISMTECH
API Reference 4 Pris

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

Return Value

DomainId t - resultisthe DomainId.

Detailed Description

This operation returns the bomainId of the Domain to which this
DDS_DomainParticipant iS attached. A bomainId consists of a string that
represents a URI to the location of the configuration file (e.g.
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.

A DomainId may contain the NULL pointer: in that case the location of the
configuration file is extracted from the environment variable called osp1._URT.

DDS DomainParticipant_get_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantListener
DDS_DomainParticipant_get_listener
(DDS_DomainParticipant _this);

Description
This operation allows accessto aDDS_DomainParticipantListener.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

Return Value

struct DDS_DomainParticipantListener - a pointer to the
DDS_DomainParticipantListener attached to the
DDS_DomainParticipant.

Detailed Description

This operation allows access to a DDS_DomainParticipantListener attached
to the DDS_DomainParticipant. When no
DDS DomainParticipantListener was attached to the
DDS_DomainParticipant, the DDS_OBJECT_NTL pointer is returned.

167
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get _gos

168
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_gos
(DDS_DomainParticipant _this,
DDS_DomainParticipantQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant Object
on which the operation is operated.

inout DDS_DomainParticipantQos *gos - apointer to the destination
DDS_DomainParticipantQos struct in which the QosPolicy settings will
be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_DomainParticipant on which this operation is used. This
DDS_DomainparticipantQos is stored at the location pointed to by the gos
parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipant has successfully been copied into the specified
DDS_DomainParticipantQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ALREADY _DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_get_status _changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask

DDS_DomainParticipant_get_status_changes
(DDS_DomainParticipant _this);

DDS DomainParticipant_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition

DDS_DomainParticipant_get_statuscondition
(DDS_DomainParticipant _this);

DDS _DomainParticipant_ignore_participant
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_participant
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS _DomainParticipant_ignore_publication
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_publication
(DDS_DomainParticipant _this,
const DDS_TInstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

169
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_ignore_subscription
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_subscription
(DDS_DomainParticipant _this,
const DDS_TInstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS _DomainParticipant_ignore_topic
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_topic
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_lookup_topicdescription
Synopsis

#include <dds_dcps.h>
DDS_TopicDescription
DDS_DomainParticipant_lookup_topicdescription
(DDS_DomainParticipant _this,
const DDS_char *name) ;

Description

This operation gives access to alocally-created bDS_TopicDescription, with a
matching name.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - the name of the DDS_TopicDescription to
look for.

Return Value

DDS_TopicDescription - Return value is a pointer to the
DDS_TopicDescription found. When no such bbs_TopicbDescription is
found, the pps_OBJECT_NIL pointer is returned.

170

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

The operation bbS_DomainParticipant_lookup_topicdescription gives
access to a locally-created DDS_TopicDescription, based on its name. The
operation takes as argument the name of the bbS_Topicbhescription.

If one or more local DDS_TopicDescription proxies (also see Section 3.2.1.15,
DDS DomainParticipant_find_topic, on page 158) of the same name already exist,
a pointer to one of the already existing local proxies is returned:
DDS_DomainParticipant_lookup_topicdescription will never create a
new local proxy. That means that the proxy that is returned does not need to be
deleted separately from its original. When no local proxy exists, it returns the
DDS_OBJECT_NTIL pointer. The operation never blocks.

The operation DDS_DomainParticipant_lookup_topicdescription may be
used to locate any locally-created bDS_Topic, DDS_ContentFilteredTopic
and DDS_MultiTopic object.

DDS DomainParticipant_set default_publisher _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_publisher_gos
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos);

Description

This operation sets the default pps_pPublisherQos of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_PublisherQos *gos - acollection of QosPolicy settings,
which contains the new default gosPolicy settings for the newly created
DDS_Publishers.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

171
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation sets the default pps_pPublisherQos of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created bps_pPublisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT isused. The default DDS_PublisherQos isonly
used when the constant is supplied as parameter gos to specify the
DDS_PublisherQos inthe DDS_DomainParticipant_create_publisher
operation. The pps_PublisherQos isaways self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_publisher_gos

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default bDS_PublisherQos iS Set.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter qos is not a valid
DDS_PublisherQos. It containsaQosPolicy Setting with an enum valuethat is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set default_subscriber _gos

172
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_subscriber_gos
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *gos) ;

Description

This operation sets the default pDDS_SubscriberQos of the
DDS_DomainParticipant.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_SubscriberQos *gos - acollection of QosPolicy settings,
which contains the new default gosPolicy settings for the newly created
DDS_Subscribers.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation sets the default Dps_subscriberQos of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter gos to specify the
DDS_SubscriberQos inthe DDS DomainParticipant create_ subscriber
operation. The bbs_SubscriberQos isaways self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_subscriber_gos.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default DDS_SubscriberQos is Set.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a valid

DDS_PublisherQos. It containsagosPolicy Setting with an enum valuethat is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

* DDS RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY _DELETED - the DDS_DomainParticipant has
aready been deleted.

173
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set_default_topic_qos

174
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_topic_gos
(DDS_DomainParticipant _this,
const DDS_TopicQos *gos) ;

Description
This operation sets the default DDS_TopicQos Of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_TopicQos *gos - acollection of gosPolicy settings, which
contains the new default gospPolicy settings for the newly created
DDS_Topics.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_ INCONSISTENT_POLICY.

Detailed Description

This operation sets the default DDS_TopicQos of the DDS_DomainParticipant
(that is the struct with the QosPolicy settings) which is used for newly created
DDS_Topic objects, in case the constant pps_ToPIC_QO0S_DEFAULT is used. The
default bps_TopicQos isonly used when the constant is supplied as parameter gos
to specify the bbs_TopicQos inthe DDS_DomainParticipant_create_topic
operation. This operation checksif the DDs_TopicQos isself consistent. If itisnot,
the operation has no effect and returns bps_RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by
DDS_DomainParticipant_get_default_topic_gos.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS RETCODE_OK - the new default DDS_TopicQos iS Set.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_INCONSISTENT POLICY - the parameter qos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DDS DomainParticipant_set listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_listener
(DDS_DomainParticipant _this,
const struct DDS_DomainParticipantListener
*a_listener,
const DDS_StatusMask mask) ;

Description

This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const struct DDS_DomainParticipantListener *a_listener-a
pointer to the DDS_DomainParticipantListener instance, which will be
attached to the bDS_DomainParticipant.

175
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

176
API Reference

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant. OnIy Oone DDS_DomainParticipantListener Can
be attached to each DDS DomainParticipant. | f a
DDS_DomainParticipantListener was already attached, the operation will
replace it with the new one. When a_1listener iSthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DomainParticipantListener operation isinvoked and the
communication status isreset to FALSE, as the listener implicitly accesses the status
which is passed as a parameter to that operation. The status is reset prior to calling
the listener, so if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset. An exception to thisruleisthe
DDS_OBJECT_NIL listener, which does not reset the communication statuses for
which it isinvoked.

Thefollowing statuses are applicable to the bbs_DomainParticipantListener:

* DDS_INCONSISTENT_TOPIC_STATUS (propagated)
* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_REQUESTED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

e DDS_DATA_ON_READERS_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_LIVELINESS_ CHANGED_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_ANY_STATUS can be
used to select all statuses applicable to the DDS_DomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication status is also activated onthe Listener of
a contained entity, the Listener on that contained entity isinvoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the DDS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener Of DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (inthat order).

Return Code

When the operation returns:

* DDS RETCODE_OK - the DDS_DomainParticipantListener iS attached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

177
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set gos

178
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_gos
(DDS_DomainParticipant _this,
const DDS_DomainParticipantQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-iStheDDS_DomainParticipant object
on which the operation is operated.

in const DDS_DomainParticipantQos *gos - must contain the new set of
QosPolicy settingsfor the DDS_DomainParticipant.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipant. The parameter gos must contain the struct with the
QosPolicy settings which is checked for self-consistency.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new DDS_DomainParticipantQos iS Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.

* DDS_RETCODE_BAD_ PARAMETER - the parameter gos is not a valid

DDS_DomainParticipantQos. It contains a QosPolicy Setting with a
sequence that has inconsistent memory settings.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has

aready been deleted.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

ClassDDS_DomainParticipantFactory

&4 PRISMTECH

The purpose of this class is to allow the creation and destruction of
DDS_DomainParticipant ObjeCcts. DDS_DomainParticipantFactory itself

has no factory. It is a pre-existing singleton object that can be accessed by means of

the DDS_DomainParticipantFactory_get_instance operation on the
DDS_DomainParticipantFactory class.

The pre-defined value bDS_TheParticipantFactory can also be used as an
alias for the singleton factory returned by the operation
DDS_DomainParticipantFactory_get_instance.

The interface description of this classis asfollows:

/*
* interface DDS_DomainParticipantFactory
*/
/~k
* implemented API operations
*x/
DDS_DomainParticipantFactory
DDS_DomainParticipantFactory get_instance
(void) ;
DDS_DomainParticipant
DDS_DomainParticipantFactory_ create_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId,
const DDS_DomainParticipantQos *gos,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory_delete_participant
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipant a_participant);
DDS_DomainParticipant
DDS_DomainParticipantFactory_ lookup_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId) ;

179
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_ReturnCode_t
DDS_DomainParticipantFactory_ set_default_participant_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_default_participant_gos
(DDS_DomainParticipantFactory _this,
DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory_set_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantFactoryQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_gos
(DDS_DomainParticipantFactory _this,
DDS_DomainParticipantFactoryQos *gos) ;

The next paragraphs describe the usage of all DDS_DomainParticipantFactory

operations.

3.2.2.1 DDS DomainParticipantFactory_create participant

180
API Reference

Synopsis

#include <dds_dcps.h>

DDS_DomainParticipant

DDS_DomainParticipantFactory create_participant
(DDS_DomainParticipantFactory _this,

const DomainId_t domainId,
const DDS_DomainParticipantQos *gos,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a new DDS_DomainParticipant which will join the
domain identified by domainId, with the desired DDS_DomainParticipantQos
and attaches the optionally specified DDS_DomainParticipantListener toit.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - thelD of the bomain to which the
DDS_DomainParticipant isjoined. This should be a URI to the location of
the configuration file that identifies the configuration details of the Domain.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

in const DDS_DomainParticipantQos *gos - a
DDS_DomainParticipantQos for the new DDS_DomainParticipant.
When this set of gosPolicy settings is inconsistent, no
DDS_DomainParticipant iScreated.

in const struct DDS_DomainParticipantListener *a_listener -a
pointer to the DDS_DomainParticipantListener instance which will be
attached to the new pDs_DomainParticipant. It is permitted to use
DDS_OBJECT_NIL as the value of the listener: this behaves as a
DDS_DomainParticipantListener Whose operations perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for acertain status.

Return Value

DDS_DomainParticipant -Return valueis a pointer to the newly created
DDS_DomainParticipant. In case of an error, the bbs_OBJECT_NIL pointer
is returned.

Detailed Description

This operation creates a new DDS_DomainParticipant, With the desired
DDS_DomainParticipantQos and attaches the optionally specified
DDS_DomainParticipantListener toit. The DDS_DomainParticipant
signifies that the calling application intends to join the Domain identified by the
domainId argument.

If the specified QosPolicy settings are not consistent, the operation will fail; no
DDS_DomainParticipant iS created and the operation returns the
DDS_OBJECT_NIL pointer. To delete the bbs_DomainParticipant the operation
DDS_DomainParticipantFactory delete_participant must be used.

| dentifying the Domain

The DDS_DomainParticipant will attach to the bomain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
the location of the configuration file (e.g.
“file:///projects/DDS/ospl.xml”). Thisfile specifies all configuration
details of the bomain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.

A NULL pointer may be assigned to the bomainId: in that case the location of the
configuration fileis extracted from the environment variable called ospr._urz. This
variable will be initialized when you source the release. com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice

181
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

182
API Reference

product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.

It is recommended to use this osp1,_ur1 variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

Default QoS

The constant DDS_PARTICIPANT_QOS_DEFAULT Can be used as parameter gos to
create a DDS_DomainParticipant with the default
DDS_DomainParticipantQos as set in the
DDS_DomainParticipantfactory. The effect of using
DDS_PARTICIPANT_QOS_DEFAULT is the same as calling the operation
DDS_DomainParticipantFactory get_default_participant_gos and
using the resulting DbS_DomainParticipantQos to create the
DDS_DomainParticipant.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DomainParticipantListener operation is invoked and the
communication status is reset to FALSE, asthe listener implicitly accesses the status
which is passed as a parameter to that operation. The fact that the statusis reset prior
to calling the listener means that if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

Thefollowing statuses are applicable to the Dbs_DomainParticipantListener:

* DDS_INCONSISTENT_TOPIC_STATUS (propagated)
* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_REQUESTED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)
* DDS_DATA_ON_READERS_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_LIVELINESS_CHANGED_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bps_ANY_STATUS can be
used to select all statuses applicable to the bDS_DomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication statusis also activated on the Listener of
acontained entity, the Listener on that contained entity is invoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the bbS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener OF DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

DDS DomainParticipantFactory _delete participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_delete_participant
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipant a_participant) ;

Description
This operation deletes apps_DomainParticipant.

183
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

in const DDS_DomainParticipant a_participant - apointer tothe
DDS_DomainParticipant, whichisto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_ PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a DDS_DomainParticipant. A
DDS_DomainParticipant cannot be deleted when it has any attached
DDS_Entity objects. When the operation is called on a
DDS_DomainParticipant With existing DDs_Entity objects, the operation
returns DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DomainParticipant isdeleted.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter a_participant isnot avalid

DDS_DomainParticipant.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the DDS_DomainParticipant
contains one or more DDS_Ent ity objects.

DDS DomainParticipantFactory get default_participant_qos

184
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_get_default_participant_gos
(DDS_DomainParticipantFactory _this,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

DDS_DomainParticipantQos *gos) ;

Description

This operation gets the default bDS_DomainParticipantQos of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

inout DDS_DomainParticipantQos *gos - a pointer to the
DDS_DomainParticipantQos struct (provided by the application) in which
the default DDS_DomainParticipantQos for the
DDS_DomainParticipant iSwritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets the default DDS_DomainParticipantQos Of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created DDS_DomainParticipant Objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT is used. The default
DDS_DomainParticipantQos isonly used when the constant is supplied as
parameter gos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
application must provide the bDS_DomainParticipantQos struct in which the
QosPolicy Settings can be stored and provide a pointer to the struct. The operation
writes the default gosPolicy settings to the struct pointed to by gos. Any settings
in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipantFactory set default_
participant_gos, of, if the call was never made, the default values as specified
for each QosPolicy Setting as defined in Table 5 on page 59.

Return Code
When the operation returns:

185
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OK - the default DDS_DomainParticipant QosPolicy Settings
of this bbS_DomainParticipantFactory have successfully been copied into
the specified DDS_DomainParticipantQos parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipantFactory get_instance

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipantFactory
DDS_DomainParticipantFactory_get_instance
(void) ;

Description
This operation returns the DDS_DomainParticipantFactory Singleton.

Parameters
<none>

Return Value

DDS_DomainParticipantFactory - return value is a pointer to the
DDS_DomainParticipantFactory.

Detailed Description

This operation returns the bbs_DomainParticipantFactory Singleton. The
operation can be called multiple times without side-effects and it returns the same
DDS_DomainParticipantFactory instance.

The pre-defined value DDS_TheParticipantFactory can also be used as an
alias for the singleton factory returned by the operation
DDS_DomainParticipantFactory_get_instance.

DDS DomainParticipantFactory get qos

186
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_gos
(DDS_DomainParticipantFactory _this,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantFactoryQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipantFactory.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

inout DDS_DomainParticipantFactoryQos *gos - apointer to the
destination pDS_DomainparticipantFactoryQos Struct in which the
QosPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_ OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_DomainParticipantFactory on which this operation is used. This
DDS_DomainparticipantFactoryQos isstored at the location pointed to by the
gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipantFactory has successfully been copied into the
specified DDS_DomainParticipantFactoryQos parameter.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipantFactory_lookup_participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant

187
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantFactory_lookup_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId) ;

Description

This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domainId.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - thelD of the bomain for which ajoining
DDS_DomainParticipant should be retrieved. This should be a URI to the
location of the configuration file that identifies the configuration details of the
Domain.

Return Value

DDS_DomainParticipant - Return value is a pointer to the
DDS_DomainParticipant retrieved. When no such
DDS_DomainParticipant isfound, the DDs_OBJECT_NIL pointer is
returned.

Detailed Description

This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domain1d. If no such bDS_DomainParticipant
exists, the operation will return DDS_OBJECT_NTL.

The domainTd used to search for a specific DDS_DomainParticipant must be
identical to the domain1d that was used to create that specific
DDS_DomainParticipant: aNULL pointer will not be resolved on thislevel. That
means that abbs_DomainParticipant that was created using a domainId set to
NULL will not be found if you try to look it up using a hard-coded URI that has the
same contents as the environment variable 0SPL._URI.

If multiple bDS_DomainParticipant entities belonging to the specified
domainId exist, then the operation will return one of them. It is not specified which
one.

DDS DomainParticipantFactory_set_default_participant_qos

188
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

DDS_DomainParticipantFactory_ set_default_participant_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantQos *qgos) ;

Description

This operation sets the default bbs_DomainParticipantQos Of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantQos *gos - the
DDS_DomainParticipantQos Struct, which contains the new default
DDS_DomainParticipantQos for the newly created
DDS_DomainParticipants.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation sets the default bbs_DomainParticipantQos Of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created bDS_DomainParticipant Objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT is used. The default
DDS_DomainParticipantQos isonly used when the constant is supplied as
parameter gos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
DDS_DomainParticipantQos isaways self consistent, because its policies do
not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY.

The values set by this operation are returned by
DDS_DomainParticipantFactory_get_default_participant_gos.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default DDS_DomainParticipantQos iS Set.

e DDS_RETCODE_ERROR - an internal error has occurred.

189
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a vaid

DDS_DomainParticipantQos. It contains a QosPolicy Setting with a
sequence that has inconsistent memory settings.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipantFactory set qos

190
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_set_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantFactoryQos *gos) ;

Description

This operation replaces the existing set of QosPolicy settings for a
DDS_DomainParticipantFactory.

Parameters

in DDS_DomainParticipantFactory _this - is the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantFactoryQos *gos - must containthe
new set of QosPolicy settingsfor the DDS_DomainParticipantFactory.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipantFactory. The parameter gos must contain the struct
with the QosPolicy Settings.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new DDS_DomainParticipantFactoryQos iS Set.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipantListener interface

&4 PRISMTECH

Since aDpDs_DomainParticipant iS@aDDS_Entity, it hasthe ability to have a
Listener associated with it. In this case, the associated 1.i stener should be of
type DDS_DomainParticipantListener. Thisinterface must be implemented
by the application. A user defined class must be provided by the application which
must extend from the DDs_DomainParticipantListener class. All
DDS_DomainParticipantListener operations must beimplemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DomainParticipantListener provides a generic mechanism
(actually a callback function) for the Data Distribution Service to notify the
application of relevant asynchronous status change events, such as a missed
deadline, violation of a QosPolicy setting, etc. The
DDS_DomainParticipantListener isrelated to changesin communication
status DDS_StatusConditions.

The interface description of this class is as follows:

/~k

* interface DDS_DomainParticipantListener

*/
/*

* inherited from DDS_TopicListener

*/
/* wvoid

* DDS_DomainParticipantListener_on_inconsistent_topic
* (void *listener_data,

* DDS_Topic the_topic,

* const DDS_InconsistentTopicStatus *status);
*/

/~k

* inherited from DDS_PublisherListener

191
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

192
API Reference

*/

/* wvoid

* DDS_DomainParticipantListener_on_offered deadline_missed
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedDeadlineMissedStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_offered_incompatible_gos
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedIncompatibleQosStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_liveliness_lost

* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_LivelinessLostStatus *status);

*/

/* void

* DDS_DomainParticipantListener_on_publication_matched
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_PublicationMatchedStatus *status);

*/

/*

* inherited from DDS_SubscriberListener

*/

/* wvoid

* DDS_DomainParticipantListener_on_data_on_readers

* (void *listener_data,

* DDS_Subscriber subs) ;

*/

/* void

DDS_DomainParticipantListener_on_requested_deadline_missed
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedDeadlineMissedStatus *status);

*/

/* wvoid

* DDS_DomainParticipantListener_on_requested_incompatible_gos
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedIncompatibleQosStatus *status);

*/

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

/* void

* DDS_DomainParticipantListener_on_sample_rejected
* (void *listener_data,

DDS_DataReader reader,

* const DDS_SampleRejectedStatus *status);

*/

/* void

* DDS_DomainParticipantListener_on_liveliness_changed
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_LivelinessChangedStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_data_available
* (void *listener_data,

* DDS_DataReader reader) ;

*/

/* void

* DDS_DomainParticipantListener_on_subscription_matched
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_SubscriptionMatchedStatus *status) ;
*/
/* void

* DDS_DomainParticipantListener_on_sample_lost

* (void *listener_data,

* DDS_DataReader reader,

* const DDS_SampleLostStatus *status);

*/
/*

* implemented API operations

*/

DDS_DomainParticipantListener
DDS_DomainParticipantListener_ _alloc
(void) ;
The next paragraphs list all DDS_DomainParticipantListener operations.
Since these operations are all inherited, they are listed but not fully described
because they are not implemented in this class. The full description of these
operationsis given in the classes from which they are inherited.

3.2.3.1 DDS DomainParticipantListener__alloc
Synopsis
#include <dds_dcps.h>

193

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantListener
DDS_DomainParticipantListener_ _alloc
(void) ;

Description
This operation creates anew DDS_DomainParticipantListener.

Parameters
<none>

Return Value

DDS_DomainParticipantListener - Return value is the handle to the newly
created DDS_DomainParticipantListener. In case of an error, a
DDS_OBJECT_NTIL pointer is returned.

Detailed Description

This operation creates a new DDS_DomainParticipantListener. The
DDS_DomainParticipantListener must be created using this operation. In
other words, the application is not allowed to declare an object of type
DDS_DomainParticipantListener. When the application wants to release the
DDS_DomainParticipantListener it must bereleased using pps_free.

In case there are insufficient resources available to allocate the
DDS_DomainParticipantListener, 8 DDS_OBJECT_NIL pointer is returned
instead.

DDS DomainParticipantListener_on_data available (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_data_available
(void *listener_data,
DDS_DataReader reader) ;

DDS DomainParticipantListener_on_data_on_readers (inherited,
abstract)

194
API Reference

This operation is inherited and therefore not described here. See the class
DDS_SubscriberListener for further explanation.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_data_on_readers
(void *listener_data,
DDS_Subscriber subs) ;

DDS DomainParticipantListener_on_inconsistent_topic (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_TopicListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);

DDS _DomainParticipantListener_on_liveliness changed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_liveliness_changed
(void *listener_data,
DDS_DataReader reader,
const DDS_LivelinessChangedStatus *status);

DDS DomainParticipantListener_on_liveliness lost (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_liveliness_lost
(void *listener_data,
DDS_DataWriter writer,
const DDS_LivelinessLostStatus *status);

195
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipantListener_on_offered_deadline missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.
Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_offered_deadline_missed
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedDeadlineMissedStatus *status);

DDS DomainParticipantListener_on_offered_incompatible qos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_offered_incompatible_gos
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedIncompatibleQosStatus *status);

DDS DomainParticipantListener_on_publication_matched (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_publication_matched
(void *listener_data,
DDS_DataWriter writer,
const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.
DDS DomainParticipantListener_on_requested deadline missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

196
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_requested_deadline_missed
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedDeadlineMissedStatus *status) ;

DDS DomainParticipantListener_on_requested_incompatible_gos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantlListener_on_requested_incompatible_gos
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedIncompatibleQosStatus *status);

DDS DomainParticipantListener_on_sample lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_sample_lost
(void *1listener_data,
DDS_DataReader reader,
const DDS_SampleLostStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DDS DomainParticipantListener_on_sample reected (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_sample_rejected
(void *listener_data,
DDS_DataReader reader,

197
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

const DDS_SampleRejectedStatus *status);

3.2.3.14 DDS DomainParticipantListener _on_subscription_matched
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_subscription_matched
(void *listener_data,
DDS_DataReader reader,
const DDS_SubscriptionMatchedStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.
3.3 Topic-Definition Module

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
TopicDescription

DomainParticipant
DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
1
get_expression_parameters()
- get_subscription_expression()
Topic * set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() 1
get_gos()
set_listener() fr<ln;(esrLace()>rt>
set_qgos() ypesupp
1 get__type_name()
register_type()
* 0.1 *
QosPolicy <<In.ter.face>> StatusCondition * * WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) = (from Infrastructure Module)

on_inconsistent_topic()

Figure 16 DCPS Topic-Definition Module Class M odel
This module contains the following classes:

* DDS_TopicDescription (abstract)

« DDS_Topic

198

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

« DDS_ContentFilteredTopic

e DDS_MultiTopic

* DDS_TopicListener (interface)

Topic-Definition type specific classes.

“Topic-Definition type specific classes’ contains the generic class and the generated

data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>TypeSupport IS generated (based on IDL) by calling the

[pre-processor.
<<Interface>> DataWriter DataReader
TypeSupport (from Publication Module) (from Subscription Module)

get_type_name()
register_type()

i

FooTypeSupport FooDataWriter FooDataReader
gel_ﬁtypefname() dispose() get_key_value()
register_type() dispose_w_timestamp() read()

read_instance()

get_key_value()
register()
register_w_timestamp()
unregister()

read_next_instance()
read_next_instance_w_condition()
read_next_sample()

unregister_w_timestamp() read_w_condition()
write() return_loan()

write_w_timestamp() take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Foo

Figure 17 Pre-processor Generation of the Typed Classesfor Data Type “ Foo”

For instance, for the user defined data type Foo (this also applies to other types),
defined in the module spacE; “ Topic-Definition type specific classes’ contains the
following classes:

* DDS_TypeSupport (abstract)
* SPACE_FooTypeSupport.

DDS_Topic objects conceptually fit between publications and subscriptions.
Publications must be known in such a way that subscriptions can refer to them
unambiguously. A DDS_Topic is meant to fulfil that purpose: it associates a name
(uniquein the Domain), adatatype, and DDS_TopicQos related to the data itself.

ClassDDS TopicDescription (abstract)

This class is an abstract class. It is the base class for bbs_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic.

199
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The DDS_TopicDescription attribute type_name defines an unique data type
that is made available to the Data Distribution Service viathe bbs_TypeSupport.
DDS_TopicDescription hasalso aname that allowsit to be retrieved locally.

The interface description of this classis as follows:

/*
* interface DDS_TopicDescription
*/
/*
* implemented API operations
*/
DDS_string
DDS_TopicDescription_get_type_name
(DDS_TopicDescription _this);

DDS_string
DDS_TopicDescription_get_name
(DDS_TopicDescription _this);

DDS_DomainParticipant
DDS_TopicDescription_get_participant
(DDS_TopicDescription _this);

The next paragraphs describe the usage of all DDS_Topicbescription
operations.

DDS TopicDescription_get_name
Synopsis

#include <dds_dcps.h>
DDS_string
DDS_TopicDescription_get_name
(DDS_TopicDescription _this);

Description
This operation returns the name used to create the Dbs_Topicbescription.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

Return Value

DDS_string - the name of the DDS_TopicDescription.

Detailed Description

This operation returns the name used to create the Dps_Topicbescription.

200

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS TopicDescription_get_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_TopicDescription_get_participant
(DDS_TopicDescription _this);

Description

This operation returns the DDS_DomainParticipant associated with the
DDS_TopicDescription Of the DDS_OBJECT_NIL pointer.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

Return Value

DDS_DomainParticipant - apointer to the bbDsS_DomainParticipant
associated with the Dbs_TopicDescription Or the DDS_OBJECT_NIL
pointer.

Detailed Description

This operation returns the pps_DbDomainParticipant associated with the
DDS_TopicDescription. Note that there is exactly one
DDS_DomainParticipant associated with each bDS_TopicDescription.
When the DDS_TopicDescription was already deleted (there is no associated
DDS_DomainParticipant any more), the bbs_OBJECT_NIL pointer is returned.

DDS TopicDescription_get_type name

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_TopicDescription_get_type_name
(DDS_TopicDescription _this);
Description

This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

201
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value

DDS_string - return value is the name of the data type of the
DDS_TopicDescription.

Detailed Description

This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

ClassDDS Topic

202
API Reference

DDS_Topic iSthe most basic description of the data to be published and subscribed.

A DDS_Topic isidentified by its name, which must be unique in the whole
Domain. In addition (by virtue of extending DDS_TopicDescription) it fully
identifies the type of data that can be communicated when publishing or subscribing
to the DDS_Topic.

DDS_Topic istheonly Dbs_Topicbhescription that can be used for publications
and therefore a specialized DDS_Datawriter iSassociated to the bps_Topic.

The interface description of this classis asfollows:

/*

* interface DDS_Topic

*/

/*

* inherited from class DDS_Entity
*/

/* DDS_StatusCondition

* DDS_Topic_get_statuscondition
* (DDS_Topic _this);

*/

/* DDS_StatusMask

* DDS_Topic_get_status_changes
* (DDS_Topic _this);

*/

/* DDS_ReturnCode_t

* DDS_Topic_enable

* (DDS_Topic _this);

*/

/*

* inherited from class DDS_TopicDescription
*/

/* DDS_string

* DDS_Topic_get_type_name

* (DDS_Topic _this);

*/

/* DDS_string
* DDS_Topic_get_name

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* (DDS_Topic _this);

/* DDS_DomainParticipant
* DDS_Topic_get_participant

* (DDS_Topic _this);
*/
/~k

* implemented API operations
*/

DDS_ReturnCode_t
DDS_Topic_set_gos
(DDS_Topic _this,
const DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_Topic_get_gos
(DDS_Topic _this,
DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_Topic_set_listener
(DDS_Topic _this,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_TopicListener
DDS_Topic_get_listener
(DDS_Topic _this);
DDS_ReturnCode_t
DDS_Topic_get_inconsistent_topic_status
(DDS_Topic _this,
DDS_InconsistentTopicStatus *a_status);

The next paragraphs describe the usage of all bbs_Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this

class. Thefull description of these operationsis given in the classes from which they
are inherited.

DDS Topic_enable (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_enable
(DDS_Topic _this);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

203
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS Topic_get_inconsistent_topic_status

204
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_get_inconsistent_topic_status
(DDS_Topic _this,
DDS_InconsistentTopicStatus *a_status);

Description
This operation obtainsthe bbs_InconsistentTopicStatus Of the DDS_Topic.

Parameters

in DDS_Topic _this - theDDS_Topic object on which the operation is
operated.

inout DDS_InconsistentTopicStatus *a_status - the contents of the
DDS_InconsistentTopicStatus struct of the bbs_Topic will be copied
into the location specified by a_status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bDS_InconsistentTopicStatus Of the DDS_Topic.
The DDS_InconsistentTopicStatus can also be monitored using a
DDS_TopicListener Or by using the associated DDS_StatusCondition.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_InconsistentTopicStatus Of this
DDS_Topic has successfully been copied into the specified a_status parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Topic has already been deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS Topic_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_TopicListener
DDS_Topic_get_listener
(DDS_Topic _this);

Description
This operation allows accessto abDDS_TopicListener.

Parameters

in DDS_Topic _this - theDDS_Topic object on which the operation is
operated.

Return Value

struct DDS_TopicListener - t0otheDDS_TopicListener attached to the
DDS_Topic.

Detailed Description

This operation allows access to a bDS_TopicListener attached to the
DDS_Topic. When no bDS_TopicListener Was attached to the bps_Topic, the
DDS_OBJECT_NTIL pointer is returned.

DDS Topic_get_name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_Topic_get_name
(DDS_Topic _this);

DDS Topic_get_participant (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_Topic_get_participant
(DDS_Topic _this);

205
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS Topic_get_qos

206
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_get_gos
(DDS_Topic _this,
DDS_TopicQos *gos) ;
Description

This operation allows access to the existing set of QoS policiesfor abbs_Topic.

Parameters

in DDS_Topic _this -the DDS_Topic object on which the operation is
operated.

inout DDS_TopicQos *gos - apointer to the destination bDS_TopicQos struct
in which the gosPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.
Detailed Description

This operation allows access to the existing set of QoS policies of apps_Topic on
which this operation is used. This DDS_TopicQos is stored at the location pointed
to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Topic has successfully been copied into the specified pps_TopicQos
parameter.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS Topic_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask

DDS_Topic_get_status_changes
(DDS_Topic _this);

DDS Topic_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_Topic_get_statuscondition
(DDS_Topic _this);

DDS Topic_get_type name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_Topic_get_type_name
(DDS_Topic _this);

DDS Topic_set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_set_listener
(DDS_Topic _this,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation attaches a bbs_TopicListener tothe DDS_Topic.

207
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

208
API Reference

Parameters

in DDS_Topic _this - the DDS_Topic object on which the operation is
operated.

in const struct DDS_TopicListener *a_listener - apointer tothe
DDS_TopicListener instance, which will be attached to the bpbs_Topic.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the bbs_TopicListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_TopicListener to the DDS_Topic. Only one
DDS_TopicListener can be attached to each pbs_Topic. If a
DDS_TopicListener was aready attached, the operation will replace it with the
new one. When a_listener iSthe DDS_OBJECT_NIL pointer, it represents a
listener that is treated as a NOOP! for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. |t becomes TRUE whenever that plain communication status changes. For
each plain communication status activated in the mask, the associated
DDS_TopicListener operation isinvoked and the communication status is reset
to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name> from inside the listener it will see the
status already reset. An exception to thisrule is the bDs_0BJECT_NIL listener,
which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the DDS_TopicListener:
* DDS_INCONSISTENT TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select all statuses applicable to the DDS_TopicListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_TopicListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and aDpbs_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener iS also not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_TopicListener isattached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_ DELETED - the DDS_Topic has aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Topic_set_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_set_gos
(DDS_Topic _this,
const DDS_TopicQos *gos) ;

Description
This operation replaces the existing set of QosPolicy Settingsfor abpbs_Topic.

Parameters

in DDS_Topic _this - the DDS_Topic object on which the operation is
operated.

in const DDS_TopicQos *gos - New set of QosPolicy settings for the
DDS_Topic.

209
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

210
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_IMMUTABLE_POLICY Of
DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description

This replaces the existing set of gosPolicy settings for a DDS_Topic. The
parameter gos must contain the struct with the gospPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled pps_Topic, which can only be set before the
DDS_Topic is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application
must provide the currently set gosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting gosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT POLICY iSreturned.

The set of gosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new DDS_TopicQos iS Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_ PARAMETER - the parameler gos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - One or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY DELETED - theDDS_Topic has already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an
immutable gosPolicy setting with a different value than set during enabling of
the bDs_Topic.

* DDS_RETCODE_INCONSISTENT POLICY - the parameter qos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

ClassDDS_ContentFilteredTopic

&4 PRISMTECH

DDS_ContentFilteredTopic isaspecialization of DDS_TopicDescription
that allows for content based subscriptions.

DDS_ContentFilteredTopic describes a more sophisticated subscription that
indicates the DDS_Ssubscriber does not necessarily want to see all values of each
instance published under the bps_Topic. Rather, it only wants to see the values
whose contents satisfy certain criteria. Therefore this class must be used to request
content-based subscriptions.

The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.

Appendix H, DCPS Queries and Filters describes the syntax of the SQL based filter
and the parameters.

The interface description of this classis asfollows:

/*

* interface DDS_ContentFilteredTopic

*/
/~k

* inherited from class DDS_TopicDescription
*x/
/* DDS_string

* DDS_ContentFilteredTopic_get_type_name
* (DDS_ContentFilteredTopic _this);

*/
/* DDS_string

* DDS_ContentFilteredTopic_get_name

* (DDS_ContentFilteredTopic _this);
*/

/* DDS_DomainParticipant

* DDS_ContentFilteredTopic_get_participant
* (DDS_ContentFilteredTopic _this);

*/

/*

* implemented API operations

*/

DDS_string
DDS_ContentFilteredTopic_get_filter_expression
211
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

(DDS_ContentFilteredTopic _this);

DDS_ReturnCode_t
DDS_ContentFilteredTopic_get_expression_parameters
(DDS_ContentFilteredTopic _this,
DDS_StringSeq *expression_parameters) ;

DDS_ReturnCode_t
DDS_ContentFilteredTopic_set_expression_parameters
(DDS_ContentFilteredTopic _this,
const DDS_StringSeq *expression_parameters) ;

DDS_Topic
DDS_ContentFilteredTopic_get_related_topic
(DDS_ContentFilteredTopic _this);
/*
The next paragraphs describe the usage of all DDS_ContentFilteredTopic
operations.

3.3.3.1 DDS ContentFilteredTopic_get_expression_parameters
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_ContentFilteredTopic_get_expression_parameters
(DDS_ContentFilteredTopic _this,
DDS_StringSeq *expression_parameters) ;

Description

This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this - the
DDS_ContentFilteredTopic object on which the operation is operated.

inout DDS_StringSeq *expression_parameters - ahandleto asequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

212

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Detailed Description

This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic. That is, the parameters specified on the last
successful call to DDS_ContentFilteredTopic _set expression_
parameters, Of if DDS_ContentFilteredTopic_set_expression_
parameters was never called, the parameters specified when the
DDS_ContentFilteredTopic was created.

The resulting handle contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the DDS_ContentFilteredTopic.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

e DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_ContentFilteredTopic has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS ContentFilteredTopic_get_filter_expression

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_filter_expression
(DDS_ContentFilteredTopic _this);
Description

This operation returns the filter_expression associated with the

DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this-theDDsS_ContentFilteredTopic
object on which the operation is operated.

213
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
DDS_string - result isahandle to a string which holds the SQL filter expression.

Detailed Description

This operation returns the filter_expression associated with the
DDS_ContentFilteredTopic. That is, the expression specified when the
DDS_ContentFilteredTopic Was created.

The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

DDS ContentFilteredTopic_get name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_name
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_get_participant (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_ContentFilteredTopic_get_participant
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_get related topic

214
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_ContentFilteredTopic_get_related_ topic
(DDS_ContentFilteredTopic _this);

Description

This operation returns the DDS_Topic associated with the
DDS_ContentFilteredTopic.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Parameters

in DDS_ContentFilteredTopic _this-theDDS_ContentFilteredTopic
object on which the operation is operated.

Return Value

DDS_Topic - resultisahandle to the base topic on which the filtering will be
applied.

Detailed Description

This operation returns the DDS_Topic associated with the
DDS_ContentFilteredTopic. That is, the bps_Topic specified when the
DDS_ContentFilteredTopic was created. This DDs_Topic isthe base topic on
which the filtering will be applied.

DDS ContentFilteredTopic_get_type name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_type_name
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_set_expression_parameters

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_ContentFilteredTopic_set_expression_parameters
(DDS_ContentFilteredTopic _this,
const DDS_StringSeq *expression_parameters) ;

Description

This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this - the DDS_ContentFilteredTopic
object on which the operation is operated.

215
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

216
API Reference

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameters used in the SQL expression (i.e., the
number of %n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic. The parameter expression_parameters isa
handle to a sequence of strings with the parameters used in the SQL expression. The
number of valuesin expression_parameters must be equal or greater than the
highest referenced %n token inthe filter_expression (e.g.if $1 and ¢8 are
used as parameter inthe filter_expression, the expression_parameters
should at least containn+1 = 9 values). Thisisthe filter expression specified when
the DDS_ContentFilteredTopic Was created.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new expression parameters are set.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for thisbps_contentFilteredTopic or one of the parametersisan
illegal parameter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_ContentFilteredTopic has
already been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

ClassDDS MultiTopic

&4 PRISMTECH

DDS_MultiTopic isaspecialization of DDS_TopicDescription that allows
subscriptions to combine, filter and/or rearrange data coming from several
DDS_Topics.

DDS_MultiTopic allows a more sophisticated subscription that can select and
combine data received from multiple bbs_Topics into asingle data type (specified
by the inherited type_name). The datawill then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL expression with
parameters to adapt the filter clause.

The interface description of this classis asfollows:

/*

* interface DDS_MultiTopic

*/

/~k

* inherited from class DDS_TopicDescription
*x/

/* DDS_string

* DDS_MultiTopic_get_type_name
* (DDS_MultiTopic _this);
*/

/* DDS_string

* DDS_MultiTopic_get_name

* (DDS_MultiTopic _this);
*/

/* DDS_DomainParticipant

* DDS_MultiTopic_get_participant
* (DDS_MultiTopic _this);

*/

/*

* implemented API operations

*/

DDS_string
DDS_MultiTopic_get_subscription_expression
(DDS_MultiTopic _this);

DDS_ReturnCode_t
DDS_MultiTopic_get_expression_parameters
(DDS_MultiTopic _this,
DDS_StringSeq *expression_parameters) ;

DDS_ReturnCode_t
DDS_MultiTopic_set_expression_parameters
(DDS_MultiTopic _this,
const DDS_StringSeq *expression_parameters) ;

217
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The next paragraphs describe the usage of al pps_MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

Note: pps_MultiTopic operations have not been yet been implemented.
Multitopic functionality is scheduled for a future release.

DDS MultiTopic_get_expression_parameters

218
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_MultiTopic_get_expression_parameters
(DDS_MultiTopic _this,
DDS_StringSeq *expression_parameters) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

Description

This operation returns the expression parameters associated with the
DDS_MultiTopic.

Parameters

in DDS _MultiTopic _this- the DDsS_MultiTopic object on which the
operation is operated.

inout DDS_StringSeqg *expression_parameters - ahandleto asequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the expression parameters associated with the
DDS_MultiTopic. That is, the parameters specified on the last successful call to
DDS_MultiTopic_set_expression_parameters, or if
DDS_MultiTopic_set_expression_parameters was never called, the
parameters specified when the bbs_MultiTopic was created.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Theresulting handle contains a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parametersin the result sequence will exactly match the number of %n tokensin the
filter expression associated with the bbs_MultiTopic.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_MultiTopic has successfully been copied into the specified
expression_parameters parameter.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the bDS_MultiTopic has already been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS MultiTopic_get_name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_name
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS MultiTopic_get_participant (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_MultiTopic_get_participant
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

219
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS MultiTopic_get_subscription_expression

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_subscription_expression
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation returns the subscription expression associated with the
DDS_MultiTopic.

Parameters

in DDS_MultiTopic _this - istheDDS_MultiTopic object on which the
operation is operated.

Return Value
DDS_string - ahandleto astring which holds the SQL subscription expression.

Detailed Description

This operation returns the subscription expression associated with the
DDS_MultiTopic. That is, the expression specified when the bps_MultiTopic
was created.

The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated pps_Topics. It isan SQL expression where the
SELECT clause provides the fields to be kept, the FroM part provides the names of
the bDs_Topics that are searched for those fields, and the wHERE clause gives the
content filter. The bDs_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN Operation must
be the same.

DDS MultiTopic_get_type name (inherited)

220
API Reference

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_type_name
(DDS_MultiTopic _this);

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS MultiTopic_set_expression_parameters

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_MultiTopic_set_expression_parameters
(DDS_MultiTopic _this,
const DDS_StringSeq *expression_parameters) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

Description

This operation changes the expression parameters associated with the
DDS_MultiTopic.

Parameters

in DDS_MultiTopic _this - the DDS_MultiTopic object on which the
operation is operated.

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
DDS_MultiTopic. The parameter expression_parameters isahandleto a
sequence of strings with the parameters used in the SQL expression. The number of
parameters in expression_parameters Must exactly match the number of %n
tokens in the subscription expression associated with the Dbs_MultiTopic. Thisis
the subscription expression specified when the DDS_MultiTopic was created.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the new expression parameters are set.
* DDS RETCODE ERROR - aninterna error has occurred.

221
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the number of parameters in
expression parameters does not match the number of “%n” tokens in the
expression for this bps_MultiTopic or one of the parameters is an illegal
parameter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_MultiTopic has aready been
deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS TopicListener Interface

222
API Reference

Since aDDS_Topic isaDDS_Entity, it hasthe ability to have aListener
associated with it. In this case, the associated Listener should be of type
DDS_TopicListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DDS_TopicListener class. All DDS_TopicListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, itis
up to the application whether an operation is empty or contains some functionality.

The DDS_TopicListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as an inconsistent bbs_Topic. The
DDS_TopicListener isrelated to changesin communication status.

The interface description of this classis asfollows:

/*
* interface DDS_TopicListener
*/
/*
* abstract external operations
*/
void
DDS_TopicListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);
/*
* implemented API operations
*/

DDS_TopicListener

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS_TopicListener__alloc
(void) ;
The next paragraph describes the usage of the DDS_TopicListener operation.
This abstract operation is fully described since it must be implemented by the
application.

DDS TopicListener__alloc
Synopsis

#include <dds_dcps.h>
DDS_TopicListener
DDS_TopicListener__alloc
(void) ;

Description
This operation creates anew bDDS_TopicListener.

Parameters
<none>

Return Value

DDS_TopicListener - the handle to the newly created DDS_TopicListener. INn
case of an error, abDDS_OBJECT_NTL pointer is returned.

Detailed Description

This operation creates a new DDS_TopicListener. The DDS_TopicListener
must be created using this operation. In other words, the application is not allowed
to declare an object of type bDS_TopicListener. When the application wants to
release the DDS_TopicListener it must be released using DDS_free.

In case there are insufficient resources available to allocate the
DDS_TopicListener, aDDS_OBJECT_NTIL pointer isreturned instead.

DDS TopicListener_on_inconsistent_topic (abstract)
Synopsis

#include <dds_dcps.h>
void
DDS_TopicListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);

223

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_InconsistentTopicStatus changes.

Parameters

inout void *1listener_data - apointer to auser defined object which may
be used for identification of the Listener.

in DDS_Topic the_topic - apointer to the pps_Topic on which the
conflict occurred (thisis an input to the application).

in const DDS_InconsistentTopicStatus *status - the
DDS_InconsistentTopicStatus struct (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_InconsistentTopicStatus changes. The implementation may be left
empty when thisfunctionality is not needed. This operation will only be called when
the relevant bpbs_TopicListener iSsinstalled and enabled for the
DDS_InconsistentTopicStatus. TheDDS InconsistentTopicStatus Will
change when another bps_Topic exists with the same topic_name but different
characteristics.

The Data Distribution Service will call the bbs_TopicListener operation with a
parameter the_topic, which will contain a pointer to the bbs_Topic on which
the conflict occurred and a parameter status, which will contain the
DDS_InconsistentTopicStatus Struct.

Topic-Definition Type Specific Classes

224
API Reference

This paragraph describes the generic DDS_TypeSupport class and the derived
application type specific <NameSpace>_<type>TypeSupport classes which
together implement the application pps_Topi c interface. For each application type,
used as DDS_Topic data type, the pre-processor generates a
<NameSpace>_<type>DataReader class from an IDL type description. The
SPACE_FooTypeSupport classthat would be generated by the pre-processor for a
fictional type Foo (defined in the module space) describes the
<NameSpace>_<type>TypeSupport classes.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

ClassDDS TypeSupport (abstract)

The DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic isbound
to adata type described by the type name argument. Prior to creating a bbs_Topic,
DDS_MultiTopic OF DDS_ContentFilteredTopic, the data type must have
been registered with the Data Distribution Service. Thisis done using the data type
specific DDS_TypeSupport_register_type operation on aderived class of the
DDS_TypeSupport interface. A derived class is generated for each data type used
by the application, by calling the pre-processor.

The interface description of thisclassis asfollows:

/*

* interface DDS_TypeSupport

*/

/*

* abstract operations

*/

/* DDS_TypeSupport

* DDS_TypeSupport__alloc

* (void) ;

*/

/* DDS_ReturnCode_t

* DDS_TypeSupport_register_type
* (DDS_TypeSupport _this,

* Domainparticipant domain,
* DDS_string type_name) ;

*

* DDS_string

* DDS_TypeSupport_get_type_name
* (DDS_TypeSupport _this);
*/
/*

* implemented API operations

* <no operations>

*/

The next paragraph list the bbs_TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation isgiven in the SPACE_FooTypeSupport class (for the
data type example Foo), which contains the data type specific implementation of
this operation.

225

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS TypeSupport__alloc (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>TypeSupport class. Therefore, to use this operation,
the data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module SPACE) derived SPACE_FooTypeSupport class.

Synopsis
#include <dds_dcps.h>
DDS_TypeSupport
DDS_TypeSupport__alloc
(void) ;

DDS TypeSupport_get_type name (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NamesSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional datatype Foo (defined in the module spAcCE) derived
SPACE_FooTypeSupport Class.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_TypeSupport_get_type_name
(DDS_TypeSupport _this);

DDS TypeSupport_register_type (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NamesSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional datatype Foo (defined in the module spacEk) derived
SPACE_FooTypeSupport Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_TypeSupport_register_type
(DDS_TypeSupport _this,
Domainparticipant domain,
DDS_string type_name) ;

Class SPACE_FooTypeSupport

226
API Reference

The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>TypeSupport classes. For each application data type that
is wused as DDS_Topic data type, a typed class
<NameSpace>_<type>TypeSupport isderived from the bDs_TypeSupport

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

class. In this paragraph, the class SPACE_FooTypeSupport describes the
operations of these derived <NameSpace>_<type>TypeSupport Classes as an
example for the fictional application type Foo (defined in the module spPACE).

For instance, for an application, the definitions are located in the space. id1 file.
The pre-processor will generate a space . h includefile.

The DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic isbound
to a data type described by the type type_name argument. Prior to creating a
DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic, the datatype
must have been registered with the Data Distribution Service. Thisis done using the
data type specific SPACE_FooTypeSupport_register_type oOperation on the
<NameSpace>_<type>TypeSupport classfor each datatype. A derived classis
generated for each data type used by the application, by calling the pre-processor.
The interface description of thisclassis asfollows:
/ *
* interface SPACE_FooTypeSupport
*/
/ *
* implemented API operations
*/
SPACE_FooTypeSupport
SPACE_FooTypeSupport__alloc
(void) ;
DDS_ReturnCode_t
SPACE_FooTypeSupport_register_type
(SPACE_FooTypeSupport _this,
DDS_DomainParticipant domain,
DDS_string type_name) ;
DDS_string
SPACE_FooTypeSupport_get_type_name
(SPACE_FooTypeSupport _this);

The next paragraph describes the usage of the SPACE_FooTypeSupport
operations.
SPACE_FooTypeSupport__alloc

Synopsis
#include <Space.h>
SPACE_FooTypeSupport
SPACE_FooTypeSupport__alloc
(void) ;

Description
This operation creates anew SPACE_FooTypeSupport.

227
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
<none>

Return Value

SPACE_FooTypeSupport - the handle to the newly created
SPACE_FooTypeSupport. In case of an error, anil pointer is returned.

Detailed Description

This operation creates a new SPACE_FooTypeSupport. The
SPACE_FooTypeSupport must be created using this operation. In other words, the
application is not allowed to declare an object of type SPACE_FooTypeSupport.
When the application wants to release the SPACE_FooTypeSupport it must be
released using DDS_free.

In case there are insufficient resources available to allocate the
SPACE_FooTypeSupport, anil pointer isreturned instead.

SPACE_FooTypeSupport_get type name

228
API Reference

Synopsis
#include <Space.h>
DDS_string
SPACE_FooTypeSupport_get_type_name
(SPACE_FooTypeSupport _this);

Description

This operation returns the default name of the data type associated with the

SPACE_FooTypeSupport.

Parameters

in SPACE_FooTypeSupport _this -the SPACE_FooTypeSupport Object on
which the operation is operated.

Return Value

DDS_string - the name of the data type of the SPACE_FooTypeSupport.

Detailed Description

This operation returns the default name of the data type associated with the
SPACE_FooTypeSupport. The default name is derived from the type name as
specified in the IDL definition. It is composed of the scope names and the type
name, each separated by “: :”, in order of lower scope level to deeper scope level
followed by the type name.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

SPACE_FooTypeSupport_register_type

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooTypeSupport_register_type
(SPACE_FooTypeSupport _this,
DDS_DomainParticipant domain,
DDS_string type_name) ;

Description
This operation registers a new data type nameto abDS_DomainParticipant.

Parameters

in SPACE_FooTypeSupport _this -the SPACE_FooTypeSupport object on
which the operation is operated.

in DDS_DomainParticipant domain - a pointer to a
DDS_DomainParticipant object to which the new datatypeisregistered.

in DDS_string type_name - aloca alias of the new datatype to be registered.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation registers a new data type name to a DDS_DomainParticipant.
This operation informs the Data Distribution Service, in order to allow it to manage
the new registered data type. This operation also informs the Data Distribution
Service about the key definition, which allows the Data Distribution Service to
distinguish different instances of the same data type.

Precondition

A type_name cannot be registered with two different
<NameSpace>_<type>TypeSupport Classes (this means of a different data type)
with the same DDS_DomainParticipant. When the operation is called on the
same DDS_DomainParticipant with the same type_name for a different
<NameSpace>_<type>TypeSupport class, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the
same <NameSpace>_<type>TypeSupport classes with the same

229
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

230
API Reference

DDS_DomainParticipant and the same or different type_name multiple times.
All registrations return DDS_RETCODE_OK, but any subsequent registrations with
the same type_name are ignored.

Return Code
When the operation returns:

DDS_RETCODE_OK - the SPACE_FooTypeSupport Class is registered with the
new data type name to the DDS_DomainParticipant or the
SPACE_FooTypeSupport classwas already registered.

DDS_RETCODE_ERROR - an internal error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD_PARAMETER - oOne or both parameters is the
DDS_OBJECT_NTIL pointer or the parameter type_name has zero length.
DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_PRECONDITION_NOT_MET - thiS type_name is aready
registered with this DDS_DomainParticipant for a different
<NameSpace>_<type>TypeSupport class.

& PRISMTECH

3 DCPS Classes and Operations

3.4 Publication Module

&4 PRISMTECH

<<create>>

3

.4 PublicationModule

v 1
DataWriter ‘

* QosPolic! <<implicit>> "
assert_liveliness() > (fom mﬁaskrudu’oy!\h/iu\t:/ mplicit Publisher
<<abstract>> dispose() * qos
<<abstract>> dispose_w_timestamp() * begin_coherent_changes()
<<abstract>> get_key_value() <<implicit>> . * copy_from_topic_gos()
get_listener() create_datawriter()
get_liveliness_lost_status() delete_contained_entities()
get_matched_subscription_data() default_datawriter_gos delete_datawriter()
get_matched_subscriptions() end_coherent_changes()
get_offered_deadline_missed_status() get_default_datawriter_qos()
get_offered_incompatible_gos_status() Topic getﬁliste_ngr()
get_publication_match_status() (from Topic-Definition Module) get_participant()
get_publisher() get_qos()
get_qos() * 1 lookup_datawriter()
get_topic() resume_publications()
<<abstract>> register() 1 |set_default_datawriter_qos()
<<abstract>> register_w_timestamp() 0.1 S set_listener()
set_listener() : <<implicit>> | set_qos()
set_qos() <<implicit>> suspend_publications()
<<abstract>> unregister() BN StatusCondition
<<abstract>> unregister_w._timestamp() 1 (from Infrastructure Module)
<<abstract>> write() 0.1 1 N
<<abstract>> write_w_timestamp()

<<create>> /
* : <<implicit>>
<<implicit>> WaitSet DomainParticipant
(from Infrastructure Module) (from Domain Module)
0.1
<<Interface>> 1

DataWriterListener
<<Interface>>

PublisherListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

Figure 18 The DCPS Publication Module’s Class M odel
This module contains the following classes:

DDS Publisher
Publication type specific classes

* DDS_PublisherListener (interface)
* DDS_DataWriterListener (interface).

The paragraph “Publication type specific classes’ contains the generic class and the
generated data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataWriter IS generated (based on IDL) by calling the
pre-processor.

For instance, for the fictional datatype Foo (thisalso applies to other types), defined
in the module space; “Publication type specific classes’” contains the following
classes:

* DDS_DataWriter (abstract)
* SPACE_FooDataWriter.

231
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

A DDS_Publisher isan object responsible for data distribution. It may publish
data of different data types. A DDS_DataWriter acts as atyped accessor to a
DDS_Publisher. The DDS_Dataliriter isthe object the application must use to
communicate the existence and value of data-objects of a given data type to a
DDS_Publisher. When data-object values have been communicated to the
DDS_Publisher through the appropriate bDS_DataWriter, it is the
DDS_Publisher’s responsibility to perform the distribution. The
DDS_Publisher will do this according to its own DDS_PublisherQos, and the
DDS_DataWriterQos attached to the corresponding bDS_DataWriter. A
publication is defined by the association of a DDS_DataWriter to a
DDS_Publisher. This association expresses the intent of the application to publish
the data described by the DDs_Datawriter in the context provided by the
DDS_Publisher.

ClassDDS Publisner

232
API Reference

The DDS_Publisher actson behalf of one or more bDS_DataWriter Objects that
belong to it. When it isinformed of a change to the data associated with one of its
DDS_DataWriter objects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the
DDS_PublisherQos and the DDS_DataWriterQos.

The interface description of this classis asfollows:

/*

* interface DDS_Publisher

*/

/*

* inherited from class DDS_Entity
*/

/* DDS_StatusCondition

* DDS_Publisher_get_statuscondition
* (DDS_Publisher _this);

*/

/* DDS_StatusMask

* DDS_Publisher_get_status_changes
* (DDS_Publisher _this);

*/

/* DDS_ReturnCode_t

* DDS_Publisher_enable

* (DDS_Publisher _this);

*/

/*

* implemented API operations

*/

DDS_DataWriter
DDS_Publisher create_datawriter
(DDS_Publisher _this,

& PRISMTECH

3 DCPS Classes and Operations

3.4 PublicationModule

const DDS_Topic a_topic,
const DDS_DataWriterQos *gos,

const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

DDS_ReturnCode_t
DDS_Publisher_delete_datawriter
(DDS_Publisher _this,

const DDS_DataWriter a_datawriter);
DDS_DataWriter
DDS_Publisher_lookup_datawriter
(DDS_Publisher _this,

const DDS_char *topic_name) ;
DDS_ReturnCode_t

DDS_Publisher delete_contained_entities
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_ set_gos
(DDS_Publisher _this,

const DDS_PublisherQos *qgos);
DDS_ReturnCode_t

DDS_Publisher_get_gos
(DDS_Publisher _this,

DDS_PublisherQos *gos) ;
DDS_ReturnCode_t

DDS_Publisher set_listener
(DDS_Publisher _this,

const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_PublisherListener

DDS_Publisher_get_listener

(DDS_Publisher _this);
DDS_ReturnCode_t

DDS_Publisher_suspend_publications
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_resume_publications
(DDS_Publisher _this);
DDS_ReturnCode_t

DDS_Publisher_ begin_coherent_changes
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_end_coherent_changes
(DDS_Publisher _this);
&4 PRISMTECH

233
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
DDS_Publisher_wait_for_acknowledgments
(DDS_Publisher _this,
const DDS_Duration_t *max_wait);

DDS_DomainParticipant
DDS_Publisher get_participant
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_set_default_datawriter_gos
(DDS_Publisher _this,
const DDS_DataWriterQos *gos) ;

DDS_ReturnCode_t
DDS_Publisher_get_default_datawriter_gos
(DDS_Publisher _this,
DDS_DataWriterQos *qgos) ;

DDS_ReturnCode_t
DDS_Publisher_ copy_from_topic_gos
(DDS_Publisher _this,

DDS_DataWriterQos *a_datawriter_gos,

const DDS_TopicQos *a_topic_gos);
The next paragraphs describe the usage of all bbs_Publisher operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS Publisher _begin_coherent_changes
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_begin_coherent_changes
(DDS_Publisher _this);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using bps_batawWriter objects attached to this bps_pPublisher.
The ‘coherent set’ will be completed by a matching call to bps_pPublisher_
end_coherent_changes.

234

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using DDs_Datawriter objects attached to this bps_pPublisher.
The ‘coherent set’ will be completed by a matching call to bpps_pPublisher_
end_coherent_changes.

A ‘coherent set’ is aset of modifications that must be propagated in such away that
they are interpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the DDS_Publisher or one of its connected
DDS_Subscribers may change, alate-joining bbs_DataReader May appear on
the network, or acommunication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave asiif it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with the last
call topbs_Publisher end coherent changes.

The support for ‘ coherent changes' enables a publishing application to change the
value of severa data-instances that could belong to the same or different topics and
have those changes be seen *atomically’ by the readers. Thisisuseful in caseswhere
the values are inter-related (for example, if there are two data-instances representing
the ‘altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneoudly interpret that the aircraft is on acollision course).

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

235
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS Publisher _copy_from_topic_qos

236
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_copy_ from_topic_gos
(DDS_Publisher _this,
DDS_DataWriterQos *a_datawriter_gos,
const DDS_TopicQos *a_topic_gos) ;

Description

This operation will copy policiesin a_topic_gos to the corresponding policiesin
a_datawriter_gos.

Parameters

in DDS_Publisher _this - the DDS_Publisher object on which the operation
is operated.

inout DDS_DataWriterQos *a_datawriter_gos - the destination
DDS_DataWriterQos Struct to which the gosPolicy settings should be
copied.

in const DDS_TopicQos *a_topic_gos - the source DDS_TopicQos Struct,
which should be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation will copy the QospPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datawriter_gos (replacing the values
ina_datawriter_gos, if present). This will only apply to the common
QosPolicy Settingsin each <pps_Entity>Qos.

Thisis a“convenience” operation, useful in combination with the operations
DDS_Publisher_get_default_datawriter_gos and DDS_Topic_get_gos.
The operation DDS_Publisher_copy_ from_topic_gos can be used to merge
the DDs_Datawriter default gosPolicy settings with the corresponding ones on
the DDS_TopicQos. The resulting DDS_DatawriterQos can then be used to
create anew DDS_DataWriter, Or Set itSDDS_DataWriterQos.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

This operation does not check the resulting a_datawriter_gos for consistency.
Thisis because the “merged” a_datawriter_gos may not be the final one, as the
application can still modify some gosPolicy settings prior to applying the
DDS_DataWriterQos totheDDS_DataWriter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the QosPo1licy Settings have successfully been copied from
the DDS_TopicQos to the DDS_DataWriterQos.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher _create datawriter

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_DataWriter

DDS_Publisher create_datawriter
(DDS_Publisher _this,

const DDS_Topic a_topic,
const DDS_DataWriterQos *gos,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a DDS_DataWriter with the desired
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DatawWriterListener tOit.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_Topic a_topic - apointer to the topic for which the
DDS_DataWriter iscreated.

237
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

238
API Reference

in const DDS_DataWriterQos *gos -theDDS_DataWriterQos for the new
DDS_DataWriter. In case these settings are not self consistent, no
DDS_DataWriter iScreated.

in const struct DDS_DataWriterListener *a_listener - apointerto
the DDS_DataWriterListener instance which will be attached to the new
DDS_DataWriter. It ispermitted to use DDS_OBJECT_NIL asthe value of the
listener: this behaves as aDDS_DataWriterListener Whose operations
perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for acertain status.

Return Value

DDS_DataWriter - Return value is a pointer to the newly created
DDS_DataWriter. In case of an error, the bbs_0OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a DDS_DataWriter with the desired
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DataWriterListener toit. The returned DDS_DataWriter iS
attached (and belongs) to the bps_prublisher on which this operation is being
called. To delete the pDS_DataWriter the operation bDS_Publisher_
delete_datawriter Or DDS_Publisher_delete_contained_entities

must be used.

Application Data Type

The pDs_Datawriter returned by this operation is an object of a derived class,
specific to the data type associated with the pps_Topic. For each
application-defined data type <type> there is a class
<NameSpace>_<type>DataWriter generated by calling the pre-processor. This
data type specific class extends pps_patawriter and contains the operations to
write data of datatype <type>.

QosPalicy

The possible application pattern to construct the bbs_DatawriterQos for the
DDS_DataWriter iSto:

* Retrieve the QosPolicy settings on the associated DDS_Topic by means of the
get_gos operation on the bps_Topic.

* Retrieve the default DDS _DatawWriterQos by means of the
DDS_Publisher get_default datawriter_gos operation on the
DDS_Publisher

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

e Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

» Usetheresulting DDs_DatawriterQos to construct the bbs_DatawWriter.

*In case the gpecified QospPolicy settings are not consistent, no
DDS_DataWriter iscreated and the DDs_OBJECT_NIL pointer isreturned.

Default QoS

The constant DDS_DATAWRITER_QOS_DEFAULT can be used as parameter gos to
create aDDS_DataWriter with the default DDS_DatawriterQos as set in the
DDS_Publisher. The effect of using DDS_DATAWRITER_QOS_DEFAULT iS the
same as calling the operation DDS_Publisher_get_default_datawriter_gos
and using the resulting DDS_DataWriterQos to createthe DDS_DataWriter.

The special bDS_DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DDS_DataWriter with acombination of the default bDs_DatawriterQos and
the DDS_TopicQos. The effect of using
DDS_DATAWRITER_QOS_USE_TOPIC_QOS isthe same as calling the operation
DDS_Publisher_get_default_datawriter_qgos and retrieving the
DDS_TopicQos (by means of the operation bps_Topic_get_gos) and then
combining these two QosPolicy settings using the operation
DDS_Publisher_copy_ from_topic_gos, Whereby any common policy that is
set on the DDS_TopicQos “overrides’ the corresponding policy on the default
DDS_DataWriterQos. Theresulting DDs_bataWriterQos isthen applied to
create the bDs_DataWriter.

Communication Satus

For each communication status, the statusChangedrlag flag isinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DataWriterListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_DatalriterListener:

DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_PUBLICATION_MATCHED_STATUS.

239
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select all statuses applicable to the DDS_DataWriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataWriterListener, the DDS_PublisherListener Of the containing
DDS_Publisher isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_PublisherListener Of the containing pps_prPublisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the Dbs_PublisherListener aswell, the
communication status will be propagated to the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant. In casethe DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

DDS Publisher _delete contained_entities
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_delete_contained_entities
(DDS_Publisher _this);

Description

This operation deletes all the bDS_Datawriter objects that were created by means
of one of the bDs_Publisher_create_datawriter operations on the
DDS_Publisher.

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

240

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation deletes all the bps_Datawriter objects that were created by means
of one of the bDS_Publisher_create_datawriter operations on the
DDS_Publisher. In other words, it deletes all contained DDsS_DataWriter
objects.

Note: The operation will return bDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pDDs_Entity objects are deleted and the
application may delete the DDS_Publisher.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE PRECONDITION NOT MET - oneor more of the contained entities
arein a state where they cannot be deleted.

DDS Publisher _delete datawriter

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher delete_datawriter
(DDS_Publisher _this,
const DDS_DataWriter a_datawriter) ;

Description
This operation deletes aDDS_Datawriter that belongsto the bbs_publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation
-is operated.

241
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

in const DDS_DataWriter a_datawriter - a pointer to the
DDS_DataWriter, which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a bbs_bataliriter that belongs to the DDS_Publisher.
When the operation is called on a different bps_Publisher, as used when the
DDS_DataWriter was created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET. The deletion of the DDS_DataWriter
will automatically unregister all instances. Depending on the settings of
DDS_WriterDataLifecycleQosPolicy, the deletion of the bDS_Datawriter
may also dispose of al instances.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DataWriter isdeleted.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_datawriter isnot a valid
DDS_DataWriter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_Publisher, asused when the DDS_DataWriter was created.

DDS Publisher _enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>

242

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
DDS_Publisher enable
(DDS_Publisher _this);

DDS Publisher_end_coherent_changes

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_end_coherent_changes
(DDS_Publisher _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation terminates the ‘ coherent set’ initiated by the matching call to

DDS_Publisher_begin_coherent_changes.

Parameters

in DDS_Publisher _this -theDDS_publisher object onwhich the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
DDS_Publisher_begin_coherent_changes. If there is no matching call to
DDS_Publisher_begin_coherent_changes, the operation will return the error
DDS_PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

DDS Publisher _get_default_datawriter _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_get_default_datawriter_gos
(DDS_Publisher _this,

243
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

244
API Reference

DDS_DataWriterQos *gos);

Description
This operation gets the default DDS_DatawWriterQos Of the DDS_Publisher.

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

inout DDS_DataWriterQos *gos - apointer tothe Dbs_bDataWriterQos
struct (provided by the application) in which the default bDs_DatawWriterQos
for the DDS_Datawriter iSwritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation gets the default DDS_DataWriterQos of the DDS_Publisher (that
is the struct with the gosPolicy settings) which is used for newly created
DDS_DataWriter Objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default pDs_patawriterQos isonly used when the constant is
supplied as parameter gos to specify the pbs_DataWriterQos in the
DDS_Publisher_create_datawriter operation. The application must provide
the DDS_DataWriterQos struct in which the gosPolicy Settings can be stored
and pass the gos pointer to the operation. The operation writes the default
DDS_DataWriterQos to the struct pointed to by gos. Any settingsin the struct are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_Publisher_set_default_datawriter_gos, or, if the
call was never made, the default values as specified for each gosPolicy setting as
defined in Table 5 on page 59.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the default DDS_Datawriter QosPolicy Settings of this
DDS_Publisher have successfully been copied into the specified
DDS_DataWriterQos parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher _get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_PublisherListener
DDS_Publisher_get_listener
(DDS_Publisher _this);

Description
This operation allows accessto abDS_PublisherListener.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

struct DDS_PublisherListener - apointer to the DDS_PublisherListener
attached to the bDs_Publisher.

Detailed Description

This operation allows access to a DDS_PublisherListener attached to the
DDS_Publisher. When no pbDs_publisherListener was attached to the
DDS_Publisher, the DDS_OBJECT_NIL pointer is returned.

DDS Publisher _get_participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>

DDS_DomainParticipant
DDS_Publisher_get_participant
(DDS_Publisher _this);

Description
This operation returns the bbs_bomainParticipant associated with the
DDS_Publisher Of the DDS_OBJECT_NIL pointer.

245
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_DomainParticipant - a pointer to the bDS_DomainParticipant
associated with the pps_publisher or the DDS_OBJECT_NIL pointer.

Detailed Description

This operation returns the bbs_bomainParticipant associated with the
DDS_Publisher. Note that there is exactly one pps_bomainParticipant
associated with each pDs_Publisher. When the bps_pPublisher was already
deleted (there is no associated DDS_DomainParticipant any more), the
DDS_OBJECT_NTIL pointer is returned.

DDS Publisher _get _gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_get_gos
(DDS_Publisher _this,
DDS_PublisherQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_Publisher.

Parameters

in DDS_Publisher _this -theDDS_publisher object on which the operation
is operated.

inout DDS_PublisherQos *gos - a pointer to the destination
DDS_PublisherQos struct in which the QosPolicy settings will be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

246

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_Publisher on which this operation is used. This DDS_PublisherQos iS
stored at the location pointed to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this

DDS_Publisher has successfully been copied into the specified
DDS_PublisherQos parameter.

e DDS_RETCODE_ERROR - an internal error has occurred.
* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an

inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been

del eted.

* DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

DDS Publisher_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>

DDS_StatusMask

DDS_Publisher get_status_changes
(DDS_Publisher _this);

DDS Publisher_get_statuscondition (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>

DDS_StatusCondition

DDS_Publisher_get_statuscondition
(DDS_Publisher _this);

247
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS Publisher_lookup_datawriter

Synopsis
#include <dds_dcps.h>
DDS_DataWriter
DDS_Publisher_lookup_datawriter
(DDS_Publisher _this,
const DDS_char *topic_name) ;

Description

This operation returns a previously created bbs_batawWriter belonging to the
DDS_Publisher which is attached to a bbDs_Topic with the matching
topic_name.

Parameters

in DDS Publisher _this -theDDS_Publisher oObject on which the operation
is operated.

in const DDS_char *topic_name - the name of the bbs_Topic, whichis
attached to the DDs_Datawriter to look for.

Return Value

DDS_DataWriter - Return value is a pointer to the bbs_batawriter found.
When no such pps_batawWriter isfound, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation returns a previously created bbs_batawWriter belonging to the
DDS_Publisher which is attached to a bDs_Topic with the matching
topic_name. When multiple DDS_Datatwriter objects (which satisfy the same
condition) exist, this operation will return one of them. It is not specified which one.

DDS Publisher_resume_publications

248
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_ resume_publications
(DDS_Publisher _this);

Description
This operation resumes a previously suspended publication.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_NOT_ENABLED Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

If the DDS_Publisher is suspended, this operation will resume the publication of
all DDs_Dataliriter objects contained by this bDs_publisher. All data held in
the history buffer of the DDs_Datawriter'sisactively published to the consumers.
When the operation returns, all Dbs_Datavwiriter's have resumed the publication
of suspended updates.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher object has been resumed.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the DDS_Publisher iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT MET - the DDS_Publisher is not
suspended.

DDS Publisher _set default_datawriter _qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_set_default_datawriter_gos
(DDS_Publisher _this,
const DDS_DataWriterQos *gos);

249
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

250
API Reference

Description
This operation sets the default DDs_DatawriterQos oOf the DDS_Publisher.

Parameters

in DDS_Publisher _this - the DDS_Publisher object on which the operation
is operated.
in const DDS_DataWriterQos *gos - the DDS_DataWriterQos struct, which

contains the new default bpps_bpatawriterQos for the newly created
DDS_DataWriters.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation sets the default bDs_batawriterQos oOf the DDS_Publisher (that
is the struct with the gosPolicy settings) which is used for newly created
DDS_DataWriter Objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default bDs_DatawWriterQos isonly used when the constant is
supplied as parameter gos to specify the pps_bpatawriterQos in the
DDS_Publisher create_datawriter operation.

The DDS_Publisher_set_default_datawriter_gos operation checksif the
DDS_DataWriterQos issalf consistent. If it is not, the operation has no effect and
returns DDS_RETCODE_INCONSISTENT POLICY.

The values set by this operation are returned by
DDS_Publisher_get_default_datawriter_gos.

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new default DDS_DataWriterQos iS Set.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_RETCODE_BAD _PARAMETER - the parameter gos is not a valid
DDS_DataWriterQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_INCONSISTENT POLICY - the parameter gos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DDS Publisher _set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Publisher_set_listener
(DDS_Publisher _this,
const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attaches abps_PublisherListener t0othe DDS_Publisher.

Parameters
in DDS_Publisher _this -theDDS_publisher object onwhich the operation

is operated.

in const struct DDS_PublisherListener *a_listener - apointertothe

DDS_PublisherListener instance, which will be attached to the
DDS_Publisher.

in const DDS StatusMask mask - abit-mask in which each bit enables the

invocation of theDDs_PublisherListener for acertain status.

Return Value
DDS_ReturnCode_t - Possible return codes of the operation are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

251
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

252
API Reference

Detailed Description

This operation attaches a bbs_PublisherListener to the DDS_Publisher.
Only one DDS_PublisherListener can be attached to each DDS_Publisher. If
aDDS_PublisherListener was already attached, the operation will replace it
with the new one. When a_1listener iSthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP?! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_PublisherListener operation isinvoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the bbDs_0BJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.

The following statuses are applicable to the bDS_PublisherListener:

* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_ANY_STATUS can be
used to select al statuses applicable to the bDS_PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS DataWriterListener Of a contained pDs_DatawWriter, the
DDS_DataWriterListener on that contained DDS_Datawriter iSinvoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DatawWriter only invokes the DDS_PublisherListener if the
contained DDS_DataWriter itself does not handle the trigger event generated by
the status change.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

In case a status is not activated in the mask of the DDS_PublisherListener, the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a bbS_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener iSaso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_PublisherListener is attached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Publisher has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher_set_gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_set_gos
(DDS_Publisher _this,
const DDS_PublisherQos *qgos) ;

Description

This operation replaces the existing set of QosPolicy settings for a
DDS_Publisher.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_PublisherQos *gos - containsthe new set of QosPolicy
settings for the bbs_pPublisher.

253
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_Publisher. The parameter gos contains the QospPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_Publisher, which can only be set before
the pps_pPublisher is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application
must provide the currently set gosPolicy settingsin case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qgos contains conflicting gosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT POLICY iSreturned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new DDS_PublisherQos is Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter qgos is not a vaid
DDS_PublisherQos. It containsaQosPolicy setting with an enum valuethat is
outside its legal boundaries or a sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

254

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy sefting with a different value than set during enabling of the
DDS_Publisher.

DDS Publisher_suspend_publications

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_suspend_publications
(DDS_Publisher _this);

Description

This operation will suspend the dissemination of the publications by all contained
DataWriter Objects.

Parameters

in DDS Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation suspends the publication of all bbs_Datawriter objects contained
by this bDs_pPublisher. The data written, disposed or unregistered by a
DDS_DataWriter is stored in the history buffer of the pps_patawriter and
therefore, depending on its QoS settings, the following operations may block (see
the operation descriptions for more information):

* DDS_DataWriter_dispose

* DDS_DataWriter_dispose_w_timestamp

* DDS_DataWriter_write

* DDS_DataWriter_write_w_timestamp

* DDS_DataWriter_writedispose

* DDS_DataWriter_writedispose_w_timestamp
* DDS_DataWriter_unregister_instance

* DDS_DataWriter_unregister_instance_w_timestamp

255
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Subsequent calls to the bbs_Publisher_suspend_publications operation
have no effect. When the pbs_ Publisher iSs deleted before
DDS_Publisher_resume_publications is called, all suspended updates are
discarded.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher has been suspended.

e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Publisher has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e DDS RETCODE_NOT ENABLED -theDDS Publisher iSnot enabled.

DDS Publisher_wait_for_acknowledgments

256
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_wait_for_acknowledgments
(DDS_Publisher _this,
const DDS_Duration_t *max_wait);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation blocks the calling thread until either all data written by the contained
DDS_DataWriters isacknowledged by the matched bDS_DataReaders, or until
the duration specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_Duration_t *max_wait - themaximum duration to block for
the DDS_Publisher wait_for_acknowledgments, after which the
application thread is unblocked. The special constant
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if one or more of the contained
DDS_DataWriters has itS DDS_ReliabilityQosPolicyKind Set to
DDS_RELIABLE_RELIABILITY_QO0S. Otherwise the operation will return
immediately with DDS_RETCODE_OK.

It blocks the calling thread until either all data written by the contained reliable
DDS_DataWriters isacknowledged by all matched DDS_DataReader entities
that have their bDS_ReliabilityQosPolicyKind Set to DDS_RELIABLE_
RELIABILITY_QOS, or else the duration specified by the max_wait parameter
elapses, whichever happensfirst. A return value of bbs_RETCODE_OK indicates that
all the samples written have been acknowledged by all reliable matched data
readers; a return value of DDS_RETCODE_TIMEOUT indicates that max_wait
elapsed before all the data was acknowledged.

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

Publication Type Specific Classes

This paragraph describes the generic bbs_batawriter class and the derived
application type specific <NameSpace>_<type>Dataliriter classes which
together implement the application publication interface. For each application type,
used as DDS_Topic data type, the pre-processor generates a
<NameSpace>_<type>DataWriter class from an IDL type description. The
SPACE_FooDataWriter class that would be generated by the pre-processor for a
fictional type Foo (defined in the module space) describes the
<NameSpace>_<type>DataWriter classes.

ClassDDS DataWriter (abstract)

&4 PRISMTECH

DDS_DataWriter allows the application to set the value of the sample to be
published under agiven bps_Topic.

A DDs_DataWriter is attached to exactly one pps_pPublisher Which actsas a
factory for it.

257
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

258
API Reference

A DDS_Datawriter isbound to exactly one pps_Topic and therefore to exactly
one data type. The DDS_Topic must exist prior to the bbs_DataWriter's
creation.

DDS_DataWriter iSan abstract class. It must be specialized for each particular
application data type. For afictional application data type Foo (defined in the
module spPACE) the specialized class would be SPACE_FooDataWriter.

The interface description of this classis as follows:

/*

* interface DDS_DataWriter

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* DDS_DataWriter_get_statuscondition
* (DDS_DataWriter _this);

*/

/* DDS_StatusMask

* DDS_DataWriter_get_status_changes
* (DDS_DataWriter _this);

*/

/* DDS_ReturnCode_t

* DDS_DataWriter_enable

* (DDS_DataWriter _this);

*/

/*

* abstract operations
* (implemented in the data type specific DDS_DataWriter)

*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_register_instance

* (DDS_DataWriter _this);

* const <data> *instance_data);

*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_register_instance_w_timestamp
* (DDS_DataWriter _this);

* const <data> *instance_data,

* const DDS_Time_t *source_timestamp) ;
*/

/* DDS_ReturnCode_t

* DDS_DataWriter_unregister_instance

* (DDS_DataWriter _this);

* const <data> *instance_data,

* const DDS_TInstanceHandle_t handle);
*/

/* DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_DataWriter_unregister_instance_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

* % % o

*

*/
DDS_ReturnCode_t
DDS_DataWriter_write
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle) ;

* % %

*

*

/
DDS_ReturnCode_t
DDS_DataWriter write_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
* const DDS_Time_t *source_timestamp) ;
/
DDS_ReturnCode_t
DDS_DataWriter_dispose
(DDS_DataWriter _this);
const <data> *instance_data,
* const DDS_InstanceHandle_t instance_handle) ;
/
DDS_ReturnCode_t
DDS_DataWriter_dispose_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

* % %

*

~
* % %

*

~
* % %

*

*

/
DDS_ReturnCode_t
DDS_DataWriter_writedispose
(DDS_DataWriter _this,
* const <data> *instance_data,

* % %

*

* const DDS_InstanceHandle_t instance_handle) ;

*/

/* DDS_ReturnCode_t

* DDS_DataWriter_writedispose_w_timestamp

* (DDS_DataWriter _this,

* const <data> *instance_data,

* const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

*/

/* DDS_ReturnCode_t
DDS_DataWriter_ get_key_ value
(DDS_DataWriter _this);
<data> *key_holder,

* X %

259

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* const DDS_InstanceHandle_t handle);
*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_lookup_instance

*/ (DDS_DataWriter _this,

* <data> *instance_data) ;

/*

/*

* implemented API operations

*/

DDS_ReturnCode_t
DDS_DataWriter_set_gos
(DDS_DataWriter this,
const DDS_DataWriterQos *gos) ;

DDS_ReturnCode_t
DDS_DataWriter_get_gos
(DDS_DataWriter this,
DDS_DataWriterQos *qgos);

DDS_ReturnCode_t
DDS_DataWriter set_listener
(DDS_DataWriter this,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_DataWriterListener
struct DDS_DataWriter_get_listener
(DDS_DataWriter this);

DDS_Topic
DDS_DataWriter_get_topic
(DDS_DataWriter this);

DDS_Publisher
DDS_DataWriter_get_publisher
(DDS_DataWriter this);

DDS_ReturnCode_t
DDS_DataWriter_wait_for_acknowledgments
(DDS_DataWriter _this,
const DDS_Duration_t *max_wait);

DDS_ReturnCode_t
DDS_DataWriter_get_liveliness_lost_status
(DDS_DataWriter this,
DDS_LivelinessLostStatus *status);

DDS_ReturnCode_t
DDS_DataWriter_get_offered_deadline_missed_status
260

API Reference & PRISMTECH

3 DCPS Classes and Operations

(DDS_DataWriter this,

DDS_OfferedDeadlineMissedStatus *status);

DDS_ReturnCode_t

3.4 PublicationModule

DDS_DataWriter_get_offered_incompatible_gos_status

(DDS_DataWriter this,

DDS_OfferedIncompatibleQosStatus *status) ;

DDS_ReturnCode_t

DDS_DataWriter_get_publication_matched_status

(DDS_DataWriter this,

DDS_PublicationMatchedStatus *status);

DDS_ReturnCode_t
DDS_DataWriter_assert_liveliness
(DDS_DataWriter this);

DDS_ReturnCode_t
DDS_DataWriter_get_matched subscriptions
(DDS_DataWriter this,

DDS_InstanceHandleSeqg *subscription_handles) ;

DDS_ReturnCode_t

DDS_DataWriter_get_matched_subscription_data

(DDS_DataWriter this,
DDS_SubscriptionBuiltinTopicData
*gsubscription_data,

const DDS_InstanceHandle_t subscription_handle

)

The next paragraphs describe the usage of all bDs_patawriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they areinherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data

type specific implementation of these operations.
DDS DataWriter_assert_liveliness

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_assert_liveliness
(DDS_DataWriter _this);

Description

This operation asserts the liveliness for the bDs_Datawriter.

&4 PRISMTECH

261
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

262
API Reference

Parameters

in DDS_DataWriter _this - iSthe DDS_DataWriter object on which the
operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the bps_batawriter. This
way, the Data Distribution Service is informed that the corresponding
DDS_DataWriter is still alive. This operation is used in combination with the
DDS_LivelinessQosPolicy Set t0O DDS_MANUAL_BY_PARTICIPANT_
LIVELINESS_QOS Of DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS. See Section
3.1.3.10, DDS LivelinessQosPolicy, on page 79, for more information on
LivelinessQosPolicy.

Writing data viathe Dbs_bataWriter_write operation of aDDS_DataWriter
will assert the liveliness on the pbs_batawriter itself and its containing
DDS_DomainParticipant. Therefore, DDS DataWriter assert
liveliness isonly needed when datais not written regularly.

The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy. Asserting the liveliness for thispps_batawriter
can also be achieved by asserting the liveliness to the bDs_DomainParticipant.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the liveliness of this pbs_patawriter has successfully
been asserted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT ENABLED - the DDS_DatawWwriter iSnot enabled.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_dispose (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataliriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_dispose
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle) ;

DDS DataWriter_dispose w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_dispose_w_timestamp

(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

DDS DataWriter _enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_enable
(DDS_DataWriter _this);

263
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_get _key value (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_key_value
(DDS_DataWriter _this,
<data> *key_holder,
const DDS_InstanceHandle_t handle);

DDS DataWriter_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener
DDS_DataWriter_get_listener
(DDS_DataWriter _this);

Description
This operation allows accessto aDDS_DataWriterListener.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

Return Value

struct DDS_DataWriterListener - a pointer to the
DDS_DataWriterListener attached tothe DDS_Datawriter.

Detailed Description

This operation allows access to a DDS_DataWriterListener attached to the
DDS_DataWriter. When no DDS_DatalriterListener was attached to the
DDS_DataWriter, the DDS_OBJECT_NIL pointer is returned.

DDS DataWriter_get_liveliness lost_status

264
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

DDS_DataWriter_get_liveliness_lost_status
(DDS_DataWriter _this,
DDS_LivelinessLostStatus *status);

Description

This operation obtains the bbs_LivelinessLostStatus Struct of the
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_batawriter object on which the
operation is operated.

inout DDS_LivelinessLostStatus *status - the contents of the
DDS_LivelinessLostStatus Struct of the bbs_batawriter will be copied
into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bbs_LivelinessLostStatus struct of the
DDS_DataWriter. Thisstruct contains the information whether the liveliness (that
the DDS_Datawriter has committed through its DDS_LivelinessQosPolicy)
was respected.

This means, that the status represents whether the pps_bpatawriter failed to
actively signal its liveliness within the offered liveliness period. If the livelinessis
lost, the DDS_DataReader Objects will consider the bps_patawriter as no
longer “aive’.

The pDS_LivelinessLostStatus can also be monitored using a
DDS_DataWriterListener Of by using the associated bps_StatusCondition.
Return Code

When the operation returns:

* DDS RETCODE OK - the current DDS LivelinessLostStatus oOf this
DDS_DataWriter has successfully been copied into the specified status
parameter.

* DDS RETCODE ERROR - aninterna error has occurred.

265
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DataWriter_get_matched_subscription_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_matched_subscription_data
(DDS_DataWriter _this,
DDS_SubscriptionBuiltinTopicData *subscription_data,
const DDS_InstanceHandle_t subscription_handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DataWriter_get_matched_subscriptions
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_matched_subscriptions
(DDS_DataWriter _this,
DDS_InstanceHandleSeq *subscription_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DataWriter_get_offered_deadline_missed_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_offered_deadline_missed_status
(DDS_DataWriter _this,
DDS_OfferedDeadlineMissedStatus *status) ;

Description

This operation obtains the Dps_of feredbeadl ineMissedStatus struct of the
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_bDataWriter object on which the
operation is operated.

266

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

inout DDS_OfferedDeadlineMissedStatus *status - the contents of the
DDS_OfferedDeadlineMissedStatus Struct of the bDs_Datawriter will
be copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the DDS_0Of feredDeadlineMissedStatus struct of the
DDS_DataWriter. This struct contains the information whether the deadline (that
the DDS_Datawriter has committed through itSDDS_DeadlineQosPolicy) was
respected for each instance.

The DDS_OfferedDeadlineMissedStatus can also be monitored using a
DDS_DataWriterListener Of by using the associated bps_StatusCondition.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_LivelinessLostStatus oOf this
DDS_DataWriter has successfully been copied into the specified status
parameter.

* DDS RETCODE _ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Datawriter has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get offered_incompatible _qos_status

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_offered_incompatible_gos_status
(DDS_DataWriter _this,
DDS_OfferedIncompatibleQosStatus *status) ;

267
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

268
API Reference

Description

This operation obtains the bps_offeredIncompatibleQosStatus struct of the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

inout DDS_OfferedIncompatibleQosStatus *status - the contents of the
DDS_OfferedIncompatibleQosStatus struct of the DDS_DataWriter
will be copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bps_offeredIncompatibleQosStatus struct of the
DDS_DataWriter. This struct contains the information whether a QospPolicy
setting was incompatible with the requested QosPolicy Setting.

This means, that the status represents whether a bDs_DataReader object has been
discovered by the bDS_Datawriter with the same bps_Topic and a requested
DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.

The Dbs_OfferedIncompatibleQosStatus can aso be monitored using a
DDS_DataWriterListener Or by using the associated pDs_StatusCondition.
Return Code

When the operation returns:

* DDS _RETCODE_OK - the current DDS_OfferedIncompatibleQosStatus Of
this DDs_Datawriter has successfully been copied into the specified status
parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get_publication_matched_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_publication_matched_status
(DDS_DataWriter _this,
DDS_PublicationMatchedStatus *status) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DataWriter_get_publisher
Synopsis

#include <dds_dcps.h>
DDS_Publisher
DDS_DataWriter_get_publisher
(DDS_DataWriter _this);

Description

This operation returns the bbs_publisher to which the DDS_Datawriter

belongs.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

Return Value

DDS_Publisher - a pointer to the bbs_publisher to which the
DDS_DataWriter belongs.

Detailed Description

This operation returns the bbs_pPublisher to which the bps_batawriter
belongs, thus the DDs_Publisher that has created the bps_patawriter. If the
DDS_DataWriter isalready deleted, the DDS_OBJECT NIL pointer isreturned.

DDS DataWriter_get_gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_gos

269

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

(DDS_DataWriter _this,
DDS_DataWriterQos *gos) ;
Description

This operation allows access to the existing list of gosPolicy settings for a
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

inout DDS_DataWriterQos *gos - a pointer to the destination
DDS_DataWriterQos struct in which the gospPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing list of gosPolicy settings of a
DDS_DataWriter on which this operation is used. This DDS_DataWriterQos iS
stored at the |ocation pointed to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DataWriter has successfully been copied into the specified
DDS_DataWriterQos parameter.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

270

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_DataWriter_get_status_changes
(DDS_DataWriter _this);

DDS DataWriter_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_DataWriter_get_statuscondition
(DDS_DataWriter _this);

DDS DataWriter_get_topic

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_DataWriter_get_topic
(DDS_DataWriter _this);

Description

This operation returns the pps_Topic which is associated with the

DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_batawriter object on which the
operation is operated.

Return Value

DDS_Topic - Return value is a pointer to the bps_Topic which is associated with
the DDS_DataWriter.

Detailed Description

This operation returns the pbps_Topic which is associated with the
DDS_DataWriter, thusthe pDs_Topic with which the bDs_Datawriter is
created. If the DDS_Datawriter isaready deleted, the bDs_OBJECT_NTIL pointer
isreturned.

271
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter _lookup_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
DDS_DataWriter_lookup_instance
(DDS_DataWriter _this,
<data> *instance_data) ;

DDS DataWriter_register_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t
DDS_DataWriter_register_instance
(DDS_DataWriter _this,
const <data> *instance_data);

DDS DataWriter_register_instance w_timestamp (abstract)

272
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spaCE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t
DDS_DataWriter_register_instance_w_timestamp
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_Time_t *source_timestamp) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_set_listener
(DDS_DataWriter _this,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attaches abbps_DataWriterListener t0the DDS_DataWriter.

Parameters

in DDS_DataWriter _thiS-the DDs_batawriter object on which the
operation is operated.

in const struct DDS_DataliriterListener *a_listenel - apointerto
the DDs_DataWriterListener instance, which will be attached to the
DDS_DataWriter.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_DataWriterListener t0the DDS_DataWriter.
Only one bDS_DataWriterListener can be attached to each DDS_Datatiriter.
If aDDS_DataWriterListener Wasaready attached, the operation will replaceit
with the new one. When a_1listener isthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP?! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated

1. Short for No-Operation, an instruction that peforms nothing at all.

273
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

274
API Reference

DDS_DataWriterListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to thisrule is the bppDs_OBJECT_NIL
listener, which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the bDS_DataWriterListener:
« DDS_OFFERED_DEADLINE_MISSED_STATUS

« DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

« DDS_LIVELINESS_LOST_STATUS

« DDS_PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_aANY_STATUS can be
used to select al statuses applicable to the bDS_DataWriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataWriterListener, the DDS_PublisherListener Of the containing
DDS_Publisher isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_PublisherListener Of the containing pbps_pPublisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the Dbs_PublisherListener aswéll, the
communication status will be propagated to the
DDS_DomainParticipantListener of the Containing
DDS_DomainParticipant. In case the DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DataWriterListener iS attached.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has aready been
deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_set_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_set_gos
(DDS_DataWriter _this,
const DDS_DataWriterQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DataWriter.

Parameters

in DDS_DataWriter _this-the DDS_DataWriter object on which the
operation is operated.

in const DDS_DataWriterQos *gos - containthe new set of QospPolicy
settings for the bDS_Datawriter.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALLREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_IMMUTABLE_POLICY Of
DDS_RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a
DDS_DataWriter. The parameter gos contains the struct with the gospPolicy
settings which is checked for self-consistency and mutability. When the application
tries to change a QosPolicy setting for an enabled bbs_patawriter, which can
only be set before the bDs_patawriter isenabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY iSreturned. In other words, the application
must provide the presently set QosPolicy settingsin case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT_ POLICY iSreturned.

The set of QosPolicy settings specified by the gqos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

275
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Code
When the operation returns:

DDS |

DDS_RETCODE_OK - the new default DDS_DatawriterQos isSet.
DDS_RETCODE_ERROR - an interna error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD PARAMETER - the parameter qgos is not a valid.
DDS_DataWriterQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t vaue, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

DDS_RETCODE_ALREADY_DELETED - the DDS_Datawriter has already been
deleted.

DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an
immutable gosPolicy setting with a different value than set during enabling of
the DDS_DataWriter.

DDS_RETCODE_INCONSISTENT POLICY - the parameter gos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DataWriter _unregister _instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

276
API Reference

DDS_DataWriter_unregister_instance
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t handle) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_unregister_instance w_timestamp (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataliriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_unregister_instance_w_timestamp
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

DDS DataWriter_wait_for_acknowledgments

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_wait_for_acknowledgments
(DDS_DataWriter _this,
const DDS_Duration_t *max _wait);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

Description

This operation blocks the calling thread until either all data written by the
DDS_DataWriter iSacknowledged by the matched DDs_DataReaders, or until
the duration specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in DDS_DataWriter _this -the DDS_bDatawriter object on which the
operation is operated.

in const DDS _Duration_t *max wait - themaximum duration to block for
the DDS_DataWriter wait for_ acknowledgments, after which the
application thread is wunblocked. The special constant
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

277
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation is intended to be used only if the DataWriter has its
DDS_ReliabilityQosPolicyKind Sett0 DDS_RELIABLE_RELIABILITY_QOS.
Otherwise the operation will return immediately with DDS_RETCODE_OK.

It blocks the calling thread until either all data written by the bbs_Datawriter is
acknowledged by all matched pps_bDataReader entities that have their
DDS_ReliabilityQosPolicyKind sSet t0 DDS_RELIABLE_
RELIABILITY_QOS, or else the duration specified by the max_wait parameter
elapses, whichever happensfirst. A return value of DDs_RETCODE_OK indicates that
all the samples written have been acknowledged by all reliable matched data
readers; a return value of bbDsS_RETCODE_TIMEOUT indicates that max_wait
elapsed before al the data was acknowledged.

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

DDS DataWriter_write (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>Dataliriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_write
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t handle);

DDS DataWriter_write_ w_timestamp (abstract)

278
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>Dataliriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis

#include <dds_dcps.h>

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
DDS_DataWriter_write_w_timestamp
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

DDS DataWriter_writedispose (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>Datalriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spPACE) derived SPACE_FooDatawriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_writedispose
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle) ;

DDS DataWriter_writedispose w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sSPACE) derived SPACE_FooDatalriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_ writedispose_w_timestamp

(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

Class SPACE_FooDataWriter

The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>DataWriter classes. For each application data type that is
used as DDS_Topic datatype, atyped class <NameSpace>_<type>DataWriter
is derived from the pps_patawriter class. In this paragraph, the class

279
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

280
API Reference

SPACE_FooDataWriter describes the operations of these derived
<NameSpace>_<type>DataWriter classes as an example for the fictional
application type Foo (defined in the module spPACE).

For instance, for an application, the definitions are located in the space. id1 file.
The pre-processor will generate a space . h includefile.

A SPACE_FooDataliriter isattached to exactly one bDs_publisher which acts
as a factory for it. The SPACE_FooDataWriter iS bound to exactly one
DDS_Topic that has been registered to use a data type Foo (defined in the module
SPACE). The DDS_Topic must exist prior to the SPACE_FooDataWriter creation.

The interface description of this classis asfollows:

/*

* interface SPACE_FooDataWriter

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* SPACE_FooDataWriter_get_statuscondition
* (SPACE_FooDataWriter _this);

*/

/* DDS_StatusMask

* SPACE_FooDataWriter_get_status_changes
* (SPACE_FooDataWriter _this);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_enable

* (SPACE_FooDataWriter _this);

*/

/*

* inherited from class DDS_DataWriter

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_set_gos

* (SPACE_FooDataWriter _this,

* const DDS_DataWriterQos *gos) ;
*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_gos

* (SPACE_FooDataWriter _this,

* SPACE_FooDataWriterQos *gos) ;
*/

/* DDS_ReturnCode_t
* SPACE_FooDataWriter_ set_listener
* (SPACE_FooDataWriter _this,

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

const struct DDS_DataWriterListener *a_listener,
* const DDS_StatusMask mask) ;
*/

/* struct SPACE_FooDataWriterListener

* SPACE_FooDataWriter_get_listener
* (SPACE_FooDataWriter _this);

*

/* DDS_Topic
SPACE_FooDataWriter_get_topic
* (SPACE_FooDataWriter _this);

*

/* DDS_Publisher
* SPACE_FooDataWriter_get_publisher
(SPACE_FooDataWriter _this);

*

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_wait_for_acknowledgments
* (DDS_DataWriter _this,

* const DDS_Duration_t *max wait);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_liveliness_lost_status
* (SPACE_FooDataWriter _this,

* DDS_LivelinessLostStatus *status);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_offered_deadline_missed_status
* (SPACE_FooDataWriter _this,

* DDS_OfferedDeadlineMissedStatus *status) ;

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_offered_ incompatible_gos_status
* (SPACE_FooDataWriter _this,

* DDS_OfferedIncompatibleQosStatus *status);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_publication_matched_status
* (SPACE_FooDataWriter _this,

* DDS_PublicationMatchedStatus *status) ;

*/

/* DDS_ReturnCode_t

281
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

SPACE_FooDataWriter_assert_liveliness
* (SPACE_FooDataWriter _this);
*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_matched_subscriptions

* (SPACE_FooDataWriter _this,

* DDS_InstanceHandleSeq *subscription_handles) ;
*/

/* DDS_ReturnCode_t

* SPACE_FooDataWriter_get_matched_subscription_data

* (SPACE_FooDataWriter _this,

* DDS_SubscriptionBuiltinTopicData *subscription_data,
* const DDS_InstanceHandle_t subscription_handle) ;

*/

/*

* implemented API operations

*/

DDS_InstanceHandle_t
SPACE_FooDataWriter_register_instance
(SPACE_FooDataWriter _this,
const Foo *instance_data) ;
DDS_InstanceHandle_t
SPACE_FooDataWriter_ register_instance_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_Time_t *source_timestamp) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_unregister_instance
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_unregister_instance_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_write
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_write_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

282

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
SPACE_FooDataWriter_dispose
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_dispose_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_writedispose
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_writedispose_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;
DDS_ReturnCode_t
SPACE_FooDataWriter_get_key_value
(SPACE_FooDataWriter _this,
Foo *key_holder,
const DDS_InstanceHandle_t handle) ;
DDS_InstanceHandle_t
SPACE_FooDataWriter_lookup_instance
(SPACE_FooDataWriter _this,
Foo *instance_data) ;

The next paragraphs describe the usage of al SPACE_FooDataWriter Operations.
The inherited operations are listed but not fully described because they are not

implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

3.4.2.32 SPACE_FooDataWriter_assert_liveliness (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_ assert_liveliness
(SPACE_FooDataWriter _this);

283
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

SPACE_FooDataWriter _dispose

284
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_dispose
SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle) ;

Description

This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

in const Foo *instance_data - the actual instance to be disposed of.

in const DDS_InstanceHandle t instance_handle - the handle to the
instance to be disposed of .

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected pps_DataReader and, dependent on the QosPolicy Settings,
also in the Transient and Persistent stores, will be marked for deletion by setting
their DDS_InstanceStateKind t0 DDS_NOT_ALIVE_DISPOSED_INSTANCE_
STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Asaside effect, this operation asserts liveliness on the pbs_patawriter itself and
on the containing DDS_DomainParticipant.

Effects on DataReaders

Actual deletion of the instance administration in a connected DDS_DataReader
will be postponed until the following conditions have been met:

« the instance must be unregistered (either implicitly or explicitly) by al connected
DDS_DataWriters that have previoudly registered it

- A DDS_DataWriter can register an instance explicitly by using one of the
special operations SPACE_FooDataWriter_register_instance Of
SPACE_FooDataWriter_ register_instance_w_timestamp.

- A DDS_DataWriter can register an instance implicitly by using the specia
constant DDS_HANDLE_NIL in any of the other bbs_patawriter operations.

- A DDS_DataWriter can unregister an instance explicitly by using one of the
special operations SPACE_FooDataWriter_unregister_instance Of
SPACE_FooDataWriter_ unregister_instance_w_timestamp.

- A DDS_Datawriter Will unregister all its contained instances implicitly when
itis deleted.

-When a Dbs_DataReader detects a loss of liveliness in one of its connected
DDS_DataWriters, it will consider all instances registered by that
DDS_DataWriter asbeingimplicitly unregistered.

« and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.

-An application can consume samples explicitly by invoking the
SPACE_FooDataReader_take Operation, or one of its variants.

- The DDS_DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay ©Of the DDS_ReaderData
LifecycleQosPolicy hasexpired.

The bDS_DataReader may also remove instances that haven't been disposed first:
this happens when the autopurge_nowriter_samples_delay Of the
DDS_ReaderDatalLifecycleQosPolicy has expired after the instance is
considered unregistered by all connected bps_batawriters (i.e. when it has a
DDS_InstanceStateKind Of DDS_NOT_ALIVE_NO_WRITERS). See also Section
3.1.3.15, DDS ReaderDatalL.ifecycleQosPolicy, on page 87.

Effects on Transient/Persistent Sores

Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:

285
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

286
API Reference

« the instance must be unregistered (either implicitly or explicitly) by al connected
DDS_DataWriters that have previoudly registered it. (See above.)

* and the period of time specified by the service_cleanup_delay attribute in
the DDS DurabilityServiceQosPolicy On the DDS_Topic must have
elapsed after the instance is considered unregistered by al connected
DDS_DataWriters.

See aso Section 3.1.3.4, DDS DurabilityServiceQosPalicy, on page 70.

Instance Handle

The pps_HANDLE_NIL handle value can be used for the parameter
instance_handle. Thisindicates the identity of the instance is automatically
deduced from the instance_data (by means of the key).

If instance_handle is any value other than bps_HANDLE_NIL, then it must
correspond to the value that was returned by either the
SPACE_FooDataWriter_register_instance operation or the
SPACE_FooDatallriter_register_instance_w_timestamp Operation when
the instance (identified by its key) was registered. If there is no correspondence,
then the result of the operation is unspecified.

The samplethat ispassed as instance_data isonly used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected pDs_DataReaders. Use the
SPACE_FooDataWriter_writedispose operation if the sasmple itself should be
delivered together with the dispose request.

Blocking

If the DDS_HistoryQosPolicy iSSet to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_dispose operation on the bbs_DataWriter may
block if the modification would cause data to be lost because one of the limits,
specified in the DDS_ResourcelimitsQosPolicy, to be exceeded. Under these
circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the
SPACE_FooDataWriter_dispose operation may block (waiting for space to
become available). If max_blocking_time elapses before the bDS_DatawWriter
is able to store the modification without exceeding the limits, the
SPACE_FooDataWriter_dispose operation will fail and returns
DDS_RETCODE_TIMEOUT.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overal
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining amacro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter caled -DoSPL_BOUNDS_CHECK.

Since the SPACE_FooDatalWriter_dispose operation only uses the sample to
check for consistency between its key values and the supplied instance_handle,
only those keyfields will be validated against the restrictions imposed by the IDL to
C language mapping, where:

« an enum may not exceed the value of its highest |abel

* astring (bounded or unbounded) may not be NuLL. (Use »~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, then the
operation will fail and return a DbS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code

When the operation returns:

* DDS RETCODE OK - the Data Distribution Service is informed that the instance
data must be disposed of.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_ PARAMETER - instance_handle is not a valid handle or
instance_data isnot avalid sample.

* DDS_RETCODE_ALREADY DELETED - the SPACE_FooDataWriter has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

287
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter iSnot enabled.

e DDS_RETCODE_PRECONDITION NOT MET - the instance_handle has not
been registered with this SPACE_FooDatawWriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_dispose operation, which
could not be resolved before max _blocking_ time of the
DDS_ReliabilityQosPolicy elapsed.

SPACE_FooDataWriter_dispose w_timestamp

288
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_ dispose_w_timestamp

(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

Description

This operation requests the Data Distribution Service to mark the instance for
deletion and provides avalue for the source_timestamp explicitly.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataliriter oObject on
which the operation is operated.

in const Foo *instance_data - the actual instance to be disposed of.

in const DDS_InstanceHandle t instance_handle - the handle to the
instance to be disposed of.

in const DDS_Time_t *source_timestamp - the timestamp which is
provided for the DDS_DataReader.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation performs the same functions as SPACE_FooDataWriter_dispose
except that the application provides the value for the source_timestamp that is
made available to connected DDS_DataReader objects. This timestamp is
important for the interpretation of the DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:

* DDS _RETCODE_OK - the Data Distribution Service is informed that the instance
data must be disposed of.

e DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data ishot avalid sasmple.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDatawWriter hasaready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e DDS RETCODE_NOT ENABLED - the SPACE_FooDataWriter iSnot enabled.

* DDS RETCODE PRECONDITION NOT MET - the instance handle has not
been registered with this SPACE_FooDatawriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_dispose_w_timestamp
operation, which could not be resolved before max_blocking time of the
DDS_ReliabilityQosPoliC}fdapgii

SPACE_FooDataWriter _enable (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_enable
(SPACE_FooDataWriter _this);

289
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

SPACE_FooDataWriter _get key value

290
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_key_value
(SPACE_FooDataWriter _this,
Foo *key_holder,
const DDS_InstanceHandle_t handle);

Description
This operation retrieves the key value of a specific instance.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

inout Foo *key_holder - the samplein which the key values are stored.

in const DDS_InstanceHandle t handle - the handle to the instance from
which to get the key value.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED Of DDS_RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation retrieves the key value of the instance pointed to by
instance_handle. When the operation is called with an bDS_HANDLE_NIL
handle value as an instance_handle, the operation will return
DDS_RETCODE_BAD_PARAMETER. The operation will only fill the fields that form
the key inside the key_holder instance. This means, the non-key fields are not
applicable and may contain garbage.

The operation must only be called on registered instances. Otherwise the operation
returns the error DDS_RETCODE_PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the key_holder instance contains the key values of the
instance.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE_BAD PARAMETER - handle isnotavalid handleor key_holder
isnot avalid pointer.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDatawWriter hasaready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - thisinstance is not registered.

SPACE_FooDataWriter _get_listener (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
struct SPACE_FooDataWriterListener
SPACE_FooDataWriter_get_listener
(SPACE_FooDataWriter _this);

SPACE_FooDataWriter_get_liveliness lost_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_liveliness_lost_status
(SPACE_FooDataWriter _this,
DDS_LivelinessLostStatus *status);

SPACE_FooDataWriter _get_matched_subscription_data (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_matched_subscription_data
(SPACE_FooDataWriter _this,

291
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_SubscriptionBuiltinTopicData *subscription_data,
const DDS_InstanceHandle_t subscription_handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

SPACE_FooDataWriter_get_matched_subscriptions (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_matched_subscriptions
(SPACE_FooDataWriter _this,
DDS_InstanceHandleSeq *subscription_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

SPACE_FooDataWriter_get_offered_deadline_missed_status
(inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataWriter_get_offered_deadline_missed_status
(SPACE_FooDataWriter _this,
DDS_OfferedDeadlineMissedStatus *status);

SPACE_FooDataWriter_get offered_incompatible gos status
(inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_offered_incompatible_gos_status
(SPACE_FooDataWriter _this,
DDS_OfferedIncompatibleQosStatus *status) ;

SPACE_FooDataWriter_get_publication_matched_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

292
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataWriter_get_publication_matched_status
(SPACE_FooDataWriter _this,
DDS_PublicationMatchedStatus *status);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

SPACE_FooDataWriter_get_publisher (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_Publisher
SPACE_FooDataWriter_get_publisher
(SPACE_FooDataWriter _this);

SPACE_FooDataWriter _get_qos (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_get_gos
(SPACE_FooDataWriter _this,
SPACE_FooDataWriterQos *gos);

SPACE_FooDataWriter_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_StatusMask
SPACE_FooDataWriter_get_status_changes
(SPACE_FooDataWriter _this);

SPACE_FooDataWriter_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

293
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <Space.h>
DDS_StatusCondition
SPACE_FooDataWriter_get_statuscondition
(SPACE_FooDataWriter _this);

SPACE_FooDataWriter_get_topic (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_Topic
SPACE_FooDataWriter_get_topic
(SPACE_FooDataWriter _this);

SPACE_FooDataWriter_|lookup_instance

294
API Reference

Synopsis
#include <Space.h>
DDS_InstanceHandle_t
SPACE_FooDataWriter_lookup_instance
(SPACE_FooDataWriter _this,
Foo *instance_data) ;

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDatalriter Object on
which the operation is operated.

in Foo *instance_data - theinstance for which the corresponding instance
handle needs to be looked up.

Return Value

DDS_InstanceHandle_t - Result valueis the instance handle which corresponds
tothe instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter is only used for the purpose of
examining the fields that define the key. The instance handle can be used in any

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

write, dispose OF unregister operations (or their timestamped variants) that
operate on a specific instance. Note that DDS_DatawWriter instance handles are
local, and are not interchangeable with DDS_DataReader instance handles nor with
instance handles of an other pbs_Datawriter.

This operation does not register the instance in question. If the instance has not been
previously registered, if the DDS_Datawriter isalready deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value DDS_HANDLE_NTL.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.
#endif

By defining amacro called 0sp1L._0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL,_BOUNDS_CHECK.

Since the SPACE_FooDataWriter_lookup_instance operation merely usesthe
sample to determine its identity based on the uniqueness of its key values, only the
keyfields will be validated against the restrictions imposed by the IDL to C
language mapping, where:

« an enum may not exceed the value of its highest |abel

* astring (bounded or unbounded) may not be NULL. (Use “~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, then the

operation will fail and return a bbs_HANDLE_NTL. More specific information about

the context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

SPACE_FooDataWriter_register_instance

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_InstanceHandle_t
SPACE_FooDataWriter_register_instance
(SPACE_FooDataWriter _this,
const Foo *instance_data);

295
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

296
API Reference

Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

in const Foo *instance_data - the new instance, which the application
writes to or disposes of .

Return Value

DDS_InstanceHandle_t - Result value is the handle to the Instance, which may
be used for writing and disposing of. In case of an error, a DbS_HANDLE_NIL
handle value is returned.

Detailed Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such as SPACE_FooDataWriter_write,
SPACE_FooDataWriter_write_w_timestamp, SPACE_FooData
Writer_unregister_instance, SPACE_FooDataWriter_unregister_
instance_w_timestamp, SPACE_FooDataWriter_dispose,
SPACE_FooDataWriter_dispose_w_timestamp, SPACE_FooDataWriter_
writedispose and SPACE_FooDataWriter writedispose w_timestamp.
When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive bDS_DataWriter operations. In case of an error, a
DDS_HANDLE_NIL handle valueisreturned.

The explicit use of this operation is optional as the application can directly call the
SPACE_FooDataWriter_write, SPACE_FooDataWriter_write_
w_timestamp, SPACE_FooDataWriter_unregister_instance,
SPACE_FooDataWriter_unregister_instance_w_timestamp,
SPACE_FooDataWriter_dispose, SPACE_FooDataWriter_
dispose_w_timestamp, SPACE_FooDataWriter_writedispose and
SPACE_FooDataWriter writedispose_w_timestamp operations and specify
aDDS_HANDLE_NIL handle value to indicate that the sample should be examined
to identify the instance.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

Blocking

If the DDS_HistoryQosPolicy iS set to KEEP_ALL_HISTORY_QOS, the
SPACE_FooDatalWriter_register_instance operation on the
DDS_DataWriter may block if the modification would cause data to be lost
because one of the limits, specified in the DDS_ResourcelLimitsQosPolicy, to
be exceeded. Under these circumstances, themax_blocking_time attribute of the
DDS_ReliabilityQosPolicy configures the maximum time the
SPACE_FooDataWriter_register_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DDS_DataWriter is able to store the modification without exceeding the limits,
the SPACE_FooDataWriter_register_instance operation will fail and
returns DDS_HANDLE_NIL.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining amacro called 0sPL_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.

Since the SPACE_FooDataWriter_register_instance operation merely uses
the sample to determine its identity based on the uniqueness of its key values, only
the keyfields will be validated against the restrictions imposed by the IDL to C
language mapping, where:

« an enum may not exceed the value of its highest label

« astring (bounded or unbounded) may not be NuLL. (Use *~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

297
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

If any of these restrictions is violated when validity checking is enabled, then the
operation will fail and return abDs_HANDLE_NTL. More specific information about
the context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

Multiple Calls

If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
alocated to agiven instance.

SPACE_FooDataWriter_register_instance_w_timestamp

298
API Reference

Synopsis
#include <Space.h>
DDS_InstanceHandle_t
SPACE_FooDataWriter_register_instance_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_Time_t *source_timestamp) ;

Description

This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides avalue for the source_timestamp
explicitly.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataliriter oObject on
which the operation is operated.

in Foo *instance_data - theinstance, which the application will write to or
dispose of .

in const DDS_Time_ t *source_timestamp - thetimestamp used.

Return Value

DDS_InstanceHandle_ t - Result valueisthe handleto the Instance, which
must be used for writing and disposing. In case of an error, a DDS_HANDLE_NIL
handle value is returned.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation performs the same functions as
SPACE_FooDataWriter_register_instance except that the application
provides the value for the source_timestamp that is made available to connected
DDS_DataReader Objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

Multiple Calls

If thisoperation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
alocated to a given instance. The source_timestamp isignored in that case.

SPACE_FooDataWriter_set_listener (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_ set_listener
(SPACE_FooDataWriter _this,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

SPACE_FooDataWriter_set_gos (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_set_gos
(SPACE_FooDataWriter _this,
const DDS_DataWriterQos *gos);

SPACE_FooDataWriter _unregister _instance

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_unregister_instance
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle) ;

299
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

300
API Reference

Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

in const Foo *instance_data - the instance to which the application was
writing or disposing.

in const DDS_InstanceHandle_t handle -the handleto the instance, which
has been used for writing and disposing.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
action of SPACE_FooDataWriter_register_instance Of
SPACE_FooDataWriter_register_instance_w_timestamp. It should only
be called on an instance that is currently registered. This operation should be
called just once per instance, regardless of how many times
SPACE_FooDataWriter register_ instance wascaled for that instance.
This operation also indicates that the Data Distribution Service can locally remove
all information regarding that instance. The application should not attempt to use
thehandle, previoudly allocated to that instance, after calling this operation.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

Effects

If, after unregistering, the application wants to modify (write or dispose) the
instance, it first hasto register theinstance again, or it has to use the specia
handle value DDS_HANDLE_NTIL.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

This operation does not indicate that the instance should be deleted (that is the
purpose of SPACE_FooDataliriter_dispose). This operation just indicates that
the bpDs_Datawriter no longer has “anything to say” about the instance. If
thereis no other pbs_bpatawri ter that has registered the instance as well, then the
DDS_InstanceStateKind in al connected bps_DpataReaders Will be changed
t0 DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, provided this
DDS_InstanceStateKind was not already set to
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. In the last case the
DDS_InstanceStateKind will not be effected by the
SPACE_FooDataWriter_unregister_instance cal, see also Figure 21:, Sate
Chart of the instance_state for a Single Instance, on page 502.

This operation can affect the ownership of the data instance. If the
DDS_DataWriter wasthe exclusive owner of the instance, calling this operation
will release that ownership, meaning ownership May be transferred to another,
possibly lower strength, DDS_Datawriter.

The operation must be called only on registered instances. Otherwise the operation
returns the error bDs_RETCODE_PRECONDITION_NOT_MET.

Instance Handle

The pps_HanNDLE_NIL handle value can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle isany value other than bDs_HANDLE_NTIL, then it must correspond to the
value returned by SPACE_FooDataWriter_register_instance Of
SPACE_FooDataWriter_ register_instance_w_timestamp wWhen the
instance (identified by its key) wasregistered. If there is no correspondence, then
the result of the operation is unspecified.

The sample that is passed as instance_data is used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DDS_DataReaders.

Blocking

If theDDS_HistoryQosPolicy iSSet to DDS_KEEP ALL_HISTORY_ QOS, thenthe
SPACE_FooDataWriter_unregister_instance operation on the
DDS_DataWriter may block if the modification would cause data to be lost
because one of the limits, specified in the DDS_ResourcelLimitsQosPolicy, tO
be exceeded. Under these circumstances, the max_blocking_time configures the
maximum time the SPACE_FooDataWriter_unregister_ instance attribute
of the DDS_ReliabilityQosPolicy operation may block (waiting for space to
become available). If max_blocking time elapses beforethe DDS_DatawWriter

301
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

302
API Reference

is able to store the modification without exceeding the limits, the
SPACE_FooDataWriter_unregister_instance operation will fail and returns
DDS_RETCODE_TIMEOUT.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining a macro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPI,_BOUNDS_CHECK.

Since the SPACE_FooDataWriter_unregister_instance operation merely
uses the sample to check for consistency between its key values and the supplied
instance_handle, only these keyfields will be validated against the restrictions
imposed by the IDL to C language mapping:

 an enum may not exceed the value of its highest label.

* astring (bounded or unbounded) may not be nuLL. (Use ~ for an empty string
instead).

» the length of a bounded string may not exceed the limit specified in IDL.

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code

When the operation returns:

* DDS RETCODE_OK - the Data Distribution Service is informed that the instance
will not be modified any more.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE BAD PARAMETER - handle is not a vaid handle or
instance_data isnot avalid sample.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has aready
been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the SPACE_FooDataWriter iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered
with this SPACE_FooDatawWriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE FooDataWriter_ unregister_instance
operation, which could not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

SPACE_FooDataWriter_unregister_instance w_timestamp

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_ unregister_instance_w_timestamp

(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

Description

This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter object on
which the operation is operated.

in Foo *instance_data - theinstance to which the application was writing or
disposing.

in const DDS_InstanceHandle_ t handle - the handleto the instance, which
has been used for writing and disposing.

in const DDS_Time_t *source_timestamp - thetimestamp used.

303
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

304
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as
SPACE_FooDataWriter_unregister_instance except that the application
provides the value for the source_timestamp that is made available to connected
DDS_DataReader objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:

* DDS RETCODE_OK - the Data Distribution Service is informed that the instance
will not be modified any more.

* DDS_RETCODE_ERROR - an interna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - handle is not a vaid handle or
instance_data isnot avalid sample.

* DDS_RETCODE_ALREADY DELETED - the SPACE_FooDataWriter has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e DDS RETCODE_NOT ENABLED -the SPACE FooDataWriter iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered
with this SPACE_FooDatawriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_unregister_
instance_w_timestamp operation, which could not be resolved before
max_blocking_time Of theDDS_ReliabilityQosPolicy elapsed.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

SPACE_FooDataWriter_wait_for_acknowledgments (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_wait_for_acknowledgments
(SPACE_FooDataWriter _this,
const DDS_Duration_t *max_wait);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

SPACE_FooDataWriter _write

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_write
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle) ;

Description
This operation modifies the value of a datainstance.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter object on
which the operation is operated.

in const Foo *instance data - the datato be written.

in const DDS_InstanceHandle t handle - the handle to the instance as
supplied by SPACE_FooDataWriter register_instance.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

305
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

306
API Reference

Detailed Description

This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected bDS_DataReader
objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Asaside effect, this operation asserts liveliness on the pps_bpatawriter itself and
on the containing bbs_DomainParticipant.

Before writing data to an instance, the instance may be registered with the
SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp operation. The
handle returned by one of the SPACE_FooDataWriter_register_instance
operations can be supplied to the parameter handle of the
SPACE_FooDataWriter_write operation. However, it is also possible to supply
the special pps_HANDLE_NTL handle value, which means, that the identity of the
instance isautomatically deduced from the instance_data (identified by the
key).

Instance Handle

The pps_HanDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle isany value other than DDS_HANDLE_NIL, it must correspond to the
value returned by SPACE_FooDataWriter_register_instance Of
SPACE_FooDataWriter_ register_instance_w_timestamp When the
instance (identified by its key) was registered. Passing such aregistered handle
helps the Data Distribution Service to process the sample more efficiently. If thereis
no correspondence between handle and sample, the result of the operation is
unspecified.

Blocking

If the DDS_HistoryQosPolicy iSSet to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_write operation onthe bDS_DataWriter may block if
the modification would cause data to be lost because one of the limits, specified in
the DDS_ResourcelLimitsQosPolicy, IS exceeded. Under these circumstances,
themax_blocking_time attribute of theReliabilityQosPolicy configures
the maximum time the SPACE_FooDataWriter_write operation may block
(waiting for space to become available). If max_blocking_time €elapses before
the DDs_bpatawriter is able to store the modification without exceeding the
limits, the SPACE_FooDataWriter_write operation will fail and returns
DDS_RETCODE_TIMEOUT.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overal
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining amacro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPI,_BOUNDS_CHECK.

Before the sample is accepted by the DataWriter, it is validated against the

restrictions imposed by the IDL to C language mapping:

* an enum may not exceed the value of its highest 1abel.

* astring (bounded or unbounded) may not be NuLL. (Use »~ for an empty string
instead).

« the length of abounded string may not exceed the limit specified in IDL.

« the length of abounded sequence may not exceed the limit specified in IDL.

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Be aware that it is not possible for the middleware to determine whether a union is
correctly initialized, since according to the IDL-C language mapping a union just
returnsits current contentsin the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the value of a datainstance is modified.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE BAD PARAMETER - handle is not a vaid handle or
instance_data isnot avalid sample.

307
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has aready
been deleted.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered
with this SPACE_FooDatalriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_write operation, which could
not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

SPACE_FooDataWriter_write w_timestamp

308
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_write_w_timestamp
(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;
Description

This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.
Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataliriter object on
which the operation is operated.

in const Foo *instance_data - the datato be written.

in const DDS_InstanceHandle t handle - the handle to the instance as
supplied by SPACE_FooDataWriter_ register_instance.

in const DDS_Time_t *source_timestamp - thetimestamp used.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE__
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT

Detailed Description

This operation performs the same functions as SPACE_FooDataWriter_write
except that the application provides the value for the source_timestamp that is
made available to connected DDS_DataReader objects. This timestamp is
important for the interpretation of the DDS_DestinationOrderQosPolicy.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the value of a datainstance is modified.

e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD PARAMETER - handle is not a vaid handle or
instance_data ishot avalid sample.

* DDS_RETCODE_ALREADY DELETED - the SPACE_FooDataWriter has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE NOT ENABLED - the SPACE FooDataWriter iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT MET - the instance_data does not
correspond to the handle that should have been obtained from this
SPACE_FooDataWriter.

e DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_ register_
instance_w_timestamp operation, which could not be resolved before
max_blocking_time(ﬁtheDDS_ReliabilityQosPoliC}Idapgii

SPACE_FooDataWriter_writedispose

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_writedispose
(SPACE_FooDataWriter _this,

309
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

310
API Reference

const Foo *instance_data,
const DDS_InstanceHandle_t handle) ;

Description
This operation modifies and disposes a data instance.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

in const Foo *instance_data - the datato be written and disposed.

in const DDS_InstanceHandle_t instance - the handle to the instance as
supplied by SPACE_FooDataWriter_register_instance.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected pps_DataReader and, dependent on the QosPolicy
settings, also in the Transient and Persistent stores, will be modified and marked for
deletion by setting their bDs_InstanceStateKind t0 DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the bps_patawriter itself and
on the containing DDS_DomainParticipant.

Effects on DataReaders

Actual deletion of the instance administration in a connected DDS_DataReader
will be postponed until the following conditions have been met:

» the instance must be unregistered (either implicitly or explicitly) by al connected
DDS_DataWriters that have previoudly registered it.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

- A DDS_DataWriter can register an instance explicitly by using one of the
special operations SPACE_FooDataWriter_register_instance Of
SPACE_FooDataWriter_ register_instance_w_timestamp.

- A DDS_DataWriter can register an instance implicitly by using the specia
constant DDS_HANDLE_NTIL in any of the other bbs_batawriter operations.

- A DDS_Datalriter can unregister an instance explicitly by using one of the
special operations SPACE_FooDataWriter_unregister_instance Of
SPACE_FooDataWriter_unregister_ instance_w_timestamp.

- A DDS_DataWriter Will unregister all its contained instances implicitly when
it isdeleted.

- When a DDs_DataReader detects a loss of liveliness in one of its connected
DDS_DataWriters, it will consider al instances registered by that
DDS_DataWriter asbeing implicitly unregistered.

 and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
-An application can consume samples explicitly by invoking the
SPACE_FooDataReader_take operation, or one of its variants.

- The DDS_DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay ©Of the DDS_ReaderData
LifecycleQosPolicy hasexpired.

The DDS_DataReader may also remove instances that haven't been disposed first:
this happens when the autopurge_nowriter_samples_delay Of the
DDS_ReaderDatalLifecycleQosPolicy has expired after the instance is
considered unregistered by all connected bbs_batawriters (i.e. when it has a
DDS_InstanceStateKind Of DDS_NOT_ALIVE_NO_WRITERS). See also Section
3.1.3.15, DDS ReaderDatal ifecycleQosPolicy, on page 87.

Effects on Transient/Persistent Sores

Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:

« the instance must be unregistered (either implicitly or explicitly) by all connected
DDS_DataWriters that have previoudy registered it. (See above.)

« and the period of time specified by the service_cleanup_delay attribute in
the DDS_DurabilityServiceQosPolicy on the DDS_Topic must have
elapsed after the instance is considered unregistered by al connected
DDS_DataWriters.

See a'so Section 3.1.3.4, DDS DurabilityServiceQosPolicy, on page 70.

311
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

312
API Reference

Instance Handle

The pps_HaNDLE_NIL handle value can be used for the parameter handile. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle is any value other than DDS_HANDLE_NTIL, it must correspond to the
value returned by SPACE_FooDataWriter_register_instance OfF
SPACE_FooDataWriter register_ instance w_timestamp when the
instance (identified by its key) was registered. Passing such aregistered handle
helps the Data Distribution Service to process the sample more efficiently. If thereis
no correspondence between handle and sample, the result of the operation is
unspecified.

The sample that is passed as instance_data will actually be delivered to the
connected DDS_DataReaders, but will immediately be marked for deletion.

Blocking

If the DDS_HistoryQosPolicy iS Set to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_writedispose operation on the bbs_DataWriter
may block if the modification would cause data to be lost because one of the limits,
specified in the bDS_ResourceLimitsQosPolicy, to be exceeded. Under these
circumstances, the max_blocking time attribute of the
ReliabilityQosPolicy configures the maximum time the
SPACE_FooDataWriter_writedispose operation may block (waiting for space
to become available). If max_blocking_time elapses before the
DDS_DataWriter isable to store the modification without exceeding the limits,
the SPACE_FooDataWriter_writedispose operation will fail and returns
DDS_RETCODE_TIMEOUT.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining a macro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.

Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C language mapping, where:

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

 an enum may not exceed the value of its highest |abel

* astring (bounded or unbounded) may not be NnuLL. (Use »~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL
« the length of a bounded sequence may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DbS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Be aware that it is not possible for the middleware to determine whether aunion is
correctly initialized, since according to the IDL-C language mapping a union just
returns its current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code

When the operation returns:

* DDS RETCODE _OK - the Data Distribution Service has modified the instance and
marked it for deletion.

* DDS RETCODE _ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - instance_handle is hot a valid handle or
instance_data isnot avalid sample.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDatawWriter has aready
been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the SPACE_FooDataWriter iSnot enabled.

* DDS_RETCODE_PRECONDITION NOT MET - the instance_handle has not
been registered with this SPACE_FooDatawriter.

* DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This

313
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

caused blocking of the SPACE_FooDataWriter_writedispose operation,
which could not be resolved before max blocking time of the
DDS_ReliabilityQosPolicy elapsed.

SPACE_FooDataWriter_writedispose w_timestamp

314
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataWriter_writedispose_w_timestamp

(SPACE_FooDataWriter _this,
const Foo *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides avalue for the source_timestamp explicitly.

Parameters

in SPACE_FooDataWriter _this -the SPACE_FooDataWriter Object on
which the operation is operated.

in const Foo *instance_data - the datato be written and disposed.

in const DDS_InstanceHandle t handle - the handle to the instance as
supplied by SPACE_FooDataWriter_register_instance.

in const DDS_Time_t *source_timestamp - thetimestamp used.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as
SPACE_FooDataWriter_writedispose except that the application provides the
value for the source_timestamp that is made available to connected
DDS_DataReader Objects. Thistimestamp isimportant for the interpretation of the
DDS_DestinationOrderQosPolicy.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Code
When the operation returns:

DDS_RETCODE_OK - the Data Distribution Service has modified the instance and
marked it for deletion.

DDS_RETCODE_ERROR - an internal error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD_PARAMETER - handle is not a vaid handle or
instance_data ishot avalid sample.

DDS_RETCODE_ALREADY DELETED - the SPACE_FooDatalriter has already
been deleted.

DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_NOT ENABLED - the SPACE_FooDataWriter iSnot enabled.

DDS_RETCODE_PRECONDITION_NOT MET - the handle has not been registered
with this SPACE_FooDataWriter.

DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as gpecified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_writedispose_
w_timestamp operation, which could not be resolved before
max_blocking_time Of the DDS_ReliabilityQosPolicy elapsed.

DDS PublisherListener interface

Since apDS_Publisher iSaDDS_Entity, it hasthe ability to have aListener
associated with it. In this case, the associated Listener should be of type
DDS_PublisherListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DDs_PublisherListener class. All DDS_PublisherListener
operations must be implemented in the user defined class, it is up to the application
whether an operation is empty or contains some functionality.

&4 PRISMTECH

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

315
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

316
API Reference

Thepbs_PublisherListener providesageneric mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy Setting, etc. The DDS_PublisherListener isrelated to changesin
communication status.

The interface description of this classis asfollows:

/*

* interface DDS_PublisherListener

*/
/*

* inherited from DDS_DataWriterListener

*/
/* void

* DDS_PublisherListener_on_offered_deadline_missed
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedDeadlineMissedStatus *status);

*/
/* void

* DDS_PublisherListener_on_offered_incompatible_gos
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedIncompatibleQosStatus *status);
*/
/* void

DDS_PublisherListener_on_liveliness_lost

* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_LivelinessLostStatus *status);

*/
/* wvoid

DDS_PublisherlListener_on_publication_matched

* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_PublicationMatchedStatus *status);
*/
/*

* implemented API operations

*/

DDS_PublisherListener
DDS_PublisherListener__alloc
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

The next paragraphs list all bps_pPublisherListener operations. Since these
operations are all inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operationsisgiven in the
classes from which they are inherited.

DDS PublisherListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_PublisherListener
DDS_PublisherListener__alloc
(void) ;

Description
This operation creates anew DDS_PublisherListener.

Parameters
<none>

Return Value

DDS_PublisherListener - the handle to the newly created
DDS_PublisherListener. INn case of an error, abDS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a new DDS_PublisherListener. The
DDS_PublisherListener must be created using this operation. In other words,
the application is not allowed to declare an object of type
DDS_PublisherListener. When the application wants to release the
DDS_PublisherListener it must bereleased using pps_free.

In case there are insufficient resources available to allocate the
DDS_PublisherListener, aDDS_OBJECT_NIL pointer is returned instead.

DDS PublisherListener_on_liveliness lost (inherited, abstract)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_PublisherListener_on_liveliness_lost
(void *listener_data,
DDS_DataWriter writer,

317
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

const DDS_LivelinessLostStatus *status);

DDS PublisherListener_on_offered_deadline_ missed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_PublisherListener_on_offered_deadline_missed
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedDeadlineMissedStatus *status) ;

DDS PublisherListener_on_offered_incompatible gos (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_PublisherListener_on_offered_incompatible_gos
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedIncompatibleQosStatus *status);

DDS PublisherListener_on_publication_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_PublisherListener_on_publication_matched
(void *listener_data,
DDS_DataWriter writer,
const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for afuture release.

318
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriterListener interface

&4 PRISMTECH

Since abpps_DataWriter iISADDS_Entity, it hasthe ability to havearListener
associated with it. In this case, the associated Listener should be of type
DDS_DataWriterListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DDS_DataWriterListener class. All
DDS_DataWriterListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DataWriterListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
aQosPolicy Setting, etc. The bDS_DatawriterListener isrelated to changes
in communication status.

The interface description of this classis asfollows:

/*
* interface DDS_DataWriterListener
*/
/*
* abstract external operations
*x/
void
DDS_DataWriterListener_on_offered_deadline_missed
(void *1listener_data,
DDS_DataWriter writer,
const DDS_OfferedDeadlineMissedStatus *status);
void
DDS_DataWriterListener_on_offered_incompatible_gos
(void *1listener_data,
DDS_DataWriter writer,
const DDS_OfferedIncompatibleQosStatus *status);
void
DDS_DataWriterListener_on_liveliness_lost
(void *listener_data,
DDS_DataWriter writer,
const DDS_LivelinessLostStatus *status);
void

DDS_DataWriterListener_on_publication_matched
(void *listener_data,
319
APl Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_DataWriter writer,

const DDS_PublicationMatchedStatus *status);
/*
* implemented API operations
*/

DDS_DataWriterListener
DDS_DataWriterListener_ _alloc
(void) ;

The next paragraphs describe the usage of all DDS_DataWriterListener
operations. These abstract operations are fully described because they must be
implemented by the application.

DDS DataWriterListener _alloc

320
API Reference

Synopsis
#include <dds_dcps.h>
DDS_DataWriterListener
DDS_DataWriterListener_ alloc
(void) ;

Description
This operation creates anew DDS_DataWriterListener.

Parameters
<none>

Return Value

DDS_DataWriterListener - the handle to the newly created
DDS_DataWriterListener. In case of an error, abDDS_OBJECT NIL pointer
isreturned.

Detailed Description

This operation creates a new DDS_DataWriterListener. The
DDS_DataWriterListener must be created using this operation. In other words,
the application is not allowed to declare an object of type
DDS_DataWriterListener. When the application wants to release the
DDS_DataWriterListener it must be released using Dps_free.

In case there are insufficient resources available to allocate the
DDS_DataWriterListener, aDDS_OBJECT_NIL pointer isreturned instead.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriterListener_on_liveliness lost (abstract)

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_DataWriterListener_on_liveliness_lost
(void *listener_data,
DDS_DataWriter writer,
const DDS_LivelinessLostStatus *status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the bbs_LivelinessLostStatus changes.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataWriter writer - cOntain apointer to the DDS_DataWriter ON
which the DDs_LivelinessLostStatus has changed (thisis an input to the
application).

in const DDS _LivelinessLostStatus *status - contain the
DDS_LivelinessLostStatus struct (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_LivelinessLostStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
relevant DDS_DataWriterListener iSinstalled and enabled for the liveliness lost
status. The liveliness lost status will change when the liveliness that the
DDS_Datawriter has committed through itsDDS_LivelinessQosPolicy was
not respected. In other words, the DDS_Dpatawriter failed to actively signal its
liveliness within the offered liveliness period. As a result, the bbs_bataReader
objectswill consider the DDs_Datawriter asno longer “alive’.

The Data Distribution Service will call the DDs_batawriterListener operation
with a parameter writer, which will contain a pointer to the bbs_patawriter on
which the conflict occurred and a parameter status, which will contain the
DDS_LivelinessLostStatus Struct.

321
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriterListener_on_offered_deadline missed (abstract)

322
API Reference

Synopsis
#include <dds_dcps.h>
void
DDS_DataWriterListener_on_offered_deadline_missed
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedDeadlineMissedStatus *status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the DDs_oOf feredDeadlineMissedStatus changes.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataWriter writer - COntains apointer to the DDS_Datawriter oON
which the DDs_offeredbDeadlineMissedStatus has changed (thisis an
input to the application).

in const DDS_OfferedDeadlineMissedStatus *status - containsthe
DDS_OfferedDeadlineMissedStatus Struct (thisis an input to the
application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_Of feredDeadlineMissedStatus changes. The implementation may be left
empty when thisfunctionality is not needed. This operation will only be called when
the relevant bps_bataWriterListener isinstalled and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
deadline that the pbs_patawriter has committed through its
DDS_DeadlineQosPolicy was not respected for a specific instance.

The Data Distribution Service will call the bbs_bpatawriterListener operation
with a parameter writer, which will contain a pointer to the bbs_patawriter on
which the conflict occurred and a parameter status, which will contain the
DDS_OfferedDeadlineMissedStatus Struct.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriterListener_on_offered_incompatible qos (abstract)

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_DataWriterListener_on_offered_incompatible_gos
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedIncompatibleQosStatus *status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataWriter writer - contain apointer to the DDS_DataWriter ON
which the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS has changed (thisis
an input to the application).

in const DDS_OfferedIncompatibleQosStatus *status - contain the
DDS_OfferedIncompatibleQosStatus struct (thisis an input to the
application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may
be left empty when this functionality is not needed. This operation will only be
called when the relevant DDS_DatawWriterListener isinstalled and enabled for
the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS. Theincompatible gos status
will change when a pbs_pataReader object has been discovered by the
DDS_DataWriter With the same DDs_Topic and a requested
DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.

323
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

The Data Distribution Service will call the bbs_bpatawriterListener operation
with a parameter writer, which will contain a pointer to the bbs_Datawriter on
which the conflict occurred and a parameter status, which will contain the
DDS_OfferedIncompatibleQosStatus Struct.

DDS DataWriterListener_on_publication_matched (abstract)
Synopsis

#include <dds_dcps.h>
void
DDS_DataWriterListener_on_publication_matched
(DDS_DataWritervoid *listener_data,
DDS_DataWriter writer,
const DDS_PublicationMatchedStatus *status) ;

Note: This operation is not yet supported. It is scheduled for afuture release.

324

API Reference & PRISMTECH

3 DCPS Classes and Operations

3.5 Subscription Module

DataSample

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()

<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()

get_gos()
get_requested_deadline_missed_status()
get_requested_incompatible_gos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()

<<abstract>> lookup_instance()
<<abstract>> read()

<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()

set_listener()

set_gos()

<<abstract>> take()

<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

Samplelnfo
sample_state
view_state
instance_state
1 |source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

<<implicit>>

3.5 Subscription Module

<<implicit>>
QosPolicy
qos
name :string & ——————

N

default_datareader_qgos

TopicDescription
(from Topic-Definition Module) —

(from Topic-Definition Module)

Topic

Lo

<<Interface>>
DataReaderListener

1
<<implicit>> <<implicit>> <<implicit>>
0,.\{L o
WaitSet StatusCondition
(from Infrastructure Module) (from Infrastructure Module)
* *
<<create>> * —
* <<implicit>>

*

ReadCondition QueryCondition

get_datareader()

get_sample_state_mask()
get_view_state_mask()

A e get_query_arguments()
get_instance_state_mask() get_query_expression()

set_query_arguments()

<<create>>

<<create>>

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

Figure 19 The DCPS Subscription M odule's Class M odel

DomainPartic
(from Domain Module)

J/ <<create>>

Subscriber

begin_access()
copy_from_topic_qgos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()

get_gos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()

set_qos()

<<implicit>>

0.1

<<Interface>>
SubscriberListener

on_data_on_readers()

This module contains the following classes:

* DDS_Subscriber
* Subscription type specific classes

* DDS_DataSample

* DDS_SampleInfo (struct)

* DDS_SubscriberListener (interface)

* DDS_DataReaderListener (interface)

* DDS_ReadCondition

&4 PRISMTECH

325

API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_QueryCondition

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataReader is generated (based on IDL) by calling the
pre-processor.

For instance, for the fictional datatype Foo (thisalso appliesto other types), defined
in the module spACE; “ Subscription type specific classes’ contains the following
classes:

* DDS_DataReader (@bstract)
* SPACE_FooDataReader

A DDS_subscriber is an object responsible for receiving published data and
making it available (according to the DDS_subscriberQos) to the application. It
may receive and dispatch bps_Topic with data of different specified datatypes. To
access the received data, the application must use atyped DDS_DataReader
attached to the DS_Subscriber. Thus, asubscription is defined by the association
of aDDs_DataReader With a DDs_subscriber. This association expresses the
intent of the application to subscribe to the data described by the bbs_DataReader
in the context provided by the bDs_subscriber.

ClassDDS Subscriber

326
API Reference

A DDS_subscriber isthe object responsible for the actual reception of the data
resulting from its subscriptions.

A DDS_Subscriber acts on behalf of one or more bbs_bpataReader objects that
are related to it. When it receives data (from the other parts of the system), it
indicates to the application that data is available through its
DDS_DataReaderListener and by enabling related bDs_conditions. The
application can access the list of concerned bbs_DataReader Objects through the
operation DDS_Subscriber_get_datareaders and then access the data
available through operations on the bps_pataReader.

Theinterface description of this classis asfollows:

/*

* interface DDS_Subscriber

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* DDS_Subscriber_get_statuscondition
* (DDS_Subscriber _this)

*/

/* DDS_StatusMask

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

*

DDS_Subscriber_get_status_changes

* (DDS_Subscriber _this);

*/
/* DDS_ReturnCode_t
* DDS_Subscriber_enable

* (DDS_Subscriber _this);

*/

/~k

* implemented API operations

*x/

DDS_DataReader
DDS_Subscriber_create_datareader
(DDS_Subscriber _this,

const DDS_TopicDescription a_topic,
const DDS_DataReaderQos *gos,

const struct DDS_DataReaderListener *a_listener,
const DDS_StatusMask mask) ;

DDS_ReturnCode_t
DDS_Subscriber_delete_datareader
(DDS_Subscriber _this,
const DDS_DataReader a_datareader) ;

DDS_ReturnCode_t

DDS_Subscriber_delete_contained_entities
(DDS_Subscriber _this);

DDS_DataReader
DDS_Subscriber_lookup_datareader
(DDS_Subscriber _this,
const DDS_char *topic_name) ;

DDS_ReturnCode_t
DDS_Subscriber_get_datareaders
(DDS_Subscriber _this,
DDS_DataReaderSeq *readers,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t
DDS_Subscriber_notify_ datareaders
(DDS_Subscriber _this);

DDS_ReturnCode_t
DDS_Subscriber_set_gos
(DDS_Subscriber _this,
const DDS_SubscriberQos *gos) ;

DDS_ReturnCode_t

327
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_Subscriber_get_gos
(DDS_Subscriber _this,
DDS_SubscriberQos *gos) ;
DDS_ReturnCode_t
DDS_Subscriber_ set_listener
(DDS_Subscriber _this,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_SubscriberListener
DDS_Subscriber_get_listener
(DDS_Subscriber _this);

DDS_ReturnCode_t
DDS_Subscriber_begin_access
(DDS_Subscriber _this);

DDS_ReturnCode_t
DDS_Subscriber_end_access
(DDS_Subscriber _this);

DDS_DomainParticipant
DDS_Subscriber_get_participant
(DDS_Subscriber _this);

DDS_ReturnCode_t
DDS_Subscriber_set_default_datareader_gos
(DDS_Subscriber _this,
const DDS_DataReaderQos *gos) ;

DDS_ReturnCode_t
DDS_Subscriber_get_default_datareader_gos
(DDS_Subscriber _this,
DDS_DataReaderQos *gos) ;

DDS_ReturnCode_t
DDS_Subscriber_copy_from_topic_gos
(DDS_Subscriber _this,
DDS_DataReaderQos *a_datareader_gos,
const DDS_TopicQos *a_topic_gos);

The next paragraphs describe the usage of al pps_subscriber operations. The
inherited operations are listed but not fully described because they are not

implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

328

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS Subscriber _begin_access

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_begin_access
(DDS_Subscriber _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS Subscriber_copy_from_topic_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_copy_from_topic_gos
(DDS_Subscriber _this,
DDS_DataReaderQos *a_datareader_gos,
const DDS_TopicQos *a_topic_gos);

Description

This operation will copy the policiesina_topic_gos to the corresponding policies
ina_datareader_gos.

Parameters

in DDS_Subscriber _this -theDDS_Subscriber object on which the
operation is operated.

inout DDS_DataReaderQos *a_datareader_gos - the destination
DDS_DataReaderQos Struct to which the QosPolicy settings will be copied.

in const DDS_TopicQos *a_topic_gos - the source bDS_TopicQos, which
will be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation will copy the QosPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datareader_gos (replacing the values
ina_datareader_gos, if present).

329
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Thisis a“convenience” operation, useful in combination with the operations
DDS_Publisher get default datawriter gos and DDS_Topic_get gos.
The operation DDS_Subscriber_copy_from_topic_gos Can be used to merge
the DDS_DataReader default QosPolicy settings with the corresponding ones on
the DDs_Topic. The resulting DDS_bataReaderQos can then be used to create a
new DDS_DataReader, OF Set itSDDS_DataReaderQos.

This operation does not check the resulting a_datareader_gos for self
consistency. This is because the “merged” a_datareader_gos may not be the
final one, as the application can still modify some gosPolicy settings prior to
applying the DDS_DataReaderQos t0 the DDS_DataReader.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the QosPolicy Settings have successfully been copied from
the DDS_TopicQos to the DDS_DataReaderQos.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Subscriber has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Subscriber create datareader

330
API Reference

Synopsis

#include <dds_dcps.h>

DDS_DataReader

DDS_Subscriber create_datareader
(DDS_Subscriber _this,

const DDS_TopicDescription a_topic,
const DDS_DataReaderQos *gos,
const struct DDS_DataReaderListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a DDS_DataReader With the desired QosPolicy settings,
for the desired DDS_TopicDescription and attaches the optionally specified
DDS_DataWriterListener toit.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Parameters

in DDS_Subscriber _this -the DDS_subscriber object on which the
operation is operated.

in const DDS_TopicDescription a_topic - a pointer to the
DDS_TopicDescription for which the DDS_DataReader is created. This
may be aDpDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic.

in const DDS_DataReaderQos *gos - thestruct withthe QosPolicy settings
for the new DDS_DataReader, When these QosPolicy settings are not self
consistent, no DDS_DataReader iS created.

in const struct DDS_DataReaderListener *a_listener - apointerto
the DDS_DataReaderListener instance which will be attached to the new
DDS_DataReader. It iSpermitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDsS_DataWriterListener Whose operations
perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataReaderListener for acertain status.

Return Value

DDS_DataReader - Return value is a pointer to the newly created
DDS_DataReader. In case of an error, the bbs_oBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a DDS_DataReader With the desired QospPolicy settings,
for the desired DDs_TopicDescription and attaches the optionally specified
DDS_DataReaderListener toit. The DDS_TopicDescription may be a
DDS_Topic, DDS_MultiTopic Or DDS_ContentFilteredTopic. The returned
DDS_DataReader iS attached (and belongs) to the bbs_subscriber. To delete
the DDS_DataReader the operation DDS_Subscriber_delete_datareader Of
DDS_Subscriber_delete_contained_entities must be used.

Application Data Type

The DDS_DataReader returned by this operation is an object of a derived class,
specific to the data type associated with the DDS_TopicDescription. For each
application-defined data type <type> there is a class
<NameSpace>_<type>DataReader generated by calling the pre-processor. This
data type specific class extends bbs_DbataReader and contains the operations to
read data of datatype <type>.

331
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

332
API Reference

Because the DDS_DataReader may tread a DDS_Topic,
DDS_ContentFilteredTopic Of DDS_MultiTopic, the DDS_DataReader iS
associated with the bDs_TopicDescription. The DDS_Datawriter can only
Write aDDS_Topic, NOt aDDS_ContentFilteredTopic OF DDS_MultiTopic,
because these two are constructed at the bps_subscriber side.

QosPalicy

The common application pattern to construct the QosPolicy settings for the
DDS_DataReader iStO:

* Retrieve the QosPolicy settings on the associated DDS_TopicDescription
by means of the DDS_Topic_get_gos operation on the
DDS_TopicDescription

* Retrieve the default DDS_DataReaderQos by means of the
DDS_Subscriber _get_default_datareader_gos operaion on the
DDS_Subscriber

» Combine those two QosPolicy settings and selectively modify policies as
desired (DDs_Subscriber_copy from_topic_gos)

» Usetheresulting QosPolicy settings to construct the DDS_DataReader.

* In case the specified QosPolicy settings are not self consistent, no
DDS_DataReader iS created and the DDS_OBJECT_NIL pointer isreturned.

Default QoS

The constant bDS_DATAREADER_QOS_DEFAULT can be used as parameter gos to
create a DDS_DataReader With the default DDS_DataReaderQos as set in the
DDS_Subscriber. The effect of using DDS_DATAREADER_QOS_DEFAULT iS the
same as calling the operation
DDS_Subscriber_get_default_datareader_gos and using the resulting
DDS_DataReaderQos to create the DDS_DataReader.

The special DDS_DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DDS_DataReader With a combination of the default Dbs_DataReaderQos and
the DDS_TopicQos. The effect of using
DDS_DATAREADER_QOS_USE_TOPIC_QOS is the same as calling the operation
DDS_Subscriber_get_default_datareader_gos and retrieving the
DDS_TopicQos (by means of the operation DDS_Topic_get_gos) and then
combining these two QosPolicy settings using the operation
DDS_Subscriber_copy_from_topic_gos, whereby any common policy that is
set on the pps_TopicQos “overrides’ the corresponding policy on the default
DDS_DataReaderQos. Theresulting DDS_DataReaderQos is then applied to
create the pDS_DataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Communication Satus

For each communication status, the statusChangedFlag flag isinitialy set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DataReaderListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the bDs_DataReaderListener:

DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_aNy_STATUS can be
used to select all statuses applicable to the bDS_DataReaderListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataReaderListener, the DDS_SubscriberListener of the containing
DDS_Subscriber isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_SubscriberListener Of the containing bDS_Subscriber and a
DDS_DataReader Specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_SubscriberListener aswell, the
communication status will be propagated to the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant. In casethe DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

DDS Subscriber _delete contained_entities

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_delete_contained_entities
(DDS_Subscriber _this);

333
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

334
API Reference

Description

This operation deletes all the bDS_DataReader objects that were created by means
of the DDS_Subscriber_create_datareader Operation on the
DDS_Subscriber.

Parameters

in DDS_Subscriber _this -the DDS_Subscriber object on which the
operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation deletes all the bDS_DataReader objects that were created by means
of the DDS_Subscriber_create_datareader Operation on the
DDS_Subscriber. In other words, it deletes all contained DDS_DataReader
objects. Prior to deleting each DDS_DataReader, this operation recursively calls
the corresponding DDS_DataReader_delete_contained_entities operation
on each DDS_DataReader. In other words, all DDS_DataReader objectsin the
DDS_Subscriber are deleted, including the bDs_QueryCondition and
DDS_ReadCondition objects contained by the DDs_DataReader.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained Dbs_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_1loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pps_entity oObjects are deleted and the
application may delete the DDS_Subscriber.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_PRECONDITION_NOT MET - oneor more of the contained entities
are in astate where they cannot be deleted.

DDS Subscriber _delete datareader

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_delete_datareader
(DDS_Subscriber _this,
const DDS_DataReader a_datareader) ;

Description
This operation deletes a DDS_DataReader that belongsto the DDs_subscriber.

Parameters

in DDS_Subscriber _this -the DDS_subscriber object on which the
operation is operated.

in const DDS_DataReader a_datareader - a pointer to the
DDS_DataReader, Which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a DDS_DataReader that belongs to the bps_subscriber.
When the operation is called on a different DDS_subscriber, as used when the
DDS_DataReader was created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET. The deletion of the DDS_DataReader
is not allowed if there are any bDsS_ReadCondition OF DDS_QueryCondition
objects that are attached to the DDS_DataReader. In that case the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.

335
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

DDS_RETCODE_OK - the DDS_DataReader iS deleted.

DDS_RETCODE_ERROR - an internal error has occurred.
DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD_PARAMETER - the parameter a_datareader isnot a valid
DDS_DataReader.

DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

DDS_RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_Subscriber, as used when the DDS_DataReader was created, or the
DDS_DataReader coOntains one oOr more DDS_ReadCondition OfF
DDS_QueryCondition objects.

DDS Subscriber_enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Subscriber_ enable
(DDS_Subscriber _this);

DDS Subscriber _end_access
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Subscriber_end_access
(DDS_Subscriber _this);

Note: This operation is not yet implemented. It is scheduled for afuture release.

DDS Subscriber_get datareaders
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t

336
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_Subscriber_get_datareaders
(DDS_Subscriber _this,
DDS_DataReaderSeq *readers,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

DDS Subscriber _get_default_datareader _qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_get_default_datareader_gos
(DDS_Subscriber _this,
DDS_DataReaderQos *gos) ;

Description
This operation gets the default QosPolicy Settings of the DDS_DataReader.

Parameters

in DDS_Subscriber _this -theDDS_Subscriber object on which the
operation is operated.

inout DDS_DataReaderQos *gos - apointer to the bbs_DataReaderQos
struct (provided by the application) in which the default gosPolicy settingsfor
the DDS_DataReader arewritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation gets the default QosPolicy settings of the DDS_DataReader (that
isthe DDS_DataReaderQos) which is used for newly created DDS_DataReader
objects, in case the constant DbS_DATAREADER_QOS_DEFAULT is used. The default
DDS_DataReaderQos isonly used when the constant is supplied as parameter
gos to specify the DDS_DataReaderQos in the
DDS_Subscriber_create_datareader operation. The application must
provide the DDs_DataReaderQos struct in which the QosPolicy settings can be

337
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

stored and pass the gos pointer to the operation. The operation writes the default
QosPolicy settings to the struct pointed to by gos. Any settings in the struct are
overwritten.

The values retrieved by this operation match the values specified on the last
successful call to bDS_Subscriber set_default datareader gos, or, if the
call was never made, the default values as specified for each QosPolicy setting as
defined in Table 5 on page 59.

Return Code
When the operation returns:

DDS_RETCODE_OK - the default DDS_DataReader QosPolicy Settings of this
DDS_Subscriber have successfully been copied into the specified
DDS_DataReaderQos parameter.

DDS_RETCODE_ERROR - an internal error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has aready been
deleted.

DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS Subscriber _get listener
Synopsis

#include <dds_dcps.h>
struct DDS_SubscriberListener

338
API Reference

DDS_Subscriber_get_listener
(DDS_Subscriber _this);

Description
This operation allows accessto aDDS_SubscriberListener.

Parameters
in DDS_Subscriber _this -the DDS_Subscriber object on which the

operation is operated.

Return Value
struct DDS_SubscriberListener - result is a pointer to the

DDS_SubscriberListener attached to the bDs_Subscriber.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation allows access to a DbS_SubscriberListener attached to the
DDS_ Subscriber. When no DDS_SubscriberListener was attached to the
DDS_Subscriber, the DDS_OBJECT_NIL pointer isreturned.

DDS Subscriber get participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_Subscriber_get_participant
(DDS_Subscriber _this);

Description

This operation returns the DDS_DomainParticipant associated with the
DDS_Subscriber Of the DDS_OBJECT NIL pointer.

Parameters

in DDS_Subscriber _this -theDDS_Subscriber object on which the
operation is operated.

Return Value

DDS_DomainParticipant - apointer to the bbDsS_DomainParticipant
associated with the DDS_Subscriber Or the DDS_OBJECT NIL pointer.

Detailed Description

This operation returns the bbs_bomainParticipant associated with the
DDS_Subscriber. Note that there is exactly one bbs_DomainParticipant
associated with each bps_subscriber. When the DDs_subscriber was aready
deleted (there is no associated DDS_DomainParticipant any more), the
DDS_OBJECT_NTIL pointer is returned.

DDS Subscriber_get_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_get_gos
(DDS_Subscriber _this,
DDS_SubscriberQos *gos) ;

339
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation allows access to the existing set of QoS policies for a
DDS_Subscriber.

Parameters

in DDS_Subscriber _this -the DDS_Subscriber object on which the
operation is operated.

inout DDS_SubscriberQos *gos - apointer to the destination
DDS_SubscriberQos struct in which the gosPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_Subscriber on which this operation is used. This DDS_SubscriberQos is
stored at the location pointed to by the gos parameter.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Subscriber has successfully been copied into the specified
DDS_SubscriberQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Subscriber has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS Subscriber _get_status changes (inherited)

340
API Reference

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>
& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_StatusMask
DDS_Subscriber_get_status_changes
(DDS_Subscriber _this);

DDS Subscriber_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_Subscriber_get_statuscondition
(DDS_Subscriber _this);

DDS Subscriber _lookup_datareader
Synopsis

#include <dds_dcps.h>
DDS_DataReader
DDS_Subscriber_lookup_datareader
(DDS_Subscriber _this,
const DDS_char *topic_name) ;

Description

This operation returns a previously created bps_bpataReader belonging to the
DDS_Subscriber Which is attached to a bps_Topic with the matching
topic_name.

Parameters

in DDS_Subscriber _this -the DDS_subscriber object on which the
operation is operated.

in const DDS_char *topic_name - the name of the DDS_Topic, whichis
attached to the DDS_DataReader to look for.

Return Value

DDS_DataReader - Return value is a pointer to the bps_bpataReader found.
When no such pps_bataReader isfound, the bps_oBJECT_NIL pointeris
returned.

341

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation returns a previously created bbs_bataReader belonging to the
DDS_Subscriber Which is attached to a bbs_Topic with the matching
topic_name. When multiple DDS_DataReader objects (which satisfy the same
condition) exist, this operation will return one of them. It is not specified which one.

This operation may be used on the built-in bbs_subscriber, which returns the
built-in bDs_bDataReader oObjectsfor the built-in bDs_Topics.

DDS Subscriber notify datareaders

342
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_notify_ datareaders
(DDS_Subscriber _this);

Description

This operation invokes the DDS_DataReaderListener_on_data_available
operation on DDS_DataReaderListener Objects which are attached to the
contained DDS_DataReader entities having new, available data.

Parameters

in DDS_Subscriber _this - the DDS_Subscriber object on which the
operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR,
DDS_RETCODE_ILLEGAL_OPERATION, DDS_RETCODE_ALREADY_ DELETED
Or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation invokes the DDS_DataReaderListener_on_data_available
operation on the pbs_DataReaderListener objects attached to contained
DDS_DataReader entities that have received information, but which have not yet
been processed by those DDS_DataReaders.

The DDS_Subscriber_notify_datareaders operation ignores the bit mask
value of the individual pDsS_DataReaderListener Objects, even when the
DDS_DATA_AVAILABLE_STATUS bit has not been set on a DDS_DataReader that
which has new, available data. The
DDS_DataReaderListener_on_data_available operation will still be

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

invoked, when the paTa_aAvAILABLE_STATUS bit has not been set on a
DataReader, but will not propagate to the
DDS_DomainParticipantListener.

When the bbs_bataReader has attached a NULL listener, the event will be
consumed and will not propagate to the DDS_DomainParticipantListener.
(Remember that anuLL listener isregarded as a listener that handles all its events as
aNoopP).

Return Code

When the operation returns:

e DDS_RETCODE_OK - al appropriate listeners have been invoked

e DDS_RETCODE_ERROR - an internal error has occurred

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object

* DDS_RETCODE_ALREADY_DELETED - the DDS_sSubscriber has aready been
deleted

* DDS_RETCODE_OUT_OF_RESOURCES - there are insufficient Data Distribution
Service resources to compl ete this operation

DDS Subscriber_set_default_datareader _gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_set_default_datareader_gos
(DDS_Subscriber _this,
const DDS_DataReaderQos *gos) ;

Description
This operation sets the default DDS_bataReaderQos Of the DDS_DataReader.

Parameters

in DDS_Subscriber _this -theDDS_Subscriber object on which the
operation is operated.

in const DDS_DataReaderQos *gos - the DDS_DataReaderQos Struct,
which contains the new default gosPolicy settings for the newly created
DDS_DataReaders.

343

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

344
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation sets the default DDS_DataReaderQos Of the DDS_DataReader
(that is the struct with the gosPolicy Settings). ThisQosPolicy isused for newly
created DDS_DataReader Objects in case the constant
DDS_DATAREADER_QOS_DEFAULT is used as parameter gos to specify the
DDS_DataReaderQos in the DDS_Subscriber_ create_datareader
operation. This operation checksif the bbs_DataReaderQos iSsself consistent. If it
is not, the operation has no effect and returns
DDS_RETCODE_INCONSISTENT_POLICY.

The values set by this operation are returned by
DDS_Subscriber_get_default_datareader_gos.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default DDS_DataReaderQos iS Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter gos is not a valid
DDS_DataReaderQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t vaue, an enum value that is outside its legal boundaries or a
seguence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has aready been
deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_INCONSISTENT POLICY - the parameter gos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS Subscriber _set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_set_listener
(DDS_Subscriber _this,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attaches aDDS_SubscriberListener to the DDS_Subscriber.

Parameters

in DDS_Subscriber _this -the DDS_subscriber object on which the
operation is operated.

in const struct DDS_SubscriberListener *a_listener - apointerto
the DDS_sSubscriberListener instance, which will be attached to the
DDS_Subscriber.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_ SubscriberListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_SubscriberListener t0 the DDS_Subscriber.
Only one DDS_SubscriberListener can be attached to each DDS_Subscriber.
If aDDS_SubscriberListener Wasaready attached, the operation will replace it
with the new one. When a_1listener isthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP?! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated

1. Short for No-Operation, an instruction that peforms nothing at all.

345
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

346
API Reference

DDS_SubscriberListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to thisrule is the bppDs_OBJECT_NIL
listener, which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the bDs_SubscriberListener:

* DDS_REQUESTED_DEADLINE MISSED_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_CHANGED_STATUS (propagated)
* DDS_SUBSCRIPTION MATCHED_ STATUS (propagated).

¢ DDS_DATA_ON_READERS_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select all statuses applicable to the bDS_SubscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataReaderListener Of a contained bbDS_DataReader, the
DDS_DataReaderListener oOn that contained DDS_DataReader iSinvoked
instead of the DDS_SubscriberListener. This means that a status change on a
contained DDS_DataReader only invokes the bDS_SubscriberListener if the
contained DDS_DataReader itself does not handle the trigger event generated by
the status change.

In case a communication status is not activated in the mask of the
DDS_SubscriberListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant iSinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the Containing
DDS_DomainParticipant and a bbS_Subscriber specific behaviour when
needed. In case the DDS_DomainParticipantListener iSaso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
al other plain communication statuses. they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener Of DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVATILABLE_STATUS (in that order).

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_SubscriberListener is attached.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Subscriber_set_gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Subscriber_set_gos
(DDS_Subscriber _this,
const DDS_SubscriberQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_Subscriber.

Parameters

in DDS_Subscriber _this -the DDS_subscriber object on which the
operation is operated.

347
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

348
API Reference

in const DDS_SubscriberQos *gos - contain the new set of QosPolicy
settings for the DDS_Subscriber.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_ IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_Subscriber. The parameter gos must contain the QosPolicy Settingswhich
is checked for self-consistency and mutability. When the application tries to change
aQosPolicy setting for an enabled pps_subscriber, which can only be set
before the pps_subscriber is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY isSreturned. In other words, the application
must provide the presently set gosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting QosPolicy Settings (not self-consistent), the operation
will fail and aRETCODE_INCONSISTENT _POLICY iSreturned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new DDS_SubscriberQos is Set.

* DDS_RETCODE_ERROR - an interna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter qgos is not a vaid
DDS_SubscriberQos. It contains a QosPolicy setting with an enum value
that is outside its legal boundaries or a sequence that has inconsistent memory
settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has aready been
deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an
immutable gosPolicy setting with a different value than set during enabling of
the DDS_Subscriber.

Subscription Type Specific Classes

“Subscription type specific classes’ contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataReader IS generated (based on IDL) by calling the
pre-processor. In case of datatype Foo (this also applies to other types), defined in
the module spacE; “Subscription type specific classes’ contains the following
classes:

This paragraph describes the generic bbDs_DataReader class and the derived
application type specific <NameSpace>_<type>DataReader classes which
together implement the application subscription interface. For each application type,
used as DDS_Topic data type, the pre-processor generates a
<NameSpace>_<type>DataReader class from an IDL type description. The
SPACE_FooDataReader class that would be generated by the pre-processor for a
fictional type Foo (defined in the module space) describes the
<NameSpace>_<type>DataReader classes.

ClassDDS DataReader (abstract)

&4 PRISMTECH

A DDS_DataReader allowsthe application:
* to declare data it wishes to receive (i.e., make a subscription)
* to access data received by the associated bps_Subscriber.

A DDS_DataReader refersto exactly one pbs_TopicDescription (either a
DDS_Topic, aDDS_ContentFilteredTopic OF @ DDS_MultiTopic) that
identifies the samplesto be read. The bbs_DataReader may give accessto severa
instances of the data type, which are distinguished from each other by their key.

DDS_DataReader iS an abstract class. It is specialized for each particular
application data type. For afictional application data type “Foo” the specialized
classwould be SPACE_FooDataReader.
The interface description of this classis asfollows:
/*
* interface DDS_DataReader
*/
/*
* inherited from class DDS_Entity
*/
/* DDS_StatusCondition
349
APl Reference

3 DCPS Classes and Operations

350
API Reference

3.5 Subscription Module
* DDS_DataReader_get_statuscondition
* (DDS_DataReader _this);
*/
/* DDS_StatusMask
* DDS_DataReader_get_status_changes
* (DDS_DataReader _this);
*/
/* DDS_ReturnCode_t
* DDS_DataReader_enable
* (DDS_DataReader _this);
*/
/ *

* abstract operations
* (implemented in the data type specific DDS_DataReader)

*/

/* DDS_ReturnCode_t
* DDS_DataReader_read

*

(DDS_DataReader _this,

* DDS_sequence_<data> *data_values,
* DDS_SampleInfoSeq *info_seq,
* const DDS_long max_samples,
* const DDS_SampleStateMask sample_states,
* const DDS_ViewStateMask view_states,
* const DDS_InstanceStateMask instance_states);
*/
/* DDS_ReturnCode_t
* DDS_DataReader_take
* (DDS_DataReader _this,

*

*

const
const
const
const

* % ko

*

/

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,

DDS_long max_samples,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

/* DDS_ReturnCode_t

* DDS_DataReader_read_w_condition
* (DDS_DataReader _this,
* DDS_sequence_<data> *data_values,
* DDS_SampleInfoSeqg *info_seq,
* const DDS_long max_samples,
* const DDS_ReadCondition a_condition);
*/
/* DDS_ReturnCode_t
* DDS_DataReader_take_w_condition
* (DDS_DataReader _this,
* DDS_sequence_<data> *data_values,
* DDS_SampleInfoSeqg *info_sedq,
* const DDS_long max_samples,
* const DDS_ReadCondition a_condition) ;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.5 Subscription Module

*/

/* DDS_ReturnCode_t

* DDS_DataReader_read_next_sample

* (DDS_DataReader _this,

* <data> *data_values,

* DDS_SampleInfo *sample_info);
*/

/* DDS_ReturnCode_t

*

*

*

*

/

~
* % %

*

DDS_DataReader_take_next_sample
(DDS_DataReader _this,
<data> *data_values,
DDS_SampleInfo *sample_info);

DDS_ReturnCode_t
DDS_DataReader_read_instance
(DDS_DataReader _this,
DDS_sequence_<data> *data_values,

* DDS_SampleInfoSeqg *info_seq,
* const DDS_long max_samples,
* const DDS_InstanceHandle_t a_handle,
* const DDS_SampleStateMask sample_states,
* const DDS_ViewStateMask view_states,
* const DDS_InstanceStateMask instance_states);
*/
/* DDS_ReturnCode_t
* DDS_DataReader_take_instance
*

*

*

*

const
const
const
const
const

* % %

*

/

(DDS_DataReader _this,
DDS_sequence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,

DDS_long max_samples,
DDS_InstanceHandle_t a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

/* DDS_ReturnCode_t

* DDS_DataReader_read_next_instance
* (DDS_DataReader _this,
* DDS_sequence_<data> *data_values,
* DDS_SampleInfoSeqg *info_seq,
* const DDS_long max_samples,
* const DDS_InstanceHandle_t a_handle,
* const DDS_SampleStateMask sample_states,
* const DDS_ViewStateMask view_states,
* const DDS_InstanceStateMask instance_states);
*x/
/* DDS_ReturnCode_t
* DDS_DataReader_take_next_instance
* (DDS_DataReader _this,
* DDS_sequence_<data> *data_values,

351
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

352
API Reference

* DDS_SampleInfoSeq *info_seq,

* const DDS_long max_samples,

* const DDS_InstanceHandle_t a_handle,
* const DDS_SampleStateMask sample_states,
* const DDS_ViewStateMask view_states,
* const DDS_InstanceStateMask instance_states);
*/

/* DDS_ReturnCode_t

* DDS_DataReader_read_next_instance_w_condition
* (DDS_DataReader _this,

* DDS_sequence_<data> *data_values,

* DDS_SampleInfoSeqg *info_seq,

* const DDS_long max_samples,

* const DDS_InstanceHandle_t a_handle,
* const DDS_ReadCondition a_condition) ;
*/

/* DDS_ReturnCode_t

* DDS_DataReader_take_next_instance_w_condition
* (DDS_DataReader _this,

* DDS_sequence_<data> *data_values,

* DDS_SampleInfoSeq *info_seq,

* const DDS_long max_samples,

* const DDS_InstanceHandle_t a_handle,
* const DDS_ReadCondition a_condition) ;
*/

/* DDS_ReturnCode_t

* DDS_DataReader_return_loan

* (DDS_DataReader _this,

* DDS_sequence_<data> *data_values,

* DDS_SampleInfoSeqg *info_seq);

*/

/* DDS_ReturnCode_t

* DDS_DataReader_get_key_value

* (DDS_DataReader _this,

* <data> *key_holder,

* const DDS_InstanceHandle_t handle) ;
*/

/* DDS_InstanceHandle_t

* DDS_DataReader_lookup_instance

*/ (DDS_DataReader _this,

* <data> *instance_data) ;

/*

* implemented API operations

*/

DDS_ReadCondition
DDS_DataReader_create_readcondition
(DDS_DataReader _this,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.5 Subscription Module

DDS_QueryCondition
DDS_DataReader_create_querycondition
(DDS_DataReader _this,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states,
const DDS_char *query_expression,
const DDS_StringSeq *query_parameters) ;

DDS_ReturnCode_t
DDS_DataReader_delete_readcondition
(DDS_DataReader _this,
const DDS_ReadCondition a_condition) ;

DDS_ReturnCode_t
DDS_DataReader_delete_contained_entities
(DDS_DataReader _this);

DDS_ReturnCode_t
DDS_DataReader_set_gos
(DDS_DataReader _this,
const DDS_DataReaderQos *gos) ;

DDS_ReturnCode_t
DDS_DataReader_get_gos
(DDS_DataReader _this,
DDS_DataReaderQos *gos) ;

DDS_ReturnCode_t
DDS_DataReader_set_listener
(DDS_DataReader _this,

const struct DDS_DataReaderListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_DataReaderListener
DDS_DataReader_get_listener
(DDS_DataReader _this);

DDS_TopicDescription
DDS_DataReader_get_topicdescription
(DDS_DataReader _this);

DDS_Subscriber
DDS_DataReader_get_subscriber
(DDS_DataReader _this);

DDS_ReturnCode_t

DDS_DataReader_get_sample_rejected_status
(DDS_DataReader _this,

353
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

354
API Reference

DDS_SampleRejectedStatus *status) ;

DDS_ReturnCode_t
DDS_DataReader_get_liveliness_changed_status
(DDS_DataReader _this,
DDS_LivelinessChangedStatus *status) ;

DDS_ReturnCode_t
DDS_DataReader_get_requested_deadline_missed_status
(DDS_DataReader _this,
DDS_RequestedDeadlineMissedStatus *status) ;

DDS_ReturnCode_t
DDS_DataReader_get_requested_incompatible_gos_status
(DDS_DataReader _this,
DDS_RequestedIncompatibleQosStatus *status);

DDS_ReturnCode_t
DDS_DataReader_get_subscription_matched_status
(DDS_DataReader _this,
DDS_SubscriptionMatchedStatus *status) ;

DDS_ReturnCode_t
DDS_DataReader_get_sample_lost_status
(DDS_DataReader _this,
DDS_SamplelLostStatus *status) ;

DDS_ReturnCode_t
DDS_DataReader_wait_for_historical_data
(DDS_DataReader _this,
const DDS_Duration_t *max_wait) ;

DDS_ReturnCode_t
DDS_DataReader_get_matched_publications
(DDS_DataReader _this,
DDS_InstanceHandleSeqg *publication_handles) ;

DDS_ReturnCode_t
DDS_DataReader_get_matched_publication_data
(DDS_DataReader _this,
DDS_PublicationBuiltinTopicData *publication_data,
const DDS_InstanceHandle_t publication_handle) ;

The next paragraphs describe the usage of al DDs_DataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

described because they are not implemented in this specific class. The full
description of these operations islocated in the subclasses that contain the data type
specific implementation of these operations.

DDS DataReader create querycondition

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_QueryCondition

DDS_DataReader_create_querycondition
(DDS_DataReader _this,

const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states,
const DDS_char *query_expression,
const DDS_StringSeq *query_parameters) ;

Description
This operation creates a new pDps_QueryCondition for the DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader oObject on which the
operation is operated.

in const DDS_SampleStateMask sample_ states - amask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - amask, which selects only
those samples with the desired view states.

in const DDS InstanceStateMask instance states - amask, which
selects only those samples with the desired instance states.

in const DDS_char *query_ expression - the query string, which must be a
subset of the SQL query language as specified in Appendix H, DCPS Queries
and Filters.

in const DDS_StringSeq *query_parameters - asequence of stringswhich
are the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of valuesin query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g.
if $1 and %8 are used as parameter in the query_expression, the
query_parameters should at least contain n+1 = 9 values).

Return Value

DDS_QueryCondition - Result value is a pointer to the DDS_QueryCondition.
When the operation fails, the bbs_OBJECT_NIL pointer isreturned.

355
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation creates a new DDS_QueryCondition for the DDS_DataReader.
The returned DDS_QueryCondition is attached (and belongs) to the
DDS_DataReader. When the operation fails, the bbs_0OBJECT_NIL pointer is
returned. To delete the DDS_QueryCondition the operation
DDS_DataReader_delete_readcondition OF DDS_DataReader_delete_
contained_entities must be used.

Sate Masks

The result of the DDS_QueryCondition aso depends on the selection of samples
determined by three masks:

* sample_states IS the mask, which selects only those samples with the desired
sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE Of
both

* view_states IS the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both

* instance_states iS the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT ALIVE_NO_WRITERS_INSTANCE_
STATE or acombination of these.

SOQL expression

The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must
be set in the sequence of strings defined by the parameter query _parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of valuesin query_parameters must be equal or greater than the highest
referenced $n token in the query_expression (eg.if $1 and 8 are used as
parameter in the query_expression, the query_parameters should at least
contain n+1 = 9 vaues).

DDS DataReader create readcondition

356
API Reference

Synopsis

#include <dds_dcps.h>

DDS_ReadCondition

DDS_DataReader_create_readcondition
(DDS_DataReader _this,

const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation creates a new bbs_ReadCondition for the DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_bDataReader oObject on which the
operation is operated.

in const DDS_SampleStateMask sample_ states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - amask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReadCondition - Result value is a pointer to the DDS_ReadCondition.
When the operation fails, the DDS_OBJECT_NIL pointer isreturned.

Detailed Description

This operation creates anew DDS_ReadCondition for theDDS_DataReader. The
returned DDS_ReadCondi tion isattached (and belongs) to the bDS_DataReader.
When the operation fails, the bDS_OBJECT_NIL pointer is returned. To delete the
DDS_ReadCondition the operation DbDsS_DataReader_delete_
readcondition OFf DDS_DataReader_delete_ contained_entities must be
used.

Sate Masks

The result of the bps_ReadCondition depends on the selection of samples
determined by three masks:

* sample_states iSthe mask, which selects only those samples with the desired
sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE Of
both

* view_states is the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_ NEW_VIEW_STATE or both

e instance_states iS the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT ALIVE_NO_WRITERS_INSTANCE_
STATE Or acombination of these.

357
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS DataReader delete contained_entities

358
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_delete_contained_entities
(DDS_DataReader _this);

Description

This operation deletes all the bbs_Entity objects that were created by means of
one of the“create_" operations on the bDS_DataReader.

Parameters

in DDS_DataReader _this -theDDS_DataReader object on which the
operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the bbs_Entity objects that were created by means of
one of the “create_" operations on the bDS_DataReader. In other words, it
deletes all DDS_QueryCondition and DDS_ReadCondition Objects contained
by the DDS_DataReader.

Note: The operation will return bbDs_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pps_entity oObjects are deleted and the
application may delete the bDS_DataReader.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_PRECONDITION_NOT MET - oneor more of the contained entities
are in astate where they cannot be deleted.

DDS DataReader delete readcondition

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_delete_readcondition
(DDS_DataReader _this,
const DDS_ReadCondition a_condition) ;

Description

This operation deletes a DDS_ReadCondition OF DDS_QueryCondition Which
is attached to the DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader Object on which the
operation is operated.

in const DDS_ReadCondition a_condition - a pointer to the
DDS_ReadCondition Of DDS_QueryCondition which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a DDS_ReadCondition OF DDS_QueryCondition Which
is attached to the bDS_DataReader. Since a DDS_QueryCondition iS a
specialized DDS_ReadCondition, the operation can also be used to delete a
DDS_QueryCondition. A DDS_ReadCondition Or DDS_QueryCondition
cannot be deleted when it is not attached to this DDS_DataReader. When the
operation is called on a DDS_ReadCondition OF DDS_QueryCondition which
was not attached to this bbs_bpataReader, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.
359
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

DDS_RETCODE_OK - the DDS_ReadCondition Or DDS_QueryCondition iS
deleted.

DDS_RETCODE_ERROR - an interna error has occurred.

DDS_RETCODE_TILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
DDS_ReadCondition.

DDS_RETCODE_ALREADY DELETED - the DDS_DataReader has already been
deleted.

DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS_RETCODE_PRECONDITION_NOT MET - the operation is called on a different
DDS_DataReader, a uUsed when the DDS ReadCondition oOrF
DDS_QueryCondition was created.

DDS DataReader _enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t
DDS_DataReader_ enable
(DDS_DataReader _this);

DDS DataReader _get_key value (abstract)
This abstract operation is defined as a generic operation, which is implemented by

360
API Reference

the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the

data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_get_key_value
(DDS_DataReader _this,
<data> *key_holder,
const DDS_InstanceHandle_t handle) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS DataReader get listener

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderListener
DDS_DataReader_get_listener
(DDS_DataReader _this);

Description
This operation alows accessto abDS_DataReaderListener.

Parameters

in DDS_DataReader _this -the DDS_bDataReader oObject on which the
operation is operated.

Return Value

struct DDS_DataReaderListener - result is a pointer to the
DDS_DataReaderListener attached tothe DDs_DataReader.

Detailed Description

This operation allows access to a DDS_DataReaderListener attached to the
DDS_DataReader. When no DDS_DataReaderListener was attached to the
DDS_DataReader, the DDS_OBJECT_NIL pointer is returned.

DDS DataReader _get_liveliness changed_status

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_liveliness_changed_status
(DDS_DataReader _this,
DDS_LivelinessChangedStatus *status);

Description

This operation obtains the bps_LivelinessChangedStatus struct of the
DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_bDataReader oObject on which the
operation is operated.

361
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

inout DDS_LivelinessChangedStatus *status - the contents of the
DDS_LivelinessChangedStatus Struct of the bDS DataReader will be
copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the DDS_LivelinessChangedStatus struct of the
DDS_DataReader. This struct contains the information whether the liveliness of
one or more DDS_DataWriter Objects that were writing instances read by the
DDS_DataReader has changed. In other words, some bpS_Datawriter have
become “dive’ or “not adive”.

The pps_LivelinessChangedStatus can also be monitored using a
DDS_DataReaderListener O by using the associated DDs_StatusCondition.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_LivelinessChangedStatus Of this
DDS_DataReader has successfully been copied into the specified status
parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataReader _get_matched_publication_data

362
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_matched_publication_data
(DDS_DataReader _this,
DDS_PublicationBuiltinTopicData *publication_data,
const DDS_InstanceHandle_t publication_handle) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS DataReader _get matched publications

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_matched_publications
(DDS_DataReader _this,
DDS_InstanceHandleSeq *publication_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS DataReader get _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_gos
(DDS_DataReader _this,
DDS_DataReaderQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_DataReader.

Parameters
in DDS_DataReader _this -the DDS_DataReader Object on which the
operation is operated.

inout DDS_DataReaderQos *gos - a pointer to the destination
DDS_DataReaderQos struct in which the gospPolicy settings will be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_DataReader On which this operation is used. This DDS_DataReaderQos iS
stored at the location pointed to by the gos parameter.

363
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DataReader has successfully been copied into the specified
DDS_DataReaderQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DataReader get requested _deadline_missed_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_requested_deadline_missed_status
(DDS_DataReader _this,
DDS_RequestedDeadlineMissedStatus *status) ;

Description

This operation obtainsthe bbs_RequestedbDeadlineMissedStatus struct of the
DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader object on which the
operation is operated.

inout DDS_RequestedDeadlineMissedStatus *status - the contents of
the DDS_RequestedDeadlineMissedStatus struct of the
DDS_DataReader Will be copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

364

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation obtains the Dbs_RequestedbDeadlineMissedStatus struct of the
DDS_DataReader. This struct contains the information whether the deadline that
the DDS_DataReader Was expecting through its DDS_DeadlineQosPolicy Was
not respected for a specific instance.

The DDS_RequestedDeadlineMissedStatus can also be monitored using a
DDS_DataReaderListener Or by using the associated DDS_StatusCondition.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_RequestedDeadlineMissedStatus Of
this DDS_DataReader has successfully been copied into the specified status
parameter.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataReader _get_requested_incompatible qos status

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_requested_incompatible_gos_status
(DDS_DataReader _this,
DDS_RequestedIncompatibleQosStatus *status) ;

Description

This operation obtains the DDS_RequestedIncompatibleQosStatus Struct of
the DDs_DataReader.

Parameters
in DDS_DataReader _this -the DDS_DataReader oObject on which the
operation is operated.

inout DDS_RequestedIncompatibleQosStatus *status - the contents of
the DDS_RequestedIncompatibleQosStatus struct of the
DDS_DataReader Will be copied into the location specified by status.

365
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bbs_RequestedIncompatibleQosStatus struct of
the DDsS_DataReader. This struct contains the information whether aQospolicy
setting was incompatible with the offered QosPolicy Ssetting.

The Request/Offering mechanism is applicable between the bbs_batawriter and
the DDS_DataReader. If the QosPolicy Settings between pDs_Datawriter and
DDS_DataReader are inconsistent, no communication between them is
established. In addition the pps_patawriter will be informed via a
DDS_REQUESTED_INCOMPATIBLE_QOS Status change and the DDS_DataReader
will be informed via an DDS_OFFERED_INCOMPATIBLE_QOS status change.

The DDS_RequestedIncompatibleQosStatus can also be monitored using a
DDS_DataReaderListener O by using the associated DDS_StatusCondition.

Return Code

When the operation returns:

e DDS_RETCODE_OK - the current DDS_RequestedIncompatibleQosStatus Of
this DDS_DataReader has successfully been copied into the specified status
parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DataReader has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DataReader get _sample lost_status

366
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_sample_lost_status
(DDS_DataReader _this,
DDS_SampleLostStatus *status) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Description

This operation obtains the bbs_sampleLostStatus Struct of the
DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_bDataReader oObject on which the
operation is operated.

inout DDS_SampleLostStatus *status - the contents of the
DDS_SampleLostStatus struct of the DDs_bataReader will be copied into
the location specified by status.

Note: Thisstatusisnot yet implemented. It is scheduled for afuture release. Until it
isimplemented all returned attribute values will be initialized to 0.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bbs_sampleLostStatus Struct of the
DDS_DataReader. This struct contains the information whether a sample have
been lost. This only applies when the DDS_ReliabilityQosPolicy iS Set to
DDS_RELIABLE. If the DDS_ReliabilityQosPolicy iS set to
DDS_BEST_EFFORT the Data Distribution Service will not report the loss of
samples.

The DDS_sampleLostStatus can also be monitored using a
DDS_DataReaderListener Of by using the associated bps_StatusCondition.

Return Code

When the operation returns:

* DDS _RETCODE_OK - the current DDS_SampleLostStatus Of this
DDS_DataReader has successfully been copied into the specified status
parameter.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

367
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataReader get sample reected_status

368
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_sample_rejected_status
(DDS_DataReader _this,
DDS_SampleRejectedStatus *status) ;

Detailed Description

This operation obtains the DDS_SampleRejectedStatus struct of the
DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader object on which the
operation is operated.

inout DDS_SampleRejectedStatus *status - the contents of the
DDS_SampleRejectedStatus struct of the DDs_DataReader Will be copied
into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the DDS_SampleRejectedStatus struct of the
DDS_DataReader. This struct contains the information whether a received sample
has been rejected.

The DDS_SampleRejectedStatus can also be monitored using a
DDS_DataReaderListener O by using the associated DDS_StatusCondition.
Return Code

When the operation returns:

* DDS _RETCODE_OK - the current DDS_SampleRejectedStatus Of this
DDS_DataReader has successfully been copied into the specified status
parameter.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataReader _get status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_DataReader_get_status_changes
(DDS_DataReader _this);

DDS DataReader get statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_DataReader_get_statuscondition
(DDS_DataReader _this);

DDS DataReader get subscriber

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_Subscriber
DDS_DataReader_get_subscriber
(DDS_DataReader _this);
Description

This operation returns the bbs_subscriber to which the bbs_DataReader
belongs.
Parameters

in DDS_DataReader _this -the DDS_DataReader Object on which the
operation is operated.

369
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

DDS_Subscriber - Return value is a pointer to the bps_subscriber to which
the DDS_DataReader belongs.

Detailed Description

This operation returns the bps_subscriber to which the DDS_DataReader
belongs, thus the Dbs_subscriber that has created the bDS_DataReader. If the
DDS_DataReader IS aready deleted, the DDs_OBJECT_NIL pointer isreturned.

DDS DataReader _get_subscription_matched_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_get_subscription_matched_status
(DDS_DataReader _this,
DDS_SubscriptionMatchedStatus *status) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DataReader _get_topicdescription
Synopsis

#include <dds_dcps.h>
DDS_TopicDescription
DDS_DataReader_get_topicdescription
(DDS_DataReader _this);

Description

This operation returns the Dps_TopicDescription which is associated with the

DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader oObject on which the
operation is operated.

Return Value

DDS_TopicDescription - apointer to the DDS_TopicDescription Whichis
associated with the bbs_DataReader.

370

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation returns the DDS_Topicbescription Which is associated with the
DDS_DataReader, thus the DDS_TopicDescription with which the
DDS_DataReader is created. If the bbs_DataReader is aready deleted, the
DDS_OBJECT_NIL pointer isreturned.

DDS DataReader _lookup_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module sPACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
DDS_DataReader_lookup_instance
(DDS_DataReader _this,
<data> *instance_data) ;

DDS DataReader read (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module sPACE) derived SPACE_FooDataReader Class.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t

DDS_DataReader_read
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_sedq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

371

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS DataReader read_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t

DDS_DataReader_read_instance
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

DDS DataReader _read next_instance (abstract)

372
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t

DDS_DataReader_read_next_instance
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS DataReader_read _next_instance w_condition (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataReader Class.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t

DDS_DataReader_read_next_instance_w_condition
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_TInstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;

DDS DataReader_read _next_sample (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module sPACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_read_next_sample
(DDS_DataReader _this,
<data> *data_values,
DDS_SampleInfo *sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS DataReader _read w_condition (abstract)

&4 PRISMTECH

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

373
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_DataReader_read_w_condition
(DDS_DataReader _this,
DDS_sequence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_ReadCondition a_condition);

DDS DataReader return_loan (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_return_loan
(DDS_DataReader _this,
DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq);

DDS DataReader set_listener

374
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_ set_listener
(DDS_DataReader _this,
const struct DDS_DataReaderListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attachesaDDS_DataReaderListener t0the DDS_DataReader.

Parameters

in DDS_DataReader _this -the DDS_DataReader object on which the
operation is operated.

in const struct DDS_DataReaderListener *a_listener - apointerto
the DDS_DataReaderListener instance, which will be attached to the
DDS_DataReader.

in const DDS StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataReaderListener for acertain status.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_DataReaderListener tO the DDS_DataReader.
Only one DDS_DataReaderListener can be attached to each DDS_DataReader.
If aDDS_DataReaderListener Wasaready attached, the operation will replaceit
with the new one. When a_1listener isthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DataReaderListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to thisruleis the bps_0OBJECT_NTL
listener, which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the bbs_DataReaderListener:

DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_aNy_STATUS can be
used to select all statuses applicable to the DDS_DataReaderListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

375
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

376
API Reference

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataReaderListener, the DDS_SubscriberListener of the containing
DDS_sSubscriber isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_SubscriberListener Of the containing bDS_Subscriber and a
DDS_DataReader specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_SubscriberListener aswell, the
communication status will be propagated to the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant. In casethe DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener OF DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener Of DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
e DDS_RETCODE_OK - the DDS_DataReaderListener iSattached.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DataReader has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS DataReader _set_gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_set_gos
(DDS_DataReader _this,
const DDS_DataReaderQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DataReader.

Parameters

in DDS_DataReader _this -theDDS_DataReader oObject on which the
operation is operated.

in const DDS_DataReaderQos *gos - the new set of QosPolicy Settings for
the DDS_DataReader.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_IMMUTABLE_POLICY Of
DDS_RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a
DDS_DataReader. The parameter gos contains the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_DataReader, which can only be set before
the pbs_DataReader iS enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY iSreturned. In other words, the application
must provide the presently set QosPolicy settingsin case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT_ POLICY iSreturned.

The set of QosPolicy settings specified by the gqos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

377
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

DDS |

DDS_RETCODE_OK - the new DDS_DataReaderQos iS Set.
DDS_RETCODE_ERROR - an interna error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD PARAMETER - the parameler gos is not a valid
DDS_DataReaderQos. It contains a QosPolicy Setting with an invalid
DDS_Duration_t vaue, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

DDS_RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values
are currently not supported by OpenSplice.

DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an
immutable QosPolicy setting with a different value than set during enabling of
the DDs_DataReader.

DDS_RETCODE_INCONSISTENT POLICY - the parameter gos contains
conflicting gospPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DataReader take (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis

#include <dds_dcps.h>

378
API Reference

DDS_ReturnCode_t
DDS_DataReader_take

(DDS_DataReader _this,
DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

const DDS_InstanceStateMask instance_states);

DDS DataReader take instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_take_instance
(DDS_DataReader _this,

DDS_sedquence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

DDS DataReader _take next_instance (abstract)

&4 PRISMTECH

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sSPACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_take_next_instance
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

379
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS DataReader_take next_instance w_condition (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_take_next_instance_w_condition
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_TInstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;

DDS DataReader _take next_sample (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataReader Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_take_next_sample
(DDS_DataReader _this,
<data> *data_values,
DDS_SampleInfo *sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS DataReader take w_condition (abstract)

380
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader Class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spacE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_DataReader_take_w_condition
(DDS_DataReader _this,
DDS_sedquence_<data> *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_ReadCondition a_condition);

DDS DataReader wait_for_historical _data

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataReader_wait_for_historical_data
(DDS_DataReader _this,
const DDS_Duration_t *max_wait);

Description

This operation will block the application thread until all “historical” datais
received.

Parameters

in DDS_DataReader _this -the DDS_bDataReader oObject on which the
operation is operated.

in const DDS_Duration_t *max_wait - the maximum duration to block for
the DDS_DataReader_wait_ for_ historical_ data, after which the
application thread is unblocked. The special constant
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_NOT_ENABLED or
DDS_RETCODE_TIMEOUT.

Detailed Description

This operation behaves differently for bDs_DatarReader objects which have a
Nnon-bDS_VOLATILE_DURABILITY_QOS DDS_DurabilityQosPolicy and for
DDS_DataReader Objects which have a DDS_VOLATILE_DURABILITY_QOS
DDS_DurabilityQosPolicy.

381
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

382
API Reference

As soon as an application enables a non-bDbS_VOLATILE_DURABILITY_QOS
DDS_DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the DDS_DataReader joined the domain, as well as any
new data written by the DDS_Datawriter oObjects. There are situations where the
application logic may require the application to wait until all “historical” datais
received. This is the purpose of the
DDS_DataReader_wait_for_historical_data operation.

As soon as an application enables a DDS_VOLATILE_DURABILITY_QOS
DataReader it will not start receiving “historical” data but only new data written
by the DDS_DataWriter objects. By calling
DDS_DataReader_ wait for historical data the DDS_ DataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” datais received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.

Thread blocking

The operation bDS_DataReader_wait_for_historical_data blocks the
calling thread until either all “historical” datais received, or the duration specified
by the max_wait parameter elapses, whichever happens first. A return value of
DDS_RETCODE_OK indicates that all the “historical” data was received; a return
value of DDS_RETCODE_TIMEOUT indicates that max_wait elapsed before all the
data was received.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the “historical” datais received.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DataReader has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e DDS_RETCODE_NOT_ENABLED - the DDS_DataReader iS not enabled.
* DDS_RETCODE_TIMEOUT - not all dataisreceived beforemax_wait elapsed.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Class SPACE_FooDataReader

&4 PRISMTECH

The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>DataReader classes. For each application datatype that is
used as DDS_Topic datatype, atyped class <NameSpace>_<type>DataReader
is derived from the pDs_DataReader class. In this paragraph, the class
SPACE_FooDataReader describes the operations of these derived
<NameSpace>_<type>DataReader classes as an example for the fictional
application type Foo (defined in the module sPACE).

For instance, for an application, the definitions are located in the space. id1 file.
The pre-processor will generate a space . h includefile.

Sate masks

A SPACE_FooDataReader refersto exactly one bbs_TopicDescription (ether
aDDS_Topic, aDDS_ContentFilteredTopic OF aDDS_MultiTopic) that
identifies the data to be read. Therefore it refers to exactly one data type. The
DDS_Topic Must exist prior to the SPACE_FooDataReader creation. The
SPACE_FooDataReader May give access to several instances of the data type,
which are distinguished from each other by their key. The
SPACE_FooDataReader iS aftached to exactly one bbs_subscriber which acts
asafactory for it.

The interface description of this classis asfollows:

/*

* interface SPACE_FooDataReader

*/

/~k

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* SPACE_FooDataReader_get_statuscondition
* (SPACE_FooDataReader _this);

*/

/* DDS_StatusMask

* SPACE_FooDataReader_get_status_changes
* (SPACE_FooDataReader _this);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_enable

* (SPACE_FooDataReader _this);

*/

/*

* inherited from class DDS_DataReader

*/

/* DDS_ReadCondition

* SPACE_FooDataReader_create_readcondition

383
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* (SPACE_FooDataReader _this,

* const DDS_SampleStateMask sample_states,

* const DDS_ViewStateMask view_states,

* const DDS_InstanceStateMask instance_states);
*/

/* DDS_QueryCondition

* SPACE_FooDataReader_create_gquerycondition

* (SPACE_FooDataReader _this,

* const DDS_SampleStateMask sample_states,

* const DDS_ViewStateMask view_states,

* const DDS_InstanceStateMask instance_states,
* const DDS_char *query_ expression,

* const DDS_StringSeq *query_parameters) ;

*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_delete_readcondition
* (SPACE_FooDataReader _this,

* const DDS_ReadCondition a_condition) ;
*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_delete_contained_entities
* (SPACE_FooDataReader _this);
*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_set_gos

* (SPACE_FooDataReader _this,

* const DDS_DataReaderQos *gos) ;
*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_get_gos

* (SPACE_FooDataReader _this,

* SPACE_FooDataReaderQos *gos) ;
*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_set_listener

* (SPACE_FooDataReader _this,

* const struct DDS_DataReaderListener *a_listener,
* const DDS_StatusMask mask) ;

*/

/* struct SPACE_FooDataReaderListener

* SPACE_FooDataReader_get_listener
* (SPACE_FooDataReader _this);
*/

384

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

/* DDS_TopicDescription

* SPACE_FooDataReader_get_topicdescription
* (SPACE_FooDataReader _this);
*/

/* DDS_Subscriber

* SPACE_FooDataReader_get_subscriber
* (SPACE_FooDataReader _this);
*x/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_get_sample_rejected_status
* (SPACE_FooDataReader _this,

* DDS_SampleRejectedStatus *status) ;

*x/

/* DDS_ReturnCode_t

SPACE_FooDataReader_get_liveliness_changed_status
(SPACE_FooDataReader _this,

* DDS_LivelinessChangedStatus *status);

*x/

*

/* DDS_ReturnCode_t

* SPACE_FooDataReader_get_requested_deadline_missed_status
* (SPACE_FooDataReader _this,

* DDS_RequestedDeadlineMissedStatus *status);

*/

/* DDS_ReturnCode_t

* SPACE_FooDataReader_get_requested_incompatible_gos_status
* (SPACE_FooDataReader _this,

* DDS_RequestedIncompatibleQosStatus *status) ;

*/

/* DDS_ReturnCode_t

SPACE_FooDataReader_get_subscription_matched_status
(SPACE_FooDataReader _this,

* DDS_SubscriptionMatchedStatus *status) ;

*x/

*

/* DDS_ReturnCode_t

* SPACE_FooDataReader_get_sample_lost_status
* (SPACE_FooDataReader _this,

* DDS_SampleLostStatus *status) ;

*x/

/* DDS_ReturnCode_t
* SPACE_FooDataReader_wait_for_historical_data
* (SPACE_FooDataReader _this,
385
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

386
API Reference

const DDS_Duration_t *max_wait) ;

/* DDS_ReturnCode_t
SPACE_FooDataReader_get_matched_publications

* (SPACE_FooDataReader _this,
* DDS_InstanceHandleSeq *publication_handles) ;
*/

/* DDS_ReturnCode_t
SPACE_FooDataReader_get_matched_publication_data

* (SPACE_FooDataReader _this,

* DDS_PublicationBuiltinTopicData *publication_data,
* const DDS_InstanceHandle_t publication_handle) ;
*/

/*

* implemented API operations

*/

DDS_ReturnCode_t
SPACE_FooDataReader_read
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_sedq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
SPACE_FooDataReader_take
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
SPACE_FooDataReader_read_w_condition
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_ReadCondition a_condition) ;
DDS_ReturnCode_t
SPACE_FooDataReader_take_w_condition
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_sedq,
const DDS_long max_samples,
const DDS_ReadCondition a_condition) ;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.5 Subscription Module

DDS_ReturnCode_t
SPACE_FooDataReader_read_next_sample
(SPACE_FooDataReader _this,
Foo *data_values,
DDS_SampleInfo *sample_info);
DDS_ReturnCode_t
SPACE_FooDataReader_take_next_sample
(SPACE_FooDataReader _this,
Foo *data_values,
DDS_SampleInfo *sample_info);
DDS_ReturnCode_t
SPACE_FooDataReader_read_instance
(SPACE_FooDataReader _this,
DDS_sedquence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,

const
const
const
const
const

DDS_long max_samples,
DDS_InstanceHandle_t a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t
SPACE_FooDataReader_take_instance
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,

DDS_SampleInfoSeqg *info_seq,

const
const
const
const
const

DDS_long max_samples,
DDS_InstanceHandle_t a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t
SPACE_FooDataReader_read_next_instance
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,

const
const
const
const
const

DDS_long max_samples,
DDS_InstanceHandle_t a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t
SPACE_FooDataReader_take_next_instance
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,

const
const
const
const
const

DDS_long max_samples,
DDS_InstanceHandle_t a_handle,
DDS_SampleStateMask sample_states,
DDS_ViewStateMask view_states,
DDS_InstanceStateMask instance_states);

387
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
SPACE_FooDataReader_read_next_instance_w_condition
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_TInstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;
DDS_ReturnCode_t
SPACE_FooDataReader_take_next_instance_w_condition
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;
DDS_ReturnCode_t
SPACE_FooDataReader_return_loan
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq);
DDS_ReturnCode_t
SPACE_FooDataReader_get_key value
(SPACE_FooDataReader _this,
Foo *key_holder,
const DDS_InstanceHandle_t handle) ;
DDS_InstanceHandle_t
SPACE_FooDataReader_lookup_instance
(SPACE_FooDataReader _this,
Foo *instance_data) ;

The next paragraphs describe the usage of all SPACE_FooDataReader Operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.2.40 SPACE_FooDataReader create querycondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis

#include <Space.h>

DDS_QueryCondition

SPACE_FooDataReader_create_querycondition
(SPACE_FooDataReader _this,

const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states,

388
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

const DDS_char *query_ expression,
const DDS_StringSeqg *query_parameters) ;

SPACE_FooDataReader create readcondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis

#include <Space.h>

DDS_ReadCondition

SPACE_FooDataReader_create_readcondition
(SPACE_FooDataReader _this,

const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

SPACE_FooDataReader delete contained entities (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataReader_delete_contained_entities
(SPACE_FooDataReader _this);

SPACE_FooDataReader _delete readcondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_delete_readcondition
(SPACE_FooDataReader _this,
const DDS_ReadCondition a_condition) ;

SPACE_FooDataReader enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <Space.h>

DDS_ReturnCode_t
SPACE_FooDataReader_enable

389
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

(SPACE_FooDataReader _this);
SPACE_FooDataReader get _key value
Synopsis

#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_key_value
(SPACE_FooDataReader _this,
Foo *key_holder,
const DDS_InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

SPACE_FooDataReader get_listener (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
struct SPACE_FooDataReaderListener
SPACE_FooDataReader_get_listener
(SPACE_FooDataReader _this);

SPACE_FooDataReader_get_liveliness changed_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_liveliness_changed_status
(SPACE_FooDataReader _this,
DDS_LivelinessChangedStatus *status) ;

SPACE_FooDataReader _get_matched_publication_data (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_matched_publication_data
(SPACE_FooDataReader _this,
DDS_PublicationBuiltinTopicData *publication_data,
const DDS_InstanceHandle_t publication_handle) ;

390
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

SPACE_FooDataReader _get_matched publications (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataReader_get_matched_publications
(SPACE_FooDataReader _this,
DDS_InstanceHandleSeq *publication_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

SPACE_FooDataReader get _qos (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_gos
(SPACE_FooDataReader _this,
DDS_DataReaderQos *gos) ;

SPACE_FooDataReader _get_requested_deadline_missed_status
(inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataReader_get_requested_deadline_missed_status
(SPACE_FooDataReader _this,

DDS_RequestedDeadlineMissedStatus *status);

SPACE_FooDataReader _get_requested_incompatible qos status
(inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis

#include <Space.h>

391
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t

SPACE_FooDataReader_get_requested_incompatible_gos_status
(SPACE_FooDataReader _this,
DDS_RequestedIncompatibleQosStatus *status) ;

SPACE_FooDataReader get sample lost_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_sample_lost_status
(SPACE_FooDataReader _this,
DDS_SamplelLostStatus *status) ;

SPACE_FooDataReader _get_sample reected_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_get_sample_rejected_status
(SPACE_FooDataReader _this,
DDS_SampleRejectedStatus *status) ;

SPACE_FooDataReader get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_StatusMask
SPACE_FooDataReader_get_status_changes
(SPACE_FooDataReader _this);

SPACE_FooDataReader get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <Space.h>

DDS_StatusCondition
SPACE_FooDataReader_get_statuscondition

392
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

(SPACE_FooDataReader _this);

SPACE_FooDataReader _get subscriber (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_Subscriber
SPACE_FooDataReader_get_subscriber
(SPACE_FooDataReader _this);

SPACE_FooDataReader get subscription_matched_status (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataReader_get_subscription_matched_status
(SPACE_FooDataReader _this,
DDS_SubscriptionMatchedStatus *status);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

SPACE_FooDataReader_get_topicdescription (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_TopicDescription
SPACE_FooDataReader_get_topicdescription
(SPACE_FooDataReader _this);

SPACE_FooDataReader |ookup_instance
Synopsis

#include <Space.h>
DDS_InstanceHandle_t
SPACE_FooDataReader_lookup_instance
(SPACE_FooDataReader _this,
Foo *instance_data) ;

393
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

in Foo *instance_data - the instance for which the corresponding instance
handle needs to be looked up.

Return Value

DDS_InstanceHandle_t - Result value is the instance handle which corresponds
tothe instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that DDS_DataReader instance handles are local, and
are not interchangeable with Dbs_batawri ter instance handles nor with instance
handles of an other DDS_DataReader. If the DDS_DataReader isaready deleted,
the handle value Dbs_HANDLE_NTL iS returned.

SPACE_FooDataReader_read

394
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read
(SPACE_FooDataReader _this,

DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samplesfrom the SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values iSaso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned pDs_SampleInfo
structure sequence. info_seq IS aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_SampleStateMask sample_states - amask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS InstanceStateMask instance states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samplesfrom the SPACE_FooDataReader.
The datais returned by the parameters data_values and info_seq. The number
of samples that is returned is limited by the parameter max_samples. This
operation is part of the specialized class which is generated for the particular
application data type (in this case type Foo) that is being read. If the
SPACE_FooDataReader has no samples that meet the constraints, the return value
iSDDS_RETCODE_NO_DATA.

Sate masks

The SPACE_FooDataReader_read operation depends on a selection of the
samples by using three masks:

* sample_states iSthe mask, which selects only those samples with the desired
sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE Of
both

* view_states iS the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both

395
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

396
API Reference

* instance_states iS the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT ALIVE_NO_WRITERS_INSTANCE_
STATE oOr acombination of these.

Destination Order

In any case, the relative order between the samples of one instance is consistent with
the DDS_DestinationOrderQosPolicy Of the DDS_Subscriber.

When the DDS_DestinationOrderQosPolicy kind is
DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the samples
belonging to the same instances will appear in the relative order in which they were
received (FIFO)

When the DDS DestinationOrderQosPolicy kind IS
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the samples belonging
to the same instances will appear in the relative order implied by the
source_timestamp.

Data sample

In addition to the sample sequence (data_values), the operation also returns a
sequence of DDS_SampleInfo Structures with the parameter info_seqg. The
info_seq structures and data_values also determine the behaviour of this
operation.

Resource control

The initial (input) properties of the data_values and info_seqg Sequences
determine the precise behaviour of the SPACE_FooDataReader_read operation.
The sequences are modelled as having three properties: the current-length
(_length), the maximum length (_maximum), and whether or not the sequence
container owns the memory of the elements within (_release).

Theinitial (input) values of the _length, _maximum, and _release propertiesfor
the data_values and info_seq sequences govern the behaviour of the
SPACE_FooDataReader_read operation as specified by the following rules:

» The values of _length, _maximum, and _release for the two sequences must
be identical. Otherwise SPACE_FooDataReader_read returns
DDS_RETCODE_PRECONDITION_NOT_MET

» On successful output, the values of _length, _maximum, and _release arethe
same for both sequences

e If the input _maximum==0, the data_values and info_seq Sequences are
filled with elements that are “loaned” by the SPACE_FooDataReader. On
output, _release iS FALSE, _length iS set to the number of values returned,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

and _maximum iS Set to a value verifying _maximum>=_1length. In this case the
application will need to “return the loan” to the Data Distribution Service using
the SPACE_FooDataReader_return_loan Operation

e If the input _maximum>0 and the input _release==FALSE, the

SPACE_FooDataReader_read operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT MET. This avoids the potential
hard-to-detect memory leaks caused by an application forgetting to “return the
loan”

«If input _maximum>0 and the input _release==TRUE, the

SPACE_FooDataReader_read operation will copy the Foo samples and
info_seq values into the elements already inside the sequences. On output,
_release IS TRUE, _length is set to the number of vaues copied, and
_maximum Will remain unchanged. The application can control where the copy is
placed and the application does not need to “return the loan”. The number of
samples copied depends on the relative values of _maximum and max_samples:

-If _maximum==DDS_LENGTH_UNLIMITED, a MOSt _maximum values are
copied. The use of this variant lets the application limit the number of samples
returned to what the sequence can accommodate;

- If max_samples<=_maximum, a MOSt max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate;

- If max_samples>_maximum, the SPACE_FooDataReader_read operation
will fail and returns bbs_RETCODE_PRECONDITION_NOT_MET. Thisavoidsthe
potential confusion where the application expects to be able to access up to
max_samples, but that number can never be returned, even if they are
available in the SPACE_FooDataReader, because the output sequence cannot
accommodate them.

Buffer L oan
As described above, upon return the data_values and info_seq Sequences may

contain elements “loaned” from the Data Distribution Service. If thisisthe case, the
application will need to use the SPACE_FooDataReader_return_loan Operation

to return the “loan” once it is no longer using the data in the sequence. Upon return
from SPACE_FooDataReader_return_loan, the sequence has _maximum==

and _release==FALSE.

The application can determine whether it is necessary to “return the loan” or not,

based on the state of the sequences, when the SPACE_FooDataReader_read
operation was called, or by accessing the“_release” property. However, in many

397
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

398
API Reference

cases it may be simpler to always call SPACE_FooDataReader_return_loan, as
this operation is harmless (i.e. leaves all elements unchanged) if the sequence does
not have aloan.

To avoid potential memory leaks, it is not allowed to change the length of the
data_values and info_seq structures for which _release==FALSE.
Furthermore, deleting a sequence for which _release==FALSE is considered to be
an error except when the sequence is empty.

Data uence

On output, the sequence of data values and the sequence of DDS_SampleInfo
structures are of the same length and are in an one-to-one correspondence. Each
DDS_SampleInfo structures provides information, such as the
source_timestamp, the sample_state, view_state, and instance_state,
etc., about the matching sample.

Some elements in the returned sequence may not have valid data: the valid_data
field in the bps_sampleInfo indicates whether the corresponding data value
contains any meaningful data. If not, the data value is just a‘dummy’ sample for
which only the keyfields have been assigned. It is used to accompany the
DDS_SampleInfo that communicates a change in the instance_state of an
instance for which thereisno ‘real’ sample available.

For example, when an application always ‘takes’ all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the bps_DataReader Will insert adummy sample into the
data_values seqguence to accompany the pbs_sampleInfo e€lement in the
info_seq sequence that communicates the disposal of the instance.

The act of reading asample setsits sample_state t0 DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it also sets the
view_state Of theinstance to DDS_NOT_NEW_VIEW_STATE. It does not affect the
instance_state of theinstance.

Return Code

When the operation returns:

* DDS_RETCODE_OK - asequence of datavaluesis available.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the SPACE_FooDataReader IS not enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following istrue:

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more values of _length, _maximum, and _release for the two
sequences are not identical .

- the _maximum>0 and the _release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader read_instance

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read_instance
(SPACE_FooDataReader _this,

DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values isalso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo
structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

399
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

400
API Reference

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_InstanceHandle_t a_handle - the single instance, the
samples belong to.

in const DDS_SampleStateMask sample_ states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader. The Dbehaviour is identical to
SPACE_FooDataReader_read except for that all samples returned belong to the
single specified instance whose handle is a_handle. Upon successful return, the
data collection will contain samples all belonging to the same instance. The datais
returned by the parameters data_values and info_seq. The corresponding
DDS_SampleInfo.instance_handle in info_seqg Will have the value of
a_handle. The DDS_DataReader Will check that each sample belongs to the
specified instance (indicated by a_handle) otherwiseit will not place the samplein
the returned collection.

Return Code

When the operation returns:

* DDS_RETCODE_OK - asequence of datavaluesis available.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS _RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer or a_handle isnot avalid handle.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the SPACE_FooDataReader IS not enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following istrue:

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more values of _length, _maximum, and _release for the two
sequences are not identical .

- the _maximum>0 and the _release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader read next_instance

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read_next_instance
(SPACE_FooDataReader _this,

DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values isalso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo
structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

401
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

402
API Reference

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_InstanceHandle_t a_handle - the current singleinstance, the
returned samples belong to the next single instance.

in const DDS_SampleStateMask sample_ states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader. The behaviour is similar to
SPACE_FooDataReader_read_instance (all samples returned belong to a
single instance) except that the actual instance is not directly specified. Rather the
samples will all belong to the ‘next’ instance with instance_handle ‘ greater’
(according to some internal-defined order) than a_handle, that has available
samples. The datais returned by the parameters data_values and info_seq. The
correspondi Ng DDS_SampleInfo.instance_handle in info_seq will has the
value of the next instance with respect to a_handle.

Instance Order

The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘asif’ each instance handle was represented as a unique integer.

The behaviour of SPACE_FooDataReader_read_next_instance is‘asif’ the
DDS_DataReader invoked SPACE_FooDataReader_read_instance passing
the smallest instance_handle among all the ones that:

 aregreater than a_handle

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

 have available samples (i.e. samples that meet the constraints imposed by the
specified states).

The special value bbS_HANDLE_NTIL is guaranteed to be ‘less than’ any valid
instance_handle. S0 the use of the parameter value
a_handle==DDS_HANDLE_NTIL Will return the samples for the instance which has
the smallest instance_handle among all the instances that contains available
samples.

Typical use

The operation SPACE_FooDataReader_read_next_instance isintended to be
used in an application-driven iteration where the application starts by passing
a_handle==DDS_HANDLE_NTL, examines the samples returned, and then uses the
instance_handle returned in the DDs_SampleInfo asthevalue of a_handle
argument to the next call to SPACE_FooDataReader_read_next_instance.
The iteration continues until SPACE_FooDataReader read_next_instance
returns the return value bDbS_RETCODE_NO_DATA.

Return Code

When the operation returns:

* DDS_RETCODE_OK - asequence of datavaluesisavailable.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - €ither or both of data_values or info_seqg
isaninvalid pointer or a_handle isnot avalid handle.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE _NOT ENABLED - the SPACE_FooDataReader iS not enabled.
e DDS_RETCODE_PRECONDITION_NOT_MET - one of the followingistrue:

-the max_samples> maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more values of _length, —maximum, and _release for the two
seguences are not identical .

-the _maximum>0 andthe release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

403
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

SPACE_FooDataReader_read_next_instance_w_condition

404
API Reference

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read_next_instance_w_condition
(SPACE_FooDataReader _this,

DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values isalso used asaninput to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo
structure sequence. info_seq isaso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_InstanceHandle_t a_handle - the current singleinstance, the
returned samples belong to the next single instance.

in const DDS_ReadCondition a_condition - a pointer to a
DDS_ReadCondition Or DDS_QueryCondition which filters the data
beforeit isreturned by the read operation.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader, filtered by a DDS_ReadCondition or
DDS_QueryCondition. The behaviour is identical to
SPACE_FooDataReader_read_next_instance except for that the samples
arefiltered by abDDS_ReadCondition Or DDS_QueryCondition. Whenusing a
DDS_ReadCondition, the result 1is the same as the
SPACE_FooDataReader_read_next_instance operation with the same state
parameters filled in as for the DDS_create_readcondition. In thisway, the
application can avoid repeating the same parameters, specified when creating the
DDS_ReadCondition. When using a bDS_QueryCondition, a content based
filtering can be done. When either using a DDS_ReadCondition Of
DDS_QueryCondition, the condition must be created by this
SPACE_FooDataReader. Otherwise the operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - asequence of datavaluesisavailable.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE BAD PARAMETER - one or more of the data_values, oOr
info_seqg and a_condition parametersisan invalid pointer or a_handle is
not avalid handle.

* DDS_RETCODE_ALREADY DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following istrue:

- the DDS_ReadCondition Or DDS_QueryCondition iS not attached to this
SPACE_FooDataReader.

-the max_samples> maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more values of _length, —maximum, and _release for the two
sequences are not identical.

-the _maximum>0 andthe release==FALSE.

405

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_NO_DATA - ho samples that meet the constraints are available.
SPACE_FooDataReader _read_next_sample

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read_next_sample
(SPACE_FooDataReader _this,
Foo *data_values,
DDS_SampleInfo *sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
SPACE_FooDataReader _read_w_condition
Synopsis

#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_read_w_condition
(SPACE_FooDataReader _this,

DDS_sequence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,

const DDS_long max_samples,

const DDS_ReadCondition a_condition);

Description

This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by aDDS_ReadCondition Of DDS_QueryCondition.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values iSaso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned pDsS_SampleInfo
structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_ReadCondition a_condition - a pointer to a
DDS_ReadCondition Of DDS_QueryCondition Which filters the data before
itisreturned by the SPACE_FooDataReader_read Operation.

406

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samplesfrom the SPACE_FooDataReader,
filtered by a DDS_ReadCondition OF DDS_QueryCondition. The condition
pointer from both SPACE_FooDataReader_create_readcondition Or
SPACE_FooDataReader_create_gquerycondition may be used. The
behaviour is identical to SPACE_FooDataReader_read except for that the
samples are filtered by a DDS_ReadCondition OF DDS_QueryCondition. When
using a DDS_ReadCondition, the result is the same as the
SPACE_FooDataReader_read operation with the same state parameters filled in
as for the SPACE_FooDataReader_create_readcondition. Inthisway, the
application can avoid repeating the same parameters, specified when creating the
DDS_ReadCondition. When using a bDS_QueryCondition, a content based
filtering can be done. When either using a DDS_ReadCondition Of
DDS_QueryCondition, the condition must be created by this
SPACE_FooDataReader. Otherwise the operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - asequence of datavaluesis available.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAIL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE_BAD PARAMETER - one or more of the data_values, or
info_seganda_condition parametersisan invalid pointer.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the SPACE_FooDataReader IS not enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following istrue:

407
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

- the DDS_ReadCondition Or DDS_QueryCondition iS not attached to this
SPACE_FooDataReader.

- the max_samples> maximum and max_samples is not
DDS_LENGTH_UNLIMITED.
-one or more values of _length, maximum, and _release for the two
sequences are not identical.
-the _maximum>0 andthe release==FALSE.
* DDS_RETCODE_NO_DATA - ho samples that meet the constraints are available.

SPACE_FooDataReader return_loan
Synopsis

#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_return_loan
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq) ;

Description

This operation indicates to the bpps_bataReader that the application is done
accessing the sequence of data_values and info_seq.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence Foo *data_values - the sample data sequence which
was loaned from the DDS_DataReader.

inout DDS_SampleInfoSeq *info_seq -the DDS_SampleInfo Structure
sequence which was loaned from the bps_pataReader.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED Of DDS_RETCODE_PRECONDITION_NOT_MET.

408
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Detailed Description

This operation indicates to the SPACE_FooDataReader that the application is done
accessing the sequence of data_values and info_seq obtained by some earlier
invocation of the operation SPACE_FooDataReader_read Of
SPACE_FooDataReader_take (Or any of the similar operations) on the
SPACE_FooDataReader.

Thedata_values and info_seqg must belong to asingle related pair; that is, they
should correspond to a pair returned from a single call to the operation
SPACE_FooDataReader_read OFf SPACE_FooDataReader_take. The
data_values and info_seq must also have been obtained from the same
DDS_DataReader to which they are returned. If either of these conditionsis not
met the operation will fail and returns DDS_RETCODE_PRECONDITION_NOT_MET.

Buffer Loan

The operation SPACE_FooDataReader_return_1loan allowsimplementations of
the SPACE_FooDataReader_ read and SPACE_FooDataReader_ take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.

It is not necessary for an application to return the loansimmediately after calling the
operation SPACE_FooDataReader_read Of SPACE_FooDataReader_take.
However, as these buffers correspond to internal resources inside the
DDS_DataReader, the application should not retain them indefinitely.

Calling SPACE FooDataReader return loan

The use of the SPACE_FooDataReader_return_loan operationis only
necessary if the call to the operation SPACE_FooDataReader_read Of
SPACE_FooDataReader_take “loaned” buffers to the application. This only
occursif thedata_values and info_seq sequences had _maximum=0 at thetime
the operation SPACE_FooDataReader_read Of SPACE_FooDataReader_take
was called. The application may also examine the‘_release’ property of the
collection to determine where there is an outstanding loan. However, calling the
operation SPACE_FooDataReader_return_loan Oh apair of sequences that
does not have aloan is safe and has no side effects.

If the pair of sequences had a loan, upon return from the operation
SPACE_FooDataReader_return_loan the pair of sequences has _maximum=0.

Return Code
When the operation returns:

409
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_OK - the DDS_DataReader is informed that the sequences will
not be used any more.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer.

* DDS_RETCODE_ALREADY._DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader iS not enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:
-thedata_values and info_seq do not belong to asingle related pair.

-the data_values and info_seq were not obtained from this
SPACE_FooDataReader.

SPACE_FooDataReader _set_listener (inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_set_listener
(SPACE_FooDataReader _this,
const struct DDS_DataReaderListener *a_listener,
const DDS_StatusMask mask) ;

SPACE_FooDataReader _set_gos (inherited)

410
API Reference

This operation is inherited and therefore not described here. See the class

DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_set_gos
(SPACE_FooDataReader _this,
const DDS_DataReaderQos *gos) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

SPACE_FooDataReader_take
Synopsis

#include <Space.h>

&4 PRISMTECH

DDS_ReturnCode_t
SPACE_FooDataReader_take
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples from the SPACE_FooDataReader
and by doing so, removes the data from the SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on

which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values isalso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo

structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_SampleStateMask sample_ states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - amask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_

411
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET OF
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the SPACE_FooDataReader
and by doing so, removes the data from the SPACE_FooDataReader, SO it can not
be read or taken again. The behaviour is identical to
SPACE_FooDataReader_read except for that the samples are removed from the
SPACE_FooDataReader.

Return Code

When the operation returns:

* DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS _RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more vaues of _length, _maximum, and _release for the two
seguences are not identical.

-the _maximum>0 andthe release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader take instance

412
API Reference

Synopsis
#include <Space.h>

DDS_ReturnCode_t
SPACE_FooDataReader_take_instance

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

(SPACE_FooDataReader _this,
DDS_sedquence_Foo *data_values,
DDS_SampleInfoSeqg *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values isalso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo
structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_InstanceHandle_ t a_handle - the single instance, the
samples belong to.

in const DDS_SampleStateMask sample_states - amask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - amask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

413
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader, SO it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_instance except for that the samples
are removed from the SPACE_FooDataReader.

Return Code
When the operation returns:

* DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

* DDS_RETCODE_ERROR - aninternal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer or a_handle isnot avalid handle.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more vaues of _length, _maximum, and _release for the two
seguences are not identical.

-the _maximum>0 andthe _release==FALSE
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader take next_instance
Synopsis

#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_take_next_instance
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,

414
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

const DDS_TInstanceHandle_t a_handle,

const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,

const DDS_InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters

in

SPACE_FooDataReader _this -the SPACE_FooDataReader Object on

which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values isaso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDs_SampleInfo

structure sequence. info_seq IS aso used as an input to control the behaviour
of this operation.

const DDS_long max_samples - the maximum number of samplesthat is

in
returned.

in const DDS_InstanceHandle_t a_handle - the current singleinstance, the
returned samples belong to the next single instance.

in const DDS_SampleStateMask sample_states - amask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS InstanceStateMask instance states - amask, which
selects only those samples with the desired instance states.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_ DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET OF
DDS_RETCODE_NO_DATA.

415
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader, SO it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_next_instance except for that the
samples are removed from the SPACE_FooDataReader.

Return Code
When the operation returns:

* DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

* DDS_RETCODE_ERROR - aninternal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD PARAMETER - €ither or both of data_values Or info_seq
isaninvalid pointer or a_handle isnot avalid handle.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more vaues of _length, _maximum, and _release for the two
seguences are not identical.

-the _maximum>0 andthe release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader take next_instance w_condition

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_take_next_instance_w_condition
(SPACE_FooDataReader _this,
DDS_sequence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,

416
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

const DDS_TInstanceHandle_t a_handle,
const DDS_ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values iSaso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDS_SampleInfo
structure sequence. info_seq is aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samplesthat is
returned.

in const DDS_InstanceHandle_t a_handle - thecurrent singleinstance, the
returned samples belong to the next single instance.

in const DDS_ReadCondition a_condition - @ pointer to a
DDS_ReadCondition or DDS_QueryCondition which filters the
data before it is returned by the read operation.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader, filtered by a DDS_ReadCondition Of
DDS_QueryCondition and by doing so, removes the data from the
SPACE_FooDataReader, SO it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_next_instance_w_condition
except for that the samples are removed from the SPACE_FooDataReader.

417
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

* DDS_RETCODE_OK - aSequence of data values is available and removed from the
SPACE_FooDataReader.

e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - one or more of the data_values,

info_seq and a_condition parametersisan invalid pointer or a_handle is
not avalid handle.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:

- the DDS_ReadCondition Or DDS_QueryCondition iS not attached to this
SPACE_FooDataReader.

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more vaues of _length, _maximum, and _release for the two
sequences are not identical.

-the _maximum>0 andthe release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader take next_sample
Synopsis

#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_take_next_sample
(SPACE_FooDataReader _this,
Foo *data_values,
DDS_SampleInfo *sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

418
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

SPACE_FooDataReader_take w_condition

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooDataReader_take_w_condition
(SPACE_FooDataReader _this,

DDS_sedquence_Foo *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samplesfrom the SPACE_FooDataReader,
filtered by a DDS_ReadCondition OF DDS_QueryCondition and by doing so,
removes the data from the SPACE_FooDataReader.

Parameters

in SPACE_FooDataReader _this -the SPACE_FooDataReader Object on
which the operation is operated.

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values isaso used asan input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - thereturned bDs_SampleInfo
structure sequence. info_seq IS aso used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_ReadCondition a_condition - a pointer to a
DDS_ReadCondition OF DDS_QueryCondition which filters the data before
itisreturned by the SPACE_FooDataReader_read operation.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED, DDS_RETCODE_PRECONDITION_NOT_MET Of
DDS_RETCODE_NO_DATA.

419
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by a DDS_ReadCondition OF DDS_QueryCondition and by doing so,
removes the data from the SPACE_FooDataReader, S0 it can not be read or taken
again. The behaviour is identical to
SPACE_FooDataReader_read_w_condition except for that the samples are
removed from the SPACE_FooDataReader.

Return Code

When the operation returns:

* DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

e DDS _RETCODE_BAD PARAMETER - one or more of the data_values, or
info_seganda_condition parametersisaninvalid pointer.

* DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader iSnot enabled.
* DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

- the DDS_ReadCondition Or DDS_QueryCondition iS not attached to this
SPACE_FooDataReader.

- the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

-one or more values of _length, —maximum, and _release for the two
seguences are not identical.

- the _maximum>0 and the _release==FALSE.
* DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

SPACE_FooDataReader wait_for _historical _data (inherited)

420
API Reference

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis

#include <Space.h>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
SPACE_FooDataReader_ wait_for_historical_data
(SPACE_FooDataReader _this,
const DDS_Duration_t *max_wait);

ClassDDS DataSample

A DDS_DataSample represents an atom of data information (i.e. one value for an
instance) as returned by the DDS_DataReader’S
DDS_DataReader_read/SPACE_FooDataReader_take operations. It consists
of two parts: A DDS_SampleInfo and the Data itself. The bata part isthe data as
produced by a bDs_Publisher. The DDS_SampleInfo part contains additional
information related to the data provided by the Data Distribution Service.

Sruct DDS_Samplelnfo

The struct bps_sampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.

The interface description of this struct is as follows:

struct DDS_SampleInfo

{
DDS_SampleStateKind sample_state;
DDS_ViewStateKind view_state;
DDS_InstanceStateKind instance_state;
DDS_Time_t source_timestamp;
DDS_InstanceHandle_t instance_handle;
DDS_BuiltinTopicKey_t publication_handle;
DDS_long disposed_generation_count;
DDS_long no_writers_generation_count;
DDS_long sample_rank;
DDS_long generation_rank;
DDS_long absolute_generation_rank;
DDS_boolean valid_data;

}i

/*

* implemented API operations
* <no operations>

*/

The next paragraph describes the usage of the bDS_SampleInfo Struct.

DDS _Samplelnfo

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_SampleInfo

{
DDS_SampleStateKind sample_state;
DDS_ViewStateKind view_state;

421
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

422
API Reference

DDS_TInstanceStateKind instance_state;
DDS_Time_t source_timestamp;
DDS_InstanceHandle_t instance_handle;
DDS_BuiltinTopicKey_ t publication_handle;
DDS_long disposed_generation_count;
DDS_long no_writers_generation_count;
DDS_long sample_rank;
DDS_long generation_rank;
DDS_long absolute_generation_rank;
DDS_boolean valid_data;

Y

Description

The struct pps_sampleInfo represents the additional information that
accompanies the datain each sample that is read or taken.

Attributes

DDS_SampleStateKind sample_state - Whether or not the corresponding data
sample has already been read.

DDS _ViewStateKind view_state - Whether the DDS_DataReader has aready
seen samples of the most-current generation of the related instance.

DDS_InstanceStateKind instance_state - whether theinstanceis alive, has
no writers or is disposed of .

DDS_Time_t source_timestamp - the time provided by the
DDS_DataWriter when the sample was written.

DDS_InstanceHandle_ t instance_handle - the handle that identifies locally
the corresponding instance.

InstanceHandle_ t publication_handle - the handle that identifies locally
the pps_Datawriter that modified the instance. In fact it is the
instance_handle Of the built-in bcPsPublication sample that describes
thisDDs_Datawriter. It can be used as a parameter to the DDS_DataReader
_get_matched_publication_data operation to obtain this built-in
DCPSPublication sample.

DDS_long disposed generation_ count - the number of times the instance
has become alive after it was disposed of explicitly by aDpDs_Datawriter.

DDS _long no _writers generation_ count - the number of timestheinstance
has become alive after it was disposed of because there were no
DDS_DataWriter Objects.

DDS_long sample_rank - the number of samplesrelated to the same instance that
are found in the collection returned by a DbS_DataReader_read Of
DDS_DataReader_take Operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

DDS_long generation_rank - the generation difference between the time the
sample was received and the time the most recent sample in the collection was
received.

DDS_long absolute_generation_rank - the generation difference between
the time the sample was received and the time the most recent sample was
received.

DDS_boolean valid_data - whether the DataSample contains any meanigful
data. If not, the sample is only used to communicate a change in the
instance_state of theinstance.

Detailed Description

The struct pbs_sampleInfo represents the additional information that
accompanies the datain each sample that isread or taken.

Sample [nformation

The struct bps_sampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.

Generations

A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==DDS_ALIVE_INSTANCE_STATE) at the time the sample was
received'. Note that the generation counters are initialized to zero when aReader
first detects a never-seen-before instance.

Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.

After a DDs_bpatawriter disposes an instance, the
disposed_generation_count for al Readers that already knew that instance
will be incremented the next time the instance is written again

If the DDS_DataReader detects that there are no live DDS_Datawriter entities,
the instance_state Of the sample_info will change from
DDS_ALIVE_INSTANCE_STATE to DDS_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE. The next time the instance is written,
no_writers_generation_count Will beincremented.

Sample Information

DDS_SampleInfo isthe additional information that accompanies the data in each
samplethat is read or taken. It contains the following information:

* sample_state (DDS_READ_SAMPLE_STATE Of DDS_NOT READ_SAMPLE
STATE) indicates whether or not the corresponding data sample has aready been
read

423
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

424
API Reference

view_state, (DDS_NEW_VIEW_STATE, Of DDS_NOT_NEW_VIEW_STATE)
indicates whether the DDs_DataReader has already seen samples of the
most-current generation of the related instance

instance_state (DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, Of DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE) indicates whether the instance is alive, has no writers or if it has been
disposed of:

- DDS_ALIVE_INSTANCE_STATE if thisinstance is currently in existence

- DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE if thisinstance was disposed
of by aDDS_DatawWriter

- DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE none of the
DDS_DataWriter oObjects currently “aive” (according to the
DDS_LivelinessQosPolicy) arewriting the instance.

source_timestamp indicates the time provided by the DDS_Datawriter when
the sample was written

instance_handle indicates|ocally the corresponding instance

publication_handle indicates system wide the publisher of the sample, the
local publication handle can be found with the DDS_DataReader operation
lookup_instance for thepublication_handle

disposed_generation_count indicates the number of times the instance has
become alive after it was disposed of explicitly by a bpbs_bpatawriter, at the
time the sample was received

no_writers_generation_count indicates the number of times the instance
has become dive after its instance_state has been
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, a the time the sample was
received

sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by a DDS_DataReader_read Of
DDS_DataReader_take Operation

generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received

absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not bein the
returned collection), related to the same instance, was received.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the DDS_SampleInfo
that communicates a change in the instance_state of an instance for which
thereisno ‘rea’ sample available.

DDS SubscriberListener Interface

&4 PRISMTECH

Since aDpDS_subscriber isakind of Dbs_Entity, it has the ability to have a
Listener associated with it. In this case, the associated 1.i stener should be of
type DDS_SubscriberListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DDS_SubscriberListener class. All
DDS_SubscriberListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_SubscriberListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
aQosPolicy Setting, etc. The bbs_SubscriberListener isrelated to changes
in communication status.

The interface description of thisclassis asfollows:

/~k

* interface DDS_SubscriberListener

*/
/*

* inherited from class DDS_DataReaderListener

*/
/* void

* DDS_SubscriberListener_on_requested_deadline_missed
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedDeadlineMissedStatus *status) ;

*/
/* void

* DDS_SubscriberlListener_on_requested_incompatible_gos
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedIncompatibleQosStatus *status);
*

/* wvoid
425
API Reference

3 DCPS Classes and Operations

426
API Reference

* DDS_SubscriberListener_on_sample_rejected
* (void *listener_data,
* DDS_DataReader reader,
* const DDS_SampleRejectedStatus *status);
*/
/* wvoid
DDS_SubscriberListener_on_liveliness_changed
* (void *listener_data,
* DDS_DataReader reader,
* const DDS_LivelinessChangedStatus *status);
*/
/* wvoid
* DDS_SubscriberListener_on_data_available
* (void *listener_data,
* DDS_DataReader reader) ;
*/
/* wvoid
* DDS_SubscriberListener_on_subscription_matched
* (void *listener_data,
* DDS_DataReader reader,
* const DDS_SubscriptionMatchedStatus *status);
*/
/* wvoid
* DDS_SubscriberListener_on_sample_lost
* (void *listener_data,
* DDS_DataReader reader,
* const DDS_SampleLostStatus *status);
*/
/*
* abstract external operations
*/
void
DDS_SubscriberListener_on_data_on_readers
(void *listener_data,
DDS_Subscriber subs) ;
/*

* implemented API operations
*/
DDS_SubscriberListener
DDS_SubscriberListener_ _alloc
(void) ;

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

The next paragraphs list all bbs_SubscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. Thefull description of these operationsis given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

DDS SubscriberListener _alloc

Synopsis
#include <dds_dcps.h>
DDS_SubscriberListener
DDS_SubscriberListener__alloc
(void) ;

Description
This operation creates anew DDS_SubscriberListener.

Parameters
<none>

Return Value

DDS_SubscriberListener - Return value is the handle to the newly created
DDS_SubscriberListener. In case of an error, a bDS_OBJECT_NIL pointer
is returned.

Detailed Description

This operation creates a new DDS_SubscriberListener. The
DDS_SubscriberListener must be created using this operation. In other words,
the application is not allowed to declare an object of type
DDS_SubscriberListener. When the application wants to release the
DDS_SubscriberListener it must be released using bps_free.

In case there are insufficient resources available to allocate the
DDS_SubscriberListener, aDDS_OBJECT_NIL pointer isreturned instead.

DDS SubscriberListener_on_data available (inherited, abstract)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_data_available
(void *listener_data,

427
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_DataReader reader) ;

DDS SubscriberListener_on_data _on_readers (abstract)

428
API Reference

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_data_on_readers
(void *listener_data,
DDS_Subscriber subs) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

inout void *listener data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_Subscriber subs - cOntain a pointer to the bps_Subscriber for
which data is available (thisis an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this DDS_subscriber. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DDS_SubscriberListener iS installed and enabled for the
DDS_DATA_ON_READERS_STATUS.

The Data Distribution Service will provide a pointer to the bbs_sSubscriber inthe
parameter subs for use by the application.

The statuses DDS_DATA_ON_READERS_STATUS and
DDS_DATA_AVAILABLE_STATUS Will occur together. In case these status changes
occur, the Data Distribution Service will look for an attached and activated
DDS_SubscriberListener OF DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_ STATUS can not be handled, the Data Distribution

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Service will look for an attached and activated bDS_DataReaderListener,
DDS_SubscriberListener Of DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Note that if DDS_SubscriberListener on data_on_ readers iscalled, then
the Data Distribution Service will not try to call
DDS_SubscriberListener_on_data_available, however, the application
can force a call to the callback function on_data_available of
DDS_DataReaderListener 0Objects that have data by means of the
notify_datareaders operation.

DDS SubscriberListener_on_liveliness changed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_liveliness_changed
(void *listener_data,
DDS_DataReader reader,
const DDS_LivelinessChangedStatus *status);

DDS SubscriberListener_on_requested deadline missed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_requested_deadline_missed
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedDeadlineMissedStatus *status);

DDS SubscriberListener_on_requested_incompatible gos (inherited,
abstract)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberlListener_on_requested_incompatible_gos
429
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedIncompatibleQosStatus *status) =0;

DDS SubscriberListener_on_sample lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_sample_lost
(void *listener_data,
DDS_DataReader reader,
const DDS_SampleLostStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DDS SubscriberListener_on_sample reected (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_sample_rejected
(void *listener_data,
DDS_DataReader reader,
const DDS_SampleRejectedStatus *status);

DDS SubscriberListener_on_subscription_matched (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_SubscriberListener_on_subscription_matched
(void *listener_data,
DDS_DataReader reader,
const DDS_SubscriptionMatchedStatus *status);

This operation is not yet supported. It is scheduled for a future release.

430
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

DDS DataReaderListener interface

Since aDDS_DataReader iSakind of bps_gntity, it has the ability to have a
Listener associated with it. In this case, the associated Listener should be of
type DDS_DataReaderListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the ©DDS DataReaderListener class. All
DDS_DataReaderListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

& All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DataReaderListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
aQosPolicy Setting, etc. The bDS_DataReaderListener isrelated to changes
in communication status.

The interface description of this classis asfollows:

/*
* interface DDS_DataReaderListener
*/
/*
* abstract external operations
*x/
void
DDS_DataReaderListener_on_requested_deadline_missed
(void *1listener_data,
DDS_DataReader reader,
const DDS_RequestedDeadlineMissedStatus *status);
void
DDS_DataReaderListener_on_requested_incompatible_gos
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedIncompatibleQosStatus *status) ;
void
DDS_DataReaderListener_on_sample_rejected
(void *listener_data,
DDS_DataReader reader,
const DDS_SampleRejectedStatus *status) ;
void

DDS_DataReaderListener_on_liveliness_changed
(void *listener_data,
DDS_DataReader reader,
431
APl Reference

3 DCPS Classes and Operations 3.5 Subscription Module

const DDS_LivelinessChangedStatus *status);

void
DDS_DataReaderListener_on_data_available
(void *listener_data,
DDS_DataReader reader) ;

void
DDS_DataReaderListener_on_subscription_matched
(void *listener_data,
DDS_DataReader reader,
const DDS_SubscriptionMatchedStatus *status);

void
DDS_DataReaderListener_on_sample_lost
(void *listener_data,
DDS_DataReader reader,
const DDS_SampleLostStatus *status);
/*
* implemented API operations
*/
DDS_DataReaderListener
DDS_DataReaderListener__alloc
(void) ;

The next paragraphs describe the usage of all DDS_DataReaderListener
operations. These abstract operations are fully described because they must be
implemented by the application.

3.5.6.1 DDS DataReaderListener _alloc
Synopsis

#include <dds_dcps.h>
DDS_DataReaderListener
DDS_DataReaderListener__alloc
(void) ;

Description
This operation creates a new DDS_DataReaderListener.

Parameters
<none>

Return Value

DDS_DataReaderListener - Return value is the handle to the newly created
DDS_DataReaderListener. In case of an error, abDS_OBJECT_NIL pointer
is returned.

432

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation creates a new DDS_DataReaderListener. The
DDS_DataReaderListener must be created using this operation. In other words,
the application is not allowed to declare an object of type
DDS_DataReaderListener. When the application wants to release the
DDS_DataReaderListener it must bereleased using DDS_free.

In case there are insufficient resources available to allocate the
DDS_DataReaderListener, aDDS_OBJECT_NIL pointer isreturned instead.

DDS DataReaderListener_on_data available (abstract)

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_data_available
(void *listener_data,
DDS_DataReader reader) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

inout void *listener data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataReader reader - contain a pointer to the bbs_bataReader for
which datais available (thisis an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new datais
available for this DDS_DataReader. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener IS installed and enabled for the
DDS_DATA_AVAILABLE_STATUS.

The Data Distribution Service will provide a pointer to the bbs_bpataReader inthe
parameter reader for use by the application.

433
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

The statuses DDS_DATA_ON_READERS_STATUS and
DDS_DATA_AVAILABLE_STATUS Will occur together. In case these status changes
occur, the Data Distribution Service will look for an attached and activated
DDS_SubscriberListener OF DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_ STATUS can not be handled, the Data Distribution
Service will look for an attached and activated bDS_DataReaderListener,
DDS_SubscriberListener Of DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Note that if DDS_SubscriberListener on data_on_ readers iscaled, then
the Data Distribution Service will not try to call
DDS_DataReaderListener_on_data_available, however, the application
can force a call to the bDS_DataReader objects that have data by means of the
DDS_Subscriber_notify datareaders operation.

DDS DataReaderListener_on_liveliness changed (abstract)

434
API Reference

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_liveliness_changed
(void *listener_data,
DDS_DataReader reader,
const DDS_LivelinessChangedStatus *status) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more bps_DataWriter objects
that were writing instances read through this bbs_DataReader has changed.
Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataReader reader - cOntain a pointer to the bbs_bataReader for
which the liveliness of one or more bbs_batawWriter objects has changed
(thisisan input to the application provided by the Data Distribution Service).

in const DDS_LivelinessChangedStatus *status - contain the
DDS_LivelinessChangedStatus Struct (thisis an input to the application
provided by the Data Distribution Service).

Return Value
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more DDS_DatalWriter objects that were writing instances read through this
DDS_DataReader has changed. In other words, some DDS_Datawriter have
become “alive” or “not alive’. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener iS installed and enabled for the
DDS_LIVELINESS CHANGED_STATUS.

The Data Distribution Service will provide a pointer to the bbs_bDataReader inthe
parameter reader and the DDS_LivelinessChangedStatus Struct for use by
the application.

DDS DataReaderListener_on_requested deadline_missed (abstract)

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_requested_deadline_missed
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedDeadlineMissedStatus *status) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the DDS_DataReader was expecting
through its DDS_DeadlineQosPolicy Was not respected.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataReader reader - contain apointer to the bps_bpataReader for
which the deadline was missed (this is an input to the application provided by
the Data Distribution Service).

in const DDS_RequestedDeadlineMissedStatus *status - contain the
DDS_RequestedDeadlineMissedStatus struct (thisis an input to the
application provided by the Data Distribution Service).

Return Value

<none>

435
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the DDS_DataReader was expecting through its DDS_DeadlineQosPolicy
was not respected for a specific instance. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
relevant pps_DataReaderListener iSinstalled and enabled for the
DDS_REQUESTED_DEADLINE_MISSED_STATUS.

The Data Distribution Service will provide apointer to the DDS_DataReader inthe
parameter reader and the DDS_RequestedDeadl ineMissedStatus struct
in the parameter status for use by the application.

DDS DataReaderListener _on_requested_incompatible gos (abstract)

436
API Reference

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_requested_incompatible_gos
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedIncompatibleQosStatus *status) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataReader reader - apointer to the bbs_bataReader provided by
the Data Distribution Service.

in const DDS_RequestedIncompatibleQosStatus *status - the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS Struct provided by the Data
Distribution Service.

Return Value
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation
may be left empty when this functionality is not needed. This operation will only be
called when the relevant bDs_DataReaderListener isinstaled and enabled for
the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS.

The Data Distribution Service will provide apointer to the bDS_DataReader inthe
parameter reader and the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
struct in the parameter status, for use by the application.

The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS in themask in the call to
DDS_DataReader set_ listener. When the DDS_DataReaderListener On
the DDS_DataReader is not enabled for the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS, the status change will propagate
to the DDS_SubscriberListener Of the DDS_subscriber (if enabled) or to the

DDS_DomainParticipantListener Of the DDS_DomainParticipant (if
enabled).

DDS DataReaderListener_on_sample lost (abstract)

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_sample_lost
(void *1listener_data,
DDS_DataReader reader,
const DDS_SampleLostStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DDS DataReaderListener_on_sample rejected (abstract)

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_sample_rejected
(void *1listener_data,
DDS_DataReader reader,
const DDS_SampleRejectedStatus *status);

437
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters

inout void *listener_data - apointer to auser defined object which may be
used for identification of the Listener.

in DDS_DataReader reader - cOntain a pointer to the bbs_bataReader for
which a sample has been rejected (thisis an input to the application provided by
the Data Distribution Service).

in const DDS_SampleRejectedStatus *status - contain the
DDS_SampleRejectedStatus struct (thisis an input to the application
provided by the Data Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener IS installed and enabled for the
DDS_SAMPLE_REJECTED_STATUS.

The Data Distribution Service will provide apointer to the DDS_DataReader inthe
parameter reader and the DDS_SampleRejectedStatus struct in the
parameter status for use by the application.

DDS DataReaderListener_on_subscription_matched (abstract)

438
API Reference

Synopsis
#include <dds_dcps.h>
void
DDS_DataReaderListener_on_subscription_matched
(void *listener_data,
DDS_DataReader reader,
const DDS_SubscriptionMatchedStatus *status);

This operation is not yet supported. It is scheduled for a future release.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

ClassDDS ReadCondition

&4 PRISMTECH

The DDS_DataReader Objects can create a set of DDS_ReadCondition (and
DDS_StatusCondition) objects which provide support (in conjunction with
DDS_WaitSet objects) for an alternative communication style between the Data
Distribution Service and the application (i.e., wait-based rather than
notification-based).

DDS_ReadCondition objects allow an DDS_DataReader to specify the data
samplesit isinterested in (by specifying the desired sample-states, view-states, and
instance-states); see the parameter definitions for bDbsS_DataReader's
DDS_DataReader_create_readcondition operation. This allows the Data
Distribution Service to trigger the condition only when suitable information is
available. bDsS_ReadCondition objects are to be used in conjunction with a
DDS_WaitSet. More than one bDS_ReadCondition may be attached to the same
DDS_DataReader.

The interface description of this classis asfollows:

/*

* interface DDS_ReadCondition

*/

/~k

* inherited from DDS_Condition

*/

/* DDS_boolean

* DDS_ReadCondition_get_trigger_value
* (DDS_ReadCondition _this);
*/
/*

* implemented API operations

*/

DDS_SampleStateMask
DDS_ReadCondition_get_sample_state_mask
(DDS_ReadCondition _this);

DDS_ViewStateMask
DDS_ReadCondition_get_view_state_mask
(DDS_ReadCondition _this);

DDS_InstanceStateMask
DDS_ReadCondition_get_instance_state_mask
(DDS_ReadCondition _this);

DDS_DataReader
DDS_ReadCondition_get_datareader
(DDS_ReadCondition _this);

439
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

The next paragraphs describe the usage of all bbs_ReadCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS ReadCondition_get_datareader

Synopsis
#include <dds_dcps.h>
DDS_DataReader
DDS_ReadCondition_get_datareader
(DDS_ReadCondition _this);

Description

This operation returns the DbDsS_DataReader associated with the

DDS_ReadCondition.

Parameters

in DDS_ReadCondition _this -theDDS_ReadCondition object on which
the operation is operated.

Return Value

DDS_DataReader - Result valueis a pointer to the DDS_DataReader.

Detailed Description

This operation returns the bbs_bpataReader associated with the
DDS_ReadCondition. Notethat thereis exactly one Dbs_DataReader associated
with each DbS_ReadCondition (i.e. the DDS_DataReader that created the
DDS_ReadCondition Object).

DDS ReadCondition_get_instance state mask

440
API Reference

Synopsis
#include <dds_dcps.h>
DDS_InstanceStateMask
DDS_ReadCondition_get_instance_state_mask
(DDS_ReadCondition _this);

Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger value of the DDS_ReadCondition.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters

in DDS_ReadCondition _this -theDDS_ReadCondition object on which
the operation is operated.

Return Value

DDS_TInstanceStateMask - Result value are the instance_states specified
when the DDS_ReadCondi tion was created.

Detailed Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger_value of the DDS_ReadCondition.

The instance_states returned are the instance_states specified when the
DDS_ReadCondition was created. instance_states can be
DDS_ALIVE_INSTANCE_STATE,
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE,
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Or acombination of these.

DDS ReadCondition_get sample state mask

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_SampleStateMask
DDS_ReadCondition_get_sample_state_mask
(DDS_ReadCondition _this);

Description

This operation returns the set of sample_states that are taken into account to

determinethe trigger_value of the DDS_ReadCondition.

Parameters

in DDS_ReadCondition _this -the DDS_ReadCondition object on which
the operation is operated.

Return Value

DDS_SampleStateMask - Result value are the sample_states specified when
the DDS_ReadCondition was created.

Detailed Description

This operation returns the set of sample_states that are taken into account to
determinethe trigger value Of the DDS_ReadCondition.

441
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

The sample_states returned are the sample_states specified when the
DDS_ReadCondition was created. sample_states can be
DDS_READ_SAMPLE_STATE,DDS_NOT_READ_SAMPLE_STATEOrbmh.

DDS ReadCondition_get_trigger value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_ReadCondition_get_trigger_value
(DDS_ReadCondition _this);

DDS ReadCondition_get_view_state mask

442
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ViewStateMask
DDS_ReadCondition_get_view_state_mask
(DDS_ReadCondition _this);

Description

This operation returns the set of view_states that are taken into account to

determinethe trigger value Of the DDS_ReadCondition.

Parameters

in DDS_ReadCondition _this -theDDs_ReadCondition object on which
the operation is operated.

Return Value

DDS_ViewStateMask - Result value are the view_states specified when the
DDS_ReadCondition Was created.

Detailed Description

This operation returns the set of view_states that are taken into account to
determinethe trigger_value of the DDS_ReadCondition.

The view_states returned are the view_states specified when the
DDS_ReadCondition was created. view_states can be
DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE Or both.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

ClassDDS _QueryCondition

&4 PRISMTECH

DDS_QueryCondition objects are specialized bbs_ReadCondition objects that
allow the application to specify a filter on the locally available data. The
DDS_DataReader 0bjects accept a set of DDS_QueryCondition objects for the
DDS_DataReader and provide support (in conjunction with DDs_waitSet
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., wait-based rather than notification-based).

Query Function

DDS_QueryCondition objects allow an application to specify the data samples it
isinterested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for DDS_DataReader's
DDS_DataReader_read/DDS_DataReader_take operations. This allows the
Data Distribution Service to trigger the condition only when suitable information is
available. DDS_QueryCondition Objects are to be used in conjunction with a
DDS_WaitSet. More than one DDS_QueryCondition may be attached to the
Same DDS_DataReader.

The query (query_expression) issimilar to an SQL WHERE clause and can be
parameterized by arguments that are dynamically changeable with the
DDS_QueryCondition_set_query_arguments Operation.

The interface description of this classis asfollows:

/*

* interface DDS_QueryCondition

*/
/~k

* inherited from DDS_ReadCondition

*/
/* DDS_SampleStateMask

* DDS_QueryCondition_get_sample_state_mask
* (DDS_QueryCondition _this);

*/
/* DDS_ViewStateMask

* DDS_QueryCondition_get_view_ state_mask
* (DDS_QueryCondition _this);

*/

/* DDS_InstanceStateMask

* DDS_QueryCondition_get_instance_state_mask
* (DDS_QueryCondition _this);
*/

/* DDS_DataReader
* DDS_QueryCondition_get_datareader
* (DDS_QueryCondition _this);

443
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

*/

/* DDS_boolean

* DDS_QueryCondition_get_trigger_value
* (DDS_QueryCondition _this);

*/

/*

* implemented API operations

*/

DDS_string
DDS_QueryCondition_get_query_ expression
(DDS_QueryCondition _this);

DDS_ReturnCode_t
DDS_QueryCondition_get_query parameters
(DDS_QueryCondition _this,
DDS_StringSeq *query_parameters) ;

DDS_ReturnCode_t
DDS_QueryCondition_set_query_parameters
(DDS_QueryCondition _this,
const DDS_StringSeq *query_parameters) ;
The next paragraphs describe the usage of all bbDs_QueryCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS QueryCondition_get _datareader (inherited)

This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DataReader
DDS_QueryCondition_get_datareader
(DDS_QueryCondition _this);

DDS QueryCondition_get_instance state mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondi tion for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_InstanceStateMask
DDS_QueryCondition_get_instance_state_mask
(DDS_QueryCondition _this);

444

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

DDS QueryCondition_get_query parameters

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_QueryCondition_get_guery parameters
(DDS_QueryCondition _this,
DDS_StringSeq *query_parameters) ;

Description

This operation returns the query_parameters associated with the
DDS_QueryCondition.

Parameters

in DDS_QueryCondition _this -theDDS_QueryCondition object on which
the operation is operated.

inout DDS_StringSeqg *query parameters - ahandle to a sequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the query_parameters associated with the
DDS_QueryCondition. That is, the parameters specified on the last successful call
to DDS_QueryCondition_set_guery_arguments or, if
DDS_QueryCondition_set_query_arguments was never called, the
arguments specified when the bbs_QueryCondition were created. The resulting
handle contains a sequence of strings with the parameters used in the SQL
expression (i.e., the %n tokens in the expression). The number of parameters in the
result sequence will exactly match the number of %n tokens in the query expression
associated with the bbs_QueryCcondition.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of query parameters applied to this
DDS_QueryCondition has successfully been copied into the specified
query_parameters parameter.

445
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY._DELETED - the DDS_QueryCondition has aready
been del eted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS QueryCondition_get_query_expression
Synopsis

#include <dds_dcps.h>
DDS_string
DDS_QueryCondition_get_query_expression
(DDS_QueryCondition _this);

Description

This operation returns the query expression associated with the
DDS_QueryCondition.

Parameters

in DDS_QueryCondition _this -theDDS_QueryCondition object on which
the operation is operated.

Return Value

DDS_string - Result value is a pointer to the query expression associated with the
DDS_QueryCondition.

Detailed Description

This operation returns the query expression associated with the
DDS_QueryCondition. That is, the expression specified when the
DDS_QueryCondition was created. The operation will return bbs_OBJECT_NIL
when there was an internal error or when the bbs_QueryCondition was aready
deleted. If there were no parameters, an empty sequence is returned.

It is the applications responsibility to free the allocated memory for the
DDS_StringSeq.

DDS QueryCondition_get_sample state_mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondi tion for further explanation.

446

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <dds_dcps.h>
DDS_SampleStateMask

DDS_QueryCondition_get_sample_state_mask
(DDS_QueryCondition _this);

DDS QueryCondition_get_trigger value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_QueryCondition_get_trigger_value
(DDS_QueryCondition _this);

DDS QueryCondition_get_view_state mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ViewStateMask
DDS_QueryCondition_get_view_state_mask
(DDS_QueryCondition _this);

DDS QueryCondition_set_query parameters
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_QueryCondition_set_guery parameters
(DDS_QueryCondition _this,
const DDS_StringSeqg *query_parameters) ;

Description

This operation changes the query parameters associated with the
DDS_QueryCondition.

Parameters

in DDS_QueryCondition _this -theDDS_QueryCondition object on which
the operation is operated.

447
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

448
API Reference

in const DDS_StringSeq *query. parameters - asequence of stringswhich
are the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the query parameters associated with the
DDS_QueryCondition. The parameter query_parameters iS a sequence of
strings which are the parameters values used in the SQL query string (i.e., the “%n”
tokens in the expression). The number of valuesin query_parameters must be
equal or greater than the highest referenced %n token in the query_expression
(e.g. if 1 and %8 are used as parameter in the query_expression, the
query_parameters should at least contain n+1 = 9 values).

Return Code
When the operation returns:

* DDS_RETCODE_OK - the query parameters associated with the
DDS_QueryCondition are changed.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the number of parameters in
query_parameters does not match the number of “%n” tokens in the
expression for this DDS_QueryCondition or one of the parametersis an illegal
parameter.

* DDS_RETCODE_ALREADY._DELETED - the DDS_QueryCondition has already
been del eted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

APPENDICES

Appendix

Quality Of Service

Each DDS_Entity isaccompanied by an <DDS_Entity>Qos Structure that
implements the basic mechanism for an application to specify Quality of Service
attributes. This structure consists of DDS_Ent ity specific QosPolicy attributes.
QosPolicy attributes are structured types where each type specifies the
information that controls an DDS_Enti ty related (configurable) attribute of the
Data Distribution Service.

Affected Entities

Each pps_Entity can be configured with a set of gosPolicy settings. However,
any DDS_Entity cannot support any QosPolicy. For instance, a
DDS_DomainParticipant supports different gospolicy settings than a
DDS_Topic OF aDbDS_Publisher. The set of QosPolicy Settingsisimplemented
as a struct of QospPolicy structs, identified as <DDS_Entity>Qos. Each
<DDS_Entity>Qos struct only contains those QosPolicy structs relevant to the
specific DDS_Entity. The <DDS_Entity>Qos Struct serves as the parameter to
operations which require a Qos. <DDS_Entity>Qos Struct is the API
implementation of the QoS. Depending on the specific <DDS_Entity>Qos, it
controls the behaviour of a bDS_Topic, DDS_DataWriter, DDS_DataReader,
DDS_Publisher, DDS_Subscriber, DDS_DomainParticipant Or

DDS_DomainParticipantFac toryl.

Basic Usage

& PRISMTECH

The basic way to modify or set the <DDS_Entity>Qos iS by using an
DDS_<Entity>_get_gos operation to get all QosPolicy settings from this
DDS_Entity (that isthe <DDS_Entity>Qos), modify several specific gosPolicy
settings and put them back using an DDS_<DDS_Entity>_set_gos operation to
set all QosPolicy settings on this pps_Entity (that isthe <DDS_Entity>Qos).
An example of these operations for the DDS_DataWriterQos are

1. Notethat thebps_DomainParticipantFactory isaspecia kind of entity: it does not
inherit from DDS_Entity, nor does it have a DDS_Listener oOf
DDS_StatusCondition, but its behaviour can be controlled by its own set of
QosPalicies.

451
C Reference Guide

Appendices

DDS_Publisher_ get_default_datawriter_gos and DDS_Publisher_
set_default_datawriter_gos, Which take the DDS_DataWriterQos asa
parameter
The interface description of this struct is as follows:
/ *
* gstruct <name>QosPolicy
* see appendix
*/
/ *
* gstruct <DDS_Entity>Qos
*/
struct DDS_DomainParticipantFactoryQos
{ DDS_EntityFactoryQosPolicy
struct DDS_DomainParticipantQos
{ DDS_UserDataQosPolicy

entity_factory; };

user_data;

DDS_EntityFactoryQosPolicy
DDS_SchedulingQosPolicy
DDS_SchedulingQosPolicy

struct DDS_TopicQos
{ DDS_TopicDataQosPolicy

DDS_DurabilityQosPolicy
DDS_DurabilityServiceQosPolicy
DDS_DeadlineQosPolicy
DDS_LatencyBudgetQosPolicy
DDS_LivelinessQosPolicy
DDS_ReliabilityQosPolicy
DDS_DestinationOrderQosPolicy
DDS_HistoryQosPolicy
DDS_ResourceLimitsQosPolicy
DDS_TransportPriorityQosPolicy
DDS_LifespanQosPolicy
DDS_OwnershipQosPolicy

struct DDS_DataWriterQos
{ DDS_DurabilityQosPolicy

DDS_DeadlineQosPolicy
DDS_LatencyBudgetQosPolicy
DDS_LivelinessQosPolicy
DDS_ReliabilityQosPolicy
DDS_DestinationOrderQosPolicy
DDS_HistoryQosPolicy
DDS_ResourceLimitsQosPolicy
DDS_TransportPriorityQosPolicy
DDS_LifespanQosPolicy
DDS_UserDataQosPolicy
DDS_OwnershipQosPolicy
DDS_OwnershipStrengthQosPolicy

entity_factory;
watchdog_scheduling;
listener_scheduling;

topic_data;
durability;
durability_service;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;
ownership; };

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;
user_data;
ownership;
ownership_strength;

I

DDS_WriterDatalLifecycleQosPolicy writer_data_lifecycle;};
struct DDS_PublisherQos

452

C Reference Guide & PRISMTECH

Appendices

& PRISMTECH

{ DDS_PresentationQosPolicy
DDS_PartitionQosPolicy
DDS_GroupDataQosPolicy
DDS_EntityFactoryQosPolicy

struct DDS_DataReaderQos

{ DDS_DurabilityQosPolicy
DDS_DeadlineQosPolicy
DDS_LatencyBudgetQosPolicy
DDS_LivelinessQosPolicy
DDS_ReliabilityQosPolicy
DDS_DestinationOrderQosPolicy
DDS_HistoryQosPolicy
DDS_ResourceLimitsQosPolicy
DDS_UserDataQosPolicy
DDS_OwnershipQosPolicy
DDS_TimeBasedFilterQosPolicy
DDS_ReaderDatalLifecycleQosPolicy

struct DDS_SubscriberQos

{ DDS_PresentationQosPolicy
DDS_PartitionQosPolicy
DDS_GroupDataQosPolicy
DDS_EntityFactoryQosPolicy

/ *

* define <DDS_Entity>_QOS_DEFAULT

*/
#define DDS_PARTICIPANT_QOS_DEFAULT
#define DDS_TOPIC_QOS_DEFAULT
#define DDS_DATAWRITER_QOS_DEFAULT
#define DDS_PUBLISHER_QOS_DEFAULT
#define DDS_DATAREADER_QOS_DEFAULT
#define DDS_SUBSCRIBER_QOS_DEFAULT

presentation;
partition;
group_data;
entity_factory; };

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
user_data;
ownership;
time_based_filter;

reader_data_lifecycle; };

presentation;
partition;
group_data;
entity_factory; };

#define DDS_DATAWRITER_QOS_USE_TOPIC_QOS
#define DDS_DATAREADER_QOS_USE_TOPIC_QOS

* implemented API operations
* <no operations>

*/

The next paragraphs describe the usage of each <bDS_Entity>Qos Struct.

DDS DataReader Qos

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderQos
{ DDS_DurabilityQosPolicy

DDS_DeadlineQosPolicy
DDS_LatencyBudgetQosPolicy

durability;
deadline;
latency_budget;

C Reference Guide

Appendices

454
C Reference Guide

DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;
DDS_ResourceLimitsQosPolicy resource_limits;
DDS_UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
DDS_TimeBasedFilterQosPolicy time_based_filter;

DDS_ReaderDataliifecycleQosPolicy reader_data_lifecycle;};

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abpps_DataReader.

Attributes

DDS_DurabilityQosPolicy durability - whether the data should be stored
for late joining readers.

DDS_DeadlineQosPolicy deadline - the period within which anew sampleis
expected.

DDS_LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

DDS_LivelinessQosPolicy liveliness - theway the liveliness of the
DDS_DataReader is asserted to the Data Distribution Service.

DDS_ReliabilityQosPolicy reliability - thereliability of the data
distribution.

DDS_DestinationOrderQosPolicy destination_order -theorderin
which the bbs_bDataReader timely orders the data.

DDS_HistoryQosPolicy history - how samples should be stored.

DDS_ResourceLimitsQosPolicy resource_limits - the maximum amount
of resources to be used.

DDS_UserDataQosPolicy user_data - used to attach additional information to
the DDS_DataReader.

DDS_OwnershipQosPolicy ownership - Whether anatawriter exclusively
owns an instance.

DDS_TimeBasedFilterQosPolicy time_based filter -themaximum data
rate at which the bDs_bataReader Will receive changes.

& PRISMTECH

Appendices

DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle -the
minimum time after which a data instance is disposed of when the
instance_state hasbecome
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Or
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Detailed Description

A QosPolicy can be set when the bbs_DataReader is created with the
DDS_Subscriber_create_datareader operation (or modified with the
DDS_DataReader_set_gos operation). Both operations take the
DDS_DataReaderQos Struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_DataReader_set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DataReader creation time or prior to calling the
DDS_DataReader_enable operation on the DDS_DataReader.

See Sruct QosPolicy on page 55 for alist of al <name>QosPolicy settings, their
meaning, characteristics and possible values, as well as if it appliesto a
DDS_DataReader.

The initial value of the default DDS_DataReaderQos inthe DDS_Subscriber are
given in the following table:

Table 18 DDS DATAREADER_QOS DEFAULT

QosPalicy Attribute Value
durability kind DDS_VOLATILE_DURABILITY_ QOS
deadline period DDS_DURATION_INFINITE
latency_budget duration 0
liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS
lease_duration DDS_DURATION_INFINITE
reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking time

100 ms

destination_order

kind

DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history

kind

DDS_KEEP_LAST_HISTORY_QOS

depth

1

& PRISMTECH

455

C Reference Guide

Appendices

Table 18 DDS DATAREADER_QOS DEFAULT

QosPoalicy

Attribute

Value

resource_limits

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_ per_instance

DDS_LENGTH_UNLIMITED

user_data value.length 0
ownership kind DDS_SHARED_OWNERSHIP_QOS
time_based filter minimum_separation 0

reader_data lifecycle

autopurge_
nowriter_samples_delay

DDS_DURATION_INFINITE

autopurge_
disposed_samples_delay

DDS_DURATION_INFINITE

DDS DataWriter Qos

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterQos

{ DDS_DurabilityQosPolicy
DDS_DeadlineQosPolicy
DDS_LatencyBudgetQosPolicy
DDS_LivelinessQosPolicy
DDS_ReliabilityQosPolicy
DDS_DestinationOrderQosPolicy
DDS_HistoryQosPolicy
DDS_ResourceLimitsQosPolicy
DDS_TransportPriorityQosPolicy

durability;
deadline;

liveliness;
reliability;

history;

latency_budget;

destination_order;

resource_limits;
transport_priority;

Description

DDS_LifespanQosPolicy
DDS_UserDataQosPolicy
DDS_OwnershipQosPolicy

DDS_OwnershipStrengthQosPolicy
DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;};

lifespan;
user_data;
ownership;
ownership_strength;

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abDDS_DataWriter.

Attributes

DDS_DurabilityQosPolicy durability - whether the data should be stored
for late joining readers.

DDS_DeadlineQosPolicy deadline - the period within which anew sampleis

written.

456
C Reference Guide

& PRISMTECH

Appendices

& PRISMTECH

DDS_LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

DDS_LivelinessQosPolicy liveliness - the way the liveliness of the
DDS_DataWriter iSasserted to the Data Distribution Service.

DDS_ReliabilityQosPolicy reliability - thereliability of the data
distribution.

DDS_DestinationOrderQosPolicy destination_order - the order in
which the DDS_DataReader timely orders the data.

DDS_HistoryQosPolicy history - how samples should be stored.

DDS_ResourceLimitsQosPolicy resource_limits - the maximum amount
of resources to be used.

DDS_TransportPriorityQosPolicy transport_priority - apriority hint
for the underlying transport layer.

DDS_LifespanQosPolicy 1ifespan - the maximum duration of validity of the
datawritten by the bDs_batawriter.

DDS_UserDataQosPolicy user_ data - Used to attach additional information to
the DDS_DataWriter.

DDS_OwnershipQosPolicy ownership - Whether aDatawriter exclusively
owns an instance.

DDS_OwnershipStrengthQosPolicy ownership_strength - the strength to
determine the ownership.

DDS_WriterDatalifecycleQosPolicy writer data_lifecycle - whether
unregistered instances are disposed of automatically or not.

Detailed Description

A QosPolicy can be set when the bbs_Datawriter is created with the
DDS_Publisher_create_datawriter operation (or modified with the
DDS_DataWriter_set_gos operation). Both operations take the
DDS_DataWriterQos Struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
theDDS_DataWriter_set_gos Operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DataWriter creation time or prior to calling the
DDS_DataWriter_enable operation onthe DDS_DataWriter.

The Sruct QosPolicy provides the list of all <name>QosPolicy Settings, their
meaning, characteristics and possible values, as well as if it appliesto a
DDS_DataWriter.

457
C Reference Guide

Appendices

Theinitial value of the default DDS_DataWriterQos inthe DDS_Publisher are

given in the following table;

Table 19 DDS DATAWRITER_QOS DEFAULT

QosPalicy Attribute Value
durability kind DDS_VOLATILE_DURABILITY_QOS
deadline period DDS_DURATION_INFINITE
latency_budget duration 0
liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS
lease_duration DDS_DURATION_INFINITE
reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking_ time

100 ms

destination_order

kind

DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history

kind

DDS_KEEP_LAST_HISTORY_QOS

depth

1

resource_limits

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_
per_instance

DDS_LENGTH_UNLIMITED

unregistered_instances

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE
user_data value.length 0

ownership kind DDS_SHARED_OWNERSHIP_QOS
ownership_strength value 0

writer_data lifecycle |autodispose_ TRUE

DDS DomainParticipantFactoryQos

Synopsis

#include <dds_dcps.h>
struct DDS_DomainParticipantFactoryQos

{ DDS_EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of

Service attributes for abbs_DomainParticipantFactory.

458
C Reference Guide

& PRISMTECH

Appendices

Attributes

DDS_EntityFactoryQosPolicy entity_factory - Whether ajust created
DomainParticipant should be enabled.

Detailed Description

The QospPolicy cannot be set at creation time, since the
DDS_DomainParticipantFactory iSa pre-existing object that can only be
obtained with the DDS_DomainParticipantFactory get_instance operation
or itsalias DDS_TheParticipantFactory. Therefore its QosPolicy IS
initialized to adefault value according to Table 20:

Table 20 Default Valuesfor DDS _DomainParticipantFactoryQos
QosPalicy Attribute Value

entity_factory autoenable created_entities TRUE

After creation the QosPolicy can be modified with the
DDS_DomainParticipantFactory_set_gos operation, which takes the
DDS_DomainParticipantFactoryQos Struct asa parameter.

DDS DomainParticipantQos

& PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantQos
{ DDS_UserDataQosPolicy user_data;
DDS_EntityFactoryQosPolicy entity_ factory;
DDS_SchedulingQosPolicy watchdog_scheduling;
DDS_SchedulingQosPolicy listener_scheduling; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abDDS_DomainParticipant.

Attributes

DDS UserDataQosPolicy user data - used to attach additional information to
the DDS_DomainParticipant.

DDS_EntityFactoryQosPolicy entity_ factory - Whether ajust created
DDS_Entity should be enabled.

DDS_SchedulingQosPolicy watchdog_scheduling - the scheduling
parameters used to create the watchdog thread.

459
C Reference Guide

Appendices

DDS_SchedulingQosPolicy listener_scheduling - the scheduling
parameters used to create the listener thread.

Detailed Description
A DDS_DomainParticipant Will spawn different threads for different purposes:

* A listener thread is spawned to perform the callbacks to all DDS_Listener
objects attached to the various DDS_Entities contained in the
DDS_DomainParticipant. The scheduling parameters for this thread can be
specified in the listener_ scheduling field of the
DDS_DomainParticipantQos.

» A watchdog thread is spawned to report the the Liveliness of all bDs_Entities
contained in the DDS_DomainParticipant whose
DDS_LivelinessQosPolicyKind in their pps_LivelinessQosPolicy iS
Set to DDS_AUTOMATIC_LIVELINESS_QOS. The scheduling parameters for this
thread can be specified in the watchdog_scheduling field of the
DDS_DomainParticipantQos.

A QosPolicy can be set when the DDS_DomainParticipant is created with the
DDS_DomainParticipantFactory_create_participant operation (OI‘
modified with the bDS_DomainParticipant_set_gos operation). Both
operations take the DDS_DomainParticipantQos Struct as a parameter. There
may be cases where several policies are in conflict. Consistency checking is
performed each time the policies are modified when they are being created and, in
case they are already enabled, viathe bDS_DomainParticipant_set_gos
operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DomainParticipant creation time or prior to calling the
DDS_DomainParticipant_enable operation on the
DDS_DomainParticipant.

The initial value of the default bbsS_DomainParticipantQos in the
DDS_DomainParticipantFactory are given in the following table:

Table21 DDS PARTICIPANT_QOS DEFAULT

QosPolicy Attribute Value
user_data value.length 0
entity_factory autoenable_created_entities TRUE
watchdog_scheduling scheduling_class.kind SCHEDULE_DEFAULT
scheduling priority_kind.kind PRIORITY_RELATIVE
scheduling_priority 0

460

C Reference Guide

& PRISMTECH

Appendices

Table 21 DDS PARTICIPANT_QOS DEFAULT

QosPalicy Attribute Value
listener_scheduling scheduling_class.kind SCHEDULE_DEFAULT
scheduling priority_kind.kind PRIORITY_ RELATIVE
scheduling_priority 0

DDS PublisherQos

& PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_PublisherQos

{ DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;

DDS_EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abps_pPublisher.

Attributes

DDS_PresentationQosPolicy presentation - the dependency of changesto
data-instances.

DDS_PartitionQosPolicy partition - the partitionsin which the
DDS_Publisher isactive.

DDS_GroupDataQosPolicy group_ data - used to attach additional information
tothe DpDs_Publisher.

DDS_EntityFactoryQosPolicy entity_factory - Whether ajust created
DDS_DataWriter should be enabled.

Detailed Description

A QosPolicy can be set when the pps_pPublisher is created with the
DDS_DomainParticipant_create_publisher operation (or modified with the
DDS_Publisher_set_gos operation). Both operations take the
DDS_PublisherQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
theDDS_Publisher_set_gos operation.

461
C Reference Guide

Appendices

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at bDs_pPublisher creation time or prior to calling the
DDS_Publisher_enable operation onthe bbs_pPublisher.

The initial value of the default ppDs_PublisherQos in the
DDS_DomainParticipant aregiven in the following table:

Table 22 DDS_PUBLISHER_QOS DEFAULT

QosPalicy Attribute Value

presentation access_scope DDS_INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

partition name.length 0

group_data value.length 0

entity_factory |autoenable_ TRUE
created_entities

DDS SubscriberQos

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberQos

{ DDS_PresentationQosPolicy presentation;
DDS_PartitionQosPolicy partition;
DDS_GroupDataQosPolicy group_data;
DDS_EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abpDS_Subscriber.

Attributes

DDS_PresentationQosPolicy presentation - the dependency of changes to
data-instances.

DDS_PartitionQosPolicy partition - the partitionsin which the
DDS_Subscriber isactive.

DDS_GroupDataQosPolicy group_data - Used to attach additiona information
tothe DDS_Subscriber.

DDS_EntityFactoryQosPolicy entity_factory - Whether ajust created
DDS_DataReader should be enabled.

462

C Reference Guide & PRISMTECH

Appendices

Detailed Description

A QosPolicy can be set when the bbs_Subscriber is created with the
DDS_DomainParticipant_create_subscriber operation (or modified with
the DDS_subscriber_set_gos operation). Both operations take the
DDS_SubscriberQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_Subscriber_set_gos Operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at bbs_subscriber creation time or prior to calling the
DDS_Subscriber_enable operation on the bbs_Subscriber.

The initial value of the default DDS_SubscriberQos in the
DDS_DomainParticipant are given in the following table:

Table 23 DDS SUBSCRIBER_QOS DEFAULT

QosPoalicy Attribute Value

presentation access_scope DDS_INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

partition name.length 0

group_data value.length 0

entity_factory |autoenable_ TRUE
created_entities

DDS TopicQos

& PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_TopicQos

{ DDS_TopicDataQosPolicy topic_data;

DDS_DurabilityQosPolicy durability;
DDS_DurabilityServiceQosPolicy durability service;
DDS_DeadlineQosPolicy deadline;
DDS_LatencyBudgetQosPolicy latency_budget;
DDS_LivelinessQosPolicy liveliness;
DDS_ReliabilityQosPolicy reliability;
DDS_DestinationOrderQosPolicy destination_order;
DDS_HistoryQosPolicy history;

DDS_ResourceLimitsQosPolicy
DDS_TransportPriorityQosPolicy
DDS_LifespanQosPolicy

resource_limits;
transport_priority;
lifespan;
463
C Reference Guide

Appendices

464
C Reference Guide

DDS_OwnershipQosPolicy ownership; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for apps_Topic.

Attributes

DDS_TopicDataQosPolicy topic_data - used to attach additiona information
to the DDs_Topic.

DDS_DurabilityQosPolicy durability - whether the data should be stored
for late joining readers.

DDS DurabilityServiceQosPolicy durability service - the behaviour
of the “transient/persistent service” of the Data Distribution System regarding
Transient and Persistent bps_Topi ¢ instances.

DDS_DeadlineQosPolicy deadline - the period within which a new sampleis
expected or written.

DDS_LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

DDS_LivelinessQosPolicy liveliness - the way the liveliness of the
DDS_Topic isasserted to the Data Distribution Service.

DDS_ReliabilityQosPolicy reliability - thereliability of the data
distribution.

DDS_DestinationOrderQosPolicy destination_order - the order in
which the bDs_DataReader timely orders the data.

DDS_HistoryQosPolicy history - how samples should be stored.

DDS _ResourceLimitsQosPolicy resource_ limits - the maximum amount
of resources to be used.

DDS_TransportPriorityQosPolicy transport_priority - apriority hint
for the underlying transport layer.

DDS_LifespanQosPolicy 1ifespan -the maximum duration of validity of the
datawritten by abDs_Datawriter.

DDS_OwnershipQosPolicy ownership - wWhether apps_batawriter
exclusively owns an instance.
Detailed Description

A QosPolicy can be set when the pbs_Topic is created with the
DDS_DomainParticipant_create_topic operation (or modified with the
DDS_Topic_set_gos operation). Both operations take the DpDs_TopicQos struct

& PRISMTECH

Appendices

as a parameter. There may be cases where several policies are in conflict.
Consistency checking is performed each time the policies are modified when they
are being created and, in case they are already enabled, via the
DDS_Topic_set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at bbs_Topic creation time or prior to calling the
DDS_Topic_enable operation on the bps_Topic.

Theinitial value of the default DDS_TopicQos in the DDS_DomainParticipant
are given in the following table:

Table24 DDS TOPIC_QOS DEFAULT

QosPoalicy

Attribute

Value

topic_data

value.length

0

durability

kind

DDS_VOLATILE_DURABILITY_QOS

durability_service

service_cleanup_delay

0

history kind

DDS_KEEP_LAST_HISTORY_QOS

history_depth

1

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_per_instance

DDS_LENGTH_UNLIMITED

deadline period DDS_DURATION_INFINITE

latency_budget duration 0

liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS
lease_duration DDS_DURATION_INFINITE

reliability kind DDS_BEST_EFFORT_RELIABILITY_ QOS

max_blocking time

100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS
history kind DDS_KEEP_LAST_HISTORY_QOS
depth 1

resource_limits

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_per_instance

DDS_LENGTH_UNLIMITED

transport_priority |value 0
lifespan duration DDS_DURATION_INFINITE
ownership kind DDS_SHARED_OWNERSHIP_QOS
465
& PRISMTECH

C Reference Guide

Appendices

466

C Reference Guide & PRISMTECH

Appendix

API Constants and Types

These constants and types are taken from the dds_dcps . h includefile.

/* Duration and Time
*/
struct DDS_Duration_t
{
DDS_long sec;
DDS_unsigned_long nanosec;
}i

#define DDS_DURATION_INFINITE_SEC Ox7fE£fffff
#define DDS_DURATION_INFINITE_NSEC Ox7EfEE£££££fU
#define DDS_DURATION_ZERO_SEC 0

#define DDS_DURATION_ZERO_NSEC 0U

#define DDS_DURATION_INFINITE {

DDS_DURATION_INFINITE_SEC,
DDS_DURATION_INFINITE_NSEC }

#define DDS_DURATION_ZERO {
DDS_DURATION_ZERO_SEC,
DDS_DURATION_ZERO_NSEC }

struct DDS_Time_t
{
DDS_long sec;
DDS_unsigned_long nanosec;
}i

/ *
* Pre-defined values
*
*/
#define DDS_HANDLE_NIL DDS_HANDLE_NIL_NATIVE
#define DDS_LENGTH_UNLIMITED -1
#define DDS_TIMESTAMP_INVALID_SEC -1
#define DDS_TIMESTAMP_INVALID_NSEC 42949672950
#define DDS_TIMESTAMP_INVALID {
DDS_TIMESTAMP_INVALID_SEC,
DDS_TIMESTAMP_INVALID_NSEC }

/* _____
* Return codes

#define DDS_RETCODE_OK 0

467
& PRISMTECH C Reference Guide

Appendices

468
C Reference Guide

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* _____

* DDS_Status to support listeners and conditions

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

/*

* States
* */

/*

* Sample
*/
#define
#define

/*

* This is a bit-mask DDS_SampleStateKind

*/
#define

/*

DDS_RETCODE_ERROR
DDS_RETCODE_UNSUPPORTED
DDS_RETCODE_BAD_PARAMETER
DDS_RETCODE_PRECONDITION_NOT_MET
DDS_RETCODE_OUT_OF _RESOURCES
DDS_RETCODE_NOT_ENABLED
DDS_RETCODE_IMMUTABLE_POLICY
DDS_RETCODE_INCONSISTENT POLICY
DDS_RETCODE_ALREADY DELETED
DDS_RETCODE_TIMEOUT
DDS_RETCODE_NO_DATA
DDS_RETCODE_ILLEGAL_OPERATION

*/
DDS_INCONSISTENT_TOPIC_STATUS

DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

DDS_SAMPLE_LOST_ STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_ PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS

DDS_ANY_STATUS

states to support reads

DDS_READ_SAMPLE_STATE
DDS_NOT READ SAMPLE_STATE

DDS_ANY_SAMPLE_STATE

* View states to support reads

*/

o Jo Ul WN R

1U0

20

4U
32U
64U
128U
256U
512U
10240
2048U
4096U
8192U
16384U

OXFFFF

10
20

65535U

& PRISMTECH

Appendices

& PRISMTECH

#define DDS_NEW_VIEW_ STATE 10
#define DDS_NOT_NEW_VIEW_STATE 2U
/ *
* This is a bit-mask DDS_ViewStateKind
*/
#define DDS_ANY_ VIEW_STATE 65535U
/ *
* Instance states to support reads
*/
#define DDS_ALIVE_INSTANCE_STATE 1U
#define DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE 2U
#define DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE 4U
/ *
* This is a bit-mask DDS_InstanceStateKind
*/
#define DDS_ANY_INSTANCE_STATE 65535U
#define DDS_NOT_ALIVE_INSTANCE_STATE 6U
/ *
* Participant Factory define
*/

#define TheParticipantFactory
(DDS_DomainParticipantFactory get_instance())

/ *
* Qos defines
* */
#define DDS_PARTICIPANT_QOS_DEFAULT NULL
#define DDS_TOPIC_QOS_DEFAULT NULL
#define DDS_PUBLISHER_QOS_DEFAULT NULL
#define DDS_SUBSCRIBER_QOS_DEFAULT NULL
#define DDS_DATAREADER_QOS_DEFAULT NULL
#define DDS_DATAWRITER_QOS_DEFAULT NULL
#define DDS_DATAWRITER_QOS_USE_TOPIC_QOS ((DDS_DataWriterQos *)-1)
#define DDS_DATAREADER_QOS_USE_TOPIC_QOS ((DDS_DataReaderQos *)-1)

/* QosPolicy

*/

#define DDS_USERDATA_QOS_POLICY_ NAME "UserData"

#define DDS_DURABILITY_QOS_POLICY_ NAME "Durability"
#define DDS_PRESENTATION_QOS_POLICY_ NAME "Presentation"
#define DDS_DEADLINE_QOS_POLICY NAME "Deadline"

#define DDS_LATENCYBUDGET_ QOS_POLICY_ NAME "LatencyBudget"
#define DDS_OWNERSHIP_QOS_POLICY_ NAME "Ownership"

#define DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ NAME "OwnershipStrength"
#define DDS_LIVELINESS_QOS_POLICY_ NAME "Liveliness"
#define DDS_TIMEBASEDFILTER_QOS_POLICY_NAME "TimeBasedFilter"

469
C Reference Guide

Appendices

470
C Reference Guide

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DDS_PARTITION_QOS_POLICY NAME
DDS_RELIABILITY QOS_POLICY_ NAME
DDS_DESTINATIONORDER_QOS_ POLICY NAME
DDS_HISTORY_QOS_POLICY_ NAME
DDS_RESOURCELIMITS_QOS_POLICY NAME
DDS_ENTITYFACTORY QOS_POLICY NAME

"Partition"
"Reliability"
"DestinationOrder"
"History"
"ResourceLimitg"
"EntityFactory"

DDS_WRITERDATALIFECYCLE_QOS_POLICY_ NAME
"WriterDataLifecycle"
#define DDS_READERDATALIFECYCLE_QOS_POLICY_ NAME
"ReaderDataLifecycle"

DDS_TOPICDATA_ QOS_POLICY NAME
DDS_GROUPDATA_QOS_POLICY NAME
DDS_TRANSPORTPRIORITY QOS_POLICY_ NAME
DDS_LIFESPAN_QOS_POLICY_ NAME
DDS_DURABILITYSERVICE_QOS_POLICY_ NAME

DDS_INVALID_QOS_POLICY_ ID
DDS_USERDATA_QOS_POLICY ID
DDS_DURABILITY QOS_POLICY_ ID

DDS_ PRESENTATION_QOS_POLICY_ID
DDS_DEADLINE_QOS_POLICY_ID
DDS_LATENCYBUDGET_QOS_POLICY_ID
DDS_OWNERSHIP_QOS_POLICY_ ID
DDS_OWNERSHIPSTRENGTH QOS_POLICY_ ID
DDS_LIVELINESS_QOS_POLICY_ ID
DDS_TIMEBASEDFILTER_QOS_POLICY_ ID
DDS_PARTITION_QOS_POLICY ID
DDS_RELIABILITY QOS_POLICY_ID
DDS_DESTINATIONORDER_QOS_POLICY ID
DDS_HISTORY QOS_POLICY ID
DDS_RESOURCELIMITS_QOS_POLICY_ ID
DDS_ENTITYFACTORY_QOS_POLICY_ID
DDS_WRITERDATALIFECYCLE_QOS_POLICY_ID
DDS_READERDATALIFECYCLE_QOS_POLICY_ID
DDS_TOPICDATA QOS_POLICY_ ID
DDS_GROUPDATA_QOS_POLICY_ ID
DDS_TRANSPORTPRIORITY QOS_POLICY_ ID
DDS_LIFESPAN_QOS_POLICY_ ID
DDS_DURABILITYSERVICE_QOS_POLICY_ ID

"TopicData"
"GroupData"
"TransportPriority"
"Lifespan"
"DurabilityService"

00 J o Ul WN R

& PRISMTECH

Appendix

& PRISMTECH

Platform Specific IDL Interface

The IDL code in the next paragraphs are taken from the OMG C Language Mapping
Soecification.

dds dcps.idl

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DOMAINID_TYPE_NATIVE string
HANDLE_TYPE_NATIVElong long
HANDLE_NIL_NATIVEO
BUILTIN_TOPIC_KEY_ TYPE_NATIVElong
TheParticipantFactory
PARTICIPANT_QOS_DEFAULT
TOPIC_QOS_DEFAULT
PUBLISHER_QOS_DEFAULT
SUBSCRIBER_QOS_DEFAULT
DATAWRITER_QOS_DEFAULT
DATAREADER_QOS_DEFAULT
DATAWRITER_QOS_USE_TOPIC_QOS
DATAREADER_QOS_USE_TOPIC_QOS

module DDS {
typedef DOMAINID_TYPE_NATIVE DomainId_t;
typedef HANDLE_TYPE_NATIVE InstanceHandle_t;
typedef BUILTIN_TOPIC_KEY_TYPE_NATIVE BuiltinTopicKey_ t[3];
typedef sequence<InstanceHandle_t> InstanceHandleSeq;
typedef long ReturnCode_t;
typedef long QosPolicyId_ t;
typedef sequence<string> StringSeq;
struct Duration_t {
long sec;
unsigned long nanosec;

Y

struct Time_t {
long sec;
unsigned long nanosec;

i
//

// Pre-defined values

//

const InstanceHandle_t HANDLE_NIL= HANDLE_NIL_NATIVE;
const long LENGTH_UNLIMITED= -1;

const long DURATION_INFINITE_SEC= Ox7fffffff;

const unsigned long DURATION_INFINITE_NSEC= Ox7fffffff;
const long DURATION_ZERO_SEC= O0;

471
C Reference Guide

Appendices

const unsigned long DURATION_ZERO_NSEC= 0;
const long TIMESTAMP_INVALID_SEC= -1;
const unsigned long TIMESTAMP_INVALID_NSEC= Oxffffffff;

//

// Return codes

!/

const
const
const
const
const
const
const
const
const
const
const
const
const

/7

ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t

RETCODE_OK

RETCODE_ERROR
RETCODE_UNSUPPORTED
RETCODE_BAD_PARAMETER
RETCODE_PRECONDITION_NOT MET
RETCODE_OUT_OF _RESOURCES
RETCODE_NOT_ENABLED
RETCODE_IMMUTABLE_POLICY
RETCODE_INCONSISTENT_POLICY
RETCODE_ALREADY_ DELETED
RETCODE_TIMEQOUT
RETCODE_NO_DATA
RETCODE_ILLEGAL_OPERATION

// Status to support listeners and conditions

//

typedef unsigned
typedef unsigned

const
const
const
const
const
const
const
const
const
const
const
const
const

StatusKind
StatusKind
StatusKind
StatusKind
StatusKind

long StatusKind;
long StatusMask;
INCONSISTENT TOPIC_STATUS

OFFERED_DEADLINE_MISSED_STATUS
REQUESTED_DEADLINE_MISSED_STATUS =
OFFERED_INCOMPATIBLE_QOS_STATUS

StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind

REQUESTED_INCOMPATIBLE_QOS_STATUS=

SAMPLE_LOST_STATUS
SAMPLE_REJECTED_STATUS
DATA_ON_READERS_STATUS
DATA_AVAILABLE_STATUS
LIVELINESS_LOST STATUS
LIVELINESS_CHANGED_STATUS
PUBLICATION_MATCHED_ STATUS
SUBSCRIPTION_MATCHED_ STATUS

struct InconsistentTopicStatus {
long total_count;
long total_count_change;

Y

struct SampleLostStatus {
long total_count;
long total_count_change;

I

enum SampleRejectedStatusKind {
NOT_REJECTED,
REJECTED_BY INSTANCE_LIMIT,
REJECTED_BY_ SAMPLES_LIMIT,

472
C Reference Guide

0 Jo Ul idhWN RO

// bit-mask StatusKind

0x0001
0x0001
0x0001
0x0001

0x0001 << 6;

0x0001
0x0001
0x0001
0x0001
0x0001
0x0001
0x0001
0x0001

<<
<<
<<
<<
<<
<<
<<
<<

& PRISMTECH

Appendices

& PRISMTECH

REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT
i
struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;
i
struct LivelinessLostStatus {
long total_count;
long total_count_change;
Y
struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;
Y
struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;
Y
struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;
Y
struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;
i
typedef sequence<QosPolicyCount> QosPolicyCountSeq;
struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies;
Y
struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies;
Y
struct PublicationMatchedStatus {
long total_count;
long total_count_change;
long current_count;

473
C Reference Guide

Appendices

long current_count_change;
InstanceHandle_t last_subscription_handle;
I
struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;
I
//
// Listeners
//
interface Listener;
interface Entity;
interface TopicDescription;
interface Topic;
interface ContentFilteredTopic;
interface MultiTopic;
interface DataWriter;
interface DataReader;
interface Subscriber;
interface Publisher;
typedef sequence<Topic> TopicSeq;
typedef sequence<DataReader> DataReaderSeq;
interface Listener {
I
interface TopicListener : Listener {
void
on_inconsistent_topic(
in Topic the_topic,
in InconsistentTopicStatus status);
I
interface DataWriterListener : Listener {
void
on_offered _deadline_missed/(
in DataWriter writer,
in OfferedDeadlineMissedStatus status) ;
void
on_offered_incompatible_gos (
in DataWriter writer,
in OfferedIncompatibleQosStatus status);
void
on_liveliness_lost(
in DataWriter writer,
in LivelinessLostStatus status);
void
on_publication_matched (
in DataWriter writer,
in PublicationMatchedStatus status) ;

474

C Reference Guide & PRISMTECH

Appendices

Y
interface PublisherlListener : DataWriterListener {
Y
interface DataReaderListener : Listener {
void
on_requested_deadline_missed(
in DataReader reader,
in RequestedDeadlineMissedStatus status);
void
on_requested_incompatible_gos (
in DataReader reader,
in RequestedIncompatibleQosStatus status) ;
void
on_sample_rejected(
in DataReader reader,
in SampleRejectedStatus status);
void
on_liveliness_changed(
in DataReader reader,
in LivelinessChangedStatus status) ;
void
on_data_available (
in DataReader reader) ;
void
on_subscription_matched (
in DataReader reader,
in SubscriptionMatchedStatus status);
void
on_sample_lost (
in DataReader reader,
in SampleLostStatus status);
Y
interface SubscriberlListener : DataReaderListener {
void
on_data_on_readers (
in Subscriber subs) ;
Y

interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener {

Y

//

// Conditions

//

interface Condition {
boolean
get_trigger_value() ;
Y

typedef sequence<Condition> ConditionSeq;
interface WaitSet ({
475

& PRISMTECH C Reference Guide

Appendices

ReturnCode_t
wailt (
inout ConditionSeq active_conditions,
in Duration_t timeout) ;
ReturnCode_t
attach_condition (
in Condition cond) ;
ReturnCode_t
detach_condition (
in Condition cond) ;
ReturnCode_t
get_conditions (
inout ConditionSeqg attached_conditions) ;
Yi
interface GuardCondition : Condition {
ReturnCode_t
set_trigger_value (
in boolean value) ;
Y
interface StatusCondition : Condition {
StatusMask
get_enabled_statuses() ;
ReturnCode_t
set_enabled_statuses (
in StatusMask mask) ;
Entity
get_entity();
}i
// Sample states to support reads
typedef unsigned long SampleStateKind;
typedef sequence <SampleStateKind> SampleStateSeq;
const SampleStateKind READ_SAMPLE_STATE = 0x0001 << 0;
const SampleStateKind NOT_READ_SAMPLE_STATE = 0x0001 << 1;
// This is a bit-mask SampleStateKind
typedef unsigned long SampleStateMask;
const SampleStateMask ANY_SAMPLE_STATE = Oxffff;
// View states to support reads
typedef unsigned long ViewStateKind;
typedef sequence<ViewStateKind> ViewStateSeq;
const ViewStateKind NEW_VIEW_ STATE = 0x0001 << 0;
const ViewStateKind NOT_NEW_VIEW_STATE = 0x0001 << 1;
// This is a bit-mask ViewStateKind
typedef unsigned long ViewStateMask;
const ViewStateMask ANY VIEW_STATE = Oxffff;
// Instance states to support reads
typedef unsigned long InstanceStateKind;
typedef sequence<InstanceStateKind> InstanceStateSeq;
const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001 << 0;
const InstanceStateKind NOT ALIVE_DISPOSED_INSTANCE_STATE = 0x0001
<< 1;

476

C Reference Guide & PRISMTECH

Appendices

& PRISMTECH

const

InstanceStateKind NOT_ALIVE_NO_WRITERS_INSTANCE_STATE =
0x0001 << 2;

// This is a bit-mask InstanceStateKind
typedef unsigned long InstanceStateMask;

const InstanceStateMask ANY_INSTANCE_STATE = Oxffff;
const InstanceStateMask NOT_ ALIVE_INSTANCE_STATE = 0x006;
interface ReadCondition : Condition {

SampleStateMask

get_sample_state_mask() ;

ViewStateMask

get_view_state_mask() ;
InstanceStateMask
get_instance_state_mask() ;
DataReader
get_datareader () ;

I

interface QueryCondition : ReadCondition {

string

get_qguery_expression() ;
ReturnCode_t
get_query_parameters (
inout StringSeq query_parameters) ;
ReturnCode_t
set_query_ parameters (
in StringSeq query_ parameters) ;

Y
//

// Qos

//

const
const
const
const
const
const
const

const
const
const
const
const

const
const
const
const

const

string USERDATA_QOS_POLICY_NAME = "UserData";
string DURABILITY_QOS_POLICY_NAME = "Durability";
string PRESENTATION_QOS_POLICY_ NAME = "Presentation";
string DEADLINE_QOS_POLICY_ NAME = "Deadline";
string LATENCYBUDGET_QOS_POLICY_NAME = "LatencyBudget";
string OWNERSHIP_QOS_POLICY_NAME = "Ownership";
string OWNERSHIPSTRENGTH_QOS_POLICY_ NAME=
"OwnershipStrength";
string LIVELINESS_QOS_POLICY_NAME = "Liveliness";
string TIMEBASEDFILTER_QOS_POLICY NAME= "TimeBasedFilter";
string PARTITION_QOS_POLICY_NAME = "Partition";
string RELIABILITY_QOS_POLICY_NAME = "Reliability";
string DESTINATIONORDER_QOS_POLICY_ NAME =
"DestinationOrder";
string HISTORY_QOS_POLICY_ NAME = "History";
string RESOURCELIMITS_QOS_POLICY_ NAME= "ResourceLimits";
string ENTITYFACTORY_QOS_POLICY_NAME = "EntityFactory";

string WRITERDATALIFECYCLE_ QOS_POLICY_ NAM=
"WriterDataLifecycle";
string READERDATALIFECYCLE_QOS_POLICY_ NAM=
"ReaderDataLifecycle";
477
C Reference Guide

Appendices

478
C Reference Guide

const
const
const

const
const

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

string TOPICDATA_QOS_POLICY_NAME =
string GROUPDATA_QOS_POLICY_NAME =

string TRANSPORTPRIORITY_QOS_POLICY NAME=
"TransportPriority";

string LIFESPAN_QOS_POLICY_NAME =

string DURABILITYSERVICE_QOS_POLICY_ NAME=
"DurabilityService";

QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t

INVALID_QOS_POLICY_ ID =
USERDATA_QOS_POLICY_ID =
DURABILITY_QOS_POLICY_ID =
PRESENTATION_QOS_POLICY ID =
DEADLINE_QOS_POLICY_ ID =
LATENCYBUDGET QOS_POLICY_ID =
OWNERSHIP_QOS_POLICY_ID =
OWNERSHIPSTRENGTH_QOS_POLICY ID =
LIVELINESS_QOS_POLICY_ID =
TIMEBASEDFILTER QOS_POLICY_ ID =
PARTITION_QOS_POLICY_ ID =
RELIABILITY QOS_POLICY_ ID =
DESTINATIONORDER_QOS_POLICY ID =
HISTORY_QOS_POLICY_ID =
RESOURCELIMITS_QOS_POLICY_ ID

ENTITYFACTORY QOS_POLICY ID =
WRITERDATALIFECYCLE_QOS_POLICY ID=
READERDATALIFECYCLE_QOS_ POLICY ID=
TOPICDATA_QOS_POLICY_ID =
GROUPDATA_QOS_POLICY_ID =
TRANSPORTPRIORITY_ QOS_POLICY ID =
LIFESPAN_QOS_POLICY_ ID =
DURABILITYSERVICE QOS_POLICY ID =

struct UserDataQosPolicy {
sequence<octet> value;

I

struct TopicDataQosPolicy {
sequence<octet> value;

Y

struct GroupDataQosPolicy {
sequence<octet> value;

I

struct TransportPriorityQosPolicy {
long value;

Y

struct LifespanQosPolicy {

Duration_t duration;

I

enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_ QOS,
TRANSIENT_ LOCAL_DURABILITY_QOS,
TRANSIENT_ DURABILITY_QOS,
PERSISTENT_ DURABILITY_QOS

"TopicData";
"GroupData";

"Lifespan";

0 J o Ul idhWNBE O

16;

18;
19;
20;
21;
22;

& PRISMTECH

Appendices

& PRISMTECH

Y
struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;
i
enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS
Y
struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;
Y
struct DeadlineQosPolicy {
Duration_t period;
}i
struct LatencyBudgetQosPolicy {
Duration_t duration;
Y
enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_ QOS,
EXCLUSIVE_OWNERSHIP_QOS
Y
struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;
Y
struct OwnershipStrengthQosPolicy {
long value;
Y
enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT LIVELINESS_QOS,
MANUAL_BY_ TOPIC_LIVELINESS_QOS
Y
struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;
Y
struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;
Y
struct PartitionQosPolicy {
StringSeqg name;
Y
enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_ QOS,
RELIABLE_RELIABILITY_QOS
Y
struct ReliabilityQosPolicy {
479
C Reference Guide

Appendices

480
C Reference Guide

ReliabilityQosPolicyKind kind;
Duration_t max_blocking time;
I
enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
Y
struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;
I
enum HistoryQosPolicyKind {
KEEP_LAST HISTORY_QOS,
KEEP_ALL_HISTORY_QOS
I
struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;
Y
struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples_per_instance;
Y
struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;
I
struct WriterDatalLifecycleQosPolicy {
boolean autodispose_unregistered_instances;
Y
struct ReaderDatalLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;
I
struct DurabilityServiceQosPolicy {
Duration_t service_cleanup_delay;
HistoryQosPolicyKind history kind;
long history_depth;
long max_samples;
long max_instances;
long max_samples_per_instance;
Y
struct DomainParticipantFactoryQos {
EntityFactoryQosPolicy entity_ factory;
I
struct DomainParticipantQos {
UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_ factory;
Y
struct TopicQos {
TopicDataQosPolicy topic_data;

& PRISMTECH

Appendices

& PRISMTECH

Y

DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

struct DataWriterQos {

Y

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_ strength;

WriterDataLifecycleQosPolicy writer_data_lifecycle;

struct PublisherQos {

Y

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_ factory;

struct DataReaderQos {

Y

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;

ReaderDatalLifecycleQosPolicy reader_data_lifecycle;

struct SubscriberQos {

481
C Reference Guide

Appendices

482
C Reference Guide

Y
//

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

struct ParticipantBuiltinTopicData {

I

BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

struct TopicBuiltinTopicData {

I

BuiltinTopicKey_t key;

string name;

string type_name;

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

struct PublicationBuiltinTopicData {

I

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;

string type_name;

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

struct SubscriptionBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;

string type_name;

& PRISMTECH

Appendices

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

Y

//

interface Entity {

// ReturnCode_t

// set_qgos(

// in EntityQos gos);

//

// ReturnCode_t

// get_gos(

// inout EntityQos gos);

//

// ReturnCode_t

// set_listener (

// in Listener 1,
// in StatusMask mask) ;
//

// Listener
// get_listener();
ReturnCode_t
enable () ;
StatusCondition
get_statuscondition() ;
StatusMask
get_status_changes () ;
Y
//
interface DomainParticipant : Entity {
// Factory interfaces
Publisher
create_publisher (
in PublisherQos gos,
in PublisherListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_publisher (
in Publisher p);
Subscriber
create_subscriber (

483

& PRISMTECH C Reference Guide

Appendices

484
C Reference Guide

in SubscriberQos gos,

in SubscriberListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_subscriber (

in Subscriber s);
Subscriber
get_builtin_subscriber () ;
Topic
create_topic(

in string topic_name,

in string type_name,

in TopicQos gos,

in TopicListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_topic(

in Topic a_topic);
Topic
find_topic(

in string topic_name,

in Duration_t timeout) ;
TopicDescription
lookup_topicdescription (

in string name) ;
ContentFilteredTopic
create_contentfilteredtopic (

in string name,

in Topic related_topic,

in string filter expression,

in StringSeq expression_parameters) ;

ReturnCode_t
delete_contentfilteredtopic (

in ContentFilteredTopic a_contentfilteredtopic);

MultiTopic
create_multitopic(

in string name,

in string type_name,

in string subscription_expression,
in StringSeq expression_parameters) ;

ReturnCode_t
delete_multitopic(

in MultiTopic a_multitopic) ;
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_gos (

in DomainParticipantQos gos) ;
ReturnCode_t
get_gos (

& PRISMTECH

Appendices

& PRISMTECH

inout DomainParticipantQos gos) ;
ReturnCode_t
set_listener (

in DomainParticipantListener a_listener,

in StatusMask mask) ;
DomainParticipantListener
get_listener();
ReturnCode_t
ignore_participant (

in InstanceHandle_t handle) ;
ReturnCode_t
ignore_topic(

in InstanceHandle_t handle) ;
ReturnCode_t
ignore_publication (

in InstanceHandle_t handle);
ReturnCode_t
ignore_subscription (

in InstanceHandle_t handle) ;
DomainId_t
get_domain_id() ;
ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_gos(

in PublisherQos gos) ;
ReturnCode_t
get_default_publisher_gos(

inout PublisherQos gos) ;
ReturnCode_t
set_default_subscriber_gos (

in SubscriberQos gos) ;
ReturnCode_t
get_default_subscriber_gos (

inout SubscriberQos gos) ;
ReturnCode_t
set_default_topic_gos (

in TopicQos gos);
ReturnCode_t
get_default_topic_gos (

inout TopicQos gos) ;
boolean
contains_entity (

in InstanceHandle_t a_handle) ;
ReturnCode_t
get_current_time (

inout Time_t current_time) ;
Y
interface DomainParticipantFactory {
//

485
C Reference Guide

Appendices

486
C Reference Guide

// DomainParticipantFactory
// get_instance() ;
//
DomainParticipant
create_participant (

in DomainId_t domainId,

in DomainParticipantQos gos,

in DomainParticipantListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_participant (

in DomainParticipant a_participant) ;
DomainParticipant
lookup_participant (

in DomainId_t domainId) ;
ReturnCode_t
set_default_participant_gos (

in DomainParticipantQos gos) ;
ReturnCode_t
get_default_participant_gos (

inout DomainParticipantQos gos) ;

ReturnCode_t
set_gos (
in DomainParticipantFactoryQos gos) ;
ReturnCode_t
get_gos (
inout DomainParticipantFactoryQos gos) ;
Y
interface TypeSupport {
// ReturnCode_t
// register_type(

// in DomainParticipant domain,
// in string type_name) ;

//

// string

// get_type_name() ;
}i
//
interface TopicDescription {
string
get_type_name () ;
string
get_name () ;
DomainParticipant
get_participant () ;
Y
interface Topic : Entity, TopicDescription {
ReturnCode_t
set_gos (

& PRISMTECH

Appendices

& PRISMTECH

in TopicQos gos);
ReturnCode_t

get_gos (

inout TopicQos gos) ;
ReturnCode_t

set_listener(

in TopicListener a_listener,

in StatusMask mask) ;
TopicListener_ptr
get_listener () ;
// Access the status
ReturnCode_t
get_inconsistent_topic_status(

inout InconsistentTopicStatus a_status);

Y

interface ContentFilteredTopic : TopicDescription {

string

get_filter_ expression() ;
ReturnCode_t
get_expression_parameters (

inout StringSeq expression_parameters) ;

ReturnCode_t
set_expression_parameters (

in StringSeq expression_parameters) ;

Topic
get_related_topic() ;
Y

interface MultiTopic : TopicDescription {

string
get_subscription_expression() ;
ReturnCode_t
get_expression_parameters (

inout StringSeq expression_parameters) ;

ReturnCode_t
set_expression_parameters (

in StringSeq expression_parameters) ;

Y
//
interface Publisher : Entity {
DataWriter
create_datawriter (
in Topic a_topic,
in DataWriterQos gos,
in DataWriterListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_datawriter (
in DataWriter a_datawriter);
DataWriter
lookup_datawriter (

487
C Reference Guide

Appendices

488
C Reference Guide

in string topic_name) ;
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_gos (

in PublisherQos gos) ;
ReturnCode_t
get_gos (

inout PublisherQos gos) ;
ReturnCode_t
set_listener (

in PublisherListener a_listener,

in StatusMask mask) ;
PublisherListener
get_listener () ;
ReturnCode_t
suspend_publications() ;
ReturnCode_t
resume_publications() ;
ReturnCode_t
begin_coherent_changes () ;
ReturnCode_t
end_coherent_changes () ;
ReturnCode_t
wait_for_acknowledgments (

in Duration_t max_wait) ;
DomainParticipant
get_participant () ;
ReturnCode_t
set_default_datawriter_gos(

in DataWriterQos gos);
ReturnCode_t
get_default_datawriter_gos (

inout DataWriterQos gos) ;
ReturnCode_t
copy_from_topic_gos(

inout DataWriterQos a_datawriter_gos,

in TopicQos a_topic_gos) ;
I
interface DataWriter : Entity {
// InstanceHandle_t
// register_instance(
// in Data instance_data) ;
//
// InstanceHandle_t
// register_instance_w_timestamp (

// in Data instance_data,
// in Time_t source_timestamp) ;
//

// ReturnCode_t

& PRISMTECH

Appendices

// unregister_instance (

// in Data instance_data,
// in InstanceHandle_t handle) ;
//

// ReturnCode_t
// unregister_instance_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t handle,
// in Time_t source_timestamp) ;
//

// ReturnCode_t
// write(

// in Data instance_data,
// in InstanceHandle_t handle) ;
//

// ReturnCode_t
// write_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t handle,
// in Time_t source_timestamp) ;
//

// ReturnCode_t
// dispose(

// in Data instance_data,
// in InstanceHandle_t instance_handle) ;
//

// ReturnCode_t
// dispose_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t instance_handle,
// in Time_t source_timestamp) ;

//

// ReturnCode_t
// get_key_value (

// inout Data key_ holder,

// in InstanceHandle_t handle) ;
//

// InstanceHandle_t lookup_instance (
// in Data instance_data);
ReturnCode_t

set_gos (

in DataWriterQos gos) ;
ReturnCode_t
get_gos (

inout DataWriterQos gos) ;
ReturnCode_t
set_listener (

in DataWriterListener a_listener,

in StatusMask mask) ;
DataWriterListener

489

& PRISMTECH C Reference Guide

Appendices

get_listener () ;
Topic
get_topic();
Publisher
get_publisher () ;
ReturnCode_t
wait_for_acknowledgments (
in Duration_t max_wait) ;
// Access the status
ReturnCode_t
get_liveliness_lost_status(
inout LivelinessLostStatus status);
ReturnCode_t
get_offered _deadline_missed_status (
inout OfferedDeadlineMissedStatus status);
ReturnCode_t
get_offered_incompatible_gos_status(
inout OfferedIncompatibleQosStatus status) ;
ReturnCode_t
get_publication_matched_status (
inout PublicationMatchedStatus status) ;
ReturnCode_t
assert_liveliness();
ReturnCode_t
get_matched_subscriptions (
inout InstanceHandleSeq subscription_handles) ;
ReturnCode_t
get_matched_subscription_data(
inout SubscriptionBuiltinTopicData subscription_data,
in InstanceHandle_t subscription_handle) ;
Y
//
interface Subscriber : Entity {
DataReader
create_datareader (
in TopicDescription a_topic,
in DataReaderQos gos,
in DataReaderListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_datareader (
in DataReader a_datareader) ;
ReturnCode_t
delete_contained_entities();
DataReader
lookup_datareader (
in string topic_name) ;
ReturnCode_t
get_datareaders (
inout DataReaderSeq readers,

490

C Reference Guide & PRISMTECH

Appendices

& PRISMTECH

in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);
ReturnCode_t
notify datareaders();
ReturnCode_t
set_gos (
in SubscriberQos gos) ;
ReturnCode_t
get_gos (
inout SubscriberQos gos) ;
ReturnCode_t
set_listener (
in SubscriberListener a_listener,
in StatusMask mask) ;
SubscriberListener
get_listener () ;
ReturnCode_t
begin_access() ;
ReturnCode_t
end_access () ;
DomainParticipant
get_participant () ;
ReturnCode_t
set_default_datareader_gos (
in DataReaderQos gos) ;
ReturnCode_t
get_default_datareader_gos (
inout DataReaderQos gos) ;
ReturnCode_t
copy_from_topic_gos (
inout DataReaderQos a_datareader_gos,
in TopicQos a_topic_gos);
Y
interface DataReader : Entity {
// ReturnCode_t

// read(

// inout DataSeqg data_values,

// inout SampleInfoSeq info_seq,

// in long max_samples,

// in SampleStateMask sample_states,
// in ViewStateMask view_states,

// in InstanceStateMask instance_states);
//

// ReturnCode_t

// take(

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,

// in long max_samples,

// in SampleStateMask sample_states,

491
C Reference Guide

Appendices

492
C Reference Guide

/!
//
//
//
//
//
/!
/7
//
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/!
//
//
//
//
//
/!
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/!
//

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t
read_w_condition (

inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in ReadCondition a_condition) ;

ReturnCode_t
take_w_condition (

inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in ReadCondition a_condition) ;

ReturnCode_t
read_next_sample (

inout Data data_values,

inout SampleInfo sample_info);

ReturnCode_t
take_next_sample (

inout Data data_values,

inout SampleInfo sample_info);

ReturnCode_t
read_instance (

inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in InstanceHandle_t a_handle,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t
take_instance(

inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in InstanceHandle_t a_handle,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t
read_next_instance(

inout DataSeq data_values,

& PRISMTECH

Appendices

// inout SampleInfoSeqg info_seq,

// in long max_samples,

// in InstanceHandle_t a_handle,

// in SampleStateMask sample_states,

// in ViewStateMask view_states,

// in InstanceStateMask instance_states) ;
//

// ReturnCode_t
// take_next_instance(

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,

// in long max_samples,

// in InstanceHandle_t a_handle,

// in SampleStateMask sample_states,

// in ViewStateMask view_states,

// in InstanceStateMask instance_states);
//

// ReturnCode_t
// read_next_instance_w_condition (

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,
// in long max_samples,

// in InstanceHandle_t a_handle,
// in ReadCondition a_condition) ;
//

// ReturnCode_t
// take_next_instance_w_condition (

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,
// in long max_samples,

// in InstanceHandle_t a_handle,
// in ReadCondition a_condition) ;
//

// ReturnCode_t
// return_loan

// inout DataSeq data_values,
// inout SampleInfoSeq info_seq) ;
//

// ReturnCode_t
// get_key_value (

// inout Data key_ holder,
// in InstanceHandle_t handle) ;
//

// InstanceHandle_t
// lookup_instance (
// in Data instance);
ReadCondition
create_readcondition(
in SampleStateMask sample_states,
in ViewStateMask view_states,

493

& PRISMTECH C Reference Guide

Appendices

494
C Reference Guide

in InstanceStateMask instance_states);
QueryCondition
create_querycondition (
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states,
in string query_ expression,
in StringSeq query_ parameters) ;
ReturnCode_t
delete_readcondition (
in ReadCondition a_condition) ;
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qgos (
in DataReaderQos gos) ;
ReturnCode_t
get_gos (
inout DataReaderQos gos) ;
ReturnCode_t
set_listener (
in DataReaderListener a_listener,
in StatusMask mask) ;
DataReaderListener
get_listener () ;
TopicDescription
get_topicdescription() ;
Subscriber
get_subscriber () ;
ReturnCode_t
get_sample_rejected_status (
inout SampleRejectedStatus status) ;
ReturnCode_t
get_liveliness_changed_status (
inout LivelinessChangedStatus status);
ReturnCode_t
get_requested_deadline_missed_status (
inout RequestedDeadlineMissedStatus status);
ReturnCode_t
get_requested_incompatible_gos_status (
inout RequestedIncompatibleQosStatus status) ;
ReturnCode_t
get_subscription_matched_status (
inout SubscriptionMatchedStatus status);
ReturnCode_t
get_sample_lost_status(
inout SamplelLostStatus status);
ReturnCode_t
wait_for_historical_data(
in Duration_t max_wait) ;

& PRISMTECH

Appendices

& PRISMTECH

ReturnCode_t
get_matched_publications (
inout InstanceHandleSeqg publication_handles) ;
ReturnCode_t
get_matched_publication_data(
inout PublicationBuiltinTopicData publication_data,
in InstanceHandle_t publication_handle) ;
i
struct SampleInfo {
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_ t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;
Y
typedef sequence<SampleInfo> SampleInfoSeq;

Foo.idl

// Implied IDL for type "Foo"
// Example user defined structure
struct Foo {
long dummy;
Y
typedef sequence<Foo> FooSeq;
#include "dds_dcps.idl"
interface FooTypeSupport : DDS::TypeSupport {
DDS: :ReturnCode_t
register_type (
in DDS::DomainParticipant participant,
in string type_name) ;
string
get_type_name () ;
Y
interface FooDataWriter : DDS::DataWriter ({
DDS: : InstanceHandle_t
register_instance (
in Foo instance_data) ;
DDS: : InstanceHandle_t
register_instance_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;
DDS: :ReturnCode_t

495
C Reference Guide

Appendices

496
C Reference Guide

unregister_instance (
in Foo instance_data,
in DDS::InstanceHandle_t handle) ;
DDS: :ReturnCode_t
unregister_instance_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;
DDS: :ReturnCode_t
write(
in Foo instance_data,
in DDS::InstanceHandle_t handle) ;
DDS: :ReturnCode_t
write_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;
DDS: :ReturnCode_t
dispose (
in Foo instance_data,
in DDS::InstanceHandle_t instance_handle) ;
DDS: :ReturnCode_t
dispose_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t instance_handle,
in DDS::Time_t source_timestamp) ;
DDS: :ReturnCode_t
get_key value (
inout Foo key_ holder,
in DDS::InstanceHandle_t handle) ;
DDS: : InstanceHandle_t
lookup_instance (
in Foo instance_data) ;
I
interface FooDataReader : DDS::DataReader {
DDS: :ReturnCode_t
read (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states) ;
DDS: :ReturnCode_t
take (
inout FooSeq data_values,
inout DDS::SampleInfoSeqg info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,

& PRISMTECH

Appendices

& PRISMTECH

in DDS::InstanceStateMask instance_states) ;

DDS: :ReturnCode_t
read_w_condition (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS: :ReadCondition a_condition) ;
DDS: :ReturnCode_t
take_w_condition (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS: :ReadCondition a_condition) ;
DDS: :ReturnCode_t
read_next_sample (
inout Foo data_values,
inout DDS::SampleInfo sample_info);
DDS: :ReturnCode_t
take_next_sample (
inout Foo data_values,
inout DDS::SampleInfo sample_info) ;
DDS: :ReturnCode_t
read_instance (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_sedq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take_instance (
inout FooSeqg data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

in DDS: :SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
read_next_instance(
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take_next_instance (

497
C Reference Guide

Appendices

498
C Reference Guide

inout FooSeqg data_values,

inout DDS::SampleInfoSeq info_seq,

in long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states) ;
DDS: :ReturnCode_t
read_next_instance_w_condition (

inout FooSeq data_values,

inout DDS::SampleInfoSeqg info_seq,

in long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::ReadCondition a_condition) ;
DDS: :ReturnCode_t
take_next_instance_w_condition (

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq,

in long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::ReadCondition a_condition) ;
DDS: :ReturnCode_t
return_loan (

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq) ;
DDS: :ReturnCode_t
get_key_value(

inout Foo key_ _holder,

in DDS::InstanceHandle_t handle) ;
DDS: :InstanceHandle_t
lookup_instance (

in Foo instance);

I

& PRISMTECH

Appendix

SampleSates, ViewSates and
|nstanceSates

Data is made available to the application by the following operations on
DDS_DataReader objects: DDS _DataReader_ read and
DDS_DataReader_take oOperations. The general semantics of the
DDS_DataReader_read operations is that the application only gets access to the
matching data; the data remain available in the Data Distribution Services and can
be read again. The semantics of the DDS_DataReader_take operationsis that the
datais not available in the Data Distribution Service; that data will no longer be
accessible to the ppDs_DataReader. Consequently, it is possible for a
DDS_DataReader to access the same sample multiple times but only if al previous
accesses were DDS_DataReader_read Operations.

Each of these operations returns an ordered collection of pata values and
associated DDS_SampleInfo oObjects. Each data value represents an atom of data
information (i.e., avalue for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the DDs_HistoryQosPolicy alow
for it.

Samplel nfo Class

DDS_SampleInfo istheinformation that accompanies each samplethat is‘read’ or
‘taken’. It contains, among others, the following information:

e The sample_state (DDS_READ_SAMPLE_STATE Of
DDS_NOT_READ_SAMPLE_STATE);

e Theview_state, (DDS_NEW_VIEW_STATE Of DDS_NOT_NEW_VIEW_STATE);

e Theinstance_state (DDS_ALIVE_INSTANCE_STATE,
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE Of
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE).

sample date
For each sample, the Data Distribution Service internally maintains a

sample_state Specific to each DDs_DataReader. The sample_state can
either be DDS_READ_SAMPLE_STATE Or DDS_NOT_READ_ SAMPLE_STATE.

499

& PRISMTECH C Reference Guide

Appendices

* DDS_READ_SAMPLE_STATE indicates that the pps_DataReader has already
accessed that sample by means of DDS_DataReader_read. Had the sample been
accessed by DDs_DataReader_take it would no longer be available to the
DDS_DataReader,

e DDS_NOT READ SAMPLE_STATE indicates that the DDS_DataReader has not
accessed that sample before.

new sample received
(first time seen)

—GOT_REA D_SAMPL E_STA@

take/ read
sampleis*“overwritten”
<REA D_SAMPLE_STATE
read
take/

sampleis “overwritten”

®

Figure 20: Sate Chart of the sample _statefor a Single Sample
Sate per Sample

The sample_state availableinthe bbs_sampleInfo reflect the sample_state
of each sample. The sample_state can be different for all samplesin the returned
collection that refer to the same instance.

500

C Reference Guide & PRISMTECH

Appendices

ingance date

For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state can be:

e DDS_ALIVE_INSTANCE_STATE indicates that:
- samples have been received for the instance
- there are live DDS_DataWriter abjects writing the instance

- the instance has not been explicitly disposed of (or else samples have been
received after it was disposed of)

* DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was
disposed of by a DDS_bDatawWriter either explicitly by means of the
DDS_DataWriter_dispose operation or implicitty in case the
autodispose unregistered_instances field of the
WriterDataLyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, DDS Witer Datal ifecycleQosPolicy), and no
new samples for that instance have been written afterwards.

e DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has
been declared as not-alive by the bbs_pataReader because it detected that there
areno live bbs_DataWriter objects writing that instance.

DDS _Owner shipQosPoalicy

& PRISMTECH

The precise events that cause the instance_state to change depends on the

setting of the DDS_OwnershipQosPolicy:

e If DDS_OwnershipQosPolicy iS s&t t0 DDS_EXCLUSIVE_OWNERSHIP_QOS,
then the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE only if the DDS_Datawriter
that “owns’ theinstance explicitly disposes of it. The instance_state becomes
DDS_ALIVE_INSTANCE_STATE again only if the bbs_bpatawriter that owns
the instance writes it;

* If DDS_OwnershipQosPolicy IS Set t0 DDS_SHARED OWNERSHIP_QOS, then

the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE Iif any DDS_DataWriter
explicitly disposes of the instance. The instance_state becomes
DDS_ALIVE_INSTANCE_STATE &S SOON as any DDS_DataWriter writes the
instance again.

501
C Reference Guide

Appendices

sample for 'never seen'
instance received/

sample received

sample received/ "live" DDS_DataWriter detected/

ALIVE_INSTANCE_STATE

instance disposed
of by DDS Datal

no "live"
DDS_DataWriters

GOT_AL IVE_DISPOSED | NSTANCE_STA@ GOT_A LIVE_NO_WRITERS_INSTA NCE_SI'AT9

[no samplesin
the DDS_DataReader]

[no samplesin the DDS_DataReader
&& no"live" DDS_DataWriters)

Figure21: Sate Chart of theinstance statefor a Single Instance

Snapshot
The instance_state available in the bbs_sampleInfo is a snapshot of the
instance_state Of the instance at the time the collection was obtained (i.e. at the
time DDS_DataReader_read Of DDS_DataReader_take was called). The
instance_state istherefore the same for all samples in the returned collection
that refer to the same instance.

view date
For each instance (identified by the key), the Data Distribution Service internally
maintains aview_state relative to each bbs_DataReader. The view state
can either be Dbs_NEW_VIEW STATE Or DDS_NOT NEW_VIEW STATE.

502

C Reference Guide & PRISMTECH

Appendices

* DDS_NEW_VIEW_STATE indicates that either this is the first time that the
DDS_DataReader has ever accessed samples of that instance, or else that the
DDS_DataReader hasaccessed previous samples of the instance, but the instance
has since been reborn (i.e. becomes not-alive and then alive again);

* DDS_NOT_NEW_VIEW_STATE indicates that the bDs_DataReader has already
accessed samples of the same instance and that the instance has not been reborn
since.

sample for 'never seen’
instance received/

< NEW_VIEW_STATE ><7

read/take

—{ NOT_NEW_VIEW_STATE

read/take

sample received

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]

Figure22: Sate Chart of theview_statefor a Single Instance

Snapshot

& PRISMTECH

Theview_state availableinthe bps_sampleInfo isasnapshot of view_state
of the instance relative to the bbs_bpataReader used to access the samples at the
time the collection was obtained (i.e. at the time DDs_DataReader_read Of
DDS_DataReader_take was called). Theview_state istherefore the same for
al samplesin the returned collection that refer to the same instance.

503
C Reference Guide

Appendices

SateMasks
Sate Definitions

All states are available as a constant. These convenience constants can be used to
create a bit-mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.

The sample state definitions indicates whether or not the matching data sample has
aready been read:

* DDS_READ_SAMPLE_STATE: sample has already been read;
* DDS_NOT_READ_SAMPLE_STATE: sample has not been read.

Theview state definitionsindicates whether the bDs_DataReader has aready seen
samples for the most-current generation of the related instance:

* DDS_NEW_VIEW_STATE: al samples of thisinstance are new;
* DDS_NOT_NEW_VIEW_STATE: Some or all samples of thisinstance are not new.

Theinstance state definitionsindicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:

* DDS_ALIVE_INSTANCE_STATE: thisinstance is currently in existence;

* DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of
by apDS_batawriter;

* DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been
disposed of by the DDS_DataReader because none of the DDS_DataWriter
objects currently “alive” (according to the bps_LivelinessQosPolicy) are
writing the instance.

Pre-defined Bit M ask Definitions

504
C Reference Guide

For convenience, some pre-defined bit-masks are available as a constant definition.
These bit-mask constants can be used where a state bit-mask is required. They can
also be used for testing whether certain bits are set.

The sample state bit-mask definition selects both sample states:

* DDS_ANY_SAMPLE_STATE: either the sample has already been read or not read,;
The view state bit-mask definition selects both view states:

* DDS_ANY_VIEW_STATE: either the sample has already been seen or not seen;
The instance state bit-mask definitions selects a combination of instance states:

* DDS_NOT_ALIVE_INSTANCE_STATE: this instance was disposed of by a
DDS_DataWriter Or the DDS_DataReader;

e DDS_ANY INSTANCE STATE: this instance is either in existence or not in
existence.

& PRISMTECH

Appendices

Operations Concer ning Sates

read

& PRISMTECH

The application accesses data by means of the operations Dbs_DataReader_read
Or DDS_DataReader_take 0N the DDS_DataReader. These operations return an
ordered collection of DDS_DataSamples consisting of a DDS_SampleInfo part
and apata part. The way the Data Distribution Service builds this collection (i.e.,
the data-samples that are parts of the list as well as their order) depends on
QosPolicy Settings set on the bbs_bataReader and the bbs_subscriber, as
well as the source timestamp of the samples and the parameters passed to the
DDS_DataReader_read/DDS_DataReader_take operations, namely:

* the desired sample states (i.e., DDS_READ_SAMPLE_STATE,
DDS_NOT_READ_SAMPLE_STATE, Of DDS_ANY_SAMPLE_STATE);

* the desired view states (i.e., DDS_NEW_VIEW_STATE,
DDS_NOT_NEW_VIEW_STATE, Of DDS_ANY_VIEW_STATE);

* the desired instance states (DDS_ALIVE_INSTANCE_STATE,
DDS_NOT_ALIVE DISPOSED_INSTANCE_STATE,
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
DDS_NOT_ALIVE_INSTANCE_STATE, Of DDS_ANY_INSTANCE_STATE).

The DDS_DataReader_read and DDS_DataReader_take operations are
non-blocking and just deliver what is currently available that matches the specified
states.

On output, the collection of pata values and the collection of bps_sampleInfo
structures are of the same length and are in a one-to-one correspondence. Each
DDS_SampleInfo providesinformation, such asthe source_timestamp, the
sample_state, view_state, and instance_state, €tc., about the matching
sample.

Some elements in the returned collection may not have valid data. If the
instance_state in the DDS_SampleInfo is
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE or
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
instance in the collection, that is, the one whose DDS_SampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limitsimposed by the DDS_ResourceLimitsQosPolicy.

The act of reading asample setsitssample_state t0 DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it will also set
the view_state Of theinstance to DDS_NOT_NEW_VIEW_STATE. It will not affect
the instance_state of theinstance.

505
C Reference Guide

Appendices

take

The act of taking a sample removes it from the DDS_DataReader SO it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
instance, it will also set the view_state of the instance to
DDS_NOT_NEW_VIEW_STATE. It will not affect the instance_state of the
instance.

read w_condition

In case the DDS_ReadCondition isa‘plain’ DDS_ReadCondition and not the
specialized DDS_QueryCondition, the operation is equivalent to calling
DDS_DataReader_read and passing as sample_states, view_states and
instance_states the value of the corresponding attributes in the
DDS_ReadCondition. Using this operation the application can avoid repeating the
same parameters specified when creating the bps_ReadCondition.

take w_condition

The act of taking a sample removes it from the DDS_DataReader SO it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
instance, it will also set the view_state of the instance to
DDS_NOT_NEW_VIEW_STATE. It will not affect the instance_state of the
instance.

In case the DDS_ReadCondition isa‘plain’ DDS_ReadCondition and not the
specialized pps_QueryCondition, the operation is equivalent to calling
DDS_DataReader_take and passing as sample_states, view_states and
instance_states the value of the corresponding attributes in the
DDS_ReadCondition. Using this operation the application can avoid repeating the
same parameters specified when creating the bps_ReadCondition.

read_next_sample

The DDS_DataReader_read_next_sample operation is semantically equivalent
to the DDS_DataReader_read operation where the input bata sequence has
max_len=1, the sample_states=DDS_NOT_READ_SAMPLE_STATE, the
view_states=DDS_ANY_ VIEW_STATE, and the

instance_states=DDS_ANY INSTANCE_STATE.

take next_sample

506
C Reference Guide

The DDS_DataReader_take_next_sample oOperation is semantically equivalent
to the DDS_DataReader_take operation where the input sequence has
max_len=1, the sample_states=DDS_NOT_READ_SAMPLE_STATE, the
view_states=DDS_ANY_ VIEW_STATE, and the

instance_states=DDS_ANY INSTANCE_STATE.

& PRISMTECH

Appendices

read_instance

The act of reading asample setsitssample_state t0 DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it will also set
the view_state Of the instance to bDS_NOT_NEW_VIEW_STATE. It will not affect
the instance_state of theinstance.

take instance

The act of taking a sample removes it from the DDS_DataReader SO it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
instance, it will also set the view_state of the instance to

DDS_NOT_NEW_VIEW_ STATE. It will not affect the instance state of the
instance.

507
& PRISMTECH C Reference Guide

Appendices

508

C Reference Guide & PRISMTECH

Appendix

Class Inheritance

This appendix gives an overview of the inheritance relations of the DCPS classes.

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

DomainParticipant
(from Domain Module)

DomainParticipantFactory
(from Domain Module)

DomainEntity
(from Infrastructure Module)

Entity

4‘> (from Infrastructure Module)

TopicDescription
(from Topic-Definition Module)

DataWriter

Topic
(from Publication Module)

(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

DataReader
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

FooDataW

(from Topic-Definition Module)

riter

FooDataReader
(from Topic-Definition Module)

<<Interface>>

Listener

(from Infrastructure Module)

<<Interface>>

DataReaderListener
(from Subscription Module)

<<Interface>>
TypeSupport

(from Topic-Definition Module)

GuardCondition
(from Infrastructure Module)

ReadCondition
(from Subscription Module)

>

Condition
(from Infrastructure Module)

<<Interface>>
DataWriterListener
(from Publication Module)

FooTypeSupport

(from Topic-Definition Module)

7

7

QueryCondition

(from Subscription Module)

StatusCondition
(from Infrastructure Module)

<<Interface>>
TopicListener

-

<<Interface>>

SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Status
(from Infrastructure Module)

WaitSet
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

Samplelnfo
(from Subscription Module)

DomainParticipantListener
(from Domain Module)

Figure 23 DCPSInheritance

509

& PRISMTECH C Reference Guide

Appendices

510

C Reference Guide & PRISMTECH

Appendix

Listeners, Conditions and
Waitsets

Listeners and DDS_Conditions (DDS_Conditions in conjunction with
DDS_WaitSets) are two mechanisms that allow the application to be made aware
of changes in the communication status. Listeners provide an event-based
mechanism for the Data Distribution Service to asynchronously alert the application
of the occurrence of relevant status changes. DDS_Conditions in conjunction with
DDS_WaitSets provide a state-based mechanism for the Data Distribution Service
to synchronously communicate the relevant status changes to the application.

Both mechanisms are based on the communication statuses associated with an
DDS_Entity object. Not all statuses are applicable to all bps_Entity objects.
Which status is applicable to which DDs_Ent ity object islisted in the next table:

Table 25 Communication Satus

DDS Entity Satus Name Description
DDS_Topic DDS_INCONSISTENT_TOPIC_STATUS |Another DDS_Topic exists with the same
name but with different characteristics.
DDS_Subscriber |DDS_DATA_ON_READERS_STATUS New information is available.
511
& PRISMTECH

C Reference Guide

Appendices

Table25 Communication Satus (Continued)

DDS_Entity Status Name

Description

DDS_DataReader |DDS_SAMPLE_REJECTED_STATUS

A (received) sample has been rejected.

DDS_LIVELINESS_CHANGED_STATUS

The liveliness of one or more
DDS_DataWriter objects, that were
writing instances read through the
DDS_DataReader objects has changed.
Some DDS_DataWriter object have
become “alive” or “not alive’.

DDS_REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataReader
was expecting through its
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_REQUESTED__
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DDS_DATA_AVAILABLE_STATUS

New information is available.

DDS_SAMPLE_LOST_STATUS

A sample has been lost (never received).

DDS_SUBSCRIPTION_
MATCHED_STATUS

The DDS_DataReader has found a
DDS_DataWriter that matches the
ZWDDS_Topic and has compatible QoS.

DDS_DataWriter |DDS_LIVELINESS_LOST_STATUS

The liveliness that the DDS_DataWriter
has committed through its
DDS_LivelinessQosPolicy was not
respected; thus DDS_DataReader objects
will consider the DDS_DataWriter asno
longer “alive’.

DDS_OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataWriter
has committed through its
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_ OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what was regquested.

DDS_PUBLICATION_
MATCHED_STATUS

The DDS_DataWriter has found
DDS_DataReader that matches the
DDS_Topic and has compatible QoS.

The statuses may be classified in:

 read communication statuses: i.e., those that are related to arrival of data, namely
DDS_DATA_ON_READERS and DDS_DATA_AVAILABLE

* plain communication statuses: i.e., al the others.

512
C Reference Guide

& PRISMTECH

Appendices

For each plain communication status, there is a corresponding status struct. The
information from this struct can be retrieved with the operations
get_<status_name>_status. For example, to get the
DDS_INCONSISTENT_TOPIC status (which information is stored in the
DDS_InconsistentTopicStatus struct), the application must call the operation
DDS_Topic_get_inconsistent_topic_status. A plain communication
status can only be read from the bps_gntity onwhich it is applicable. For the read
communication statuses there is no struct available to the application.

Communication Satus Event

& PRISMTECH

Conceptually associated with each DDs_Entity communication statusis alogical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operation to read the statusChangedFlag). The
StatusChangedFlag isonly conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener Will only be activated when the statusChangedFlag changes from
FALSE to TRUE (provided the Listener is attached and enabled for this particular
status). The conditions which cause the statusChangedFlag to changeis slightly
different for the plain communication status and the read communication status.

For the plain communication status, the statusChangedFlag flagisinitialy set to
FALSE. It becomes TRUE whenever the plain communication status changesand it is
reset to FALSE each time the application accesses the plain communication status
viathe proper get_<status_name>_status operation onthe bbs_Entity.

The communication status is also reset to FALSE whenever the associated
Listener operation iscalled asthe Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
calling the listener means that if the application calls the
get_<status_name>_status from inside the listener it will see the status
aready reset.

An exception to this rule is when the associated 1.1 stener isthe ni1 listener, in
other word, alistener with value bps_oBJECT_NIL. Such alistener is treated as a

NOOP! for all statuses activated in its bitmask and the act of calling this nil' listener
does not reset the corresponding communication statuses.

1. Short for No-Operation, an instruction that peforms nothing at all.

513
C Reference Guide

Appendices

514
C Reference Guide

—»(SatusChangedFlag = FALSE)

CurrentStatus ! = SavedStatus
get_<status name>_status

OR invocation of corres-
ponding Listener operation
event which can cause
the activation of a Listener
StatusChangedFlag = TRUE

Figure 24: Plain Communication Status Sate Chart

For example, the value of the statusChangedFlag associated with the
DDS_RequestedDeadlineMissedStatus Will become TRUE each time a new
deadline passes (which increases the total_count field within
DDS_RequestedDeadlineMissedStatus). The value changes to FALSE when
the application accesses the status via the corresponding
DDS_DataReader_get_requested_deadline_missed_status operaIi on on
the proper pps_Entity, or when the the on_requested_deadline_missed
operation on the Listener attached to this DDs_Entity or one its containing
entitiesisinvoked.

For the read communication status, the statusChangedrlag flagisinitialy set to
FALSE. |t becomes TRUE when data arrives, or when the InstanceState of a
contained instance changes. This can be caused by either:

» Thearrival of the notification that an instance has been disposed by:

- the DDs_Datawriter that owns it if its OwnershipQosPolicyKind =
DDS_EXCLUSIVE_OWNERSHIP_QOS

-or by any DDs_batawriter if itS OwnershipQosPolicyKind =
DDS_SHARED_ OWNERSHIP_QOS.

e Theloss of liveliness of the DDs_Datawriter of an instance for which thereis
no other bDS_DataWriter.

» The arrival of the notification that an instance has been unregistered by the only
DDS_DataWriter that isknown to be writing the instance.

The read communication statuses are reset to FALSE again in the following
circumstances:

& PRISMTECH

Appendices

» The status flag of the bps_DATA_AVATILABLE_STATUS becomes FALSE when
either the corresponding listener operation (on_data_available) is called, or
the read or take operation (or any of its variants) is called on the associated

DDS_DataReader.

—»CS[atusChangedFlag = FALSE>

Data arrives OR
change in InstanceState of a contained instance

i‘ event which can cause
the activation of a Listener
StatusChangedFlag = TRUE

Figure 25: Read Communication Status DDS DataReader Statecr aft

on_data_available OR
read/take or any of its
variants

* The status flag of the bDS_DATA_ON_READERS_STATUS becomes FALSE when
any of the following events occurs:
- The corresponding listener operation (on_data_on_readers) iscaled on the
corresponding DDS_Subscriber.
-The on_data_available listener operation is caled on any
DDS_DataReader belonging to the DDS_Subscriber.

-The read or take operation (or any of its variants) is called on any
DDS_DataReader belonging to the DDS_Subscriber.

515
& PRISMTECH C Reference Guide

Appendices

Liseners

516
C Reference Guide

—»(&atusChangedFlag = FALSE)
on_data_on_readers OR

on data available OR Data arrives OR change in InstanceState
read/take or any of its of any contained DataReader

variants
event which can cause
the activation of a Listener
StatusChangedFlag = TRUE

Figure 26: DDS Subscriber Satecraft for a Read Communication
Satus

The Listeners provide for an event-based mechanism to asynchronously inform
the application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the Listener is activated, it will call the
corresponding on_<status_name> operation of that Listener. Each
on_<status_name> operation available in the i stener Of an DDS_Entity iS
also availablein the Listener of the factory of the DDS_Entity.

For both the read communication statuses and the plain communication statuses a
Listener isonly activated when a Listener is attached to this particular
DDS_Entity and enabled for this particular status. Statuses are enabled according
to the DDS_statusKindMask parameter that was passed at creation time of the
DDS_Entity, Or that was passed to the DDS_<DDS_Entity>_set_listener
operation .

When an event occurs for a particular bpps_entity and for a particular status, but
the applicable Listener is not activated for this status, the status is propagated up
to the factory of this bDs_Entity. For this factory, the same propagation rules
apply. When even the DDS_DomainParticipantListener iS not attached or
enabled for this status, the application will not be notified about this event. This
means, that a status change on a contained pps_Eentity only invokes the
Listener of itsfactory if the Listener of the contained DDS_Entity itself does
not handle the trigger event generated by the status change.

& PRISMTECH

Appendices

<<Interface>>
Listener
(from Infrastructure Module)

<<Interface>>

<<Interface>> B
DataReaderListener

DataWriterListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_gos()
on_publication_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

<<Interface>>
SubscriberListener

<<Interface>>
PublisherListener

on_data_on_readers()

DomainParticipantListener

Figure27. DCPSListeners

The event propagation is also applicable to the read communication statuses.
However, since the event here is the arrival of data, both the
DDS_DATA_ON_READERS and DDS_DATA_AVAILABLE Status are TRUE. The Data
Distribution Service will first attempt to handle the bbs_DATA_ON_READERS Status
and try to activate the bps_sSubscriberListener. When thisListener isnot
activated for this status, the event will propagate to the
DDS_DomainParticipantListener. Only when the DDS_DATA_ON_READERS
status can not be handled, the Data Distribution Service will attempt to handle the
DDS_DATA_AVATLABLE statusand try to activate the DDs_DataReaderListener.
In case this Listener is not activated for this status, the event will follow the
propagation rules as described above.

Conditionsand Waitsets

& PRISMTECH

The DDS_Conditions in conjunction with DDS_waitSets provide for a

walit-based mechanism to synchronously inform the application of status changes. A

DDS_Condition can be either aDbDS_ReadCondition, DDS_QueryCondition,

DDS_StatusCondition Or DDS_GuardCondition. TO create a
DDS_Condition one of the following operations can be used:

517

C Reference Guide

Appendices

518
C Reference Guide

* DDS_ReadCondition created by
DDS_DataReader_create_readcondition

* DDS_QueryCondition created by
DDS_DataReader_create_qguerycondition

* DDS_StatusCondition retrieved by
DDS_<Entity>_get_statuscondition ONanDDS_<Entity>

* DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc

Note that the bDS_QueryCondition isaspecialized bbDS_ReadCondition. The
DDS_GuardCondition isadifferent kind of DDs_condition sinceit is not
controlled by a status but directly by the application (when a
DDS_GuardCondition isinitialy created, the trigger_value iSFALSE). The
DDS_StatusCondition ispresent by default with each pps_gntity, therefore, it
does not have to be created.

WaitSet

Condition

attach_condition()
.|detach_condition()
get_conditions()
wait()

Figure28: DCPSDDS WaitSets

get_trigger_value() *

A DDS_WwaitSet may have one or several DDS_Conditions attached to it. An
application thread may block execution (blocking may be limited by atimeout) by
waiting on apps_waitsSet until the trigger_value of one or more of the
DDS_Conditions become TRUE. When a DDS_Ccondition, whose
trigger_value evalualesto TRUE, is attached to apDs_waitset that iscurrently
being waited on (using the DDS_waitSet_wait operation), the bps_waitset will
unblock immediately.

This (wait-based) mechanism is generally used as follows:
» The application createsabbps_waitSet

» The application indicates which relevant information it wants to be notified of, by
creating or retrieving DDS_Condition oObjects (DDS_StatusCondition,
DDS_ReadCondition, DDS_QueryCondition Of DDS_GuardCondition) and
attach themto abDs_waitsSet

It then waits on that DDS_waitSet (USiNg DDS_WaitSet_wait) until the
trigger_value Of oOne or severa DDS_Condition objects (in the
DDS_WaitSet) become TRUE

& PRISMTECH

Appendices

& PRISMTECH

« When the thread is unblocked, the application uses the result of the
DDS_WaitSet_wait (i.e, the list of DDS_Condition objects with
trigger_value==TRUE) to actualy get the information:

- if the condition is a DDS_statusCondition and the status changes refer to a
plain communication status, by calling get_status_changes and then
get_<communication_status> ontherelevant bDs_Entity

- if the condition isaDpDS_sStatusCondition and the status changesrefer to the
read communication status:

DDS_DATA_ON_READERS, by calling get_status_changes and then
DDS_Subscriber_get_datareaders on therelevant bbs_Subscriber
and then DDS_DataReader_read/DDS_DataReader_take on the returned
DDS_DataReader Objects

DDS_DATA_AVAILABLE, by calling get_status_changes and then
DDS_DataReader_read/DDS_DataReader_take 0On the relevant
DDS_DataReader.

-if itisaDDs_ReadCondition Or aDDS_QueryCondition, by caling directly
DDS_DataReader_read_w_condition | DDS_DataReader take_
w_condition on the DDS_DataReader with the DDS Condition as a
parameter.

519
C Reference Guide

Appendices

<<create>> ‘

Condition

get_trigger_value()

ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
get_datareader() statuscondition
get_instance_state_mask() 0.1
get_sample_state_mask() §
get_view_state_mask() entity
1
/ QueryCondition Entity
enable()

\

StatusCondition

GuardCondition

get_enabled_statuses()

set_trigger_value()

get_query_arguments()
get_query_expression()
set_query_arguments()

<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()

Blocki

520
C Reference Guide

1 N get_statuscondition()
DataReader <<abstract>> set_listener() -
L ﬁ:nﬂ»ﬂ <<abstract>> set_qos() DataWriter
Subscriber \ Zﬁ - Publisher
— DomainEntity
>
Topic

Figure29 DCPSDDS Conditions

No extrainformation is passed from the Data Distribution Service to the application
when apps_waitSet_wait returns only the list of triggered pps_condition
objects. Therefore, it is the application responsibility to investigate which
DDS_Condition objects have triggered the DDS_waitSet.

ng Behaviour

The result of apps_waitSet_wait operation depends on the state of the
DDS_WaitSet, which in turn depends on whether at least one attached
DDS_Condition hasatrigger_value Of TRUE. If the DDS_waitSet_wait
operation is called on DDs_waitSet with state BLOCKED it will block the calling
thread. If DDS_waitSet_wait iscalled on abps_waitset with state
UNBLOCKED it will return immediately. In addition, when the DDS_waitSet
transitions from state BLOCKED to state UNBLOCKED it wakes up the thread (if
any) that had called pps_waitsSet_wait on it. Note that there can only be one
thread waiting on asingle bbs_waitset.

& PRISMTECH

Appendices

DDS_ WaitSet_wait
Block calling thread

4’(BLOCKED

[all attached conditions have [at least one attached condition has
trigger_value == FAL SE] trigger_value == TRUE]
Wakeup waiting threads

4(UNBLOCKED

Figure 30: Blocking Behaviour of a Waitset Sate Chart

DDS_WaitSet_wait
Do not block. Return immediately

DDS SatusCondition Trigger Sate

The trigger value Of aDDS_StatusCondition isthe boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
That is, trigger_value==FALSE only if all the values of the
StatusChangedFlags are FALSE.

The sensitivity of the bps_statusCondition to aparticular communication
status is controlled by the bit-mask of enabled_statuses set on the
DDS_Condition by means of thepDDs_StatusCondition_set_
enabled_statuses operation.

DDS ReadCondition and DDS QueryCondition Trigger Sate

& PRISMTECH

Similar to the DDS_StatusCondition, a DDS_ReadCondition also has a
trigger_wvalue that determines whether the attached pps_waitset is
BLOCKED or UNBLOCKED. However, unlike the bbs_statusCondition, the
trigger_value Of the DDs_ReadCondition istied to the presence of at least
one sample managed by the Data Distribution Service with samplesState,
ViewState, and InstanceState matching those of the bbs_ReadCondition.
Additionally, for the bbs_gQueryCondition, the data associated with the sample,
must be such that the query_expression evaluatesto TRUE.

The fact that the trigger_value of aDbs_ReadcCondition is dependent on the
presence of samples on the associated DDS_DataReader implies that a single
DDS_DataReader_take operation can potentialy changethe trigger_value of
several DDS_ReadCondition OF DDS_QueryCondition objects. For exampl e if
all samples are taken, any DDS_ReadCondition OF DDS_QueryCondition

521
C Reference Guide

Appendices

objects associated with the DbDs_bDataReader that had their
trigger_value==TRUE before will seethe trigger_value changeto FALSE.
Note that this does not guarantee that bbs_waitSet objects, that had those
DDS_Condition objects separately attached to, will not be woken up. Once we
have trigger_value==TRUE ON aDDS_Condition it may wake up the
DDS_WaitSet it was attached to, the condition transitions to
trigger_value==FALSE does not 'un-wake up' the pps_waitsSet as
‘un-wakening' is not possible. The consequence is that an application blocked on a
DDS_WaitSet may return from the wait with alist of DDS_Condition objects
some of which are no longer “active’. Thisis unavoidable if multiple threads are
concurrently waiting on separate Dps_waitSet objects and taking data associated
with the same DbsS_DataReader DDS_Entity. In other words, a
DDS_WaitSet_wait may return with alist of bbs_condition objects which all
have atrigger_value==FALSE. Thisonly means, that at some point one or more
of the DDS_Condition objects have had a trigger_value==TRUE but no longer
do.

DDS GuardCondition Trigger Sate

522
C Reference Guide

The trigger_value Of aDDS_GuardCondition iScompletely controlled by the
application viathe operation DDs_GuardCondition_set_trigger_value. This
DDS_Condition can be used to implement an application defined wake-up of the
blocked thread.

& PRISMTECH

Appendix

DDS Topic Definitions

The Data Distribution Service distributes its data in structured data types, called
topics. Thefirst step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

DDS Topic Definition Example

& PRISMTECH

All data distributed using the Data Distribution Service has to be defined as a topic.
A topic is a structured data type, like a C-struct with several members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

Y

#pragma keylist Foo

Y
Thisisthe definition of atopic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent C-struct which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL pre-processor: idlpp -1 ¢ -S
<idl_filename>.id1, atool which translates the IDL topic definition into an
equivalent C definition. The -1 ¢ option indicates that C-code has to be generated,
the -S option indicates that this C code should be StandAlone C code, i.e. it must not
have any dependency on external ORB libraries. In this example, the pre-processor
will generate the classes SPACE_FooTypeSupport, SPACE_FooDataWriter and
SPACE_FooDataReader Which contain the type specific operations.

The prefix spAcE_ is generated from the IDL-module-name. The types of the fields
are prescribed by the IDL-to-C mapping. After the Data Distribution Service
IDL-pre-processor is run, the application will use the generated code.

523
C Reference Guide

Appendices

Complex Topics

The Foo topic isrelatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. For a reference of this subset, see the
BNF-notation in Appendix , Data Distribution Service IDL Subset in BNF Notation.
It isimportant to know that the pre-processor acceptsal IDL constructs but only the
subset is being processed.

Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. astruct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs. For
more information regarding the IDL to C mapping.

IDL Pre-processor

This section contains the specification of the subset of OMG IDL that can be used to
define the topics.

IDL to Host Language M apping

The Data Distribution Service IDL pre-processor trand ates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of amodule defining several structs and typedefs.

Data Distribution Service IDL Keywords

524
C Reference Guide

The identifiers listed in this appendix are reserved for use as keywords in IDL and
may not be used otherwise, unless escaped with aleading underscore.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses
const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void

& PRISMTECH

Appendices

custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords areillegal. For example, boolean isavalid keyword; Boolean and
BOOLEAN areillegal identifiers.

Data Distribution Service IDL Pragma Keylist

To define a topic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. When the <pragmakeylist>hasno <field id>,
the topic is available but no key is set. To define the keylist the definition, written in
BNF-notation, is as follows:
<pragmakeylist>::= “#pragma keylist” <type_id>
<field_id>*
<type_id>::= <struct_type_identifier>
| <union_type_identifier>
<field_id>::= <member_declarator>
| <element_spec_declarator>

In case of astruct, <type id> isa<struct_type identifier>. In case of a union,
<type_id> isa<union_type identifier>. The <struct_type_identifier> isthe
identifier used in the struct declaration. The <union_type_identifier> is the
identifier used in the union declaration. The <field_id> isthe identifier of afield in
the struct or union identified by <type id>. In case of a struct, <field_id> isa
<member_declarator> which is one of the declarators used in the struct member. In
case of aunion, <field_id> is a <element_spec_declarator> which is one of the
declarators used in the element specification in a case of the union.

For example, for the Foo examplein Appendix , DDS Topic Definition Example the
next pragma must be used to have the pre-processor generate the typed classes
(SPACE_FooTypeSupport,SPACE_FooDataWriterand
SPACE_FooDataReader).

#pragma keylist Foo userID index

Note that in this example the user1D and the index are used as a key.

Data Distribution Service IDL Subset in BNF Notation

& PRISMTECH

Only a subset is used by the pre-processor. A description of the Data Distribution
Service IDL subset, written in BNF-notation, is as follows:
<definition>::= <type_dcl> “;”
| <const_dcl> »;~

525
C Reference Guide

Appendices

526
C Reference Guide

| <module> “;”
<module>::= “module” <identifier> “{“ <definition>+
<scoped_name>::= <identifier>

| “::” <identifier>

| <scoped_name> “::” <identifier>
<const_dcl>::= “const” <const_type>

<identifier> “=" <const_exp>

<const_type>::= <integer_type>

| <char_type>

| <boolean_type>

| <floating_pt_type>

| <string_type>

| <scoped_name>

| <octet_type>

<const_exp>::= <0or_expr>
<Or_expr>::= <XOr_expr>

| <or_expr> “|” <xor_expr>
<XOor_expr>::= <and_expr>

| <xor_expr> “~” <and_expr>
<and_expr>::= <shift_expr>

| <and_expr> “&” <shift_expr>
<shift_expr>::= <add_expr>

| <shift_expr> “>>" <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-" <mult_expr>
<mult_expr>::= <unary_expr>

| <mult_expr> “*” <unary_expr>

| <mult_expr> “/” <unary_expr>

| <mult_expr> “%” <unary_expr>
<unary_expr>::= <unary_operator> <primary_expr>

| <primary_expr>
<unary_operator>::= “-"

R

| wen
<primary_expr>::= <scoped_name>

| <literals>

| “(” <const_exp> “)”
<literal>::= <integer_literal>

| <string_literal>

| <character_literal>

| <floating pt_literal>

| <boolean literal>

<boolean_literal>::= “TRUE”

| “FALSE”
<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

| <struct_type>
| <union_type>

\\}II

& PRISMTECH

Appendices

| <enum_type>
<type_declarator>::= <type_spec> <declarators>
<type_spec>::= <simple_type_spec>

| <constr_type_spec>
<simple_type_spec>::= <base_type_spec>

| <template_type_spec>

| <scoped_name>
<base_type_spec>::= <floating_pt_type>

| <integer_type>

| <char_type>

| <boolean_type>

| <octet_type>

<template_type_spec>::= <sequence_type>
| <string_ type>
<constr_type_spec>::= <struct_type>

| <union_type>

| <enum_type>
<declarators>::= <declarator> { “,” <declarator> }*
<declarator>::= <simple_declarator>

| <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating pt_type>::= “float”

| “double”
<integer_type>::= <signed_int>

| <unsigned_int>
<signed_int>::= <signed_short_int>

| <signed_long_int>

| <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long"”
<char_type>::= “char”

<boolean_type>::= “boolean”

<octet_type>::= “octet”

<struct_type>::= “struct” <identifier> “{” <member_list> “}”
<member_list>::= <member>+

<member>: := <type_spec> <declarators> “;”

<union_type>::= “union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”
<switch_type_spec>::= <integer_type>
| <char_type>
| <boolean_type>

527

& PRISMTECH C Reference Guide

Appendices

528
C Reference Guide

| <enum_type>
| <scoped_name>
<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec>
<case_label>::= “case” <const_exp> “:”
| “default” “:~

<element_spec>::= <type_spec> <declarator>

<enum_type>::= “enum” <identifier>

“{"” <enumerator> { “,” <enumerator> }*

<enumerator>::= <identifier>

<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”"

<string_type>::= “string” “<” <positive_int_const> “>"
| “string”

<array_declarator>::= <identifier> <fixed_array_size>+

<fixed_array size>::= “[” <positive_int_const>

& PRISMTECH

Appendix

DCPS Queries and Filters

A subset of SQL syntax isused in several parts of OpenSplice:

e thefilter expressionintheDDS_ContentFilteredTopic
¢ the topic_expression inthebbs_MultiTopic

* the query_expression inthe DDS_QueryReadCondition.

Those expressions may use a subset of SQL, extended with the possibility to use
program variablesin the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:

* theNonTerminals aretypeset initalics
* the *Terminals’ arequoted and typeset in afixed width font
* the TOKENS are typeset in small caps

* the notation (element // ‘,’) represents a non-empty comma-separated list of
elements.

SOL Grammar in BNF

& PRISMTECH

Expression::= FilterExpression

| TopicExpression

| QueryExpression
FilterExpression::= Condition
TopicExpression::= SelectFrom {Where } ‘;'
QueryExpression::= {Condition}{‘ORDER BY’ (FIELDNAME // ‘,’) }
SelectFrom: := ‘SELECT' Aggregation ‘FROM’ Selection
Aggregation::= ‘*'

| (SubjectFieldSpec // ‘,')
SubjectFieldSpec: := FIELDNAME

| FIELDNAME ‘AS’ FIELDNAME

| FIELDNAME FIELDNAME

Selection::= TOPICNAME
| TOPICTNAME NaturalJoin JoinItem
JoinItem: := TOPICNAME

| TOPICNAME NaturalJdoin JoinItem

| ‘(' TOPICNAME NaturalJdoin JoinItem ‘)’
NaturalJoin::= ‘INNER NATURAL JOIN'’

| ‘NATURAL JOIN'

| ‘NATURAL INNER JOIN'
Where::= ‘WHERE’ Condition
Condition::= Predicate

| Condition ‘AND’ Condition

529
C Reference Guide

Appendices

| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(' Condition ‘)’
Predicate: := ComparisonPredicate
| BetweenPredicate
ComparisonPredicate: := FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME

BetweenPredicate: := FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
RelOp::= ‘="' | ‘>’ | '>=' | ‘<’ | ‘<=’ | ‘<>’ | like
Range::= Parameter ‘AND’ Parameter
Parameter: := INTEGERVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER

Note: INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are
all aliases, in the sense that they have the same semantics. The aliases are all
supported because they all are part of the SQL standard.

SQL Token Expression

530
C Reference Guide

The syntax and meaning of the tokens used in the SQL grammar is described as
follows:

FIELDNAME - A fieldname is a reference to afield in the data-structure. The dot
' .’ isused to navigate through nested structures. The number of dots that may be
used in afieldname is unlimited. The field-name can refer to fields at any depth in
the data structure. The names of the field are those specified in the IDL definition of
the corresponding structure, which may or may not match the field names that
appear on the C mapping of the structure

TOPICNAME - A topic name is an identifier for atopic, and is defined as any series
of characters *‘a’, ..., *z’, ‘A", ...,'Z2", 0", ..., *9", *=7, ' but may not
start with adigit

INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign,

representing a decimal integer value within the range of the system. A hexadecimal
number is preceded by 0x and must be avalid hexadecimal expression

FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and
optionally including a floating point (* . *). A power-of-ten expression may be
post-fixed, which has the syntax en, where n is a number, optionally preceded by a
plus or minus sign

& PRISMTECH

Appendices

STRING - Any series of characters encapsulated in single quotes, except a new-line
character or aright quote. A string starts with aleft or right quote, but ends with a
right quote

ENUMERATEDVALUE - An enumerated value is areference to a value declared within
an enumeration. The name of the value must correspond to the names specified in
the IDL definition of the enumeration, and must be encapsulated in single quotes.
An enum value starts with aleft or right quote, but ends with aright quote.

PARAMETER - A parameter is of the form %n, where n represents a natural number

(zero included) smaller than 100. It refersto the n + 1th argument in the given
context.

Note: when Relop is *1ike~, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is * 2/, any zero
or more charactersis * -

SQL Examples

& PRISMTECH

Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, X, y, z’, and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.
Example of atopic_expression:
“SELECT flight_name, X, y, z AS height FROM ‘Location’ NATURAL JOIN
‘FlightPlan” WHERE height < 1000 AND x <23".
Example of aquery_expression or afilter_expression:
“height < 1000 AND x <23".

531
C Reference Guide

Appendices

532

C Reference Guide & PRISMTECH

BIBLIOGRAPHY

Bibliography

[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object
Management Group

[2] OMG C Language Mapping Specification formal/99-07-35, Object Management Group (OMG)

[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,
formal/02-06-01, Object Management Group

535

& PRISMTECH C Reference Guide

Bibliography

536

C Reference Guide & PRISMTECH

GLOSSARY

Glossary

Acronyms

Acronym Meaning

CORBA Common Object Request Broker Architecture

DCPS Data Centric Publish/Subscribe

DDS Data Distribution Service

DLRL DataLoca Reconstruction Layer

IDL Interface Definition Language

OoMG Object Management Group

ORB Object Request Broker

QoS Quality of Service

SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
& PRISMTECH 539

C Reference Guide

Glossary

540

C Reference Guide & PRISMTECH

INDEX

| nd ex

About the C Reference Guide. XXi
BasicUsage ..., 451
Bibliography oL 535
C Reference Guide Document Structure 3
Changedble..........o, 61
ClassDDS Condition 121
ClassDDS_ContentFilteredTopic 211
ClassDDS _DataReader (abstract) 349
ClassDDS DataSample. 421
ClassDDS_DataWriter (abstract) 257
Class DDS_DomainEntity (abstract) 55
ClassDDS _DomainParticipant 131
Class DDS_DomainParticipantFactory 179
Class DDS_Entity (abstract). 48
ClassDDS_GuardCondition 122
ClassDDS MultiTopic 217
ClassDDS Publisher.................... 232
ClassDDS_QueryCondition 443
ClassDDS ReadCondition 439
Data Distribution Service Defined Type 10

Data Distribution Service IDL Keywords524
Data Distribution Service IDL Pragma Keylist 525
Data Distribution Service IDL Subset in BNF

Notation. ..., 525
Data Type “Foo” Typed Classes Pre-processor

Generation. ... 42
DCPSDDS Conditions.............. 121, 520
DCPSDDS StatusValues................ 100
DCPSDDS WaitSets. 114,518

DCPS Domain Module' s Class Modsd!. . . .40, 131
DCPS Infrastructure Modul€e' s Class Model 38, 48

& PRISMTECH

Affected Entities. 451

Blocking Behaviour 520
Blocking Behaviour of a Waitset State Chart . 521

ClassDDS StatusCondition 125
ClassDDS Subscriber. 326
ClassDDS TOpIC. .. oo v e 202
Class DDS TopicDescription (abstract) 199
ClassDDS TypeSupport (abstract)......... 225
ClassDDS WaitSet..................... 114
Class Model of the DCPS Topic-Definition
Moduleccoiiiiiia... 198
Class SPACE_FooDataReader. 383
Class SPACE_FooDatawriter 279
Class SPACE_FooTypeSupport. 226
Communication Status 511
Communication StatusEvent. 513
Complex TOPICS. . .ot e e 524
Conditionsand waitsets. 517
ContaCtS XXiii
DCPSInheritance. 509
DCPSListenersoocviviiiean. 97,517
DCPS Module Composition. 37

DCPS Publication Module's ClassModdl 43
DCPS Subscription Module' s ClassModel 44
DCPS Topic-Definition Module's Class Model 41

DDS _dloc.....ccovvviiiii i 19
DDS _dloc.....ccovvviiiii i 17
DDS _dloc.....ccovvviiii i 19
DDS dlochuf.o 18
DDS Condition_get_trigger value......... 122

DDS ContentFilteredTopic_get expression_para

543
C Reference Guide

Index

544

MEErS. ..o 212
DDS_ContentFilteredTopic_get_filter_expression
213
DDS_ContentFilteredTopic_get_name (inherited)
214
DDS_ContentFilteredTopic_get_participant
(inherited). L 214
DDS ContentFilteredTopic_get related topic 214
DDS_ContentFilteredTopic_get_type name

(inherited). L 215
DDS_ContentFilteredTopic_set_expression_para

MEErS. ..ot 215
DDS DataReader, 515

DDS DataReader create_querycondition ... 355
DDS DataReader create readcondition 356
DDS DataReader_delete contained entities. 358

DDS DataReader_delete readcondition 359
DDS DataReader_enable (inherited) 360
DDS DataReader get key value (abstract). . 360
DDS DataReader get listener............ 361

DDS DataReader get_liveliness changed status
361

DDS DataReader _get_matched publication _data
362

DDS DataReader _get_matched publications 363

DDS DataReader get qos. 363

DDS DataReader _get requested deadline_misse
dsatus. 364

DDS DataReader_get_requested incompatible g
OS StatuS. .. .o o e 365

DDS DataReader get_sample lost_status. .. 366

DDS DataReader get sample rejected status368

DDS DataReader get_status changes (inherited)
369

DDS DataReader get_statuscondition (inherited)
369

DDS DataReader get subscriber.......... 369

DDS DataReader get_subscription_match_status
370

DDS DataReader get_topicdescription. 370

DDS DataReader |ookup_instance (abstract) 272,
371

DDS DATAREADER_QOS DEFAULT ... 455

DDS DataReader read (abstract).......... 371

DDS DataReader read instance (abstract) .. 372

C Reference Guide

DDS DataReader_read next_instance (abstract).
372

DDS DataReader_read next_instance_w_conditi
on(abstract) 373

DDS DataReader_read next_sample (abstract). .
373

DDS DataReader_read w_condition (abstract). .
373

DDS DataReader _return_loan (abstract) 374

DDS DataReader set listener............ 374
DDS DataReader set qos............... 377
DDS DataReader_take (abstract).......... 378

DDS DataReader _take instance (abstract) .. 379

DDS DataReader _take next_instance (abstract) .
379

DDS DataReader_take next_instance w_conditi
on(abstract) 380

DDS DataReader_take next_sample (abstract). .
380

DDS DataReader_take w_condition (abstract). .
380

DDS DataReader wait_for_historical_data. . 381

DDS DataReaderListener. 34
DDS DataReaderListener interface 431
DDS DataReaderListener__aloc.......... 432
DDS DataReaderListener_on_data available
(dbstract) 433
DDS DataReaderListener_on_liveliness_changed
(dbstract) 434
DDS DataReaderListener_on_requested deadline
_missed (abstract) 435
DDS DataReaderListener_on_requested incomp
atible qos(abstract)................. 436
DDS DataReaderListener_on_sample lost
(dbstract) 437
DDS DataReaderListener_on_sample_rejected
(dbstract) 437
DDS DataReaderListener_on_subscription_matc
h@bstract) 438
DDS DataReaderQos. 453
DDS Datawriter_assert_liveliness 261
DDS Datawriter_dispose (abstract). 263
DDS Datawriter_dispose w_timestamp
(@bstract) ... 263, 279
DDS Datawriter_enable (inherited) 263
& PRISMTECH

DDS Datawriter_get_key value (abstract). . .264

DDS Datawriter_get listener............. 264

DDS DataWriter_get_liveliness lost_status. . 264

DDS Datawriter_get_matched_subscription_data
266

DDS DataWriter_get_matched_subscriptions. 266

DDS Datawriter_get offered _deadline missed s

tauS. .o 266
DDS DataWriter_get_offered_incompatible qos
SAUS . .ot 267

DDS Datawriter_get_publication_match_status .
269

DDS Datawriter_get publisher 269

DDS Datawriter get gos................ 269

DDS DataWriter_get_status_changes (inherited) .
270

DDS DataWriter_get_statuscondition (inherited) .
271

DDS Datawriter_get topic............... 271

DDS DATAWRITER_QOS DEFAULT....458

DDS DataWriter_register_instance (abstract) . 272

DDS DataWriter_register_instance w_timestamp

(@bstract) 272
DDS DataWriter_set listener 273
DDS Datawriter set qos................ 275

DDS Datawriter_unregister_instance (abstract). .
276

DDS DataWriter_unregister_instance_w_timesta
mp(abstract) 277

DDS Datawriter_write (abstract) 278

DDS DataWriter_write_w_timestamp (abstract) .
278

DDS DataWriterListener.................. 31
DDS DataWriterListener interface 319
DDS DataWriterListener _dloc........... 320
DDS DataWriterListener_on_liveliness |ost
(@bstract) 321
DDS DataWriterListener_on_offered_deadline
missed (abstract) 322
DDS DataWriterListener_on_offered_incompatib
le qos(abstract) 323
DDS DataWriterListener_on_publication_match
(@bstract) 324
DDS DatawriterQos.covveen. .. 456
dds depsidl ... 471
& PRISMTECH

Index

DDS DeadlineQosPolicy............ 63, 65, 77
DDS DedtinationOrderQosPolicy 66
DDS DomainParticipant_assert_liveliness. .. 136
DDS DomainParticipant_contains_entity 137
DDS DomainParticipant_create _contentfilteredto
PIC. . 138
DDS DomainParticipant_create_ multitopic . . 139
DDS DomainParticipant_create publisher...141
DDS DomainParticipant_create subscriber . . 143
DDS DomainParticipant_create topic 146
DDS DomainParticipant_delete contained_entiti
B e e 149
DDS DomainParticipant_delete_contentfilteredto
PIC. . 150
DDS DomainParticipant_delete_ multitopic . . 152
DDS DomainParticipant_delete publisher. . .153
DDS DomainParticipant_delete subscriber . . 154

DDS DomainParticipant_delete topic 156
DDS DomainParticipant_enable (inherited) . . 157
DDS DomainParticipant_find_topic........ 158

DDS DomainParticipant_get_builtin_subscriber .
159

DDS DomainParticipant_get_current_time . . 160

DDS DomainParticipant_get_default_publisher

OOS. + v vttt 161
DDS DomainParticipant_get_default_subscriber
00 163

DDS DomainParticipant_get_default_topic_qos .
164

DDS DomainParticipant_get_discovered particip
ant data........................... 166

DDS DomainParticipant_get_discovered particip
ANMS .o 165

DDS DomainParticipant_get _discovered topic d
aa. .. 166

DDS DomainParticipant_get_discovered topics .
166

DDS DomainParticipant_get_domain_id166

DDS DomainParticipant_get_listener. 167
DDS DomainParticipant_get gos.......... 168
DDS DomainParticipant_get_status _changes
(inherited) o 169
DDS _DomainParticipant_get_statuscondition
(inherited) oL 169

DDS DomainParticipant_ignore participant . 169

545
C Reference Guide

Index

546

DDS _DomainParticipant_ignore publication 169
DDS _DomainParticipant_ignore_subscription 170

DDS _DomainParticipant_ignore topic 170
DDS_DomainParticipant_|lookup_topicdescriptio
Do e 170
DDS DomainParticipant_set_default_publisher g
0S it 171
DDS DomainParticipant_set_default_subscriber
OOS + vttt e 172

DDS DomainParticipant_set default_topic_qos.
174

DDS DomainParticipant_set listener 175
DDS DomainParticipant_set qos.......... 178
DDS_DomainParticipantFactory _create participa
) 180
DDS_DomainParticipantFactory _delete participa
] 183
DDS_DomainParticipantFactory _get default_part
icipant_ goS.iiiii 184

DDS_DomainParticipantFactory _get_instance 186
DDS_DomainParticipantFactory |ookup_particip

| 187
DDS_DomainParticipantFactory_set_default_part

icipant_ goS..........iiiiii 188
DDS DomainParticipantListener 27

DDS_DomainParticipantListener interface. .. 191
DDS DomainParticipantListener__alloc 193
DDS _DomainParticipantListener_on_data availa
ble (inherited, abstract) 194
DDS _DomainParticipantListener_on_data on_rea

ders (inherited, abstract). 194
DDS_DomainParticipantListener_on_inconsistent
_topic (inherited, abstract) 195
DDS_DomainParticipantListener_on_liveliness ¢
hanged (inherited, abstract) 195
DDS_DomainParticipantListener_on_liveliness |
ost (inherited, abstract). 195

DDS _DomainParticipantListener_on_offered_dea
dline_missed (inherited, abstract) 196
DDS_DomainParticipantListener_on_offered_inc
ompatible_gos (inherited, abstract) 196
DDS_DomainParticipantListener_on_publication
_match (inherited, abstract) 196
DDS_DomainParticipantListener_on_requested d
eadline_missed (inherited, abstract). 196

C Reference Guide

DDS _DomainParticipantListener_on_requested i
ncompatible_gos (inherited, abstract) ... 197
DDS DomainParticipantListener_on_sample |ost
(inherited, abstract) 197
DDS DomainParticipantListener_on_sample reje
cted (inherited, abstract) 197
DDS _DomainParticipantListener_on_subscription

_match (inherited, abstract) 198
DDS DomainParticipantQos 458
DDS DurabilityQosPolicy 67
DDS DurabilityServiceQosPolicy 70
DDS Entity enable 49
DDS Entity get instance handle 51
DDS Entity get_listener (abstract) 52
DDS Entity get qos(abstract) 52
DDS Entity get status changes........... 53
DDS Entity get statuscondition........... 54
DDS Entity set_listener (abstract). 54
DDS Entity set qos (abstract)............. 55
DDS _EntityFactoryQosPolicy 73
DDSfreeo i 21
DDS GroupDataQosPolicy 73
DDS GuardCondition__alloc. 123
DDS GuardCondition_get_trigger_value

(inherited). 124
DDS GuardCondition_set_trigger_vaue. ... 124
DDS HistoryQosPalicy 74
DDS InconsistentTopicStatus 101
DDS LatencyBudgetQosPolicy 77
DDS LifespanQosPolicy 78
DDS Listenerinterface. 96
DDS LivelinessChangedStatus 102
DDS LiveinessLostStatus. 104
DDS LivelinessQosPolicy 79, 80

DDS MultiTopic_get_expression_parameters 218

DDS MultiTopic_get_name (inherited). 219

DDS MultiTopic_get_participant (inherited). 219

DDS MultiTopic_get_subscription_expression. .
220

DDS MultiTopic_get_type name (inherited) 220

DDS MultiTopic_set_expression_parameters 221

DDS OfferedDeadlineMissedStatus 105
DDS_OfferedincompatibleQosStatus. 106
DDS_OwnershipQosPolicy 81, 501
DDS_OwnershipStrengthQosPolicy. 84

& PRISMTECH

DDS PARTICIPANT_QOS DEFAULT 459, 460

DDS PartitionQosPolicy 84
DDS PresentationQosPolicy 85
DDS PublicationMatchStatus 108
DDS Publisher_begin_coherent_changes. . ..234
DDS Publisher_copy_from_topic qos...... 236
DDS Publisher_create datawriter.......... 237
DDS Publisher_delete contained_entities . . .240
DDS Publisher_delete datawriter.......... 241
DDS Publisher_enable (inherited). 242
DDS Publisher_end coherent_changes. 243
DDS Publisher_get default_datawriter_gos. .243
DDS Publisher_get listener 245
DDS Publisher_get participant............ 245
DDS Publisher get gqos. 246

DDS Publisher_get_status changes (inherited) . .
247

DDS Publisher_get statuscondition (inherited) . .
247

DDS Publisher_lookup_datawriter 248
DDS PUBLISHER_QOS DEFAULT 462
DDS Publisher_resume_publications 248
DDS Publisher_set default_datawriter_qos. .249
DDS Publisher_set listener............... 251
DDS Publisher set gos.................. 253
DDS Publisher_suspend publications. 255
DDS PublisherListener 30
DDS PublisherListener interface. 314
DDS PublisherListener__aloc 317
DDS PublisherListener_on_liveliness lost
(inherited, abstract) 317
DDS PublisherListener_on_offered_deadline_mi
ssed (inherited, abstract) 318
DDS PublisherListener_on_offered_incompatible
_dos (inherited, abstract). 318
DDS PublisherListener_on_publication_match
(inherited, abstract) 318
DDS PublisherQos. 461

DDS QueryCondition_get datareader (inherited).
444

DDS QueryCondition_get_instance_state mask
(inherited) 444

DDS QueryCondition_get _query_arguments.445

DDS QueryCondition_get_query_expression. 446

DDS QueryCondition_get sample_state_mask

&4 PRISMTECH

(inherited) o il 446
DDS QueryCondition_get_trigger_value

(inherited) o il 447
DDS QueryCondition_get view_state mask

(inherited) il 447
DDS QueryCondition_set_query_arguments . 447
DDS ReadCondition_get datareader 440

DDS ReadCondition_get_instance state mask . .
440

DDS ReadCondition_get sample_state mask 441

DDS ReadCondition_get_trigger_vaue

(inherited)o e 442
DDS ReadCondition_get view_state mask. . 442
DDS ReaderDatal ifecycleQosPolicy. 87
DDS ReliabilityQosPolicy 88
DDS RequestedDeadlineMissedStatus. 109
DDS RequestedincompatibleQosStatus 109
DDS ResourceLimitsQosPolicy 90
DDS Samplelnfo....................... 421
DDS SampleLostStatus. 111
DDS SampleRejectedStatus 112
DDS sequence get release................ 17
DDS sequence set release................ 16
DDS StatusCondition_get_enabled_statuses . 127
DDS StatusCondition_get_entity 128
DDS StatusCondition_get_trigger_value

(inherited) o il 129
DDS StatusCondition_set_enabled_statuses. . 129
DDS string_dloc., 20
DDS Subscriber. 515
DDS Subscriber Statecraft for a Read

Communication Status 516
DDS Subscriber_begin_access............ 329
DDS Subscriber_copy_from _topic_gos. 329
DDS Subscriber_create datareader. 330
DDS Subscriber_delete_contained_entities . . 333
DDS Subscriber_delete_datareader. 335
DDS Subscriber_enable (inherited) 336
DDS Subscriber_end access. 336
DDS Subscriber_get datareaders.......... 336
DDS Subscriber_get_default_datareader _qos. 337
DDS Subscriber_get listener 338
DDS Subscriber_get_participant. 339
DDS Subscriber get qos 339

DDS Subscriber_get_status changes (inherited) .

547
C Reference Guide

Index

548

340
DDS_Subscriber_get_statuscondition (inherited).
341
DDS_Subscriber_|lookup_datareader 341
DDS_Subscriber_notify _datareaders 342
DDS _SUBSCRIBER_QOS DEFAULT . 463
DDS_Subscriber_set_default_datareader _qos 343

DDS _Subscriber_set listener............. 345
DDS Subscriber_set qos................ 347
DDS SubscriberListener.................. 32
DDS SubscriberListener_aloc........... 427

DDS_SubscriberListener_on_data available
(inherited, abstract)
DDS_SubscriberListener_on_data on_readers
(@bstract). 428
DDS_SubscriberListener_on _liveliness_changed
(inherited, abstract) 429
DDS_SubscriberListener_on_requested deadline
_missed (inherited, abstract) 429
DDS_SubscriberListener_on_requested _incompat
ible_qos (inherited, abstract) 429
DDS_SubscriberListener_on_sample_lost

(inherited, abstract) 430
DDS_SubscriberListener_on_sample rejected
(inherited, abstract) 430

DDS_SubscriberListener_on_subscription_match

(inherited, abstract) 430
DDS SubscriberQos. L. 462
DDS_SubscriptionMatchStatus. 113
DDS_TimeBasedFilterQosPolicy 93
DDS Topic Definition Example........... 523
DDS Topic_enable (inherited) 203
DDS Topic_get_inconsistent_topic_status .. 204
DDS Topic get listener................. 205
Functionality 37
IDL Mapping Rulesfor Sequences........... 9
IDL Pre-processor.coovvvevnvnann. 524
IDL to Host Language Mapping........... 524

C Reference Guide

DDS Topic_get name (inherited) 205
DDS Topic_get participant (inherited) 205
DDS Topic get qos.ovvvviiivien... 206

DDS Topic get_status changes (inherited). . 207
DDS Topic_get_statuscondition (inherited) . 207
DDS Topic_get type name (inherited). 207
DDS TOPIC_QOS DEFAULT........... 465
DDS Topic set listener.................
DDS Topic set qoS.covvvviinnaann..
DDS TopicDataQosPolicy 93

DDS TopicDescription_get name......... 200
DDS TopicDescription_get_participant. 201
DDS TopicDescription_get_type name 201

DDS TopicListener 29

DDS TopicListener interface. 222
DDS TopicListener_aloc 223
DDS TopicListener_on_inconsistent_topic
(abstract) 223
DDS TopicQoS. . ..o ovvi e 463
DDS TransportPriorityQosPolicy 94
DDS TypeSupport__aloc (abstract) 226

DDS TypeSupport_get_type name (abstract) 226
DDS TypeSupport_register_type (abstract). . 226
DDS UserDataQosPolicy. 95

DDS WaitSet__aloc 114
DDS WaitSet_attach condition. 115
DDS WaitSet_detach_condition 116
DDS WaitSet_get_conditions 118
DDS WaitSet_ wait. 119
DDS WriterDatal ifecycleQosPolicy. 95
Default attributes. 59
Document Structure i 3
DomainModule 39,131
Infrastructure Module. 38, 48
Inheritance of Abstract Operations.......... 35
instance state 501

& PRISMTECH

Index

Listeners. ... 516 Listenersinterfaces 22
Memory Management 9
Operations. 4 Operations Concerning States 505
Plain Communication Status State Chart 514 DataType“Fo0” 199
PlanSequencesccovivnn.. 10 PublicationModule 42,231
Pre-defined Bit Mask Definitions. 504 Publication Type Specific Classes. 257
Pre-processor Generation of the Typed Classes for
QosPolicyBasics ... 62 QosPolicy Objects, 11
QosPolicy Default Attributes 59 QosPolicy Settings.o 56
read. ... 505 Requested/Offered DDS_DurabilityQosPolicy . 69
Read Communication Status sSDDS_DataReader Requested/Offered DDS_PresentationQosPolicy .
Statecraft 515 87
read_instance 507 Requested/Offered DDS_ReliahilityQosPolicy 82,
read next sample....................... 506 90
read_ w_condition....................... 506 Resourcesand operations. 12
Requested/Offered 56 RetunCodes....................ccovun.. 7
Requested/Offered RetunVaue 240
DDS DestinationOrderQosPolicy 67 RXO .. 61
sample state. i 499 Snapshot.......................... 502, 503
SamplelnfoClass....................... 499 SPACE_FooDataReader_create querycondition
SEOUENCES. . .. vt ettt e 11 (inherited) 388
SequencesDDS_ ... L, 13 SPACE_FooDataReader_create readcondition
Sequences Embeded in QosPolicy Objects11 (inherited) 389
Sequences Embeded in Status Objects. 12 SPACE_FooDataReader_delete contained entitie
Signd Handling 8 s(inherited) 389
& PRISMTECH 249

C Reference Guide

Index

550

SPACE_FooDataReader_delete readcondition
(inherited).coo i 389
SPACE_FooDataReader_enable (inherited). . 389
SPACE_FooDataReader _get key value 390
SPACE_FooDataReader_get_listener (inherited).
390
SPACE_FooDataReader_get_liveliness changed
status (inherited). 390
SPACE_FooDataReader _get matched publicatio
n_data(inherited)................... 390
SPACE_FooDataReader _get matched publicatio
ns(inherited) 391
SPACE_FooDataReader_get_qos (inherited). 391
SPACE_FooDataReader_get_requested deadline

_missed_status (inherited) 391
SPACE_FooDataReader_get requested incompat
ible_qos_status (inherited). 391
SPACE_FooDataReader_get_sample lost_status
(inherited). ... 392
SPACE_FooDataReader_get_sample rejected sta
tus(inherited) 392
SPACE_FooDataReader _get_status changes
(inherited). ... 392
SPACE_FooDataReader_get_statuscondition
(inherited). 392
SPACE_FooDataReader_get_subscriber
(inherited). ... 393
SPACE_FooDataReader _get subscription_match
_status (inherited). 393
SPACE_FooDataReader_get_topicdescription
(inherited). ... 393
SPACE_FooDataReader read 394
SPACE_FooDataReader read instance. 399

SPACE_FooDataReader_read next_instance 401
SPACE_FooDataReader _read next_instance w_
condition. i 404
SPACE_FooDataReader _read next_sample . 406
SPACE_FooDataReader_read w_condition . 406
SPACE_FooDataReader _return_loan. 408
SPACE_FooDataReader_set_listener (inherited) .
410
SPACE_FooDataReader_set_qos (inherited) . 410
SPACE_FooDataReader take............. 411
SPACE_FooDataReader_take instance. 412
SPACE_FooDataReader_take next_sample . 418

C Reference Guide

SPACE_FooDataReader_take w_condition . 419
SPACE_FooDataReader_wait_for_historical_data

(inherited). 420
SPACE_FooDataWriter_assert_liveliness

(inherited). 283
SPACE_FooDataWriter_dispose 284

SPACE_FooDataWriter_dispose w_timestamp .
288, 314
SPACE_FooDataWriter_enable (inherited) . . 289
SPACE_FooDataWriter_get key value. 290
SPACE_FooDataWriter_get_listener (inherited) .
291
SPACE_FooDataWriter_get_liveliness lost_statu
s(inherited) 291
SPACE_FooDataWriter_get_matched _subscriptio
n_data(inherited). 291
SPACE_FooDataWriter_get_matched _subscriptio
ns(inherited) 292
SPACE_FooDataWriter_get_offered_deadline_mi
ssed_status (inherited) 292
SPACE_FooDataWriter_get_offered_incompatibl
e _qos status (inherited). 292
SPACE_FooDataWriter_get_publication_match_s
tatus (inherited) 292
SPACE_FooDataWriter_get_publisher (inherited)
293
SPACE_FooDataWriter_get_gos (inherited) . 293
SPACE_FooDataWriter_get_status _changes

(inherited). 293
SPACE_FooDataWriter_get_statuscondition
(inherited). 293

SPACE_FooDataWriter_get_topic (inherited) 294
SPACE_FooDataWriter_register_instance. .. 294
SPACE_FooDataWriter_register_instance w_tim
estamp ... 298
SPACE_FooDataWriter_set_listener (inherited) .
299
SPACE_FooDataWriter_set_gos (inherited) . 299
SPACE_FooDataWriter_unregister_instance. 299
SPACE_FooDataWriter_unregister_instance w_ti
303
305
SPACE_FooDataWriter_write w_timestamp 309
SPACE_FooTypeSupport_aloc.......... 227

SPACE_FooTypeSupport_get_type name. .. 228

& PRISMTECH

SPACE_FooTypeSupport_register_type. 229 StateMasks ... 504
SQLExamples.................coon... 531 StateperSample........................ 500
SQL GrammarinBNF................... 529 Status Description Per DDS _Entity 98
SQL Token Expression. 530 StatusObjects........... ..., 12
Standard Defined Type.ttt 10 StatusPer DDS Entity................... 125
State Chart of the instance_state for a Single Struct DDS Listener 24
Instance............... 502 Struct DDS Samplelnfo.................. 421
State Chart of thesample_statefor aSingle Sample Struct DDS Status. 98
500 Struct QosPolicy. 55
State Chart of the view_state for a Single Instance SubscriptionModule 44, 325
503 Subscription Type Specific Classes. 349
State Definitions., 504
ke . . 506 ThreadSafety............................ 8
take next_instance...................... 414 Topic-DefinitionModule. 40, 198
take next sample....................... 506 Topic-Definition type specific classes. 224
take w_condition....................... 506 Trigger State of the DDS_GuardCondition . . . 522

The DCPS Publication Module' s Class Model 231
The DCPS Subscription Module’s Class Model . .
325

Trigger State of the DDS_ReadCondition and
DDS QueryCondition. 521
Trigger State of the DDS_StatusCondition . . . 521

User Defined Type. ...t 10
view state. 502
&4 PRISMTECH

551
C Reference Guide

Index

552

C Reference Guide & PRISMTECH

	C Reference Guide
	Table of Contents
	List of Figures
	Preface
	About the C Reference Guide
	Contacts

	Introduction
	About the C Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 Thread Safety
	1.2 Signal Handling
	1.3 Memory Management
	1.3.1 IDL Mapping Rules for Sequences
	1.3.1.1 Standard Defined Type
	1.3.1.2 User Defined Type
	1.3.1.3 Data Distribution Service Defined Type

	1.3.2 Plain Sequences
	1.3.3 Sequences Embedded in QosPolicy Objects
	1.3.4 Sequences Embedded in Status Objects
	1.3.5 Resources and operations
	1.3.5.1 Sequences DDS_<sequence-name>
	1.3.5.2 DDS_sequence_set_release

	1.4 Listeners Interfaces
	1.4.1 Struct DDS_<Entity>Listener
	1.4.2 DDS_DomainParticipantListener
	1.4.3 DDS_TopicListener
	1.4.4 DDS_PublisherListener
	1.4.5 DDS_DataWriterListener
	1.4.6 DDS_SubscriberListener
	1.4.7 DDS_DataReaderListener

	1.5 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Class DDS_Entity (abstract)
	3.1.1.1 DDS_Entity_enable
	3.1.1.2 DDS_Entity_get_instance_handle
	3.1.1.3 DDS_Entity_get_listener (abstract)
	3.1.1.4 DDS_Entity_get_qos (abstract)
	3.1.1.5 DDS_Entity_get_status_changes
	3.1.1.6 DDS_Entity_get_statuscondition
	3.1.1.7 DDS_Entity_set_listener (abstract)
	3.1.1.8 DDS_Entity_set_qos (abstract)

	3.1.2 Class DDS_DomainEntity (abstract)
	3.1.3 Struct QosPolicy
	3.1.3.1 DDS_DeadlineQosPolicy
	3.1.3.2 DDS_DestinationOrderQosPolicy
	3.1.3.3 DDS_DurabilityQosPolicy
	3.1.3.4 DDS_DurabilityServiceQosPolicy
	3.1.3.5 DDS_EntityFactoryQosPolicy
	3.1.3.6 DDS_GroupDataQosPolicy
	3.1.3.7 DDS_HistoryQosPolicy
	3.1.3.8 DDS_LatencyBudgetQosPolicy
	3.1.3.9 DDS_LifespanQosPolicy
	3.1.3.10 DDS_LivelinessQosPolicy
	3.1.3.11 DDS_OwnershipQosPolicy
	3.1.3.12 DDS_OwnershipStrengthQosPolicy
	3.1.3.13 DDS_PartitionQosPolicy
	3.1.3.14 DDS_PresentationQosPolicy
	3.1.3.15 DDS_ReaderDataLifecycleQosPolicy
	3.1.3.16 DDS_ReliabilityQosPolicy
	3.1.3.17 DDS_ResourceLimitsQosPolicy
	3.1.3.18 DDS_SchedulingQosPolicy
	3.1.3.19 DDS_TimeBasedFilterQosPolicy
	3.1.3.20 DDS_TopicDataQosPolicy
	3.1.3.21 DDS_TransportPriorityQosPolicy
	3.1.3.22 DDS_UserDataQosPolicy
	3.1.3.23 DDS_WriterDataLifecycleQosPolicy

	3.1.4 DDS_Listener interface
	3.1.5 Struct DDS_Status
	3.1.5.1 DDS_InconsistentTopicStatus
	3.1.5.2 DDS_LivelinessChangedStatus
	3.1.5.3 DDS_LivelinessLostStatus
	3.1.5.4 DDS_OfferedDeadlineMissedStatus
	3.1.5.5 DDS_OfferedIncompatibleQosStatus
	3.1.5.6 DDS_PublicationMatchedStatus
	3.1.5.7 DDS_RequestedDeadlineMissedStatus
	3.1.5.8 DDS_RequestedIncompatibleQosStatus
	3.1.5.9 DDS_SampleLostStatus
	3.1.5.10 DDS_SampleRejectedStatus
	3.1.5.11 DDS_SubscriptionMatchedStatus

	3.1.6 Class DDS_WaitSet
	3.1.6.1 DDS_WaitSet__alloc
	3.1.6.2 DDS_WaitSet_attach_condition
	3.1.6.3 DDS_WaitSet_detach_condition
	3.1.6.4 DDS_WaitSet_get_conditions
	3.1.6.5 DDS_WaitSet_wait

	3.1.7 Class DDS_Condition
	3.1.7.1 DDS_Condition_get_trigger_value

	3.1.8 Class DDS_GuardCondition
	3.1.8.1 DDS_GuardCondition__alloc
	3.1.8.2 DDS_GuardCondition_get_trigger_value (inherited)
	3.1.8.3 DDS_GuardCondition_set_trigger_value

	3.1.9 Class DDS_StatusCondition
	3.1.9.1 DDS_StatusCondition_get_enabled_statuses
	3.1.9.2 DDS_StatusCondition_get_entity
	3.1.9.3 DDS_StatusCondition_get_trigger_value (inherited)
	3.1.9.4 DDS_StatusCondition_set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DDS_DomainParticipant
	3.2.1.1 DDS_DomainParticipant_assert_liveliness
	3.2.1.2 DDS_DomainParticipant_contains_entity
	3.2.1.3 DDS_DomainParticipant_create_contentfilteredtopic
	3.2.1.4 DDS_DomainParticipant_create_multitopic
	3.2.1.5 DDS_DomainParticipant_create_publisher
	3.2.1.6 DDS_DomainParticipant_create_subscriber
	3.2.1.7 DDS_DomainParticipant_create_topic
	3.2.1.8 DDS_DomainParticipant_delete_contained_entities
	3.2.1.9 DDS_DomainParticipant_delete_contentfilteredtopic
	3.2.1.10 DDS_DomainParticipant_delete_multitopic
	3.2.1.11 DDS_DomainParticipant_delete_publisher
	3.2.1.12 DDS_DomainParticipant_delete_subscriber
	3.2.1.13 DDS_DomainParticipant_delete_topic
	3.2.1.14 DDS_DomainParticipant_enable (inherited)
	3.2.1.15 DDS_DomainParticipant_find_topic
	3.2.1.16 DDS_DomainParticipant_get_builtin_subscriber
	3.2.1.17 DDS_DomainParticipant_get_current_time
	3.2.1.18 DDS_DomainParticipant_get_default_publisher_qos
	3.2.1.19 DDS_DomainParticipant_get_default_subscriber_qos
	3.2.1.20 DDS_DomainParticipant_get_default_topic_qos
	3.2.1.21 DDS_DomainParticipant_get_discovered_participants
	3.2.1.22 DDS_DomainParticipant_get_discovered_participant_data
	3.2.1.23 DDS_DomainParticipant_get_discovered_topics
	3.2.1.24 DDS_DomainParticipant_get_discovered_topic_data
	3.2.1.25 DDS_DomainParticipant_get_domain_id
	3.2.1.26 DDS_DomainParticipant_get_listener
	3.2.1.27 DDS_DomainParticipant_get_qos
	3.2.1.28 DDS_DomainParticipant_get_status_changes (inherited)
	3.2.1.29 DDS_DomainParticipant_get_statuscondition (inherited)
	3.2.1.30 DDS_DomainParticipant_ignore_participant
	3.2.1.31 DDS_DomainParticipant_ignore_publication
	3.2.1.32 DDS_DomainParticipant_ignore_subscription
	3.2.1.33 DDS_DomainParticipant_ignore_topic
	3.2.1.34 DDS_DomainParticipant_lookup_topicdescription
	3.2.1.35 DDS_DomainParticipant_set_default_publisher_qos
	3.2.1.36 DDS_DomainParticipant_set_default_subscriber_qos
	3.2.1.37 DDS_DomainParticipant_set_default_topic_qos
	3.2.1.38 DDS_DomainParticipant_set_listener
	3.2.1.39 DDS_DomainParticipant_set_qos

	3.2.2 Class DDS_DomainParticipantFactory
	3.2.2.1 DDS_DomainParticipantFactory_create_participant
	3.2.2.2 DDS_DomainParticipantFactory_delete_participant
	3.2.2.3 DDS_DomainParticipantFactory_get_default_participant_qos
	3.2.2.4 DDS_DomainParticipantFactory_get_instance
	3.2.2.5 DDS_DomainParticipantFactory_get_qos
	3.2.2.6 DDS_DomainParticipantFactory_lookup_participant
	3.2.2.7 DDS_DomainParticipantFactory_set_default_participant_qos
	3.2.2.8 DDS_DomainParticipantFactory_set_qos

	3.2.3 DDS_DomainParticipantListener interface
	3.2.3.1 DDS_DomainParticipantListener__alloc
	3.2.3.2 DDS_DomainParticipantListener_on_data_available (inherited, abstract)
	3.2.3.3 DDS_DomainParticipantListener_on_data_on_readers (inherited, abstract)
	3.2.3.4 DDS_DomainParticipantListener_on_inconsistent_topic (inherited, abstract)
	3.2.3.5 DDS_DomainParticipantListener_on_liveliness_changed (inherited, abstract)
	3.2.3.6 DDS_DomainParticipantListener_on_liveliness_lost (inherited, abstract)
	3.2.3.7 DDS_DomainParticipantListener_on_offered_deadline_missed (inherited, abstract)
	3.2.3.8 DDS_DomainParticipantListener_on_offered_incompatible_qos (inherited, abstract)
	3.2.3.9 DDS_DomainParticipantListener_on_publication_matched (inherited, abstract)
	3.2.3.10 DDS_DomainParticipantListener_on_requested_deadline_missed (inherited, abstract)
	3.2.3.11 DDS_DomainParticipantListener_on_requested_incompatible_qos (inherited, abstract)
	3.2.3.12 DDS_DomainParticipantListener_on_sample_lost (inherited, abstract)
	3.2.3.13 DDS_DomainParticipantListener_on_sample_rejected (inherited, abstract)
	3.2.3.14 DDS_DomainParticipantListener_on_subscription_matched (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Class DDS_TopicDescription (abstract)
	3.3.1.1 DDS_TopicDescription_get_name
	3.3.1.2 DDS_TopicDescription_get_participant
	3.3.1.3 DDS_TopicDescription_get_type_name

	3.3.2 Class DDS_Topic
	3.3.2.1 DDS_Topic_enable (inherited)
	3.3.2.2 DDS_Topic_get_inconsistent_topic_status
	3.3.2.3 DDS_Topic_get_listener
	3.3.2.4 DDS_Topic_get_name (inherited)
	3.3.2.5 DDS_Topic_get_participant (inherited)
	3.3.2.6 DDS_Topic_get_qos
	3.3.2.7 DDS_Topic_get_status_changes (inherited)
	3.3.2.8 DDS_Topic_get_statuscondition (inherited)
	3.3.2.9 DDS_Topic_get_type_name (inherited)
	3.3.2.10 DDS_Topic_set_listener
	3.3.2.11 DDS_Topic_set_qos

	3.3.3 Class DDS_ContentFilteredTopic
	3.3.3.1 DDS_ContentFilteredTopic_get_expression_parameters
	3.3.3.2 DDS_ContentFilteredTopic_get_filter_expression
	3.3.3.3 DDS_ContentFilteredTopic_get_name (inherited)
	3.3.3.4 DDS_ContentFilteredTopic_get_participant (inherited)
	3.3.3.5 DDS_ContentFilteredTopic_get_related_topic
	3.3.3.6 DDS_ContentFilteredTopic_get_type_name (inherited)
	3.3.3.7 DDS_ContentFilteredTopic_set_expression_parameters

	3.3.4 Class DDS_MultiTopic
	3.3.4.1 DDS_MultiTopic_get_expression_parameters
	3.3.4.2 DDS_MultiTopic_get_name (inherited)
	3.3.4.3 DDS_MultiTopic_get_participant (inherited)
	3.3.4.4 DDS_MultiTopic_get_subscription_expression
	3.3.4.5 DDS_MultiTopic_get_type_name (inherited)
	3.3.4.6 DDS_MultiTopic_set_expression_parameters

	3.3.5 DDS_TopicListener Interface
	3.3.5.1 DDS_TopicListener__alloc
	3.3.5.2 DDS_TopicListener_on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition Type Specific Classes
	3.3.6.1 Class DDS_TypeSupport (abstract)
	3.3.6.2 DDS_TypeSupport__alloc (abstract)
	3.3.6.3 DDS_TypeSupport_get_type_name (abstract)
	3.3.6.4 DDS_TypeSupport_register_type (abstract)
	3.3.6.5 Class SPACE_FooTypeSupport
	3.3.6.6 SPACE_FooTypeSupport__alloc
	3.3.6.7 SPACE_FooTypeSupport_get_type_name
	3.3.6.8 SPACE_FooTypeSupport_register_type

	3.4 Publication Module
	3.4.1 Class DDS_Publisher
	3.4.1.1 DDS_Publisher_begin_coherent_changes
	3.4.1.2 DDS_Publisher_copy_from_topic_qos
	3.4.1.3 DDS_Publisher_create_datawriter
	3.4.1.4 DDS_Publisher_delete_contained_entities
	3.4.1.5 DDS_Publisher_delete_datawriter
	3.4.1.6 DDS_Publisher_enable (inherited)
	3.4.1.7 DDS_Publisher_end_coherent_changes
	3.4.1.8 DDS_Publisher_get_default_datawriter_qos
	3.4.1.9 DDS_Publisher_get_listener
	3.4.1.10 DDS_Publisher_get_participant
	3.4.1.11 DDS_Publisher_get_qos
	3.4.1.12 DDS_Publisher_get_status_changes (inherited)
	3.4.1.13 DDS_Publisher_get_statuscondition (inherited)
	3.4.1.14 DDS_Publisher_lookup_datawriter
	3.4.1.15 DDS_Publisher_resume_publications
	3.4.1.16 DDS_Publisher_set_default_datawriter_qos
	3.4.1.17 DDS_Publisher_set_listener
	3.4.1.18 DDS_Publisher_set_qos
	3.4.1.19 DDS_Publisher_suspend_publications
	3.4.1.20 DDS_Publisher_wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Class DDS_DataWriter (abstract)
	3.4.2.2 DDS_DataWriter_assert_liveliness
	3.4.2.3 DDS_DataWriter_dispose (abstract)
	3.4.2.4 DDS_DataWriter_dispose_w_timestamp (abstract)
	3.4.2.5 DDS_DataWriter_enable (inherited)
	3.4.2.6 DDS_DataWriter_get_key_value (abstract)
	3.4.2.7 DDS_DataWriter_get_listener
	3.4.2.8 DDS_DataWriter_get_liveliness_lost_status
	3.4.2.9 DDS_DataWriter_get_matched_subscription_data
	3.4.2.10 DDS_DataWriter_get_matched_subscriptions
	3.4.2.11 DDS_DataWriter_get_offered_deadline_missed_status
	3.4.2.12 DDS_DataWriter_get_offered_incompatible_qos_status
	3.4.2.13 DDS_DataWriter_get_publication_matched_status
	3.4.2.14 DDS_DataWriter_get_publisher
	3.4.2.15 DDS_DataWriter_get_qos
	3.4.2.16 DDS_DataWriter_get_status_changes (inherited)
	3.4.2.17 DDS_DataWriter_get_statuscondition (inherited)
	3.4.2.18 DDS_DataWriter_get_topic
	3.4.2.19 DDS_DataWriter_lookup_instance (abstract)
	3.4.2.20 DDS_DataWriter_register_instance (abstract)
	3.4.2.21 DDS_DataWriter_register_instance_w_timestamp (abstract)
	3.4.2.22 DDS_DataWriter_set_listener
	3.4.2.23 DDS_DataWriter_set_qos
	3.4.2.24 DDS_DataWriter_unregister_instance (abstract)
	3.4.2.25 DDS_DataWriter_unregister_instance_w_timestamp (abstract)
	3.4.2.26 DDS_DataWriter_wait_for_acknowledgments
	3.4.2.27 DDS_DataWriter_write (abstract)
	3.4.2.28 DDS_DataWriter_write_w_timestamp (abstract)
	3.4.2.29 DDS_DataWriter_writedispose (abstract)
	3.4.2.30 DDS_DataWriter_writedispose_w_timestamp (abstract)
	3.4.2.31 Class SPACE_FooDataWriter
	3.4.2.32 SPACE_FooDataWriter_assert_liveliness (inherited)
	3.4.2.33 SPACE_FooDataWriter_dispose
	3.4.2.34 SPACE_FooDataWriter_dispose_w_timestamp
	3.4.2.35 SPACE_FooDataWriter_enable (inherited)
	3.4.2.36 SPACE_FooDataWriter_get_key_value
	3.4.2.37 SPACE_FooDataWriter_get_listener (inherited)
	3.4.2.38 SPACE_FooDataWriter_get_liveliness_lost_status (inherited)
	3.4.2.39 SPACE_FooDataWriter_get_matched_subscription_data (inherited)
	3.4.2.40 SPACE_FooDataWriter_get_matched_subscriptions (inherited)
	3.4.2.41 SPACE_FooDataWriter_get_offered_deadline_missed_status (inherited)
	3.4.2.42 SPACE_FooDataWriter_get_offered_incompatible_qos_status (inherited)
	3.4.2.43 SPACE_FooDataWriter_get_publication_matched_status (inherited)
	3.4.2.44 SPACE_FooDataWriter_get_publisher (inherited)
	3.4.2.45 SPACE_FooDataWriter_get_qos (inherited)
	3.4.2.46 SPACE_FooDataWriter_get_status_changes (inherited)
	3.4.2.47 SPACE_FooDataWriter_get_statuscondition (inherited)
	3.4.2.48 SPACE_FooDataWriter_get_topic (inherited)
	3.4.2.49 SPACE_FooDataWriter_lookup_instance
	3.4.2.50 SPACE_FooDataWriter_register_instance
	3.4.2.51 SPACE_FooDataWriter_register_instance_w_timestamp
	3.4.2.52 SPACE_FooDataWriter_set_listener (inherited)
	3.4.2.53 SPACE_FooDataWriter_set_qos (inherited)
	3.4.2.54 SPACE_FooDataWriter_unregister_instance
	3.4.2.55 SPACE_FooDataWriter_unregister_instance_w_timestamp
	3.4.2.56 SPACE_FooDataWriter_wait_for_acknowledgments (inherited)
	3.4.2.57 SPACE_FooDataWriter_write
	3.4.2.58 SPACE_FooDataWriter_write_w_timestamp
	3.4.2.59 SPACE_FooDataWriter_writedispose
	3.4.2.60 SPACE_FooDataWriter_writedispose_w_timestamp

	3.4.3 DDS_PublisherListener interface
	3.4.3.1 DDS_PublisherListener__alloc
	3.4.3.2 DDS_PublisherListener_on_liveliness_lost (inherited, abstract)
	3.4.3.3 DDS_PublisherListener_on_offered_deadline_missed (inherited, abstract)
	3.4.3.4 DDS_PublisherListener_on_offered_incompatible_qos (inherited, abstract)
	3.4.3.5 DDS_PublisherListener_on_publication_matched (inherited, abstract)

	3.4.4 DDS_DataWriterListener interface
	3.4.4.1 DDS_DataWriterListener__alloc
	3.4.4.2 DDS_DataWriterListener_on_liveliness_lost (abstract)
	3.4.4.3 DDS_DataWriterListener_on_offered_deadline_missed (abstract)
	3.4.4.4 DDS_DataWriterListener_on_offered_incompatible_qos (abstract)
	3.4.4.5 DDS_DataWriterListener_on_publication_matched (abstract)

	3.5 Subscription Module
	3.5.1 Class DDS_Subscriber
	3.5.1.1 DDS_Subscriber_begin_access
	3.5.1.2 DDS_Subscriber_copy_from_topic_qos
	3.5.1.3 DDS_Subscriber_create_datareader
	3.5.1.4 DDS_Subscriber_delete_contained_entities
	3.5.1.5 DDS_Subscriber_delete_datareader
	3.5.1.6 DDS_Subscriber_enable (inherited)
	3.5.1.7 DDS_Subscriber_end_access
	3.5.1.8 DDS_Subscriber_get_datareaders
	3.5.1.9 DDS_Subscriber_get_default_datareader_qos
	3.5.1.10 DDS_Subscriber_get_listener
	3.5.1.11 DDS_Subscriber_get_participant
	3.5.1.12 DDS_Subscriber_get_qos
	3.5.1.13 DDS_Subscriber_get_status_changes (inherited)
	3.5.1.14 DDS_Subscriber_get_statuscondition (inherited)
	3.5.1.15 DDS_Subscriber_lookup_datareader
	3.5.1.16 DDS_Subscriber_notify_datareaders
	3.5.1.17 DDS_Subscriber_set_default_datareader_qos
	3.5.1.18 DDS_Subscriber_set_listener
	3.5.1.19 DDS_Subscriber_set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Class DDS_DataReader (abstract)
	3.5.2.2 DDS_DataReader_create_querycondition
	3.5.2.3 DDS_DataReader_create_readcondition
	3.5.2.4 DDS_DataReader_delete_contained_entities
	3.5.2.5 DDS_DataReader_delete_readcondition
	3.5.2.6 DDS_DataReader_enable (inherited)
	3.5.2.7 DDS_DataReader_get_key_value (abstract)
	3.5.2.8 DDS_DataReader_get_listener
	3.5.2.9 DDS_DataReader_get_liveliness_changed_status
	3.5.2.10 DDS_DataReader_get_matched_publication_data
	3.5.2.11 DDS_DataReader_get_matched_publications
	3.5.2.12 DDS_DataReader_get_qos
	3.5.2.13 DDS_DataReader_get_requested_deadline_missed_status
	3.5.2.14 DDS_DataReader_get_requested_incompatible_qos_status
	3.5.2.15 DDS_DataReader_get_sample_lost_status
	3.5.2.16 DDS_DataReader_get_sample_rejected_status
	3.5.2.17 DDS_DataReader_get_status_changes (inherited)
	3.5.2.18 DDS_DataReader_get_statuscondition (inherited)
	3.5.2.19 DDS_DataReader_get_subscriber
	3.5.2.20 DDS_DataReader_get_subscription_matched_status
	3.5.2.21 DDS_DataReader_get_topicdescription
	3.5.2.22 DDS_DataReader_lookup_instance (abstract)
	3.5.2.23 DDS_DataReader_read (abstract)
	3.5.2.24 DDS_DataReader_read_instance (abstract)
	3.5.2.25 DDS_DataReader_read_next_instance (abstract)
	3.5.2.26 DDS_DataReader_read_next_instance_w_condition (abstract)
	3.5.2.27 DDS_DataReader_read_next_sample (abstract)
	3.5.2.28 DDS_DataReader_read_w_condition (abstract)
	3.5.2.29 DDS_DataReader_return_loan (abstract)
	3.5.2.30 DDS_DataReader_set_listener
	3.5.2.31 DDS_DataReader_set_qos
	3.5.2.32 DDS_DataReader_take (abstract)
	3.5.2.33 DDS_DataReader_take_instance (abstract)
	3.5.2.34 DDS_DataReader_take_next_instance (abstract)
	3.5.2.35 DDS_DataReader_take_next_instance_w_condition (abstract)
	3.5.2.36 DDS_DataReader_take_next_sample (abstract)
	3.5.2.37 DDS_DataReader_take_w_condition (abstract)
	3.5.2.38 DDS_DataReader_wait_for_historical_data
	3.5.2.39 Class SPACE_FooDataReader
	3.5.2.40 SPACE_FooDataReader_create_querycondition (inherited)
	3.5.2.41 SPACE_FooDataReader_create_readcondition (inherited)
	3.5.2.42 SPACE_FooDataReader_delete_contained_entities (inherited)
	3.5.2.43 SPACE_FooDataReader_delete_readcondition (inherited)
	3.5.2.44 SPACE_FooDataReader_enable (inherited)
	3.5.2.45 SPACE_FooDataReader_get_key_value
	3.5.2.46 SPACE_FooDataReader_get_listener (inherited)
	3.5.2.47 SPACE_FooDataReader_get_liveliness_changed_status (inherited)
	3.5.2.48 SPACE_FooDataReader_get_matched_publication_data (inherited)
	3.5.2.49 SPACE_FooDataReader_get_matched_publications (inherited)
	3.5.2.50 SPACE_FooDataReader_get_qos (inherited)
	3.5.2.51 SPACE_FooDataReader_get_requested_deadline_missed_status (inherited)
	3.5.2.52 SPACE_FooDataReader_get_requested_incompatible_qos_status (inherited)
	3.5.2.53 SPACE_FooDataReader_get_sample_lost_status (inherited)
	3.5.2.54 SPACE_FooDataReader_get_sample_rejected_status (inherited)
	3.5.2.55 SPACE_FooDataReader_get_status_changes (inherited)
	3.5.2.56 SPACE_FooDataReader_get_statuscondition (inherited)
	3.5.2.57 SPACE_FooDataReader_get_subscriber (inherited)
	3.5.2.58 SPACE_FooDataReader_get_subscription_matched_status (inherited)
	3.5.2.59 SPACE_FooDataReader_get_topicdescription (inherited)
	3.5.2.60 SPACE_FooDataReader_lookup_instance
	3.5.2.61 SPACE_FooDataReader_read
	3.5.2.62 SPACE_FooDataReader_read_instance
	3.5.2.63 SPACE_FooDataReader_read_next_instance
	3.5.2.64 SPACE_FooDataReader_read_next_instance_w_condition
	3.5.2.65 SPACE_FooDataReader_read_next_sample
	3.5.2.66 SPACE_FooDataReader_read_w_condition
	3.5.2.67 SPACE_FooDataReader_return_loan
	3.5.2.68 SPACE_FooDataReader_set_listener (inherited)
	3.5.2.69 SPACE_FooDataReader_set_qos (inherited)
	3.5.2.70 SPACE_FooDataReader_take
	3.5.2.71 SPACE_FooDataReader_take_instance
	3.5.2.72 SPACE_FooDataReader_take_next_instance
	3.5.2.73 SPACE_FooDataReader_take_next_instance_w_condition
	3.5.2.74 SPACE_FooDataReader_take_next_sample
	3.5.2.75 SPACE_FooDataReader_take_w_condition
	3.5.2.76 SPACE_FooDataReader_wait_for_historical_data (inherited)

	3.5.3 Class DDS_DataSample
	3.5.4 Struct DDS_SampleInfo
	3.5.4.1 DDS_SampleInfo

	3.5.5 DDS_SubscriberListener Interface
	3.5.5.1 DDS_SubscriberListener__alloc
	3.5.5.2 DDS_SubscriberListener_on_data_available (inherited, abstract)
	3.5.5.3 DDS_SubscriberListener_on_data_on_readers (abstract)
	3.5.5.4 DDS_SubscriberListener_on_liveliness_changed (inherited, abstract)
	3.5.5.5 DDS_SubscriberListener_on_requested_deadline_missed (inherited, abstract)
	3.5.5.6 DDS_SubscriberListener_on_requested_incompatible_qos (inherited, abstract)
	3.5.5.7 DDS_SubscriberListener_on_sample_lost (inherited, abstract)
	3.5.5.8 DDS_SubscriberListener_on_sample_rejected (inherited, abstract)
	3.5.5.9 DDS_SubscriberListener_on_subscription_matched (inherited, abstract)

	3.5.6 DDS_DataReaderListener interface
	3.5.6.1 DDS_DataReaderListener__alloc
	3.5.6.2 DDS_DataReaderListener_on_data_available (abstract)
	3.5.6.3 DDS_DataReaderListener_on_liveliness_changed (abstract)
	3.5.6.4 DDS_DataReaderListener_on_requested_deadline_missed (abstract)
	3.5.6.5 DDS_DataReaderListener_on_requested_incompatible_qos (abstract)
	3.5.6.6 DDS_DataReaderListener_on_sample_lost (abstract)
	3.5.6.7 DDS_DataReaderListener_on_sample_rejected (abstract)
	3.5.6.8 DDS_DataReaderListener_on_subscription_matched (abstract)

	3.5.7 Class DDS_ReadCondition
	3.5.7.1 DDS_ReadCondition_get_datareader
	3.5.7.2 DDS_ReadCondition_get_instance_state_mask
	3.5.7.3 DDS_ReadCondition_get_sample_state_mask
	3.5.7.4 DDS_ReadCondition_get_trigger_value (inherited)
	3.5.7.5 DDS_ReadCondition_get_view_state_mask

	3.5.8 Class DDS_QueryCondition
	3.5.8.1 DDS_QueryCondition_get_datareader (inherited)
	3.5.8.2 DDS_QueryCondition_get_instance_state_mask (inherited)
	3.5.8.3 DDS_QueryCondition_get_query_parameters
	3.5.8.4 DDS_QueryCondition_get_query_expression
	3.5.8.5 DDS_QueryCondition_get_sample_state_mask (inherited)
	3.5.8.6 DDS_QueryCondition_get_trigger_value (inherited)
	3.5.8.7 DDS_QueryCondition_get_view_state_mask (inherited)
	3.5.8.8 DDS_QueryCondition_set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DDS_DataReaderQos
	DDS_DataWriterQos
	DDS_DomainParticipantFactoryQos
	DDS_DomainParticipantQos
	DDS_PublisherQos
	DDS_SubscriberQos
	DDS_TopicQos

	B API Constants and Types
	C Platform Specific IDL Interface
	dds_dcps.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State per Sample

	instance_state
	DDS_OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	read_w_condition
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Class Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	DDS_StatusCondition Trigger State
	DDS_ReadCondition and DDS_QueryCondition Trigger State
	DDS_GuardCondition Trigger State

	G DDS_Topic Definitions
	DDS_Topic Definition Example
	Complex Topics
	IDL Pre-processor
	IDL to Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL Subset in BNF Notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

