
OpenSplice DDS
Version 4.x

C Reference Guide
�������	

OpenSplice DDS
C Reference Guide
Part Number: OS-CREFG Doc Issue 22, 8 September 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
C Reference Guide

�������	

CONTENTS

Table of Contents
List of Figures xix

Preface
About the C Reference Guide . xxi
Contacts . xxiii

Introduction
About the C Reference Guide 3
Document Structure . 3
Operations . 4

API Reference
Chapter 1 DCPS API General Description 7

1.1 Thread Safety . 8
1.2 Signal Handling. 8
1.3 Memory Management . 9
1.3.1 IDL Mapping Rules for Sequences . 9
1.3.1.1 Standard Defined Type . 10
1.3.1.2 User Defined Type . 10
1.3.1.3 Data Distribution Service Defined Type . 10
1.3.2 Plain Sequences . 10
1.3.3 Sequences Embedded in QosPolicy Objects . 11
1.3.4 Sequences Embedded in Status Objects . 12
1.3.5 Resources and operations . 12
1.3.5.1 Sequences DDS_<sequence-name> . 13
1.3.5.2 DDS_sequence_set_release . 16
1.4 Listeners Interfaces . 22
1.4.1 Struct DDS_<Entity>Listener . 24
1.4.2 DDS_DomainParticipantListener . 27
1.4.3 DDS_TopicListener . 29
1.4.4 DDS_PublisherListener . 30
1.4.5 DDS_DataWriterListener . 31
1.4.6 DDS_SubscriberListener . 32
1.4.7 DDS_DataReaderListener . 34
1.5 Inheritance of Abstract Operations . 35

Chapter 2 DCPS Modules 37
2.1 Functionality . 37
v
C Reference Guide

�������	

Table of Contents
2.2 Infrastructure Module . 38
2.3 Domain Module. 39
2.4 Topic-Definition Module . 40
2.5 Publication Module. 42
2.6 Subscription Module . 44

Chapter 3 DCPS Classes and Operations 47
3.1 Infrastructure Module . 48
3.1.1 Class DDS_Entity (abstract) . 48
3.1.1.1 DDS_Entity_enable . 49
3.1.1.2 DDS_Entity_get_instance_handle . 51
3.1.1.3 DDS_Entity_get_listener (abstract) . 52
3.1.1.4 DDS_Entity_get_qos (abstract) . 52
3.1.1.5 DDS_Entity_get_status_changes . 53
3.1.1.6 DDS_Entity_get_statuscondition . 54
3.1.1.7 DDS_Entity_set_listener (abstract) . 54
3.1.1.8 DDS_Entity_set_qos (abstract) . 55
3.1.2 Class DDS_DomainEntity (abstract). 55
3.1.3 Struct QosPolicy . 55
3.1.3.1 DDS_DeadlineQosPolicy . 63
3.1.3.2 DDS_DestinationOrderQosPolicy . 66
3.1.3.3 DDS_DurabilityQosPolicy . 67
3.1.3.4 DDS_DurabilityServiceQosPolicy . 70
3.1.3.5 DDS_EntityFactoryQosPolicy . 73
3.1.3.6 DDS_GroupDataQosPolicy . 73
3.1.3.7 DDS_HistoryQosPolicy . 74
3.1.3.8 DDS_LatencyBudgetQosPolicy . 77
3.1.3.9 DDS_LifespanQosPolicy . 78
3.1.3.10 DDS_LivelinessQosPolicy . 79
3.1.3.11 DDS_OwnershipQosPolicy . 81
3.1.3.12 DDS_OwnershipStrengthQosPolicy . 84
3.1.3.13 DDS_PartitionQosPolicy . 84
3.1.3.14 DDS_PresentationQosPolicy . 85
3.1.3.15 DDS_ReaderDataLifecycleQosPolicy . 87
3.1.3.16 DDS_ReliabilityQosPolicy. 88
3.1.3.17 DDS_ResourceLimitsQosPolicy . 90
3.1.3.18 DDS_SchedulingQosPolicy . 92
3.1.3.19 DDS_TimeBasedFilterQosPolicy. 93
3.1.3.20 DDS_TopicDataQosPolicy. 93
3.1.3.21 DDS_TransportPriorityQosPolicy . 94
3.1.3.22 DDS_UserDataQosPolicy . 95
3.1.3.23 DDS_WriterDataLifecycleQosPolicy . 95
vi
C Reference Guide �������	

Table of Contents
3.1.4 DDS_Listener interface . 96
3.1.5 Struct DDS_Status . 98
3.1.5.1 DDS_InconsistentTopicStatus . 101
3.1.5.2 DDS_LivelinessChangedStatus . 102
3.1.5.3 DDS_LivelinessLostStatus . 104
3.1.5.4 DDS_OfferedDeadlineMissedStatus . 105
3.1.5.5 DDS_OfferedIncompatibleQosStatus. 106
3.1.5.6 DDS_PublicationMatchedStatus . 108
3.1.5.7 DDS_RequestedDeadlineMissedStatus . 109
3.1.5.8 DDS_RequestedIncompatibleQosStatus . 109
3.1.5.9 DDS_SampleLostStatus . 111
3.1.5.10 DDS_SampleRejectedStatus. 112
3.1.5.11 DDS_SubscriptionMatchedStatus . 113
3.1.6 Class DDS_WaitSet. 114
3.1.6.1 DDS_WaitSet__alloc . 114
3.1.6.2 DDS_WaitSet_attach_condition. 115
3.1.6.3 DDS_WaitSet_detach_condition . 116
3.1.6.4 DDS_WaitSet_get_conditions . 118
3.1.6.5 DDS_WaitSet_wait. 119
3.1.7 Class DDS_Condition . 121
3.1.7.1 DDS_Condition_get_trigger_value . 122
3.1.8 Class DDS_GuardCondition . 122
3.1.8.1 DDS_GuardCondition__alloc. 123
3.1.8.2 DDS_GuardCondition_get_trigger_value (inherited) 124
3.1.8.3 DDS_GuardCondition_set_trigger_value. 124
3.1.9 Class DDS_StatusCondition . 125
3.1.9.1 DDS_StatusCondition_get_enabled_statuses. 127
3.1.9.2 DDS_StatusCondition_get_entity. 128
3.1.9.3 DDS_StatusCondition_get_trigger_value (inherited) 129
3.1.9.4 DDS_StatusCondition_set_enabled_statuses . 129
3.2 Domain Module. 131
3.2.1 Class DDS_DomainParticipant . 131
3.2.1.1 DDS_DomainParticipant_assert_liveliness . 136
3.2.1.2 DDS_DomainParticipant_contains_entity . 137
3.2.1.3 DDS_DomainParticipant_create_contentfilteredtopic 138
3.2.1.4 DDS_DomainParticipant_create_multitopic . 139
3.2.1.5 DDS_DomainParticipant_create_publisher . 141
3.2.1.6 DDS_DomainParticipant_create_subscriber . 143
3.2.1.7 DDS_DomainParticipant_create_topic. 146
3.2.1.8 DDS_DomainParticipant_delete_contained_entities 149
3.2.1.9 DDS_DomainParticipant_delete_contentfilteredtopic 150
3.2.1.10 DDS_DomainParticipant_delete_multitopic . 152
vii
C Reference Guide

�������	

Table of Contents
3.2.1.11 DDS_DomainParticipant_delete_publisher . 153
3.2.1.12 DDS_DomainParticipant_delete_subscriber . 154
3.2.1.13 DDS_DomainParticipant_delete_topic . 156
3.2.1.14 DDS_DomainParticipant_enable (inherited) . 157
3.2.1.15 DDS_DomainParticipant_find_topic . 158
3.2.1.16 DDS_DomainParticipant_get_builtin_subscriber 159
3.2.1.17 DDS_DomainParticipant_get_current_time. 160
3.2.1.18 DDS_DomainParticipant_get_default_publisher_qos 161
3.2.1.19 DDS_DomainParticipant_get_default_subscriber_qos 163
3.2.1.20 DDS_DomainParticipant_get_default_topic_qos 164
3.2.1.21 DDS_DomainParticipant_get_discovered_participants 165
3.2.1.22 DDS_DomainParticipant_get_discovered_participant_data 166
3.2.1.23 DDS_DomainParticipant_get_discovered_topics 166
3.2.1.24 DDS_DomainParticipant_get_discovered_topic_data 166
3.2.1.25 DDS_DomainParticipant_get_domain_id . 166
3.2.1.26 DDS_DomainParticipant_get_listener . 167
3.2.1.27 DDS_DomainParticipant_get_qos . 168
3.2.1.28 DDS_DomainParticipant_get_status_changes (inherited) 169
3.2.1.29 DDS_DomainParticipant_get_statuscondition (inherited) 169
3.2.1.30 DDS_DomainParticipant_ignore_participant. 169
3.2.1.31 DDS_DomainParticipant_ignore_publication . 169
3.2.1.32 DDS_DomainParticipant_ignore_subscription 170
3.2.1.33 DDS_DomainParticipant_ignore_topic . 170
3.2.1.34 DDS_DomainParticipant_lookup_topicdescription 170
3.2.1.35 DDS_DomainParticipant_set_default_publisher_qos 171
3.2.1.36 DDS_DomainParticipant_set_default_subscriber_qos 172
3.2.1.37 DDS_DomainParticipant_set_default_topic_qos. 174
3.2.1.38 DDS_DomainParticipant_set_listener . 175
3.2.1.39 DDS_DomainParticipant_set_qos . 178
3.2.2 Class DDS_DomainParticipantFactory . 179
3.2.2.1 DDS_DomainParticipantFactory_create_participant 180
3.2.2.2 DDS_DomainParticipantFactory_delete_participant 183
3.2.2.3 DDS_DomainParticipantFactory_get_default_participant_qos 184
3.2.2.4 DDS_DomainParticipantFactory_get_instance . 186
3.2.2.5 DDS_DomainParticipantFactory_get_qos . 186
3.2.2.6 DDS_DomainParticipantFactory_lookup_participant 187
3.2.2.7 DDS_DomainParticipantFactory_set_default_participant_qos 188
3.2.2.8 DDS_DomainParticipantFactory_set_qos . 190
3.2.3 DDS_DomainParticipantListener interface. 191
3.2.3.1 DDS_DomainParticipantListener__alloc . 193
3.2.3.2 DDS_DomainParticipantListener_on_data_available
 (inherited, abstract). 194
viii
C Reference Guide �������	

Table of Contents
3.2.3.3 DDS_DomainParticipantListener_on_data_on_readers
 (inherited, abstract) . 194
3.2.3.4 DDS_DomainParticipantListener_on_inconsistent_topic
 (inherited, abstract) . 195
3.2.3.5 DDS_DomainParticipantListener_on_liveliness_changed
 (inherited, abstract) . 195
3.2.3.6 DDS_DomainParticipantListener_on_liveliness_lost
 (inherited, abstract) . 195
3.2.3.7 DDS_DomainParticipantListener_on_offered_deadline_missed
 (inherited, abstract) . 196
3.2.3.8 DDS_DomainParticipantListener_on_offered_incompatible_qos
 (inherited, abstract) . 196
3.2.3.9 DDS_DomainParticipantListener_on_publication_matched
 (inherited, abstract) . 196
3.2.3.10 DDS_DomainParticipantListener_on_requested_deadline_missed
 (inherited, abstract) . 196
3.2.3.11 DDS_DomainParticipantListener_on_requested_incompatible_qos
 (inherited, abstract) . 197
3.2.3.12 DDS_DomainParticipantListener_on_sample_lost
 (inherited, abstract) . 197
3.2.3.13 DDS_DomainParticipantListener_on_sample_rejected
 (inherited, abstract) . 197
3.2.3.14 DDS_DomainParticipantListener_on_subscription_matched
 (inherited, abstract) . 198
3.3 Topic-Definition Module . 198
3.3.1 Class DDS_TopicDescription (abstract) . 199
3.3.1.1 DDS_TopicDescription_get_name. 200
3.3.1.2 DDS_TopicDescription_get_participant . 201
3.3.1.3 DDS_TopicDescription_get_type_name . 201
3.3.2 Class DDS_Topic . 202
3.3.2.1 DDS_Topic_enable (inherited). 203
3.3.2.2 DDS_Topic_get_inconsistent_topic_status . 204
3.3.2.3 DDS_Topic_get_listener . 205
3.3.2.4 DDS_Topic_get_name (inherited) . 205
3.3.2.5 DDS_Topic_get_participant (inherited) . 205
3.3.2.6 DDS_Topic_get_qos. 206
3.3.2.7 DDS_Topic_get_status_changes (inherited) . 207
3.3.2.8 DDS_Topic_get_statuscondition (inherited) . 207
3.3.2.9 DDS_Topic_get_type_name (inherited). 207
3.3.2.10 DDS_Topic_set_listener. 207
3.3.2.11 DDS_Topic_set_qos . 209
3.3.3 Class DDS_ContentFilteredTopic . 211
ix
C Reference Guide

�������	

Table of Contents
3.3.3.1 DDS_ContentFilteredTopic_get_expression_parameters 212
3.3.3.2 DDS_ContentFilteredTopic_get_filter_expression 213
3.3.3.3 DDS_ContentFilteredTopic_get_name (inherited) 214
3.3.3.4 DDS_ContentFilteredTopic_get_participant (inherited) 214
3.3.3.5 DDS_ContentFilteredTopic_get_related_topic . 214
3.3.3.6 DDS_ContentFilteredTopic_get_type_name (inherited) 215
3.3.3.7 DDS_ContentFilteredTopic_set_expression_parameters. 215
3.3.4 Class DDS_MultiTopic . 217
3.3.4.1 DDS_MultiTopic_get_expression_parameters . 218
3.3.4.2 DDS_MultiTopic_get_name (inherited). 219
3.3.4.3 DDS_MultiTopic_get_participant (inherited) . 219
3.3.4.4 DDS_MultiTopic_get_subscription_expression 220
3.3.4.5 DDS_MultiTopic_get_type_name (inherited) . 220
3.3.4.6 DDS_MultiTopic_set_expression_parameters. 221
3.3.5 DDS_TopicListener Interface . 222
3.3.5.1 DDS_TopicListener__alloc . 223
3.3.5.2 DDS_TopicListener_on_inconsistent_topic (abstract). 223
3.3.6 Topic-Definition Type Specific Classes . 224
3.3.6.1 Class DDS_TypeSupport (abstract) . 225
3.3.6.2 DDS_TypeSupport__alloc (abstract) . 226
3.3.6.3 DDS_TypeSupport_get_type_name (abstract). 226
3.3.6.4 DDS_TypeSupport_register_type (abstract) . 226
3.3.6.5 Class SPACE_FooTypeSupport . 226
3.3.6.6 SPACE_FooTypeSupport__alloc. 227
3.3.6.7 SPACE_FooTypeSupport_get_type_name . 228
3.3.6.8 SPACE_FooTypeSupport_register_type . 229
3.4 Publication Module. 231
3.4.1 Class DDS_Publisher . 232
3.4.1.1 DDS_Publisher_begin_coherent_changes . 234
3.4.1.2 DDS_Publisher_copy_from_topic_qos . 236
3.4.1.3 DDS_Publisher_create_datawriter . 237
3.4.1.4 DDS_Publisher_delete_contained_entities . 240
3.4.1.5 DDS_Publisher_delete_datawriter . 241
3.4.1.6 DDS_Publisher_enable (inherited). 242
3.4.1.7 DDS_Publisher_end_coherent_changes. 243
3.4.1.8 DDS_Publisher_get_default_datawriter_qos . 243
3.4.1.9 DDS_Publisher_get_listener . 245
3.4.1.10 DDS_Publisher_get_participant . 245
3.4.1.11 DDS_Publisher_get_qos. 246
3.4.1.12 DDS_Publisher_get_status_changes (inherited) 247
3.4.1.13 DDS_Publisher_get_statuscondition (inherited) 247
3.4.1.14 DDS_Publisher_lookup_datawriter . 248
x
C Reference Guide �������	

Table of Contents
3.4.1.15 DDS_Publisher_resume_publications . 248
3.4.1.16 DDS_Publisher_set_default_datawriter_qos . 249
3.4.1.17 DDS_Publisher_set_listener . 251
3.4.1.18 DDS_Publisher_set_qos . 253
3.4.1.19 DDS_Publisher_suspend_publications. 255
3.4.1.20 DDS_Publisher_wait_for_acknowledgments. 256
3.4.2 Publication Type Specific Classes. 257
3.4.2.1 Class DDS_DataWriter (abstract). 257
3.4.2.2 DDS_DataWriter_assert_liveliness . 261
3.4.2.3 DDS_DataWriter_dispose (abstract) . 263
3.4.2.4 DDS_DataWriter_dispose_w_timestamp (abstract). 263
3.4.2.5 DDS_DataWriter_enable (inherited) . 263
3.4.2.6 DDS_DataWriter_get_key_value (abstract) . 264
3.4.2.7 DDS_DataWriter_get_listener . 264
3.4.2.8 DDS_DataWriter_get_liveliness_lost_status . 264
3.4.2.9 DDS_DataWriter_get_matched_subscription_data 266
3.4.2.10 DDS_DataWriter_get_matched_subscriptions. 266
3.4.2.11 DDS_DataWriter_get_offered_deadline_missed_status 266
3.4.2.12 DDS_DataWriter_get_offered_incompatible_qos_status 267
3.4.2.13 DDS_DataWriter_get_publication_matched_status. 269
3.4.2.14 DDS_DataWriter_get_publisher. 269
3.4.2.15 DDS_DataWriter_get_qos . 269
3.4.2.16 DDS_DataWriter_get_status_changes (inherited) 270
3.4.2.17 DDS_DataWriter_get_statuscondition (inherited) 271
3.4.2.18 DDS_DataWriter_get_topic . 271
3.4.2.19 DDS_DataWriter_lookup_instance (abstract) . 272
3.4.2.20 DDS_DataWriter_register_instance (abstract) . 272
3.4.2.21 DDS_DataWriter_register_instance_w_timestamp (abstract) 272
3.4.2.22 DDS_DataWriter_set_listener . 273
3.4.2.23 DDS_DataWriter_set_qos . 275
3.4.2.24 DDS_DataWriter_unregister_instance (abstract) 276
3.4.2.25 DDS_DataWriter_unregister_instance_w_timestamp (abstract) 277
3.4.2.26 DDS_DataWriter_wait_for_acknowledgments 277
3.4.2.27 DDS_DataWriter_write (abstract) . 278
3.4.2.28 DDS_DataWriter_write_w_timestamp (abstract) 278
3.4.2.29 DDS_DataWriter_writedispose (abstract) . 279
3.4.2.30 DDS_DataWriter_writedispose_w_timestamp (abstract) 279
3.4.2.31 Class SPACE_FooDataWriter . 279
3.4.2.32 SPACE_FooDataWriter_assert_liveliness (inherited) 283
3.4.2.33 SPACE_FooDataWriter_dispose . 284
3.4.2.34 SPACE_FooDataWriter_dispose_w_timestamp 288
3.4.2.35 SPACE_FooDataWriter_enable (inherited) . 289
xi
C Reference Guide

�������	

Table of Contents
3.4.2.36 SPACE_FooDataWriter_get_key_value . 290
3.4.2.37 SPACE_FooDataWriter_get_listener (inherited) 291
3.4.2.38 SPACE_FooDataWriter_get_liveliness_lost_status (inherited). 291
3.4.2.39 SPACE_FooDataWriter_get_matched_subscription_data (inherited) . . 291
3.4.2.40 SPACE_FooDataWriter_get_matched_subscriptions (inherited) 292
3.4.2.41 SPACE_FooDataWriter_get_offered_deadline_missed_status
 (inherited) . 292
3.4.2.42 SPACE_FooDataWriter_get_offered_incompatible_qos_status
 (inherited) . 292
3.4.2.43 SPACE_FooDataWriter_get_publication_matched_status
 (inherited) . 292
3.4.2.44 SPACE_FooDataWriter_get_publisher (inherited) 293
3.4.2.45 SPACE_FooDataWriter_get_qos (inherited) . 293
3.4.2.46 SPACE_FooDataWriter_get_status_changes (inherited). 293
3.4.2.47 SPACE_FooDataWriter_get_statuscondition (inherited). 293
3.4.2.48 SPACE_FooDataWriter_get_topic (inherited). 294
3.4.2.49 SPACE_FooDataWriter_lookup_instance . 294
3.4.2.50 SPACE_FooDataWriter_register_instance . 295
3.4.2.51 SPACE_FooDataWriter_register_instance_w_timestamp. 298
3.4.2.52 SPACE_FooDataWriter_set_listener (inherited) 299
3.4.2.53 SPACE_FooDataWriter_set_qos (inherited) . 299
3.4.2.54 SPACE_FooDataWriter_unregister_instance . 299
3.4.2.55 SPACE_FooDataWriter_unregister_instance_w_timestamp. 303
3.4.2.56 SPACE_FooDataWriter_wait_for_acknowledgments (inherited) 305
3.4.2.57 SPACE_FooDataWriter_write . 305
3.4.2.58 SPACE_FooDataWriter_write_w_timestamp . 308
3.4.2.59 SPACE_FooDataWriter_writedispose . 309
3.4.2.60 SPACE_FooDataWriter_writedispose_w_timestamp 314
3.4.3 DDS_PublisherListener interface . 315
3.4.3.1 DDS_PublisherListener__alloc . 317
3.4.3.2 DDS_PublisherListener_on_liveliness_lost (inherited, abstract). 317
3.4.3.3 DDS_PublisherListener_on_offered_deadline_missed
 (inherited, abstract). 318
3.4.3.4 DDS_PublisherListener_on_offered_incompatible_qos
 (inherited, abstract). 318
3.4.3.5 DDS_PublisherListener_on_publication_matched
 (inherited, abstract). 318
3.4.4 DDS_DataWriterListener interface . 319
3.4.4.1 DDS_DataWriterListener__alloc . 320
3.4.4.2 DDS_DataWriterListener_on_liveliness_lost (abstract) 321
3.4.4.3 DDS_DataWriterListener_on_offered_deadline_missed (abstract). 322
3.4.4.4 DDS_DataWriterListener_on_offered_incompatible_qos (abstract) 323
xii
C Reference Guide �������	

Table of Contents
3.4.4.5 DDS_DataWriterListener_on_publication_matched (abstract) 324
3.5 Subscription Module . 325
3.5.1 Class DDS_Subscriber. 326
3.5.1.1 DDS_Subscriber_begin_access . 329
3.5.1.2 DDS_Subscriber_copy_from_topic_qos . 329
3.5.1.3 DDS_Subscriber_create_datareader . 330
3.5.1.4 DDS_Subscriber_delete_contained_entities. 333
3.5.1.5 DDS_Subscriber_delete_datareader . 335
3.5.1.6 DDS_Subscriber_enable (inherited) . 336
3.5.1.7 DDS_Subscriber_end_access . 336
3.5.1.8 DDS_Subscriber_get_datareaders . 336
3.5.1.9 DDS_Subscriber_get_default_datareader_qos . 337
3.5.1.10 DDS_Subscriber_get_listener. 338
3.5.1.11 DDS_Subscriber_get_participant . 339
3.5.1.12 DDS_Subscriber_get_qos. 339
3.5.1.13 DDS_Subscriber_get_status_changes (inherited) 340
3.5.1.14 DDS_Subscriber_get_statuscondition (inherited) 341
3.5.1.15 DDS_Subscriber_lookup_datareader . 341
3.5.1.16 DDS_Subscriber_notify_datareaders . 342
3.5.1.17 DDS_Subscriber_set_default_datareader_qos . 343
3.5.1.18 DDS_Subscriber_set_listener . 345
3.5.1.19 DDS_Subscriber_set_qos . 347
3.5.2 Subscription Type Specific Classes. 349
3.5.2.1 Class DDS_DataReader (abstract) . 349
3.5.2.2 DDS_DataReader_create_querycondition . 355
3.5.2.3 DDS_DataReader_create_readcondition . 356
3.5.2.4 DDS_DataReader_delete_contained_entities. 358
3.5.2.5 DDS_DataReader_delete_readcondition . 359
3.5.2.6 DDS_DataReader_enable (inherited) . 360
3.5.2.7 DDS_DataReader_get_key_value (abstract) . 360
3.5.2.8 DDS_DataReader_get_listener. 361
3.5.2.9 DDS_DataReader_get_liveliness_changed_status 361
3.5.2.10 DDS_DataReader_get_matched_publication_data 362
3.5.2.11 DDS_DataReader_get_matched_publications . 363
3.5.2.12 DDS_DataReader_get_qos . 363
3.5.2.13 DDS_DataReader_get_requested_deadline_missed_status 364
3.5.2.14 DDS_DataReader_get_requested_incompatible_qos_status 365
3.5.2.15 DDS_DataReader_get_sample_lost_status . 366
3.5.2.16 DDS_DataReader_get_sample_rejected_status 368
3.5.2.17 DDS_DataReader_get_status_changes (inherited). 369
3.5.2.18 DDS_DataReader_get_statuscondition (inherited) 369
3.5.2.19 DDS_DataReader_get_subscriber . 369
xiii
C Reference Guide

�������	

Table of Contents
3.5.2.20 DDS_DataReader_get_subscription_matched_status 370
3.5.2.21 DDS_DataReader_get_topicdescription. 370
3.5.2.22 DDS_DataReader_lookup_instance (abstract) . 371
3.5.2.23 DDS_DataReader_read (abstract) . 371
3.5.2.24 DDS_DataReader_read_instance (abstract) . 372
3.5.2.25 DDS_DataReader_read_next_instance (abstract) 372
3.5.2.26 DDS_DataReader_read_next_instance_w_condition (abstract) 373
3.5.2.27 DDS_DataReader_read_next_sample (abstract) 373
3.5.2.28 DDS_DataReader_read_w_condition (abstract) 373
3.5.2.29 DDS_DataReader_return_loan (abstract). 374
3.5.2.30 DDS_DataReader_set_listener . 374
3.5.2.31 DDS_DataReader_set_qos . 377
3.5.2.32 DDS_DataReader_take (abstract). 378
3.5.2.33 DDS_DataReader_take_instance (abstract) . 379
3.5.2.34 DDS_DataReader_take_next_instance (abstract). 379
3.5.2.35 DDS_DataReader_take_next_instance_w_condition (abstract). 380
3.5.2.36 DDS_DataReader_take_next_sample (abstract) 380
3.5.2.37 DDS_DataReader_take_w_condition (abstract). 380
3.5.2.38 DDS_DataReader_wait_for_historical_data . 381
3.5.2.39 Class SPACE_FooDataReader . 383
3.5.2.40 SPACE_FooDataReader_create_querycondition (inherited) 388
3.5.2.41 SPACE_FooDataReader_create_readcondition (inherited) 389
3.5.2.42 SPACE_FooDataReader_delete_contained_entities (inherited) 389
3.5.2.43 SPACE_FooDataReader_delete_readcondition (inherited) 389
3.5.2.44 SPACE_FooDataReader_enable (inherited) . 389
3.5.2.45 SPACE_FooDataReader_get_key_value . 390
3.5.2.46 SPACE_FooDataReader_get_listener (inherited) 390
3.5.2.47 SPACE_FooDataReader_get_liveliness_changed_status (inherited) . . 390
3.5.2.48 SPACE_FooDataReader_get_matched_publication_data (inherited) . . 390
3.5.2.49 SPACE_FooDataReader_get_matched_publications (inherited). 391
3.5.2.50 SPACE_FooDataReader_get_qos (inherited) . 391
3.5.2.51 SPACE_FooDataReader_get_requested_deadline_missed_status
(inherited) . 391
3.5.2.52 SPACE_FooDataReader_get_requested_incompatible_qos_status
(inherited) . 391
3.5.2.53 SPACE_FooDataReader_get_sample_lost_status (inherited) 392
3.5.2.54 SPACE_FooDataReader_get_sample_rejected_status (inherited). 392
3.5.2.55 SPACE_FooDataReader_get_status_changes (inherited) 392
3.5.2.56 SPACE_FooDataReader_get_statuscondition (inherited) 392
3.5.2.57 SPACE_FooDataReader_get_subscriber (inherited) 393
3.5.2.58 SPACE_FooDataReader_get_subscription_matched_status
 (inherited) . 393
xiv
C Reference Guide �������	

Table of Contents
3.5.2.59 SPACE_FooDataReader_get_topicdescription (inherited) 393
3.5.2.60 SPACE_FooDataReader_lookup_instance. 393
3.5.2.61 SPACE_FooDataReader_read . 394
3.5.2.62 SPACE_FooDataReader_read_instance. 399
3.5.2.63 SPACE_FooDataReader_read_next_instance . 401
3.5.2.64 SPACE_FooDataReader_read_next_instance_w_condition 404
3.5.2.65 SPACE_FooDataReader_read_next_sample . 406
3.5.2.66 SPACE_FooDataReader_read_w_condition . 406
3.5.2.67 SPACE_FooDataReader_return_loan . 408
3.5.2.68 SPACE_FooDataReader_set_listener (inherited). 410
3.5.2.69 SPACE_FooDataReader_set_qos (inherited) . 410
3.5.2.70 SPACE_FooDataReader_take . 411
3.5.2.71 SPACE_FooDataReader_take_instance . 412
3.5.2.72 SPACE_FooDataReader_take_next_instance . 414
3.5.2.73 SPACE_FooDataReader_take_next_instance_w_condition 416
3.5.2.74 SPACE_FooDataReader_take_next_sample . 418
3.5.2.75 SPACE_FooDataReader_take_w_condition . 419
3.5.2.76 SPACE_FooDataReader_wait_for_historical_data (inherited) 420
3.5.3 Class DDS_DataSample . 421
3.5.4 Struct DDS_SampleInfo . 421
3.5.4.1 DDS_SampleInfo . 421
3.5.5 DDS_SubscriberListener Interface . 425
3.5.5.1 DDS_SubscriberListener__alloc . 427
3.5.5.2 DDS_SubscriberListener_on_data_available (inherited, abstract). 427
3.5.5.3 DDS_SubscriberListener_on_data_on_readers (abstract) 428
3.5.5.4 DDS_SubscriberListener_on_liveliness_changed (inherited, abstract) . . 429
3.5.5.5 DDS_SubscriberListener_on_requested_deadline_missed
 (inherited, abstract) . 429
3.5.5.6 DDS_SubscriberListener_on_requested_incompatible_qos
 (inherited, abstract) . 429
3.5.5.7 DDS_SubscriberListener_on_sample_lost (inherited, abstract). 430
3.5.5.8 DDS_SubscriberListener_on_sample_rejected (inherited, abstract) 430
3.5.5.9 DDS_SubscriberListener_on_subscription_matched
 (inherited, abstract) . 430
3.5.6 DDS_DataReaderListener interface . 431
3.5.6.1 DDS_DataReaderListener__alloc. 432
3.5.6.2 DDS_DataReaderListener_on_data_available (abstract) 433
3.5.6.3 DDS_DataReaderListener_on_liveliness_changed (abstract) 434
3.5.6.4 DDS_DataReaderListener_on_requested_deadline_missed (abstract) . . 435
3.5.6.5 DDS_DataReaderListener_on_requested_incompatible_qos (abstract) . 436
3.5.6.6 DDS_DataReaderListener_on_sample_lost (abstract) 437
3.5.6.7 DDS_DataReaderListener_on_sample_rejected (abstract) 437
xv
C Reference Guide

�������	

Table of Contents
3.5.6.8 DDS_DataReaderListener_on_subscription_matched (abstract) 438
3.5.7 Class DDS_ReadCondition . 439
3.5.7.1 DDS_ReadCondition_get_datareader . 440
3.5.7.2 DDS_ReadCondition_get_instance_state_mask 440
3.5.7.3 DDS_ReadCondition_get_sample_state_mask . 441
3.5.7.4 DDS_ReadCondition_get_trigger_value (inherited) 442
3.5.7.5 DDS_ReadCondition_get_view_state_mask . 442
3.5.8 Class DDS_QueryCondition . 443
3.5.8.1 DDS_QueryCondition_get_datareader (inherited). 444
3.5.8.2 DDS_QueryCondition_get_instance_state_mask (inherited). 444
3.5.8.3 DDS_QueryCondition_get_query_parameters. 445
3.5.8.4 DDS_QueryCondition_get_query_expression . 446
3.5.8.5 DDS_QueryCondition_get_sample_state_mask (inherited) 446
3.5.8.6 DDS_QueryCondition_get_trigger_value (inherited) 447
3.5.8.7 DDS_QueryCondition_get_view_state_mask (inherited) 447
3.5.8.8 DDS_QueryCondition_set_query_parameters . 447

Appendix A Quality Of Service 451
Affected Entities . 451
Basic Usage . 451
DDS_DataReaderQos . 453
DDS_DataWriterQos. 456
DDS_DomainParticipantFactoryQos . 458
DDS_DomainParticipantQos. 459
DDS_PublisherQos . 461
DDS_SubscriberQos . 462
DDS_TopicQos . 463

Appendix B API Constants and Types 467

Appendix C Platform Specific IDL Interface 471
dds_dcps.idl . 471

Appendix D SampleStates, ViewStates and InstanceStates 499
SampleInfo Class. 499
sample_state. 499
instance_state. 501
view_state . 502
State Masks . 504
Operations Concerning States . 505
xvi
C Reference Guide �������	

Table of Contents
Appendix E Class Inheritance 509

Appendix F Listeners, Conditions and Waitsets 511
Communication Status Event . 513
Listeners. 516
Conditions and Waitsets . 517
DDS_StatusCondition Trigger State . 521
DDS_ReadCondition and DDS_QueryCondition Trigger State 521
DDS_GuardCondition Trigger State . 522

Appendix G DDS_Topic Definitions 523
DDS_Topic Definition Example . 523
Complex Topics. 524
IDL Pre-processor . 524

Appendix H DCPS Queries and Filters 529
SQL Grammar in BNF. 529
SQL Token Expression . 530
SQL Examples . 531

Bibliography 535

Glossary 539

Index 543
xvii
C Reference Guide

�������	

Table of Contents
xviii
C Reference Guide �������	

List of Figures
Figure 1 C Reference Guide Document Structure . 3
Figure 2 DCPS Module Composition . 37
Figure 3 DCPS Infrastructure Module’s Class Model 38
Figure 4 DCPS Domain Module’s Class Model . 40
Figure 5 DCPS Topic-Definition Module’s Class Model 41
Figure 6 Data Type “Foo” Typed Classes Pre-processor Generation 42
Figure 7 DCPS Publication Module’s Class Model . 43
Figure 8 DCPS Subscription Module’s Class Model . 44
Figure 9 DCPS Infrastructure Module’s Class Model 48
Figure 10 QosPolicy Settings . 56
Figure 11 DCPS Listeners . 97
Figure 12 DCPS DDS_Status Values . 100
Figure 13 DCPS DDS_WaitSets . 114
Figure 14 DCPS DDS_Conditions . 121
Figure 15 DCPS Domain Module’s Class Model . 131
Figure 16 DCPS Topic-Definition Module Class Model 198
Figure 17 Pre-processor Generation of the Typed Classes for
 Data Type “Foo” . 199
Figure 18 The DCPS Publication Module’s Class Model 231
Figure 19 The DCPS Subscription Module’s Class Model 325
Figure 20: State Chart of the sample_state for a Single Sample 500
Figure 21: State Chart of the instance_state for a Single Instance 502
Figure 22: State Chart of the view_state for a Single Instance 503
Figure 23 DCPS Inheritance . 509
Figure 24: Plain Communication Status State Chart 514
Figure 25: Read Communication Status DDS_DataReader Statecraft 515
Figure 26: DDS_Subscriber Statecraft for a Read Communication Status . 516
Figure 27: DCPS Listeners . 517
Figure 28: DCPS DDS_WaitSets . 518
Figure 29 DCPS DDS_Conditions . 520
Figure 30: Blocking Behaviour of a Waitset State Chart 521
xix
C Reference Guide�������	

List of Figures
xx
C Reference Guide

�������	

Preface
About the C Reference Guide

The C Reference Guide provides a detailed explanation of the OpenSplice DDS
(Subscription Paradigm for the Logical Interconnection of Concurrent Engines)
Application Programming Interfaces for the C language.
This reference guide is based on the OMG’s Data Distribution Service Specification
and C Language Mapping Specification.
The C Reference Guide focuses on the Data Centric Publish Subscribe (DCPS) layer
and does not cover the DLRL layer. The purpose of the DCPS is the distribution of
data (publish/subscribe). The structure of the DCPS is divided into five modules.
Each module consists of several classes, which in turn generally contain several
operations.

Intended Audience
The C Reference Guide is intended to be used by C programmers who are using
OpenSplice DDS to develop applications.

Organisation
The C Reference Guide is organised into the following topics.
The Introduction describes the details of the document structure.
Chapter 1, DCPS API General Description, is a general description of the DCPS
API and its error codes.
Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.
Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.
The following appendices are included, as well a Bibliography containing
references material and Glossary:
Appendix A, Quality Of Service
Appendix B, API Constants and Types
Appendix C, Platform Specific IDL Interface
Appendix D, SampleStates, ViewStates and InstanceStates
Appendix E, Class Inheritance
Appendix F, Listeners, Conditions and Waitsets
Appendix G, DDS_Topic Definitions
Appendix H, DCPS Queries and Filters
xxi
C Reference Guide

�������	

Preface
Conventions
The conventions listed below are used to guide and assist the reader in
understanding the C Reference Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xxiii, are as hypertext links: click on the reference to go to the
item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

C
C++
Java
xxii
C Reference Guide

�������	

Preface
Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA
Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK
Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xxiii
C Reference Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

Preface
xxiv
C Reference Guide

�������	

INTRODUCTION

About the C Reference Guide
Document Structure

The C Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.
Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, as indicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific IDL Interface). These structs are described in the respective
chapters.
• In the classes as described in the PIM, which are implemented as a class in the

PSM, the operations are described in detail.
• In the classes as described in the PIM, which are implemented as a struct in the

PSM, the struct contents are described in detail.
• The order of the modules and classes is conform the PIM part.
• The order of the operations or struct contents is alphabetical.
• Each description of a class or struct starts with the API description header file.

Figure 1 C Reference Guide Document Structure

Modules . . .

DDS-DCPS

Classes . . .

Operations . . .

Structs . . .

detailed description
 3
C Reference Guide�������	

Introduction
Operations
Several types of operations are described in this manual. The different types of
operations are: basic, inherited, abstract and abstract interface. All operations of any
type can be found in their respective class. The details of their description depends
on the type of operation.
Basic operations are described in detail in the class they are implemented in.
• Inherited operations only refer to the operation in the class they are inherited

from. The detailed description is not repeated.
• Abstract operations only refer to the type specific implementations in their

respective derived class. The detailed description is not repeated.
• Abstract operations which are implemented as an interface (Listeners), are

described in detail in their class. These operations must be implemented in the
application.

In the API description header file, the inherited and abstract operations are
commented out since they are not implemented in this class.
Inheritance in the C API is implemented by prefixing the name of the operation with
DDS_ and the name of the class they are in. For example, the operation get_name
in the class Topic is named DDS_Topic_get_name. Since this operation is
actually inherited from the class TopicDescription the operation refers to the
TopicDescription c l a s s fo r more in fo rmat ion . However, i n the
TopicDescription c l a s s t h i s o p e r a t i o n i s n a m e d
DDS_TopicDescripton_get_name.
4
C Reference Guide

�������	

API REFERENCE

CHAPTER

1 DCPS API General Description
The structure of the DCPS is divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain
several operations.
S o m e o f t h e s e o p e ra t i o n s h a v e a n o p e r a t i o n r e t u r n c o d e o f t y p e
DDS_ReturnCode_t, which is defined in the next table:

Table 1 Return Codes

DDS_ReturnCode_t Return Code Description
DDS_RETCODE_OK Successful return
DDS_RETCODE_ERROR Generic, unspecified error
DDS_RETCODE_BAD_PARAMETER Illegal parameter value
DDS_RETCODE_UNSUPPORTED Unsupported operation or DDS_QosPolicy setting. Can

only be returned by operations that are optional or
o p e r a t i o n s t h a t u s e s a n o p t i o n a l
DDS_<DDS_Entity>QoS as a parameter

DDS_RETCODE_ALREADY_DELETED The object target of this operation has already been deleted
DDS_RETCODE_OUT_OF_RESOURCES Service ran out of the resources needed to complete the

operation
DDS_RETCODE_NOT_ENABLED Operation invoked on an DDS_Entity that is not yet

enabled
DDS_RETCODE_IMMUTABLE_POLICY Appl i ca t ion a t t empted to mod i fy an immutab le

DDS_QosPolicy

DDS_RETCODE_INCONSISTENT_POLICY Application specified a set of policies that are not consistent
with each other

DDS_RETCODE_PRECONDITION_NOT_MET A pre-condition for the operation was not met
7
 API Reference�������	

1 DCPS API General Description 1.1 Thread Safety

The name scope (name space) of these return codes is DDS. The operation return
codes DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_
ILLEGAL_OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED and DDS_RETCODE_ALREADY_DELETED are default for operations
that return an operation return code and are therefore not explicitly mentioned in the
DDS specification. However, in this manual they are mentioned along with each
operation.
Some operations are not implemented. These operations are mentioned including
t h e i r s y n o p s i s , b u t n o t d e s c r ib e d in t h i s m a n u a l a n d r e t u r n
DDS_RETCODE_UNSUPPORTED when called from the application. All constants and
types are given in Appendix B, API Constants and Types.

1.1 Thread Safety
A l l o p e r a t i o n s a r e t h r e a d s a f e a p a r t f r o m t h e
DDS_DomainParticipantFactory_get_instance operation. It is the
applications responsibility to call DDS_DomainParticipantFactory_
get_instance only from one application thread. This restriction only applies to
the first call of DDS_DomainParticipantFactory_get_instance.

1.2 Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources
are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.
If the application needs to set signal handlers for its own use, two situations can
occur. In the first case the application sets a signal handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it’s own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In

DDS_RETCODE_TIMEOUT The operation timed out
DDS_RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate object or at

an inappropriate time (as determined by QosPolicies that
control the behaviour of the object in question). There is no
precondition that could be changed to make the operation
succeed.

DDS_RETCODE_NO_DATA Indicates a situation where the operation did not return any
data

Table 1 Return Codes

DDS_ReturnCode_t Return Code Description

UNIX
8
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

the second case the Data Distribution Service has already set a signal handler for a
specific signal and the application program redefines the signal handling by setting
its own handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed as last) or to call the exit function itself when
the cached signal is meant to terminate the application process.
The Data Distribution Service service will conditionally set the signal handlers
when creating the DomainParticipantFactory, which is the first call to
DDS_DomainParticipantFactory_get_instance for C.
The Data Distribution Service only sets signal handlers for signals that have the
default behaviour of terminating the process without dumping a core.

1.3 Memory Management
When objects are being created, they occupy memory space. To avoid memory leaks
when they are not used any more, these objects have to be deleted in order to release
the memory space. However, when using pointers, it is difficult to keep track of
which object has been released and which has not. When objects are not being
released, the memory leak finally uses up all the resources and the application fails.
On the other hand, when an object is being released twice because there were two
pointers to the same object, the application fails. This implementation is based on
the OMG C Language Mapping Specification. Accordingly, the CORBA rules listed
below apply.

1.3.1 IDL Mapping Rules for Sequences
The names of the operations and types are given by the IDL mapping rules. For
sequences several rules apply. The basic IDL definition of a sequence is defined by:

module name-space {
typedef sequence<<sequence-element-type>>

<sequence-name>;
}

In the C language, this results in the following type definition of the sequence:
typedef

DDS_sequence_<name-space-prefix><sequence-element-type>
<name-space>_<sequence-name>

In this type definition, the <sequence-element-type> is the type of the objects
in the sequence. This <sequence-element-type> may be a standard type or a
Data Distribution Service defined type. The <name-space-prefix> represents
the name space in which the <sequence-element-type> is defined. The
standard types have an empty prefix. In the Data Distribution Service all the
9
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

typedefs are set within the module DDS block, therefore defined types have the
prefix DDS_. Finally, the <sequence-name> is name of the sequence and is
always prefixed by DDS_.

1.3.1.1 Standard Defined Type
The standard defined types are the types as defined in the Data Distribution Service
specification. For example, for the standard defined <sequence-element-type>
of type string with a <sequence-name> of StringSeq, the following IDL
definition is given:

typedef sequence<string> StringSeq

In C, this results in the following type definition of the sequence:
typedef DDS_sequence_string DDS_StringSeq

1.3.1.2 User Defined Type
The user defined types are the types as defined in the application. For example, for
the user def ined <sequence-element-type> o f type Foo wi th a
<sequence-name> of name FooSeq in the module SPACE, the following IDL
definition is given:

module SPACE {
typedef sequence<Foo> FooSeq;

}

In C, this results in the following type definition of the sequence:
typedef DDS_sequence_SPACE_Foo SPACE_FooSeq

1.3.1.3 Data Distribution Service Defined Type
F o r e x a m p l e , f o r t h e D a t a D i s t r i b u t i o n S e r v i c e d e f i n e d
<sequence-element-type> of type SampleInfo with a <sequence-name> of
name SampleInfoSeq, the following IDL definition is given:

typedef sequence<SampleInfo> SampleInfoSeq

In C, this results in the following type definition of the sequence:
typedef DDS_sequence_DDS_SampleInfo DDS_SampleInfoSeq

1.3.2 Plain Sequences
The following table shows the sequences for which the resources have to be
managed. In other words, for these sequences DDS_<sequence-name>__alloc
and DDS_<sequence-name>_allocbuf operations are available. For sequences,
which are only used as an out parameter, the application does not need to use these
allocation operations, since the Data Distribution Service allocates them. In this
case, the application may use these operations for its own sequences. Furthermore to
free the resources allocated with DDS_<sequence-name>__alloc and
10
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

DDS_<sequence-name>_allocbuf the application must use the DDS_free
operation. It does not make any difference whether the application or the Data
Distribution Service does the allocation. When the application does not use the
DDS_free operation, the application will fail. The DDS_free operation operates
recursively, in other words all embedded structures are released.
Sequences and buffers can also be allocated on stack. However in case the
application allocates a sequence or buffer on stack, the DDS_free operation may
not be used on this object, otherwise the application will fail.

1.3.3 Sequences Embedded in QosPolicy Objects
The following table shows the QosPolicy objects for which the resources have to
be managed because they contain sequences. In other words, for these QosPolicy
objects DDS_<QosPolicy>__alloc operations are available. The buffers used in
the s e QosPolicy o b j e c t s m u s t b e a l l o c a t e d u s i n g t h e
DDS_<sequence-name>_allocbuf operations. The DDS_free operation takes
care of the embedded sequences and the buffers in a QosPolicy.

Table 2 Sequences

Sequence Name Parameter Type
In Out Inout Return

DDS_ConditionSeq x
DDS_StringSeq x x
DDS_DataReaderSeq x
DDS_InstanceHandleSeq x
DDS_QosPolicyCountSeq Used in status struct only.
DDS_SampleInfoSeq x
DDS_sequence_octet Used in QosPolicy struct only.

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
SequenceIn Out Inout Return

DDS_DomainParticipantQos x x DDS_sequence_octet

DDS_TopicQos x x DDS_sequence_octet

DDS_PublisherQos x x DDS_sequence_octet

DDS_StringSeq

DDS_DataWriterQos x x DDS_sequence_octet
11
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

1.3.4 Sequences Embedded in Status Objects
The following table shows the Status objects for which the resources have to be
managed because they contain sequences. In other words, for these Status objects
DDS_<Status>__alloc operations are available. The buffers used in these
Status objects must be allocated using the DDS_<sequence-name>_allocbuf
operations. The DDS_free operation takes care of the embedded sequences and the
buffers in a Status.

1.3.5 Resources and operations
The interface description of the memory management operations is as follows:
/* interface Memory management */

typedef struct {
 DDS_unsigned_long _maximum;
 DDS_unsigned_long _length;
 DDS_<sequence-element-type> *_buffer;
 DDS_boolean _release;
} DDS_sequence_<name-space-prefix><sequence-element-type>;
typedef

DDS_sequence_<name-space-prefix><sequence-element-type>
DDS_<sequence-name>

/* implemented API operations */
void
 DDS_sequence_set_release
 (void *sequence,
 DDS_boolean release);
DDS_boolean

DDS_SubscriberQos x x DDS_sequence_octet

DDS_StringSeq

DDS_DataReaderQos x x DDS_sequence_octet

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
SequenceIn Out Inout Return

Table 4 Status Objects

Status Name Parameter Type Contains
SequenceIn Out Inout Return

DDS_OfferedIncompatibleQosStatus x x DDS_QosPolicyCountSeq

DDS_RequestedIncompatibleQosStatus x x DDS_QosPolicyCountSeq
12
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

 DDS_sequence_get_release
 (void *sequence);
DDS_<sequence-name> *
 DDS_<sequence-name>__alloc
 (void);
DDS_<sequence-element-type> *
 DDS_<sequence-name>_allocbuf
 (DDS_unsigned_long len);
DDS_<QosPolicy>
 DDS_<QosPolicy>__alloc
 (void);
DDS_<Status>
 DDS_<Status>__alloc
 (void);
void
 DDS_free
 (void *);

The following paragraphs describe the usage of all memory management
operations.

1.3.5.1 Sequences DDS_<sequence-name>

Synopsis
#include <dds_dcps.h>

typedef struct {
 DDS_unsigned_long _maximum;
 DDS_unsigned_long _length;
 DDS_<sequence-element-type> *_buffer;
 DDS_boolean _release;
} DDS_sequence_<name-space-prefix>

<sequence-element-type>;

typedef DDS_sequence_<name-space-prefix>
<sequence-element-type> DDS_<sequence-name>

Description
The typedef DDS_<sequence-name> represents the sequence which contains the
objects of <sequence-element-type>.

Attributes
DDS_unsigned_long _maximum - the maximum number of elements that can be

contained in the sequence.
DDS_unsigned_long _length - the actual number of elements in the sequence.
DDS_<sequence-element-type> *_buffer - a pointer to the sequence buffer.
13
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

DDS_boolean _release - indicates whether this sequence owns the memory of
_buffer.

Detailed Description
The typedef DDS_<sequence-name> represents the sequence struct that holds the
sequence attributes associated with the sequence buffer, which contains the objects
of <sequence-element-type> . This sequence is allocated by calling
DDS_<sequence-name>__alloc. The sequence buffer must be allocated
separately by calling DDS_<sequence-name>_allocbuf. In other words when
using a sequence, the memory space must be allocated for both the sequence struct
and the sequence buffer. Whether, the application must allocate the resources or the
Data Distribution Service allocates the resources, depends on the type of usage.

In or Inout Parameter
In case the sequence is passed as an in or inout parameter, both the sequence and the
buffer must be allocated by the application. The application must set the attributes
of the sequence according to the size and ownership of the buffer. Furthermore, for
an inout parameter the application can control whether the Data Distribution Service
must replace the elements in the sequence, the application can allow this by setting
the _release attribute.
• When set to TRUE the Data Distribution Service is allowed to free any pointer

types. The Data Distribution Service sets the _length attribute to the number of
returned elements. The number of elements never exceeds the number set by the
application in the _maximum attribute.

• When set to FALSE the Data Distribution Service is not allowed to free the pointer
types. In this case, the Data Distribution Service allocates exactly the amount of
elements and set the _length and the _maximum attributes of the sequence to
that amount.

• In either case, the sequence and the buffer must be released by the application by
calling DDS_free on the sequence. In this case also the buffer is released, since
the DDS_free operation is recursive.

Out or Return Parameter
In case the sequence is used as an out parameter or a sequence is returned by a
function, both the sequence and the buffer are allocated by the Data Distribution
Service. The attributes of the sequence are set by the Data Distribution Service
according to the size and ownership of the buffer. The sequence and the buffer must
be released by the application by calling DDS_free on the sequence. In this case
also the buffer is released, since the DDS_free operation is recursive.
14
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

In case the Data Distribution Service has no data to return, it returns an empty
sequence with the _length and the _maximum attributes of the sequence set to
zero, the _buffer attribute set to DDS_OBJECT_NIL and the _release attribute
set to FALSE.

Allocation on the Stack
In case the sequence is allocated by the application. The application may also
allocate the sequence on stack for performance reason instead of calling
DDS_<sequence-name>__alloc. When the buffer is allocated on the stack the
application must also set the _release attribute to FALSE as described below. In case
the buffer is allocated using DDS_<sequence-name>_allocbuf then the
application must release the buffer separately by calling DDS_free on _buffer of
the sequence.

Attributes
The attributes of the DDS_<sequence-name> struct must be set after allocation. In
case of an out parameter or the sequence is returned by a function, the attributes are
set by the Data Distribution Service. In case of an in parameter or inout parameter,
the attributes must be set by the application.
The _length attribute of the sequence must be set to the current length of the
sequence. In other words equal to the number of valid sequence elements.
The _maximum attribute of the sequence must be set to the size of the allocated
sequence buffer. In other words equal to the len parameter used in the call to
DDS_<sequence-element-type>_allocbuf.
The _buffer attribute of the sequence must be set to the pointer to the allocated
sequence buffer. In other words equal to the returned pointer from the call to
DDS_<sequence-element-type>_allocbuf. Or in case of allocation on stack,
the pointer to the variable.
The _release flag of the sequence may not be set directly. The _release flag of
the sequence must be set by using DDS_sequence_set_release and may only be
read by using DDS_sequence_get_release. DDS_sequence_set_release
may only be used by the creator of the sequence. If it is not called for a given
sequence instance, then the default value of the _release flag for that instance is
FALSE.
If the _release flag of the sequence is set to TRUE, the sequence effectively
“owns” the resource pointed to by _buffer; if the flag is set to FALSE, the
application is responsible for the resource. If, for example, a sequence is returned
from an operation with its release flag set to FALSE, calling DDS_free on the
returned sequence pointer does not deallocate the memory pointed to by _buffer.
15
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

Before calling DDS_free on the _buffer member of a sequence directly, the
a p p l i c a t i o n s h o u l d c h e ck t h e _release f l a g u s i n g
DDS_sequence_get_release. If it returns FALSE, the application should not
invoke DDS_free on the _buffer member; doing so produces undefined
behaviour.

1.3.5.2 DDS_sequence_set_release

Synopsis
#include <dds_dcps.h>
void

DDS_sequence_set_release
 (void *sequence, DDS_boolean release);

Description
This operation sets the state of the _release flag of the sequence.

Parameters
in void *sequence - a pointer to the DDS_<sequence-name>.
in DDS_boolean release - the new state of the _release flag of the

sequence.

Return Value
<none>

Detailed Description
This operation sets the state of the _release flag of the sequence. If the flag is set
to TRUE, the sequence effectively “owns” the resource pointed to by _buffer; if
the flag is set to FALSE, the application is responsible for the resource. If, for
example, a sequence is returned from an operation with its release flag set to FALSE,
calling DDS_free on the returned sequence pointer does not deallocate the memory
pointed to by _buffer. Passing a DDS_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_set_release produces
undefined behaviour.
DDS_sequence_set_release should only be used by the creator of the sequence.
If it is not called for a given sequence instance, then the default value of the
_release flag for that instance is FALSE. The _release flag of the sequence may
not be set directly. It may only be changed by this operation.
16
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

1.3.5.2.1 DDS_sequence_get_release

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_sequence_get_release
 (void *sequence);

Description
This operation gets the state of the _release flag of the sequence.

Parameters
in void *sequence - a pointer to the DDS_<sequence-name>.

Return Value
DDS_boolean - the present state of the _release flag of the sequence.

Detailed Description
This operation gets the present state of the _release flag of the sequence. If the
flag returned is TRUE, the sequence effectively “owns” the resource pointed to by
_buffer; if the flag returned is FALSE, the application is responsible for the
resource. If, for example, a sequence is returned from an operation with its release
flag set to FALSE, calling DDS_free on the returned sequence pointer does not
deallocate the memory pointed to by _buffer. Before calling DDS_free on the
_buffer member of a sequence directly, the application should check the
_release flag using DDS_sequence_get_release. If it returns FALSE, the
application should not invoke DDS_free on the _buffer member; doing so
produces undefined behaviour. Passing a DDS_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_get_release produces
undefined behaviour.

1.3.5.2.2 DDS_<sequence-name>__alloc

Synopsis
#include <dds_dcps.h>
DDS_<sequence-name>
 DDS_<sequence-name>__alloc
 (void);

Description
This operation allocates a new DDS_<sequence-name>.
17
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

Parameters
<none>

Return Value
DDS_<sequence-name> - the po in te r to the newly c rea ted empty

DDS_<sequence-name>. In case of an error, a DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation allocates a new empty DDS_<sequence-name>. This operation
does not allocate the buffer and leave the sequence empty by setting the _length
and _maximum attributes to zero and the _buffer attribute to DDS_OBJECT_NIL.
The application may also allocate the DDS_<sequence-name> as a variable on
stack. In this case the application may not use DDS_free on the sequence. In case
the DDS_<sequence-name> was allocated by this operation, and the application
wants to release the DDS_<sequence-name> it must be released using DDS_free
on the sequence.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_<sequence-name>, a DDS_OBJECT_NIL pointer is returned instead.

1.3.5.2.3 DDS_<sequence-element-type>_allocbuf

Synopsis
#include <dds_dcps.h>

DDS_<sequence-element-type> *
 DDS_<sequence-name>_allocbuf
 (DDS_unsigned_long len);

Description
This operation allocates a new DDS_<sequence-element-type> buffer.

Parameters
<none>

Return Value
DDS_<sequence-element-type> - the pointer to the newly created buffer of

DDS_<sequence-element-type>. In case of an error, a DDS_OBJECT_NIL
pointer is returned.
18
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

Detailed Description
This operation allocates a new buffer of DDS_<sequence-element-type>. The
application may also allocate the buffer of DDS_<sequence-element-type> as a
variable on stack. In this case the application may not use DDS_free on the buffer.
Furthermore, the application may only use DDS_free on the sequence when the
_release flag of the sequence is set to FALSE and/or the _buffer pointer is set to
DDS_OBJECT_NIL to prevent the buffer from being released. In case the buffer of
DDS_<sequence-element-type> was allocated by this operation, and the
application wants to release the buffer of DDS_<sequence-element-type> it
must be released using DDS_free.
In case there are insufficient resources available to allocate the buffer of
DDS_<sequence-element-type>, a DDS_OBJECT_NIL pointer is returned
instead.

1.3.5.2.4 DDS_<QosPolicy>__alloc

Synopsis
#include <dds_dcps.h>
DDS_<QosPolicy>
 DDS_<QosPolicy>__alloc
 (void);

Description
This operation allocates a new DDS_<QosPolicy>.

Parameters
<none>

Return Value
DDS_<QosPolicy> - the handle to the newly created DDS_<QosPolicy>. In case of

an error, a DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation allocates a new DDS_<QosPolicy>. The behaviour is identical to
DDS_<sequence-name>__alloc except that it creates a QosPolicy structure
including its embedded sequences. Further, the embedded buffers are not allocated.

1.3.5.2.5 DDS_<Status>__alloc

Synopsis
#include <dds_dcps.h>
DDS_<Status>
19
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

 DDS_<Status>__alloc
 (void);

Description
This operation allocates a new DDS_<Status>.

Parameters
<none>

Return Value
DDS_<Status> - the handle to the newly created DDS_<Status>. In case of an

error, a DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation allocates a new DDS_<Status>. The behaviour is identical to
DDS_<sequence-name>__alloc except that it creates a Status structure
including its embedded sequences. Further, the embedded buffers are not allocated.

1.3.5.2.6 DDS_string_alloc

Synopsis
#include <dds_dcps.h>
DDS_char *
 DDS_string_alloc
 (DDS_unsigned_long len);

Description
This operation dynamically allocates a string of a specified length.

Parameters
in DDS_unsigned_long len - the length of the string to allocate. The allocated

string has length len+1 (1 character is allocated extra for the terminating NUL
character).

Return Value
DDS_char * - the pointer to the allocated string. If there are insufficient resources

available, a DDS_OBJECT_NIL pointer is returned.
20
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

Detailed Description
This operation dynamically allocates a string of a specified length. The allocated
string has length len+1 (1 character is allocated extra for the terminating ‘0’
character). If there are insufficient resources available, a DDS_OBJECT_NIL pointer
is returned.
A string that is allocated via DDS_string_alloc must be freed using the operation
DDS_free.

1.3.5.2.7 DDS_free

Synopsis
#include <dds_dcps.h>
void
 DDS_free
 (void *);

Description
This operation releases the allocated resources for the object in the parameter.

Parameters
in void * - contains the object which resources should be released.

Return Value
<none>

Detailed Description
This operation releases the allocated resources for the object in the parameter. The
parameter may be a sequence in which case both the sequence and the sequence
buffer are released since this operation operates recursively. Or the parameter may
be a sequence buffer in case only the buffer is released. In both cases, the
application is responsible to call this operation on the proper object in order to
release the resources.
This operation may only be used when the resource was allocated using one of the
_alloc operations. In case the object was declared as a variable on stack, the
application may not use DDS_free on this object.
This means, there are four combinations of allocation possible:
Bo th t he s equence a nd t he bu f f e r i s a l l o c a t e d u s i n g t h e
DDS_<sequence-name>__alloc and DDS_<sequence-name>_allocbuf
operation. In this case the DDS_free operation must be used on the sequence to
release both.
21
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

• The sequence is allocated on stack and the buffer is allocated using the
DDS_<sequence-name>_allocbuf operation. In this case the sequence may
not be released using the DDS_free operation but the buffer must be released
using the DDS_free operation (operated on the buffer).

• The sequence is allocated using the DDS_<sequence-name>__alloc operation
and the buffer is allocated on stack. In this case the DDS_free operation must be
used on the sequence but the buffer may not be released using the DDS_free
operation. Since the DDS_free operation works recursively, the application must
put the _release flag of the sequence to FALSE and/or the _buffer pointer to
DDS_OBJECT_NIL to prevent the buffer from being released.

• Both the sequence and the buffer are allocated on stack. In this case the
DDS_free operation may not be used.

1.4 Listeners Interfaces
The Listener provides a generic mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous status
change events, such as a missed deadline, violation of a DDS_QosPolicy setting,
etc. The Listener is related to changes in communication status.
The Listener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. These operations must be provided by the application. All Listener
operations must be implemented, it is up to the application whether an operation is
empty or contains some functionality.
Each DCPS DDS_Entity supports its own specialized kind of Listener.
Therefore, the following Listeners are available:
• DDS_DomainParticipantListener

• DDS_TopicListener

• DDS_PublisherListener

• DDS_DataWriterListener

• DDS_SubscriberListener

• DDS_DataReaderListener

For example, since a DDS_DataReader is a kind of DDS_Entity, it has the ability
to have a Listener associated with it. In this case, the associated Listener must
be of type DDS_DataReaderListener. This interface must be implemented by the
application. All DDS_DataReaderListener operations must be implemented, it is
up to the application whether an operation is empty or contains some functionality.
22
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

As an example, one of the operations in the DDS_DataReaderListener is the
DDS_DataReaderListener_on_liveliness_changed. This operation
(implemented by the application) will be called by the Data Distribution Service
when the liveliness of the associated DDS_DataWriter has changed. In other
words, it serves as a callback function to the event of a change in liveliness. The
parameters of the operation are supplied by the Data Distribution Service. In this
example, the pointer to the DDS_DataReader and the status of the liveliness are
provided.

Implementation
The struct DDS_<Entity>Listener represents the implementation of the
Listener for an <Entity>. Since a Listener is implemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener is allocated using the appropriate DDS_<Entity>Listener__alloc
operation. Each pointer must point to the appropriate callback operation defined in
the application (when the status is enabled). It is up to the application whether an
operation is empty or contains some functionality. An example is presented of the
allocation and initialization of a DDS_DataReaderListener which is only
enabled for the on_liveliness_changed. The on_liveliness_changed
operation is provided by the application:
#include "dds_dcps.h"
static struct DDS_DataReaderListener msgListener;
DDS_FooDataReader FooDR;
/* at this point, it is not important how to create the FooDR
*/
DataWriterListenerData UserDefined_ListenerData;
/* at this point, it is not important how
 UserDefined_ListenerData is implemented.
 This parameter can be used for Listener identification.
 If not used, the parameter may be NULL. */
 /* Prepare a listener for the Foo DataReader. */
 msgListener = DDS_DataReaderListener__alloc();
 msgListener.listener_data = UserDefined_ListenerData;
 msgListener.on_requested_deadline_missed = NULL;
 msgListener.on_requested_incompatible_qos = NULL;
 msgListener.on_sample_rejected = NULL;
 msgListener.on_liveliness_changed =
 (void (*)(void *, DDS_DataReader)) on_live_change;
 msgListener.on_data_available = NULL;
 msgListener.on_subscription_matched = NULL;
 msgListener.on_sample_lost = NULL;

 /* Set the Listener with a mask only
23
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

 to trigger on on_liveliness_changed. */
 status = DDS_DataReader_set_listener
 (FooDR,
 &msgListener,
 DDS_LIVELINESS_CHANGED_STATUS);

1.4.1 Struct DDS_<Entity>Listener
The struct DDS_<Entity>Listener represents the implementation of a
Listener.
The interface description applies to the different types of <Entity>, that is the
DomainParticipant, Topic, Publisher, DataWriter, Subscriber or
DataReader. The actual attributes depends on the <Entity>. Only for the
DomainParticipant all the fields are applicable. the description of these structs
is as follows:
typedef struct DDS_DomainParticipantListener

 *DDS_DomainParticipantListener;
struct DDS_DomainParticipantListener
{

void *listener_data;
DDS_DomainParticipantListener_InconsistentTopicListener

on_inconsistent_topic;

DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered_deadline_missed;

DDS_DomainParticipantListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos;

DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost;

DDS_DomainParticipantListener_PublicationMatchListener
on_publication_matched;

DDS_DomainParticipantListener_RequestedDeadlineMissedListener
on_requested_deadline_missed;

DDS_DomainParticipantListener_
 RequestedIncompatibleQosListener

on_requested_incompatible_qos;
DDS_DomainParticipantListener_SampleRejectedListener

on_sample_rejected;
DDS_DomainParticipantListener_LivelinessChangedListener

on_liveliness_changed;
DDS_DomainParticipantListener_DataAvailableListener

on_data_available;
DDS_DomainParticipantListener_SubscriptionMatchListener
24
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

on_subscription_matched;
DDS_DomainParticipantListener_SampleLostListener

on_sample_lost;
DDS_DomainParticipantListener_DataOnReadersListener

on_data_on_readers;
};
typedef struct DDS_TopicListener
 *DDS_TopicListener;
struct DDS_TopicListener
{

void *listener_data;
DDS_TopicListener_InconsistentTopicListener

on_inconsistent_topic;
};
typedef struct DDS_PublisherListener
 *DDS_PublisherListener;
struct DDS_PublisherListener
{

void *listener_data;
DDS_PublisherListener_OfferedDeadlineMissedListener

on_offered_deadline_missed;
DDS_PublisherListener_OfferedIncompatibleQosListener

on_offered_incompatible_qos;
DDS_PublisherListener_LivelinessLostListener

on_liveliness_lost;
DDS_PublisherListener_PublicationMatchListener

on_publication_matched;
};
typedef struct DDS_DataWriterListener
 *DDS_DataWriterListener;
struct DDS_DataWriterListener
{

void *listener_data;
DDS_DataWriterListener_OfferedDeadlineMissedListener

on_offered_deadline_missed;
DDS_DataWriterListener_OfferedIncompatibleQosListener

on_offered_incompatible_qos;
DDS_DataWriterListener_LivelinessLostListener

on_liveliness_lost;
DDS_DataWriterListener_PublicationMatchListener

on_publication_matched;
};
typedef struct DDS_SubscriberListener
 *DDS_SubscriberListener;
struct DDS_SubscriberListener
25
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

{
void *listener_data;
DDS_SubscriberListener_RequestedDeadlineMissedListener

on_requested_deadline_missed;
DDS_SubscriberListener_RequestedIncompatibleQosListener

on_requested_incompatible_qos;
DDS_SubscriberListener_SampleRejectedListener

on_sample_rejected;
DDS_SubscriberListener_LivelinessChangedListener

on_liveliness_changed;
DDS_SubscriberListener_DataAvailableListener

on_data_available;
DDS_SubscriberListener_SubscriptionMatchListener

on_subscription_matched;
DDS_SubscriberListener_SampleLostListener

on_sample_lost;
DDS_SubscriberListener_DataOnReadersListener

on_data_on_readers;
};
typedef struct DDS_DataReaderListener
 *DDS_DataReaderListener;
struct DDS_DataReaderListener
{

void *listener_data;
DDS_DataReaderListener_RequestedDeadlineMissedListener

on_requested_deadline_missed;
DDS_DataReaderListener_RequestedIncompatibleQosListener

on_requested_incompatible_qos;
DDS_DataReaderListener_SampleRejectedListener

on_sample_rejected;
DDS_DataReaderListener_LivelinessChangedListener

on_liveliness_changed;
DDS_DataReaderListener_DataAvailableListener

on_data_available;
DDS_DataReaderListener_SubscriptionMatchListener

on_subscription_matched;
DDS_DataReaderListener_SampleLostListener

on_sample_lost;
};
/* implemented API operations
 * <no operations> */

The next paragraphs describes the usage of the DDS_<Entity>Listener structs.
26
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

1.4.2 DDS_DomainParticipantListener

Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantListener
{
 void *listener_data;
 DDS_DomainParticipantListener_InconsistentTopicListener
 on_inconsistent_topic;
 DDS_DomainParticipantListener_OfferedDeadlineMissedListener
 on_offered_deadline_missed;
 DDS_DomainParticipantListener_OfferedIncompatibleQosListener
 on_offered_incompatible_qos;
 DDS_DomainParticipantListener_LivelinessLostListener
 on_liveliness_lost;
 DDS_DomainParticipantListener_PublicationMatchListener
 on_publication_matched;
 DDS_DomainParticipantListener_RequestedDeadlineMissedListener
 on_requested_deadline_missed;
 DDS_DomainParticipantListener_RequestedIncompatibleQosListener
 on_requested_incompatible_qos;
 DDS_DomainParticipantListener_SampleRejectedListener
 on_sample_rejected;
 DDS_DomainParticipantListener_LivelinessChangedListener
 on_liveliness_changed;
 DDS_DomainParticipantListener_DataAvailableListener
 on_data_available;
 DDS_DomainParticipantListener_SubscriptionMatchListener
 on_subscription_matched;
 DDS_DomainParticipantListener_SampleLostListener
 on_sample_lost;
 DDS_DomainParticipantListener_DataOnReadersListener
 on_data_on_readers;
};

Description
The struct DDS_DomainParticipantListener represents the implementation of
the DomainParticipantListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_DomainParticipantListener_InconsistentTopicListener

on_inconsistent_topic - a pointer to the call back function
implemented by the application.
27
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered_deadline_missed - a pointer to the call back function

implemented by the application.
DDS_DomainParticipantListener_OfferedIncompatibleQosListener

on_offered_incompatible_qos - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost - a pointer to the call back function implemented

by the application.
DDS_DomainParticipantListener_PublicationMatchListener

on_publication_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_RequestedDeadlineMissedListener
on_requested_deadline_missed - a pointer to the call back function

implemented by the application.
DDS_DomainParticipantListener_RequestedIncompatible

QosListener on_requested_incompatible_qos -a pointer to the call
back function implemented by the application.

DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented

by the application.
DDS_DomainParticipantListener_LivelinessChangedListener

on_liveliness_changed - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_DataAvailableListener
on_data_available - a pointer to the call back function implemented by

the application.
DDS_DomainParticipantListener_SubscriptionMatchListener

on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_SampleLostListener
on_sample_lost - a pointer to the call back function implemented by the

application.
DDS_DomainParticipantListener_DataOnReadersListener

on_data_on_readers - a pointer to the call back function implemented
by the application.
28
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

Detailed Description
The struct DDS_DomainParticipantListener represents the implementation of
the Listener for the DomainParticipant. Since a Listener is implemented as
a struct of pointers, the application must allocate this struct and initialise these
p o i n t e r s . T h e Listener i s a l l o c a t e d u s i n g t h e
DDS_DomainParticipantListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The
listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operations in each Listener.

1.4.3 DDS_TopicListener

Synopsis
#include <dds_dcps.h>
struct DDS_TopicListener
{
 void *listener_data;
 DDS_TopicListener_InconsistentTopicListener
 on_inconsistent_topic;
};

Description
The struct DDS_TopicListener represents the implementation of the
TopicListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_TopicListener_InconsistentTopicListener

on_inconsistent_topic - a pointer to the call back function
implemented by the application.

Detailed Description
The struct DDS_TopicListener represents the implementation of the Listener
for the Topic. Since a Listener is implemented as a struct of pointers, the
application must allocate this struct and initialise these pointers. The Listener is
allocated using the DDS_TopicListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The
29
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operations in each Listener.

1.4.4 DDS_PublisherListener

Synopsis
#include <dds_dcps.h>
struct DDS_publisherListener
{
 void *listener_data;
 DDS_publisherListener_OfferedDeadlineMissedListener
 on_offered_deadline_missed;
 DDS_publisherListener_OfferedIncompatibleQosListener
 on_offered_incompatible_qos;
 DDS_publisherListener_LivelinessLostListener
 on_liveliness_lost;
 DDS_publisherListener_PublicationMatchListener
 on_publication_matched;
};

Description
The struct DDS_publisherListener represents the implementation of the
publisherListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_publisherListener_OfferedDeadlineMissedListener

on_offered_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_publisherListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos - a pointer to the call back function

implemented by the application.
DDS_publisherListener_LivelinessLostListener

on_liveliness_lost - a pointer to the call back function implemented
by the application.

DDS_publisherListener_PublicationMatchListener
on_publication_matched - a pointer to the call back function

implemented by the application.
30
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

Detailed Description
The struct DDS_publisherListener represents the implementation of the
Listener for the publisher. Since a Listener is implemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener is allocated using the DDS_publisherListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The listener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operations in each Listener.

1.4.5 DDS_DataWriterListener

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener
{
 DDS_DataWriterListener_OfferedDeadlineMissedListener
 on_offered_deadline_missed;
 DDS_DataWriterListener_OfferedIncompatibleQosListener
 on_offered_incompatible_qos;
 DDS_DataWriterListener_LivelinessLostListener
 on_liveliness_lost;
 DDS_DataWriterListener_PublicationMatchListener
 on_publication_matched;
};

Description
The struct DDS_DataWriterListener represents the implementation of the
DataWriterListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_DataWriterListener_OfferedDeadlineMissedListener

on_offered_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_DataWriterListener_OfferedIncompatibleQosListener
on_offered_incompatible_qos - a pointer to the call back function

implemented by the application.
31
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

DDS_DataWriterListener_LivelinessLostListener
on_liveliness_lost - a pointer to the call back function implemented

by the application.
DDS_DataWriterListener_PublicationMatchListener

on_publication_matched - a pointer to the call back function
implemented by the application.

Detailed Description
The struct DDS_DataWriterListener represents the implementation of the
Listener for the DataWriter. Since a Listener is implemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener is allocated using the DDS_DataWriterListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The listener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operations in each Listener.

1.4.6 DDS_SubscriberListener

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberListener
{
 void *listener_data;
 DDS_SubscriberListener_RequestedDeadlineMissedListener
 on_requested_deadline_missed;
 DDS_SubscriberListener_RequestedIncompatibleQosListener
 on_requested_incompatible_qos;
 DDS_SubscriberListener_SampleRejectedListener
 on_sample_rejected;
 DDS_SubscriberListener_LivelinessChangedListener
 on_liveliness_changed;
 DDS_SubscriberListener_DataAvailableListener
 on_data_available;
 DDS_SubscriberListener_SubscriptionMatchListener
 on_subscription_matched;
 DDS_SubscriberListener_SampleLostListener
 on_sample_lost;
 DDS_SubscriberListener_DataOnReadersListener
 on_data_on_readers;
};
32
API Reference

�������	

1 DCPS API General Description 1.4 Listeners Interfaces

Description
The struct DDS_SubscriberListener represents the implementation of the
SubscriberListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_SubscriberListener_RequestedDeadlineMissedListener

on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos - a pointer to the call back function

implemented by the application.
DDS_SubscriberListener_SampleRejectedListener

on_sample_rejected - a pointer to the call back function implemented
by the application.

DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed - a pointer to the call back function

implemented by the application.
DDS_SubscriberListener_DataAvailableListener

on_data_available - a pointer to the call back function implemented by
the application.

DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function

implemented by the application.
DDS_SubscriberListener_SampleLostListener on_sample_lost - a

pointer to the call back function implemented by the application.
DDS_SubscriberListener_DataOnReadersListener

on_data_on_readers - a pointer to the call back function implemented
by the application.

Detailed Description
The struct DDS_SubscriberListener represents the implementation of the
Listener for the Subscriber. Since a Listener is implemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener is allocated using the DDS_SubscriberListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The listener_data attribute is a pointer to an application
33
API Reference�������	

1 DCPS API General Description 1.4 Listeners Interfaces

defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operations in each Listener.

1.4.7 DDS_DataReaderListener

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderListener
{
 void *listener_data;
 DDS_DataReaderListener_RequestedDeadlineMissedListener
 on_requested_deadline_missed;
 DDS_DataReaderListener_RequestedIncompatibleQosListener
 on_requested_incompatible_qos;
 DDS_DataReaderListener_SampleRejectedListener
 on_sample_rejected;
 DDS_DataReaderListener_LivelinessChangedListener
 on_liveliness_changed;
 DDS_DataReaderListener_DataAvailableListener
 on_data_available;
 DDS_DataReaderListener_SubscriptionMatchListener
 on_subscription_matched;
 DDS_DataReaderListener_SampleLostListener

on_sample_lost;
};

Description
The struct DDS_DataReaderListener represents the implementation of the
DataReaderListener.

Attributes
void *listener_data - a pointer to a user defined object, which may be used

for identification of the Listener.
DDS_DataReaderListener_RequestedDeadlineMissedListener

on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener_RequestedIncompatibleQosListener
on_requested_incompatible_qos - a pointer to the call back function

implemented by the application.
DDS_DataReaderListener_SampleRejectedListener

on_sample_rejected - a pointer to the call back function implemented
by the application.
34
API Reference

�������	

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

DDS_DataReaderListener_LivelinessChangedListener
on_liveliness_changed - a pointer to the call back function

implemented by the application.
DDS_DataReaderListener_DataAvailableListener

on_data_available - a pointer to the call back function implemented by the
application.

DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener_SampleLostListener on_sample_lost - a
pointer to the call back function implemented by the application.

Detailed Description
The struct DDS_DataReaderListener represents the implementation of the
Listener for the DataReader. Since a Listener is implemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener is allocated using the DDS_DataReaderListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The listener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operations in each Listener.

1.5 Inheritance of Abstract Operations
The information provided here conforms to the
• PIM part of the DDS-DCPS specification (for module descriptions)
• PSM part of the DDS-DCPS specification (for class and operation descriptions).
For detailed information refer to the OMG C Language Mapping Specification.
At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM defines the interface for an application to interact with the Data
Distribution Service. The DCPS API for the C programming language conforms to
the IDL to C mapping as specified in the OMG C Language Mapping Specification.
Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective
derived class (e.g. DDS_<Entity>_get_qos and DDS_<Entity>_set_qos).
These operations are commented out in the IDL PSM.
35
API Reference�������	

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

36
API Reference

�������	

CHAPTER

2 DCPS Modules
DCPS is divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.
Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces,
structs and operations are described in the next chapter.

Figure 2 DCPS Module Composition

2.1 Functionality
The modules have the following function in the Data Distribution Service:
• Infrastructure Module: This module defines the abstract classes and interfaces,

which are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (state-based
and event-based)

Domain Module

Publication
Module

Subscription
Module

Topic-Definition
Module

Infrastructure
Module
37
 API Reference�������	

2 DCPS Modules 2.2 Infrastructure Module

• Domain Module - This module contains the DDS_DomainParticipant class,
which is the entry point of the application, the
DDS_DomainParticipantFactory class and
DDS_DomainParticipantListener interface

• Topic-Definition Module - This module contains the DDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic classes. It also contains
the DDS_TopicListener interface and all support to define DDS_Topic objects
and assign QosPolicy settings to them

• Publication Module - This module contains the DDS_Publisher and
DDS_DataWriter classes. It also contains the DDS_PublisherListener and
DDS_DataWriterListener interfaces

• Subscription Module - This module contains the DDS_Subscriber,
DDS_DataReader, DDS_ReadCondition and DDS_QueryCondition
classes. It also contains the DDS_SubscriberListener and
DDS_DataReaderListener interfaces

2.2 Infrastructure Module
This module defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by DDS_Listeners, the
state-based interaction is supported by DDS_WaitSets and DDS_Conditions.

Figure 3 DCPS Infrastructure Module’s Class Model
This module contains the following classes:

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
38
API Reference

�������	

2 DCPS Modules 2.3 Domain Module

• DDS_Entity (abstract)
• DDS_DomainEntity (abstract)
• DDS_QosPolicy (abstract, struct)
• DDS_Listener (interface)
• DDS_Status (abstract, struct)
• DDS_WaitSet

• DDS_Condition

• DDS_GuardCondition

• DDS_StatusCondition

2.3 Domain Module
This module contains the class DDS_DomainParticipant, which acts as an entry
point of the Data Distribution Service and acts as a factory for many of the classes.
The DDS_DomainParticipant also acts as a container for the other objects that
make up the Data Distribution Service. It isolates applications within the same
Domain from other applications in a different Domain on the same set of
computers. A Domain is a “virtual network” and applications with the same
domainId are isolated from applications with a different domainId. In this way,
several independent distributed applications can coexist in the same physical
network without interfering, or even being aware of each other.
39
API Reference�������	

2 DCPS Modules 2.4 Topic-Definition Module

Figure 4 DCPS Domain Module’s Class Model
This module contains the following classes:
• DDS_DomainParticipant

• DDS_DomainParticipantFactory

• DDS_DomainParticipantListener (interface)

2.4 Topic-Definition Module
This module contains the DDS_Topic, DDS_ContentFilteredTopic and
DDS_MultiTopic classes. It also contains the DDS_TopicListener interface and
all support to define DDS_Topic objects and assign QosPolicy settings to them.

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
40
API Reference

�������	

2 DCPS Modules 2.4 Topic-Definition Module

Figure 5 DCPS Topic-Definition Module’s Class Model
This module contains the following classes:
• DDS_TopicDescription (abstract)
• DDS_Topic

• DDS_ContentFilteredTopic

• DDS_MultiTopic

• DDS_TopicListener (interface)
• Topic-Definition type specific classes
Topic-Definition type specific classes contain the generic class and the generated
data type specific classes. In case of the user defined data type Foo (this also applies
to other types), defined in the module SPACE; “Topic-Definition type specific
classes” contains the following classes:
• DDS_TypeSupport (abstract)
• SPACE_FooTypeSupport

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
41
API Reference�������	

2 DCPS Modules 2.5 Publication Module

Figure 6 Data Type “Foo” Typed Classes Pre-processor Generation

2.5 Publication Module
This module supports writing of the data, it contains the DDS_Publisher and
DDS_DataWriter classes. It also contains the DDS_PublisherListener and
DDS_DataWriterListener interfaces. Furthermore, it contains all support
needed for publication.

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
42
API Reference

�������	

2 DCPS Modules 2.5 Publication Module

Figure 7 DCPS Publication Module’s Class Model
This module contains the following classes:
• DDS_Publisher

• DDS_PublisherListener (interface)
• DDS_DataWriterListener (interface)
• Publication type specific classes
Publication type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also applies to
other types), defined in the module SPACE; “Publication type specific classes”
contains the following classes:
• DDS_DataWriter (abstract)
• SPACE_FooDataWriter

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
43
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

2.6 Subscription Module
This module supports access to the data, it contains the DDS_Subscriber,
DDS_DataReader, DDS_ReadCondition and DDS_QueryCondition classes.
I t a l so con t a in s t he DDS_SubscriberListener a n d
DDS_DataReaderListener interfaces. Furthermore, it contains all support
needed for subscription.

Figure 8 DCPS Subscription Module’s Class Model
This module contains the following classes:
• DDS_Subscriber

• DDS_DataSample

• DDS_SampleInfo (struct)

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> lookup_instance()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
44
API Reference

�������	

2 DCPS Modules 2.6 Subscription Module

• DDS_SubscriberListener (interface)
• DDS_DataReaderListener (interface)
• DDS_ReadCondition

• DDS_QueryCondition

• Subscription type specific classes
Subscription type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also applies to
other types), defined in the module SPACE; “Subscription type specific classes”
contains the following classes:
• DDS_DataReader (abstract)
• SPACE_FooDataReader
45
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

46
API Reference

�������	

CHAPTER

3 DCPS Classes and Operations
This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.
The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.
The Listener interfaces in the C API are implemented as structs containing
function pointers. All the function pointer attributes within the struct must be
assigned to a function. It is up to the application whether a function is empty or
contains some functionality.
Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.
The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.

General note for type Space: The name Space.h is derived from the IDL file
Space.idl, that defines Foo.

i

47
 API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1 Infrastructure Module

Figure 9 DCPS Infrastructure Module’s Class Model
This module contains the following classes:
• DDS_Entity (abstract)
• DDS_DomainEntity (abstract)
• DDS_QosPolicy (abstract, struct)
• DDS_Listener (interface)
• DDS_Status (abstract, struct)
• DDS_WaitSet

• DDS_Condition

• DDS_GuardCondition

• DDS_StatusCondition.

3.1.1 Class DDS_Entity (abstract)
This class is the abstract base class for all the DCPS objects. It acts as a generic class
for DDS_Entity objects.
The interface description of this class is as follows:

/* interface DDS_Entity */
/* abstract operations (implemented in class

DDS_DomainParticipant,
 * DDS_Topic, DDS_Publisher, DDS_DataWriter, DDS_Subscriber and
 * DDS_DataReader)
 */
/*

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
48
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 * DDS_ReturnCode_t
 * DDS_Entity_set_qos
 * (DDS_Entity _this,
 * const DDS_EntityQos *qos);
 */
/*
 * DDS_ReturnCode_t
 * DDS_Entity_get_qos
 * (DDS_Entity _this,
 * DDS_EntityQos *qos);
 */
/*
 * DDS_ReturnCode_t
 * DDS_Entity_set_listener
 * (DDS_Entity _this,
 * const struct DDS_EntityListener *a_listener,
 * const DDS_StatusMask mask);
 */
/*
 * struct DDS_EntityListener
 * DDS_Entity_get_listener
 * (DDS_Entity _this);
 */
/*
 * implemented API operations
 */

DDS_ReturnCode_t
 DDS_Entity_enable
 (DDS_Entity _this);
DDS_StatusCondition
 DDS_Entity_get_statuscondition
 (DDS_Entity _this);
DDS_StatusMask
 DDS_Entity_get_status_changes
 (DDS_Entity _this);
DDS_InstanceHandle_t
 DDS_Entity_get_instance_handle
 (DDS_Entity _this);

The abstract operations are listed but not fully described because they are not
implemented in this specific class. The full description of these operations is given
in the subclasses, which contain the type specific implementation of these
operations.

3.1.1.1 DDS_Entity_enable

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
49
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 DDS_Entity_enable
 (DDS_Entity _this);

Description
This operation enables the DDS_Entity on which it is being called when the
DDS_Entity was created with the DDS_EntityFactoryQosPolicy set to
FALSE.

Parameters
in DDS_Entity _this - the DDS_Entity object on which the operation is

operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation enables the DDS_Entity. Created DDS_Entity objects can start in
either an enabled or disabled state. This is controlled by the value of the
DDS_EntityFactoryQosPolicy on the corresponding factory for the
DDS_Entity. Enabled entities are immediately activated at creation time meaning
all their immutable QoS settings can no longer be changed. Disabled Entities are not
yet activated, so it is still possible to change their immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.
Creating disabled entities can make sense when the creator of the DDS_Entity
does not yet know which QoS settings to apply, thus allowing another piece of code
to set the QoS later on. This is for example the case in the DLRL, where the
ObjectHomes create all underlying DCPS entities but do not know which QoS
settings to apply. The user can then apply the required QoS settings afterwards.
The default setting of DDS_EntityFactoryQosPolicy is such that, by default,
entities are created in an enabled state so that it is not necessary to explicitly call
DDS_<Entity>_enable on newly created entities.
The DDS_<Entity>_enable operation produces the same results no matter how
many times it is performed. Calling DDS_<Entity>_enable on an already
enabled DDS_Entity returns DDS_RETCODE_OK and has no effect.
If a DDS_Entity has not yet been enabled, the only operations that can be invoked
on it are: the ones to set, get or copy the QosPolicy settings (including the default
QosPolicy settings on factories), the ones that set (or get) the listener, the ones that
get the DDS_StatusCondition, the DDS_Entity_get_status_changes
50
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or lookup1 other DDS_Entities. Other operations
will return the error DDS_RETCODE_NOT_ENABLED.
Entities created from a factory that is disabled, are created disabled regardless of
the setting of the DDS_EntityFactoryQosPolicy.
Calling DDS_<Entity>_enable on an DDS_Entity whose factory is not enabled
will fail and return DDS_RETCODE_PRECONDITION_NOT_MET.
If the DDS_EntityFactoryQosPolicy has autoenable_created_entities
set to TRUE, the DDS_<Entity>_enable operation on the factory will
automatically enable all Entities created from the factory.
The Listeners associated with an DDS_Entity are not called until the
DDS_Entity is enabled. DDS_Conditions associated with an DDS_Entity that
is not enabled are "inactive", that is, have a trigger_value which is FALSE.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the application enabled the DDS_Entity (or it was already

enabled)
• DDS_RETCODE_ERROR - an internal error has occurred
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation
• DDS_RETCODE_PRECONDITION_NOT_MET - the factory of the DDS_Entity is

not enabled

3.1.1.2 DDS_Entity_get_instance_handle

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
 DDS_Entity_get_instance_handle
 (DDS_Entity _this);

Description
This operation returns the instance_handle of the builtin topic sample that
represents the specified DDS_Entity.

1. This includes the lookup_topicdescription, but not the find_topic.

51

API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value
DDS_InstanceHandle_t - Result value is the instance_handle of the builtin

topic sample that represents the state of this DDS_Entity.

Detailed Description
The relevant state of some DDS_Entity objects are distributed using builtin topics.
Each builtin topic sample represents the state of a specific DDS_Entity and has a
unique instance_handle. This operation returns the instance_handle of the
builtin topic sample that represents the specified DDS_Entity.
Some DDS_Entities (DDS_Publisher and DDS_Subscriber) do not have a
corresponding builtin topic sample, but they still have an instance_handle that
uniquely identifies the DDS_Entity.
The instance_handles obtained this way can also be used to check whether a
specific DDS_Entity is located in a specific DDS_DomainParticipant. (See
Section 3.2.1.2, DDS_DomainParticipant_contains_entity, on page 137.)

3.1.1.3 DDS_Entity_get_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
struct DDS_EntityListener
 DDS_Entity_get_listener
 (DDS_Entity _this);

3.1.1.4 DDS_Entity_get_qos (abstract)
This abstract operation is defined as a generic operation to access a struct with the
QosPolicy s e t t i n g s . E a c h s u b c l a s s d e r i v e d f r o m t h i s c l a s s ,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Entity_get_qos
52
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 (DDS_Entity _this,
 DDS_EntityQos *qos);

3.1.1.5 DDS_Entity_get_status_changes

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_Entity_get_status_changes
 (DDS_Entity _this);

Description
This operation returns a mask with the communication statuses in the DDS_Entity
that are “triggered”.

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value
DDS_StatusMask - Result is a bit-mask in which each bit shows which value has

changed.

Detailed Description
This operation returns a mask with the communication statuses in the DDS_Entity
that are “triggered”. That is the set of communication statuses whose value have
changed since the last time the application called this operation. This operation
shows whether a change has occurred even when the status seems unchanged
because the status changed back to the original status.
When the DDS_Entity is first created or if the DDS_Entity is not enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.
The result value is a bit-mask in which each bit shows which value has changed.
The relevant bits represent one of the following statuses:
• DDS_INCONSISTENT_TOPIC_STATUS

• DDS_OFFERED_DEADLINE_MISSED_STATUS

• DDS_REQUESTED_DEADLINE_MISSED_STATUS

• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

• DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

• DDS_SAMPLE_LOST_STATUS

• DDS_SAMPLE_REJECTED_STATUS

• DDS_DATA_ON_READERS_STATUS
53
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• DDS_DATA_AVAILABLE_STATUS

• DDS_LIVELINESS_LOST_STATUS

• DDS_LIVELINESS_CHANGED_STATUS

• DDS_PUBLICATION_MATCHED_STATUS

• DDS_SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type DDS_StatusMask. Not all statuses are
relevant to all DDS_Entity objects. See the respective Listener interfaces for
each DDS_Entity for more information.

3.1.1.6 DDS_Entity_get_statuscondition

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_Entity_get_statuscondition
 (DDS_Entity _this);

Description
This operation allows access to the DDS_StatusCondition associated with the
DDS_Entity.

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value
DDS_StatusCondition - Result value is the DDS_StatusCondition of the

DDS_Entity.

Detailed Description
Each DDS_Entity has a DDS_StatusCondition associated with it. This
operation allows access to the DDS_StatusCondition associated with the
DDS_Entity. The returned condition can then be added to a DDS_WaitSet so that
the application can wait for specific status changes that affect the DDS_Entity.

3.1.1.7 DDS_Entity_set_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.
54
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Entity_set_listener
 (DDS_Entity _this,
 const struct DDS_Listener *a_listener,
 const DDS_StatusMask mask);

3.1.1.8 DDS_Entity_set_qos (abstract)
This abstract operation is defined as a generic operation to modify a struct with the
QosPolicy s e t t i n g s . E a c h s u b c l a s s d e r i v e d f r o m t h i s c l a s s ,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Entity_set_qos
 (DDS_Entity _this,
 const DDS_EntityQos *qos);

3.1.2 Class DDS_DomainEntity (abstract)
T h i s c l a s s i s t h e a b s t r a c t b a s e c l a s s f o r t h e a l l e n t i t i e s e x c e p t
DDS_DomainParticipant . T h e m a i n p u r p o s e i s t o e x p r e s s t h a t
DDS_DomainParticipant is a special kind of DDS_Entity, which acts as a
container of all other DDS_Entity objects, but cannot contain another
DDS_DomainParticipant within itself. Therefore, this class is not part of the IDL
interface in the DCPS PSM description.
The class DDS_DomainEntity does not contain any operations.

3.1.3 Struct QosPolicy
Each DDS_Entity provides a <DDS_Entity>Qos structure that implements the
basic mechanism for an application to specify Quality of Service attributes. This
structure consists of DDS_Entity specific QosPolicy attributes. QosPolicy
attributes are structured types where each type specifies the information that
controls an DDS_Entity related (configurable) property of the Data Distribution
Service.
All QosPolicies applicable to a DDS_Entity are aggregated in a corresponding
<DDS_Entity>Qos, which is a compound structure that is set atomically so that it
represents a coherent set of QosPolicy attributes.
55
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Compound types are used whenever multiple attributes must be set coherently to
define a consistent attribute for a QosPolicy.
See Appendix A, Quality Of Service for details of the <DDS_Entity>Qos, along
with a complete list of individual QosPolicy settings and their meanings.

Figure 10 QosPolicy Settings

Requested/Offered
In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy on the offering side. For example, if a DDS_DataReader requests to

QosPolicy

name : string

HistoryQosPolicy

kind : HistoryQosPolicyKind
depth : long

LifespanQosPolicy

duration : Duration_t

WriterDataLifecycleQosPolicy

autodispose_unregistered_instances : boolean

UserDataQosPolicy

value [*] : octet

DurabilityQosPolicy

kind : DurabilityQosPolicyKind

PresentationQosPolicy

access_scope : PresentationQosPolicyAccessScopeKind
coherent_access : boolean
ordered_access : boolean

LivelinessQosPolicy

kind : LivelinessQosPolicyKind
lease_duration : Duration_t

PartitionQosPolicy

name[*] : string

ReliabilityQosPolicy

kind : ReliabilityQosPolicyKind
max_blocking_time : Duration_t

DestinationOrderQosPolicy

kind : DestinationOrderQosPolicyKind

ResourceLimitsQosPolicy

max_samples : long
max_instances : long
max_samples_per_instance : long

EntityFactoryQosPolicy

autoenable_created_entities : boolean

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TopicDataQosPolicy

value [*] : octet

GroupDataQosPolicy

value [*] : octet

TransportPriorityQosPolicy

value : long

OwnershipQosPolicy

kind : OwnershipQosPolicyKind

OwnershipStrengthQosPolicy

value : long

TimeBasedFilterQosPolicy

minimum_separation : Duration_t

DeadlineQosPolicy

period : Duration_t

LatencyBudgetQosPolicy

duration : Duration_t

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long
max_samples : long
max_instances : long
max_samples_per_instance : long
56
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

receive data reliably while the corresponding DDS_DataWriter defines a
best-effort QosPolicy, communication will not happen as requested. This means,
the specification for QosPolicy follows the requested/offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. In this pattern:
• the requesting side can specify a “requested” attribute for a particular QosPolicy
• the offering side specifies an “offered” attribute for that QosPolicy.
The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPolicy settings are compatible, communication is established. If
the two QosPolicy settings are not compatible, the Data Distribution Service will
not establish communication between the two DDS_Entity objects and notify this
fact by means of the DDS_OFFERED_INCOMPATIBLE_QOS status on the offering
side and the DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side.
The application can detect this fact by means of a Listener or DDS_Condition.
The interface description of these QosPolicys are as follows:

/*
 * struct DDS_<DDS_Entity>Qos
 * see appendix
 */
/*
 * struct DDS_<name>QosPolicy
 */

struct DDS_UserDataQosPolicy
 { DDS_sequence_octet value; };
struct DDS_TopicDataQosPolicy
 { DDS_sequence_octet value; };
struct DDS_GroupDataQosPolicy
 { DDS_sequence_octet value; };
struct DDS_TransportPriorityQosPolicy
 { DDS_long value; };
struct DDS_LifespanQosPolicy
 { DDS_Duration_t duration; };
enum DDS_DurabilityQosPolicyKind
 { DDS_VOLATILE_DURABILITY_QOS,
 DDS_TRANSIENT_LOCAL_DURABILITY_QOS,
 DDS_TRANSIENT_DURABILITY_QOS,
 DDS_PERSISTENT_DURABILITY_QOS };
struct DDS_DurabilityQosPolicy
 { DDS_DurabilityQosPolicyKind kind; };
enum DDS_PresentationQosPolicyAccessScopeKind
 { DDS_INSTANCE_PRESENTATION_QOS,
 DDS_TOPIC_PRESENTATION_QOS,
 DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy
57
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { DDS_PresentationQosPolicyAccessScopeKind
 access_scope;

 DDS_boolean coherent_access;
 DDS_boolean ordered_access; };
struct DDS_DeadlineQosPolicy
 { DDS_Duration_t period; };
struct DDS_LatencyBudgetQosPolicy
 { DDS_Duration_t duration; };
enum DDS_OwnershipQosPolicyKind
 { DDS_SHARED_OWNERSHIP_QOS,
 DDS_EXCLUSIVE_OWNERSHIP_QOS };
struct DDS_OwnershipQosPolicy
 { DDS_OwnershipQosPolicyKind kind; };
struct DDS_OwnershipStrengthQosPolicy
 { DDS_long value; };
enum DDS_LivelinessQosPolicyKind
 { DDS_AUTOMATIC_LIVELINESS_QOS,
 DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
 { DDS_LivelinessQosPolicyKind kind;
 DDS_Duration_t lease_duration; };
struct DDS_TimeBasedFilterQosPolicy
 { DDS_Duration_t minimum_separation; };
struct DDS_PartitionQosPolicy
 { DDS_StringSeq name; };
enum DDS_ReliabilityQosPolicyKind
 { DDS_BEST_EFFORT_RELIABILITY_QOS,
 DDS_RELIABLE_RELIABILITY_QOS };
struct DDS_ReliabilityQosPolicy
 { DDS_ReliabilityQosPolicyKind kind;
 DDS_Duration_t max_blocking_time; };
enum DDS_DestinationOrderQosPolicyKind
 { DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
 DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS };
struct DDS_DestinationOrderQosPolicy
 { DDS_DestinationOrderQosPolicyKind kind; };
enum DDS_HistoryQosPolicyKind
 { DDS_KEEP_LAST_HISTORY_QOS,
 DDS_KEEP_ALL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
 { DDS_HistoryQosPolicyKind kind;
 DDS_long depth; };
struct DDS_ResourceLimitsQosPolicy
 { DDS_long max_samples;
 DDS_long max_instances;
 DDS_long max_samples_per_instance; };
struct DDS_EntityFactoryQosPolicy
 { DDS_boolean autoenable_created_entities; };
struct DDS_WriterDataLifecycleQosPolicy
58
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { DDS_boolean autodispose_unregistered_instances; };
struct DDS_ReaderDataLifecycleQosPolicy
 { DDS_Duration_t autopurge_nowriter_samples_delay;
 DDS_Duration_t autopurge_disposed_samples_delay; };
struct DurabilityServiceQosPolicy
 { DDS_Duration_t service_cleanup_delay;
 DDS_HistoryQosPolicyKind history_kind;
 DDS_long history_depth;
 DDS_long max_samples;
 DDS_long max_instances;
 DDS_long max_samples_per_instance; };
enum DDS_SchedulingClassQosPolicyKind
 { DDS_SCHEDULE_DEFAULT,
 DDS_SCHEDULE_TIMESHARING,
 DDS_SCHEDULE_REALTIME };
struct DDS_SchedulingClassQosPolicy
 { DDS_SchedulingClassQosPolicyKind kind; };
enum DDS_SchedulingPriorityQosPolicyKind
 { DDS_PRIORITY_RELATIVE,
 DDS_PRIORITY_ABSOLUTE };
struct DDS_SchedulingPriorityQosPolicy
 { DDS_SchedulingPriorityQosPolicyKind kind; };
struct DDS_SchedulingQosPolicy
 { DDS_SchedulingClassQosPolicy scheduling_class;
 DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
 DDS_long scheduling_priority; };

/*
 * implemented API operations
 * <no operations>
 */

Default attributes
The default attributes of each QosPolicy are listed in the next table:

Table 5 QosPolicy Default Attributes

QosPolicy Attribute Value
user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE

durability kind DDS_VOLATILE_DURABILITY_QOS

presentation access_scope DDS_INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE
59
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

deadline period DDS_DURATION_INFINITE

latency_budget duration 0

ownership_strength value 0

ownership kind DDS_SHARED_OWNERSHIP_QOS

liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration DDS_DURATION_INFINITE

time_based_filter minimum_separation 0

partition name.length 0

reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history kind DDS_KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples DDS_LENGTH_UNLIMITED

max_instances DDS_LENGTH_UNLIMITED

max_samples_ per_instance DDS_LENGTH_UNLIMITED

entity_factory autoenable_
created_entities

TRUE

writer_data_lifecycle autodispose_unregistered_
instances

TRUE

reader_data_lifecycle autopurge_
nowriter_samples_delay

DDS_DURATION_INFINITE

autopurge_
disposed_samples_delay

DDS_DURATION_INFINITE

durability_service history_kind KEEP_LAST

history_depth 1

max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_ per_instance LENGTH_UNLIMITED

service_cleanup_delay 0

watchdog_scheduling,
listener_scheduling

scheduling_class.kind DDS_SCHEDULE_DEFAULT

scheduling_priority_kind.
kind

DDS_PRIORITY_RELATIVE

scheduling_priority 0

Table 5 QosPolicy Default Attributes (Continued)

QosPolicy Attribute Value
60
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

RxO
The QosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxO”
(Requested/Offered) property. The “RxO” property of each QosPolicy is listed in
Table 6 on page 62
• A “RxO” setting of “Yes” indicates that the QosPolicy can be set at both ends

(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined

• A “RxO” setting of “No” indicates that the QosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible

• A “RxO” setting of “Not applicable” indicates that the QosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply.

Changeable
The “changeable” property determines whether the QosPolicy can be changed
after the DDS_Entity is enabled. In other words, a QosPolicy with “changeable”
setting of “No” is considered “immutable” and can only be specified either at
DDS_Entity creation time or prior to calling the DDS_Entity_enable operation
on the DDS_Entity.
When the application tries to change a QosPolicy with “changeable” setting of
“No”, the Data Dis t r ibut ion Service wi l l no t i fy th is by re turning a
DDS_RETCODE_IMMUTABLE_POLICY.
The basic way to modify or set the <DDS_Entity>Qos is by using a
DDS_<Entity>_get_qos and DDS_<Entity>_set_qos operation to get all
QosPolicy settings from this DDS_Entity (that is the <DDS_Entity>Qos),
modify several specific QosPolicy settings and put them back using an user
operation to set all QosPolicy settings on this DDS_Entity (that is the
<DDS_Entity>Qos). An example of these operations for the DDS_DataWriter
are DDS_DataWriter_get_qos and DDS_DataWriter_set_qos, which take
the DataWriterQos as a parameter.
The “RxO” setting and the “changeable” setting of each QosPolicy are listed in
the next table:
61
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 6 QosPolicy Basics

QosPolicy Concerns DDS_Entity RxO Changeable
After

Enabling
user_data DDS_DomainParticipant

DDS_DataReader
DDS_DataWriter

No Yes

topic_data DDS_Topic No Yes
group_data DDS_Publisher

DDS_Subscriber
No Yes

transport_priority DDS_Topic
DDS_DataWriter

Not applicable Yes

lifespan DDS_Topic
DDS_DataWriter

Not applicable Yes

durability DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes No

presentation DDS_Publisher
DDS_Subscriber

Yes No

deadline DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes Yes

latency_budget DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes Yes

ownership DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes No

ownership_strength DDS_DataWriter Not applicable Yes
liveliness DDS_Topic

DDS_DataReader
DDS_DataWriter

Yes No

time_based_filter DDS_DataReader Not applicable Yes
partition DDS_Publisher

DDS_Subscriber
No Yes

reliability DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes No
62
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The next paragraphs describe the usage of each QosPolicy struct.

3.1.3.1 DDS_DeadlineQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_DeadlineQosPolicy
 { DDS_Duration_t period; };

Description
This QosPolicy defines the period within which a new sample is expected by the
DataReader or to be written by the DataWriter.

Attributes
DDS_Duration_t period - specifies the period within which a new sample is

expected or to be written.

destination_order DDS_Topic
DDS_DataReader
DDS_DataWriter

Yes No

history DDS_Topic
DDS_DataReader
DDS_DataWriter

No No

resource_limits DDS_Topic
DDS_DataReader
DDS_DataWriter

No No

entity_factory DDS_DomainParticipantFactory
DDS_DomainParticipant
DDS_Publisher
DDS_Subscriber

No Yes

writer_data_lifecycle DDS_DataWriter Not applicable Yes
reader_data_lifecycle DDS_DataReader Not applicable Yes
durability_service DDS_Topic No No
scheduling DDS_DomainParticipant Not applicable No

Table 6 QosPolicy Basics (Continued)

QosPolicy Concerns DDS_Entity RxO Changeable
After

Enabling
63
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy will set the period within which a DDS_DataReader expects a
new sample or, in case of a DDS_DataWriter, the period in which it expects
applications to write the sample. The default value of the period is
DDS_DURATION_INFINITE, indicating that there is no deadline. The QosPolicy
may be used to monitor the real-time behaviour, a DDS_Listener or a
DDS_StatusCondition may be used to catch the event that is generated when a
deadline is missed.
DDS_DeadlineQosPolicy is instance oriented (i.e. the period is monitored for
each individual instance).
The exact consequences of a missed deadline depend on the DDS_Entity in which
it occured, and the DDS_OwnershipQosPolicy value of that DDS_Entity:
• In case a DDS_DataWriter misses an instance deadline (regardless of its
DDS_OwnershipQosPolicy setting), an
offered_deadline_missed_status is raised, which can be detected by
either a DDS_Listener or a DDS_StatusCondition. There are no further
consequences.

• In case a DDS_DataReader misses an instance deadline, a
requested_deadline_missed_status is raised, which can be detected by
either a DDS_Listener or a DDS_StatusCondition. In case the
DDS_OwnershipQosPolicy is set to SHARED, there are no further
consequences. In case the DDS_OwnershipQosPolicy is set to EXCLUSIVE, the
ownership of that instance on that particular DDS_DataReader is transferred to
the next available highest strength DDS_DataWriter, but this will have no
impact on the instance_state whatsoever. So even when a deadline is missed
for an instance that has no other (lower-strength) DDS_DataWriters to transfer
ownership to, the instance_state remains unchanged. See also Section
3.1.3.11, DDS_OwnershipQosPolicy.

This QosPolicy is applicable to a DDS_DataReader, a DDS_DataWriter and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy may
be changed by using the DDS_<DDS_Entity>_set_qos operation.
64
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DDS_DataWriter
and DDS_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. As a consequence, a DDS_DataWriter that has an
incompatible QoS with respect to what a DDS_DataReader specifies is not allowed
to send its data to that specific DDS_DataReader. A DDS_DataReader that has an
incompatible QoS with respect to what a DDS_DataWriter specifies does not get
any data from that particular DDS_DataWriter.
Changing an existing deadline period using the set_qos operation on either the
DDS_DataWriter or DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their RxO values. (See also
in Section 3.1.3, Struct QosPolicy, the paragraph entitled Requested/Offered.)
Consider a writer with deadline period Pw and a reader with deadline period Pr,
where Pw <= Pr. In this case a connection between that reader and that writer is
established. Now suppose Pw is changed so that Pw > Pr, then the existing
connection between reader and writer will be lost, and the reader will behave as if
the writer unregistered all its instances, transferring the ownership of these instances
when appropriate. See also Section 3.1.3.11, DDS_OwnershipQosPolicy.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c opy t h i s qos by u s i n g t h e o p e r a t i o n s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

Table 7 DDS_DeadlineQosPolicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible
65
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.2 DDS_DestinationOrderQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_DestinationOrderQosPolicyKind
 { DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
 DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS };
struct DDS_DestinationOrderQosPolicy
 { DDS_DestinationOrderQosPolicyKind kind; };

Description
This QosPolicy controls the order in which the DDS_DataReader stores the data.

Attributes
DDS_DestinationOrderQosPolicyKind kind - controls the order in which

the DDS_DataReader stores the data.

Detailed Description
This QosPolicy controls the order in which the DDS_DataReader stores the data.
The order of storage is controlled by the timestamp. However a choice can be made
to use the timestamp of the DDS_DataReader (time of reception) or the timestamp
of the DDS_DataWriter (source timestamp).
This QosPolicy is applicable to a DDS_DataWriter, DDS_DataReader and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy cannot
be changed any more.

Attribute
The QosPolicy is controlled by the attribute kind which may be:
• DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS
• DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
When set to DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the
order is based on the timestamp, at the moment the sample was received by the
DDS_DataReader.
When set to DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order
is based on the timestamp, which was set by the DDS_DataWriter. This means that
the system needs some time synchronisation.
66
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DDS_DataWriter
and DDS_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. As a consequence, a DDS_DataWriter that has an
incompatible QoS with respect to what a DDS_DataReader specified, is not
allowed to send its data to that specific DDS_DataReader. A DDS_DataReader
that has an incompatible QoS with respect to what a DDS_DataWriter specified,
does not get any data from that particular DDS_DataWriter.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c opy t h i s qos by u s i n g t h e o p e r a t i o n s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.3 DDS_DurabilityQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_DurabilityQosPolicyKind
 { DDS_VOLATILE_DURABILITY_QOS,
 DDS_TRANSIENT_LOCAL_DURABILITY_QOS,
 DDS_TRANSIENT_DURABILITY_QOS,
 DDS_PERSISTENT_DURABILITY_QOS };
struct DDS_DurabilityQosPolicy
 { DDS_DurabilityQosPolicyKind kind; };

Description
This QosPolicy controls whether the data should be stored for late joining readers.

Table 8 Requested/Offered DDS_DestinationOrderQosPolicy

BY_RECEPTION_
TIMESTAMP

BY_SOURCE_TIM
ESTAMP

BY_RECEPTION_TIMESTAMP compatible INcompatible
BY_SOURCE_TIMESTAMP compatible compatible

Offered
Requested
67
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
DDS_DurabilityQosPolicyKind kind - specifies the type of durability from

DDS_VOLATILE_DURABILITY_QOS (short life) to
DDS_PERSISTENT_DURABILITY_QOS (long life).

Detailed Description
The decoupling between DDS_DataReader and DDS_DataWriter offered by the
Data Distribution Service allows an application to write data even if there are no
current readers on the network. Moreover, a DDS_DataReader that joins the
network after some data have been written could potentially be interested in
accessing the most current values of the data as well as some history. This
QosPolicy controls whether the Data Distribution Service will actually make data
available to late-joining DDS_DataReaders.
This QosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which may be:
• DDS_VOLATILE_DURABILITY_QOS - the samples are not available to

late-joining DDS_DataReaders. In other words, only DDS_DataReaders,
which were present at the time of the writing and have subscribed to this
DDS_Topic, will receive the sample. When a DDS_DataReader subscribes
afterwards (late-joining), it will only be able to read the next written sample. This
setting is typically used for data, which is updated quickly;

• DDS_TRANSIENT_LOCAL_DURABILITY_QOS - the functionality behind this
setting is not yet implemented. It is scheduled for a future release;

• DDS_TRANSIENT_DURABILITY_QOS - some samples are available to late-joining
DDS_DataReaders (stored in memory). This means that the late-joining
DDS_DataReaders are able to read these previously written samples. The
DDS_DataReader does not necessarily have to exist at the time of writing. Not
all samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the DDS_DataWriter and
will outlive the DDS_DataWriter. This may be used to implement reallocation of
applications because the data is saved in the Data Distribution Service (not in the
DDS_DataWriter). This setting is typically used for state related information of
an application. In this case also the DurabilityServiceQosPolicy settings
are relevant for the behaviour of the Data Distribution Service;
68
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• DDS_PERSISTENT_DURABILITY_QOS - the data is stored in permanent storage
(e.g. hard disk). This means that the samples are also available after a system
restart. The samples not only outlives the DDS_DataWriters, but even the Data
Distribution Service and the system. This setting is typically used for attributes
and settings for an application or the system. In this case also the
DurabilityServiceQosPolicy settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

This means that the Request/Offering mechanism is applicable between:
• the DDS_DataWriter and the DDS_DataReader: if the QosPolicy settings

between DDS_DataWriter and DDS_DataReader are inconsistent, no
communication between them is established. In addition the DDS_DataWriter
will be informed via a DDS_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS status change

• the DDS_DataWriter and the Data Distribution Service (as a built-in
DDS_DataReader): if the QosPolicy settings between DDS_DataWriter and
the Data Distribution Service are inconsistent, no communication between them is
established. In that case data published by the DDS_DataWriter will not be
maintained by the service and as a consequence will not be available for late
joining DDS_DataReaders. The QosPolicy of the Data Distribution Service in
the role of DDS_DataReader is specified by the DDS_Topic QosPolicy

• the Data Distribution Service (as a built-in DDS_DataWriter) and the
DDS_DataReader: if the QosPolicy settings between the Data Distribution
Service and the DDS_DataReader are inconsistent, no communication between
them is established. In that case the Data Distribution Service will not publish
historical data to late joining DDS_DataReaders. The QosPolicy of the Data
Distribution Service in the role of DDS_DataWriter is specified by the
DDS_Topic QosPolicy.

Table 9 Requested/Offered DDS_DurabilityQosPolicy

VOLATILE TRANSIENT PERSISTENT

VOLATILE compatible INcompatible INcompatible
TRANSIENT compatible compatible INcompatible
PERSISTENT compatible compatible compatible

Offered
Requested
69
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Cleanup
The DDS_DurabilityQosPolicy kind se t t ing DDS_TRANSIENT_
DURABILITY_QOS and DDS_PERSISTENT_DURABILITY_QOS determine that the
DDS_DurabilityServiceQosPolicy applies for the DDS_Topic. It controls
amongst others at which time the durability service is allowed to remove all
information regarding a data-instance. Information on a data-instance is maintained
until the following conditions are met:
• the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE),

• and the system detects that there are no more “live” DDS_DataWriter objects
writing the instance, that is, all DDS_DataWriter either
unregister_instance the instance (call
DDS_DataWriter_unregister_instance operation) or lose their
liveliness,

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The u s e o f t he DDS_DurabilityServiceQosPolicy a t t r i b u t e
service_cleanup_delay is apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
i n i t i a l d a t a t o r e g a i n i t s s t a t e a n d t h e d e l a y in t r o d u c e d b y t h e
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c op y t h i s qo s b y u s i ng t he op e r a t i on s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.4 DDS_DurabilityServiceQosPolicy

Scope
DDS

Synopsis
#include <dds_dcps.h>
struct DDS_DurabilityServiceQosPolicy
70
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { DDS_Duration_t service_cleanup_delay;
 DDS_HistoryQosPolicyKind history_kind;
 DDS_long history_depth;
 DDS_long max_samples;
 DDS_long max_instances;
 DDS_long max_samples_per_instance; };

Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data.

Attributes
DDS_Duration_t service_cleanup_delay - specifies how long the durability

service must wait before it is allowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

DDS_HistoryQosPolicyKind history_kind - specifies the type of history,
w h i c h m a y b e DDS_KEEP_LAST_HISTORY_QOS , o r
DDS_KEEP_ALL_HISTORY_QOS the durability service must apply for the
transient or persistent topic data-instances.

DDS_long history_depth - specifies the number of samples of each instance of
data (identified by its key) that is managed by the durability service for the
transient or persis tent topic data-instances. If history_kind i s
KEEP_LAST_HISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_instance for this QosPolicy to be consistent.

DDS_long max_samples - specifies the maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_instances - specifies the maximum number of instances the
durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_samples_per_instance - specifies the maximum number of
samples of any single instance the durability service will manage for the
transient or persistent topic data-instances. If history_kind is DDS_KEEP_LAST_
HISTORY_QOS, max_samples_per_instance must be greater than or equal
to history_depth for this QosPolicy to be consistent.

Detailed Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limits it must apply.
71
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Cleanup
The setting of the DDS_DurabilityServiceQosPolicy only applies when kind
of t he DDS_DurabilityQosPolicy i s e i t h e r DDS_TRANSIENT_
DURABILITY_QOS o r DDS_PERSISTENT_DURABILITY_QOS . T h e
service_cleanup_delay setting controls at which time the durability service is
allowed to remove all information regarding a data-instance. Information on a
data-instance is maintained until the following conditions are met:
• the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE)

• and the system detects that there are no more “live” DataWriter objects writing
the instance, that is, all DataWriter either unregister_instance the
instance (call unregister_instance operation) or lose their liveliness

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met

The use of the attribute service_cleanup_delay is apparent in the situation
where an application disposes an instance and it crashes before having a chance
to complete additional tasks related to the disposal of the instance. Upon re-start
the application may ask for initial data to regain its state and the delay introduced by
the service_cleanup_delay allows the re-started application to receive the
information of the disposed instance and complete the interrupted tasks.

History
The attributes history_kind and history_depth apply to the history settings of
the durability service’s internal DDS_DataWriter and DDS_DataReader
managing the topic. The DDS_HistoryQosPolicy behaviour, as described in
Section 3.1.3.7, DDS_HistoryQosPolicy, applies to these attributes.

Resource Limits
The at t r ibutes max_samples , max_instances and max_samples_
per_instance apply to the resource limits of the durability service’s internal
DDS_DataWriter and DDS_DataReader managing the top ic . The
DDS_ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(DDS_ResourceLimitsQosPolicy) applies to these attributes.

TopicQos
This QosPolicy can be set on a DDS_Topic only. After enabling of the concerning
DDS_Topic, this QosPolicy can not be changed any more.
72
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.5 DDS_EntityFactoryQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_EntityFactoryQosPolicy
 { DDS_boolean autoenable_created_entities; };

Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities.

Attributes
DDS_boolean autoenable_created_entities - specifies whether the entity

acting as a factory automatically enables the instances it creates. If
autoenable_created_entities is TRUE the factory will automatically enable each
created Entity, otherwise it will not.

Detailed Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities. It concerns only DDS_DomainParticipantFactory (as factory for
DDS_DomainParticipant), DDS_DomainParticipant (as factory for
DDS_Publisher, DDS_Subscriber, and DDS_Topic), DDS_Publisher (as
factory for DDS_DataWriter), and DDS_Subscriber (as factory for
DDS_DataReader).
This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.
The setting of autoenable_created_entities to TRUE indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time a new DDS_Entity is created. Therefore, the DDS_Entity
returned by create_<entity> will already be enabled. A setting of FALSE
indicates that the DDS_Entity will not be automatically enabled: the application
will need to enable it explicitly by means of the enable operation. See Section
3.1.1.1, DDS_Entity_enable for a detailed description about the differences between
enabled and disabled entities.
The default setting of autoenable_created_entities is TRUE meaning that by
default it is not necessary to explicitly call enable on newly created entities.

3.1.3.6 DDS_GroupDataQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_GroupDataQosPolicy
73
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { DDS_sequence_octet value; };

Description
This QosPolicy allows the application to attach additional information to a
DDS_Publisher or DDS_Subscriber DDS_Entity. This information is
distributed with the DDS_BuiltinTopics.

Attributes
DDS_sequence_octet value - a sequence of octets that holds the application

group data. By default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
DDS_Publisher or DDS_Subscriber DDS_Entity. This information is
distributed with the DDS_BuiltinTopic. An application that discovers a new
DDS_Entity of the listed kind, can use this information to add additional
functionality. The DDS_GroupDataQosPolicy is changeable and updates of the
DDS_BuiltinTopic instance must be expected. Note that the Data Distribution
Service is not aware of the real structure of the group data (the Data Distribution
System handles it as an opaque type) and that the application is responsible for
correct mapping on structural types for the specific platform.

3.1.3.7 DDS_HistoryQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_HistoryQosPolicyKind
 { DDS_KEEP_LAST_HISTORY_QOS,
 DDS_KEEP_ALL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
 { DDS_HistoryQosPolicyKind kind;
 DDS_long depth; };

Description
This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes
DDS_HistoryQosPolicyKind kind - specifies the type of history, which may be

DDS_KEEP_LAST_HISTORY_QOS or DDS_KEEP_ALL_HISTORY_QOS.
DDS_long depth - specifies the number of samples of each instance of data

(identified by its key) managed by this DDS_Entity.
74
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy controls whether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver all samples, or do something in between.
In other words, how the DDS_DataWriter or DDS_DataReader should store
samples. Normally, only the most recent sample is available but some history can be
stored.

DDS_DataWriter
On the publishing side this QosPolicy controls the samples that should be
maintained by the DDS_DataWriter on behalf of existing DDS_DataReader
objects. The behaviour with respect to a DDS_DataReader objects discovered after
a sample is written is controlled by the DDS_DurabilityQosPolicy.

DDS_DataReader
On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service.
This QosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• DDS_KEEP_LAST_HISTORY_QOS - the Data Distribution Service will only

attempt to keep the latest values of the instance and discard the older ones. The
attribute “depth” determines how many samples in history will be stored. In
other words, only the most recent samples in history are stored. On the publishing
side, the Data Distribution Service will only keep the most recent “depth”
samples of each instance of data (identified by its key) managed by the
DDS_DataWriter. On the subscribing side, the DDS_DataReader will only
keep the most recent “depth” samples received for each instance (identified by
its key) until the application “takes” them via the DDS_DataReader_take
operation. DDS_KEEP_LAST_HISTORY_QOS is the default kind. The default
value of depth is 1, indicating that only the most recent value should be
delivered. If a depth other than 1 is specified, it should be compatible with the
settings of the DDS_ResourceLimitsQosPolicy max_samples_
per_instance. For these two QosPolicy settings to be compatible, they must
verify that depth <= max_samples_per_instance, otherwise a
DDS_RETCODE_INCONSISTENT_POLICY is generated on relevant operations;

• DDS_KEEP_ALL_HISTORY_QOS - all samples are stored, provided, the resources
are available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data
75
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

(identified by its key) managed by the DDS_DataWriter until they can be
delivered to all subscribers. On the subscribing side, the Data Distribution
Service will attempt to keep all samples of each instance of data (identified by its
key) managed by the DDS_DataReader. These samples are kept until the
application “takes” them from the Data Distribution Service via the
DDS_DataReader_take operation. The setting of depth has no effect. Its
implied value is DDS_LENGTH_UNLIMITED. The resources that the Data
Distribution Service can use to keep this history are limited by the settings of the
DDS_ResourceLimitsQosPolicy. If the limit is reached, the behaviour of the
Data Distribution Service will depend on the DDS_ReliabilityQosPolicy. If
the DDS_ReliabilityQosPolicy is DDS_BEST_EFFORT_RELIABILITY_
QOS, the old values are discarded. If DDS_ReliabilityQosPolicy is
DDS_RELIABLE_RELIABILITY_QOS, the Data Distribution Service will block
the DDS_DataWriter until it can deliver the necessary old values to all
subscribers.

On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service. On the publishing side
this QosPolicy controls the samples that should be maintained by the
DDS_DataWriter on behalf of DDS_DataReader objects. The behaviour with
respect to a DDS_DataReader objects discovered after a sample is written is
controlled by the DDS_DurabilityQosPolicy. In more detail, this QosPolicy
specifies the behaviour of the Data Distribution Service in case the value of a
sample changes (one or more times) before it can be successfully communicated to
one or more DDS_Subscribers.

Requested/Offered
The setting of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
DDS_OFFERED_INCOMPATIBLE_QOS s t a tus on the offe r ing s ide or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c op y t h i s qo s b y u s i ng t he op e r a t i on s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.
76
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.8 DDS_LatencyBudgetQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_LatencyBudgetQosPolicy
 { DDS_Duration_t duration; };

Description
Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the DDS_DataReader
and the application is notified of this fact.

Attributes
DDS_Duration_t duration - specifies the maximum acceptable additional delay

from the time the data is written until the data is delivered.

Detailed Description
This QosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DDS_DataReader and the application is notified of this fact. This QosPolicy
provides a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimise its internal operation. The default value of the
duration is zero, indicating that the delay should be minimized.
This QosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy may
be changed by using the DDS_<DDS_Entity>_set_qos operation.

Requested/Offered
This QosPolicy is considered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered QosPolicy are incompatible, the
notification DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 10 DDS_LatencyBudgetQosPolicy

Duration Compatibility
offered duration < requested duration compatible
offered duration = requested duration compatible
offered duration > requested duration INcompatible
77
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.
Changing an existing latency budget using the set_qos operation on either the
DDS_DataWriter or DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their RxO values. (See also
in Section 3.1.3, Struct QosPolicy the paragraph entitled Requested/Offered.)
Consider a writer with budget Bw and a reader with budget Br, where Bw <= Br. In
this case a connection between that reader and that writer is established. Now
suppose Bw is changed so that Bw > Br, then the existing connection between
reader and writer will be lost, and the reader will behave as if the writer unregistered
all its instances, transferring the ownership of these instances when appropriate. See
also Section 3.1.3.11, DDS_OwnershipQosPolicy.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c op y t h i s qo s b y u s i ng t he op e r a t i on s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.9 DDS_LifespanQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_LifespanQosPolicy
 { DDS_Duration_t duration; };

Description
This QosPolicy specifies the duration of the validity of the data written by the
DDS_DataWriter.

Attributes
DDS_Duration_t duration - specifies the length in time of the validity of the

data.

Detailed Description
This QosPolicy specifies the duration of the validity of the data written by the
DDS_DataWriter. When this time has expired, the data will be removed or if it has
not been delivered yet, it will not be delivered at all. In other words, the duration
is the time in which the data is still valid. This means that during this period a
78
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_DataReader can access the data or if the data has not been delivered yet, it
s t i l l w i l l b e d e l i v e r e d . The d e f a u l t v a l u e o f t h e duration i s
DDS_DURATION_INFINITE, indicating that the data does not expire.
This QosPolicy is applicable to a DDS_DataWriter and a DDS_Topic. After
enabling of the concerning DDS_Entity, this QosPolicy may be changed by using
the DDS_<DDS_Entity>_set_qos operation.

Requested/Offered
The setting of this QosPolicy is only applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
wil l not be rejected on account of this QosPolicy. The notif icat ion
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side will not be raised.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c opy t h i s qos by u s i n g t h e o p e r a t i o n s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.10 DDS_LivelinessQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_LivelinessQosPolicyKind
 { DDS_AUTOMATIC_LIVELINESS_QOS,
 DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
 { DDS_LivelinessQosPolicyKind kind;
 DDS_Duration_t lease_duration; };

Description
This QosPolicy controls the way the liveliness of an DDS_Entity is being
reported.

Attributes
DDS_LivelinessQosPolicyKind kind - controls the way the liveliness of an

DDS_Entity is reported.
DDS_Duration_t lease_duration - specifies the duration of the interval

within which the liveliness must be reported.
79
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy controls the way the liveliness of an DDS_Entity is being
determined. The l ivel iness must be reported per iodical ly before the
lease_duration expires.
This QosPolicy is applicable to a DDS_DataReader, a DDS_DataWriter and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• DDS_AUTOMATIC_LIVELINESS_QOS - the Data Distribution Service will take

care of reporting the Liveliness automatically with a rate determined by the
lease_duration

• DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS - the application must take
care of reporting the liveliness before the lease_duration expires. If a
DDS_Entity reports its liveliness, all DDS_Entities within the same
DDS_DomainParticipant that have their liveliness kind set to
DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, can be considered alive
by the Data Distribution Service. Liveliness can reported explicitly by calling the
operation DDS_DomainParticipant_assert_liveliness or implicitly by
writing some data

• DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the lease_duration expires. This can explicitly
be done by calling the operation DDS_DataWriter_assert_liveliness or
implicitly by writing some data

The lease_duration specifies the duration of the interval within which the
liveliness should be reported.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 11 DDS_LivelinessQosPolicy

AUTOMATIC MANUAL_BY_
PARTICIPANT

MANUAL_BY_
TOPIC

AUTOMATIC compatible INcompatible INcompatible
MANUAL_BY_PARTICIPANT compatible compatible INcompatible
MANUAL_BY_TOPIC compatible compatible compatible

Offered
Requested
80
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DDS_DataWriter
and DDS_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. As a consequence, a DDS_DataWriter that has an
incompatible QoS with respect to what a DDS_DataReader specified is not allowed
to send its data to that specific DDS_DataReader. A DDS_DataReader that has an
incompatible QoS with respect to what a DDS_DataWriter specified does not get
any data from that particular DDS_DataWriter.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c opy t h i s qos by u s i n g t h e o p e r a t i o n s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.11 DDS_OwnershipQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_OwnershipQosPolicyKind
 { DDS_SHARED_OWNERSHIP_QOS,
 DDS_EXCLUSIVE_OWNERSHIP_QOS };
struct DDS_OwnershipQosPolicy
 { DDS_OwnershipQosPolicyKind kind; };

Description
This QosPolicy specifies whether a DDS_DataWriter exclusively owns an
instance.

Attributes
DDS_OwnershipQosPolicyKind kind - specifies whether a DDS_DataWriter

exclusively owns an instance.

Detailed Description
This QosPolicy specifies whether a DDS_DataWriter exclusively may own an
instance. In other words, whether multiple DDS_DataWriter objects can write the
same instance at the same time. The DDS_DataReader objects will only read the
modifications on an instance from the DDS_DataWriter owning the instance.
81
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Exclusive ownership is on an ins tance-by- instance basis . That is , a
DDS_Subscriber c an r ece ive va lues wr i t t en by a lower s t r eng th
DDS_DataWriter as long as they affect instances whose values have not been
written or registered by a higher-strength DDS_DataWriter.
This QosPolicy is applicable to a DDS_DataReader, a DDS_DataWriter and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Attribute
The QosPolicy is controlled by the attribute kind which can be:
• DDS_SHARED_OWNERSHIP_QOS (default) - the same instance can be written by

multiple DDS_DataWriter objects. All updates will be made available to the
DDS_DataReader objects. In other words it does not have a specific owner

• DDS_EXCLUSIVE_OWNERSHIP_QOS - the instance will only be accepted from one
DDS_DataWriter which is the only one whose modifications will be visible to
the DDS_DataReader objects

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DDS_DataWriter
and DDS_DataReader. The value of the OWNERSHIP kind offered must exactly
match the one requested or else they are considered incompatible. As a
consequence, a DDS_DataWriter that has an incompatible QoS with respect to
what a DDS_DataReader specified is not allowed to send its data to that specific
DDS_DataReader. A DDS_DataReader that has an incompatible QoS with respect
to what a DDS_DataWriter specified does not get any data from that particular
DDS_DataWriter.

Table 12 Requested/Offered DDS_OwnershipQosPolicy

SHARED EXCLUSIVE

SHARED compatible INcompatible

EXCLUSIVE INcompatible compatible

Offered
Requested
82
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Exclusive Ownership
The DDS_DataWriter with the highest DDS_OwnershipStrengthQosPolicy
value and being alive (depending on the DDS_LivelinessQosPolicy) and
which has not violated its DDS_DeadlineQosPolicy contract with respect to the
instance, will be considered the owner of the instance. Consequently, the ownership
can change as a result of:
• a DDS_DataWriter in the system with a higher value of the
DDS_OwnershipStrengthQosPolicy modifies the instance

• a change in the DDS_OwnershipStrengthQosPolicy value (becomes less) of
the DDS_DataWriter owning the instance

• a change in the liveliness (becomes not alive) of the DDS_DataWriter owning
the instance

• a deadline with respect to the instance that is missed by the DDS_DataWriter
that owns the instance.

Time-line
Each DDS_DataReader may detect the change of ownership at a different time. In
other words, at a particular point in time, the DDS_DataReader objects do not have
a consistent picture of who owns each instance for that DDS_Topic. Outside this
grey area in time all DDS_DataReader objects will consider the same
DDS_DataWriter to be the owner.
I f m u l t i p l e DDS_DataWriter o b j e c t s w i t h t h e s a m e
DDS_OwnershipStrengthQosPolicy modify the same instance, all
DDS_DataReader objects will make the same choice of the particular
DDS_DataWriter that is the owner. The DDS_DataReader is also notified of this
via a s ta tus change that i s access ible by means of the Listener or
DDS_Condition mechanisms.

Ownership of an Instance
DDS_DataWriter objects are not aware whether they own a particular instance.
There is no error or notification given to a DDS_DataWriter that modifies an
instance it does not currently own.

TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c an copy t h i s qos b y u s in g t he op e ra t i on s
DDS_Publisher /Subscriber_copy_from_topic_qos and then
DDS_DataWriter/DataReader_set_qos. That way the application can
relatively easily ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent
83
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.12 DDS_OwnershipStrengthQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_OwnershipStrengthQosPolicy
 { DDS_long value; };

Description
This QosPolicy specif ies the value of the ownership s t rength of a
DDS_DataWriter used to determine the ownership of an instance.

Attributes
DDS_long value - specifies the ownership strength of the DDS_DataWriter.

Detailed Description
This QosPolicy specif ies the value of the ownership s t rength of a
DDS_DataWriter used to determine the ownership of an instance. This ownership
is used to arbitrate among multiple DDS_DataWriter objects that attempt to
m o d i f y t h e s a m e i n s t a n c e . T h i s QosPolicy o n l y a p p l i e s i f t h e
DDS_OwnershipQosPolicy is of kind DDS_EXCLUSIVE_OWNERSHIP_QOS. For
more information, see DDS_OwnershipQosPolicy.
This QosPolicy is applicable to a DDS_DataWriter only. After enabling of the
concerning DDS_Entity, this QosPolicy may be changed by using the
DDS_DataWriter_set_qos operation. When changed, the ownership of the
instances may change with it.

3.1.3.13 DDS_PartitionQosPolicy

Synopsis
#include <dds_dcps.h>
struct DDS_PartitionQosPolicy
 { DDS_StringSeq name; };

Description
T h i s QosPolicy s pec i f i e s t he l og i ca l partitions i n wh i ch th e
DDS_Subscribers and DDS_Publishers are active.

Attributes
DDS_StringSeq name - holds the sequence of strings, which specifies the

partitions
84
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy specifies the logical partitions inside the domain in which the
DDS_Subscribers and DDS_Publishers are active. This QosPolicy is
particularly used to create a separate subspace, like a real domain versus a
simulation domain. A DDS_Publisher and/or DDS_Subscriber can participate
in more than one partition. Each string in the sequence of strings name defines a
partition name. A partition name may contain wildcards. Sharing a
partition means that at least one of the partition names in the sequence
matches. When none of the partition names match, it is not considered an
“incompatible” QoS and does not trigger any listeners or conditions. It only
means, no communication is established. The default value of the attribute is an
empty (zero-sized) sequence. This is treated as a special value that matches the
partition.
This QosPolicy is applicable to a DDS_Publisher and DDS_Subscriber. After
enabling of the concerning DDS_Entity, this QosPolicy may be changed by using
the DDS_<DDS_Entity>_set_qos operation. When changed, it modifies the
association of DDS_DataReader and DDS_DataWriter objects. It may establish
new associations or break existing associations. By default, DDS_DataWriter and
DDS_DataReader objects belonging to a DDS_Publisher or DDS_Subscriber
that do not specify a DDS_PartitionQosPolicy, will participate in the default
partition. In this case the partition name is “”.

Requested/Offered
The offered setting of this QosPolicy is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
DDS_OFFERED_INCOMPATIBLE_QOS s t a tus on the offe r ing s ide or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised

3.1.3.14 DDS_PresentationQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_PresentationQosPolicyAccessScopeKind
 { DDS_INSTANCE_PRESENTATION_QOS,
 DDS_TOPIC_PRESENTATION_QOS,
 DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy
 { DDS_PresentationQosPolicyAccessScopeKind access_scope;
 DDS_boolean coherent_access;
 DDS_boolean ordered_access; };

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

85

API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes
DDS_PresentationQosPolicyAccessScopeKind access_scope - specifies

the samples controlled by this policy.
DDS_boolean coherent_access - the functionality behind this setting is not yet

implemented. It is scheduled for a future release.
DDS_boolean ordered_access - the functionality behind this setting is not yet

implemented. It is scheduled for a future release.

Detailed Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
DDS_Entity objects for which the order and coherency of changes can be
preserved.
This QosPolicy is applicable to a DDS_Publisher and DDS_Subscriber. After
enabling of the concerning DDS_Entity, this QosPolicy cannot be changed any
more.

Attributes
The two booleans control whether coherent access and ordered access are supported
w i t h i n t h e s c o p e access_scope . S i n c e o n l y DDS_INSTANCE_
PRESENTATION_QOS (the lowest level) is implemented, coherent access and
ordered access are not applicable.
The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. This is the case even if the same application thread
makes the changes using the same DDS_DataWriter. This is the default
access_scope.
Note that this QosPolicy controls the ordering at which related changes are made
available to the DDS_Subscriber. In other words the DDS_Subscriber can
access the changes in the proper order. However, it does not necessarily imply that
86
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

the DDS_Subscriber will indeed access the changes in the correct order. For that
to occur, the application at the DDS_Subscriber end must use the proper logic in
reading the DDS_DataReader.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Only the default settings for this policy are currently supported. Deviations from the
default will be ignored by the Publisher and/or Subscriber.

3.1.3.15 DDS_ReaderDataLifecycleQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_ReaderDataLifecycleQosPolicy
 { DDS_Duration_t autopurge_nowriter_samples_delay;
 DDS_Duration_t autopurge_disposed_samples_delay; };

Description
This QosPolicy specifies the maximum duration for which the DDS_DataReader
will maintain information regarding a data instance for which the instance_state
becomes either DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes
DDS_Duration_t autopurge_nowriter_samples_delay - specifies the

duration for which the DDS_DataReader will maintain information regarding a
da t a i n s t ance fo r wh ich t he instance_state b e com es
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration
value is DDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

Table 13 Requested/Offered DDS_PresentationQosPolicy

INSTANCE Topic Group

instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Offered
Requested
87
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_Duration_t autopurge_disposed_samples_delay - specifies the
duration for which the DDS_DataReader will maintain information regarding a
da t a i n s t a nce fo r wh ich t he instance_state b e com es
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration
value is DDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

Detailed Description
This QosPolicy specifies the maximum duration for which the DDS_DataReader
wil l main ta in in format ion regard ing a da ta ins tance fo r which the
instance_state becomes e i ther DDS_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE or DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. The
DDS_DataReader manages resources for instances and samples of those instances.
The amount of resources managed depends on other QosPolicies like the
DDS_HistoryQosPolicy and the DDS_ResourceLimitsQosPolicy. The
DDS_DataReader can only release resources for data instances for which all
s a m p l e s h a v e b e e n t a k e n a n d t h e instance_state h a s b e c o m e
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE. If an application does not take the samples
be long ing to a da t a i n s t ance w i th such an instance_state , t he
DDS_DataReader will never be able to release the maintained resources. By means
of this QosPolicy the application can instruct the DDS_DataReader to release all
resources related to the concerning data instance after a specified duration.
This QosPolicy is applicable to a DDS_DataReader only. After enabling of the
concerning DDS_DataReader, this QosPolicy can be changed using the set_qos
operation.

3.1.3.16 DDS_ReliabilityQosPolicy

Synopsis
#include <dds_dcps.h>

enum DDS_ReliabilityQosPolicyKind
 { DDS_BEST_EFFORT_RELIABILITY_QOS,
 DDS_RELIABLE_RELIABILITY_QOS };
struct DDS_ReliabilityQosPolicy
 { DDS_ReliabilityQosPolicyKind kind;
 DDS_Duration_t max_blocking_time; };

Description
This QosPolicy controls the level of reliability of the data distribution offered or
requested by the DDS_DataWriters and DDS_DataReaders.
88
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
DDS_ReliabilityQosPolicyKind kind - specifies the type of reliability which

may be DDS_BEST_EFFORT_RELIABILITY_QOS or
DDS_RELIABLE_RELIABILITY_QOS.

DDS_Duration_t max_blocking_time - specifies the maximum time the
DDS_DataWriter_write operation may block when the DDS_DataWriter
does not have space to store the value written.

Detailed Description
This QosPolicy controls the level of reliability of the data distribution requested
by a DDS_DataReader or offered by a DDS_DataWriter. In other words, it
controls whether data is allowed to get lost in transmission or not.
This QosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• DDS_RELIABLE_RELIABILITY_QOS - the Data Distribution Service will attempt

to deliver all samples in the DDS_DataWriters history; arrival-checks are
performed and data may get re-transmitted in case of lost data. In the steady-state
(no modifications communicated via the DDS_DataWriter) the Data
Distribution Service guarantees that all samples in the DDS_DataWriter history
will eventually be delivered to the all DDS_DataReader objects. Outside the
steady-state the DDS_HistoryQosPolicy and
DDS_ResourceLimitsQosPolicy determine how samples become part of the
history and whether samples can be discarded from it. In this case also the
max_blocking_time must be set

• DDS_BEST_EFFORT_RELIABILITY_QOS - the Data Distribution Service will
only attempt to deliver the data; no arrival-checks are being performed and any
lost data is not re-transmitted (non-reliable). Presumably new values for the
samples are generated often enough by the application so that it is not necessary to
resent or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. In case the
DDS_HistoryQosPolicy kind is set to DDS_KEEP_ALL_HISTORY_QOS, the
DDS_DataWriter_write operation on the DDS_DataWriter may block if the
m o d i f i c a t i o n w o u l d c a u s e o n e o f t h e l im i t s , s p e c i f i e d i n t h e
DDS_ResourceLimitsQosPolicy, to be exceeded. Under these circumstances,
89
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

the max_blocking_time attribute of the DDS_ReliabilityQosPolicy
configures the maximum duration the DDS_DataWriter_write operation may
block.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS s ta tus on the offer ing s ide and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c op y t h i s qo s b y u s i ng t he op e r a t i on s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.17 DDS_ResourceLimitsQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_ResourceLimitsQosPolicy
 { DDS_long max_samples;
 DDS_long max_instances;
 DDS_long max_samples_per_instance; };

Note: This QosPolicy is not yet fully implemented. Missing features are
scheduled for a future release.

Description
This QosPolicy will specify the maximum amount of resources, which can be used
by a DDS_DataWriter or DDS_DataReader.

Attributes
DDS_long max_samples - specifies the maximum number of data samples for all

instances for any single DDS_DataWriter (or DDS_DataReader). By default,
DDS_LENGTH_UNLIMITED.

Table 14 Requested/Offered DDS_ReliabilityQosPolicy

BEST_EFFORT RELIABLE

BEST_EFFORT compatible INcompatible

RELIABLE compatible compatible

Offered
Requested
90
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_long max_instances - specifies the maximum number of instances for any
s i n g l e DDS_DataWriter (o r DDS_DataReader) . B y d e f a u l t ,
DDS_LENGTH_UNLIMITED. Any other value than DDS_LENGTH_UNLIMITED
will currently be ignored.

DDS_long max_samples_per_instance - specifies the maximum number of
samples of any single instance for any single DDS_DataWriter (or
DDS_DataReader). By default, DDS_LENGTH_UNLIMITED.

Detailed Description
This QosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy settings.
This QosPolicy is applicable to a DDS_DataReader, a DDS_DataWriter and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy
cannot be changed any more.

Requested/Offered
The value of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
DDS_OFFERED_INCOMPATIBLE_QOS s t a tus on the offe r ing s ide or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised.

Resource limits
If the DDS_DataWriter objects are publishing samples faster than they are taken
by the DDS_DataReader objects, the Data Distribution Service will eventually hit
against some of the QosPolicy-imposed resource limits. Note that this may occur
when just a single DDS_DataReader cannot keep up with its corresponding
DDS_DataWriter.
In case the DDS_HistoryQosPolicy is DDS_KEEP_LAST_HISTORY_QOS, the
setting of DDS_ResourceLimitsQosPolicy max_samples_per_instance
must be compatible with the DDS_HistoryQosPolicy depth. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance.

DDS_TopicQos
This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader c a n c opy t h i s qos by u s i n g t h e o p e r a t i o n s
DDS_<DDS_Entity>_copy_from_topic_qos and t he n
91
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_<DDS_Entity>_set_qos. That way the application can relatively easily
ensure the QosPolicy fo r the DDS_Topic , DDS_DataReader and
DDS_DataWriter are consistent.

3.1.3.18 DDS_SchedulingQosPolicy

Scope
DDS

Synopsis
#include <dds_dcps.h>

enum DDS_SchedulingClassQosPolicyKind
 { DDS_SCHEDULE_DEFAULT,
 DDS_SCHEDULE_TIMESHARING,
 DDS_SCHEDULE_REALTIME };
struct DDS_SchedulingClassQosPolicy
 { DDS_SchedulingClassQosPolicyKind kind; };
enum DDS_SchedulingPriorityQosPolicyKind
 { DDS_PRIORITY_RELATIVE,
 DDS_PRIORITY_ABSOLUTE };
struct DDS_SchedulingPriorityQosPolicy
 { DDS_SchedulingPriorityQosPolicyKind kind; };
struct DDS_SchedulingQosPolicy
 { DDS_SchedulingClassQosPolicy scheduling_class;
 DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
 DDS_long scheduling_priority; };

Description
This QosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the DDS_DomainParticipant.
Note that some scheduling parameters may not be supported by the underlying
Operating System or that you may need special privileges to select particular
settings.

Attributes
DDS_SchedulingClassQosPolicyKind scheduling_class.kind - specifies

the scheduling class used by the Operating System, which may be
DDS_SCHEDULE_DEFAULT, DDS_SCHEDULE_TIMESHARING o r
DDS_SCHEDULE_REALTIME. Threads can only be spawned within the
scheduling classes that are supported by the underlying Operating System.

DDS_SchedulingPriorityQosPolicyKind scheduling_priority_kind.kind -
specifies the priority type, which may be either DDS_PRIORITY_RELATIVE or
DDS_PRIORITY_ABSOLUTE.
92
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_long scheduling_priority - specifies the priority that will be assigned to
threads spawned by the DDS_DomainParticipant. Threads can only be
spawned with priorities that are supported by the underlying Operating System.

Detailed Description
This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the DDS_DomainParticipant. Note that some scheduling parameters
may not be supported by the underlying Operating System or that you may need
special privileges to select particular settings. Refer to the documentation of your
OS for more details on this subject.
Although the behaviour of the scheduling_class is highly dependent on the
underlying OS, in general when running in a Timesharing class your thread will
need to regularly yield execution to other threads of equal priority. In a Realtime
class, your thread normally runs until completion and can only be pre-empted by
higher priority threads. Often, the highest range of priorities is not accessible
through a Timesharing Class.
The scheduling_priority_kind determines whether the specified
scheduling_priority should be interpreted as an absolute priority or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DDS_DomainParticipant.

3.1.3.19 DDS_TimeBasedFilterQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_TimeBasedFilterQosPolicy
 { DDS_Duration_t minimum_separation; };

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

3.1.3.20 DDS_TopicDataQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_TopicDataQosPolicy
 { DDS_sequence_octet value; };

Description
This QosPolicy allows the application to attach additional information to a
DDS_Topic DDS_Entity. This informat ion is d is t r ibuted wi th the
DDS_BuiltinTopics.
93
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
DDS_sequence_octet value - a sequence of octets that holds the application

topic data. By default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
DDS_Topic Entity. This information is distributed with the BuiltinTopic. An
application that discovers a new DDS_Topic entity, can use this information to add
additional functionality. The DDS_TopicDataQosPolicy is changeable and
updates of the BuiltinTopic instance must be expected. Note that the Data
Distribution Service is not aware of the real structure of the topic data (the Data
Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

3.1.3.21 DDS_TransportPriorityQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_TransportPriorityQosPolicy
 { DDS_long value; };

Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by the DDS_DataWriter.

Attributes
DDS_long value - specifies the priority with which the Data Distribution System

can handle the data produced by the DDS_DataWriter.

Detailed Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by a DDS_DataWriter. This QosPolicy is considered to
be a hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
type is supported. By default the transport priority is set to 0.
The DDS_TransportPriorityQosPolicy is applicable to both DDS_Topic and
DDS_DataWriter entities. After enabling of the concerning DDS_Entities, this
QosPolicy may be changed by using the set_qos operation.
94
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos
Note that changing this QosPolicy for the DDS_Topic does not influence the
behaviour of the Data Distribution System for existing DDS_DataWriter entities
because this QosPolicy is only used by the operation copy_from_topic_qos
and when specifying DDS_DATAWRITER_QOS_USE_TOPIC_QOS when creating the
DataWriter.

3.1.3.22 DDS_UserDataQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_UserDataQosPolicy
 { DDS_sequence_octet value; };

Description
This QosPolicy allows the application to attach additional information to a
DDS_DomainParticipant , DDS_DataReader or DDS_DataWriter
DDS_Entity. This information is distributed with the Builtin Topics.

Attributes
DDS_sequence_octet value - is a sequence of octets that holds the application

user data. By default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
DDS_DomainParticipant, DDS_DataReader or DDS_DataWriter entity. This
information is distributed with the Builtin Topics. An application that discovers a
new DDS_Entity of the listed kind, can use this information to add additional
functionality. The DDS_UserDataQosPolicy is changeable and updates of the
Builtin Topic instance must be expected. Note that the Data Distribution Service is
not aware of the real structure of the user data (the Data Distribution System handles
it as an opaque type) and that the application is responsible for correct mapping on
structural types for the specific platform.

3.1.3.23 DDS_WriterDataLifecycleQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_WriterDataLifecycleQosPolicy
 { DDS_boolean autodispose_unregistered_instances; };

Note: The functionality behind this QosPolicy is not yet fully implemented.
Missing features are scheduled for a future release.
95
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the DDS_DataWriter.

Attributes
DDS_boolean autodispose_unregistered_instances - specifies whether

the Data Distribution Service should automatically dispose instances that are
unregistered by this DDS_DataWriter.

Detailed Description
This QosPolicy controls the behaviour of the DDS_DataWriter with regards to
the lifecycle of the data-instances it manages, that is, the data-instances that have
been registered either explicitly using one of the register operations or implicitly
by directly writing the data using the special DDS_HANDLE_NIL parameter. (See
also Section 3.4.2.50, SPACE_FooDataWriter_register_instance, on page 295).
The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the DDS_DataWriter:
• If the DDS_DataWriter unregisters the instance explicitly using either
SPACE_FooDataWriter_unregister_instance or
SPACE_FooDataWriter_unregister_instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

• If the DDS_DataWriter unregisters its instances implicitly because it is deleted
or if a DDS_DataReader detects a loss of liveliness of a connected
DDS_DataWriter, then the auto_dispose_unregistered_instances flag
determines whether the concerned instances are automatically disposed (TRUE) or
not (FALSE).

The default value for the autodispose_unregistered_instances flag is
TRUE. For TRANSIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when a loss of
its liveliness is detected.

3.1.4 DDS_Listener interface
This interface is the abstract base interface for all Listener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of a QosPolicy setting, etc. Each DCPS DDS_Entity
supports its own specialized kind of Listener. Listeners are related to changes
96
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

in communication status. For each DDS_Entity type, one specific Listener is
derived from this interface. In the following modules, the following Listeners are
derived from this interface:
• DDS_DomainParticipantListener
• DDS_TopicListener
• DDS_PublisherListener
• DDS_DataWriterListener
• DDS_SubscriberListener
• DDS_DataReaderListener.
The DDS_Entity type specific Listener interfaces are part of the application
which must implement the interface operations. A user defined class for these
operations must be provided by the application which must extend from the specific
Listener class. All Listener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

Figure 11 DCPS Listeners
The base class DDS_Listener does not contain any operations.

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener
97
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5 Struct DDS_Status
Each concrete DDS_Entity class has a set of DDS_Status attributes and for each
attribute the DDS_Entity class provides an operation to read the value. Changes to
DDS_Status attributes will affect associated DDS_StatusCondition and
(invoked and associated) Listener objects.
The communication statuses whose changes can be communicated to the application
depend on the DDS_Entity. The following table shows the relevant statuses for
each DDS_Entity.

Table 15 Status Description Per DDS_Entity

DDS_Entity Status Name Meaning
DDS_Topic DDS_INCONSISTENT_

TOPIC_STATUS
Another DDS_Topic exists with the same name
but with different characteristics.

DDS_Subscriber DDS_DATA_ON_
READERS_STATUS

New information is available.

DDS_DataReader DDS_SAMPLE_
REJECTED_STATUS

A (received) sample has been rejected.

DDS_LIVELINESS_
CHANGED_STATUS

T h e l i v e l i n e s s o f o n e o r m o r e
DDS_DataWriter objects that were writing
instances read through the DDS_DataReader
has changed. Some DDS_DataWriter have
become “alive” or “not alive”.

DDS_REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataReader was
e x p e c t i n g t h r o u g h i t s
DDS_DeadlineQosPolicy w a s n o t
respected for a specific instance.

DDS_REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DDS_DATA_AVAILABLE_STATUS New information is available.
DDS_SAMPLE_LOST_STATUS A sample has been lost (never received).
DDS_SUBSCRIPTION_
MATCHED_STATUS

Th e DDS_DataReader h a s f o u n d a
DDS_DataWriter t h a t m a t c h e s t h e
DDS_Topic and has compatible QoS.
98
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

A DDS_Status a t t r i b u t e c a n b e r e t r i e v e d w i t h t h e o p e r a t i o n
get_<status_name>_status . F o r e x a m p l e , t o g e t t h e
DDS_InconsistentTopicStatus value, the application must call the operation
DDS_Topic_get_inconsistent_topic_status.
Conceptually associated with each DDS_Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The StatusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.
For the plain communication DDS_Status, the StatusChangedFlag is initially
set to FALSE. It becomes TRUE whenever the plain communication DDS_Status
changes and it is reset to FALSE each time the application accesses the plain
communication DDS_Status via the proper get_<status_name>_status
operation on the DDS_Entity.
A flag set means that a change has occurred since the last time the application has
read its value.

DDS_DataWriter DDS_LIVELINESS_
LOST_STATUS

The liveliness that the DDS_DataWriter
has committed through its
DDS_LivelinessQosPolicy was not
respected; thus DDS_DataReader objects
will consider the DDS_DataWriter as no
longer “alive”.

DDS_OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataWriter has
committed through its
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible
with what was requested.

DDS_PUBLICATION_
MATCHED_STATUS

The DDS_DataWriter has found a
DDS_DataReader that matches the
DDS_Topic and has compatible QoS.

Table 15 Status Description Per DDS_Entity (Continued)

DDS_Entity Status Name Meaning
99
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Figure 12 DCPS DDS_Status Values
Each DDS_Status attribute is implemented as a struct and therefore does not
provide any operations. The interface description of these structs is as follows:

/*
 * struct DDS_<name>Status
 */

struct DDS_InconsistentTopicStatus
 { DDS_long total_count;
 DDS_long total_count_change; };
struct DDS_SampleLostStatus
 { DDS_long total_count;
 DDS_long total_count_change; };
enum DDS_SampleRejectedStatusKind
 { DDS_NOT_REJECTED,
 DDS_REJECTED_BY_INSTANCES_LIMIT,
 DDS_REJECTED_BY_SAMPLES_LIMIT,
 DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT };
struct DDS_SampleRejectedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_SampleRejectedStatusKind last_reason;
 DDS_InstanceHandle_t last_instance_handle; };
struct DDS_LivelinessLostStatus
 { DDS_long total_count;

Status

SampleLostStatus

total_count : long
total_count_change : long

InconsistentTopicStatus

total_count : long
total_count_change : long

SampleRejectedStatus

total_count : long
total_count_change : long
last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

PublicationMatchStatus

total_count : long
total_count_change : long
last_subscription_handle : InstanceHandle_t

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

OfferedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

SubscriptionMatchStatus

total_count : long
total_count_change : long
last_publication_handle : InstanceHandle_t

LivelinessLostStatus

total_count
total_count_change

OfferedIncompatibleQosStatus

total_count
total_count_change
last_policy_id
policies [*]

RequestedIncompatibeQosStatus

total_count
total_count_change
last_policy_id
policies [*]

QosPolicyCount

policy_id
count
100
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 DDS_long total_count_change; };
struct DDS_LivelinessChangedStatus
 { DDS_long alive_count;
 DDS_long not_alive_count;
 DDS_long alive_count_change;
 DDS_long not_alive_count_change;
 DDS_InstanceHandle_t last_publication_handle; };
struct DDS_OfferedDeadlineMissedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_instance_handle; };
struct DDS_RequestedDeadlineMissedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_instance_handle; };
struct DDS_OfferedIncompatibleQosStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_QosPolicyId_t last_policy_id;
 DDS_QosPolicyCountSeq policies; };
struct DDS_RequestedIncompatibleQosStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_QosPolicyId_t last_policy_id;
 DDS_QosPolicyCountSeq policies; };
struct DDS_PublicationMatchedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_long current_count;
 DDS_long current_count_change;
 DDS_InstanceHandle_t last_subscription_handle; };
struct DDS_SubscriptionMatchedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_long current_count;
 DDS_long current_count_change;
 DDS_InstanceHandle_t last_publication_handle; };

/*
 * implemented API operations
 * <no operations>
 */

The sections describe the usage of each DDS_<name>Status struct.

3.1.5.1 DDS_InconsistentTopicStatus

Synopsis
#include <dds_dcps.h>
struct DDS_InconsistentTopicStatus

 { DDS_long total_count;
101
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 DDS_long total_count_change; };

Description
This struct contains the statistics about attempts to create other DDS_Topics with
the same name but with different characteristics.

Attributes
DDS_long total_count - the total detected cumulative count of DDS_Topic

creations, whose name matches the DDS_Topic to which this DDS_Status is
attached and whose characteristics are inconsistent.

DDS_long total_count_change - the change in total_count since the last
time the Listener was called or the DDS_Status was read.

Detailed Description
This struct contains the statistics about attempts to create other DDS_Topics with
the same name but with different characteristics.
The attribute total_count holds the total cumulative count of DDS_Topic
creations, whose name matches the DDS_Topic to which this DDS_Status is
attached and whose characteristics are inconsistent.
The attribute total_count_change holds the incremental number of inconsistent
DDS_Topics, since the last time the Listener was called or the DDS_Status was
read.

3.1.5.2 DDS_LivelinessChangedStatus

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessChangedStatus

 { DDS_long alive_count;
 DDS_long not_alive_count;
 DDS_long alive_count_change;
 DDS_long not_alive_count_change;
 DDS_InstanceHandle_t last_publication_handle; };

Description
This struct contains the statistics about whether the liveliness of one or more
connected DDS_DataWriter objects has changed.

Attributes
DDS_long alive_count - the total count of currently alive DDS_DataWriter

objects that write the topic read by the DDS_DataReader to which this
DDS_Status is attached.
102
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_long not_alive_count - the total count of currently not alive
DDS_DataWriter objects that wrote the topic read by the DDS_DataReader
to which this DDS_Status is attached.

DDS_long alive_count_change - the change in alive_count since the last
time the Listener was called or the DDS_Status was read.

DDS_long not_alive_count_change - the change in not_alive_count
since the last time the Listener was called or the DDS_Status was read.

DDS_InstanceHandle_t last_publication_handle - handle to the last
DDS_DataWriter whose change in liveliness caused this status to change.

Detailed Description
This struct contains the statistics about whether the liveliness of one or more
connected DDS_DataWriter objects that were writing instances read through the
DDS_DataReader has changed. In other words, some DDS_DataWriters have
become “alive” or “not alive”.
The attribute alive_count holds the total number of currently alive
DDS_DataWriter objects that write the topic read by the DDS_DataReader to
which this DDS_Status is attached. This count increases when a newly matched
DDS_DataWriter asser ts i t s l ivel iness for the f i rs t t ime or when a
DDS_DataWriter previously considered to be not alive reasserts its liveliness. The
count decreases when a DDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive, whether because it was deleted normally or for
some other reason.
The attribute not_alive_count holds the total count of currently not alive
DDS_DataWriters that wrote the topic read by the DDS_DataReader to which
this DDS_Status is attached, and that are no longer asserting their liveliness. This
count increases when a DDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive for some reason other than the normal deletion of
that DDS_DataWriter. It decreases when a previously not alive DDS_DataWriter
either reasserts its liveliness or is deleted normally.
The attribute alive_count_change holds the change in alive_count since the
last time the Listener was called or the DDS_Status was read.
T h e a t t r i b u t e not_alive_count_change h o l d s t h e c h a n g e i n
not_alive_count since the last time the Listener was called or the
DDS_Status was read.
The attribute last_publication_handle contains the instance handle to the
DDS_PublicationBuiltinTopicData instance that represents the last
datawriter whose change in liveliness caused this status to change. Be aware that
t h i s h a n d l e b e l o n g s t o an o th er d a t a r e a d e r, t h e
103
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_PublicationBuiltinTopicDataDataReader in the builtin-subscriber,
and has no meaning in the context of the datareader from which the
DDS_LivelinessChangedStatus was obtained. If the builtin-subscriber has not
e x p l i c i t l y b e e n o b t a i n e d u s i n g
DDS_DomainParticipant_get_builtin_subscriber, then there is no
DDS_PublicationBuiltinTopicDataDataReader as well, in which case the
last_publication_handle will be set to DDS_HANDLE_NIL.

3.1.5.3 DDS_LivelinessLostStatus

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessLostStatus

 { DDS_long total_count;
 DDS_long total_count_change; };

Description
This struct contains the statist ics about whether the l iveliness of the
DDS_DataWriter to which this DDS_Status is attached has been committed
through its DDS_LivelinessQosPolicy.

Attributes
DDS_long total_count - the tota l cumulat ive count of t imes the

DDS_DataWriter to which this DDS_Status is attached failed to actively
signal its liveliness within the offered liveliness period.

DDS_long total_count_change - the change in total_count since the last
time the Listener was called or the DDS_Status was read.

Detailed Description
This struct contains the statist ics about whether the l iveliness of the
DDS_DataWriter to which this DDS_Status is attached has been committed
through its DDS_LivelinessQosPolicy. In other words, whether the
DDS_DataWriter failed to actively signal its liveliness within the offered
liveliness period. In such a case, the connected DDS_DataReader objects will
consider the DDS_DataWriter as no longer “alive”.
The attribute total_count holds the total cumulative number of times that the
previously-alive DDS_DataWriter became not alive due to a failure to actively
signal its liveliness within its offered liveliness period. This count does not change
when an already not alive DDS_DataWriter simply remains not alive for another
liveliness period.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
104
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5.4 DDS_OfferedDeadlineMissedStatus

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedDeadlineMissedStatus

 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which this DDS_Status is attached has committed through
its DDS_DeadlineQosPolicy, was not respected for a specific instance.

Attributes
DDS_long total_count - the tota l cumulat ive count of t imes the

DDS_DataWriter to which this DDS_Status is attached failed to write within
its offered deadline.

DDS_long total_count_change - the change in total_count since the last
time the Listener was called or the DDS_Status was read.

DDS_InstanceHandle_t last_instance_handle - the handle to the last
instance in the DDS_DataWriter to which this DDS_Status is attached, for
which an offered deadline was missed.

Detailed Description
This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which this DDS_Status is attached has committed through
its DDS_DeadlineQosPolicy, was not respected for a specific instance.
The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the DDS_DataWriter to which this DDS_Status is
attached failed to provide data. Missed deadlines accumulate; that is, each deadline
period the total_count will be incremented by one.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataWriter to which this DDS_Status is attached, for which an offered
deadline was missed.
105
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5.5 DDS_OfferedIncompatibleQosStatus

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedIncompatibleQosStatus

 { DDS_long total_count;
 DDS_long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies; };

Description
This struct contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.

Attributes
DDS_long total_count - the total cumulative count of DDS_DataReader

objects discovered by the DDS_DataWriter with the same DDS_Topic and
Partition and with a requested DDS_DataReaderQos that was incompatible
with the one offered by the DDS_DataWriter.

DDS_long total_count_change - the change in total_count since the last
time the Listener was called or the DDS_Status was read.

QosPolicyId_t last_policy_id - the id of one of the QosPolicy settings
that was found to be incompatible with what was offered, the last time an
incompatibility was detected.

QosPolicyCountSeq policies - a list containing for each QosPolicy the total
number of times that the concerned DDS_DataWriter discovered a
DDS_DataReader f o r t he s a me DDS_Topic a nd a r eques t e d
DDS_DataReaderQos that is incompatible with the one offered by the
DDS_DataWriter.

Detailed Description
This struct contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DDS_DataWriter and the DDS_DataReader. If the QosPolicy settings

between DDS_DataWriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDS_DataWriter
will be informed via a DDS_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS status change.
106
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• the DDS_DataWriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between DDS_DataWriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the DDS_DataWriter will not be
maintained by the service and as a consequence will not be available for late
joining DDS_DataReaders. The QosPolicy of the Durability Service in the role
of DDS_DataReader is specified by the DDS_DurabilityServiceQosPolicy
in the DDS_Topic.

• the Durability Service (as a built-in DDS_DataWriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
late joining DDS_DataReaders. The QosPolicy of the Durability Service in the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy in the DDS_Topic.

The attribute total_count holds the total cumulative count of DDS_DataReader
objects discovered by the DDS_DataWriter with the same DDS_Topic and a
requested DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_policy_id holds the id of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last t ime an
incompatibility was detected.
The attribute policies holds a list containing for each QosPolicy the total
number of times that the concerned DDS_DataWriter discovered an incompatible
DDS_DataReader for the same DDS_Topic. Each element in the list represents a
counter for a different QosPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constants in the
API. See , for an overview of all these constants.

Table 16 Overview of All Named QosPolicy Indexes

Index Name Index Value
DDS_INVALID_QOS_POLICY_ID 0

DDS_USERDATA_QOS_POLICY_ID 1

DDS_DURABILITY_QOS_POLICY_ID 2

DDS_PRESENTATION_QOS_POLICY_ID 3

DDS_DEADLINE_QOS_POLICY_ID 4
107
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5.6 DDS_PublicationMatchedStatus

Synopsis
#include <dds_dcps.h>
struct DDS_PublicationMatchedStatus

 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_long current_count;
 DDS_long current_count_change;
 DDS_InstanceHandle_t last_subscription_handle; };

Description
The functionality behind the DDS_PublicationMatchedStatus is not yet
implemented. It is scheduled for a future release.

DDS_LATENCYBUDGET_QOS_POLICY_ID 5

DDS_OWNERSHIP_QOS_POLICY_ID 6

DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ID 7

DDS_LIVELINESS_QOS_POLICY_ID 8

DDS_TIMEBASEDFILTER_QOS_POLICY_ID 9

DDS_PARTITION_QOS_POLICY_ID 10

DDS_RELIABILITY_QOS_POLICY_ID 11

DDS_DESTINATIONORDER_QOS_POLICY_ID 12

DDS_HISTORY_QOS_POLICY_ID 13

DDS_RESOURCELIMITS_QOS_POLICY_ID 14

DDS_ENTITYFACTORY_QOS_POLICY_ID 15

DDS_WRITERDATALIFECYCLE_QOS_POLICY_ID 16

DDS_READERDATALIFECYCLE_QOS_POLICY_ID 17

DDS_TOPICDATA_QOS_POLICY_ID 18

DDS_GROUPDATA_QOS_POLICY_ID 19

DDS_TRANSPORTPRIORITY_QOS_POLICY_ID 20

DDS_LIFESPAN_QOS_POLICY_ID 21

DDS_DURABILITYSERVICE_QOS_POLICY_ID 22

Table 16 Overview of All Named QosPolicy Indexes

Index Name Index Value
108
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5.7 DDS_RequestedDeadlineMissedStatus

Synopsis
#include <dds_dcps.h>
struct DDS_RequestedDeadlineMissedStatus

 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about whether the deadline that the
DDS_DataReader to which this DDS_Status is attached was expecting through its
DDS_DeadlineQosPolicy, was not respected for a specific instance.

Attributes
DDS_long total_count - the total cumulative count of the missed deadlines

detected for any instance read by the DDS_DataReader to which this
DDS_Status is attached.

DDS_long total_count_change - the change in total_count since the last
time the Listener was called or the DDS_Status was read.

DDS_InstanceHandle_t last_instance_handle - the handle to the last
instance in the DDS_DataReader to which this DDS_Status is attached for
which a missed deadline was detected.

Detailed Description
This struct contains the statistics about whether the deadline that the
DDS_DataReader to which this DDS_Status is attached was expecting through its
DDS_DeadlineQosPolicy, was not respected for a specific instance. Missed
deadlines accumulate, that is, each deadline period the total_count will be
incremented by one for each instance for which data was not received.
The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the DDS_DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataReader for which a missed deadline was detected.

3.1.5.8 DDS_RequestedIncompatibleQosStatus

Synopsis
#include <dds_dcps.h>
109
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

struct DDS_RequestedIncompatibleQosStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies; };

Description
This struct contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.

Attributes
DDS_long total_count - holds the total cumulative count of DDS_DataWriter

objects, discovered by the DDS_DataReader to which this DDS_Status is
attached, with the same DDS_Topic and an offered DDS_DataWriterQos that
was incompatible with the one requested by the DDS_DataReader.

DDS_long total_count_change - holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.

QosPolicyId_t last_policy_id - holds the DDS_<name>_QOS_POLICY_ID
of one of the QosPolicies that was found to be incompatible with what was
requested, the last time an incompatibility was detected.

QosPolicyCountSeq policies - a list containing (for each QosPolicy) the
total number of times that the concerned DDS_DataReader discovered a
DDS_DataWriter w i t h t he s ame DDS_Topic a n d a n o ff e r e d
DDS_DataWriterQos that is incompatible with the one requested by the
DDS_DataReader.

Detailed Description
This struct contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DDS_DataWriter and the DDS_DataReader. If the QosPolicy settings

between DDS_DataWriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDS_DataWriter
will be informed via a DDS_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS status change.

• the DDS_DataWriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between DDS_DataWriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the DDS_DataWriter will not be
maintained by the service and as a consequence will not be available for late
110
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

joining DDS_DataReaders. The QosPolicy of the Durability Service in the role
of DDS_DataReader is specified by the DDS_DurabilityServiceQosPolicy
in the DDS_Topic.

• the Durability Service (as a built-in DDS_DataWriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
late joining DDS_DataReaders. The QosPolicy of the Durability Service in the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy in the DDS_Topic.

The attribute total_count holds the total cumulative count of DDS_DataWriter
objects discovered by the DDS_DataReader with the same DDS_Topic and an
offered DDS_DataWriterQos that was incompatible with the one requested by the
DDS_DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_policy_id holds the DDS_<name>_QOS_POLICY_ID of one
of the QosPolicies that was found to be incompatible with what was requested,
the last time an incompatibility was detected.
The attribute policies holds a list containing for each QosPolicy: the total
number of times that the concerned DDS_DataReader discovered an incompatible
DDS_DataWriter for the same DDS_Topic. Each element in the list represents a
counter for a different QosPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constants in the
API. See Table 16, Overview of All Named QosPolicy Indexes, on page 107 for an
overview of all these constants.

3.1.5.9 DDS_SampleLostStatus

Synopsis
#include <dds_dcps.h>
struct DDS_SampleLostStatus

 { DDS_long total_count;
 DDS_long total_count_change; };

Description
This struct contains the statistics about whether a sample has been lost (never
received).
111
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
DDS_long total_count - holds the total cumulative count of all samples lost

across all instances of data published under the DDS_Topic.
DDS_long total_count_change - holds the change in total_count since the

last time the Listener was called or the DDS_Status was read.

Detailed Description
This struct contains the statistics about whether a sample has been lost (never
received). The status is independent of the differences in instances, in other words, it
includes all samples lost across all instances of data published under the
DDS_Topic.
total_count holds the total cumulative count of all samples lost across all
instances of data published under the DDS_Topic.
total_count_change holds the change in total_count since the last time the
Listener was called or the DDS_Status was read.

3.1.5.10 DDS_SampleRejectedStatus

Synopsis
#include <dds_dcps.h>

enum DDS_SampleRejectedStatusKind
 { DDS_NOT_REJECTED,
 DDS_REJECTED_BY_INSTANCES_LIMIT,
 DDS_REJECTED_BY_SAMPLES_LIMIT,
 DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT };

struct DDS_SampleRejectedStatus
 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_SampleRejectedStatusKind last_reason;
 DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about samples that have been rejected.

Attributes
DDS_long total_count - holds the total cumulative count of samples rejected by

the DDS_DataReader to which this DDS_Status is attached.
DDS_long total_count_change - holds the change in total_count since the

last time the Listener was called or the DDS_Status was read.
DDS_SampleRejectedStatusKind last_reason - holds the reason for

rejecting the last sample.

112
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_InstanceHandle_t last_instance_handle - holds the handle to the
instance which would have updated by the last sample that was rejected.

Detailed Description
This struct contains the statistics about whether a received sample has been rejected.
The attribute total_count holds the total cumulative count of samples rejected by
the DDS_DataReader to which this DDS_Status is attached.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_reason holds the reason for rejecting the last sample. The
attribute can have the following values:
• DDS_NOT_REJECTED - no sample has been rejected yet.
• DDS_REJECTED_BY_INSTANCES_LIMIT - the sample was rejected because it

would exceed the maximum number of instances set by the
DDS_ResourceLimitsQosPolicy.

• DDS_REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it
would exceed the maximum number of samples set by the
DDS_ResourceLimitsQosPolicy.

• DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was
rejected because it would exceed the maximum number of samples per instance
set by the DDS_ResourceLimitsQosPolicy.

The attribute last_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

3.1.5.11 DDS_SubscriptionMatchedStatus

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriptionMatchedStatus

 { DDS_long total_count;
 DDS_long total_count_change;
 DDS_long current_count;
 DDS_long current_count_change;
 DDS_InstanceHandle_t last_publication_handle; };

Description
The functionality behind the DDS_SubscriptionMatchedStatus is not yet
implemented. It is scheduled for a future release.
113
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.6 Class DDS_WaitSet
A DDS_WaitSet object allows an application to wait until one or more of the
attached DDS_Condition objects evaluates to TRUE or until the timeout expires.
The DDS_WaitSet has no factory and must be created by the application. It is
directly created as an object by using DDS_WaitSet constructors.

Figure 13 DCPS DDS_WaitSets
The interface description of this class is as follows:

/*
 * interface DDS_WaitSet
 */
/*
 * implemented API operations
 */

DDS_WaitSet
 DDS_WaitSet__alloc
 (void);
DDS_ReturnCode_t
 DDS_WaitSet_wait
 (DDS_WaitSet _this,

 DDS_ConditionSeq *active_conditions,
 const DDS_Duration_t *timeout);

DDS_ReturnCode_t
 DDS_WaitSet_attach_condition
 (DDS_WaitSet _this,

 const DDS_Condition cond);
DDS_ReturnCode_t
 DDS_WaitSet_detach_condition
 (DDS_WaitSet _this,

 const DDS_Condition cond);
DDS_ReturnCode_t
 DDS_WaitSet_get_conditions
 (DDS_WaitSet _this,

 DDS_ConditionSeq *attached_conditions);

The following sections describe the usage of all DDS_WaitSet operations.

3.1.6.1 DDS_WaitSet__alloc

Synopsis
#include <dds_dcps.h>

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
114
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_WaitSet
 DDS_WaitSet__alloc
 (void);

Description
This operation creates a new DDS_WaitSet.

Parameters
<none>

Return Value
DDS_WaitSet - handle to the newly created DDS_WaitSet. In case of an error, a

DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a new DDS_WaitSet. The DDS_WaitSet must be created
using this operation. In other words, the application is not allowed to declare an
object of type DDS_WaitSet. When the application wants to release the
DDS_WaitSet it must be released using DDS_free.
In case there are insufficient resources available to allocate the DDS_WaitSet, a
DDS_OBJECT_NIL pointer is returned instead.

3.1.6.2 DDS_WaitSet_attach_condition

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_WaitSet_attach_condition
 (DDS_WaitSet _this,
 const DDS_Condition cond);

Description
This operation attaches a DDS_Condition to the DDS_WaitSet.

Parameters
in DDS_WaitSet _this - the DDS_WaitSet object on which the operation is

operated.
in const DDS_Condition cond - a pointer to a DDS_Condition.
115
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER or DDS_RETCODE_OUT_OF_
RESOURCES.

Detailed Description
This operation attaches a DDS_Condition to the DDS_WaitSet. The parameter
cond must be either a DDS_ReadCondition , DDS_QueryCondition ,
DDS_StatusCondition or DDS_GuardCondition. To get this parameter see:
• DDS_ReadCondition created by

 DDS_DataReader_create_readcondition
• DDS_QueryCondition created by

 DDS_DataReader_create_querycondition
• DDS_StatusCondition retrieved by

 DDS_<Entity>_get_statuscondition on an DDS_<Entity>
• DDS_GuardCondition created by the C operation

 DDS_GuardCondition__alloc.
When a DDS_GuardCondition is initially created, the trigger_value is FALSE.
When a DDS_Condition, whose trigger_value evaluates to TRUE, is attached
t o a DDS_WaitSet t h a t i s c u r r e n t l y b e i n g w a i t e d on (u s in g t h e
DDS_WaitSet_wait operation), the DDS_WaitSet will unblock immediately.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Condition is attached to the DDS_WaitSet.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter cond is not a valid
DDS_Condition.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.1.6.3 DDS_WaitSet_detach_condition

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
116
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 DDS_WaitSet_detach_condition
 (DDS_WaitSet _this,
 const DDS_Condition cond)

Description
This operation detaches a DDS_Condition from the DDS_WaitSet.

Parameters
in DDS_WaitSet _this - the DDS_WaitSet object on which the operation is

operated.
in const DDS_Condition cond - a pointer to a DDS_Condition in the

DDS_WaitSet.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation detaches a DDS_Condition from the DDS_WaitSet. If the
DDS_Condition was not attached to this DDS_WaitSet, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Condition is detached from the DDS_WaitSet.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter cond is not a valid
DDS_Condition.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the DDS_Condition was not
attached to this DDS_WaitSet.
117
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.6.4 DDS_WaitSet_get_conditions

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_WaitSet_get_conditions
 (DDS_WaitSet _this,
 DDS_ConditionSeq *attached_conditions);

Description
This operation retrieves the list of attached conditions.

Parameters
in DDS_WaitSet _this - the DDS_WaitSet object on which the operation is

operated.
inout DDS_ConditionSeq *attached_conditions - the inout parameter

attached_conditions is a sequence, which is used to pass the list of
attached conditions.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation retrieves the list of attached conditions in the DDS_WaitSet. The
parameter attached_conditions is a pointer to a sequence which afterwards
will point to the sequence of attached conditions. The attached_conditions
sequence and its buffer may be pre-allocated by the application and therefore must
e i t h e r b e r e - u s ed i n a s u b s e q uen t i nv oc a t i o n o f t h e
DDS_WaitSet_get_conditions operation or be released by calling DDS_free
on the returned attached_conditions. If the pre-allocated sequence is not big
enough to hold the number of attached DDS_Conditions, the sequence will
automatically be (re-)allocated to fit the required size. The resulting sequence will
either be an empty sequence, meaning there were no conditions attached, or will
con t a in a l i s t o f DDS_ReadCondition , DDS_QueryCondition ,
DDS_StatusCondition and DDS_GuardCondition. These conditions
previously have been attached by DDS_WaitSet_attach_condition and were
created by there respective create operation:
• DDS_ReadCondition created by

 DDS_DataReader_create_readcondition
118
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• DDS_QueryCondition created by
 DDS_DataReader_create_querycondition

• DDS_StatusCondition retrieved by
 DDS_<Entity>_get_statuscondition on an DDS_<Entity>

• DDS_GuardCondition created by the C operation
 DDS_GuardCondition__alloc.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the list of attached conditions is returned
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.1.6.5 DDS_WaitSet_wait

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_WaitSet_wait
 (DDS_WaitSet _this,
 DDS_ConditionSeq *active_conditions,
 const DDS_Duration_t *timeout)

Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to the DDS_WaitSet.

Parameters
in DDS_WaitSet _this - the DDS_WaitSet object on which the operation is

operated.
inout DDS_ConditionSeq *active_conditions - a sequence which is used

to pass the list of all the attached conditions that have a trigger_value of
TRUE.

in const DDS_Duration_t *timeout - the maximum duration to block for
the DDS_WaitSet_wait, after which the application thread is unblocked. The
special constant DDS_DURATION_INFINITE can be used when the maximum
waiting time does not need to be bounded.
119
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_TIMEOUT
or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluate to TRUE that is attached to the DDS_WaitSet. If all
of the conditions attached to the DDS_WaitSet have a trigger_value of FALSE,
the DDS_WaitSet_wait operation will block the calling thread. The result of the
operation is the continuation of the application thread after which the result is left in
active_conditions. This is a sequence, which will contain the list of all the
a t t a c h e d c o n d i t i o n s t h a t h a v e a trigger_value o f TRUE . T h e
active_conditions sequence and its buffer may be pre-allocated by the
application and therefore must either be re-used in a subsequent invocation of the
DDS_WaitSet_wait operation or be released by calling DDS_free on the returned
active_conditions. If the pre-allocated sequence is not big enough to hold the
number of triggered DDS_Conditions, the sequence will automatically be
(re-)allocated to fit the required size. The parameter timeout specifies the
maximum duration for the DDS_WaitSet_wait to block the calling application
thread (when none of the attached conditions has a trigger_value of TRUE). In
tha t c a se t he r e tu rn va lue i s DDS_RETCODE_TIMEOUT a n d t h e
active_conditions sequence is left empty. Since it is not allowed for more than
one application thread to be waiting on the same DDS_WaitSet, the operation
returns immediately with the value DDS_RETCODE_PRECONDITION_NOT_MET
when the DDS_WaitSet_wait operation is invoked on a DDS_WaitSet which
already has an application thread blocking on it.

Return Code
When the operation returns:
• DDS_RETCODE_OK - at least one of the attached conditions has a
trigger_value of TRUE.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming TRUE.
120
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• DDS_RETCODE_PRECONDITION_NOT_MET - the DDS_WaitSet already has an
application thread blocking on it.

3.1.7 Class DDS_Condition
This class is the base class for all the conditions that may be attached to a
DDS_WaitSet. This base class is specialized in three classes by the Data
Distribution Service: DDS_GuardCondition, DDS_StatusCondition and
DDS_ReadCondition (also there is a DDS_QueryCondition which is a
specialized DDS_ReadCondition).
Each DDS_Condition has a trigger_value that can be TRUE or FALSE and is
set by the Data Distribution Service (except a DDS_GuardCondition) depending
on the evaluation of the DDS_Condition.

Figure 14 DCPS DDS_Conditions
The interface description of this class is as follows:
 /*

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
121
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 * interface DDS_Condition
 */
 /*
 * implemented API operations
 */

DDS_boolean
 DDS_Condition_get_trigger_value
 (DDS_Condition _this);

The next paragraph describes the usage of the DDS_Condition operation.

3.1.7.1 DDS_Condition_get_trigger_value

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_Condition_get_trigger_value
 (DDS_Condition _this);

Description
This operation returns the trigger_value of the DDS_Condition.

Parameters
in DDS_Condition _this - the DDS_Condition object on which the

operation is operated.

Return Value
DDS_boolean - the trigger_value.

Detailed Description
A DDS_Condition has a trigger_value that can be TRUE or FALSE and is set
by the Data Distribution Service (except a DDS_GuardCondition). This operation
returns the trigger_value of the DDS_Condition.

3.1.8 Class DDS_GuardCondition
A DDS_GuardCondition object is a specific DDS_Condition whose
trigger_value is completely under the control of the application. The
DDS_GuardCondition has no factory and must be created by the application. The
DDS_GuardCondition is direct ly created as an object by using the
DDS_GuardCondition constructor. When a DDS_GuardCondition is initially
c r e a t e d , t h e trigger_value i s FALSE . Th e p u rp ose o f t h e
DDS_GuardCondition is to provide the means for an application to manually
122
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

w a k e u p a DDS_WaitSet . Th i s i s a c c o m p l i s h e d b y a t t a c h in g t h e
DDS_GuardCondition to the Waitset and setting the trigger_value by
means of the DDS_GuardCondition_set_trigger_value operation.
The interface description of this class is as follows:

/*
 * interface DDS_GuardCondition
 */
/*
 * inherited from DDS_Condition
 */
/* DDS_boolean
 * DDS_GuardCondition_get_trigger_value
 * (DDS_GuardCondition _this);
 */
/*
 * implemented API operations
 */

DDS_GuardCondition
 DDS_GuardCondition__alloc
 (void);
DDS_ReturnCode_t
 DDS_GuardCondition_set_trigger_value
 (DDS_GuardCondition _this,
 const DDS_boolean value);

The following sections describe the usage of all DDS_GuardCondition
operations.
The inherited operation is listed but not fully described since it is not implemented
in this class. The full description of this operation is given in the class from which it
is inherited. This is described in their respective paragraph.

3.1.8.1 DDS_GuardCondition__alloc

Synopsis
#include <dds_dcps.h>
DDS_GuardCondition
 DDS_GuardCondition__alloc
 (void);

Description
This operation creates a new DDS_GuardCondition.

Parameters
<none>
123
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_GuardCondition - Return value is the handle to the newly created

DDS_GuardCondition. In case of an error, a DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation creates a new DDS_GuardCondition. The DDS_GuardCondition
must be created using this operation. In other words, the application is not allowed
to declare an object of type DDS_GuardCondition. When the application wants to
release the DDS_GuardCondition it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_GuardCondition, a DDS_OBJECT_NIL pointer is returned instead.

3.1.8.2 DDS_GuardCondition_get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_GuardCondition_get_trigger_value
 (DDS_GuardCondition _this);

3.1.8.3 DDS_GuardCondition_set_trigger_value

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_GuardCondition_set_trigger_value
 (DDS_GuardCondition _this,
 const DDS_boolean value);

Description
This operation sets the trigger_value of the DDS_GuardCondition.

Parameters
in DDS_GuardCondition _this - the DDS_GuardCondition object on

which the operation is operated.
in const DDS_boolean value - the boolean value to which the

DDS_GuardCondition is set.
124
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK , DDS_RETCODE_ERROR o r DDS_RETCODE_
ILLEGAL_OPERATION.

Detailed Description
A DDS_GuardCondition object is a specific DDS_Condition which
trigger_value is completely under the control of the application. This operation
must be used by the application to manually wake-up a DDS_WaitSet. This
operation sets the trigger_value of the DDS_GuardCondition to the parameter
value . T h e DDS_GuardCondition i s d i r e c t l y c r e a t e d u s i n g t h e
DDS_GuardCondition constructor. When a DDS_GuardCondition is initially
created, the trigger_value is FALSE.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the specified trigger_value has successfully been applied
• DDS_RETCODE_ERROR - an internal error has occurred
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object

3.1.9 Class DDS_StatusCondition
DDS_Entity ob j ec t s t ha t have s t a tu s a t t r i bu t e s a l so ha ve a
DDS_StatusCondition , access is provided to the application by the
DDS_<Entity>_get_statuscondition operation.
The communication statuses whose changes can be communicated to the application
depend on the DDS_Entity. The following table shows the relevant statuses for
each DDS_Entity.

Table 17 Status Per DDS_Entity

DDS_Entity Status Name
DDS_Topic DDS_INCONSISTENT_TOPIC_STATUS

DDS_Subscriber DDS_DATA_ON_READERS_STATUS
125
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The trigger_value of the DDS_StatusCondition depends on the
communication statuses of that DDS_Entity (e.g., missed deadline) and also
depends on the value of the DDS_StatusCondition a t t r ibute mask
(enabled_statuses mask). A DDS_StatusCondition can be attached to a
DDS_WaitSet in order to a l low an appl icat ion to suspend unt i l the
trigger_value has become TRUE.
The trigger_value of a DDS_StatusCondition will be TRUE if one of the
enabled StatusChangedFlags is set. That is, trigger_value==FALSE only if
all the values of the StatusChangedFlags are FALSE.
The sensitivity of the DDS_StatusCondition to a particular communication
status is controlled by the list of enabled_statuses set on the condition by
means of the DDS_StatusCondition_set_enabled_statuses operation.
W h e n t h e enabled_statuses a r e n o t c h a ng e d b y t h e
DDS_StatusCondition_set_enabled_statuses operation, all statuses are
enabled by default.
The interface description of this class is as follows:

/*
 * interface DDS_StatusCondition
 */
/*
 * inherited from DDS_Condition
 */
/* DDS_boolean
 * DDS_StatusCondition_get_trigger_value
 * (DDS_StatusCondition _this);
 */

DDS_DataReader DDS_SAMPLE_REJECTED_STATUS

DDS_LIVELINESS_CHANGED_STATUS

DDS_REQUESTED_DEADLINE_MISSED_STATUS

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

DDS_DATA_AVAILABLE_STATUS

DDS_SAMPLE_LOST_STATUS

DDS_SUBSCRIPTION_MATCHED_STATUS

DDS_DataWriter DDS_LIVELINESS_LOST_STATUS

DDS_OFFERED_DEADLINE_MISSED_STATUS

DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

DDS_PUBLICATION_MATCHED_STATUS

Table 17 Status Per DDS_Entity

DDS_Entity Status Name
126
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

/*
 * implemented API operations
 */

DDS_StatusMask
 DDS_StatusCondition_get_enabled_statuses
 (DDS_StatusCondition _this);
DDS_ReturnCode_t
 DDS_StatusCondition_set_enabled_statuses
 (DDS_StatusCondition _this,
 const DDS_StatusMask mask);
DDS_Entity
 DDS_StatusCondition_get_entity
 (DDS_StatusCondition _this);

The next paragraphs describe the usage of all DDS_StatusCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.1.9.1 DDS_StatusCondition_get_enabled_statuses

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_StatusCondition_get_enabled_statuses
 (DDS_StatusCondition _this);

Description
This operation returns the list of enabled communication statuses of the
DDS_StatusCondition.

Parameters
in DDS_StatusCondition _this - the DDS_StatusCondition object on

which the operation is operated.

Return Value
DDS_StatusMask - Result is a bit-mask in which each bit shows which status is

taken into account for the DDS_StatusCondition.

Detailed Description
The trigger_value of the DDS_StatusCondition depends on the
communication status of that DDS_Entity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.
127
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

This operation returns the list of communication statuses that are taken into account
to determine the trigger_value of the DDS_StatusCondition. This operation
r e t u r n s t h e s t a tu s e s t h a t w e r e e x p l i c i t l y s e t on t he l a s t c a l l t o
DDS_StatusCondition_set_enabled_statuses o r, i f
DDS_StatusCondition_set_enabled_statuses was never called, the default
list.
The result value is a bit-mask in which each bit shows which status is taken into
account for the DDS_StatusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type DDS_StatusMask. Not all statuses are
relevant to all DDS_Entity objects. See the respective Listener objects for each
DDS_Entity for more information.

3.1.9.2 DDS_StatusCondition_get_entity

Synopsis
#include <dds_dcps.h>
DDS_Entity
 DDS_StatusCondition_get_entity
 (DDS_StatusCondition _this);

Description
T h i s o p e r a t i o n r e t u r n s t h e DDS_Entity a s s o c i a t e d w i t h t h e
DDS_StatusCondition or the DDS_OBJECT_NIL pointer.

Parameters
in DDS_StatusCondition _this - the DDS_StatusCondition object on

which the operation is operated.
128
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_Entity - a p o i n t e r t o t h e DDS_Entity a s s o c i a t e d w i t h t h e

DDS_StatusCondition or the DDS_OBJECT_NIL pointer.

Detailed Description
T h i s o p e r a t i o n r e t u r n s t h e DDS_Entity a s soc i a t ed w i th t he
DDS_StatusCondition. Note that there is exactly one DDS_Entity associated
with each DDS_StatusCondition. When the DDS_Entity was already deleted
(there is no associated DDS_Entity any more), the DDS_OBJECT_NIL pointer is
returned.

3.1.9.3 DDS_StatusCondition_get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_StatusCondition_get_trigger_value
 (DDS_StatusCondition _this);

3.1.9.4 DDS_StatusCondition_set_enabled_statuses

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_StatusCondition_set_enabled_statuses
 (DDS_StatusCondition _this,
 const DDS_StatusMask mask);

Description
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the DDS_StatusCondition.

Parameters
in DDS_StatusCondition _this - the DDS_StatusCondition object on

which the operation is operated.
in const DDS_StatusMask mask - a bit-mask in which each bit sets the status

which is taken into account for the DDS_StatusCondition.
129
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
DDS_ReturnCode_t - Poss ib le r e tu rn codes o f the ope ra t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION or DDS_RETCODE_ALREADY_DELETED.

Detailed Description
The trigger_value of the DDS_StatusCondition depends on the
communication status of that DDS_Entity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the DDS_StatusCondition. This operation
may change the trigger_value of the DDS_StatusCondition.
DDS_WaitSet objects behaviour depend on the changes of the trigger_value of
their attached DDS_Conditions. Therefore, any DDS_WaitSet to which the
DDS_StatusCondition is attached is potentially affected by this operation.
If this function is not invoked, the default list of enabled_statuses includes all
the statuses.
The parameter mask is a bit-mask in which each bit shows which status is taken into
account for the DDS_StatusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type DDS_StatusMask. Not all statuses are
relevant to all DDS_Entity objects. See the respective Listener objects for each
DDS_Entity for more information.

Return Code
When the operation returns:
130
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OK - the list of communication statuses is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_StatusCondition has already

been deleted.

3.2 Domain Module

Figure 15 DCPS Domain Module’s Class Model
This module contains the following classes:

DDS_DomainParticipant

DDS_DomainParticipantFactory

DDS_DomainParticipantListener (interface).

3.2.1 Class DDS_DomainParticipant
All the DCPS DDS_Entity objects are attached to a DDS_DomainParticipant.
A DDS_DomainParticipant represents the local membership of the application
in a Domain.

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
131
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

A Domain is a distributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
DDS_Publishers and the DDS_Subscribers attached to the same Domain can
interact.
This class implements several functions:
• It acts as a container for all other DDS_Entity objects
• It acts as a factory for the DDS_Publisher, DDS_Subscriber, DDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic objects

• It provides access to the built-in DDS_Topic objects
• It provides information about DDS_Topic objects
• It isolates applications within the same Domain (sharing the same domainId)

from other applications in a different Domain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other

• It provides administration services in the Domain, offering operations, which
allow the application to ignore locally any information about a given
Participant, Publication, Subscription or Topic.

The interface description of this class is as follows:
/*
 * interface DDS_DomainParticipant
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * DDS_DomainParticipant_get_statuscondition
 * (DDS_DomainParticipant _this);
 */
/* DDS_StatusMask
 * DDS_DomainParticipant_get_status_changes
 * (DDS_DomainParticipant _this);
 */
/* DDS_ReturnCode_t
 * DDS_DomainParticipant_enable
 * (DDS_DomainParticipant _this);
 */
/*
 * implemented API operations
 */

DDS_Publisher
 DDS_DomainParticipant_create_publisher
 (DDS_DomainParticipant _this,
 const DDS_PublisherQos *qos,
132
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 const struct DDS_PublisherListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_DomainParticipant_delete_publisher
 (DDS_DomainParticipant _this,
 const DDS_Publisher p);
DDS_Subscriber
 DDS_DomainParticipant_create_subscriber
 (DDS_DomainParticipant _this,
 const DDS_SubscriberQos *qos,

 const struct DDS_SubscriberListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_DomainParticipant_delete_subscriber
 (DDS_DomainParticipant _this,
 const DDS_Subscriber s);
DDS_Subscriber
 DDS_DomainParticipant_get_builtin_subscriber
 (DDS_DomainParticipant _this);
DDS_Topic
 DDS_DomainParticipant_create_topic
 (DDS_DomainParticipant _this,
 const DDS_char *topic_name,

 const DDS_char *type_name,
 const DDS_TopicQos *qos,
 const struct DDS_TopicListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_DomainParticipant_delete_topic
 (DDS_DomainParticipant _this,
 const DDS_Topic a_topic);
DDS_Topic
 DDS_DomainParticipant_find_topic
 (DDS_DomainParticipant _this,
 const DDS_char *topic_name,

 const DDS_Duration_t *timeout);
DDS_TopicDescription
 DDS_DomainParticipant_lookup_topicdescription
 (DDS_DomainParticipant _this,
 const DDS_char *name);
DDS_ContentFilteredTopic
 DDS_DomainParticipant_create_contentfilteredtopic
 (DDS_DomainParticipant _this,
 const DDS_char *name,

 const DDS_Topic related_topic,
 const DDS_char *filter_expression,
 const DDS_StringSeq *expression_parameters);

DDS_ReturnCode_t
 DDS_DomainParticipant_delete_contentfilteredtopic
 (DDS_DomainParticipant _this,
133
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 const DDS_ContentFilteredTopic
 a_contentfilteredtopic);

DDS_MultiTopic
 DDS_DomainParticipant_create_multitopic
 (DDS_DomainParticipant _this,
 const DDS_char *name,

 const DDS_char *type_name,
 const DDS_char *subscription_expression,
 const DDS_StringSeq *expression_parameters);

DDS_ReturnCode_t
 DDS_DomainParticipant_delete_multitopic
 (DDS_DomainParticipant _this,
 const DDS_MultiTopic a_multitopic);
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_contained_entities
 (DDS_DomainParticipant _this);
DDS_ReturnCode_t
 DDS_DomainParticipant_set_qos
 (DDS_DomainParticipant _this,
 const DDS_DomainParticipantQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_qos
 (DDS_DomainParticipant _this,
 DDS_DomainParticipantQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_set_listener
 (DDS_DomainParticipant _this,
 const struct DDS_DomainParticipantListener *a_listener,

 const DDS_StatusMask mask);
struct DDS_DomainParticipantListener
 DDS_DomainParticipant_get_listener
 (DDS_DomainParticipant _this);
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_participant
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_topic
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_publication
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_subscription
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);
DomainId_t
 DDS_DomainParticipant_get_domain_id
134
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 (DDS_DomainParticipant _this);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_participants
 (DDS_DomainParticipant _this,
 DDS_InstanceHandleSeq *participant_handles);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_participant_data
 (DDS_DomainParticipant _this,
 DDS_ParticipantBuiltinTopicData *participant_data,
 DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_topics
 (DDS_DomainParticipant _this,
 DDS_InstanceHandleSeq *topic_handles);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_topic_data
 (DDS_DomainParticipant _this,
 DDS_TopicBuiltinTopicData *topic_data,
 DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 DDS_DomainParticipant_assert_liveliness
 (DDS_DomainParticipant _this);
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_publisher_qos
 (DDS_DomainParticipant _this,
 const DDS_PublisherQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_publisher_qos
 (DDS_DomainParticipant _this,
 DDS_PublisherQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_subscriber_qos
 (DDS_DomainParticipant _this,
 const DDS_SubscriberQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_subscriber_qos
 (DDS_DomainParticipant _this,
 DDS_SubscriberQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_topic_qos
 (DDS_DomainParticipant _this,
 const DDS_TopicQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_topic_qos
 (DDS_DomainParticipant _this,
 DDS_TopicQos *qos);
DDS_boolean
 contains_entity
 (DDS_InstanceHandle_t a_handle);
DDS_ReturnCode_t
135
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 get_current_time
 (DDS_Time_t *current_time);

The following sections describe the usage of all DDS_DomainParticipant
operations. The inherited operations are listed but not fully described because they
are not implemented in this class. The full description of these operations is given in
the classes from which they are inherited.

3.2.1.1 DDS_DomainParticipant_assert_liveliness

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_assert_liveliness
 (DDS_DomainParticipant _this);

Description
This operation asserts the liveliness for the DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_NOT_ENABLED.

Detailed Description
T h i s o p e r a t i o n w i l l m a n u a l l y a s s e r t t h e l i v e l i n e s s f o r t h e
DDS_DomainParticipant. This way, the Data Distribution Service is informed
that the DDS_DomainParticipant is still alive. This operation only needs to be
used when the DDS_DomainParticipant contains DDS_DataWriters with the
DDS_LivelinessQosPolicy s e t t o
DDS_MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, and it will only affect the
liveliness of those DDS_DataWriters.
Writing data via the DDS_DataWriter_write operation of a DDS_DataWriter
w i l l a s s e r t t h e l i v e l i n e s s o n t h e DDS_DataWriter i t s e l f a n d i t s
DDS_DomainParticipant. DDS_DomainParticipant_assert_liveliness
subsequently is only needed when data is not written regularly.
The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy.
136
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the liveliness of this DDS_DomainParticipant has

successfully been asserted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_DomainParticipant is not enabled.

3.2.1.2 DDS_DomainParticipant_contains_entity

Synopsis
#include <dds_dcps.h>
DDS_boolean
 contains_entity
 (DDS_DomainParticipant _this,

 DDS_InstanceHandle_t a_handle);

Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DDS_DomainParticipant or any of its contained entities.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in DDS_InstanceHandle_t a_handle - represents a DDS_Entity in the Data

Distribution System.

Return Value
DDS_boolean - Return value is TRUE if a_handle represents a DDS_Entity

that is created by the DDS_DomainParticipant or any of its contained
DDS_Entites. Otherwise the return value is FALSE.
137
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DDS_DomainParticipant itself (DDS_TopicDescription,
DDS_Publisher or DDS_Subscriber) or created by any of its contained entities
(DDS_DataReader, DDS_ReadCondition , DDS_QueryCondition ,
DDS_DataWriter, etc.).
Return value is TRUE if a_handle represents a DDS_Entity that is created by the
DDS_DomainParticipant or any of its contained DDS_Entites. Otherwise the
return value is FALSE.

3.2.1.3 DDS_DomainParticipant_create_contentfilteredtopic

Synopsis
#include <dds_dcps.h>
DDS_ContentFilteredTopic
 DDS_DomainParticipant_create_contentfilteredtopic
 (DDS_DomainParticipant _this,
 const DDS_char *name,
 const DDS_Topic related_topic,
 const DDS_char *filter_expression,
 const DDS_StringSeq *expression_parameters);

Description
T h i s o p e r a t i o n c r e a t e s a DDS_ContentFilteredTopic f o r a
DDS_DomainParticipant in order to allow DDS_DataReaders to subscribe to a
subset of the topic content.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_char *name - con t a in s t he na me o f t he

DDS_ContentFilteredTopic.
in const DDS_Topic related_topic - the handle to the base DDS_Topic

on which the filtering will be applied. Therefore, a filtered topic is based on an
existing DDS_Topic.

in const DDS_char *filter_expression - holds the SQL expression
(subset of SQL), which defines the filtering.

in const DDS_StringSeq *expression_parameters - the handle to a
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
138
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

referenced %n token in the filter_expression (e.g. if %1 and %8 are used as
parameter in the filter_expression, the expression_parameters
should at least contain n+1 = 9 values).

Return Value
DDS_ContentFilteredTopic - Return value is the handle to the newly created

DDS_ContentFilteredTopic. In case of an error, a nil pointer is returned.

Detailed Description
T h i s o p e r a t i o n c r e a t e s a DDS_ContentFilteredTopic f o r a
DDS_DomainParticipant in order to allow DDS_DataReaders to subscribe to a
subset of the topic content. The base topic, which is being filtered is defined by the
parameter related_topic. The resulting DDS_ContentFilteredTopic only
relates to the samples published under the related_topic, which have been
filtered according to their content. The resulting DDS_ContentFilteredTopic
only exists at the DDS_DataReader side and will never be published. The samples
of the related_topic are filtered according to the SQL expression, which is a
subset of SQL as defined in the parameter filter_expression (see Appendix H,
DCPS Queries and Filters).
The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
pa ra me te r expression_parameters . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest referenced
%n token in the filter_expression (e.g. if %1 and %8 are used as parameter in
the filter_expression, the expression_parameters should at least contain n+1 =
9 values).
The filter_expression is a string that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated DDS_Topics. It is an SQL expression where the WHERE clause gives the
content filter.

3.2.1.4 DDS_DomainParticipant_create_multitopic

Synopsis
#include <dds_dcps.h>
DDS_MultiTopic
 DDS_DomainParticipant_create_multitopic
 (DDS_DomainParticipant _this,
 const DDS_char *name,
 const DDS_char *type_name,
 const DDS_char *subscription_expression,
 const DDS_StringSeq *expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

139

API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation creates a DDS_MultiTopic for a DDS_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_char *name - contains the name of the DDS_MultiTopic.
in const DDS_char *type_name - contains the name of the type of the

DDS_MultiTopic. This type_name must have been registered using
DDS_TypeSupport_register_type prior to calling this operation.

in const DDS_char *subscription_expression - the SQL expression
(subset of SQL), which defines the selection, filtering, combining and
re-arranging of the sample data.

in const DDS_StringSeq *expression_parameters - the handle to a
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression (e.g. if %1 and %8
are used as paramete r in the subscription_expression , the
expression_parameters should at least contain n+1 = 9 values).

Return Value
DDS_MultiTopic - Return value is the handle to the newly created

DDS_MultiTopic. In case of an error, a nil pointer is returned.

Detailed Description
This operation creates a DDS_MultiTopic for a DDS_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics. Before the
DDS_MultiTopic can be created, the type_name of the DDS_MultiTopic must
have been registered prior to calling this operation. Registering is done, using the
DDS_TypeSupport_register_type operation from DDS_TypeSupport. The
list of topics and the logic, which defines the selection, filtering, combining and
re-arranging of the sample data, is defined by the SQL expression, a subset of SQL
defined in subsciption_expression. The subscription_expression may
also contain parameters, which appear as %n tokens in the expression. These
parameters are defined in expression_parameters. The number of values in
expression_parameters must be equal or greater than the highest referenced
140
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

%n token in the subscription_expression (e.g. if %1 and %8 are used as
parameter in the subscription_expression, the expression_parameters
should at least contain n+1 = 9 values).
The subscription_expression is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated DDS_Topics. It is an SQL expression where the
SELECT clause provides the fields to be kept, the FROM part provides the names of
the DDS_Topics that are searched for those fields, and the WHERE clause gives the
content filter. The DDS_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN operation must
be the same.
The DDS_DataReader, which is associated with a DDS_MultiTopic only
accesses information which exist locally in the DDS_DataReader, based on the
DDS_Topics used in the subscription_expression . The ac tual
DDS_MultiTopic will never be produced, only the individual DDS_Topics.

3.2.1.5 DDS_DomainParticipant_create_publisher

Synopsis
#include <dds_dcps.h>
DDS_Publisher
 DDS_DomainParticipant_create_publisher
 (DDS_DomainParticipant _this,
 const DDS_PublisherQos *qos,
 const struct DDS_PublisherListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation creates a DDS_Publisher with the desired QosPolicy settings and
if applicable, attaches the optionally specified DDS_PublisherListener to it.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_PublisherQos *qos - a collection of QosPolicy settings for

the new DDS_Publisher. In case these settings are not self consistent, no
DDS_Publisher is created.

in const struct DDS_PublisherListener *a_listener - a pointer to the
DDS_PublisherListener instance which will be attached to the new
DDS_Publisher. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_PublisherListener whose operations
perform no action.
141
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_PublisherListener for a certain status.

Return Value
DDS_Publisher - Return value is a pointer to the newly created DDS_Publisher.

In case of an error, the DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a DDS_Publisher with the desired QosPolicy settings and
if applicable, attaches the optionally specified DDS_PublisherListener to it.
When the DDS_PublisherListener is not applicable, the DDS_OBJECT_NIL
pointer must be supplied instead. To delete the DDS_Publisher the operation
DDS_DomainParticipant_delete_publisher o r DDS_
DomainParticipant_delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no DDS_Publisher is
created and the DDS_OBJECT_NIL pointer is returned.

Default QoS
The constant DDS_PUBLISHER_QOS_DEFAULT can be used as parameter qos to
create a DDS_Publisher with the default DDS_PublisherQos as set in the
DDS_DomainParticipant. The effect of using DDS_PUBLISHER_QOS_DEFAULT
i s t h e s a m e a s c a l l i n g t h e o p e r a t i o n
DDS_DomainParticipant_get_default_publisher_qos and using the
resulting DDS_PublisherQos to create the DDS_Publisher.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_PublisherListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset.
The following statuses are applicable to the DDS_PublisherListener:
• DDS_OFFERED_DEADLINE_MISSED_STATUS (propagated)
• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_LIVELINESS_LOST_STATUS (propagated)
• DDS_PUBLICATION_MATCHED_STATUS (propagated).
142
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_PublisherListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataWriterListener o f a conta ined DDS_DataWriter, the
DDS_DataWriterListener on that contained DDS_DataWriter is invoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DataWriter only invokes the DDS_PublisherListener if the
contained DDS_DataWriter itself does not handle the trigger event generated by
the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_PublisherListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant is invoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener is also not attached or
the communication status is not activated in its mask, the application is not notified
of the change.

3.2.1.6 DDS_DomainParticipant_create_subscriber

Synopsis
#include <dds_dcps.h>
DDS_Subscriber
 DDS_DomainParticipant_create_subscriber
 (DDS_DomainParticipant _this,
 const DDS_SubscriberQos *qos,
 const struct DDS_SubscriberListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation creates a DDS_Subscriber with the desired QosPolicy settings
and if applicable, attaches the optionally specified DDS_SubscriberListener to
it.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
143
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

in const DDS_SubscriberQos *qos - a collection of QosPolicy settings
for the new DDS_Subscriber. In case these settings are not self consistent, no
DDS_Subscriber is created.

in const struct DDS_SubscriberListener *a_listener - a pointer to
the DDS_SubscriberListener instance which will be attached to the new
DDS_Subscriber. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_SubscriberListener whose operations
perform no action.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_SubscriberListener for a certain status.

Return Value
DDS_Subscriber - Return value is a pointer to the newly created

DDS_Subscriber. In case of an error, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation creates a DDS_Subscriber with the desired QosPolicy settings
and if applicable, attaches the optionally specified DDS_SubscriberListener to
it. When the DDS_SubscriberListener is not applicable, the DDS_OBJECT_NIL
pointer must be supplied instead. To delete the DDS_Subscriber the operation
DDS_DomainParticipant_delete_subscriber o r DDS_
DomainParticipant_delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no DDS_Subscriber
is created and the DDS_OBJECT_NIL pointer is returned.

Default QoS
The constant DDS_SUBSCRIBER_QOS_DEFAULT can be used as parameter qos to
create a DDS_Subscriber with the default DDS_SubscriberQos as set in the
Domainparticipant. The effect of using DDS_SUBSCRIBER_QOS_DEFAULT is
t h e s a m e a s c a l l i n g th e o p e r a t i o n
DDS_DomainParticipant_get_default_subscriber_qos and using the
resulting DDS_SubscriberQos to create the DDS_Subscriber.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_SubscriberListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
144
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset.
The following statuses are applicable to the DDS_SubscriberListener:
• DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_SAMPLE_LOST_STATUS (propagated)
• DDS_SAMPLE_REJECTED_STATUS (propagated)
• DDS_DATA_AVAILABLE_STATUS (propagated)
• DDS_LIVELINESS_CHANGED_STATUS (propagated)
• DDS_SUBSCRIPTION_MATCHED_STATUS (propagated)
• DDS_DATA_ON_READERS_STATUS

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataReaderListener o f a conta ined DDS_DataReader, the
DDS_DataReaderListener on that contained DDS_DataReader is invoked
instead of the DDS_SubscriberListener. This means that a status change on a
contained DDS_DataReader only invokes the DDS_SubscriberListener if the
contained DDS_DataReader itself does not handle the trigger event generated by
the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_SubscriberListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant is invoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Subscriber specific behaviour when
needed. In case the DDS_DomainParticipantListener is also not attached or
the communication status is not activated in its mask, the application is not notified
of the change.
The s t a t u se s DDS_DATA_ON_READERS_STATUS a n d DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses” and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with a get_<status_name>_status operation and they are
145
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will f irst look in an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

3.2.1.7 DDS_DomainParticipant_create_topic

Synopsis
#include <dds_dcps.h>
DDS_Topic
 DDS_DomainParticipant_create_topic
 (DDS_DomainParticipant _this,
 const DDS_char *topic_name,
 const DDS_char *type_name,
 const DDS_TopicQos *qos,
 const struct DDS_TopicListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation creates a pointer to a new or existing DDS_Topic under the given
name, for a specific type, with the desired QosPolicy settings and if applicable,
attaches the optionally specified DDS_TopicListener to it.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_char *topic_name - the name of the DDS_Topic to be created.

A new DDS_Topic will only be created, when no DDS_Topic, with the same
name, is found within the DDS_DomainParticipant.

in const DDS_char *type_name - a local alias of the data type, which must
have been registered before creating the DDS_Topic.

in const DDS_TopicQos *qos - a collection of QosPolicy settings for the
new DDS_Topic. In case these settings are not self consistent, no DDS_Topic
is created.

in const struct DDS_TopicListener *a_listener - a pointer to the
DDS_TopicListener instance which will be attached to the new DDS_Topic.
It is permitted to use DDS_OBJECT_NIL as the value of the listener: this
behaves as a DDS_TopicListener whose operations perform no action.
146
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_TopicListener for a certain status.

Return Value
DDS_Topic - Return value is a pointer to the new or existing DDS_Topic. In case

of an error, the DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a pointer to a new or existing DDS_Topic under the given
name, for a specific type, with the desired QosPolicy settings and if applicable,
attaches the optionally specified DDS_TopicListener to it. When the
DDS_TopicListener is not applicable, the DDS_OBJECT_NIL pointer must be
supplied instead. In case the specified QosPolicy settings are not consistent, no
DDS_Topic is created and the DDS_OBJECT_NIL pointer is returned. To delete the
DDS_Topic the operation DDS_DomainParticipant_delete_topic or
DDS_DomainParticipant_delete_contained_entities must be used.

Default QoS
The constant DDS_TOPIC_QOS_DEFAULT can be used as parameter qos to create a
DDS_Topic w i t h t h e d e f a u l t DDS_TopicQos a s s e t i n t he
DDS_DomainParticipant. The effect of using DDS_TOPIC_QOS_DEFAULT is the
s a m e a s c a l l i n g t h e o p e r a t i o n
DDS_DomainParticipant_get_default_topic_qos and using the resulting
DDS_TopicQos to create the DDS_Topic.
The DDS_Topic is bound to the type type_name. Prior to creating the
DDS_Topic, the type_name must have been registered with the Data Distribution
Service. Registering the type_name is done using the data type specific
DDS_TypeSupport_register_type operation.

Existing DDS_Topic name
B e f o r e c r e a t i n g a n e w DDS_Topic , t h i s o p e r a t i o n p e r f o r m s a
DDS_DomainParticipant_lookup_topicdescription for the specified
topic_name. When a DDS_Topic is found with the same name in the current
domain, the QoS and type_name of the found DDS_Topic are matched against the
parameters qos and type_name. When they are the same, no DDS_Topic is
created but a new proxy of the existing DDS_Topic is returned. When they are not
exactly the same, no DDS_Topic is created and the DDS_OBJECT_NIL pointer is
returned.
147
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

When a DDS_Topic is obtained multiple times, it must also be deleted that same
number of times using DDS_DomainParticipant_delete_topic or calling
DDS_DomainParticipant_delete_contained_entities once to delete all
the proxies.

Local proxy
Since a DDS_Topic is a global concept in the system, access is provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to a locally created proxy. The Data Distribution Service
propagates DDS_Topics and makes remotely created DDS_Topics locally
available through this proxy. For each create, a new proxy is created. Therefore the
DDS_Topic must be deleted the same number of times, as the DDS_Topic was
created with the same topic_name per Domain. In other words, each pointer (local
proxy) must be deleted separately.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DDS_TopicListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the DDS_TopicListener:
• DDS_INCONSISTENT_TOPIC_STATUS
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_TopicListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_TopicListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant is invoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener is also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.
148
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.8 DDS_DomainParticipant_delete_contained_entities

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_contained_entities
 (DDS_DomainParticipant _this);

Description
This operation deletes all the DDS_Entity objects that were created on the
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DDS_Entity objects that were created on the
DDS_DomainParticipant. In other words, it deletes all DDS_Publisher,
DDS_Subscriber, DDS_Topic , DDS_ContentFilteredTopic and
DDS_MultiTopic objects. Prior to deleting each contained DDS_Entity, this
ope ra t i on r e g re s s ive ly c a l l s t h e c o r r e s p o n d i n g
DDS_<Entity>_delete_contained_entities operat ion on each
DDS_Entity (if applicable). In other words, all DDS_Entity objects in the
DDS_Publisher and DDS_Subscriber a re de le ted , inc luding the
DDS_DataWriter and DDS_DataReader. Also the DDS_QueryCondition and
DDS_ReadCondition objects contained by the DDS_DataReader are deleted.

DDS_Topic
Since a DDS_Topic is a global concept in the system, access is provided through a
local proxy. The Data Distribution Service propagates DDS_Topics and makes
remotely created DDS_Topics locally available through this proxy. Such a proxy is
c r e a t e d b y t h e DDS_DomainParticipant_create_topic o r
DDS_DomainParticipant_find_topic operation. When a pointer to the same
DDS_Topic w a s c r e a t e d m u l t i p l e t i m e s (e i t h e r b y
149
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

DDS_DomainParticipant_create_topic o r
DDS_DomainParticipant_find_topic), all pointers (local proxies) are deleted.
With the last proxy, the DDS_Topic itself is also removed from the system.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DDS_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the contained DDS_Entity objects are deleted and the

application may delete the DDS_DomainParticipant.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities

are in a state where they cannot be deleted.

3.2.1.9 DDS_DomainParticipant_delete_contentfilteredtopic

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_contentfilteredtopic
 (DDS_DomainParticipant _this,
 const DDS_ContentFilteredTopic

a_contentfilteredtopic);

Description
This operation deletes a DDS_ContentFilteredTopic.
150
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_ContentFilteredTopic a_contentfilteredtopic - a

pointer to the DDS_ContentFilteredTopic, which is to be deleted.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_ContentFilteredTopic.
The deletion of a DDS_ContentFilteredTopic is not allowed if there are any
ex i s t i n g DDS_DataReader o b j e c t s t h a t a r e u s i n g t h e
DDS_ContentFilteredTopic.
If the DDS_DomainParticipant_delete_contentfilteredtopic operation
is called on a DDS_ContentFilteredTopic with existing DDS_DataReader
objects attached to it, it will return PRECONDITION_NOT_MET.
The DDS_DomainParticipant_delete_contentfilteredtopic operation
must be called on the same DDS_DomainParticipant object used to create the
DDS_ContentFilteredTopic.
If DDS_DomainParticipant_delete_contentfilteredtopic is called on a
different DDS_DomainParticipant the operation will have no effect and it will
return PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_ContentFilteredTopic is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_contentfilteredtopic

is not a valid DDS_ContentFilteredTopic.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
151
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the DDS_ContentFilteredTopic
was created, or the DDS_ContentFilteredTopic is being used by one or more
DDS_DataReader objects.

3.2.1.10 DDS_DomainParticipant_delete_multitopic

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_multitopic
 (DDS_DomainParticipant _this,
 const DDS_MultiTopic a_multitopic);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation deletes a DDS_MultiTopic.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_MultiTopic a_multitopic - a po in te r to the

DDS_MultiTopic, which is to be deleted.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_MultiTopic.
The deletion of a DDS_MultiTopic is not allowed if there are any existing
DDS_DataReader objects that are using the DDS_MultiTopic . If the
DDS_DomainParticipant_delete_multitopic operation is called on a
DDS_MultiTopic with existing DDS_DataReader objects attached to it, it will
return DDS_RETCODE_PRECONDITION_NOT_MET.
152
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

The DDS_DomainParticipant_delete_multitopic operation must be called
on the same DDS_DomainParticipant ob jec t u sed to c rea t e t he
DDS_MultiTopic. If DDS_DomainParticipant_delete_multitopic is
called on a different DDS_DomainParticipant the operation will have no effect
and it will return DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_MultiTopic is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_multitopic is not a valid
DDS_MultiTopic.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the DDS_MultiTopic was created, or
the DDS_MultiTopic is being used by one or more DDS_DataReader objects.

3.2.1.11 DDS_DomainParticipant_delete_publisher

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_publisher
 (DDS_DomainParticipant _this,
 const DDS_Publisher p);

Description
This operation deletes a DDS_Publisher.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_Publisher p - a pointer to the DDS_Publisher, which is to

be deleted.
153
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_Publisher. A DDS_Publisher cannot be deleted
when it has any attached DDS_DataWriter objects. When the operation is called
on a DDS_Publisher with DDS_DataWriter objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the DDS_Publisher was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Publisher is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter p is not a valid
DDS_Publisher.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the DDS_Publisher was created, or
the DDS_Publisher contains one or more DDS_DataWriter objects.

3.2.1.12 DDS_DomainParticipant_delete_subscriber

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_subscriber
 (DDS_DomainParticipant _this,
 const DDS_Subscriber s);
154
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation deletes a DDS_Subscriber.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_Subscriber s - a pointer to the DDS_Subscriber, which is

to be deleted.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_Subscriber. A DDS_Subscriber cannot be deleted
when it has any attached DDS_DataReader objects. When the operation is called
on a DDS_Subscriber with DDS_DataReader objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the DDS_Subscriber was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Subscriber is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter s is not a valid
DDS_Subscriber.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
155
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the DDS_Subscriber was created, or
the DDS_Subscriber contains one or more DDS_DataReader objects.

3.2.1.13 DDS_DomainParticipant_delete_topic

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_delete_topic
 (DDS_DomainParticipant _this,
 const DDS_Topic a_topic);

Description
This operation deletes a DDS_Topic.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.
in const DDS_Topic a_topic - a pointer to the DDS_Topic, which is to be

deleted.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_Topic. A DDS_Topic cannot be deleted when there
are any DDS_DataReader, DDS_DataWriter, DDS_ContentFilteredTopic or
DDS_MultiTopic objects, which are using the DDS_Topic. When the operation is
called on a DDS_Topic pointed to by any of these objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the DDS_Topic was created,
the operation has no effect and returns DDS_RETCODE_PRECONDITION_NOT_MET.

Local Proxy
Since a DDS_Topic is a global concept in the system, access is provided through a
local proxy. In other words, the pointer is actually not a pointer to a DDS_Topic but
to the local proxy. The Data Distribution Service propagates DDS_Topics and
156
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

makes remotely created DDS_Topics locally available through this proxy. Such a
proxy is created by the DDS_DomainParticipant_create_topic or
DDS_DomainParticipant_find_topic operation. This operation will delete the
local proxy. When a pointer to the same DDS_Topic was created multiple times
(e i t h e r b y DDS_DomainParticipant_create_topic o r
DDS_DomainParticipant_find_topic), each pointer (local proxy) must be
deleted separately. When this proxy is the last proxy for this DDS_Topic, the
DDS_Topic itself is also removed from the system. As mentioned, a proxy may
only be deleted when there are no other entities attached to it. However, it is
possible to delete a proxy while there are entities attached to a different proxy.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Topic is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_topic is not a valid
DDS_Topic.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the DDS_Topic was created, or the
DDS_Topic is still pointed to by other objects.

3.2.1.14 DDS_DomainParticipant_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_enable
 (DDS_DomainParticipant _this);

Note: This operation is not yet implemented. It is scheduled for a future release.
157
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.15 DDS_DomainParticipant_find_topic

Synopsis
#include <dds_dcps.h>
DDS_Topic
 DDS_DomainParticipant_find_topic
 (DDS_DomainParticipant _this,
 const DDS_char *topic_name,
 const DDS_Duration_t *timeout);

Description
This operation gives access to an existing (or ready to exist) enabled DDS_Topic,
based on its topic_name.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_char *topic_name - the name of the DDS_Topic that the

application wants access to.
in const DDS_Duration_t *timeout - the maximum duration to block for

the DDS_DomainParticipant_find_topic, after which the application
thread is unblocked. The special constant DDS_DURATION_INFINITE can be
used when the maximum waiting time does not need to be bounded.

Return Value
DDS_Topic - Return value is a pointer to the DDS_Topic found.

Detailed Description
This operation gives access to an existing DDS_Topic, based on its topic_name.
The operation takes as arguments the topic_name of the DDS_Topic and a
timeout.
If a DDS_Topic of the same topic_name already exists, it gives access to this
DDS_Topic. Otherwise it waits (blocks the caller) until another mechanism creates
it. This other mechanism can be another thread, a configuration tool, or some other
Data Distribution Service utility. If after the specified timeout the DDS_Topic can
still not be found, the caller gets unblocked and DDS_HANDLE_NIL is returned.
A DDS_Topic obtained by means of DDS_DomainParticipant_find_topic,
must also be deleted by means of DDS_DomainParticipant_delete_topic so
that the local resources can be released. If a DDS_Topic is obtained multiple times
i t mus t a l s o be de l e t e d t ha t s ame number o f t imes u s ing
158
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

DDS_DomainParticipant_delete_topic o r c a l l i n g
DDS_DomainParticipant_delete_contained_entities once to delete all
the proxies.
A DDS_Topic t h a t i s ob t a in e d b y m e a n s o f
DDS_DomainParticipant_find_topic i n a s p e c i f i c
DDS_DomainParticipant can only be used to create DDS_DataReaders and
DDS_DataWriters in that DDS_DomainParticipant if its corresponding
DDS_TypeSupport has been registered to that same DDS_DomainParticipant.

Local Proxy
Since a DDS_Topic is a global concept in the system, access is provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to a locally created proxy. The Data Distribution Service
propagates DDS_Topics and makes remotely created DDS_Topics locally
available through this proxy. For each time this operation is called, a new proxy is
created. Therefore the DDS_Topic must be deleted the same number of times, as the
DDS_Topic was created with the same topic_name per Domain. In other words,
each pointer (local proxy) must be deleted separately.

3.2.1.16 DDS_DomainParticipant_get_builtin_subscriber

Synopsis
#include <dds_dcps.h>
DDS_Subscriber
 DDS_DomainParticipant_get_builtin_subscriber
 (DDS_DomainParticipant _this);

Description
This operation returns the built-in DDS_Subscriber associated with the
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant

object on which the operation is operated.

Return Value
DDS_Subscriber - Result value is a pointer to the built-in DDS_Subscriber

associated with the DDS_DomainParticipant.
159
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation returns the built-in DDS_Subscriber associated with the
DDS_DomainParticipant. Each DDS_DomainParticipant contains several
built-in DDS_Topic objects. The built-in DDS_Subscriber contains the
corresponding DDS_DataReader ob jec ts to access them. Al l these
DDS_DataReader objects belong to a single built-in DDS_Subscriber. Note that
there is exactly one buil t - in DDS_Subscriber associated with each
DDS_DomainParticipant.

3.2.1.17 DDS_DomainParticipant_get_current_time

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 get_current_time
 (DDS_DomainParticipant _this,
 DDS_Time_t *current_time);

Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
inout DDS_Time_t *current_time - the value of the current time as used by

the Data Distribution System. The input value of current_time is ignored.

Return Value
DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED , DDS_RETCODE_OUT_OF_RESOURCES o r
DDS_RETCODE_NOT_ENABLED.

Detailed Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.
The input value of current_time is ignored by the operation.

Return Code
When the operation returns:
160
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OK - the value of the current time is returned in current_time.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter current_time is not a valid

reference.
• DDS_RETCODE_ALREADY_DELETED - the DomainParticipant has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_DomainParticipant is not enabled.

3.2.1.18 DDS_DomainParticipant_get_default_publisher_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_publisher_qos
 (DDS_DomainParticipant _this,
 DDS_PublisherQos *qos);

Description
This operation gets the struct with the default DDS_Publisher QosPolicy
settings of the DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
inout DDS_PublisherQos *qos - a pointer to the DDS_PublisherQos struct

(provided by the application) in which the default QosPolicy settings for the
DDS_Publisher are written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.
161
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation gets the struct with the default DDS_Publisher QosPolicy
settings of the DDS_DomainParticipant (that is the DDS_PublisherQos)
which is used for newly created DDS_Publisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT is used. The default DDS_PublisherQos is only
used when the constant is suppl ied as parameter qos to specify the
DDS_PublisherQos in the DDS_DomainParticipant_create_publisher
operation. The application must provide the DDS_PublisherQos struct in which
the QosPolicy settings can be stored and pass the qos pointer to the operation.
The operation writes the default QosPolicy settings to the struct pointed to by qos.
Any settings in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_publisher_qos,
or, if the call was never made, the default values as specified for each QosPolicy
setting as defined in Table 5 on page 59.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DDS_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the default DDS_Publisher QosPolicy settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_PublisherQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities

are in a state where they cannot be deleted.
162
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.19 DDS_DomainParticipant_get_default_subscriber_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_subscriber_qos
 (DDS_DomainParticipant _this,
 DDS_SubscriberQos *qos);

Description
This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
inout DDS_SubscriberQos *qos - a pointer to the QosPolicy struct

(provided by the application) in which the default QosPolicy settings for the
DDS_Subscriber is written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant (that is the DDS_SubscriberQos)
which is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter qos to specify the
DDS_SubscriberQos in the DDS_DomainParticipant_create_subscriber
operation. The application must provide the QoS struct in which the policy can be
stored and pass the qos pointer to the operation. The operation writes the default
QosPolicy to the struct pointed to by qos. Any settings in the struct are
overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_subscriber_qos,
or, if the call was never made, the default values as specified for each QosPolicy
defined in Table 5 on page 59.
163
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the default DDS_Subscriber QosPolicy settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_SubscriberQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.20 DDS_DomainParticipant_get_default_topic_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_default_topic_qos
 (DDS_DomainParticipant _this,
 DDS_TopicQos *qos);

Description
This operation gets the struct with the default DDS_Topic QosPolicy settings of
the DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
inout DDS_TopicQos *qos - a pointer to the QosPolicy struct (provided by

the application) in which the default QosPolicy settings for the DDS_Topic is
written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
164
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation gets the struct with the default DDS_Topic QosPolicy settings of
the DDS_DomainParticipant (that is the DDS_TopicQos) which is used for
ne wly c r ea t e d DDS_Topic ob j ec t s , i n c a se t he c ons t a n t
DDS_TOPIC_QOS_DEFAULT is used. The default DDS_TopicQos is only used when
the constant is supplied as parameter qos to specify the DDS_TopicQos in the
DDS_DomainParticipant_create_topic operation. The application must
provide the QoS struct in which the policy can be stored and pass the qos pointer to
the operation. The operation writes the default QosPolicy to the struct pointed to
by qos. Any settings in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_topic_qos, or, if
the call was never made, the default values as specified for each QosPolicy
defined in Table 5 on page 59.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the default DDS_Topic QosPolicy settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_TopicQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.21 DDS_DomainParticipant_get_discovered_participants

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_participants
 (DDS_DomainParticipant _this,
 DDS_InstanceHandleSeq *participant_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.
165
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.22 DDS_DomainParticipant_get_discovered_participant_data

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_participant_data
 (DDS_DomainParticipant _this,
 DDS_ParticipantBuiltinTopicData *participant_data,
 DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.23 DDS_DomainParticipant_get_discovered_topics

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_topics
 (DDS_DomainParticipant _this,
 DDS_InstanceHandleSeq *topic_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.24 DDS_DomainParticipant_get_discovered_topic_data

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_discovered_topic_data
 (DDS_DomainParticipant _this,
 DDS_TopicBuiltinTopicData *topic_data,
 DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.25 DDS_DomainParticipant_get_domain_id

Synopsis
#include <dds_dcps.h>
DomainId_t
 DDS_DomainParticipant_get_domain_id
 (DDS_DomainParticipant _this);

Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DDS_DomainParticipant is attached.
166
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.

Return Value
DomainId_t - result is the DomainId.

Detailed Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DDS_DomainParticipant is attached. A DomainId consists of a string that
r e p r e s e n t s a U R I t o t h e l o c a t i o n o f t h e c o n f i g u r a t i o n f i l e (e . g .
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.
A DomainId may contain the NULL pointer: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI.

3.2.1.26 DDS_DomainParticipant_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantListener
 DDS_DomainParticipant_get_listener
 (DDS_DomainParticipant _this);

Description
This operation allows access to a DDS_DomainParticipantListener.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.

Return Value
struct DDS_DomainParticipantListener - a p o i n t e r t o t h e

DDS_DomainParticipantListener a t t a c h e d t o t h e
DDS_DomainParticipant.

Detailed Description
This operation allows access to a DDS_DomainParticipantListener attached
to th e DDS_DomainParticipant . W hen n o
DDS_DomainParticipantListener was a t t a che d t o t he
DDS_DomainParticipant, the DDS_OBJECT_NIL pointer is returned.
167
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.27 DDS_DomainParticipant_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_get_qos
 (DDS_DomainParticipant _this,
 DDS_DomainParticipantQos *qos);

Description
This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
inout DDS_DomainParticipantQos *qos - a pointer to the destination

DDS_DomainParticipantQos struct in which the QosPolicy settings will
be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DDS_DomainParticipant on wh ich th i s ope r a t ion i s u sed . Th i s
DDS_DomainparticipantQos is stored at the location pointed to by the qos
parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipant has successfully been copied into the specified
DDS_DomainParticipantQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
168
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.28 DDS_DomainParticipant_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_DomainParticipant_get_status_changes
 (DDS_DomainParticipant _this);

3.2.1.29 DDS_DomainParticipant_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_DomainParticipant_get_statuscondition
 (DDS_DomainParticipant _this);

3.2.1.30 DDS_DomainParticipant_ignore_participant

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_participant
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.31 DDS_DomainParticipant_ignore_publication

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_publication
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.
169
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.32 DDS_DomainParticipant_ignore_subscription

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_subscription
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.33 DDS_DomainParticipant_ignore_topic

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_ignore_topic
 (DDS_DomainParticipant _this,
 const DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.34 DDS_DomainParticipant_lookup_topicdescription

Synopsis
#include <dds_dcps.h>
DDS_TopicDescription
 DDS_DomainParticipant_lookup_topicdescription
 (DDS_DomainParticipant _this,
 const DDS_char *name);

Description
This operation gives access to a locally-created DDS_TopicDescription, with a
matching name.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_char *name - the name of the DDS_TopicDescription to

look for.

Return Value
DDS_TopicDescription - R e t u r n v a l u e i s a p o i n t e r t o t h e

DDS_TopicDescription found. When no such DDS_TopicDescription is
found, the DDS_OBJECT_NIL pointer is returned.
170
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
The operation DDS_DomainParticipant_lookup_topicdescription gives
access to a locally-created DDS_TopicDescription, based on its name. The
operation takes as argument the name of the DDS_TopicDescription.
If one or more local DDS_TopicDescription proxies (also see Section 3.2.1.15,
DDS_DomainParticipant_find_topic, on page 158) of the same name already exist,
a po in te r to one o f the a l r eady ex i s t ing loca l p rox ies i s r e tu rned :
DDS_DomainParticipant_lookup_topicdescription will never create a
new local proxy. That means that the proxy that is returned does not need to be
deleted separately from its original. When no local proxy exists, it returns the
DDS_OBJECT_NIL pointer. The operation never blocks.
The operation DDS_DomainParticipant_lookup_topicdescription may be
used to locate any locally-created DDS_Topic, DDS_ContentFilteredTopic
and DDS_MultiTopic object.

3.2.1.35 DDS_DomainParticipant_set_default_publisher_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_publisher_qos
 (DDS_DomainParticipant _this,
 const DDS_PublisherQos *qos);

Description
Thi s ope ra t i on s e t s t he de f au l t DDS_PublisherQos o f t h e
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_PublisherQos *qos - a collection of QosPolicy settings,

which contains the new default QosPolicy settings for the newly created
DDS_Publishers.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
171
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
T h i s o p e ra t i o n s e t s t h e d e f a u l t DDS_PublisherQos o f t h e
DDS_DomainParticipant (that is the struct with the QosPolicy settings) which
is used for newly created DDS_Publisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT is used. The default DDS_PublisherQos is only
used when the constant is suppl ied as parameter qos to specify the
DDS_PublisherQos in the DDS_DomainParticipant_create_publisher
operation. The DDS_PublisherQos is always self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_publisher_qos.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_PublisherQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_PublisherQos. It contains a QosPolicy setting with an enum value that is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.36 DDS_DomainParticipant_set_default_subscriber_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_subscriber_qos
 (DDS_DomainParticipant _this,
 const DDS_SubscriberQos *qos);

Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DDS_SubscriberQos o f t h e
DDS_DomainParticipant.
172
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_SubscriberQos *qos - a collection of QosPolicy settings,

which contains the new default QosPolicy settings for the newly created
DDS_Subscribers.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DDS_SubscriberQos o f t h e
DDS_DomainParticipant (that is the struct with the QosPolicy settings) which
is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter qos to specify the
DDS_SubscriberQos in the DDS_DomainParticipant_create_subscriber
operation. The DDS_SubscriberQos is always self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_subscriber_qos.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_SubscriberQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_PublisherQos. It contains a QosPolicy setting with an enum value that is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.
173
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.37 DDS_DomainParticipant_set_default_topic_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_set_default_topic_qos
 (DDS_DomainParticipant _this,
 const DDS_TopicQos *qos);

Description
This operation sets the default DDS_TopicQos of the DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_TopicQos *qos - a collection of QosPolicy settings, which

contains the new default QosPolicy settings for the newly created
DDS_Topics.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_ INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DDS_TopicQos of the DDS_DomainParticipant
(that is the struct with the QosPolicy settings) which is used for newly created
DDS_Topic objects, in case the constant DDS_TOPIC_QOS_DEFAULT is used. The
default DDS_TopicQos is only used when the constant is supplied as parameter qos
to specify the DDS_TopicQos in the DDS_DomainParticipant_create_topic
operation. This operation checks if the DDS_TopicQos is self consistent. If it is not,
the operation has no effect and returns DDS_RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
DDS_DomainParticipant_get_default_topic_qos.

Return Code
When the operation returns:
174
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OK - the new default DDS_TopicQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.2.1.38 DDS_DomainParticipant_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_set_listener
 (DDS_DomainParticipant _this,
 const struct DDS_DomainParticipantListener

*a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - the DDS_DomainParticipant object

on which the operation is operated.
in const struct DDS_DomainParticipantListener *a_listener - a

pointer to the DDS_DomainParticipantListener instance, which will be
attached to the DDS_DomainParticipant.
175
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for a certain status.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant. Only one DDS_DomainParticipantListener can
b e a t t a c he d t o e a c h DDS_DomainParticipant . I f a
DDS_DomainParticipantListener was already attached, the operation will
replace it with the new one. When a_listener is the DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP1 for all statuses activated in the
bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_DomainParticipantListener opera t ion i s invoked and the
communication status is reset to FALSE, as the listener implicitly accesses the status
which is passed as a parameter to that operation. The status is reset prior to calling
the listener, so if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset. An exception to this rule is the
DDS_OBJECT_NIL listener, which does not reset the communication statuses for
which it is invoked.
The following statuses are applicable to the DDS_DomainParticipantListener:
• DDS_INCONSISTENT_TOPIC_STATUS (propagated)
• DDS_OFFERED_DEADLINE_MISSED_STATUS (propagated)
• DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_SAMPLE_LOST_STATUS (propagated)
• DDS_SAMPLE_REJECTED_STATUS (propagated)

1. Short for No-Operation, an instruction that peforms nothing at all.

176
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_DATA_ON_READERS_STATUS (propagated)
• DDS_DATA_AVAILABLE_STATUS (propagated)
• DDS_LIVELINESS_LOST_STATUS (propagated)
• DDS_LIVELINESS_CHANGED_STATUS (propagated)
• DDS_PUBLICATION_MATCHED_STATUS (propagated)
• DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DomainParticipantListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the DDS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.
The s t a t u se s DDS_DATA_ON_READERS_STATUS a n d DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses” and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with a get_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will f irst look in an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DomainParticipantListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has

already been deleted.

177

API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.39 DDS_DomainParticipant_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipant_set_qos
 (DDS_DomainParticipant _this,
 const DDS_DomainParticipantQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipant _this - is the DDS_DomainParticipant object

on which the operation is operated.
in const DDS_DomainParticipantQos *qos - must contain the new set of

QosPolicy settings for the DDS_DomainParticipant.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DomainParticipant. The parameter qos must contain the struct with the
QosPolicy settings which is checked for self-consistency.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_DomainParticipantQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
178
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_DomainParticipantQos. It contains a QosPolicy setting with a
sequence that has inconsistent memory settings.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.2 Class DDS_DomainParticipantFactory
The purpose of this class is to al low the creat ion and destruct ion of
DDS_DomainParticipant objects. DDS_DomainParticipantFactory itself
has no factory. It is a pre-existing singleton object that can be accessed by means of
the DDS_DomainParticipantFactory_get_instance operation on the
DDS_DomainParticipantFactory class.
The pre-defined value DDS_TheParticipantFactory can also be used as an
a l i a s f o r t h e s i n g l e t o n f a c t o ry r e t u r n e d b y t h e o p e r a t i o n
DDS_DomainParticipantFactory_get_instance.
The interface description of this class is as follows:

/*
 * interface DDS_DomainParticipantFactory
 */
/*
 * implemented API operations
 */

DDS_DomainParticipantFactory
 DDS_DomainParticipantFactory_get_instance
 (void);
DDS_DomainParticipant
 DDS_DomainParticipantFactory_create_participant
 (DDS_DomainParticipantFactory _this,

 const DomainId_t domainId,
 const DDS_DomainParticipantQos *qos,
 const struct DDS_DomainParticipantListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_DomainParticipantFactory_delete_participant
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipant a_participant);
DDS_DomainParticipant
 DDS_DomainParticipantFactory_lookup_participant
 (DDS_DomainParticipantFactory _this,
 const DomainId_t domainId);
179
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

DDS_ReturnCode_t
 DDS_DomainParticipantFactory_set_default_participant_qos
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipantQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_get_default_participant_qos
 (DDS_DomainParticipantFactory _this,
 DDS_DomainParticipantQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_set_qos
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipantFactoryQos *qos);
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_get_qos
 (DDS_DomainParticipantFactory _this,
 DDS_DomainParticipantFactoryQos *qos);

The next paragraphs describe the usage of all DDS_DomainParticipantFactory
operations.

3.2.2.1 DDS_DomainParticipantFactory_create_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_DomainParticipantFactory_create_participant
 (DDS_DomainParticipantFactory _this,
 const DomainId_t domainId,
 const DDS_DomainParticipantQos *qos,
 const struct DDS_DomainParticipantListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation creates a new DDS_DomainParticipant which will join the
domain identified by domainId, with the desired DDS_DomainParticipantQos
and attaches the optionally specified DDS_DomainParticipantListener to it.

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - the ID of the Domain to which the
DDS_DomainParticipant is joined. This should be a URI to the location of
the configuration file that identifies the configuration details of the Domain.
180
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

in const DDS_DomainParticipantQos *qos - a
DDS_DomainParticipantQos for the new DDS_DomainParticipant.
W h e n t h i s s e t o f QosPolicy s e t t i n g s i s i n c o n s i s t e n t , n o
DDS_DomainParticipant is created.

in const struct DDS_DomainParticipantListener *a_listener - a
pointer to the DDS_DomainParticipantListener instance which will be
attached to the new DDS_DomainParticipant. It is permitted to use
DDS_OBJECT_NIL as the value of the l i s tener : this behaves as a
DDS_DomainParticipantListener whose operations perform no action.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for a certain status.

Return Value
DDS_DomainParticipant -Return value is a pointer to the newly created

DDS_DomainParticipant. In case of an error, the DDS_OBJECT_NIL pointer
is returned.

Detailed Description
This operation creates a new DDS_DomainParticipant, with the desired
DDS_DomainParticipantQos and attaches the optionally specified
DDS_DomainParticipantListener to it. The DDS_DomainParticipant
signifies that the calling application intends to join the Domain identified by the
domainId argument.
If the specified QosPolicy settings are not consistent, the operation will fail; no
DDS_DomainParticipant i s created and the operat ion re turns the
DDS_OBJECT_NIL pointer. To delete the DDS_DomainParticipant the operation
DDS_DomainParticipantFactory_delete_participant must be used.

Identifying the Domain
The DDS_DomainParticipant will attach to the Domain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
t h e l o c a t i o n o f t h e c o n f i g u ra t i o n f i l e (e . g .
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.
A NULL pointer may be assigned to the DomainId: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI. This
variable will be initialized when you source the release.com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice
181
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.
It is recommended to use this OSPL_URI variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

Default QoS
The constant DDS_PARTICIPANT_QOS_DEFAULT can be used as parameter qos to
c r ea t e a DDS_DomainParticipant w i t h t h e d e f a u l t
DDS_DomainParticipantQos a s s e t i n t h e
DDS_DomainParticipantfactory. T h e e ff e c t o f u s i n g
DDS_PARTICIPANT_QOS_DEFAULT is the same as calling the operation
DDS_DomainParticipantFactory_get_default_participant_qos and
u s i n g th e r e s u l t i n g DDS_DomainParticipantQos t o c r e a t e t h e
DDS_DomainParticipant.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_DomainParticipantListener opera t ion i s invoked and the
communication status is reset to FALSE, as the listener implicitly accesses the status
which is passed as a parameter to that operation. The fact that the status is reset prior
t o c a l l i n g t h e l i s t e n e r m e a n s t ha t i f t h e a p p l i c a t i o n c a l l s t h e
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the DDS_DomainParticipantListener:
• DDS_INCONSISTENT_TOPIC_STATUS (propagated)
• DDS_OFFERED_DEADLINE_MISSED_STATUS (propagated)
• DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_SAMPLE_LOST_STATUS (propagated)
• DDS_SAMPLE_REJECTED_STATUS (propagated)
• DDS_DATA_ON_READERS_STATUS (propagated)
• DDS_DATA_AVAILABLE_STATUS (propagated)
• DDS_LIVELINESS_LOST_STATUS (propagated)
182
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_LIVELINESS_CHANGED_STATUS (propagated)
• DDS_PUBLICATION_MATCHED_STATUS (propagated)
• DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DomainParticipantListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the DDS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.
The s t a t u se s DDS_DATA_ON_READERS_STATUS a n d DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses” and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with a get_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will f irst look in an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

3.2.2.2 DDS_DomainParticipantFactory_delete_participant

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_delete_participant
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipant a_participant);

Description
This operation deletes a DDS_DomainParticipant.
183
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipant a_participant - a pointer to the
DDS_DomainParticipant, which is to be deleted.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_ PRECONDITION_NOT_MET.

Detailed Description
T h i s o p e r a t i o n d e l e t e s a DDS_DomainParticipant . A
DDS_DomainParticipant cannot be deleted when it has any attached
DDS_Entity ob j e c t s . When t he ope r a t io n i s c a l l e d o n a
DDS_DomainParticipant with existing DDS_Entity objects, the operation
returns DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DomainParticipant is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_participant is not a valid
DDS_DomainParticipant.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the DDS_DomainParticipant
contains one or more DDS_Entity objects.

3.2.2.3 DDS_DomainParticipantFactory_get_default_participant_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_get_default_participant_qos
 (DDS_DomainParticipantFactory _this,
184
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 DDS_DomainParticipantQos *qos);

Description
This operation gets the default DDS_DomainParticipantQos of the
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

inout DDS_DomainParticipantQos *qos - a po in t e r t o t he
DDS_DomainParticipantQos struct (provided by the application) in which
t he d e f a u l t DDS_DomainParticipantQos f o r t h e
DDS_DomainParticipant is written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation gets the default DDS_DomainParticipantQos of the
DDS_DomainParticipant (that is the struct with the QosPolicy settings) which
is used for newly created DDS_DomainParticipant objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT i s u s ed . The de f au l t
DDS_DomainParticipantQos is only used when the constant is supplied as
parameter qos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
application must provide the DDS_DomainParticipantQos struct in which the
QosPolicy settings can be stored and provide a pointer to the struct. The operation
writes the default QosPolicy settings to the struct pointed to by qos. Any settings
in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipantFactory_set_default_
participant_qos, or, if the call was never made, the default values as specified
for each QosPolicy setting as defined in Table 5 on page 59.

Return Code
When the operation returns:
185
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_OK - the default DDS_DomainParticipant QosPolicy settings
of this DDS_DomainParticipantFactory have successfully been copied into
the specified DDS_DomainParticipantQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.4 DDS_DomainParticipantFactory_get_instance

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipantFactory
 DDS_DomainParticipantFactory_get_instance
 (void);

Description
This operation returns the DDS_DomainParticipantFactory singleton.

Parameters
<none>

Return Value
DDS_DomainParticipantFactory - return value is a pointer to the

DDS_DomainParticipantFactory.

Detailed Description
This operation returns the DDS_DomainParticipantFactory singleton. The
operation can be called multiple times without side-effects and it returns the same
DDS_DomainParticipantFactory instance.
The pre-defined value DDS_TheParticipantFactory can also be used as an
a l i a s f o r t h e s i n g l e t o n f a c t o ry r e t u r n e d b y t h e o p e r a t i o n
DDS_DomainParticipantFactory_get_instance.

3.2.2.5 DDS_DomainParticipantFactory_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_get_qos
 (DDS_DomainParticipantFactory _this,
186
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 DDS_DomainParticipantFactoryQos *qos);

Description
This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipantFactory.

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

inout DDS_DomainParticipantFactoryQos *qos - a pointer to the
destination DDS_DomainparticipantFactoryQos struct in which the
QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION or DDS_RETCODE_ OUT_OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DDS_DomainParticipantFactory on which this operation is used. This
DDS_DomainparticipantFactoryQos is stored at the location pointed to by the
qos parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipantFactory has successfully been copied into the
specified DDS_DomainParticipantFactoryQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.6 DDS_DomainParticipantFactory_lookup_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
187
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 DDS_DomainParticipantFactory_lookup_participant
 (DDS_DomainParticipantFactory _this,
 const DomainId_t domainId);

Description
This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domainId.

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - the ID of the Domain for which a joining
DDS_DomainParticipant should be retrieved. This should be a URI to the
location of the configuration file that identifies the configuration details of the
Domain.

Return Value
DDS_DomainParticipant - R e tu r n v a l u e i s a p o in t e r t o t h e

DDS_DomainParticipant r e t r i e v e d . W he n n o s uc h
DDS_DomainParticipant is found, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domainId. If no such DDS_DomainParticipant
exists, the operation will return DDS_OBJECT_NIL.
The domainId used to search for a specific DDS_DomainParticipant must be
i d e n t i c a l t o t h e domainId t h a t w a s u s e d t o c r e a t e t h a t s p e c i f i c
DDS_DomainParticipant: a NULL pointer will not be resolved on this level. That
means that a DDS_DomainParticipant that was created using a domainId set to
NULL will not be found if you try to look it up using a hard-coded URI that has the
same contents as the environment variable OSPL_URI.
If multiple DDS_DomainParticipant entities belonging to the specified
domainId exist, then the operation will return one of them. It is not specified which
one.

3.2.2.7 DDS_DomainParticipantFactory_set_default_participant_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
188
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 DDS_DomainParticipantFactory_set_default_participant_qos
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipantQos *qos);

Description
This operation sets the default DDS_DomainParticipantQos of the
DDS_DomainParticipant.

Parameters
in DDS_DomainParticipantFactory _this - t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantQos *qos - t h e
DDS_DomainParticipantQos struct, which contains the new default
DDS_DomainParticipantQos f o r t h e n e w l y c r e a t e d
DDS_DomainParticipants.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation sets the default DDS_DomainParticipantQos of the
DDS_DomainParticipant (that is the struct with the QosPolicy settings) which
is used for newly created DDS_DomainParticipant objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT i s u s ed . The de f au l t
DDS_DomainParticipantQos is only used when the constant is supplied as
parameter qos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
DDS_DomainParticipantQos is always self consistent, because its policies do
not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
DDS_DomainParticipantFactory_get_default_participant_qos.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_DomainParticipantQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
189
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_DomainParticipantQos. It contains a QosPolicy setting with a
sequence that has inconsistent memory settings.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.2.8 DDS_DomainParticipantFactory_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DomainParticipantFactory_set_qos
 (DDS_DomainParticipantFactory _this,
 const DDS_DomainParticipantFactoryQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DomainParticipantFactory.

Parameters
in DDS_DomainParticipantFactory _this - i s t h e

DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantFactoryQos *qos - must contain the
new set of QosPolicy settings for the DDS_DomainParticipantFactory.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DomainParticipantFactory. The parameter qos must contain the struct
with the QosPolicy settings.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).
190
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_DomainParticipantFactoryQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.3 DDS_DomainParticipantListener interface
Since a DDS_DomainParticipant is a DDS_Entity, it has the ability to have a
Listener associated with it. In this case, the associated Listener should be of
type DDS_DomainParticipantListener. This interface must be implemented
by the application. A user defined class must be provided by the application which
must extend from the DDS_DomainParticipantListener class. All
DDS_DomainParticipantListener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DomainParticipantListener provides a generic mechanism
(actually a callback function) for the Data Distribution Service to notify the
application of relevant asynchronous status change events, such as a missed
de ad l i ne , v io l a t i o n o f a QosPolicy s e t t i n g , e t c . T h e
DDS_DomainParticipantListener is related to changes in communication
status DDS_StatusConditions.
The interface description of this class is as follows:

/*
 * interface DDS_DomainParticipantListener
 */
/*
 * inherited from DDS_TopicListener
 */
/* void
 * DDS_DomainParticipantListener_on_inconsistent_topic
 * (void *listener_data,
 * DDS_Topic the_topic,
 * const DDS_InconsistentTopicStatus *status);
 */
/*
 * inherited from DDS_PublisherListener
191
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 */
/* void
 * DDS_DomainParticipantListener_on_offered_deadline_missed
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_OfferedDeadlineMissedStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_offered_incompatible_qos
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_OfferedIncompatibleQosStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_liveliness_lost
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_LivelinessLostStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_publication_matched
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_PublicationMatchedStatus *status);
 */
/*
 * inherited from DDS_SubscriberListener
 */
/* void
 * DDS_DomainParticipantListener_on_data_on_readers
 * (void *listener_data,
 * DDS_Subscriber subs);
 */
/* void

* DDS_DomainParticipantListener_on_requested_deadline_missed
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_RequestedDeadlineMissedStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_requested_incompatible_qos
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_RequestedIncompatibleQosStatus *status);
 */

192
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

/* void
 * DDS_DomainParticipantListener_on_sample_rejected
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SampleRejectedStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_liveliness_changed
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_LivelinessChangedStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_data_available
 * (void *listener_data,
 * DDS_DataReader reader);
 */

/* void
 * DDS_DomainParticipantListener_on_subscription_matched
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SubscriptionMatchedStatus *status);
 */

/* void
 * DDS_DomainParticipantListener_on_sample_lost
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SampleLostStatus *status);
 */
/*
 * implemented API operations
 */

DDS_DomainParticipantListener
 DDS_DomainParticipantListener__alloc
 (void);

The next paragraphs list all DDS_DomainParticipantListener operations.
Since these operations are all inherited, they are listed but not fully described
because they are not implemented in this class. The full description of these
operations is given in the classes from which they are inherited.

3.2.3.1 DDS_DomainParticipantListener__alloc

Synopsis
#include <dds_dcps.h>
193
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

DDS_DomainParticipantListener
 DDS_DomainParticipantListener__alloc
 (void);

Description
This operation creates a new DDS_DomainParticipantListener.

Parameters
<none>

Return Value
DDS_DomainParticipantListener - Return value is the handle to the newly

created DDS_DomainParticipantListener. In case of an error, a
DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a new DDS_DomainParticipantListener. The
DDS_DomainParticipantListener must be created using this operation. In
other words, the application is not allowed to declare an object of type
DDS_DomainParticipantListener. When the application wants to release the
DDS_DomainParticipantListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_DomainParticipantListener, a DDS_OBJECT_NIL pointer is returned
instead.

3.2.3.2 DDS_DomainParticipantListener_on_data_available (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_data_available
 (void *listener_data,
 DDS_DataReader reader);

3.2.3.3 DDS_DomainParticipantListener_on_data_on_readers (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_SubscriberListener for further explanation.
194
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_data_on_readers
 (void *listener_data,
 DDS_Subscriber subs);

3.2.3.4 DDS_DomainParticipantListener_on_inconsistent_topic (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_TopicListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_inconsistent_topic
 (void *listener_data,
 DDS_Topic the_topic,
 const DDS_InconsistentTopicStatus *status);

3.2.3.5 DDS_DomainParticipantListener_on_liveliness_changed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_liveliness_changed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_LivelinessChangedStatus *status);

3.2.3.6 DDS_DomainParticipantListener_on_liveliness_lost (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_liveliness_lost
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_LivelinessLostStatus *status);
195
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.7 DDS_DomainParticipantListener_on_offered_deadline_missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.
Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_offered_deadline_missed
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedDeadlineMissedStatus *status);

3.2.3.8 DDS_DomainParticipantListener_on_offered_incompatible_qos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_offered_incompatible_qos
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedIncompatibleQosStatus *status);

3.2.3.9 DDS_DomainParticipantListener_on_publication_matched (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_publication_matched
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.2.3.10 DDS_DomainParticipantListener_on_requested_deadline_missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.
196
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_requested_deadline_missed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedDeadlineMissedStatus *status);

3.2.3.11 DDS_DomainParticipantListener_on_requested_incompatible_qos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_requested_incompatible_qos
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedIncompatibleQosStatus *status);

3.2.3.12 DDS_DomainParticipantListener_on_sample_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_sample_lost
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SampleLostStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.2.3.13 DDS_DomainParticipantListener_on_sample_rejected (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_sample_rejected
 (void *listener_data,
 DDS_DataReader reader,
197
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 const DDS_SampleRejectedStatus *status);

3.2.3.14 DDS_DomainParticipantListener_on_subscription_matched
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_DomainParticipantListener_on_subscription_matched
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SubscriptionMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.3 Topic-Definition Module

Figure 16 DCPS Topic-Definition Module Class Model
This module contains the following classes:
• DDS_TopicDescription (abstract)
• DDS_Topic

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
198
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

• DDS_ContentFilteredTopic

• DDS_MultiTopic

• DDS_TopicListener (interface)
• Topic-Definition type specific classes.
“Topic-Definition type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>TypeSupport is generated (based on IDL) by calling the
pre-processor.

Figure 17 Pre-processor Generation of the Typed Classes for Data Type “Foo”
For instance, for the user defined data type Foo (this also applies to other types),
defined in the module SPACE; “Topic-Definition type specific classes” contains the
following classes:
• DDS_TypeSupport (abstract)
• SPACE_FooTypeSupport.
DDS_Topic objects conceptually fit between publications and subscriptions.
Publications must be known in such a way that subscriptions can refer to them
unambiguously. A DDS_Topic is meant to fulfil that purpose: it associates a name
(unique in the Domain), a data type, and DDS_TopicQos related to the data itself.

3.3.1 Class DDS_TopicDescription (abstract)
This c lass i s an abs t rac t c lass . I t i s the base c lass for DDS_Topic ,
DDS_ContentFilteredTopic and DDS_MultiTopic.

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
199
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The DDS_TopicDescription attribute type_name defines an unique data type
that is made available to the Data Distribution Service via the DDS_TypeSupport.
DDS_TopicDescription has also a name that allows it to be retrieved locally.
The interface description of this class is as follows:

/*
 * interface DDS_TopicDescription
 */
/*
 * implemented API operations
 */

DDS_string
 DDS_TopicDescription_get_type_name
 (DDS_TopicDescription _this);

DDS_string
 DDS_TopicDescription_get_name
 (DDS_TopicDescription _this);

DDS_DomainParticipant
 DDS_TopicDescription_get_participant
 (DDS_TopicDescription _this);

The next paragraphs describe the usage of all DDS_TopicDescription
operations.

3.3.1.1 DDS_TopicDescription_get_name

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_TopicDescription_get_name
 (DDS_TopicDescription _this);

Description
This operation returns the name used to create the DDS_TopicDescription.

Parameters
in DDS_TopicDescription _this - the DDS_TopicDescription object on

which the operation is operated.

Return Value
DDS_string - the name of the DDS_TopicDescription.

Detailed Description
This operation returns the name used to create the DDS_TopicDescription.
200
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.1.2 DDS_TopicDescription_get_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_TopicDescription_get_participant
 (DDS_TopicDescription _this);

Description
This operation returns the DDS_DomainParticipant associated with the
DDS_TopicDescription or the DDS_OBJECT_NIL pointer.

Parameters
in DDS_TopicDescription _this - the DDS_TopicDescription object on

which the operation is operated.

Return Value
DDS_DomainParticipant - a pointer to the DDS_DomainParticipant

associated with the DDS_TopicDescription or the DDS_OBJECT_NIL
pointer.

Detailed Description
This operation returns the DDS_DomainParticipant associated with the
DDS_TopicDescription . N o t e t h a t t h e r e i s e x a c t l y o n e
DDS_DomainParticipant associated with each DDS_TopicDescription.
When the DDS_TopicDescription was already deleted (there is no associated
DDS_DomainParticipant any more), the DDS_OBJECT_NIL pointer is returned.

3.3.1.3 DDS_TopicDescription_get_type_name

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_TopicDescription_get_type_name
 (DDS_TopicDescription _this);

Description
This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

Parameters
in DDS_TopicDescription _this - the DDS_TopicDescription object on

which the operation is operated.

201

API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
DDS_string - r e t u r n v a l u e i s t h e n a m e o f t h e d a t a t y p e o f t h e

DDS_TopicDescription.

Detailed Description
This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

3.3.2 Class DDS_Topic
DDS_Topic is the most basic description of the data to be published and subscribed.
A DDS_Topic is identified by its name, which must be unique in the whole
Domain. In addition (by virtue of extending DDS_TopicDescription) it fully
identifies the type of data that can be communicated when publishing or subscribing
to the DDS_Topic.
DDS_Topic is the only DDS_TopicDescription that can be used for publications
and therefore a specialized DDS_DataWriter is associated to the DDS_Topic.
The interface description of this class is as follows:

/*
 * interface DDS_Topic
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * DDS_Topic_get_statuscondition
 * (DDS_Topic _this);
 */
/* DDS_StatusMask
 * DDS_Topic_get_status_changes
 * (DDS_Topic _this);
 */
/* DDS_ReturnCode_t
 * DDS_Topic_enable
 * (DDS_Topic _this);
 */
/*
 * inherited from class DDS_TopicDescription
 */
/* DDS_string
 * DDS_Topic_get_type_name
 * (DDS_Topic _this);
 */

/* DDS_string
 * DDS_Topic_get_name
202
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 * (DDS_Topic _this);
 */

/* DDS_DomainParticipant
 * DDS_Topic_get_participant
 * (DDS_Topic _this);
 */
/*
 * implemented API operations
 */

DDS_ReturnCode_t
 DDS_Topic_set_qos
 (DDS_Topic _this,
 const DDS_TopicQos *qos);
DDS_ReturnCode_t
 DDS_Topic_get_qos
 (DDS_Topic _this,
 DDS_TopicQos *qos);
DDS_ReturnCode_t
 DDS_Topic_set_listener
 (DDS_Topic _this,
 const struct DDS_TopicListener *a_listener,

 const DDS_StatusMask mask);
struct DDS_TopicListener
 DDS_Topic_get_listener
 (DDS_Topic _this);
DDS_ReturnCode_t
 DDS_Topic_get_inconsistent_topic_status
 (DDS_Topic _this,
 DDS_InconsistentTopicStatus *a_status);

The next paragraphs describe the usage of all DDS_Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited.

3.3.2.1 DDS_Topic_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Topic_enable
 (DDS_Topic _this);

Note: This operation is not yet implemented. It is scheduled for a future release.
203
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2.2 DDS_Topic_get_inconsistent_topic_status

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_Topic_get_inconsistent_topic_status
 (DDS_Topic _this,
 DDS_InconsistentTopicStatus *a_status);

Description
This operation obtains the DDS_InconsistentTopicStatus of the DDS_Topic.

Parameters
in DDS_Topic _this - the DDS_Topic object on which the operation is

operated.
inout DDS_InconsistentTopicStatus *a_status - the contents of the

DDS_InconsistentTopicStatus struct of the DDS_Topic will be copied
into the location specified by a_status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_InconsistentTopicStatus of the DDS_Topic.
The DDS_InconsistentTopicStatus can also be monitored using a
DDS_TopicListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_InconsistentTopicStatus of this
DDS_Topic has successfully been copied into the specified a_status parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
204
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2.3 DDS_Topic_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_TopicListener
 DDS_Topic_get_listener
 (DDS_Topic _this);

Description
This operation allows access to a DDS_TopicListener.

Parameters
in DDS_Topic _this - the DDS_Topic object on which the operation is

operated.

Return Value
struct DDS_TopicListener - to the DDS_TopicListener attached to the

DDS_Topic.

Detailed Description
This operation allows access to a DDS_TopicListener attached to the
DDS_Topic. When no DDS_TopicListener was attached to the DDS_Topic, the
DDS_OBJECT_NIL pointer is returned.

3.3.2.4 DDS_Topic_get_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_Topic_get_name
 (DDS_Topic _this);

3.3.2.5 DDS_Topic_get_participant (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_Topic_get_participant
 (DDS_Topic _this);
205
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2.6 DDS_Topic_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Topic_get_qos
 (DDS_Topic _this,
 DDS_TopicQos *qos);

Description
This operation allows access to the existing set of QoS policies for a DDS_Topic.

Parameters
in DDS_Topic _this - the DDS_Topic object on which the operation is

operated.
inout DDS_TopicQos *qos - a pointer to the destination DDS_TopicQos struct

in which the QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a DDS_Topic on
which this operation is used. This DDS_TopicQos is stored at the location pointed
to by the qos parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Topic has successfully been copied into the specified DDS_TopicQos
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
206
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2.7 DDS_Topic_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_Topic_get_status_changes
 (DDS_Topic _this);

3.3.2.8 DDS_Topic_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_Topic_get_statuscondition
 (DDS_Topic _this);

3.3.2.9 DDS_Topic_get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_Topic_get_type_name
 (DDS_Topic _this);

3.3.2.10 DDS_Topic_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Topic_set_listener
 (DDS_Topic _this,
 const struct DDS_TopicListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_TopicListener to the DDS_Topic.
207
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
in DDS_Topic _this - the DDS_Topic object on which the operation is

operated.
in const struct DDS_TopicListener *a_listener - a pointer to the

DDS_TopicListener instance, which will be attached to the DDS_Topic.
in const DDS_StatusMask mask - a bit-mask in which each bit enables the

invocation of the DDS_TopicListener for a certain status.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DDS_TopicListener to the DDS_Topic. Only one
DDS_TopicListener c an b e a t t a c h e d t o e a c h DDS_Topic . I f a
DDS_TopicListener was already attached, the operation will replace it with the
new one. When a_listener is the DDS_OBJECT_NIL pointer, it represents a
listener that is treated as a NOOP1 for all statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that plain communication status changes. For
each plain communication status activated in the mask , the associated
DDS_TopicListener operation is invoked and the communication status is reset
to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application calls the get_<status_name> from inside the listener it will see the
status already reset. An exception to this rule is the DDS_OBJECT_NIL listener,
which does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DDS_TopicListener:
• DDS_INCONSISTENT_TOPIC_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_TopicListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

208
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_TopicListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant is invoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener is also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_TopicListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.11 DDS_Topic_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Topic_set_qos
 (DDS_Topic _this,
 const DDS_TopicQos *qos);

Description
This operation replaces the existing set of QosPolicy settings for a DDS_Topic.

Parameters
in DDS_Topic _this - the DDS_Topic object on which the operation is

operated.
in const DDS_TopicQos *qos - new set of QosPolicy settings for the

DDS_Topic.
209
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES , DDS_RETCODE_IMMUTABLE_POLICY o r
DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description
This replaces the existing set of QosPolicy settings for a DDS_Topic. The
parameter qos must contain the struct with the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_Topic, which can only be set before the
DDS_Topic i s e n a b l e d , t h e o p e r a t i o n w i l l f a i l a n d a
DDS_RETCODE_IMMUTABLE_POLICY is returned. In other words, the application
must provide the currently set QosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and a DDS_RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_TopicQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
210
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

• DDS_RETCODE_IMMUTABLE_POLICY - the parameter qos contains an
immutable QosPolicy setting with a different value than set during enabling of
the DDS_Topic.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.3.3 Class DDS_ContentFilteredTopic
DDS_ContentFilteredTopic is a specialization of DDS_TopicDescription
that allows for content based subscriptions.
DDS_ContentFilteredTopic describes a more sophisticated subscription that
indicates the DDS_Subscriber does not necessarily want to see all values of each
instance published under the DDS_Topic. Rather, it only wants to see the values
whose contents satisfy certain criteria. Therefore this class must be used to request
content-based subscriptions.
The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.
Appendix H, DCPS Queries and Filters describes the syntax of the SQL based filter
and the parameters.
The interface description of this class is as follows:

/*
 * interface DDS_ContentFilteredTopic
 */
/*
 * inherited from class DDS_TopicDescription
 */
/* DDS_string
 * DDS_ContentFilteredTopic_get_type_name
 * (DDS_ContentFilteredTopic _this);

 */
/* DDS_string
 * DDS_ContentFilteredTopic_get_name
 * (DDS_ContentFilteredTopic _this);
 */

/* DDS_DomainParticipant
 * DDS_ContentFilteredTopic_get_participant
 * (DDS_ContentFilteredTopic _this);
 */
/*
 * implemented API operations
 */

DDS_string
 DDS_ContentFilteredTopic_get_filter_expression
211
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 (DDS_ContentFilteredTopic _this);

DDS_ReturnCode_t
 DDS_ContentFilteredTopic_get_expression_parameters
 (DDS_ContentFilteredTopic _this,
 DDS_StringSeq *expression_parameters);

DDS_ReturnCode_t
 DDS_ContentFilteredTopic_set_expression_parameters
 (DDS_ContentFilteredTopic _this,
 const DDS_StringSeq *expression_parameters);

DDS_Topic
 DDS_ContentFilteredTopic_get_related_topic
 (DDS_ContentFilteredTopic _this);

/*

The next paragraphs describe the usage of all DDS_ContentFilteredTopic
operations.

3.3.3.1 DDS_ContentFilteredTopic_get_expression_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_ContentFilteredTopic_get_expression_parameters
 (DDS_ContentFilteredTopic _this,
 DDS_StringSeq *expression_parameters);

Description
This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters
in DDS_ContentFilteredTopic _this - t h e

DDS_ContentFilteredTopic object on which the operation is operated.
inout DDS_StringSeq *expression_parameters - a handle to a sequence of

strings that will be used to store the parameters used in the SQL expression.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
212
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic. That is, the parameters specified on the last
successful call to DDS_ContentFilteredTopic_set_expression_
parameters, or if DDS_ContentFilteredTopic_set_expression_
parameters was never ca l l ed , the paramete rs spec i f i ed when the
DDS_ContentFilteredTopic was created.
The resulting handle contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parameters in
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the DDS_ContentFilteredTopic.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_ContentFilteredTopic has

already been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.3.2 DDS_ContentFilteredTopic_get_filter_expression

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_ContentFilteredTopic_get_filter_expression
 (DDS_ContentFilteredTopic _this);

Description
This operation returns the filter_expression associated with the
DDS_ContentFilteredTopic.

Parameters
in DDS_ContentFilteredTopic _this - the DDS_ContentFilteredTopic

object on which the operation is operated.
213
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
DDS_string - result is a handle to a string which holds the SQL filter expression.

Detailed Description
This operation returns the filter_expression associated with the
DDS_ContentFilteredTopic. That is, the expression specified when the
DDS_ContentFilteredTopic was created.
The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

3.3.3.3 DDS_ContentFilteredTopic_get_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_ContentFilteredTopic_get_name
 (DDS_ContentFilteredTopic _this);

3.3.3.4 DDS_ContentFilteredTopic_get_participant (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_ContentFilteredTopic_get_participant
 (DDS_ContentFilteredTopic _this);

3.3.3.5 DDS_ContentFilteredTopic_get_related_topic

Synopsis
#include <dds_dcps.h>
DDS_Topic
 DDS_ContentFilteredTopic_get_related_topic
 (DDS_ContentFilteredTopic _this);

Description
T h i s o p e r a t i o n r e t u r n s t h e DDS_Topic a s soc i a t e d w i t h t h e
DDS_ContentFilteredTopic.
214
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
in DDS_ContentFilteredTopic _this - the DDS_ContentFilteredTopic

object on which the operation is operated.

Return Value
DDS_Topic - result is a handle to the base topic on which the filtering will be

applied.

Detailed Description
T h i s o p e r a t i o n r e t u r n s t h e DDS_Topic a s soc i a t e d w i t h t h e
DDS_ContentFilteredTopic. That is, the DDS_Topic specified when the
DDS_ContentFilteredTopic was created. This DDS_Topic is the base topic on
which the filtering will be applied.

3.3.3.6 DDS_ContentFilteredTopic_get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_ContentFilteredTopic_get_type_name
 (DDS_ContentFilteredTopic _this);

3.3.3.7 DDS_ContentFilteredTopic_set_expression_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_ContentFilteredTopic_set_expression_parameters
 (DDS_ContentFilteredTopic _this,
 const DDS_StringSeq *expression_parameters);

Description
This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters
in DDS_ContentFilteredTopic _this - the DDS_ContentFilteredTopic

object on which the operation is operated.
215
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

in const DDS_StringSeq *expression_parameters - the handle to a
sequence of strings with the parameters used in the SQL expression (i.e., the
number of %n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic. The parameter expression_parameters is a
handle to a sequence of strings with the parameters used in the SQL expression. The
number of values in expression_parameters must be equal or greater than the
highest referenced %n token in the filter_expression (e.g. if %1 and %8 are
used as parameter in the filter_expression, the expression_parameters
should at least contain n+1 = 9 values). This is the filter expression specified when
the DDS_ContentFilteredTopic was created.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new expression parameters are set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this DDS_ContentFilteredTopic or one of the parameters is an
illegal parameter.

• DDS_RETCODE_ALREADY_DELETED - the DDS_ContentFilteredTopic has
already been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
216
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.4 Class DDS_MultiTopic
DDS_MultiTopic is a specialization of DDS_TopicDescription that allows
subscriptions to combine, filter and/or rearrange data coming from several
DDS_Topics.
DDS_MultiTopic allows a more sophisticated subscription that can select and
combine data received from multiple DDS_Topics into a single data type (specified
by the inherited type_name). The data will then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL expression with
parameters to adapt the filter clause.
The interface description of this class is as follows:
 /*

 * interface DDS_MultiTopic
 */
/*
 * inherited from class DDS_TopicDescription
 */
/* DDS_string
 * DDS_MultiTopic_get_type_name
 * (DDS_MultiTopic _this);

 */
/* DDS_string
 * DDS_MultiTopic_get_name
 * (DDS_MultiTopic _this);
 */

/* DDS_DomainParticipant
 * DDS_MultiTopic_get_participant
 * (DDS_MultiTopic _this);
 */
/*
 * implemented API operations
 */

DDS_string
 DDS_MultiTopic_get_subscription_expression
 (DDS_MultiTopic _this);

DDS_ReturnCode_t
 DDS_MultiTopic_get_expression_parameters
 (DDS_MultiTopic _this,
 DDS_StringSeq *expression_parameters);

DDS_ReturnCode_t
 DDS_MultiTopic_set_expression_parameters
 (DDS_MultiTopic _this,
 const DDS_StringSeq *expression_parameters);
217
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The next paragraphs describe the usage of all DDS_MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
Note: DDS_MultiTopic operations have not been yet been implemented.
Multitopic functionality is scheduled for a future release.

3.3.4.1 DDS_MultiTopic_get_expression_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_MultiTopic_get_expression_parameters
 (DDS_MultiTopic _this,
 DDS_StringSeq *expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation returns the expression parameters associated with the
DDS_MultiTopic.

Parameters
in DDS_MultiTopic _this - the DDS_MultiTopic object on which the

operation is operated.
inout DDS_StringSeq *expression_parameters - a handle to a sequence of

strings that will be used to store the parameters used in the SQL expression.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the expression parameters associated with the
DDS_MultiTopic. That is, the parameters specified on the last successful call to
DDS_MultiTopic_set_expression_parameters , o r i f
DDS_MultiTopic_set_expression_parameters was never called, the
parameters specified when the DDS_MultiTopic was created.
218
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The resulting handle contains a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parameters in the result sequence will exactly match the number of %n tokens in the
filter expression associated with the DDS_MultiTopic.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_MultiTopic has successfully been copied into the specified
expression_parameters parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_MultiTopic has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.4.2 DDS_MultiTopic_get_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_MultiTopic_get_name
 (DDS_MultiTopic _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.3 DDS_MultiTopic_get_participant (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_MultiTopic_get_participant
 (DDS_MultiTopic _this);

Note: This operation is not yet implemented. It is scheduled for a future release.
219
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.4.4 DDS_MultiTopic_get_subscription_expression

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_MultiTopic_get_subscription_expression
 (DDS_MultiTopic _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation returns the subscription expression associated with the
DDS_MultiTopic.

Parameters
in DDS_MultiTopic _this - is the DDS_MultiTopic object on which the

operation is operated.

Return Value
DDS_string - a handle to a string which holds the SQL subscription expression.

Detailed Description
This operation returns the subscription expression associated with the
DDS_MultiTopic. That is, the expression specified when the DDS_MultiTopic
was created.
The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated DDS_Topics. It is an SQL expression where the
SELECT clause provides the fields to be kept, the FROM part provides the names of
the DDS_Topics that are searched for those fields, and the WHERE clause gives the
content filter. The DDS_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN operation must
be the same.

3.3.4.5 DDS_MultiTopic_get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_MultiTopic_get_type_name
 (DDS_MultiTopic _this);
220
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.6 DDS_MultiTopic_set_expression_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_MultiTopic_set_expression_parameters
 (DDS_MultiTopic _this,
 const DDS_StringSeq *expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation changes the expression parameters associated with the
DDS_MultiTopic.

Parameters
in DDS_MultiTopic _this - the DDS_MultiTopic object on which the

operation is operated.
in const DDS_StringSeq *expression_parameters - the handle to a

sequence of strings with the parameters used in the SQL expression.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation changes the expression parameters associated with the
DDS_MultiTopic. The parameter expression_parameters is a handle to a
sequence of strings with the parameters used in the SQL expression. The number of
parameters in expression_parameters must exactly match the number of %n
tokens in the subscription expression associated with the DDS_MultiTopic. This is
the subscription expression specified when the DDS_MultiTopic was created.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new expression parameters are set.
• DDS_RETCODE_ERROR - an internal error has occurred.
221
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

• DDS_RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this DDS_MultiTopic or one of the parameters is an illegal
parameter.

• DDS_RETCODE_ALREADY_DELETED - the DDS_MultiTopic has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.3.5 DDS_TopicListener Interface
Since a DDS_Topic is a DDS_Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DDS_TopicListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DDS_TopicListener class. All DDS_TopicListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_TopicListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as an inconsistent DDS_Topic. The
DDS_TopicListener is related to changes in communication status.
The interface description of this class is as follows:

/*
 * interface DDS_TopicListener
 */
/*
 * abstract external operations
 */

void
 DDS_TopicListener_on_inconsistent_topic
 (void *listener_data,
 DDS_Topic the_topic,

 const DDS_InconsistentTopicStatus *status);
/*
 * implemented API operations
 */

DDS_TopicListener
222
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 DDS_TopicListener__alloc
 (void);

The next paragraph describes the usage of the DDS_TopicListener operation.
This abstract operation is fully described since it must be implemented by the
application.

3.3.5.1 DDS_TopicListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_TopicListener
 DDS_TopicListener__alloc
 (void);

Description
This operation creates a new DDS_TopicListener.

Parameters
<none>

Return Value
DDS_TopicListener - the handle to the newly created DDS_TopicListener. In

case of an error, a DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a new DDS_TopicListener. The DDS_TopicListener
must be created using this operation. In other words, the application is not allowed
to declare an object of type DDS_TopicListener. When the application wants to
release the DDS_TopicListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_TopicListener, a DDS_OBJECT_NIL pointer is returned instead.

3.3.5.2 DDS_TopicListener_on_inconsistent_topic (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_TopicListener_on_inconsistent_topic
 (void *listener_data,
 DDS_Topic the_topic,
 const DDS_InconsistentTopicStatus *status);
223
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_InconsistentTopicStatus changes.

Parameters
inout void *listener_data - a pointer to a user defined object which may
be used for identification of the Listener.
in DDS_Topic the_topic - a pointer to the DDS_Topic on which the
conflict occurred (this is an input to the application).
in const DDS_InconsistentTopicStatus *status - the
DDS_InconsistentTopicStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_InconsistentTopicStatus changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the re levant DDS_TopicListener i s ins ta l led and enabled for the
DDS_InconsistentTopicStatus. The DDS_InconsistentTopicStatus will
change when another DDS_Topic exists with the same topic_name but different
characteristics.
The Data Distribution Service will call the DDS_TopicListener operation with a
parameter the_topic, which will contain a pointer to the DDS_Topic on which
the conflict occurred and a parameter status , which will contain the
DDS_InconsistentTopicStatus struct.

3.3.6 Topic-Definition Type Specific Classes
This paragraph describes the generic DDS_TypeSupport class and the derived
application type specific <NameSpace>_<type>TypeSupport classes which
together implement the application DDS_Topic interface. For each application type,
u se d a s DDS_Topic d a t a t ype , t he p r e -p roce s s o r gene ra t e s a
<NameSpace>_<type>DataReader class from an IDL type description. The
SPACE_FooTypeSupport class that would be generated by the pre-processor for a
f i c t i o na l t yp e Foo (d e f i n e d i n t h e m o d u l e SPACE) d e s c r i b e s t h e
<NameSpace>_<type>TypeSupport classes.
224
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.6.1 Class DDS_TypeSupport (abstract)
The DDS_Topic, DDS_MultiTopic or DDS_ContentFilteredTopic is bound
to a data type described by the type name argument. Prior to creating a DDS_Topic,
DDS_MultiTopic or DDS_ContentFilteredTopic, the data type must have
been registered with the Data Distribution Service. This is done using the data type
specific DDS_TypeSupport_register_type operation on a derived class of the
DDS_TypeSupport interface. A derived class is generated for each data type used
by the application, by calling the pre-processor.
The interface description of this class is as follows:

/*
 * interface DDS_TypeSupport
 */
/*
 * abstract operations
 */
/* DDS_TypeSupport
 * DDS_TypeSupport__alloc
 * (void);
 */
/* DDS_ReturnCode_t
 * DDS_TypeSupport_register_type
 * (DDS_TypeSupport _this,
 * Domainparticipant domain,
 * DDS_string type_name);
 *
 * DDS_string
 * DDS_TypeSupport_get_type_name
 * (DDS_TypeSupport _this);
 */
/*
 * implemented API operations
 * <no operations>
 */

The next paragraph list the DDS_TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation is given in the SPACE_FooTypeSupport class (for the
data type example Foo), which contains the data type specific implementation of
this operation.
225
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.6.2 DDS_TypeSupport__alloc (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>TypeSupport class. Therefore, to use this operation,
the data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooTypeSupport class.

Synopsis
#include <dds_dcps.h>
DDS_TypeSupport
 DDS_TypeSupport__alloc
 (void);

3.3.6.3 DDS_TypeSupport_get_type_name (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional data type Foo (defined in the module SPACE) derived
SPACE_FooTypeSupport class.

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_TypeSupport_get_type_name
 (DDS_TypeSupport _this);

3.3.6.4 DDS_TypeSupport_register_type (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional data type Foo (defined in the module SPACE) derived
SPACE_FooTypeSupport class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_TypeSupport_register_type
 (DDS_TypeSupport _this,
 Domainparticipant domain,
 DDS_string type_name);

3.3.6.5 Class SPACE_FooTypeSupport
The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>TypeSupport classes. For each application data type that
i s u s e d a s DDS_Topic d a t a t y pe , a t yp ed c l a s s
<NameSpace>_<type>TypeSupport is derived from the DDS_TypeSupport
226
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

class. In this paragraph, the class SPACE_FooTypeSupport describes the
operations of these derived <NameSpace>_<type>TypeSupport classes as an
example for the fictional application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a Space.h include file.
The DDS_Topic, DDS_MultiTopic or DDS_ContentFilteredTopic is bound
to a data type described by the type type_name argument. Prior to creating a
DDS_Topic, DDS_MultiTopic or DDS_ContentFilteredTopic, the data type
must have been registered with the Data Distribution Service. This is done using the
data type specific SPACE_FooTypeSupport_register_type operation on the
<NameSpace>_<type>TypeSupport class for each data type. A derived class is
generated for each data type used by the application, by calling the pre-processor.
The interface description of this class is as follows:

/*
 * interface SPACE_FooTypeSupport
 */
/*
 * implemented API operations
 */

SPACE_FooTypeSupport
 SPACE_FooTypeSupport__alloc
 (void);
DDS_ReturnCode_t
 SPACE_FooTypeSupport_register_type
 (SPACE_FooTypeSupport _this,
 DDS_DomainParticipant domain,
 DDS_string type_name);
DDS_string
 SPACE_FooTypeSupport_get_type_name
 (SPACE_FooTypeSupport _this);

The next paragraph describes the usage of the SPACE_FooTypeSupport
operations.

3.3.6.6 SPACE_FooTypeSupport__alloc

Synopsis
#include <Space.h>
SPACE_FooTypeSupport
 SPACE_FooTypeSupport__alloc
 (void);

Description
This operation creates a new SPACE_FooTypeSupport.
227
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
<none>

Return Value
SPACE_FooTypeSupport - t h e h a n d l e t o t h e n e w l y c r e a t e d

SPACE_FooTypeSupport. In case of an error, a nil pointer is returned.

Detailed Description
T h i s o p e r a t i o n c r e a t e s a n e w SPACE_FooTypeSupport . T h e
SPACE_FooTypeSupport must be created using this operation. In other words, the
application is not allowed to declare an object of type SPACE_FooTypeSupport.
When the application wants to release the SPACE_FooTypeSupport it must be
released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
SPACE_FooTypeSupport, a nil pointer is returned instead.

3.3.6.7 SPACE_FooTypeSupport_get_type_name

Synopsis
#include <Space.h>
DDS_string
 SPACE_FooTypeSupport_get_type_name
 (SPACE_FooTypeSupport _this);

Description
This operation returns the default name of the data type associated with the
SPACE_FooTypeSupport.

Parameters
in SPACE_FooTypeSupport _this - the SPACE_FooTypeSupport object on

which the operation is operated.

Return Value
DDS_string - the name of the data type of the SPACE_FooTypeSupport.

Detailed Description
This operation returns the default name of the data type associated with the
SPACE_FooTypeSupport. The default name is derived from the type name as
specified in the IDL definition. It is composed of the scope names and the type
name, each separated by “::”, in order of lower scope level to deeper scope level
followed by the type name.
228
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.6.8 SPACE_FooTypeSupport_register_type

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooTypeSupport_register_type
 (SPACE_FooTypeSupport _this,
 DDS_DomainParticipant domain,
 DDS_string type_name);

Description
This operation registers a new data type name to a DDS_DomainParticipant.

Parameters
in SPACE_FooTypeSupport _this - the SPACE_FooTypeSupport object on

which the operation is operated.
in DDS_DomainParticipant domain - a p o i n t e r t o a

DDS_DomainParticipant object to which the new data type is registered.
in DDS_string type_name - a local alias of the new data type to be registered.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation registers a new data type name to a DDS_DomainParticipant.
This operation informs the Data Distribution Service, in order to allow it to manage
the new registered data type. This operation also informs the Data Distribution
Service about the key definition, which allows the Data Distribution Service to
distinguish different instances of the same data type.

Precondition
A type_name c anno t be r eg i s t e r ed w i th tw o d i f f e re n t
<NameSpace>_<type>TypeSupport classes (this means of a different data type)
with the same DDS_DomainParticipant. When the operation is called on the
same DDS_DomainParticipant with the same type_name for a different
<NameSpace>_<type>TypeSupport c l a s s , t he ope ra t ion re tu rns
DDS_RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the
same <NameSpace>_<type>TypeSupport c l a s ses wi th the same
229
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS_DomainParticipant and the same or different type_name multiple times.
All registrations return DDS_RETCODE_OK, but any subsequent registrations with
the same type_name are ignored.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the SPACE_FooTypeSupport class is registered with the

new data type name to the DDS_DomainParticipant or the
SPACE_FooTypeSupport class was already registered.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - one or both parameters is the
DDS_OBJECT_NIL pointer or the parameter type_name has zero length.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - this type_name is already
registered with this DDS_DomainParticipant for a different
<NameSpace>_<type>TypeSupport class.
230
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4 Publication Module

Figure 18 The DCPS Publication Module’s Class Model
This module contains the following classes:
• DDS_Publisher
• Publication type specific classes
• DDS_PublisherListener (interface)
• DDS_DataWriterListener (interface).
The paragraph “Publication type specific classes” contains the generic class and the
generated data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataWriter is generated (based on IDL) by calling the
pre-processor.
For instance, for the fictional data type Foo (this also applies to other types), defined
in the module SPACE; “Publication type specific classes” contains the following
classes:
• DDS_DataWriter (abstract)
• SPACE_FooDataWriter.

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
231
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

A DDS_Publisher is an object responsible for data distribution. It may publish
data of different data types. A DDS_DataWriter acts as a typed accessor to a
DDS_Publisher. The DDS_DataWriter is the object the application must use to
communicate the existence and value of data-objects of a given data type to a
DDS_Publisher. When data-object values have been communicated to the
DDS_Publisher through the appropriate DDS_DataWriter, i t is the
DDS_Publisher’s respons ib i l i ty to per form the d is t r ibu t ion . The
DDS_Publisher will do this according to its own DDS_PublisherQos, and the
DDS_DataWriterQos attached to the corresponding DDS_DataWriter. A
publication is defined by the association of a DDS_DataWriter to a
DDS_Publisher. This association expresses the intent of the application to publish
the data described by the DDS_DataWriter in the context provided by the
DDS_Publisher.

3.4.1 Class DDS_Publisher
The DDS_Publisher acts on behalf of one or more DDS_DataWriter objects that
belong to it. When it is informed of a change to the data associated with one of its
DDS_DataWriter objects, it decides when it is appropriate to actually process the
sample -upda te message . In mak ing th i s dec i s ion , i t cons ide r s the
DDS_PublisherQos and the DDS_DataWriterQos.
The interface description of this class is as follows:

/*
 * interface DDS_Publisher
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * DDS_Publisher_get_statuscondition
 * (DDS_Publisher _this);
 */
/* DDS_StatusMask
 * DDS_Publisher_get_status_changes
 * (DDS_Publisher _this);
 */
/* DDS_ReturnCode_t
 * DDS_Publisher_enable
 * (DDS_Publisher _this);
 */
/*
 * implemented API operations
 */

DDS_DataWriter
 DDS_Publisher_create_datawriter
 (DDS_Publisher _this,
232
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 const DDS_Topic a_topic,
 const DDS_DataWriterQos *qos,
 const struct DDS_DataWriterListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_Publisher_delete_datawriter
 (DDS_Publisher _this,
 const DDS_DataWriter a_datawriter);

DDS_DataWriter
 DDS_Publisher_lookup_datawriter
 (DDS_Publisher _this,
 const DDS_char *topic_name);
DDS_ReturnCode_t
 DDS_Publisher_delete_contained_entities
 (DDS_Publisher _this);

DDS_ReturnCode_t
 DDS_Publisher_set_qos
 (DDS_Publisher _this,
 const DDS_PublisherQos *qos);
DDS_ReturnCode_t
 DDS_Publisher_get_qos
 (DDS_Publisher _this,
 DDS_PublisherQos *qos);
DDS_ReturnCode_t
 DDS_Publisher_set_listener
 (DDS_Publisher _this,
 const struct DDS_PublisherListener *a_listener,
 const DDS_StatusMask mask);
struct DDS_PublisherListener
 DDS_Publisher_get_listener
 (DDS_Publisher _this);
DDS_ReturnCode_t
 DDS_Publisher_suspend_publications
 (DDS_Publisher _this);

DDS_ReturnCode_t
 DDS_Publisher_resume_publications
 (DDS_Publisher _this);

DDS_ReturnCode_t
 DDS_Publisher_begin_coherent_changes
 (DDS_Publisher _this);

DDS_ReturnCode_t
 DDS_Publisher_end_coherent_changes
 (DDS_Publisher _this);

233
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

DDS_ReturnCode_t
 DDS_Publisher_wait_for_acknowledgments
 (DDS_Publisher _this,
 const DDS_Duration_t *max_wait);

DDS_DomainParticipant
 DDS_Publisher_get_participant
 (DDS_Publisher _this);

DDS_ReturnCode_t
 DDS_Publisher_set_default_datawriter_qos
 (DDS_Publisher _this,
 const DDS_DataWriterQos *qos);

DDS_ReturnCode_t
 DDS_Publisher_get_default_datawriter_qos
 (DDS_Publisher _this,
 DDS_DataWriterQos *qos);

DDS_ReturnCode_t
 DDS_Publisher_copy_from_topic_qos
 (DDS_Publisher _this,
 DDS_DataWriterQos *a_datawriter_qos,

 const DDS_TopicQos *a_topic_qos);

The next paragraphs describe the usage of all DDS_Publisher operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.1.1 DDS_Publisher_begin_coherent_changes

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_begin_coherent_changes
 (DDS_Publisher _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DDS_DataWriter objects attached to this DDS_Publisher.
The ‘coherent set’ will be completed by a matching call to DDS_Publisher_
end_coherent_changes.
234
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_UNSUPPORTED.

Detailed Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DDS_DataWriter objects attached to this DDS_Publisher.
The ‘coherent set’ will be completed by a matching call to DDS_Publisher_
end_coherent_changes.
A ‘coherent set’ is a set of modifications that must be propagated in such a way that
they are interpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.
A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the DDS_Publisher or one of its connected
DDS_Subscribers may change, a late-joining DDS_DataReader may appear on
the network, or a communication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave as if it had received none of the set.
These calls can be nested. In that case, the coherent set terminates only with the last
call to DDS_Publisher_end_coherent_changes.
The support for ‘coherent changes’ enables a publishing application to change the
value of several data-instances that could belong to the same or different topics and
have those changes be seen ‘atomically’ by the readers. This is useful in cases where
the values are inter-related (for example, if there are two data-instances representing
the ‘altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Return Code
When the operation returns:
• DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is

scheduled for a future release.
235
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.2 DDS_Publisher_copy_from_topic_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_copy_from_topic_qos
 (DDS_Publisher _this,
 DDS_DataWriterQos *a_datawriter_qos,
 const DDS_TopicQos *a_topic_qos);

Description
This operation will copy policies in a_topic_qos to the corresponding policies in
a_datawriter_qos.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
inout DDS_DataWriterQos *a_datawriter_qos - the destination

DDS_DataWriterQos struct to which the QosPolicy settings should be
copied.

in const DDS_TopicQos *a_topic_qos - the source DDS_TopicQos struct,
which should be copied.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datawriter_qos (replacing the values
in a_datawriter_qos, if present). This will only apply to the common
QosPolicy settings in each <DDS_Entity>Qos.
This is a “convenience” operation, useful in combination with the operations
DDS_Publisher_get_default_datawriter_qos and DDS_Topic_get_qos.
The operation DDS_Publisher_copy_from_topic_qos can be used to merge
the DDS_DataWriter default QosPolicy settings with the corresponding ones on
the DDS_TopicQos. The resulting DDS_DataWriterQos can then be used to
create a new DDS_DataWriter, or set its DDS_DataWriterQos.
236
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

This operation does not check the resulting a_datawriter_qos for consistency.
This is because the “merged” a_datawriter_qos may not be the final one, as the
application can still modify some QosPolicy settings prior to applying the
DDS_DataWriterQos to the DDS_DataWriter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the QosPolicy settings have successfully been copied from

the DDS_TopicQos to the DDS_DataWriterQos.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.3 DDS_Publisher_create_datawriter

Synopsis
#include <dds_dcps.h>
DDS_DataWriter
 DDS_Publisher_create_datawriter
 (DDS_Publisher _this,
 const DDS_Topic a_topic,
 const DDS_DataWriterQos *qos,
 const struct DDS_DataWriterListener *a_listener,
 const DDS_StatusMask mask);

Description
T h i s o p e r a t i o n c r e a t e s a DDS_DataWriter w i t h t h e d e s i r e d
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DataWriterListener to it.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const DDS_Topic a_topic - a pointer to the topic for which the

DDS_DataWriter is created.
237
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

in const DDS_DataWriterQos *qos - the DDS_DataWriterQos for the new
DDS_DataWriter. In case these settings are not self consistent, no
DDS_DataWriter is created.

in const struct DDS_DataWriterListener *a_listener - a pointer to
the DDS_DataWriterListener instance which will be attached to the new
DDS_DataWriter. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_DataWriterListener whose operations
perform no action.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for a certain status.

Return Value
DDS_DataWriter - Return va lue i s a poin ter to the newly crea ted

DDS_DataWriter. In case of an error, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description
T h i s o p e r a t i o n c r e a t e s a DDS_DataWriter w i t h t h e d e s i r e d
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DataWriterListener to it. The returned DDS_DataWriter is
attached (and belongs) to the DDS_Publisher on which this operation is being
called. To delete the DDS_DataWriter the operation DDS_Publisher_
delete_datawriter or DDS_Publisher_delete_contained_entities
must be used.

Application Data Type
The DDS_DataWriter returned by this operation is an object of a derived class,
spec i f ic to the da ta type associa ted wi th the DDS_Topic . For each
a p p l i c a t i o n - d e f i n e d d a t a t y p e <type> t h e r e i s a c l a s s
<NameSpace>_<type>DataWriter generated by calling the pre-processor. This
data type specific class extends DDS_DataWriter and contains the operations to
write data of data type <type>.

QosPolicy
The possible application pattern to construct the DDS_DataWriterQos for the
DDS_DataWriter is to:
• Retrieve the QosPolicy settings on the associated DDS_Topic by means of the
get_qos operation on the DDS_Topic.

• Retrieve the default DDS_DataWriterQos by means of the
DDS_Publisher_get_default_datawriter_qos operation on the
DDS_Publisher
238
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

• Use the resulting DDS_DataWriterQos to construct the DDS_DataWriter.
• In case the specified QosPolicy settings are not consistent, no
DDS_DataWriter is created and the DDS_OBJECT_NIL pointer is returned.

Default QoS
The constant DDS_DATAWRITER_QOS_DEFAULT can be used as parameter qos to
create a DDS_DataWriter with the default DDS_DataWriterQos as set in the
DDS_Publisher. The effect of using DDS_DATAWRITER_QOS_DEFAULT is the
same as calling the operation DDS_Publisher_get_default_datawriter_qos
and using the resulting DDS_DataWriterQos to create the DDS_DataWriter.
The special DDS_DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DDS_DataWriter with a combination of the default DDS_DataWriterQos and
the DDS_TopicQos . T h e e f f e c t o f u s i n g
DDS_DATAWRITER_QOS_USE_TOPIC_QOS is the same as calling the operation
DDS_Publisher_get_default_datawriter_qos and retrieving the
DDS_TopicQos (by means of the operation DDS_Topic_get_qos) and then
combin ing t he se two QosPolicy s e t t i n g s u s in g th e o p e r a t i o n
DDS_Publisher_copy_from_topic_qos, whereby any common policy that is
set on the DDS_TopicQos “overrides” the corresponding policy on the default
DDS_DataWriterQos. The resulting DDS_DataWriterQos is then applied to
create the DDS_DataWriter.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_DataWriterListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset.
The following statuses are applicable to the DDS_DataWriterListener:

DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_PUBLICATION_MATCHED_STATUS.
239
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_DataWriterListener, the DDS_PublisherListener of the containing
DDS_Publisher is invoked (if attached and activated for the status that occurred).
T h i s a l l o w s t h e a p p l i c a t i o n to s e t a d e f a u l t b e h a v i o u r i n t h e
DDS_PublisherListener of the containing DDS_Publisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_PublisherListener as well, the
c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant. In case the DDS_DomainParticipantListener is
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

3.4.1.4 DDS_Publisher_delete_contained_entities

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_delete_contained_entities
 (DDS_Publisher _this);

Description
This operation deletes all the DDS_DataWriter objects that were created by means
of one of the DDS_Publisher_create_datawriter operations on the
DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.
240
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation deletes all the DDS_DataWriter objects that were created by means
of one of the DDS_Publisher_create_datawriter operations on the
DDS_Publisher. In other words, it deletes all contained DDS_DataWriter
objects.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the contained DDS_Entity objects are deleted and the

application may delete the DDS_Publisher.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities

are in a state where they cannot be deleted.

3.4.1.5 DDS_Publisher_delete_datawriter

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_delete_datawriter
 (DDS_Publisher _this,
 const DDS_DataWriter a_datawriter);

Description
This operation deletes a DDS_DataWriter that belongs to the DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

-is operated.
241
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

in const DDS_DataWriter a_datawriter - a p o i n t e r t o t h e
DDS_DataWriter, which is to be deleted.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED , DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_DataWriter that belongs to the DDS_Publisher.
When the operation is called on a different DDS_Publisher, as used when the
DDS_DataWriter was created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET. The deletion of the DDS_DataWriter
will automatically unregister all instances. Depending on the settings of
DDS_WriterDataLifecycleQosPolicy, the deletion of the DDS_DataWriter
may also dispose of all instances.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DataWriter is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_datawriter is not a valid
DDS_DataWriter.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_Publisher, as used when the DDS_DataWriter was created.

3.4.1.6 DDS_Publisher_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
242
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

DDS_ReturnCode_t
 DDS_Publisher_enable
 (DDS_Publisher _this);

3.4.1.7 DDS_Publisher_end_coherent_changes

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_end_coherent_changes
 (DDS_Publisher _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation terminates the ‘coherent set’ initiated by the matching call to
DDS_Publisher_begin_coherent_changes.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_UNSUPPORTED.

Detailed Description
This operation terminates the ‘coherent set’ initiated by the matching call to
DDS_Publisher_begin_coherent_changes. If there is no matching call to
DDS_Publisher_begin_coherent_changes, the operation will return the error
DDS_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is

scheduled for a future release.

3.4.1.8 DDS_Publisher_get_default_datawriter_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_get_default_datawriter_qos
 (DDS_Publisher _this,
243
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 DDS_DataWriterQos *qos);

Description
This operation gets the default DDS_DataWriterQos of the DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
inout DDS_DataWriterQos *qos - a pointer to the DDS_DataWriterQos

struct (provided by the application) in which the default DDS_DataWriterQos
for the DDS_DataWriter is written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation gets the default DDS_DataWriterQos of the DDS_Publisher (that
is the struct with the QosPolicy settings) which is used for newly created
DDS_DataWriter objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default DDS_DataWriterQos is only used when the constant is
supplied as parameter qos to specify the DDS_DataWriterQos in the
DDS_Publisher_create_datawriter operation. The application must provide
the DDS_DataWriterQos struct in which the QosPolicy settings can be stored
and pass the qos pointer to the operation. The operation writes the default
DDS_DataWriterQos to the struct pointed to by qos. Any settings in the struct are
overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to DDS_Publisher_set_default_datawriter_qos, or, if the
call was never made, the default values as specified for each QosPolicy setting as
defined in Table 5 on page 59.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the default DDS_DataWriter QosPolicy settings of this
DDS_Publisher have successfully been copied into the specified
DDS_DataWriterQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
244
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.4.1.9 DDS_Publisher_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_PublisherListener
 DDS_Publisher_get_listener
 (DDS_Publisher _this);

Description
This operation allows access to a DDS_PublisherListener.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
struct DDS_PublisherListener - a pointer to the DDS_PublisherListener

attached to the DDS_Publisher.

Detailed Description
This operation allows access to a DDS_PublisherListener attached to the
DDS_Publisher. When no DDS_PublisherListener was attached to the
DDS_Publisher, the DDS_OBJECT_NIL pointer is returned.

3.4.1.10 DDS_Publisher_get_participant

Synopsis
#include <dds_dcps.h>

DDS_DomainParticipant
 DDS_Publisher_get_participant
 (DDS_Publisher _this);

Description
This operation returns the DDS_DomainParticipant associated with the
DDS_Publisher or the DDS_OBJECT_NIL pointer.
245
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_DomainParticipant - a pointer to the DDS_DomainParticipant

associated with the DDS_Publisher or the DDS_OBJECT_NIL pointer.

Detailed Description
This operation returns the DDS_DomainParticipant associated with the
DDS_Publisher. Note that there is exactly one DDS_DomainParticipant
associated with each DDS_Publisher. When the DDS_Publisher was already
deleted (there is no associated DDS_DomainParticipant any more), the
DDS_OBJECT_NIL pointer is returned.

3.4.1.11 DDS_Publisher_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_get_qos
 (DDS_Publisher _this,
 DDS_PublisherQos *qos);

Description
This operation allows access to the existing set of QoS policies for a
DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
inout DDS_PublisherQos *qos - a po in t e r t o t he de s t i na t i on

DDS_PublisherQos struct in which the QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
246
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DDS_Publisher on which this operation is used. This DDS_PublisherQos is
stored at the location pointed to by the qos parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Publisher has successfully been copied into the specified
DDS_PublisherQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.12 DDS_Publisher_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_Publisher_get_status_changes
 (DDS_Publisher _this);

3.4.1.13 DDS_Publisher_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_Publisher_get_statuscondition
 (DDS_Publisher _this);
247
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.14 DDS_Publisher_lookup_datawriter

Synopsis
#include <dds_dcps.h>
DDS_DataWriter
 DDS_Publisher_lookup_datawriter
 (DDS_Publisher _this,
 const DDS_char *topic_name);

Description
This operation returns a previously created DDS_DataWriter belonging to the
DDS_Publisher which is attached to a DDS_Topic with the matching
topic_name.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const DDS_char *topic_name - the name of the DDS_Topic, which is

attached to the DDS_DataWriter to look for.

Return Value
DDS_DataWriter - Return value is a pointer to the DDS_DataWriter found.

When no such DDS_DataWriter is found, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation returns a previously created DDS_DataWriter belonging to the
DDS_Publisher which is attached to a DDS_Topic with the matching
topic_name. When multiple DDS_DataWriter objects (which satisfy the same
condition) exist, this operation will return one of them. It is not specified which one.

3.4.1.15 DDS_Publisher_resume_publications

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_resume_publications
 (DDS_Publisher _this);

Description
This operation resumes a previously suspended publication.
248
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_NOT_ENABLED or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
If the DDS_Publisher is suspended, this operation will resume the publication of
all DDS_DataWriter objects contained by this DDS_Publisher. All data held in
the history buffer of the DDS_DataWriter's is actively published to the consumers.
When the operation returns, all DDS_DataWriter's have resumed the publication
of suspended updates.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Publisher object has been resumed.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_Publisher is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the DDS_Publisher is not

suspended.

3.4.1.16 DDS_Publisher_set_default_datawriter_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_set_default_datawriter_qos
 (DDS_Publisher _this,
 const DDS_DataWriterQos *qos);
249
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation sets the default DDS_DataWriterQos of the DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const DDS_DataWriterQos *qos - the DDS_DataWriterQos struct, which

contains the new default DDS_DataWriterQos for the newly created
DDS_DataWriters.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DDS_DataWriterQos of the DDS_Publisher (that
is the struct with the QosPolicy settings) which is used for newly created
DDS_DataWriter objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default DDS_DataWriterQos is only used when the constant is
supplied as parameter qos to specify the DDS_DataWriterQos in the
DDS_Publisher_create_datawriter operation.
The DDS_Publisher_set_default_datawriter_qos operation checks if the
DDS_DataWriterQos is self consistent. If it is not, the operation has no effect and
returns DDS_RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
DDS_Publisher_get_default_datawriter_qos.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_DataWriterQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
250
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_DataWriterQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.4.1.17 DDS_Publisher_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_set_listener
 (DDS_Publisher _this,
 const struct DDS_PublisherListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_PublisherListener to the DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const struct DDS_PublisherListener *a_listener - a pointer to the

DDS_PublisherListener instance, which will be attached to the
DDS_Publisher.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_PublisherListener for a certain status.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
251
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation attaches a DDS_PublisherListener to the DDS_Publisher.
Only one DDS_PublisherListener can be attached to each DDS_Publisher. If
a DDS_PublisherListener was already attached, the operation will replace it
with the new one. When a_listener is the DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP1 for all statuses activated in the
bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_PublisherListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application calls the get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the DDS_OBJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DDS_PublisherListener:
• DDS_OFFERED_DEADLINE_MISSED_STATUS (propagated)
• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_LIVELINESS_LOST_STATUS (propagated)
• DDS_PUBLICATION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_PublisherListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataWriterListener o f a conta ined DDS_DataWriter, the
DDS_DataWriterListener on that contained DDS_DataWriter is invoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DataWriter only invokes the DDS_PublisherListener if the
contained DDS_DataWriter itself does not handle the trigger event generated by
the status change.

1. Short for No-Operation, an instruction that peforms nothing at all.

252
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

In case a status is not activated in the mask of the DDS_PublisherListener, the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener is also not attached or
the communication status is not activated in its mask, the application is not notified
of the change.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_PublisherListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.18 DDS_Publisher_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_set_qos
 (DDS_Publisher _this,
 const DDS_PublisherQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_Publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const DDS_PublisherQos *qos - contains the new set of QosPolicy

settings for the DDS_Publisher.
253
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_IMMUTABLE_POLICY.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_Publisher. The parameter qos contains the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_Publisher, which can only be set before
the DDS_Publisher i s enab l e d , t he ope r a t i o n w i l l f a i l a n d a
DDS_RETCODE_IMMUTABLE_POLICY is returned. In other words, the application
must provide the currently set QosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and a DDS_RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_PublisherQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_PublisherQos. It contains a QosPolicy setting with an enum value that is
outside its legal boundaries or a sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
254
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DDS_Publisher.

3.4.1.19 DDS_Publisher_suspend_publications

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_suspend_publications
 (DDS_Publisher _this);

Description
This operation will suspend the dissemination of the publications by all contained
DataWriter objects.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_NOT_ENABLED.

Detailed Description
This operation suspends the publication of all DDS_DataWriter objects contained
by this DDS_Publisher. The data written, disposed or unregistered by a
DDS_DataWriter is stored in the history buffer of the DDS_DataWriter and
therefore, depending on its QoS settings, the following operations may block (see
the operation descriptions for more information):
• DDS_DataWriter_dispose
• DDS_DataWriter_dispose_w_timestamp

• DDS_DataWriter_write
• DDS_DataWriter_write_w_timestamp
• DDS_DataWriter_writedispose
• DDS_DataWriter_writedispose_w_timestamp
• DDS_DataWriter_unregister_instance
• DDS_DataWriter_unregister_instance_w_timestamp
255
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Subsequent calls to the DDS_Publisher_suspend_publications operation
ha ve no e ff e c t . Whe n t he DDS_Publisher i s d e l e t e d b e fo r e
DDS_Publisher_resume_publications is called, all suspended updates are
discarded.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_Publisher has been suspended.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_Publisher is not enabled.

3.4.1.20 DDS_Publisher_wait_for_acknowledgments

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Publisher_wait_for_acknowledgments
 (DDS_Publisher _this,
 const DDS_Duration_t *max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation blocks the calling thread until either all data written by the contained
DDS_DataWriters is acknowledged by the matched DDS_DataReaders, or until
the duration specified by max_wait parameter elapses, whichever happens first.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation

is operated.
in const DDS_Duration_t *max_wait - the maximum duration to block for

the DDS_Publisher_wait_for_acknowledgments, after which the
ap p l i ca t i on t h r ea d i s un b lo cke d . The sp ec i a l c ons t a n t
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.
256
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_UNSUPPORTED.

Detailed Description
This operation is intended to be used only if one or more of the contained
DDS_DataWriters has its DDS_ReliabilityQosPolicyKind set to
DDS_RELIABLE_RELIABILITY_QOS. Otherwise the operation will return
immediately with DDS_RETCODE_OK.
It blocks the calling thread until either all data written by the contained reliable
DDS_DataWriters is acknowledged by all matched DDS_DataReader entities
that have their DDS_ReliabilityQosPolicyKind set to DDS_RELIABLE_
RELIABILITY_QOS, or else the duration specified by the max_wait parameter
elapses, whichever happens first. A return value of DDS_RETCODE_OK indicates that
all the samples written have been acknowledged by all reliable matched data
readers; a return value of DDS_RETCODE_TIMEOUT indicates that max_wait
elapsed before all the data was acknowledged.

Return Code
When the operation returns:
• DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is

scheduled for a future release.

3.4.2 Publication Type Specific Classes
This paragraph describes the generic DDS_DataWriter class and the derived
application type specific <NameSpace>_<type>DataWriter classes which
together implement the application publication interface. For each application type,
u se d a s DDS_Topic d a t a t ype , t he p r e -p roce s s o r gene ra t e s a
<NameSpace>_<type>DataWriter class from an IDL type description. The
SPACE_FooDataWriter class that would be generated by the pre-processor for a
f i c t i o na l t yp e Foo (d e f i n e d i n t h e m o d u l e SPACE) d e s c r i b e s t h e
<NameSpace>_<type>DataWriter classes.

3.4.2.1 Class DDS_DataWriter (abstract)
DDS_DataWriter allows the application to set the value of the sample to be
published under a given DDS_Topic.
A DDS_DataWriter is attached to exactly one DDS_Publisher which acts as a
factory for it.
257
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

A DDS_DataWriter is bound to exactly one DDS_Topic and therefore to exactly
one data type. The DDS_Topic must exist prior to the DDS_DataWriter's
creation.
DDS_DataWriter is an abstract class. It must be specialized for each particular
application data type. For a fictional application data type Foo (defined in the
module SPACE) the specialized class would be SPACE_FooDataWriter.
The interface description of this class is as follows:

/*
 * interface DDS_DataWriter
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * DDS_DataWriter_get_statuscondition
 * (DDS_DataWriter _this);
 */
/* DDS_StatusMask
 * DDS_DataWriter_get_status_changes
 * (DDS_DataWriter _this);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_enable
 * (DDS_DataWriter _this);
 */
/*
 * abstract operations
 * (implemented in the data type specific DDS_DataWriter)
 */
/* DDS_InstanceHandle_t
 * DDS_DataWriter_register_instance
 * (DDS_DataWriter _this);
 * const <data> *instance_data);
 */
/* DDS_InstanceHandle_t
 * DDS_DataWriter_register_instance_w_timestamp
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_Time_t *source_timestamp);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_unregister_instance
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t handle);
 */
/* DDS_ReturnCode_t
258
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 * DDS_DataWriter_unregister_instance_w_timestamp
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t handle,
 * const DDS_Time_t *source_timestamp);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_write
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t handle);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_write_w_timestamp
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t handle,
 * const DDS_Time_t *source_timestamp);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_dispose
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t instance_handle);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_dispose_w_timestamp
 * (DDS_DataWriter _this);
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t instance_handle,
 * const DDS_Time_t *source_timestamp);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_writedispose
 * (DDS_DataWriter _this,
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t instance_handle);
 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_writedispose_w_timestamp
 * (DDS_DataWriter _this,
 * const <data> *instance_data,
 * const DDS_InstanceHandle_t instance_handle,
 * const DDS_Time_t *source_timestamp);

 */
/* DDS_ReturnCode_t
 * DDS_DataWriter_get_key_value
 * (DDS_DataWriter _this);
 * <data> *key_holder,
259
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 * const DDS_InstanceHandle_t handle);
 */
/* DDS_InstanceHandle_t
 * DDS_DataWriter_lookup_instance
 */ (DDS_DataWriter _this,
 * <data> *instance_data);
/*
/*
 * implemented API operations
 */

DDS_ReturnCode_t
 DDS_DataWriter_set_qos
 (DDS_DataWriter this,
 const DDS_DataWriterQos *qos);

DDS_ReturnCode_t
 DDS_DataWriter_get_qos
 (DDS_DataWriter this,
 DDS_DataWriterQos *qos);

DDS_ReturnCode_t
 DDS_DataWriter_set_listener
 (DDS_DataWriter this,
 const struct DDS_DataWriterListener *a_listener,

 const DDS_StatusMask mask);

struct DDS_DataWriterListener
 struct DDS_DataWriter_get_listener
 (DDS_DataWriter this);

DDS_Topic
 DDS_DataWriter_get_topic
 (DDS_DataWriter this);

DDS_Publisher
 DDS_DataWriter_get_publisher
 (DDS_DataWriter this);

DDS_ReturnCode_t
 DDS_DataWriter_wait_for_acknowledgments
 (DDS_DataWriter _this,
 const DDS_Duration_t *max_wait);

DDS_ReturnCode_t
 DDS_DataWriter_get_liveliness_lost_status
 (DDS_DataWriter this,
 DDS_LivelinessLostStatus *status);

DDS_ReturnCode_t
 DDS_DataWriter_get_offered_deadline_missed_status
260
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 (DDS_DataWriter this,
 DDS_OfferedDeadlineMissedStatus *status);

DDS_ReturnCode_t
 DDS_DataWriter_get_offered_incompatible_qos_status
 (DDS_DataWriter this,
 DDS_OfferedIncompatibleQosStatus *status);

DDS_ReturnCode_t
 DDS_DataWriter_get_publication_matched_status
 (DDS_DataWriter this,
 DDS_PublicationMatchedStatus *status);

DDS_ReturnCode_t
 DDS_DataWriter_assert_liveliness
 (DDS_DataWriter this);

DDS_ReturnCode_t
 DDS_DataWriter_get_matched_subscriptions
 (DDS_DataWriter this,
 DDS_InstanceHandleSeq *subscription_handles);

DDS_ReturnCode_t
 DDS_DataWriter_get_matched_subscription_data
 (DDS_DataWriter this,
 DDS_SubscriptionBuiltinTopicData

 *subscription_data,
 const DDS_InstanceHandle_t subscription_handle

);

The next paragraphs describe the usage of all DDS_DataWriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data
type specific implementation of these operations.

3.4.2.2 DDS_DataWriter_assert_liveliness

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_assert_liveliness
 (DDS_DataWriter _this);

Description
This operation asserts the liveliness for the DDS_DataWriter.
261
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in DDS_DataWriter _this - is the DDS_DataWriter object on which the

operation is operated.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_NOT_ENABLED.

Detailed Description
This operation will manually assert the liveliness for the DDS_DataWriter. This
way, the Data Distribution Service is informed that the corresponding
DDS_DataWriter is still alive. This operation is used in combination with the
DDS_LivelinessQosPolicy set to DDS_MANUAL_BY_PARTICIPANT_
LIVELINESS_QOS or DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS. See Section
3.1.3.10, DDS_LivelinessQosPolicy, on page 79, for more information on
LivelinessQosPolicy.
Writing data via the DDS_DataWriter_write operation of a DDS_DataWriter
will assert the liveliness on the DDS_DataWriter itself and its containing
DDS_DomainParticipant . Therefore, DDS_DataWriter_assert_
liveliness is only needed when data is not written regularly.
The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy. Asserting the liveliness for this DDS_DataWriter
can also be achieved by asserting the liveliness to the DDS_DomainParticipant.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the liveliness of this DDS_DataWriter has successfully

been asserted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_DataWriter is not enabled.
262
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.3 DDS_DataWriter_dispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_dispose
 (DDS_DataWriter _this,

 const <data> *instance_data,
 const DDS_InstanceHandle_t instance_handle);

3.4.2.4 DDS_DataWriter_dispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataWriter_dispose_w_timestamp

(DDS_DataWriter _this,
 const <data> *instance_data,
 const DDS_InstanceHandle_t instance_handle,
 const DDS_Time_t *source_timestamp);

3.4.2.5 DDS_DataWriter_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_enable
 (DDS_DataWriter _this);
263
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.6 DDS_DataWriter_get_key_value (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_key_value
 (DDS_DataWriter _this,

<data> *key_holder,
const DDS_InstanceHandle_t handle);

3.4.2.7 DDS_DataWriter_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener
 DDS_DataWriter_get_listener
 (DDS_DataWriter _this);

Description
This operation allows access to a DDS_DataWriterListener.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.

Return Value
struct DDS_DataWriterListener - a p o i n t e r t o t h e

DDS_DataWriterListener attached to the DDS_DataWriter.

Detailed Description
This operation allows access to a DDS_DataWriterListener attached to the
DDS_DataWriter. When no DDS_DataWriterListener was attached to the
DDS_DataWriter, the DDS_OBJECT_NIL pointer is returned.

3.4.2.8 DDS_DataWriter_get_liveliness_lost_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
264
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 DDS_DataWriter_get_liveliness_lost_status
 (DDS_DataWriter _this,
 DDS_LivelinessLostStatus *status);

Description
This operation obtains the DDS_LivelinessLostStatus struct of the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
inout DDS_LivelinessLostStatus *status - the contents of the

DDS_LivelinessLostStatus struct of the DDS_DataWriter will be copied
into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_LivelinessLostStatus struct of the
DDS_DataWriter. This struct contains the information whether the liveliness (that
the DDS_DataWriter has committed through its DDS_LivelinessQosPolicy)
was respected.
This means, that the status represents whether the DDS_DataWriter failed to
actively signal its liveliness within the offered liveliness period. If the liveliness is
lost, the DDS_DataReader objects will consider the DDS_DataWriter as no
longer “alive”.
The DDS_LivelinessLostStatus can a l so be moni tored us ing a
DDS_DataWriterListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_LivelinessLostStatus of this
DDS_DataWriter has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
265
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.4.2.9 DDS_DataWriter_get_matched_subscription_data

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_matched_subscription_data
 (DDS_DataWriter _this,
 DDS_SubscriptionBuiltinTopicData *subscription_data,
 const DDS_InstanceHandle_t subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.10 DDS_DataWriter_get_matched_subscriptions

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_matched_subscriptions
 (DDS_DataWriter _this,
 DDS_InstanceHandleSeq *subscription_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.11 DDS_DataWriter_get_offered_deadline_missed_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_offered_deadline_missed_status
 (DDS_DataWriter _this,
 DDS_OfferedDeadlineMissedStatus *status);

Description
This operation obtains the DDS_OfferedDeadlineMissedStatus struct of the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.

266
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

inout DDS_OfferedDeadlineMissedStatus *status - the contents of the
DDS_OfferedDeadlineMissedStatus struct of the DDS_DataWriter will
be copied into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_OfferedDeadlineMissedStatus struct of the
DDS_DataWriter. This struct contains the information whether the deadline (that
the DDS_DataWriter has committed through its DDS_DeadlineQosPolicy) was
respected for each instance.
The DDS_OfferedDeadlineMissedStatus can also be monitored using a
DDS_DataWriterListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_LivelinessLostStatus of this
DDS_DataWriter has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.12 DDS_DataWriter_get_offered_incompatible_qos_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_offered_incompatible_qos_status
 (DDS_DataWriter _this,
 DDS_OfferedIncompatibleQosStatus *status);
267
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation obtains the DDS_OfferedIncompatibleQosStatus struct of the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
inout DDS_OfferedIncompatibleQosStatus *status - the contents of the

DDS_OfferedIncompatibleQosStatus struct of the DDS_DataWriter
will be copied into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_OfferedIncompatibleQosStatus struct of the
DDS_DataWriter. This struct contains the information whether a QosPolicy
setting was incompatible with the requested QosPolicy setting.
This means, that the status represents whether a DDS_DataReader object has been
discovered by the DDS_DataWriter with the same DDS_Topic and a requested
DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.
The DDS_OfferedIncompatibleQosStatus can also be monitored using a
DDS_DataWriterListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_OfferedIncompatibleQosStatus of

this DDS_DataWriter has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been

deleted.
268
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.4.2.13 DDS_DataWriter_get_publication_matched_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_publication_matched_status
 (DDS_DataWriter _this,
 DDS_PublicationMatchedStatus *status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.14 DDS_DataWriter_get_publisher

Synopsis
#include <dds_dcps.h>
DDS_Publisher
 DDS_DataWriter_get_publisher
 (DDS_DataWriter _this);

Description
This operation returns the DDS_Publisher to which the DDS_DataWriter
belongs.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.

Return Value
DDS_Publisher - a po in te r t o the DDS_Publisher t o wh ich the

DDS_DataWriter belongs.

Detailed Description
This operation returns the DDS_Publisher to which the DDS_DataWriter
belongs, thus the DDS_Publisher that has created the DDS_DataWriter. If the
DDS_DataWriter is already deleted, the DDS_OBJECT_NIL pointer is returned.

3.4.2.15 DDS_DataWriter_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_get_qos
269
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 (DDS_DataWriter _this,
 DDS_DataWriterQos *qos);

Description
This operation allows access to the existing list of QosPolicy settings for a
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
inout DDS_DataWriterQos *qos - a po in te r to the des t ina t ion

DDS_DataWriterQos struct in which the QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing list of QosPolicy settings of a
DDS_DataWriter on which this operation is used. This DDS_DataWriterQos is
stored at the location pointed to by the qos parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DataWriter has successfully been copied into the specified
DDS_DataWriterQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.16 DDS_DataWriter_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.
270
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_DataWriter_get_status_changes
 (DDS_DataWriter _this);

3.4.2.17 DDS_DataWriter_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_DataWriter_get_statuscondition
 (DDS_DataWriter _this);

3.4.2.18 DDS_DataWriter_get_topic

Synopsis
#include <dds_dcps.h>
DDS_Topic
 DDS_DataWriter_get_topic
 (DDS_DataWriter _this);

Description
This operat ion re turns the DDS_Topic which is associated wi th the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.

Return Value
DDS_Topic - Return value is a pointer to the DDS_Topic which is associated with

the DDS_DataWriter.

Detailed Description
This operat ion re turns the DDS_Topic which is associated wi th the
DDS_DataWriter, thus the DDS_Topic with which the DDS_DataWriter is
created. If the DDS_DataWriter is already deleted, the DDS_OBJECT_NIL pointer
is returned.
271
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.19 DDS_DataWriter_lookup_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
 DDS_DataWriter_lookup_instance
 (DDS_DataWriter _this,

<data> *instance_data);

3.4.2.20 DDS_DataWriter_register_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t

DDS_DataWriter_register_instance
 (DDS_DataWriter _this,

const <data> *instance_data);

3.4.2.21 DDS_DataWriter_register_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t

DDS_DataWriter_register_instance_w_timestamp
 (DDS_DataWriter _this,

const <data> *instance_data,
 const DDS_Time_t *source_timestamp);
272
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.22 DDS_DataWriter_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_set_listener
 (DDS_DataWriter _this,
 const struct DDS_DataWriterListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_DataWriterListener to the DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
in const struct DDS_DataWriterListener *a_listener - a pointer to

the DDS_DataWriterListener instance, which will be attached to the
DDS_DataWriter.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for a certain status.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DDS_DataWriterListener to the DDS_DataWriter.
Only one DDS_DataWriterListener can be attached to each DDS_DataWriter.
If a DDS_DataWriterListener was already attached, the operation will replace it
with the new one. When a_listener is the DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP1 for all statuses activated in the
bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d

1. Short for No-Operation, an instruction that peforms nothing at all.

273

API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

DDS_DataWriterListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application calls the get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the DDS_OBJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DDS_DataWriterListener:
• DDS_OFFERED_DEADLINE_MISSED_STATUS

• DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

• DDS_LIVELINESS_LOST_STATUS

• DDS_PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_DataWriterListener, the DDS_PublisherListener of the containing
DDS_Publisher is invoked (if attached and activated for the status that occurred).
T h i s a l l o w s t h e a p p l i c a t i o n to s e t a d e f a u l t b e h a v i o u r i n t h e
DDS_PublisherListener of the containing DDS_Publisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_PublisherListener as well, the
c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant. In case the DDS_DomainParticipantListener is
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DataWriterListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
274
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.23 DDS_DataWriter_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_set_qos
 (DDS_DataWriter _this,
 const DDS_DataWriterQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DataWriter.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
in const DDS_DataWriterQos *qos - contain the new set of QosPolicy

settings for the DDS_DataWriter.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALLREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES , DDS_RETCODE_IMMUTABLE_POLICY or
DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DataWriter. The parameter qos contains the struct with the QosPolicy
settings which is checked for self-consistency and mutability. When the application
tries to change a QosPolicy setting for an enabled DDS_DataWriter, which can
only be set before the DDS_DataWriter is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY is returned. In other words, the application
must provide the presently set QosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and a DDS_RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).
275
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_DataWriterQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid.
DDS_DataWriterQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_IMMUTABLE_POLICY - the parameter qos contains an
immutable QosPolicy setting with a different value than set during enabling of
the DDS_DataWriter.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.4.2.24 DDS_DataWriter_unregister_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_unregister_instance
 (DDS_DataWriter _this,

 const <data> *instance_data,
 const DDS_InstanceHandle_t handle);
276
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.25 DDS_DataWriter_unregister_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_unregister_instance_w_timestamp
 (DDS_DataWriter _this,

 const <data> *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);

3.4.2.26 DDS_DataWriter_wait_for_acknowledgments

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_wait_for_acknowledgments
 (DDS_DataWriter _this,
 const DDS_Duration_t *max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation blocks the calling thread until either all data written by the
DDS_DataWriter is acknowledged by the matched DDS_DataReaders, or until
the duration specified by max_wait parameter elapses, whichever happens first.

Parameters
in DDS_DataWriter _this - the DDS_DataWriter object on which the

operation is operated.
in const DDS_Duration_t *max_wait - the maximum duration to block for

the DDS_DataWriter_wait_for_acknowledgments, after which the
app l i c a t i on t h r e ad i s unb locke d . The spec i a l c ons t a n t
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_UNSUPPORTED.
277
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operat ion is intended to be used only i f the DataWri ter has i ts
DDS_ReliabilityQosPolicyKind set to DDS_RELIABLE_RELIABILITY_QOS.
Otherwise the operation will return immediately with DDS_RETCODE_OK.
It blocks the calling thread until either all data written by the DDS_DataWriter is
acknowledged by all matched DDS_DataReader entities that have their
DDS_ReliabilityQosPolicyKind s e t t o DDS_RELIABLE_
RELIABILITY_QOS, or else the duration specified by the max_wait parameter
elapses, whichever happens first. A return value of DDS_RETCODE_OK indicates that
all the samples written have been acknowledged by all reliable matched data
readers; a return value of DDS_RETCODE_TIMEOUT indicates that max_wait
elapsed before all the data was acknowledged.

Return Code
When the operation returns:
• DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is

scheduled for a future release.

3.4.2.27 DDS_DataWriter_write (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataWriter_write
 (DDS_DataWriter _this,

 const <data> *instance_data,
 const DDS_InstanceHandle_t handle);

3.4.2.28 DDS_DataWriter_write_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
278
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

DDS_ReturnCode_t
DDS_DataWriter_write_w_timestamp

 (DDS_DataWriter _this,
 const <data> *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);

3.4.2.29 DDS_DataWriter_writedispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataWriter_writedispose
 (DDS_DataWriter _this,

 const <data> *instance_data,
 const DDS_InstanceHandle_t instance_handle);

3.4.2.30 DDS_DataWriter_writedispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataWriter_writedispose_w_timestamp

(DDS_DataWriter _this,
 const <data> *instance_data,
 const DDS_InstanceHandle_t instance_handle,
 const DDS_Time_t *source_timestamp);

3.4.2.31 Class SPACE_FooDataWriter
The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>DataWriter classes. For each application data type that is
used as DDS_Topic data type, a typed class <NameSpace>_<type>DataWriter
is derived from the DDS_DataWriter class. In this paragraph, the class
279
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

SPACE_FooDataWriter desc r ibes the opera t ions of these der ived
<NameSpace>_<type>DataWriter classes as an example for the fictional
application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a Space.h include file.
A SPACE_FooDataWriter is attached to exactly one DDS_Publisher which acts
as a factory for it. The SPACE_FooDataWriter is bound to exactly one
DDS_Topic that has been registered to use a data type Foo (defined in the module
SPACE). The DDS_Topic must exist prior to the SPACE_FooDataWriter creation.
The interface description of this class is as follows:

/*
 * interface SPACE_FooDataWriter
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * SPACE_FooDataWriter_get_statuscondition
 * (SPACE_FooDataWriter _this);
 */
/* DDS_StatusMask
 * SPACE_FooDataWriter_get_status_changes
 * (SPACE_FooDataWriter _this);
 */
/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_enable
 * (SPACE_FooDataWriter _this);
 */
/*
 * inherited from class DDS_DataWriter
 */
/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_set_qos
 * (SPACE_FooDataWriter _this,
 * const DDS_DataWriterQos *qos);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_qos
 * (SPACE_FooDataWriter _this,
 * SPACE_FooDataWriterQos *qos);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_set_listener
 * (SPACE_FooDataWriter _this,
280
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 * const struct DDS_DataWriterListener *a_listener,
 * const DDS_StatusMask mask);
 */

/* struct SPACE_FooDataWriterListener
 * SPACE_FooDataWriter_get_listener
 * (SPACE_FooDataWriter _this);
 */

/* DDS_Topic
 * SPACE_FooDataWriter_get_topic
 * (SPACE_FooDataWriter _this);
 */

/* DDS_Publisher
 * SPACE_FooDataWriter_get_publisher
 * (SPACE_FooDataWriter _this);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_wait_for_acknowledgments
 * (DDS_DataWriter _this,
 * const DDS_Duration_t *max_wait);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_liveliness_lost_status
 * (SPACE_FooDataWriter _this,
 * DDS_LivelinessLostStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_offered_deadline_missed_status
 * (SPACE_FooDataWriter _this,
 * DDS_OfferedDeadlineMissedStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_offered_incompatible_qos_status
 * (SPACE_FooDataWriter _this,
 * DDS_OfferedIncompatibleQosStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_publication_matched_status
 * (SPACE_FooDataWriter _this,
 * DDS_PublicationMatchedStatus *status);
 */

/* DDS_ReturnCode_t
281
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 * SPACE_FooDataWriter_assert_liveliness
 * (SPACE_FooDataWriter _this);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_matched_subscriptions
 * (SPACE_FooDataWriter _this,
 * DDS_InstanceHandleSeq *subscription_handles);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataWriter_get_matched_subscription_data
 * (SPACE_FooDataWriter _this,
 * DDS_SubscriptionBuiltinTopicData *subscription_data,
 * const DDS_InstanceHandle_t subscription_handle);
 */
/*
 * implemented API operations
 */

DDS_InstanceHandle_t
 SPACE_FooDataWriter_register_instance
 (SPACE_FooDataWriter _this,
 const Foo *instance_data);
DDS_InstanceHandle_t
 SPACE_FooDataWriter_register_instance_w_timestamp
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_Time_t *source_timestamp);
DDS_ReturnCode_t
 SPACE_FooDataWriter_unregister_instance
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 SPACE_FooDataWriter_unregister_instance_w_timestamp
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);
DDS_ReturnCode_t
 SPACE_FooDataWriter_write
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
 SPACE_FooDataWriter_write_w_timestamp
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);
282
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

DDS_ReturnCode_t
 SPACE_FooDataWriter_dispose
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle);
DDS_ReturnCode_t
 SPACE_FooDataWriter_dispose_w_timestamp
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle,
 const DDS_Time_t *source_timestamp);
DDS_ReturnCode_t
 SPACE_FooDataWriter_writedispose

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle);
DDS_ReturnCode_t
 SPACE_FooDataWriter_writedispose_w_timestamp

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle,

 const DDS_Time_t *source_timestamp);
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_key_value
 (SPACE_FooDataWriter _this,
 Foo *key_holder,
 const DDS_InstanceHandle_t handle);
DDS_InstanceHandle_t
 SPACE_FooDataWriter_lookup_instance
 (SPACE_FooDataWriter _this,
 Foo *instance_data);

The next paragraphs describe the usage of all SPACE_FooDataWriter operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.2.32 SPACE_FooDataWriter_assert_liveliness (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_assert_liveliness
 (SPACE_FooDataWriter _this);
283
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.33 SPACE_FooDataWriter_dispose

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataWriter_dispose
SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the actual instance to be disposed of.
in const DDS_InstanceHandle_t instance_handle - the handle to the

instance to be disposed of.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected DDS_DataReader and, dependent on the QoSPolicy settings,
also in the Transient and Persistent stores, will be marked for deletion by setting
their DDS_InstanceStateKind to DDS_NOT_ALIVE_DISPOSED_INSTANCE_
STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.
284
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

As a side effect, this operation asserts liveliness on the DDS_DataWriter itself and
on the containing DDS_DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DDS_DataReader
will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DDS_DataWriters that have previously registered it
 - A DDS_DataWriter can register an instance explicitly by using one of the

special operations SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp.

 - A DDS_DataWriter can register an instance implicitly by using the special
constant DDS_HANDLE_NIL in any of the other DDS_DataWriter operations.

 - A DDS_DataWriter can unregister an instance explicitly by using one of the
special operations SPACE_FooDataWriter_unregister_instance or
SPACE_FooDataWriter_unregister_instance_w_timestamp.

 - A DDS_DataWriter will unregister all its contained instances implicitly when
it is deleted.

 - When a DDS_DataReader detects a loss of liveliness in one of its connected
DDS_DataWriters, it will consider all instances registered by that
DDS_DataWriter as being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
 - An application can consume samples explicitly by invoking the
SPACE_FooDataReader_take operation, or one of its variants.

 - The DDS_DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the DDS_ReaderData
LifecycleQosPolicy has expired.

The DDS_DataReader may also remove instances that haven’t been disposed first:
this happens when the autopurge_nowriter_samples_delay of the
DDS_ReaderDataLifecycleQosPolicy has expired after the instance is
considered unregistered by all connected DDS_DataWriters (i.e. when it has a
DDS_InstanceStateKind of DDS_NOT_ALIVE_NO_WRITERS). See also Section
3.1.3.15, DDS_ReaderDataLifecycleQosPolicy, on page 87.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
285
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• the instance must be unregistered (either implicitly or explicitly) by all connected
DDS_DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DDS_DurabilityServiceQosPolicy on the DDS_Topic must have
elapsed after the instance is considered unregistered by all connected
DDS_DataWriters.

See also Section 3.1.3.4, DDS_DurabilityServiceQosPolicy, on page 70.

Instance Handle
The DDS_HANDLE_NIL handle va lue can be used for the parameter
instance_handle. This indicates the identity of the instance is automatically
deduced from the instance_data (by means of the key).
If instance_handle is any value other than DDS_HANDLE_NIL, then it must
c o r r e s p o n d t o t h e v a l u e t h a t w a s r e t u r n e d b y e i t h e r t h e
SPACE_FooDataWriter_register_instance o pe ra t i o n o r t h e
SPACE_FooDataWriter_register_instance_w_timestamp operation when
the instance (identified by its key) was registered. If there is no correspondence,
then the result of the operation is unspecified.
The sample that is passed as instance_data is only used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DDS_DataReaders. Use the
SPACE_FooDataWriter_writedispose operation if the sample itself should be
delivered together with the dispose request.

Blocking
If the DDS_HistoryQosPolicy is set to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_dispose operation on the DDS_DataWriter may
block if the modification would cause data to be lost because one of the limits,
specified in the DDS_ResourceLimitsQosPolicy, to be exceeded. Under these
c i r c u m s t a n c e s , t h e max_blocking_time a t t r i b u t e o f t h e
ReliabilityQosPolicy c o n f i g u r e s t h e m a x i m u m t i m e t h e
SPACE_FooDataWriter_dispose operation may block (waiting for space to
become available). If max_blocking_time elapses before the DDS_DataWriter
i s ab le to s to re the modi f ica t ion wi thout exceeding the l imi t s , the
SPACE_FooDataWriter_dispose opera t ion wi l l f a i l and re tu rns
DDS_RETCODE_TIMEOUT.
286
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the SPACE_FooDataWriter_dispose operation only uses the sample to
check for consistency between its key values and the supplied instance_handle,
only those keyfields will be validated against the restrictions imposed by the IDL to
C language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, then the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service is informed that the instance

data must be disposed of.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

i

287
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the instance_handle has not

been registered with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_dispose operation, which
could not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

3.4.2.34 SPACE_FooDataWriter_dispose_w_timestamp

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataWriter_dispose_w_timestamp

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t instance_handle,
 const DDS_Time_t *source_timestamp);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion and provides a value for the source_timestamp explicitly.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the actual instance to be disposed of.
in const DDS_InstanceHandle_t instance_handle - the handle to the

instance to be disposed of.
in const DDS_Time_t *source_timestamp - the timestamp which is

provided for the DDS_DataReader.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.
288
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation performs the same functions as SPACE_FooDataWriter_dispose
except that the application provides the value for the source_timestamp that is
made available to connected DDS_DataReader objects. This timestamp is
important for the interpretation of the DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service is informed that the instance

data must be disposed of.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the instance_handle has not

been registered with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_dispose_w_timestamp
operation, which could not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

3.4.2.35 SPACE_FooDataWriter_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_enable
 (SPACE_FooDataWriter _this);
289
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.36 SPACE_FooDataWriter_get_key_value

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataWriter_get_key_value
(SPACE_FooDataWriter _this,
 Foo *key_holder,
 const DDS_InstanceHandle_t handle);

Description
This operation retrieves the key value of a specific instance.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
inout Foo *key_holder - the sample in which the key values are stored.
in const DDS_InstanceHandle_t handle - the handle to the instance from

which to get the key value.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operat ion retr ieves the key value of the instance pointed to by
instance_handle. When the operation is called with an DDS_HANDLE_NIL
hand l e va lue a s an instance_handle , t he ope ra t i on w i l l r e t u rn
DDS_RETCODE_BAD_PARAMETER. The operation will only fill the fields that form
the key inside the key_holder instance. This means, the non-key fields are not
applicable and may contain garbage.
The operation must only be called on registered instances. Otherwise the operation
returns the error DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the key_holder instance contains the key values of the

instance.
290
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or key_holder

is not a valid pointer.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - this instance is not registered.

3.4.2.37 SPACE_FooDataWriter_get_listener (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
struct SPACE_FooDataWriterListener
 SPACE_FooDataWriter_get_listener
 (SPACE_FooDataWriter _this);

3.4.2.38 SPACE_FooDataWriter_get_liveliness_lost_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_liveliness_lost_status
 (SPACE_FooDataWriter _this,
 DDS_LivelinessLostStatus *status);

3.4.2.39 SPACE_FooDataWriter_get_matched_subscription_data (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_matched_subscription_data
 (SPACE_FooDataWriter _this,
291
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 DDS_SubscriptionBuiltinTopicData *subscription_data,
 const DDS_InstanceHandle_t subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.40 SPACE_FooDataWriter_get_matched_subscriptions (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_matched_subscriptions
 (SPACE_FooDataWriter _this,
 DDS_InstanceHandleSeq *subscription_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.41 SPACE_FooDataWriter_get_offered_deadline_missed_status
(inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_offered_deadline_missed_status
 (SPACE_FooDataWriter _this,
 DDS_OfferedDeadlineMissedStatus *status);

3.4.2.42 SPACE_FooDataWriter_get_offered_incompatible_qos_status
(inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_offered_incompatible_qos_status
 (SPACE_FooDataWriter _this,
 DDS_OfferedIncompatibleQosStatus *status);

3.4.2.43 SPACE_FooDataWriter_get_publication_matched_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.
292
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_publication_matched_status
 (SPACE_FooDataWriter _this,
 DDS_PublicationMatchedStatus *status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.44 SPACE_FooDataWriter_get_publisher (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_Publisher
 SPACE_FooDataWriter_get_publisher
 (SPACE_FooDataWriter _this);

3.4.2.45 SPACE_FooDataWriter_get_qos (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_get_qos
 (SPACE_FooDataWriter _this,
 SPACE_FooDataWriterQos *qos);

3.4.2.46 SPACE_FooDataWriter_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_StatusMask
 SPACE_FooDataWriter_get_status_changes
 (SPACE_FooDataWriter _this);

3.4.2.47 SPACE_FooDataWriter_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.
293
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <Space.h>
DDS_StatusCondition
 SPACE_FooDataWriter_get_statuscondition
 (SPACE_FooDataWriter _this);

3.4.2.48 SPACE_FooDataWriter_get_topic (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_Topic
 SPACE_FooDataWriter_get_topic
 (SPACE_FooDataWriter _this);

3.4.2.49 SPACE_FooDataWriter_lookup_instance

Synopsis
#include <Space.h>
DDS_InstanceHandle_t
 SPACE_FooDataWriter_lookup_instance
 (SPACE_FooDataWriter _this,

 Foo *instance_data);

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in Foo *instance_data - the instance for which the corresponding instance

handle needs to be looked up.

Return Value
DDS_InstanceHandle_t - Result value is the instance handle which corresponds

to the instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter is only used for the purpose of
examining the fields that define the key. The instance handle can be used in any
294
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

write, dispose or unregister operations (or their timestamped variants) that
operate on a specific instance. Note that DDS_DataWriter instance handles are
local, and are not interchangeable with DDS_DataReader instance handles nor with
instance handles of an other DDS_DataWriter.
This operation does not register the instance in question. If the instance has not been
previously registered, if the DDS_DataWriter is already deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value DDS_HANDLE_NIL.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the SPACE_FooDataWriter_lookup_instance operation merely uses the
sample to determine its identity based on the uniqueness of its key values, only the
keyfields will be validated against the restrictions imposed by the IDL to C
language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, then the
operation will fail and return a DDS_HANDLE_NIL. More specific information about
the context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

3.4.2.50 SPACE_FooDataWriter_register_instance

Synopsis
#include <Space.h>

DDS_InstanceHandle_t
 SPACE_FooDataWriter_register_instance

(SPACE_FooDataWriter _this,
 const Foo *instance_data);

i

295
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the new instance, which the application

writes to or disposes of.

Return Value
DDS_InstanceHandle_t - Result value is the handle to the Instance, which may

be used for writing and disposing of. In case of an error, a DDS_HANDLE_NIL
handle value is returned.

Detailed Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such as SPACE_FooDataWriter_write,
SPACE_FooDataWriter_write_w_timestamp , SPACE_FooData
Writer_unregister_instance, SPACE_FooDataWriter_unregister_
instance_w_timestamp , SPACE_FooDataWriter_dispose ,
SPACE_FooDataWriter_dispose_w_timestamp, SPACE_FooDataWriter_
writedispose and SPACE_FooDataWriter_writedispose_w_timestamp.
When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive DDS_DataWriter operations. In case of an error, a
DDS_HANDLE_NIL handle value is returned.
The explicit use of this operation is optional as the application can directly call the
SPACE_FooDataWriter_write , SPACE_FooDataWriter_write_
w_timestamp , SPACE_FooDataWriter_unregister_instance,
SPACE_FooDataWriter_unregister_instance_w_timestamp,
SPACE_FooDataWriter_dispose , SPACE_FooDataWriter_
dispose_w_timestamp, SPACE_FooDataWriter_writedispose and
SPACE_FooDataWriter_writedispose_w_timestamp operations and specify
a DDS_HANDLE_NIL handle value to indicate that the sample should be examined
to identify the instance.
296
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Blocking
If the DDS_HistoryQosPolicy is set to KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_register_instance ope ra t i on on t he
DDS_DataWriter may block if the modification would cause data to be lost
because one of the limits, specified in the DDS_ResourceLimitsQosPolicy, to
be exceeded. Under these circumstances, the max_blocking_time attribute of the
DDS_ReliabilityQosPolicy con f igu res t he max imum t ime the
SPACE_FooDataWriter_register_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DDS_DataWriter is able to store the modification without exceeding the limits,
the SPACE_FooDataWriter_register_instance operation will fail and
returns DDS_HANDLE_NIL.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the SPACE_FooDataWriter_register_instance operation merely uses
the sample to determine its identity based on the uniqueness of its key values, only
the keyfields will be validated against the restrictions imposed by the IDL to C
language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL

i

297
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

If any of these restrictions is violated when validity checking is enabled, then the
operation will fail and return a DDS_HANDLE_NIL. More specific information about
the context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance.

3.4.2.51 SPACE_FooDataWriter_register_instance_w_timestamp

Synopsis
#include <Space.h>
DDS_InstanceHandle_t

SPACE_FooDataWriter_register_instance_w_timestamp
 (SPACE_FooDataWriter _this,

 const Foo *instance_data,
 const DDS_Time_t *source_timestamp);

Description
This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides a value for the source_timestamp
explicitly.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in Foo *instance_data - the instance, which the application will write to or

dispose of.
in const DDS_Time_t *source_timestamp - the timestamp used.

Return Value
DDS_InstanceHandle_t - Result value is the handle to the Instance, which

must be used for writing and disposing. In case of an error, a DDS_HANDLE_NIL
handle value is returned.
298
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
T h i s o p e r a t i o n p e r f o r m s t h e s a m e f u n c t i o n s a s
SPACE_FooDataWriter_register_instance except that the application
provides the value for the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance. The source_timestamp is ignored in that case.

3.4.2.52 SPACE_FooDataWriter_set_listener (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_set_listener
 (SPACE_FooDataWriter _this,
 const struct DDS_DataWriterListener *a_listener,
 const DDS_StatusMask mask);

3.4.2.53 SPACE_FooDataWriter_set_qos (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_set_qos
 (SPACE_FooDataWriter _this,
 const DDS_DataWriterQos *qos);

3.4.2.54 SPACE_FooDataWriter_unregister_instance

Synopsis
#include <Space.h>
DDS_ReturnCode_t

SPACE_FooDataWriter_unregister_instance
 (SPACE_FooDataWriter _this,

 const Foo *instance_data,
 const DDS_InstanceHandle_t handle);
299
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the instance to which the application was

writing or disposing.
in const DDS_InstanceHandle_t handle - the handle to the instance, which

has been used for writing and disposing.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
a c t i o n o f SPACE_FooDataWriter_register_instance o r
SPACE_FooDataWriter_register_instance_w_timestamp. It should only
be called on an instance that is currently registered. This operation should be
c a l l e d j u s t o n c e p e r instance , r e g a r d l e s s o f ho w m a n y t i m e s
SPACE_FooDataWriter_register_instance was called for that instance.
This operation also indicates that the Data Distribution Service can locally remove
all information regarding that instance. The application should not attempt to use
the handle, previously allocated to that instance, after calling this operation.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Effects
If, after unregistering, the application wants to modify (write or dispose) the
instance, it first has to register the instance again, or it has to use the special
handle value DDS_HANDLE_NIL.
300
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

This operation does not indicate that the instance should be deleted (that is the
purpose of SPACE_FooDataWriter_dispose). This operation just indicates that
the DDS_DataWriter no longer has “anything to say” about the instance. If
there is no other DDS_DataWriter that has registered the instance as well, then the
DDS_InstanceStateKind in all connected DDS_DataReaders will be changed
to DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE , provided this
DDS_InstanceStateKind w a s n o t a l r e a d y s e t t o
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE . In the last case the
DDS_InstanceStateKind w i l l n o t b e e f f e c t e d b y t h e
SPACE_FooDataWriter_unregister_instance call, see also Figure 21:, State
Chart of the instance_state for a Single Instance, on page 502.
This operation can affect the ownership of the data instance. If the
DDS_DataWriter was the exclusive owner of the instance, calling this operation
will release that ownership, meaning ownership may be transferred to another,
possibly lower strength, DDS_DataWriter.
The operation must be called only on registered instances. Otherwise the operation
returns the error DDS_RETCODE_PRECONDITION_NOT_MET.

Instance Handle
The DDS_HANDLE_NIL handle value can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than DDS_HANDLE_NIL, then it must correspond to the
value returned by SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp when the
instance (identified by its key) was registered. If there is no correspondence, then
the result of the operation is unspecified.
The sample that is passed as instance_data is used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DDS_DataReaders.

Blocking
If the DDS_HistoryQosPolicy is set to DDS_KEEP_ALL_HISTORY_QOS, then the
SPACE_FooDataWriter_unregister_instance operat ion on the
DDS_DataWriter may block if the modification would cause data to be lost
because one of the limits, specified in the DDS_ResourceLimitsQosPolicy, to
be exceeded. Under these circumstances, the max_blocking_time configures the
maximum time the SPACE_FooDataWriter_unregister_instance attribute
of the DDS_ReliabilityQosPolicy operation may block (waiting for space to
become available). If max_blocking_time elapses before the DDS_DataWriter
301
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

i s ab le to s to re the modi f ica t ion wi thout exceeding the l imi t s , the
SPACE_FooDataWriter_unregister_instance operation will fail and returns
DDS_RETCODE_TIMEOUT.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the SPACE_FooDataWriter_unregister_instance operation merely
uses the sample to check for consistency between its key values and the supplied
instance_handle, only these keyfields will be validated against the restrictions
imposed by the IDL to C language mapping:
• an enum may not exceed the value of its highest label.
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead).
• the length of a bounded string may not exceed the limit specified in IDL.
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service is informed that the instance

will not be modified any more.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or
instance_data is not a valid sample.

i

302
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered

with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_unregister_instance
operation, which could not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

3.4.2.55 SPACE_FooDataWriter_unregister_instance_w_timestamp

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataWriter_unregister_instance_w_timestamp

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);

Description
This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in Foo *instance_data - the instance to which the application was writing or

disposing.
in const DDS_InstanceHandle_t handle - the handle to the instance, which

has been used for writing and disposing.
in const DDS_Time_t *source_timestamp - the timestamp used.
303
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
Thi s ope ra t i on pe r fo rms t he s ame func t i ons a s
SPACE_FooDataWriter_unregister_instance except that the application
provides the value for the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service is informed that the instance

will not be modified any more.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered

with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_unregister_
instance_w_timestamp operation, which could not be resolved before
max_blocking_time of the DDS_ReliabilityQosPolicy elapsed.
304
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.56 SPACE_FooDataWriter_wait_for_acknowledgments (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataWriter for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_wait_for_acknowledgments
 (SPACE_FooDataWriter _this,
 const DDS_Duration_t *max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.57 SPACE_FooDataWriter_write

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataWriter_write

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle);

Description
This operation modifies the value of a data instance.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the data to be written.
in const DDS_InstanceHandle_t handle - the handle to the instance as

supplied by SPACE_FooDataWriter_register_instance.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.
305
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected DDS_DataReader
ob jec t s . Th i s t imes t amp i s impor tan t fo r t he in te rp re ta t ion o f t he
DDS_DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DDS_DataWriter itself and
on the containing DDS_DomainParticipant.
Before writing data to an instance, the instance may be registered with the
SPACE_FooDataWriter_register_instance o r
SPACE_FooDataWriter_register_instance_w_timestamp operation. The
handle returned by one of the SPACE_FooDataWriter_register_instance
o p e r a t i o n s c a n b e s u p p l i e d t o t h e p a r a m e t e r handle o f t h e
SPACE_FooDataWriter_write operation. However, it is also possible to supply
the special DDS_HANDLE_NIL handle value, which means, that the identity of the
instance is automatically deduced from the instance_data (identified by the
key).

Instance Handle
The DDS_HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than DDS_HANDLE_NIL, it must correspond to the
value returned by SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp when the
instance (identified by its key) was registered. Passing such a registered handle
helps the Data Distribution Service to process the sample more efficiently. If there is
no correspondence between handle and sample, the result of the operation is
unspecified.

Blocking
If the DDS_HistoryQosPolicy is set to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_write operation on the DDS_DataWriter may block if
the modification would cause data to be lost because one of the limits, specified in
the DDS_ResourceLimitsQosPolicy, is exceeded. Under these circumstances,
the max_blocking_time attribute of the ReliabilityQosPolicy configures
the maximum time the SPACE_FooDataWriter_write operation may block
(waiting for space to become available). If max_blocking_time elapses before
the DDS_DataWriter is able to store the modification without exceeding the
limits, the SPACE_FooDataWriter_write operation will fail and returns
DDS_RETCODE_TIMEOUT.
306
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C language mapping:
• an enum may not exceed the value of its highest label.
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead).
• the length of a bounded string may not exceed the limit specified in IDL.
• the length of a bounded sequence may not exceed the limit specified in IDL.
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.
Be aware that it is not possible for the middleware to determine whether a union is
correctly initialized, since according to the IDL-C language mapping a union just
returns its current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the value of a data instance is modified.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or
instance_data is not a valid sample.

i

307
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered

with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_write operation, which could
not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

3.4.2.58 SPACE_FooDataWriter_write_w_timestamp

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataWriter_write_w_timestamp
 (SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);

Description
This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the data to be written.
in const DDS_InstanceHandle_t handle - the handle to the instance as

supplied by SPACE_FooDataWriter_register_instance.
in const DDS_Time_t *source_timestamp - the timestamp used.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
308
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as SPACE_FooDataWriter_write
except that the application provides the value for the source_timestamp that is
made available to connected DDS_DataReader objects. This timestamp is
important for the interpretation of the DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the value of a data instance is modified.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the instance_data does not

correspond to the handle that should have been obtained from this
SPACE_FooDataWriter.

• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources
as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_register_
instance_w_timestamp operation, which could not be resolved before
max_blocking_time of the DDS_ReliabilityQosPolicy elapsed.

3.4.2.59 SPACE_FooDataWriter_writedispose

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataWriter_writedispose

(SPACE_FooDataWriter _this,
309
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 const Foo *instance_data,
 const DDS_InstanceHandle_t handle);

Description
This operation modifies and disposes a data instance.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the data to be written and disposed.
in const DDS_InstanceHandle_t instance - the handle to the instance as

supplied by SPACE_FooDataWriter_register_instance.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected DDS_DataReader and, dependent on the QoSPolicy
settings, also in the Transient and Persistent stores, will be modified and marked for
deletion by setting their DDS_InstanceStateKind to DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DDS_DataWriter itself and
on the containing DDS_DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DDS_DataReader
will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DDS_DataWriters that have previously registered it.
310
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 - A DDS_DataWriter can register an instance explicitly by using one of the
special operations SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp.

 - A DDS_DataWriter can register an instance implicitly by using the special
constant DDS_HANDLE_NIL in any of the other DDS_DataWriter operations.

 - A DDS_DataWriter can unregister an instance explicitly by using one of the
special operations SPACE_FooDataWriter_unregister_instance or
SPACE_FooDataWriter_unregister_ instance_w_timestamp.

 - A DDS_DataWriter will unregister all its contained instances implicitly when
it is deleted.

 - When a DDS_DataReader detects a loss of liveliness in one of its connected
DDS_DataWriters, it will consider all instances registered by that
DDS_DataWriter as being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
 - An application can consume samples explicitly by invoking the
SPACE_FooDataReader_take operation, or one of its variants.

 - The DDS_DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the DDS_ReaderData
LifecycleQosPolicy has expired.

The DDS_DataReader may also remove instances that haven’t been disposed first:
this happens when the autopurge_nowriter_samples_delay of the
DDS_ReaderDataLifecycleQosPolicy has expired after the instance is
considered unregistered by all connected DDS_DataWriters (i.e. when it has a
DDS_InstanceStateKind of DDS_NOT_ALIVE_NO_WRITERS). See also Section
3.1.3.15, DDS_ReaderDataLifecycleQosPolicy, on page 87.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DDS_DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DDS_DurabilityServiceQosPolicy on the DDS_Topic must have
elapsed after the instance is considered unregistered by all connected
DDS_DataWriters.

See also Section 3.1.3.4, DDS_DurabilityServiceQosPolicy, on page 70.
311
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Instance Handle
The DDS_HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than DDS_HANDLE_NIL, it must correspond to the
value returned by SPACE_FooDataWriter_register_instance or
SPACE_FooDataWriter_register_instance_w_timestamp when the
instance (identified by its key) was registered. Passing such a registered handle
helps the Data Distribution Service to process the sample more efficiently. If there is
no correspondence between handle and sample, the result of the operation is
unspecified.
The sample that is passed as instance_data will actually be delivered to the
connected DDS_DataReaders, but will immediately be marked for deletion.

Blocking
If the DDS_HistoryQosPolicy is set to DDS_KEEP_ALL_HISTORY_QOS, the
SPACE_FooDataWriter_writedispose operation on the DDS_DataWriter
may block if the modification would cause data to be lost because one of the limits,
specified in the DDS_ResourceLimitsQosPolicy, to be exceeded. Under these
c i r c u m s t a n c e s , t h e max_blocking_time a t t r i b u t e o f t h e
ReliabilityQosPolicy c o n f i g u r e s t h e m a x i m u m t i m e t h e
SPACE_FooDataWriter_writedispose operation may block (waiting for space
to become ava i l ab le) . I f max_blocking_time e l apses befo re the
DDS_DataWriter is able to store the modification without exceeding the limits,
the SPACE_FooDataWriter_writedispose operation will fail and returns
DDS_RETCODE_TIMEOUT.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C language mapping, where:

i

312
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
• the length of a bounded sequence may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a DDS_RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.
Be aware that it is not possible for the middleware to determine whether a union is
correctly initialized, since according to the IDL-C language mapping a union just
returns its current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the instance_handle has not

been registered with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
313
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

caused blocking of the SPACE_FooDataWriter_writedispose operation,
which could not be resolved before max_blocking_time of the
DDS_ReliabilityQosPolicy elapsed.

3.4.2.60 SPACE_FooDataWriter_writedispose_w_timestamp

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataWriter_writedispose_w_timestamp

(SPACE_FooDataWriter _this,
 const Foo *instance_data,
 const DDS_InstanceHandle_t handle,
 const DDS_Time_t *source_timestamp);

Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides a value for the source_timestamp explicitly.

Parameters
in SPACE_FooDataWriter _this - the SPACE_FooDataWriter object on

which the operation is operated.
in const Foo *instance_data - the data to be written and disposed.
in const DDS_InstanceHandle_t handle - the handle to the instance as

supplied by SPACE_FooDataWriter_register_instance.
in const DDS_Time_t *source_timestamp - the timestamp used.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_TIMEOUT.

Detailed Description
Thi s ope ra t i on pe r fo rms t he s ame func t i ons a s
SPACE_FooDataWriter_writedispose except that the application provides the
value for the source_timestamp that is made available to connected
DDS_DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.
314
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - handle is not a valid handle or
instance_data is not a valid sample.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataWriter has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataWriter is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - the handle has not been registered

with this SPACE_FooDataWriter.
• DDS_RETCODE_TIMEOUT - the current action overflowed the available resources

as specified by the combination of the DDS_ReliabilityQosPolicy,
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. This
caused blocking of the SPACE_FooDataWriter_writedispose_
w_timestamp operation, which could not be resolved before
max_blocking_time of the DDS_ReliabilityQosPolicy elapsed.

3.4.3 DDS_PublisherListener interface
Since a DDS_Publisher is a DDS_Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DDS_PublisherListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DDS_PublisherListener class. All DDS_PublisherListener
operations must be implemented in the user defined class, it is up to the application
whether an operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.
315
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

The DDS_PublisherListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The DDS_PublisherListener is related to changes in
communication status.
The interface description of this class is as follows:

/*
 * interface DDS_PublisherListener
 */
/*
 * inherited from DDS_DataWriterListener
 */
/* void
 * DDS_PublisherListener_on_offered_deadline_missed
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_OfferedDeadlineMissedStatus *status);

 */
/* void
 * DDS_PublisherListener_on_offered_incompatible_qos
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_OfferedIncompatibleQosStatus *status);
 */

/* void
 * DDS_PublisherListener_on_liveliness_lost
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_LivelinessLostStatus *status);
 */

/* void
 * DDS_PublisherListener_on_publication_matched
 * (void *listener_data,
 * DDS_DataWriter writer,
 * const DDS_PublicationMatchedStatus *status);
 */
/*
 * implemented API operations
 */

DDS_PublisherListener
 DDS_PublisherListener__alloc
 (void);
316
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

The next paragraphs list all DDS_PublisherListener operations. Since these
operations are all inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.3.1 DDS_PublisherListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_PublisherListener
 DDS_PublisherListener__alloc
 (void);

Description
This operation creates a new DDS_PublisherListener.

Parameters
<none>

Return Value
DDS_PublisherListener - t h e h a n d l e t o t h e n e w l y c r e a t e d

DDS_PublisherListener. In case of an error, a DDS_OBJECT_NIL pointer is
returned.

Detailed Description
T h i s o p e r a t i o n c r e a t e s a n e w DDS_PublisherListener. Th e
DDS_PublisherListener must be created using this operation. In other words,
t h e a p p l i c a t i o n i s n o t a l l o w e d t o d e c l a r e a n o b j e c t o f t y p e
DDS_PublisherListener. When the application wants to release the
DDS_PublisherListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_PublisherListener, a DDS_OBJECT_NIL pointer is returned instead.

3.4.3.2 DDS_PublisherListener_on_liveliness_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_PublisherListener_on_liveliness_lost
 (void *listener_data,
 DDS_DataWriter writer,
317
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 const DDS_LivelinessLostStatus *status);

3.4.3.3 DDS_PublisherListener_on_offered_deadline_missed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_PublisherListener_on_offered_deadline_missed
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedDeadlineMissedStatus *status);

3.4.3.4 DDS_PublisherListener_on_offered_incompatible_qos (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_PublisherListener_on_offered_incompatible_qos
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedIncompatibleQosStatus *status);

3.4.3.5 DDS_PublisherListener_on_publication_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_PublisherListener_on_publication_matched
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.
318
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4 DDS_DataWriterListener interface
Since a DDS_DataWriter is a DDS_Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DDS_DataWriterListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
e x t e n d f r o m t h e DDS_DataWriterListener c l a s s . A l l
DDS_DataWriterListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DataWriterListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
a QosPolicy setting, etc. The DDS_DataWriterListener is related to changes
in communication status.
The interface description of this class is as follows:

/*
 * interface DDS_DataWriterListener
 */
/*
 * abstract external operations
 */

void
 DDS_DataWriterListener_on_offered_deadline_missed

 (void *listener_data,
 DDS_DataWriter writer,

 const DDS_OfferedDeadlineMissedStatus *status);

void
 DDS_DataWriterListener_on_offered_incompatible_qos

 (void *listener_data,
 DDS_DataWriter writer,

 const DDS_OfferedIncompatibleQosStatus *status);

void
 DDS_DataWriterListener_on_liveliness_lost

 (void *listener_data,
 DDS_DataWriter writer,

 const DDS_LivelinessLostStatus *status);

void
 DDS_DataWriterListener_on_publication_matched

 (void *listener_data,
319
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 DDS_DataWriter writer,
 const DDS_PublicationMatchedStatus *status);

/*
 * implemented API operations
 */

DDS_DataWriterListener
 DDS_DataWriterListener__alloc
 (void);

The next paragraphs describe the usage of all DDS_DataWriterListener
operations. These abstract operations are fully described because they must be
implemented by the application.

3.4.4.1 DDS_DataWriterListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_DataWriterListener
 DDS_DataWriterListener__alloc
 (void);

Description
This operation creates a new DDS_DataWriterListener.

Parameters
<none>

Return Value
DDS_DataWriterListener - t h e h a n d l e t o t h e n e w l y c r e a t e d

DDS_DataWriterListener. In case of an error, a DDS_OBJECT_NIL pointer
is returned.

Detailed Description
Thi s ope ra t i on c r ea t e s a new DDS_DataWriterListener. T h e
DDS_DataWriterListener must be created using this operation. In other words,
t h e a p p l i c a t i o n i s n o t a l l o w e d t o d e c l a r e a n o b j e c t o f t y p e
DDS_DataWriterListener. When the application wants to release the
DDS_DataWriterListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_DataWriterListener, a DDS_OBJECT_NIL pointer is returned instead.
320
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.2 DDS_DataWriterListener_on_liveliness_lost (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataWriterListener_on_liveliness_lost
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_LivelinessLostStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_LivelinessLostStatus changes.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataWriter writer - contain a pointer to the DDS_DataWriter on

which the DDS_LivelinessLostStatus has changed (this is an input to the
application).

in const DDS_LivelinessLostStatus *status - conta in the
DDS_LivelinessLostStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_LivelinessLostStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
relevant DDS_DataWriterListener is installed and enabled for the liveliness lost
status. The liveliness lost status will change when the liveliness that the
DDS_DataWriter has committed through its DDS_LivelinessQosPolicy was
not respected. In other words, the DDS_DataWriter failed to actively signal its
liveliness within the offered liveliness period. As a result, the DDS_DataReader
objects will consider the DDS_DataWriter as no longer “alive”.
The Data Distribution Service will call the DDS_DataWriterListener operation
with a parameter writer, which will contain a pointer to the DDS_DataWriter on
which the conflict occurred and a parameter status, which will contain the
DDS_LivelinessLostStatus struct.
321
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.3 DDS_DataWriterListener_on_offered_deadline_missed (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataWriterListener_on_offered_deadline_missed
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedDeadlineMissedStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_OfferedDeadlineMissedStatus changes.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataWriter writer - contains a pointer to the DDS_DataWriter on

which the DDS_OfferedDeadlineMissedStatus has changed (this is an
input to the application).

in const DDS_OfferedDeadlineMissedStatus *status - contains the
DDS_OfferedDeadlineMissedStatus struct (this is an input to the
application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_OfferedDeadlineMissedStatus changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the relevant DDS_DataWriterListener is installed and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
d e a d l i n e t h a t t h e DDS_DataWriter h a s c o m m i t t e d t h r o u g h i t s
DDS_DeadlineQosPolicy was not respected for a specific instance.
The Data Distribution Service will call the DDS_DataWriterListener operation
with a parameter writer, which will contain a pointer to the DDS_DataWriter on
which the conflict occurred and a parameter status, which will contain the
DDS_OfferedDeadlineMissedStatus struct.
322
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.4 DDS_DataWriterListener_on_offered_incompatible_qos (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataWriterListener_on_offered_incompatible_qos
 (void *listener_data,
 DDS_DataWriter writer,
 const DDS_OfferedIncompatibleQosStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataWriter writer - contain a pointer to the DDS_DataWriter on

which the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS has changed (this is
an input to the application).

in const DDS_OfferedIncompatibleQosStatus *status - contain the
DDS_OfferedIncompatibleQosStatus struct (this is an input to the
application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may
be left empty when this functionality is not needed. This operation will only be
called when the relevant DDS_DataWriterListener is installed and enabled for
the DDS_OFFERED_INCOMPATIBLE_QOS_STATUS. The incompatible Qos status
will change when a DDS_DataReader object has been discovered by the
DDS_DataWriter w i t h t h e s a m e DDS_Topic and a r eques t e d
DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.
323
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

The Data Distribution Service will call the DDS_DataWriterListener operation
with a parameter writer, which will contain a pointer to the DDS_DataWriter on
which the conflict occurred and a parameter status, which will contain the
DDS_OfferedIncompatibleQosStatus struct.

3.4.4.5 DDS_DataWriterListener_on_publication_matched (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataWriterListener_on_publication_matched
 (DDS_DataWritervoid *listener_data,
 DDS_DataWriter writer,
 const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.
324
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5 Subscription Module

Figure 19 The DCPS Subscription Module’s Class Model
This module contains the following classes:
• DDS_Subscriber
• Subscription type specific classes
• DDS_DataSample
• DDS_SampleInfo (struct)
• DDS_SubscriberListener (interface)
• DDS_DataReaderListener (interface)
• DDS_ReadCondition

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> lookup_instance()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
325
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_QueryCondition

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataReader is generated (based on IDL) by calling the
pre-processor.
For instance, for the fictional data type Foo (this also applies to other types), defined
in the module SPACE; “Subscription type specific classes” contains the following
classes:
• DDS_DataReader (abstract)
• SPACE_FooDataReader

A DDS_Subscriber is an object responsible for receiving published data and
making it available (according to the DDS_SubscriberQos) to the application. It
may receive and dispatch DDS_Topic with data of different specified data types. To
access the received data, the application must use a typed DDS_DataReader
attached to the DDS_Subscriber. Thus, a subscription is defined by the association
of a DDS_DataReader with a DDS_Subscriber. This association expresses the
intent of the application to subscribe to the data described by the DDS_DataReader
in the context provided by the DDS_Subscriber.

3.5.1 Class DDS_Subscriber
A DDS_Subscriber is the object responsible for the actual reception of the data
resulting from its subscriptions.
A DDS_Subscriber acts on behalf of one or more DDS_DataReader objects that
are related to it. When it receives data (from the other parts of the system), it
i n d i c a t e s t o t h e a p p l i c a t i o n t h a t d a t a i s a v a i l a b l e t h r o u g h i t s
DDS_DataReaderListener and by enabling related DDS_Conditions. The
application can access the list of concerned DDS_DataReader objects through the
operation DDS_Subscriber_get_datareaders and then access the data
available through operations on the DDS_DataReader.
The interface description of this class is as follows:

/*
 * interface DDS_Subscriber
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * DDS_Subscriber_get_statuscondition
 * (DDS_Subscriber _this)
 */
/* DDS_StatusMask
326
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * DDS_Subscriber_get_status_changes
 * (DDS_Subscriber _this);
 */
/* DDS_ReturnCode_t
 * DDS_Subscriber_enable
 * (DDS_Subscriber _this);
 */
/*
 * implemented API operations
 */

DDS_DataReader
 DDS_Subscriber_create_datareader
 (DDS_Subscriber _this,
 const DDS_TopicDescription a_topic,

 const DDS_DataReaderQos *qos,
 const struct DDS_DataReaderListener *a_listener,
 const DDS_StatusMask mask);

DDS_ReturnCode_t
 DDS_Subscriber_delete_datareader
 (DDS_Subscriber _this,
 const DDS_DataReader a_datareader);

DDS_ReturnCode_t
 DDS_Subscriber_delete_contained_entities
 (DDS_Subscriber _this);

DDS_DataReader
 DDS_Subscriber_lookup_datareader
 (DDS_Subscriber _this,
 const DDS_char *topic_name);

DDS_ReturnCode_t
 DDS_Subscriber_get_datareaders
 (DDS_Subscriber _this,
 DDS_DataReaderSeq *readers,

 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

DDS_ReturnCode_t
 DDS_Subscriber_notify_datareaders
 (DDS_Subscriber _this);

DDS_ReturnCode_t
 DDS_Subscriber_set_qos
 (DDS_Subscriber _this,
 const DDS_SubscriberQos *qos);

DDS_ReturnCode_t
327
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_Subscriber_get_qos
 (DDS_Subscriber _this,
 DDS_SubscriberQos *qos);
DDS_ReturnCode_t
 DDS_Subscriber_set_listener
 (DDS_Subscriber _this,
 const struct DDS_SubscriberListener *a_listener,
 const DDS_StatusMask mask);

struct DDS_SubscriberListener
 DDS_Subscriber_get_listener
 (DDS_Subscriber _this);

DDS_ReturnCode_t
 DDS_Subscriber_begin_access
 (DDS_Subscriber _this);

DDS_ReturnCode_t
 DDS_Subscriber_end_access
 (DDS_Subscriber _this);

DDS_DomainParticipant
 DDS_Subscriber_get_participant
 (DDS_Subscriber _this);

DDS_ReturnCode_t
 DDS_Subscriber_set_default_datareader_qos
 (DDS_Subscriber _this,
 const DDS_DataReaderQos *qos);

DDS_ReturnCode_t
 DDS_Subscriber_get_default_datareader_qos
 (DDS_Subscriber _this,
 DDS_DataReaderQos *qos);

DDS_ReturnCode_t
 DDS_Subscriber_copy_from_topic_qos
 (DDS_Subscriber _this,
 DDS_DataReaderQos *a_datareader_qos,

 const DDS_TopicQos *a_topic_qos);

The next paragraphs describe the usage of all DDS_Subscriber operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
328
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.1 DDS_Subscriber_begin_access

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_begin_access
 (DDS_Subscriber _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.2 DDS_Subscriber_copy_from_topic_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_copy_from_topic_qos
 (DDS_Subscriber _this,
 DDS_DataReaderQos *a_datareader_qos,
 const DDS_TopicQos *a_topic_qos);

Description
This operation will copy the policies in a_topic_qos to the corresponding policies
in a_datareader_qos.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
inout DDS_DataReaderQos *a_datareader_qos - the destination

DDS_DataReaderQos struct to which the QosPolicy settings will be copied.
in const DDS_TopicQos *a_topic_qos - the source DDS_TopicQos, which

will be copied.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datareader_qos (replacing the values
in a_datareader_qos, if present).
329
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

This is a “convenience” operation, useful in combination with the operations
DDS_Publisher_get_default_datawriter_qos and DDS_Topic_get_qos.
The operation DDS_Subscriber_copy_from_topic_qos can be used to merge
the DDS_DataReader default QosPolicy settings with the corresponding ones on
the DDS_Topic. The resulting DDS_DataReaderQos can then be used to create a
new DDS_DataReader, or set its DDS_DataReaderQos.
This operation does not check the resulting a_datareader_qos for self
consistency. This is because the “merged” a_datareader_qos may not be the
final one, as the application can still modify some QosPolicy settings prior to
applying the DDS_DataReaderQos to the DDS_DataReader.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the QosPolicy settings have successfully been copied from

the DDS_TopicQos to the DDS_DataReaderQos.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.3 DDS_Subscriber_create_datareader
Synopsis
#include <dds_dcps.h>
DDS_DataReader
 DDS_Subscriber_create_datareader
 (DDS_Subscriber _this,
 const DDS_TopicDescription a_topic,
 const DDS_DataReaderQos *qos,
 const struct DDS_DataReaderListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation creates a DDS_DataReader with the desired QosPolicy settings,
for the desired DDS_TopicDescription and attaches the optionally specified
DDS_DataWriterListener to it.
330
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
in const DDS_TopicDescription a_topic - a po in te r to the

DDS_TopicDescription for which the DDS_DataReader is created. This
may be a DDS_Topic, DDS_MultiTopic or DDS_ContentFilteredTopic.

in const DDS_DataReaderQos *qos - the struct with the QosPolicy settings
for the new DDS_DataReader, when these QosPolicy settings are not self
consistent, no DDS_DataReader is created.

in const struct DDS_DataReaderListener *a_listener - a pointer to
the DDS_DataReaderListener instance which will be attached to the new
DDS_DataReader. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_DataWriterListener whose operations
perform no action.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DataReaderListener for a certain status.

Return Value
DDS_DataReader - Return va lue i s a poin ter to the newly crea ted

DDS_DataReader. In case of an error, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description
This operation creates a DDS_DataReader with the desired QosPolicy settings,
for the desired DDS_TopicDescription and attaches the optionally specified
DDS_DataReaderListener to it. The DDS_TopicDescription may be a
DDS_Topic, DDS_MultiTopic or DDS_ContentFilteredTopic. The returned
DDS_DataReader is attached (and belongs) to the DDS_Subscriber. To delete
the DDS_DataReader the operation DDS_Subscriber_delete_datareader or
DDS_Subscriber_delete_contained_entities must be used.

Application Data Type
The DDS_DataReader returned by this operation is an object of a derived class,
specific to the data type associated with the DDS_TopicDescription. For each
a p p l i c a t i o n - d e f i n e d d a t a t y p e <type> t h e r e i s a c l a s s
<NameSpace>_<type>DataReader generated by calling the pre-processor. This
data type specific class extends DDS_DataReader and contains the operations to
read data of data type <type>.
331
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Beca use t he DDS_DataReader m a y r e a d a DDS_Topic ,
DDS_ContentFilteredTopic or DDS_MultiTopic, the DDS_DataReader is
associated with the DDS_TopicDescription. The DDS_DataWriter can only
write a DDS_Topic, not a DDS_ContentFilteredTopic or DDS_MultiTopic,
because these two are constructed at the DDS_Subscriber side.

QosPolicy
The common application pattern to construct the QosPolicy settings for the
DDS_DataReader is to:
• Retrieve the QosPolicy settings on the associated DDS_TopicDescription

by means of the DDS_Topic_get_qos operation on the
DDS_TopicDescription

• Retrieve the default DDS_DataReaderQos by means of the
DDS_Subscriber_get_default_datareader_qos operation on the
DDS_Subscriber

• Combine those two QosPolicy settings and selectively modify policies as
desired (DDS_Subscriber_copy_from_topic_qos)

• Use the resulting QosPolicy settings to construct the DDS_DataReader.
• In case the specified QosPolicy settings are not self consistent, no
DDS_DataReader is created and the DDS_OBJECT_NIL pointer is returned.

Default QoS
The constant DDS_DATAREADER_QOS_DEFAULT can be used as parameter qos to
create a DDS_DataReader with the default DDS_DataReaderQos as set in the
DDS_Subscriber. The effect of using DDS_DATAREADER_QOS_DEFAULT is the
s a m e a s c a l l i n g t h e o p e r a t i o n
DDS_Subscriber_get_default_datareader_qos and using the resulting
DDS_DataReaderQos to create the DDS_DataReader.
The special DDS_DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DDS_DataReader with a combination of the default DDS_DataReaderQos and
the DDS_TopicQos . T h e e f f e c t o f u s i n g
DDS_DATAREADER_QOS_USE_TOPIC_QOS is the same as calling the operation
DDS_Subscriber_get_default_datareader_qos and retrieving the
DDS_TopicQos (by means of the operation DDS_Topic_get_qos) and then
co mbin ing t he se two QosPolicy s e t t i n g s u s in g t h e o p e r a t i o n
DDS_Subscriber_copy_from_topic_qos, whereby any common policy that is
set on the DDS_TopicQos “overrides” the corresponding policy on the default
DDS_DataReaderQos. The resulting DDS_DataReaderQos is then applied to
create the DDS_DataReader.
332
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_DataReaderListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset.
The following statuses are applicable to the DDS_DataReaderListener:

DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DataReaderListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_DataReaderListener, the DDS_SubscriberListener of the containing
DDS_Subscriber is invoked (if attached and activated for the status that occurred).
T h i s a l l o w s t h e a p p l i c a t i o n to s e t a d e f au l t be hav i ou r i n t h e
DDS_SubscriberListener of the containing DDS_Subscriber and a
DDS_DataReader specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_SubscriberListener as well, the
c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant. In case the DDS_DomainParticipantListener is
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

3.5.1.4 DDS_Subscriber_delete_contained_entities

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_delete_contained_entities
 (DDS_Subscriber _this);
333
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation deletes all the DDS_DataReader objects that were created by means
o f t he DDS_Subscriber_create_datareader ope ra t i on on t he
DDS_Subscriber.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DDS_DataReader objects that were created by means
o f t he DDS_Subscriber_create_datareader ope ra t i on on t he
DDS_Subscriber. In other words, it deletes all contained DDS_DataReader
objects. Prior to deleting each DDS_DataReader, this operation recursively calls
the corresponding DDS_DataReader_delete_contained_entities operation
on each DDS_DataReader. In other words, all DDS_DataReader objects in the
DDS_Subscriber are deleted, including the DDS_QueryCondition and
DDS_ReadCondition objects contained by the DDS_DataReader.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DDS_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the contained DDS_Entity objects are deleted and the

application may delete the DDS_Subscriber.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
334
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities
are in a state where they cannot be deleted.

3.5.1.5 DDS_Subscriber_delete_datareader

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_delete_datareader
 (DDS_Subscriber _this,
 const DDS_DataReader a_datareader);

Description
This operation deletes a DDS_DataReader that belongs to the DDS_Subscriber.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
in const DDS_DataReader a_datareader - a p o i n t e r t o t h e

DDS_DataReader, which is to be deleted.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_DataReader that belongs to the DDS_Subscriber.
When the operation is called on a different DDS_Subscriber, as used when the
DDS_DataReader was created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET. The deletion of the DDS_DataReader
is not allowed if there are any DDS_ReadCondition or DDS_QueryCondition
objects that are attached to the DDS_DataReader. In that case the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.
335
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DataReader is deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_datareader is not a valid
DDS_DataReader.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_Subscriber, as used when the DDS_DataReader was created, or the
DDS_DataReader contains one or more DDS_ReadCondition or
DDS_QueryCondition objects.

3.5.1.6 DDS_Subscriber_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Subscriber_enable
 (DDS_Subscriber _this);

3.5.1.7 DDS_Subscriber_end_access

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_end_access
 (DDS_Subscriber _this);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.8 DDS_Subscriber_get_datareaders

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
336
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_Subscriber_get_datareaders
 (DDS_Subscriber _this,
 DDS_DataReaderSeq *readers,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.9 DDS_Subscriber_get_default_datareader_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Subscriber_get_default_datareader_qos
 (DDS_Subscriber _this,

DDS_DataReaderQos *qos);

Description
This operation gets the default QosPolicy settings of the DDS_DataReader.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
inout DDS_DataReaderQos *qos - a pointer to the DDS_DataReaderQos

struct (provided by the application) in which the default QosPolicy settings for
the DDS_DataReader are written.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation gets the default QosPolicy settings of the DDS_DataReader (that
is the DDS_DataReaderQos) which is used for newly created DDS_DataReader
objects, in case the constant DDS_DATAREADER_QOS_DEFAULT is used. The default
DDS_DataReaderQos is only used when the constant is supplied as parameter
qos t o s p e c i f y t h e DDS_DataReaderQos i n t h e
DDS_Subscriber_create_datareader operation. The application must
provide the DDS_DataReaderQos struct in which the QosPolicy settings can be
337
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

stored and pass the qos pointer to the operation. The operation writes the default
QosPolicy settings to the struct pointed to by qos. Any settings in the struct are
overwritten.
The values retrieved by this operation match the values specified on the last
successful call to DDS_Subscriber_set_default_datareader_qos, or, if the
call was never made, the default values as specified for each QosPolicy setting as
defined in Table 5 on page 59.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the default DDS_DataReader QosPolicy settings of this
DDS_Subscriber have successfully been copied into the specified
DDS_DataReaderQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.10 DDS_Subscriber_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberListener
 DDS_Subscriber_get_listener
 (DDS_Subscriber _this);

Description
This operation allows access to a DDS_SubscriberListener.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.

Return Value
struct DDS_SubscriberListener - r e s u l t i s a p o in t e r t o t h e

DDS_SubscriberListener attached to the DDS_Subscriber.
338
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation allows access to a DDS_SubscriberListener attached to the
DDS_Subscriber. When no DDS_SubscriberListener was attached to the
DDS_Subscriber, the DDS_OBJECT_NIL pointer is returned.

3.5.1.11 DDS_Subscriber_get_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
 DDS_Subscriber_get_participant
 (DDS_Subscriber _this);

Description
This operation returns the DDS_DomainParticipant associated with the
DDS_Subscriber or the DDS_OBJECT_NIL pointer.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.

Return Value
DDS_DomainParticipant - a pointer to the DDS_DomainParticipant

associated with the DDS_Subscriber or the DDS_OBJECT_NIL pointer.

Detailed Description
This operation returns the DDS_DomainParticipant associated with the
DDS_Subscriber. Note that there is exactly one DDS_DomainParticipant
associated with each DDS_Subscriber. When the DDS_Subscriber was already
deleted (there is no associated DDS_DomainParticipant any more), the
DDS_OBJECT_NIL pointer is returned.

3.5.1.12 DDS_Subscriber_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_get_qos
 (DDS_Subscriber _this,
 DDS_SubscriberQos *qos);
339
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation allows access to the existing set of QoS policies for a
DDS_Subscriber.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
inout DDS_SubscriberQos *qos - a po in te r to the des t ina t ion

DDS_SubscriberQos struct in which the QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DDS_Subscriber on which this operation is used. This DDS_SubscriberQos is
stored at the location pointed to by the qos parameter.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Subscriber has successfully been copied into the specified
DDS_SubscriberQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.13 DDS_Subscriber_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
340
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_StatusMask
 DDS_Subscriber_get_status_changes
 (DDS_Subscriber _this);

3.5.1.14 DDS_Subscriber_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_Subscriber_get_statuscondition
 (DDS_Subscriber _this);

3.5.1.15 DDS_Subscriber_lookup_datareader

Synopsis
#include <dds_dcps.h>
DDS_DataReader
 DDS_Subscriber_lookup_datareader
 (DDS_Subscriber _this,
 const DDS_char *topic_name);

Description
This operation returns a previously created DDS_DataReader belonging to the
DDS_Subscriber which is attached to a DDS_Topic with the matching
topic_name.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
in const DDS_char *topic_name - the name of the DDS_Topic, which is

attached to the DDS_DataReader to look for.

Return Value
DDS_DataReader - Return value is a pointer to the DDS_DataReader found.

When no such DDS_DataReader is found, the DDS_OBJECT_NIL pointer is
returned.
341
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation returns a previously created DDS_DataReader belonging to the
DDS_Subscriber which is attached to a DDS_Topic with the matching
topic_name. When multiple DDS_DataReader objects (which satisfy the same
condition) exist, this operation will return one of them. It is not specified which one.
This operation may be used on the built-in DDS_Subscriber, which returns the
built-in DDS_DataReader objects for the built-in DDS_Topics.

3.5.1.16 DDS_Subscriber_notify_datareaders

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_notify_datareaders
 (DDS_Subscriber _this);

Description
This operation invokes the DDS_DataReaderListener_on_data_available
operation on DDS_DataReaderListener objects which are attached to the
contained DDS_DataReader entities having new, available data.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR,
DDS_RETCODE_ILLEGAL_OPERATION, DDS_RETCODE_ALREADY_DELETED
or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation invokes the DDS_DataReaderListener_on_data_available
operation on the DDS_DataReaderListener objects attached to contained
DDS_DataReader entities that have received information, but which have not yet
been processed by those DDS_DataReaders.
The DDS_Subscriber_notify_datareaders operation ignores the bit mask
value of the individual DDS_DataReaderListener objects, even when the
DDS_DATA_AVAILABLE_STATUS bit has not been set on a DDS_DataReader that
w h i c h h a s n e w, a v a i l a b l e d a t a . T h e
DDS_DataReaderListener_on_data_available operation will still be
342
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

invoked, when the DATA_AVAILABLE_STATUS bit has not been set on a
DataReader, b u t w i l l n o t p r o p a g a t e t o t h e
DDS_DomainParticipantListener.
When the DDS_DataReader has attached a NULL listener, the event will be
consumed and will not propagate to the DDS_DomainParticipantListener.
(Remember that a NULL listener is regarded as a listener that handles all its events as
a NOOP).

Return Code
When the operation returns:
• DDS_RETCODE_OK - all appropriate listeners have been invoked
• DDS_RETCODE_ERROR - an internal error has occurred
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object
• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been

deleted
• DDS_RETCODE_OUT_OF_RESOURCES - there are insufficient Data Distribution

Service resources to complete this operation

3.5.1.17 DDS_Subscriber_set_default_datareader_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_set_default_datareader_qos
 (DDS_Subscriber _this,
 const DDS_DataReaderQos *qos);

Description
This operation sets the default DDS_DataReaderQos of the DDS_DataReader.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
in const DDS_DataReaderQos *qos - the DDS_DataReaderQos struct,

which contains the new default QosPolicy settings for the newly created
DDS_DataReaders.
343
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DDS_DataReaderQos of the DDS_DataReader
(that is the struct with the QosPolicy settings). This QosPolicy is used for newly
c r e a t e d DDS_DataReader ob j ec t s i n c a se t he c ons t a n t
DDS_DATAREADER_QOS_DEFAULT is used as parameter qos to specify the
DDS_DataReaderQos in the DDS_Subscriber_create_datareader
operation. This operation checks if the DDS_DataReaderQos is self consistent. If it
i s n o t , t h e o p e r a t i o n h a s n o e f f e c t a nd r e t u r n s
DDS_RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
DDS_Subscriber_get_default_datareader_qos.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new default DDS_DataReaderQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_DataReaderQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.
344
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.18 DDS_Subscriber_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_set_listener
 (DDS_Subscriber _this,
 const struct DDS_SubscriberListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_SubscriberListener to the DDS_Subscriber.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
in const struct DDS_SubscriberListener *a_listener - a pointer to

the DDS_SubscriberListener instance, which will be attached to the
DDS_Subscriber.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_SubscriberListener for a certain status.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DDS_SubscriberListener to the DDS_Subscriber.
Only one DDS_SubscriberListener can be attached to each DDS_Subscriber.
If a DDS_SubscriberListener was already attached, the operation will replace it
with the new one. When a_listener is the DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP1 for all statuses activated in the
bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d

1. Short for No-Operation, an instruction that peforms nothing at all.

345

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_SubscriberListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application calls the get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the DDS_OBJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DDS_SubscriberListener:
• DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• DDS_SAMPLE_LOST_STATUS (propagated)
• DDS_SAMPLE_REJECTED_STATUS (propagated)
• DDS_DATA_AVAILABLE_STATUS (propagated)
• DDS_LIVELINESS_CHANGED_STATUS (propagated)
• DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).
• DDS_DATA_ON_READERS_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataReaderListener o f a conta ined DDS_DataReader, the
DDS_DataReaderListener on that contained DDS_DataReader is invoked
instead of the DDS_SubscriberListener. This means that a status change on a
contained DDS_DataReader only invokes the DDS_SubscriberListener if the
contained DDS_DataReader itself does not handle the trigger event generated by
the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_SubscriberListener, the DDS_DomainParticipantListener of the
containing DDS_DomainParticipant is invoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant and a DDS_Subscriber specific behaviour when
needed. In case the DDS_DomainParticipantListener is also not attached or
the communication status is not activated in its mask, the application is not notified
of the change.
346
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The s t a tu se s DDS_DATA_ON_READERS_STATUS a n d DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses” and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with a get_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will f irst look in an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_SubscriberListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.19 DDS_Subscriber_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_Subscriber_set_qos
 (DDS_Subscriber _this,
 const DDS_SubscriberQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_Subscriber.

Parameters
in DDS_Subscriber _this - the DDS_Subscriber object on which the

operation is operated.
347
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in const DDS_SubscriberQos *qos - contain the new set of QosPolicy
settings for the DDS_Subscriber.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_ IMMUTABLE_POLICY.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_Subscriber. The parameter qos must contain the QosPolicy settings which
is checked for self-consistency and mutability. When the application tries to change
a QosPolicy setting for an enabled DDS_Subscriber, which can only be set
before the DDS_Subscriber is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY is returned. In other words, the application
must provide the presently set QosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and a RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_SubscriberQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_SubscriberQos. It contains a QosPolicy setting with an enum value
that is outside its legal boundaries or a sequence that has inconsistent memory
settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_Subscriber has already been
deleted.
348
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_IMMUTABLE_POLICY - the parameter qos contains an
immutable QosPolicy setting with a different value than set during enabling of
the DDS_Subscriber.

3.5.2 Subscription Type Specific Classes
“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataReader is generated (based on IDL) by calling the
pre-processor. In case of data type Foo (this also applies to other types), defined in
the module SPACE; “Subscription type specific classes” contains the following
classes:
This paragraph describes the generic DDS_DataReader class and the derived
application type specific <NameSpace>_<type>DataReader classes which
together implement the application subscription interface. For each application type,
u se d a s DDS_Topic d a t a t ype , t he p r e -p roce s s o r gene ra t e s a
<NameSpace>_<type>DataReader class from an IDL type description. The
SPACE_FooDataReader class that would be generated by the pre-processor for a
f i c t i o na l t yp e Foo (d e f i n e d i n t h e m o d u l e SPACE) d e s c r i b e s t h e
<NameSpace>_<type>DataReader classes.

3.5.2.1 Class DDS_DataReader (abstract)
A DDS_DataReader allows the application:
• to declare data it wishes to receive (i.e., make a subscription)
• to access data received by the associated DDS_Subscriber.
A DDS_DataReader refers to exactly one DDS_TopicDescription (either a
DDS_Topic, a DDS_ContentFilteredTopic or a DDS_MultiTopic) that
identifies the samples to be read. The DDS_DataReader may give access to several
instances of the data type, which are distinguished from each other by their key.
DDS_DataReader is an abstract class. It is specialized for each particular
application data type. For a fictional application data type “Foo” the specialized
class would be SPACE_FooDataReader.
The interface description of this class is as follows:

/*
 * interface DDS_DataReader
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
349
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * DDS_DataReader_get_statuscondition
 * (DDS_DataReader _this);
 */
/* DDS_StatusMask
 * DDS_DataReader_get_status_changes
 * (DDS_DataReader _this);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_enable
 * (DDS_DataReader _this);
 */
/*
 * abstract operations
 * (implemented in the data type specific DDS_DataReader)
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read_w_condition
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_ReadCondition a_condition);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take_w_condition
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_ReadCondition a_condition);
350
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read_next_sample
 * (DDS_DataReader _this,
 * <data> *data_values,
 * DDS_SampleInfo *sample_info);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take_next_sample
 * (DDS_DataReader _this,
 * <data> *data_values,
 * DDS_SampleInfo *sample_info);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read_instance
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take_instance
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read_next_instance
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take_next_instance
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
351
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_read_next_instance_w_condition
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_ReadCondition a_condition);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_take_next_instance_w_condition
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq,
 * const DDS_long max_samples,
 * const DDS_InstanceHandle_t a_handle,
 * const DDS_ReadCondition a_condition);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_return_loan
 * (DDS_DataReader _this,
 * DDS_sequence_<data> *data_values,
 * DDS_SampleInfoSeq *info_seq);
 */
/* DDS_ReturnCode_t
 * DDS_DataReader_get_key_value
 * (DDS_DataReader _this,
 * <data> *key_holder,
 * const DDS_InstanceHandle_t handle);
 */
/* DDS_InstanceHandle_t
 * DDS_DataReader_lookup_instance
 */ (DDS_DataReader _this,
 * <data> *instance_data);
/*
 * implemented API operations
 */

DDS_ReadCondition
 DDS_DataReader_create_readcondition
 (DDS_DataReader _this,
 const DDS_SampleStateMask sample_states,

 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
352
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_QueryCondition
 DDS_DataReader_create_querycondition
 (DDS_DataReader _this,
 const DDS_SampleStateMask sample_states,

 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states,
 const DDS_char *query_expression,
 const DDS_StringSeq *query_parameters);

DDS_ReturnCode_t
 DDS_DataReader_delete_readcondition
 (DDS_DataReader _this,
 const DDS_ReadCondition a_condition);

DDS_ReturnCode_t
 DDS_DataReader_delete_contained_entities
 (DDS_DataReader _this);

DDS_ReturnCode_t
 DDS_DataReader_set_qos
 (DDS_DataReader _this,
 const DDS_DataReaderQos *qos);

DDS_ReturnCode_t
 DDS_DataReader_get_qos
 (DDS_DataReader _this,
 DDS_DataReaderQos *qos);

DDS_ReturnCode_t
 DDS_DataReader_set_listener
 (DDS_DataReader _this,
 const struct DDS_DataReaderListener *a_listener,
 const DDS_StatusMask mask);

struct DDS_DataReaderListener
 DDS_DataReader_get_listener
 (DDS_DataReader _this);

DDS_TopicDescription
 DDS_DataReader_get_topicdescription
 (DDS_DataReader _this);

DDS_Subscriber
 DDS_DataReader_get_subscriber
 (DDS_DataReader _this);

DDS_ReturnCode_t
 DDS_DataReader_get_sample_rejected_status
 (DDS_DataReader _this,
353
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_SampleRejectedStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_get_liveliness_changed_status
 (DDS_DataReader _this,
 DDS_LivelinessChangedStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_get_requested_deadline_missed_status
 (DDS_DataReader _this,
 DDS_RequestedDeadlineMissedStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_get_requested_incompatible_qos_status
 (DDS_DataReader _this,
 DDS_RequestedIncompatibleQosStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_get_subscription_matched_status
 (DDS_DataReader _this,
 DDS_SubscriptionMatchedStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_get_sample_lost_status
 (DDS_DataReader _this,
 DDS_SampleLostStatus *status);

DDS_ReturnCode_t
 DDS_DataReader_wait_for_historical_data
 (DDS_DataReader _this,
 const DDS_Duration_t *max_wait);

DDS_ReturnCode_t
 DDS_DataReader_get_matched_publications
 (DDS_DataReader _this,
 DDS_InstanceHandleSeq *publication_handles);

DDS_ReturnCode_t
 DDS_DataReader_get_matched_publication_data
 (DDS_DataReader _this,
 DDS_PublicationBuiltinTopicData *publication_data,

 const DDS_InstanceHandle_t publication_handle);

The next paragraphs describe the usage of all DDS_DataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
354
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses that contain the data type
specific implementation of these operations.

3.5.2.2 DDS_DataReader_create_querycondition

Synopsis
#include <dds_dcps.h>
DDS_QueryCondition
 DDS_DataReader_create_querycondition
 (DDS_DataReader _this,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states,
 const DDS_char *query_expression,
 const DDS_StringSeq *query_parameters);

Description
This operation creates a new DDS_QueryCondition for the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const DDS_SampleStateMask sample_states - a mask, which selects

only those samples with the desired sample states.
in const DDS_ViewStateMask view_states - a mask, which selects only

those samples with the desired view states.
in const DDS_InstanceStateMask instance_states - a mask, which

selects only those samples with the desired instance states.
in const DDS_char *query_expression - the query string, which must be a

subset of the SQL query language as specified in Appendix H, DCPS Queries
and Filters.

in const DDS_StringSeq *query_parameters - a sequence of strings which
are the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g.
i f %1 and %8 a re used as parameter in the query_expression, the
query_parameters should at least contain n+1 = 9 values).

Return Value
DDS_QueryCondition - Result value is a pointer to the DDS_QueryCondition.

When the operation fails, the DDS_OBJECT_NIL pointer is returned.

355

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation creates a new DDS_QueryCondition for the DDS_DataReader.
The returned DDS_QueryCondition is attached (and belongs) to the
DDS_DataReader. When the operation fails, the DDS_OBJECT_NIL pointer is
r e t u r n e d . To d e l e t e t h e DDS_QueryCondition t h e o p e r a t i o n
DDS_DataReader_delete_readcondition or DDS_DataReader_delete_
contained_entities must be used.

State Masks
The result of the DDS_QueryCondition also depends on the selection of samples
determined by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE or
both

• view_states is the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both

• instance_states is the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE or a combination of these.

SQL expression
The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must
be set in the sequence of strings defined by the parameter query_parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of values in query_parameters must be equal or greater than the highest
referenced %n token in the query_expression (e.g. if %1 and %8 are used as
parameter in the query_expression, the query_parameters should at least
contain n+1 = 9 values).

3.5.2.3 DDS_DataReader_create_readcondition

Synopsis
#include <dds_dcps.h>
DDS_ReadCondition
 DDS_DataReader_create_readcondition
 (DDS_DataReader _this,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
356
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation creates a new DDS_ReadCondition for the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const DDS_SampleStateMask sample_states - a mask, which selects

only those samples with the desired sample states.
in const DDS_ViewStateMask view_states - a mask, which selects only

those samples with the desired view states.
in const DDS_InstanceStateMask instance_states - a mask, which

selects only those samples with the desired instance states.

Return Value
DDS_ReadCondition - Result value is a pointer to the DDS_ReadCondition.

When the operation fails, the DDS_OBJECT_NIL pointer is returned.

Detailed Description
This operation creates a new DDS_ReadCondition for the DDS_DataReader. The
returned DDS_ReadCondition is attached (and belongs) to the DDS_DataReader.
When the operation fails, the DDS_OBJECT_NIL pointer is returned. To delete the
DDS_ReadCondition t he ope r a t i on DDS_DataReader_delete_
readcondition or DDS_DataReader_delete_contained_entities must be
used.

State Masks
The result of the DDS_ReadCondition depends on the selection of samples
determined by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE or
both

• view_states is the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both

• instance_states is the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE or a combination of these.
357
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.4 DDS_DataReader_delete_contained_entities

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_delete_contained_entities
 (DDS_DataReader _this);

Description
This operation deletes all the DDS_Entity objects that were created by means of
one of the “create_” operations on the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DDS_Entity objects that were created by means of
one of the “create_” operations on the DDS_DataReader. In other words, it
deletes all DDS_QueryCondition and DDS_ReadCondition objects contained
by the DDS_DataReader.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the contained DDS_Entity objects are deleted and the

application may delete the DDS_DataReader.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
358
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities
are in a state where they cannot be deleted.

3.5.2.5 DDS_DataReader_delete_readcondition

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_delete_readcondition
 (DDS_DataReader _this,
 const DDS_ReadCondition a_condition);

Description
This operation deletes a DDS_ReadCondition or DDS_QueryCondition which
is attached to the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const DDS_ReadCondition a_condition - a pointer to the

DDS_ReadCondition or DDS_QueryCondition which is to be deleted.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DDS_ReadCondition or DDS_QueryCondition which
is attached to the DDS_DataReader. Since a DDS_QueryCondition is a
specialized DDS_ReadCondition, the operation can also be used to delete a
DDS_QueryCondition. A DDS_ReadCondition or DDS_QueryCondition
cannot be deleted when it is not attached to this DDS_DataReader. When the
operation is called on a DDS_ReadCondition or DDS_QueryCondition which
was no t a t t ached to t h i s DDS_DataReader , t he ope ra t ion r e tu rns
DDS_RETCODE_PRECONDITION_NOT_MET.
359
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_ReadCondition or DDS_QueryCondition is

deleted.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
DDS_ReadCondition.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DataReader, as used when the DDS_ReadCondition or
DDS_QueryCondition was created.

3.5.2.6 DDS_DataReader_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_enable
 (DDS_DataReader _this);

3.5.2.7 DDS_DataReader_get_key_value (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_get_key_value
(DDS_DataReader _this,

<data> *key_holder,
 const DDS_InstanceHandle_t handle);
360
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.8 DDS_DataReader_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderListener
 DDS_DataReader_get_listener
 (DDS_DataReader _this);

Description
This operation allows access to a DDS_DataReaderListener.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.

Return Value
struct DDS_DataReaderListener - r e s u l t i s a p o in t e r t o t h e

DDS_DataReaderListener attached to the DDS_DataReader.

Detailed Description
This operation allows access to a DDS_DataReaderListener attached to the
DDS_DataReader. When no DDS_DataReaderListener was attached to the
DDS_DataReader, the DDS_OBJECT_NIL pointer is returned.

3.5.2.9 DDS_DataReader_get_liveliness_changed_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_liveliness_changed_status
 (DDS_DataReader _this,
 DDS_LivelinessChangedStatus *status);

Description
This operation obtains the DDS_LivelinessChangedStatus struct of the
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
361
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

inout DDS_LivelinessChangedStatus *status - the contents of the
DDS_LivelinessChangedStatus struct of the DDS_DataReader will be
copied into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_LivelinessChangedStatus struct of the
DDS_DataReader. This struct contains the information whether the liveliness of
one or more DDS_DataWriter objects that were writing instances read by the
DDS_DataReader has changed. In other words, some DDS_DataWriter have
become “alive” or “not alive”.
The DDS_LivelinessChangedStatus can also be monitored using a
DDS_DataReaderListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_LivelinessChangedStatus of this
DDS_DataReader has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.10 DDS_DataReader_get_matched_publication_data

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_matched_publication_data
 (DDS_DataReader _this,
 DDS_PublicationBuiltinTopicData *publication_data,
 const DDS_InstanceHandle_t publication_handle);
362
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.11 DDS_DataReader_get_matched_publications

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_matched_publications
 (DDS_DataReader _this,
 DDS_InstanceHandleSeq *publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.12 DDS_DataReader_get_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_qos
 (DDS_DataReader _this,
 DDS_DataReaderQos *qos);

Description
This operation allows access to the existing set of QoS policies for a
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
inout DDS_DataReaderQos *qos - a po in te r to the des t ina t ion

DDS_DataReaderQos struct in which the QosPolicy settings will be copied.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DDS_DataReader on which this operation is used. This DDS_DataReaderQos is
stored at the location pointed to by the qos parameter.
363
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DataReader has successfully been copied into the specified
DDS_DataReaderQos parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.13 DDS_DataReader_get_requested_deadline_missed_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_requested_deadline_missed_status
 (DDS_DataReader _this,
 DDS_RequestedDeadlineMissedStatus *status);

Description
This operation obtains the DDS_RequestedDeadlineMissedStatus struct of the
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
inout DDS_RequestedDeadlineMissedStatus *status - the contents of

t he DDS_RequestedDeadlineMissedStatus s t r u c t o f t h e
DDS_DataReader will be copied into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.
364
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation obtains the DDS_RequestedDeadlineMissedStatus struct of the
DDS_DataReader. This struct contains the information whether the deadline that
the DDS_DataReader was expecting through its DDS_DeadlineQosPolicy was
not respected for a specific instance.
The DDS_RequestedDeadlineMissedStatus can also be monitored using a
DDS_DataReaderListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_RequestedDeadlineMissedStatus of

this DDS_DataReader has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.14 DDS_DataReader_get_requested_incompatible_qos_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_requested_incompatible_qos_status
 (DDS_DataReader _this,
 DDS_RequestedIncompatibleQosStatus *status);

Description
This operation obtains the DDS_RequestedIncompatibleQosStatus struct of
the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
inout DDS_RequestedIncompatibleQosStatus *status - the contents of

t he DDS_RequestedIncompatibleQosStatus s t r u c t o f t h e
DDS_DataReader will be copied into the location specified by status.
365
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_RequestedIncompatibleQosStatus struct of
the DDS_DataReader. This struct contains the information whether a QosPolicy
setting was incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between the DDS_DataWriter and
the DDS_DataReader. If the QosPolicy settings between DDS_DataWriter and
DDS_DataReader are inconsistent, no communication between them is
established. In addition the DDS_DataWriter will be informed via a
DDS_REQUESTED_INCOMPATIBLE_QOS status change and the DDS_DataReader
will be informed via an DDS_OFFERED_INCOMPATIBLE_QOS status change.
The DDS_RequestedIncompatibleQosStatus can also be monitored using a
DDS_DataReaderListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_RequestedIncompatibleQosStatus of

this DDS_DataReader has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.15 DDS_DataReader_get_sample_lost_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_sample_lost_status
 (DDS_DataReader _this,
 DDS_SampleLostStatus *status);
366
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This opera t ion ob ta ins the DDS_SampleLostStatus s t ruc t o f the
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
inout DDS_SampleLostStatus *status - t he con ten t s o f t he

DDS_SampleLostStatus struct of the DDS_DataReader will be copied into
the location specified by status.

Note: This status is not yet implemented. It is scheduled for a future release. Until it
is implemented all returned attribute values will be initialized to 0.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This opera t ion ob ta ins the DDS_SampleLostStatus s t ruc t o f the
DDS_DataReader. This struct contains the information whether a sample have
been lost. This only applies when the DDS_ReliabilityQosPolicy is set to
DDS_RELIABLE . I f t h e DDS_ReliabilityQosPolicy i s s e t t o
DDS_BEST_EFFORT the Data Distribution Service will not report the loss of
samples.
The DDS_SampleLostStatus c a n a l s o b e m o n i t o r e d u s i n g a
DDS_DataReaderListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_SampleLostStatus of this
DDS_DataReader has successfully been copied into the specified status
parameter.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
367
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.5.2.16 DDS_DataReader_get_sample_rejected_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_sample_rejected_status
 (DDS_DataReader _this,
 DDS_SampleRejectedStatus *status);

Detailed Description
This operation obtains the DDS_SampleRejectedStatus struct of the
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
inout DDS_SampleRejectedStatus *status - the contents of the

DDS_SampleRejectedStatus struct of the DDS_DataReader will be copied
into the location specified by status.

Return Value
DDS_ReturnCode_t - Possible re turn codes of the operat ion are:
DDS_RETCODE_OK , DDS_RETCODE_ERROR , DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the DDS_SampleRejectedStatus struct of the
DDS_DataReader. This struct contains the information whether a received sample
has been rejected.
The DDS_SampleRejectedStatus can a l so be moni tored us ing a
DDS_DataReaderListener or by using the associated DDS_StatusCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the current DDS_SampleRejectedStatus of this
DDS_DataReader has successfully been copied into the specified status
parameter.
368
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.17 DDS_DataReader_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
 DDS_DataReader_get_status_changes
 (DDS_DataReader _this);

3.5.2.18 DDS_DataReader_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
 DDS_DataReader_get_statuscondition
 (DDS_DataReader _this);

3.5.2.19 DDS_DataReader_get_subscriber

Synopsis
#include <dds_dcps.h>
DDS_Subscriber
 DDS_DataReader_get_subscriber
 (DDS_DataReader _this);

Description
This operation returns the DDS_Subscriber to which the DDS_DataReader
belongs.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.

369

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DDS_Subscriber - Return value is a pointer to the DDS_Subscriber to which

the DDS_DataReader belongs.

Detailed Description
This operation returns the DDS_Subscriber to which the DDS_DataReader
belongs, thus the DDS_Subscriber that has created the DDS_DataReader. If the
DDS_DataReader is already deleted, the DDS_OBJECT_NIL pointer is returned.

3.5.2.20 DDS_DataReader_get_subscription_matched_status

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_get_subscription_matched_status
 (DDS_DataReader _this,
 DDS_SubscriptionMatchedStatus *status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.21 DDS_DataReader_get_topicdescription

Synopsis
#include <dds_dcps.h>
DDS_TopicDescription
 DDS_DataReader_get_topicdescription
 (DDS_DataReader _this);

Description
This operation returns the DDS_TopicDescription which is associated with the
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.

Return Value
DDS_TopicDescription - a pointer to the DDS_TopicDescription which is

associated with the DDS_DataReader.
370
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation returns the DDS_TopicDescription which is associated with the
DDS_DataReader, thus the DDS_TopicDescription with which the
DDS_DataReader is created. If the DDS_DataReader is already deleted, the
DDS_OBJECT_NIL pointer is returned.

3.5.2.22 DDS_DataReader_lookup_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
 DDS_DataReader_lookup_instance
 (DDS_DataReader _this,

<data> *instance_data);

3.5.2.23 DDS_DataReader_read (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_read
(DDS_DataReader _this,

DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
371
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.24 DDS_DataReader_read_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_read_instance
 (DDS_DataReader _this,

DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

3.5.2.25 DDS_DataReader_read_next_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_read_next_instance
 (DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_SampleStateMask sample_states,
const DDS_ViewStateMask view_states,
const DDS_InstanceStateMask instance_states);
372
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.26 DDS_DataReader_read_next_instance_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_DataReader_read_next_instance_w_condition
 (DDS_DataReader _this,

DDS_sequence_<data> *data_values,
DDS_SampleInfoSeq *info_seq,
const DDS_long max_samples,
const DDS_InstanceHandle_t a_handle,
const DDS_ReadCondition a_condition);

3.5.2.27 DDS_DataReader_read_next_sample (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_read_next_sample

 (DDS_DataReader _this,
 <data> *data_values,
 DDS_SampleInfo *sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.28 DDS_DataReader_read_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
373
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_DataReader_read_w_condition
 (DDS_DataReader _this,

 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);

3.5.2.29 DDS_DataReader_return_loan (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_return_loan

 (DDS_DataReader _this,
 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq);

3.5.2.30 DDS_DataReader_set_listener

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_set_listener
 (DDS_DataReader _this,
 const struct DDS_DataReaderListener *a_listener,
 const DDS_StatusMask mask);

Description
This operation attaches a DDS_DataReaderListener to the DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const struct DDS_DataReaderListener *a_listener - a pointer to

the DDS_DataReaderListener instance, which will be attached to the
DDS_DataReader.

in const DDS_StatusMask mask - a bit-mask in which each bit enables the
invocation of the DDS_DataReaderListener for a certain status.
374
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DDS_DataReaderListener to the DDS_DataReader.
Only one DDS_DataReaderListener can be attached to each DDS_DataReader.
If a DDS_DataReaderListener was already attached, the operation will replace it
with the new one. When a_listener is the DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP1 for all statuses activated in the
bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DDS_DataReaderListener operation is invoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application calls the get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the DDS_OBJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DDS_DataReaderListener:

DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant DDS_ANY_STATUS can be
used to select all statuses applicable to the DDS_DataReaderListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

375

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DDS_DataReaderListener, the DDS_SubscriberListener of the containing
DDS_Subscriber is invoked (if attached and activated for the status that occurred).
T h i s a l l o w s t h e a p p l i c a t i o n to s e t a d e f a u l t b e h a v i o u r i n t h e
DDS_SubscriberListener of the containing DDS_Subscriber and a
DDS_DataReader specific behaviour when needed. In case the communication
status is not activated in the mask of the DDS_SubscriberListener as well, the
c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DDS_DomainParticipantListener o f t h e c o n t a i n i n g
DDS_DomainParticipant. In case the DDS_DomainParticipantListener is
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.
The s t a t u se s DDS_DATA_ON_READERS_STATUS a n d DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses” and are an exception to
all other plain communication statuses: they have no corresponding status structure
that can be obtained with a get_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will f irst look in an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the DDS_DataReaderListener is attached.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
376
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.31 DDS_DataReader_set_qos

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_DataReader_set_qos
 (DDS_DataReader _this,
 const DDS_DataReaderQos *qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DataReader.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const DDS_DataReaderQos *qos - the new set of QosPolicy settings for

the DDS_DataReader.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES , DDS_RETCODE_IMMUTABLE_POLICY o r
DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DDS_DataReader. The parameter qos contains the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_DataReader, which can only be set before
the DDS_DataReader i s e n a b l e d , t h e o p e r a t i o n w i l l f a i l a n d a
DDS_RETCODE_IMMUTABLE_POLICY is returned. In other words, the application
must provide the presently set QosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and a DDS_RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).
377
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - the new DDS_DataReaderQos is set.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the parameter qos is not a valid
DDS_DataReaderQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

• DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been
deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_IMMUTABLE_POLICY - the parameter qos contains an
immutable QosPolicy setting with a different value than set during enabling of
the DDS_DataReader.

• DDS_RETCODE_INCONSISTENT_POLICY - the parameter qos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.5.2.32 DDS_DataReader_take (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_take

 (DDS_DataReader _this,
 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
378
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const DDS_InstanceStateMask instance_states);

3.5.2.33 DDS_DataReader_take_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_take_instance

 (DDS_DataReader _this,
 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

3.5.2.34 DDS_DataReader_take_next_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_take_next_instance

 (DDS_DataReader _this,
 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
379
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.35 DDS_DataReader_take_next_instance_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_take_next_instance_w_condition

 (DDS_DataReader _this,
 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_ReadCondition a_condition);

3.5.2.36 DDS_DataReader_take_next_sample (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_take_next_sample

 (DDS_DataReader _this,
 <data> *data_values,
 DDS_SampleInfo *sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.37 DDS_DataReader_take_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataReader class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module SPACE) derived SPACE_FooDataReader class.

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
380
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_DataReader_take_w_condition
 (DDS_DataReader _this,

 DDS_sequence_<data> *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);

3.5.2.38 DDS_DataReader_wait_for_historical_data

Synopsis
#include <dds_dcps.h>

DDS_ReturnCode_t
 DDS_DataReader_wait_for_historical_data

 (DDS_DataReader _this,
 const DDS_Duration_t *max_wait);

Description
This operation will block the application thread until all “historical” data is
received.

Parameters
in DDS_DataReader _this - the DDS_DataReader object on which the

operation is operated.
in const DDS_Duration_t *max_wait - the maximum duration to block for

the DDS_DataReader_wait_for_historical_data, after which the
app l i c a t i on t h r e ad i s unb locke d . The spec i a l c ons t a n t
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_ALREADY_DELETED , DDS_RETCODE_
OUT_OF_RESOURCES , DDS_RETCODE_NOT_ENABLED o r
DDS_RETCODE_TIMEOUT.

Detailed Description
This operation behaves differently for DDS_DataReader objects which have a
non-DDS_VOLATILE_DURABILITY_QOS DDS_DurabilityQosPolicy and for
DDS_DataReader objects which have a DDS_VOLATILE_DURABILITY_QOS
DDS_DurabilityQosPolicy.
381
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

As soon as an application enables a non-DDS_VOLATILE_DURABILITY_QOS
DDS_DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the DDS_DataReader joined the domain, as well as any
new data written by the DDS_DataWriter objects. There are situations where the
application logic may require the application to wait until all “historical” data is
r e c e i v e d . T h i s i s t h e p u r p o s e o f t h e
DDS_DataReader_wait_for_historical_data operation.
As soon as an application enables a DDS_VOLATILE_DURABILITY_QOS
DataReader it will not start receiving “historical” data but only new data written
by t he DDS_DataWriter ob j e c t s . By ca l l i ng
DDS_DataReader_wait_for_historical_data the DDS_DataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” data is received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.

Thread blocking
The operation DDS_DataReader_wait_for_historical_data blocks the
calling thread until either all “historical” data is received, or the duration specified
by the max_wait parameter elapses, whichever happens first. A return value of
DDS_RETCODE_OK indicates that all the “historical” data was received; a return
value of DDS_RETCODE_TIMEOUT indicates that max_wait elapsed before all the
data was received.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the “historical” data is received.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_DataReader has already been

deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the DDS_DataReader is not enabled.
• DDS_RETCODE_TIMEOUT - not all data is received before max_wait elapsed.
382
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.39 Class SPACE_FooDataReader
The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>DataReader classes. For each application data type that is
used as DDS_Topic data type, a typed class <NameSpace>_<type>DataReader
is derived from the DDS_DataReader class. In this paragraph, the class
SPACE_FooDataReader descr ibes the opera t ions of these der ived
<NameSpace>_<type>DataReader classes as an example for the fictional
application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a Space.h include file.

State masks
A SPACE_FooDataReader refers to exactly one DDS_TopicDescription (either
a DDS_Topic, a DDS_ContentFilteredTopic or a DDS_MultiTopic) that
identifies the data to be read. Therefore it refers to exactly one data type. The
DDS_Topic must exist prior to the SPACE_FooDataReader creation. The
SPACE_FooDataReader may give access to several instances of the data type,
wh ich a r e d i s t i ngu i she d f rom eac h o the r by t he i r key. Th e
SPACE_FooDataReader is attached to exactly one DDS_Subscriber which acts
as a factory for it.
The interface description of this class is as follows:

/*
 * interface SPACE_FooDataReader
 */
/*
 * inherited from class DDS_Entity
 */
/* DDS_StatusCondition
 * SPACE_FooDataReader_get_statuscondition
 * (SPACE_FooDataReader _this);
 */
/* DDS_StatusMask
 * SPACE_FooDataReader_get_status_changes
 * (SPACE_FooDataReader _this);
 */
/* DDS_ReturnCode_t
 * SPACE_FooDataReader_enable
 * (SPACE_FooDataReader _this);
 */
/*
 * inherited from class DDS_DataReader
 */
/* DDS_ReadCondition
 * SPACE_FooDataReader_create_readcondition
383
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * (SPACE_FooDataReader _this,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states);
 */

/* DDS_QueryCondition
 * SPACE_FooDataReader_create_querycondition
 * (SPACE_FooDataReader _this,
 * const DDS_SampleStateMask sample_states,
 * const DDS_ViewStateMask view_states,
 * const DDS_InstanceStateMask instance_states,
 * const DDS_char *query_expression,
 * const DDS_StringSeq *query_parameters);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_delete_readcondition
 * (SPACE_FooDataReader _this,
 * const DDS_ReadCondition a_condition);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_delete_contained_entities
 * (SPACE_FooDataReader _this);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_set_qos
 * (SPACE_FooDataReader _this,
 * const DDS_DataReaderQos *qos);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_qos
 * (SPACE_FooDataReader _this,
 * SPACE_FooDataReaderQos *qos);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_set_listener
 * (SPACE_FooDataReader _this,
 * const struct DDS_DataReaderListener *a_listener,
 * const DDS_StatusMask mask);
 */

/* struct SPACE_FooDataReaderListener
 * SPACE_FooDataReader_get_listener
 * (SPACE_FooDataReader _this);
 */
384
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

/* DDS_TopicDescription
 * SPACE_FooDataReader_get_topicdescription
 * (SPACE_FooDataReader _this);
 */

/* DDS_Subscriber
 * SPACE_FooDataReader_get_subscriber
 * (SPACE_FooDataReader _this);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_sample_rejected_status
 * (SPACE_FooDataReader _this,
 * DDS_SampleRejectedStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_liveliness_changed_status
 * (SPACE_FooDataReader _this,
 * DDS_LivelinessChangedStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_requested_deadline_missed_status
 * (SPACE_FooDataReader _this,
 * DDS_RequestedDeadlineMissedStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_requested_incompatible_qos_status
 * (SPACE_FooDataReader _this,
 * DDS_RequestedIncompatibleQosStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_subscription_matched_status
 * (SPACE_FooDataReader _this,
 * DDS_SubscriptionMatchedStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_sample_lost_status
 * (SPACE_FooDataReader _this,
 * DDS_SampleLostStatus *status);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_wait_for_historical_data
 * (SPACE_FooDataReader _this,
385
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * const DDS_Duration_t *max_wait);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_matched_publications
 * (SPACE_FooDataReader _this,
 * DDS_InstanceHandleSeq *publication_handles);
 */

/* DDS_ReturnCode_t
 * SPACE_FooDataReader_get_matched_publication_data
 * (SPACE_FooDataReader _this,
 * DDS_PublicationBuiltinTopicData *publication_data,
 * const DDS_InstanceHandle_t publication_handle);
 */
/*
 * implemented API operations
 */

DDS_ReturnCode_t
 SPACE_FooDataReader_read
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
 SPACE_FooDataReader_take
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
 SPACE_FooDataReader_read_w_condition
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);
DDS_ReturnCode_t
 SPACE_FooDataReader_take_w_condition
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);
386
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_sample
 (SPACE_FooDataReader _this,
 Foo *data_values,
 DDS_SampleInfo *sample_info);
DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_sample
 (SPACE_FooDataReader _this,
 Foo *data_values,
 DDS_SampleInfo *sample_info);
DDS_ReturnCode_t
 SPACE_FooDataReader_read_instance
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
 SPACE_FooDataReader_take_instance
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_instance
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_instance
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);
387
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_instance_w_condition
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_ReadCondition a_condition);
DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_instance_w_condition
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_ReadCondition a_condition);
DDS_ReturnCode_t
 SPACE_FooDataReader_return_loan
 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq);
DDS_ReturnCode_t
 SPACE_FooDataReader_get_key_value
 (SPACE_FooDataReader _this,
 Foo *key_holder,
 const DDS_InstanceHandle_t handle);
DDS_InstanceHandle_t
 SPACE_FooDataReader_lookup_instance
 (SPACE_FooDataReader _this,
 Foo *instance_data);

The next paragraphs describe the usage of all SPACE_FooDataReader operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.2.40 SPACE_FooDataReader_create_querycondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_QueryCondition
 SPACE_FooDataReader_create_querycondition
 (SPACE_FooDataReader _this,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states,
388
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const DDS_char *query_expression,
 const DDS_StringSeq *query_parameters);

3.5.2.41 SPACE_FooDataReader_create_readcondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReadCondition
 SPACE_FooDataReader_create_readcondition
 (SPACE_FooDataReader _this,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

3.5.2.42 SPACE_FooDataReader_delete_contained_entities (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_delete_contained_entities
 (SPACE_FooDataReader _this);

3.5.2.43 SPACE_FooDataReader_delete_readcondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_delete_readcondition
 (SPACE_FooDataReader _this,
 const DDS_ReadCondition a_condition);

3.5.2.44 SPACE_FooDataReader_enable (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_enable
389
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (SPACE_FooDataReader _this);

3.5.2.45 SPACE_FooDataReader_get_key_value

Synopsis
#include <Space.h>

DDS_ReturnCode_t
SPACE_FooDataReader_get_key_value

(SPACE_FooDataReader _this,
 Foo *key_holder,
 const DDS_InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.46 SPACE_FooDataReader_get_listener (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
struct SPACE_FooDataReaderListener
 SPACE_FooDataReader_get_listener
 (SPACE_FooDataReader _this);

3.5.2.47 SPACE_FooDataReader_get_liveliness_changed_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_liveliness_changed_status
 (SPACE_FooDataReader _this,
 DDS_LivelinessChangedStatus *status);

3.5.2.48 SPACE_FooDataReader_get_matched_publication_data (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_matched_publication_data
 (SPACE_FooDataReader _this,
 DDS_PublicationBuiltinTopicData *publication_data,
 const DDS_InstanceHandle_t publication_handle);
390
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.49 SPACE_FooDataReader_get_matched_publications (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_matched_publications
 (SPACE_FooDataReader _this,
 DDS_InstanceHandleSeq *publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.50 SPACE_FooDataReader_get_qos (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_qos
 (SPACE_FooDataReader _this,
 DDS_DataReaderQos *qos);

3.5.2.51 SPACE_FooDataReader_get_requested_deadline_missed_status
(inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_requested_deadline_missed_status
 (SPACE_FooDataReader _this,
 DDS_RequestedDeadlineMissedStatus *status);

3.5.2.52 SPACE_FooDataReader_get_requested_incompatible_qos_status
(inherited)

This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
391
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
 SPACE_FooDataReader_get_requested_incompatible_qos_status
 (SPACE_FooDataReader _this,
 DDS_RequestedIncompatibleQosStatus *status);

3.5.2.53 SPACE_FooDataReader_get_sample_lost_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_sample_lost_status
 (SPACE_FooDataReader _this,
 DDS_SampleLostStatus *status);

3.5.2.54 SPACE_FooDataReader_get_sample_rejected_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_sample_rejected_status
 (SPACE_FooDataReader _this,
 DDS_SampleRejectedStatus *status);

3.5.2.55 SPACE_FooDataReader_get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_StatusMask
 SPACE_FooDataReader_get_status_changes
 (SPACE_FooDataReader _this);

3.5.2.56 SPACE_FooDataReader_get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <Space.h>
DDS_StatusCondition
 SPACE_FooDataReader_get_statuscondition
392
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (SPACE_FooDataReader _this);

3.5.2.57 SPACE_FooDataReader_get_subscriber (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_Subscriber
 SPACE_FooDataReader_get_subscriber
 (SPACE_FooDataReader _this);

3.5.2.58 SPACE_FooDataReader_get_subscription_matched_status (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_get_subscription_matched_status
 (SPACE_FooDataReader _this,
 DDS_SubscriptionMatchedStatus *status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.59 SPACE_FooDataReader_get_topicdescription (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_TopicDescription
 SPACE_FooDataReader_get_topicdescription
 (SPACE_FooDataReader _this);

3.5.2.60 SPACE_FooDataReader_lookup_instance

Synopsis
#include <Space.h>
DDS_InstanceHandle_t
 SPACE_FooDataReader_lookup_instance
 (SPACE_FooDataReader _this,

 Foo *instance_data);
393
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
in Foo *instance_data - the instance for which the corresponding instance

handle needs to be looked up.

Return Value
DDS_InstanceHandle_t - Result value is the instance handle which corresponds

to the instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that DDS_DataReader instance handles are local, and
are not interchangeable with DDS_DataWriter instance handles nor with instance
handles of an other DDS_DataReader. If the DDS_DataReader is already deleted,
the handle value DDS_HANDLE_NIL is returned.

3.5.2.61 SPACE_FooDataReader_read

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
394
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

inout DDS_sequence_Foo *data_values - the returned sample data
sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader.
The data is returned by the parameters data_values and info_seq. The number
of samples that is returned is limited by the parameter max_samples. This
operation is part of the specialized class which is generated for the particular
application data type (in this case type Foo) that is being read. If the
SPACE_FooDataReader has no samples that meet the constraints, the return value
is DDS_RETCODE_NO_DATA.

State masks
The SPACE_FooDataReader_read operation depends on a selection of the
samples by using three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE or
both

• view_states is the mask, which selects only those samples with the desired
view states DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both
395
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• instance_states is the mask, which selects only those samples with the
desired instance states DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE or a combination of these.

Destination Order
In any case, the relative order between the samples of one instance is consistent with
the DDS_DestinationOrderQosPolicy of the DDS_Subscriber.
W h e n t h e DDS_DestinationOrderQosPolicy kind i s
DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the samples
belonging to the same instances will appear in the relative order in which they were
received (FIFO)
W h e n t h e DDS_DestinationOrderQosPolicy kind i s
DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the samples belonging
to the same instances will appear in the relative order implied by the
source_timestamp.

Data sample
In addition to the sample sequence (data_values), the operation also returns a
sequence of DDS_SampleInfo structures with the parameter info_seq. The
info_seq structures and data_values also determine the behaviour of this
operation.

Resource control
The initial (input) properties of the data_values and info_seq sequences
determine the precise behaviour of the SPACE_FooDataReader_read operation.
The sequences are modelled as having three properties: the current-length
(_length), the maximum length (_maximum), and whether or not the sequence
container owns the memory of the elements within (_release).
The initial (input) values of the _length, _maximum, and _release properties for
the data_values and info_seq sequences govern the behaviour of the
SPACE_FooDataReader_read operation as specified by the following rules:
• The values of _length, _maximum, and _release for the two sequences must

be identical. Otherwise SPACE_FooDataReader_read returns
DDS_RETCODE_PRECONDITION_NOT_MET

• On successful output, the values of _length, _maximum, and _release are the
same for both sequences

• If the input _maximum==0, the data_values and info_seq sequences are
filled with elements that are “loaned” by the SPACE_FooDataReader. On
output, _release is FALSE, _length is set to the number of values returned,
396
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

and _maximum is set to a value verifying _maximum>=_length. In this case the
application will need to “return the loan” to the Data Distribution Service using
the SPACE_FooDataReader_return_loan operation

• If the input _maximum>0 and the input _release==FALSE, the
SPACE_FooDataReader_read operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT_MET. This avoids the potential
hard-to-detect memory leaks caused by an application forgetting to “return the
loan”

• If input _maximum>0 and the input _release==TRUE, the
SPACE_FooDataReader_read operation will copy the Foo samples and
info_seq values into the elements already inside the sequences. On output,
_release is TRUE, _length is set to the number of values copied, and
_maximum will remain unchanged. The application can control where the copy is
placed and the application does not need to “return the loan”. The number of
samples copied depends on the relative values of _maximum and max_samples:
 - If _maximum==DDS_LENGTH_UNLIMITED, at most _maximum values are

copied. The use of this variant lets the application limit the number of samples
returned to what the sequence can accommodate;

 - If max_samples<=_maximum, at most max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate;

 - If max_samples>_maximum, the SPACE_FooDataReader_read operation
will fail and returns DDS_RETCODE_PRECONDITION_NOT_MET. This avoids the
potential confusion where the application expects to be able to access up to
max_samples, but that number can never be returned, even if they are
available in the SPACE_FooDataReader, because the output sequence cannot
accommodate them.

Buffer Loan
As described above, upon return the data_values and info_seq sequences may
contain elements “loaned” from the Data Distribution Service. If this is the case, the
application will need to use the SPACE_FooDataReader_return_loan operation
to return the “loan” once it is no longer using the data in the sequence. Upon return
from SPACE_FooDataReader_return_loan, the sequence has _maximum==0
and _release==FALSE.
The application can determine whether it is necessary to “return the loan” or not,
based on the state of the sequences, when the SPACE_FooDataReader_read
operation was called, or by accessing the “_release” property. However, in many
397
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

cases it may be simpler to always call SPACE_FooDataReader_return_loan, as
this operation is harmless (i.e. leaves all elements unchanged) if the sequence does
not have a loan.
To avoid potential memory leaks, it is not allowed to change the length of the
data_values and info_seq structures for which _release==FALSE.
Furthermore, deleting a sequence for which _release==FALSE is considered to be
an error except when the sequence is empty.

Data Sequence
On output, the sequence of data values and the sequence of DDS_SampleInfo
structures are of the same length and are in an one-to-one correspondence. Each
DDS_SampleInfo s t r u c tu r e s p r o v i d e s i n f o r m a t i o n , s u c h a s t h e
source_timestamp, the sample_state, view_state, and instance_state,
etc., about the matching sample.
Some elements in the returned sequence may not have valid data: the valid_data
field in the DDS_SampleInfo indicates whether the corresponding data value
contains any meaningful data. If not, the data value is just a ‘dummy’ sample for
which only the keyfields have been assigned. It is used to accompany the
DDS_SampleInfo that communicates a change in the instance_state of an
instance for which there is no ‘real’ sample available.
For example, when an application always ‘takes’ all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the DDS_DataReader will insert a dummy sample into the
data_values sequence to accompany the DDS_SampleInfo element in the
info_seq sequence that communicates the disposal of the instance.
The act of reading a sample sets its sample_state to DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it also sets the
view_state of the instance to DDS_NOT_NEW_VIEW_STATE. It does not affect the
instance_state of the instance.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer.
398
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.62 SPACE_FooDataReader_read_instance

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read_instance

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.
399
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the single instance, the
samples belong to.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader. T h e b e h a v i o u r i s i d e n t i c a l t o
SPACE_FooDataReader_read except for that all samples returned belong to the
single specified instance whose handle is a_handle. Upon successful return, the
data collection will contain samples all belonging to the same instance. The data is
returned by the parameters data_values and info_seq. The corresponding
DDS_SampleInfo.instance_handle in info_seq will have the value of
a_handle. The DDS_DataReader will check that each sample belongs to the
specified instance (indicated by a_handle) otherwise it will not place the sample in
the returned collection.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer or a_handle is not a valid handle.
400
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.63 SPACE_FooDataReader_read_next_instance

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_instance

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.
401
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the current single instance, the
returned samples belong to the next single instance.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader. T h e b e h a v i o u r i s s i m i l a r t o
SPACE_FooDataReader_read_instance (all samples returned belong to a
single instance) except that the actual instance is not directly specified. Rather the
samples will all belong to the ‘next’ instance with instance_handle ‘greater’
(according to some internal-defined order) than a_handle, that has available
samples. The data is returned by the parameters data_values and info_seq. The
corresponding DDS_SampleInfo.instance_handle in info_seq will has the
value of the next instance with respect to a_handle.

Instance Order
The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘as if ’ each instance handle was represented as a unique integer.
The behaviour of SPACE_FooDataReader_read_next_instance is ‘as if ’ the
DDS_DataReader invoked SPACE_FooDataReader_read_instance passing
the smallest instance_handle among all the ones that:
• are greater than a_handle
402
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• have available samples (i.e. samples that meet the constraints imposed by the
specified states).

The special value DDS_HANDLE_NIL is guaranteed to be ‘less than’ any valid
instance_handle . S o th e u s e o f t h e p a r a m e t e r v a l u e
a_handle==DDS_HANDLE_NIL will return the samples for the instance which has
the smallest instance_handle among all the instances that contains available
samples.

Typical use
The operation SPACE_FooDataReader_read_next_instance is intended to be
used in an application-driven iteration where the application starts by passing
a_handle==DDS_HANDLE_NIL, examines the samples returned, and then uses the
instance_handle returned in the DDS_SampleInfo as the value of a_handle
argument to the next call to SPACE_FooDataReader_read_next_instance.
The iteration continues until SPACE_FooDataReader_read_next_instance
returns the return value DDS_RETCODE_NO_DATA.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer or a_handle is not a valid handle.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.
403
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.64 SPACE_FooDataReader_read_next_instance_w_condition

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_instance_w_condition

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the current single instance, the
returned samples belong to the next single instance.

in const DDS_ReadCondition a_condition - a po in t e r t o a
DDS_ReadCondition or DDS_QueryCondition which filters the data
before it is returned by the read operation.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.
404
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader, filtered by a DDS_ReadCondition or
DDS_QueryCondition . Th e b e h a v io u r i s i d e n t i c a l t o
SPACE_FooDataReader_read_next_instance except for that the samples
are filtered by a DDS_ReadCondition or DDS_QueryCondition. When using a
DDS_ReadCondition , t h e r e su l t i s t he s ame a s t he
SPACE_FooDataReader_read_next_instance operation with the same state
parameters filled in as for the DDS_create_readcondition. In this way, the
application can avoid repeating the same parameters, specified when creating the
DDS_ReadCondition. When using a DDS_QueryCondition, a content based
fi l ter ing can be done. When ei ther using a DDS_ReadCondition or
DDS_QueryCondition , t h e c o n d i t i o n m u s t b e c r e a t e d b y t h i s
SPACE_FooDataReader. Otherwise the operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - one or more of the data_values, or
info_seq and a_condition parameters is an invalid pointer or a_handle is
not a valid handle.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the DDS_ReadCondition or DDS_QueryCondition is not attached to this
SPACE_FooDataReader.

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.

405

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.65 SPACE_FooDataReader_read_next_sample

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read_next_sample

 (SPACE_FooDataReader _this,
 Foo *data_values,
 DDS_SampleInfo *sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.66 SPACE_FooDataReader_read_w_condition

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_read_w_condition

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by a DDS_ReadCondition or DDS_QueryCondition.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_ReadCondition a_condition - a po in t e r t o a
DDS_ReadCondition or DDS_QueryCondition which filters the data before
it is returned by the SPACE_FooDataReader_read operation.
406
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by a DDS_ReadCondition or DDS_QueryCondition. The condition
pointer from both SPACE_FooDataReader_create_readcondition or
SPACE_FooDataReader_create_querycondition may be used. The
behaviour is identical to SPACE_FooDataReader_read except for that the
samples are filtered by a DDS_ReadCondition or DDS_QueryCondition. When
us in g a DDS_ReadCondition , t h e r e s u l t i s t h e s a m e a s t h e
SPACE_FooDataReader_read operation with the same state parameters filled in
as for the SPACE_FooDataReader_create_readcondition. In this way, the
application can avoid repeating the same parameters, specified when creating the
DDS_ReadCondition. When using a DDS_QueryCondition, a content based
fi l ter ing can be done. When ei ther using a DDS_ReadCondition or
DDS_QueryCondition , t h e c o n d i t i o n m u s t b e c r e a t e d b y t h i s
SPACE_FooDataReader. Otherwise the operation will fail and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available.
• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - one or more of the data_values, or
info_seq and a_condition parameters is an invalid pointer.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:
407
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - the DDS_ReadCondition or DDS_QueryCondition is not attached to this
SPACE_FooDataReader.

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.67 SPACE_FooDataReader_return_loan

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_return_loan

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq);

Description
This operation indicates to the DDS_DataReader that the application is done
accessing the sequence of data_values and info_seq.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the sample data sequence which

was loaned from the DDS_DataReader.
inout DDS_SampleInfoSeq *info_seq - the DDS_SampleInfo structure

sequence which was loaned from the DDS_DataReader.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED or DDS_RETCODE_PRECONDITION_NOT_MET.
408
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation indicates to the SPACE_FooDataReader that the application is done
accessing the sequence of data_values and info_seq obtained by some earlier
i nv oc a t i o n o f t h e op e r a t i on SPACE_FooDataReader_read o r
SPACE_FooDataReader_take (or any of the similar operations) on the
SPACE_FooDataReader.
The data_values and info_seq must belong to a single related pair; that is, they
should correspond to a pair returned from a single call to the operation
SPACE_FooDataReader_read or SPACE_FooDataReader_take. The
data_values and info_seq must also have been obtained from the same
DDS_DataReader to which they are returned. If either of these conditions is not
met the operation will fail and returns DDS_RETCODE_PRECONDITION_NOT_MET.

Buffer Loan
The operation SPACE_FooDataReader_return_loan allows implementations of
the SPACE_FooDataReader_read and SPACE_FooDataReader_take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.
It is not necessary for an application to return the loans immediately after calling the
operation SPACE_FooDataReader_read or SPACE_FooDataReader_take.
However, as these buffers correspond to internal resources inside the
DDS_DataReader, the application should not retain them indefinitely.

Calling SPACE_FooDataReader_return_loan
The use of the SPACE_FooDataReader_return_loan operation is only
necessary if the call to the operation SPACE_FooDataReader_read or
SPACE_FooDataReader_take “loaned” buffers to the application. This only
occurs if the data_values and info_seq sequences had _maximum=0 at the time
the operation SPACE_FooDataReader_read or SPACE_FooDataReader_take
was called. The application may also examine the ‘_release’ property of the
collection to determine where there is an outstanding loan. However, calling the
operation SPACE_FooDataReader_return_loan on a pair of sequences that
does not have a loan is safe and has no side effects.
I f the pair of sequences had a loan , upon re turn f rom the operat ion
SPACE_FooDataReader_return_loan the pair of sequences has _maximum=0.

Return Code
When the operation returns:
409
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_OK - the DDS_DataReader is informed that the sequences will
not be used any more.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the data_values and info_seq do not belong to a single related pair.
 - the data_values and info_seq were not obtained from this
SPACE_FooDataReader.

3.5.2.68 SPACE_FooDataReader_set_listener (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_set_listener
 (SPACE_FooDataReader _this,
 const struct DDS_DataReaderListener *a_listener,
 const DDS_StatusMask mask);

3.5.2.69 SPACE_FooDataReader_set_qos (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
DDS_ReturnCode_t
 SPACE_FooDataReader_set_qos
 (SPACE_FooDataReader _this,
 const DDS_DataReaderQos *qos);
410
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.70 SPACE_FooDataReader_take

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader
and by doing so, removes the data from the SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
411
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader
and by doing so, removes the data from the SPACE_FooDataReader, so it can not
b e r e a d o r t a k e n a g a i n . T h e b e h a v i o u r i s i d e n t i c a l t o
SPACE_FooDataReader_read except for that the samples are removed from the
SPACE_FooDataReader.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.71 SPACE_FooDataReader_take_instance

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take_instance
412
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the single instance, the
samples belong to.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.
413
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader, so it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_instance except for that the samples
are removed from the SPACE_FooDataReader.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer or a_handle is not a valid handle.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.72 SPACE_FooDataReader_take_next_instance

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_instance

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
414
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const DDS_InstanceHandle_t a_handle,
 const DDS_SampleStateMask sample_states,
 const DDS_ViewStateMask view_states,
 const DDS_InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the current single instance, the
returned samples belong to the next single instance.

in const DDS_SampleStateMask sample_states - a mask, which selects
only those samples with the desired sample states.

in const DDS_ViewStateMask view_states - a mask, which selects only
those samples with the desired view states.

in const DDS_InstanceStateMask instance_states - a mask, which
selects only those samples with the desired instance states.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.
415
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader, so it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_next_instance except for that the
samples are removed from the SPACE_FooDataReader.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - either or both of data_values or info_seq

is an invalid pointer or a_handle is not a valid handle.
• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.73 SPACE_FooDataReader_take_next_instance_w_condition

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_instance_w_condition

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
416
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const DDS_InstanceHandle_t a_handle,
 const DDS_ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
SPACE_FooDataReader and by doing so, removes the data from the
SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_InstanceHandle_t a_handle - the current single instance, the
returned samples belong to the next single instance.

in const DDS_ReadCondition a_condition - a po in t e r t o a
DDS_ReadCondition or DDS_QueryCondition which filters the
data before it is returned by the read operation.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
SPACE_FooDataReader , f i l t e r e d b y a DDS_ReadCondition o r
DDS_QueryCondition and by doing so, removes the data f rom the
SPACE_FooDataReader, so it can not be read or taken again. The behaviour is
identical to SPACE_FooDataReader_read_next_instance_w_condition
except for that the samples are removed from the SPACE_FooDataReader.
417
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - one or more of the data_values,
info_seq and a_condition parameters is an invalid pointer or a_handle is
not a valid handle.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the DDS_ReadCondition or DDS_QueryCondition is not attached to this
SPACE_FooDataReader.

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.74 SPACE_FooDataReader_take_next_sample

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take_next_sample

 (SPACE_FooDataReader _this,
 Foo *data_values,
 DDS_SampleInfo *sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.
418
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.75 SPACE_FooDataReader_take_w_condition

Synopsis
#include <Space.h>

DDS_ReturnCode_t
 SPACE_FooDataReader_take_w_condition

 (SPACE_FooDataReader _this,
 DDS_sequence_Foo *data_values,
 DDS_SampleInfoSeq *info_seq,
 const DDS_long max_samples,
 const DDS_ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by a DDS_ReadCondition or DDS_QueryCondition and by doing so,
removes the data from the SPACE_FooDataReader.

Parameters
in SPACE_FooDataReader _this - the SPACE_FooDataReader object on

which the operation is operated.
inout DDS_sequence_Foo *data_values - the returned sample data

sequence. data_values is also used as an input to control the behaviour of this
operation.

inout DDS_SampleInfoSeq *info_seq - the returned DDS_SampleInfo
structure sequence. info_seq is also used as an input to control the behaviour
of this operation.

in const DDS_long max_samples - the maximum number of samples that is
returned.

in const DDS_ReadCondition a_condition - a po in t e r t o a
DDS_ReadCondition or DDS_QueryCondition which filters the data before
it is returned by the SPACE_FooDataReader_read operation.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_
NOT_ENABLED , DDS_RETCODE_PRECONDITION_NOT_MET o r
DDS_RETCODE_NO_DATA.
419
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation reads a sequence of Foo samples from the SPACE_FooDataReader,
filtered by a DDS_ReadCondition or DDS_QueryCondition and by doing so,
removes the data from the SPACE_FooDataReader, so it can not be read or taken
a g a i n . T h e b e h a v i o u r i s i d e n t i c a l t o
SPACE_FooDataReader_read_w_condition except for that the samples are
removed from the SPACE_FooDataReader.

Return Code
When the operation returns:
• DDS_RETCODE_OK - a sequence of data values is available and removed from the
SPACE_FooDataReader.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - one or more of the data_values, or
info_seq and a_condition parameters is an invalid pointer.

• DDS_RETCODE_ALREADY_DELETED - the SPACE_FooDataReader has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• DDS_RETCODE_NOT_ENABLED - the SPACE_FooDataReader is not enabled.
• DDS_RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the DDS_ReadCondition or DDS_QueryCondition is not attached to this
SPACE_FooDataReader.

 - the max_samples>_maximum and max_samples is not
DDS_LENGTH_UNLIMITED.

 - one or more values of _length, _maximum, and _release for the two
sequences are not identical.

 - the _maximum>0 and the _release==FALSE.
• DDS_RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.76 SPACE_FooDataReader_wait_for_historical_data (inherited)
This operation is inherited and therefore not described here. See the class
DDS_DataReader for further explanation.

Synopsis
#include <Space.h>
420
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_ReturnCode_t
 SPACE_FooDataReader_wait_for_historical_data

 (SPACE_FooDataReader _this,
 const DDS_Duration_t *max_wait);

3.5.3 Class DDS_DataSample
A DDS_DataSample represents an atom of data information (i.e. one value for an
in s t ance) a s r e tu rne d by t he DDS_DataReader ’s
DDS_DataReader_read/SPACE_FooDataReader_take operations. It consists
of two parts: A DDS_SampleInfo and the Data itself. The Data part is the data as
produced by a DDS_Publisher. The DDS_SampleInfo part contains additional
information related to the data provided by the Data Distribution Service.

3.5.4 Struct DDS_SampleInfo
The struct DDS_SampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.
The interface description of this struct is as follows:

struct DDS_SampleInfo
{

DDS_SampleStateKind sample_state;
DDS_ViewStateKind view_state;
DDS_InstanceStateKind instance_state;
DDS_Time_t source_timestamp;
DDS_InstanceHandle_t instance_handle;
DDS_BuiltinTopicKey_t publication_handle;
DDS_long disposed_generation_count;
DDS_long no_writers_generation_count;
DDS_long sample_rank;
DDS_long generation_rank;
DDS_long absolute_generation_rank;
DDS_boolean valid_data;

};
/*
 * implemented API operations
 * <no operations>
 */

The next paragraph describes the usage of the DDS_SampleInfo struct.

3.5.4.1 DDS_SampleInfo

Synopsis
#include <dds_dcps.h>
struct DDS_SampleInfo
 {
 DDS_SampleStateKind sample_state;
 DDS_ViewStateKind view_state;
421
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_InstanceStateKind instance_state;
 DDS_Time_t source_timestamp;
 DDS_InstanceHandle_t instance_handle;
 DDS_BuiltinTopicKey_t publication_handle;
 DDS_long disposed_generation_count;
 DDS_long no_writers_generation_count;
 DDS_long sample_rank;
 DDS_long generation_rank;
 DDS_long absolute_generation_rank;
 DDS_boolean valid_data;
 };

Description
The struct DDS_SampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.

Attributes
DDS_SampleStateKind sample_state - whether or not the corresponding data

sample has already been read.
DDS_ViewStateKind view_state - whether the DDS_DataReader has already

seen samples of the most-current generation of the related instance.
DDS_InstanceStateKind instance_state - whether the instance is alive, has

no writers or is disposed of.
DDS_Time_t source_timestamp - t h e t i m e p r o v i d e d b y t h e

DDS_DataWriter when the sample was written.
DDS_InstanceHandle_t instance_handle - the handle that identifies locally

the corresponding instance.
InstanceHandle_t publication_handle - the handle that identifies locally

the DDS_DataWriter that modified the instance. In fact i t is the
instance_handle of the built-in DCPSPublication sample that describes
this DDS_DataWriter. It can be used as a parameter to the DDS_DataReader
_get_matched_publication_data operation to obtain this built-in
DCPSPublication sample.

DDS_long disposed_generation_count - the number of times the instance
has become alive after it was disposed of explicitly by a DDS_DataWriter.

DDS_long no_writers_generation_count - the number of times the instance
has become al ive af ter i t was disposed of because there were no
DDS_DataWriter objects.

DDS_long sample_rank - the number of samples related to the same instance that
are found in the collection returned by a DDS_DataReader_read or
DDS_DataReader_take operation.
422
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DDS_long generation_rank - the generation difference between the time the
sample was received and the time the most recent sample in the collection was
received.

DDS_long absolute_generation_rank - the generation difference between
the time the sample was received and the time the most recent sample was
received.

DDS_boolean valid_data - whether the DataSample contains any meanigful
data. If not, the sample is only used to communicate a change in the
instance_state of the instance.

Detailed Description
The struct DDS_SampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.

Sample Information
The struct DDS_SampleInfo represents the additional information that
accompanies the data in each sample that is read or taken.

Generations
A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==DDS_ALIVE_INSTANCE_STATE) at the time the sample was
received’. Note that the generation counters are initialized to zero when a Reader
first detects a never-seen-before instance.
Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.
A f t e r a DDS_DataWriter d i s p o s e s a n i n s t a n c e , t h e
disposed_generation_count for all Readers that already knew that instance
will be incremented the next time the instance is written again
If the DDS_DataReader detects that there are no live DDS_DataWriter entities,
t he instance_state o f t he sample_info w i l l c h a n g e f r o m
DDS_ALIVE_INSTANCE_STATE to DDS_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE . T h e n e x t t im e th e in s t a n c e i s w r i t t e n ,
no_writers_generation_count will be incremented.

Sample Information
DDS_SampleInfo is the additional information that accompanies the data in each
sample that is read or taken. It contains the following information:
• sample_state (DDS_READ_SAMPLE_STATE or DDS_NOT_READ_SAMPLE_
STATE) indicates whether or not the corresponding data sample has already been
read
423
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• view_state, (DDS_NEW_VIEW_STATE, or DDS_NOT_NEW_VIEW_STATE)
indicates whether the DDS_DataReader has already seen samples of the
most-current generation of the related instance

• instance_state (DDS_ALIVE_INSTANCE_STATE, DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE, or DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_
STATE) indicates whether the instance is alive, has no writers or if it has been
disposed of:
 - DDS_ALIVE_INSTANCE_STATE if this instance is currently in existence
 - DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE if this instance was disposed

of by a DDS_DataWriter
 - DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE none of the
DDS_DataWriter objects currently “alive” (according to the
DDS_LivelinessQosPolicy) are writing the instance.

• source_timestamp indicates the time provided by the DDS_DataWriter when
the sample was written

• instance_handle indicates locally the corresponding instance
• publication_handle indicates system wide the publisher of the sample, the

local publication handle can be found with the DDS_DataReader operation
lookup_instance for the publication_handle

• disposed_generation_count indicates the number of times the instance has
become alive after it was disposed of explicitly by a DDS_DataWriter, at the
time the sample was received

• no_writers_generation_count indicates the number of times the instance
has become alive after its instance_state has been
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, at the time the sample was
received

• sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by a DDS_DataReader_read or
DDS_DataReader_take operation

• generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received

• absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not be in the
returned collection), related to the same instance, was received.
424
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the DDS_SampleInfo
that communicates a change in the instance_state of an instance for which
there is no ‘real’ sample available.

3.5.5 DDS_SubscriberListener Interface
Since a DDS_Subscriber is a kind of DDS_Entity, it has the ability to have a
Listener associated with it. In this case, the associated Listener should be of
type DDS_SubscriberListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
e x t e n d f r o m t h e DDS_SubscriberListener c l a s s . A l l
DDS_SubscriberListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_SubscriberListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
a QosPolicy setting, etc. The DDS_SubscriberListener is related to changes
in communication status.
The interface description of this class is as follows:

/*
 * interface DDS_SubscriberListener
 */
/*
 * inherited from class DDS_DataReaderListener
 */
/* void
 * DDS_SubscriberListener_on_requested_deadline_missed
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_RequestedDeadlineMissedStatus *status);

 */
/* void
 * DDS_SubscriberListener_on_requested_incompatible_qos
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_RequestedIncompatibleQosStatus *status);
 */

/* void
425
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 * DDS_SubscriberListener_on_sample_rejected
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SampleRejectedStatus *status);
 */

/* void
 * DDS_SubscriberListener_on_liveliness_changed
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_LivelinessChangedStatus *status);
 */

/* void
 * DDS_SubscriberListener_on_data_available
 * (void *listener_data,
 * DDS_DataReader reader);
 */

/* void
 * DDS_SubscriberListener_on_subscription_matched
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SubscriptionMatchedStatus *status);
 */

/* void
 * DDS_SubscriberListener_on_sample_lost
 * (void *listener_data,
 * DDS_DataReader reader,
 * const DDS_SampleLostStatus *status);
 */
/*
 * abstract external operations
 */

void
 DDS_SubscriberListener_on_data_on_readers

 (void *listener_data,
 DDS_Subscriber subs);

/*
 * implemented API operations
 */

DDS_SubscriberListener
 DDS_SubscriberListener__alloc
 (void);
426
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The next paragraphs list all DDS_SubscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

3.5.5.1 DDS_SubscriberListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_SubscriberListener
 DDS_SubscriberListener__alloc
 (void);

Description
This operation creates a new DDS_SubscriberListener.

Parameters
<none>

Return Value
DDS_SubscriberListener - Return value is the handle to the newly created

DDS_SubscriberListener. In case of an error, a DDS_OBJECT_NIL pointer
is returned.

Detailed Description
Thi s ope ra t i on c r ea t e s a new DDS_SubscriberListener. Th e
DDS_SubscriberListener must be created using this operation. In other words,
t h e a p p l i c a t i o n i s n o t a l l o w e d t o d e c l a r e a n o b j e c t o f t y p e
DDS_SubscriberListener. When the application wants to release the
DDS_SubscriberListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_SubscriberListener, a DDS_OBJECT_NIL pointer is returned instead.

3.5.5.2 DDS_SubscriberListener_on_data_available (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_data_available
 (void *listener_data,
427
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 DDS_DataReader reader);

3.5.5.3 DDS_SubscriberListener_on_data_on_readers (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_data_on_readers
 (void *listener_data,
 DDS_Subscriber subs);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_Subscriber subs - contain a pointer to the DDS_Subscriber for

which data is available (this is an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this DDS_Subscriber. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DDS_SubscriberListener i s i n s t a l l e d a n d e n a b le d f o r t h e
DDS_DATA_ON_READERS_STATUS.
The Data Distribution Service will provide a pointer to the DDS_Subscriber in the
parameter subs for use by the application.
T h e s t a t u s e s DDS_DATA_ON_READERS_STATUS a n d
DDS_DATA_AVAILABLE_STATUS will occur together. In case these status changes
occur, the Data Distribution Service will look for an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
428
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Service will look for an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).
Note that if DDS_SubscriberListener_on_data_on_readers is called, then
t h e D a t a D i s t r i b u t io n S e r v i c e w i l l n o t t r y t o c a l l
DDS_SubscriberListener_on_data_available, however, the application
can force a cal l to the cal lback funct ion on_data_available of
DDS_DataReaderListener objects that have data by means of the
notify_datareaders operation.

3.5.5.4 DDS_SubscriberListener_on_liveliness_changed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_liveliness_changed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_LivelinessChangedStatus *status);

3.5.5.5 DDS_SubscriberListener_on_requested_deadline_missed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_requested_deadline_missed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedDeadlineMissedStatus *status);

3.5.5.6 DDS_SubscriberListener_on_requested_incompatible_qos (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_requested_incompatible_qos
429
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedIncompatibleQosStatus *status) =0;

3.5.5.7 DDS_SubscriberListener_on_sample_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_sample_lost
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SampleLostStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.5.8 DDS_SubscriberListener_on_sample_rejected (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_sample_rejected
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SampleRejectedStatus *status);

3.5.5.9 DDS_SubscriberListener_on_subscription_matched (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
 DDS_SubscriberListener_on_subscription_matched
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SubscriptionMatchedStatus *status);

This operation is not yet supported. It is scheduled for a future release.
430
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.6 DDS_DataReaderListener interface
Since a DDS_DataReader is a kind of DDS_Entity, it has the ability to have a
Listener associated with it. In this case, the associated Listener should be of
type DDS_DataReaderListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
e x t e n d f r o m t h e DDS_DataReaderListener c l a s s . A l l
DDS_DataReaderListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DataReaderListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
a QosPolicy setting, etc. The DDS_DataReaderListener is related to changes
in communication status.
The interface description of this class is as follows:

/*
 * interface DDS_DataReaderListener
 */
/*
 * abstract external operations
 */

void
 DDS_DataReaderListener_on_requested_deadline_missed

 (void *listener_data,
 DDS_DataReader reader,

 const DDS_RequestedDeadlineMissedStatus *status);
void
 DDS_DataReaderListener_on_requested_incompatible_qos

 (void *listener_data,
 DDS_DataReader reader,

 const DDS_RequestedIncompatibleQosStatus *status);

void
 DDS_DataReaderListener_on_sample_rejected

 (void *listener_data,
 DDS_DataReader reader,

 const DDS_SampleRejectedStatus *status);

void
 DDS_DataReaderListener_on_liveliness_changed

 (void *listener_data,
 DDS_DataReader reader,
431
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const DDS_LivelinessChangedStatus *status);

void
 DDS_DataReaderListener_on_data_available

 (void *listener_data,
 DDS_DataReader reader);

void
 DDS_DataReaderListener_on_subscription_matched

 (void *listener_data,
 DDS_DataReader reader,

 const DDS_SubscriptionMatchedStatus *status);

void
 DDS_DataReaderListener_on_sample_lost

 (void *listener_data,
 DDS_DataReader reader,

 const DDS_SampleLostStatus *status);
/*
 * implemented API operations
 */

DDS_DataReaderListener
 DDS_DataReaderListener__alloc
 (void);

The next paragraphs describe the usage of all DDS_DataReaderListener
operations. These abstract operations are fully described because they must be
implemented by the application.

3.5.6.1 DDS_DataReaderListener__alloc

Synopsis
#include <dds_dcps.h>
DDS_DataReaderListener
 DDS_DataReaderListener__alloc
 (void);

Description
This operation creates a new DDS_DataReaderListener.

Parameters
<none>

Return Value
DDS_DataReaderListener - Return value is the handle to the newly created

DDS_DataReaderListener. In case of an error, a DDS_OBJECT_NIL pointer
is returned.
432
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
Thi s ope ra t i on c r ea t e s a new DDS_DataReaderListener. Th e
DDS_DataReaderListener must be created using this operation. In other words,
t h e a p p l i c a t i o n i s n o t a l l o w e d t o d e c l a r e a n o b j e c t o f t y p e
DDS_DataReaderListener. When the application wants to release the
DDS_DataReaderListener it must be released using DDS_free.
I n c a s e t h e r e a r e i n s u ff i c i e n t r e s o u r c e s a v a i l a b l e t o a l l o c a t e t h e
DDS_DataReaderListener, a DDS_OBJECT_NIL pointer is returned instead.

3.5.6.2 DDS_DataReaderListener_on_data_available (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_data_available
 (void *listener_data,
 DDS_DataReader reader);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataReader reader - contain a pointer to the DDS_DataReader for

which data is available (this is an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this DDS_DataReader. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener i s i n s t a l l e d a n d e n a b le d f o r t h e
DDS_DATA_AVAILABLE_STATUS.
The Data Distribution Service will provide a pointer to the DDS_DataReader in the
parameter reader for use by the application.
433
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

T h e s t a t u s e s DDS_DATA_ON_READERS_STATUS a n d
DDS_DATA_AVAILABLE_STATUS will occur together. In case these status changes
occur, the Data Distribution Service will look for an attached and activated
DDS_SubscriberListener or DDS_DomainParticipantListener (in that
o r d e r) f o r t h e DDS_DATA_ON_READERS_STATUS . I n c a s e t h e
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look for an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener or DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).
Note that if DDS_SubscriberListener_on_data_on_readers is called, then
t h e D a t a D i s t r i b u t io n S e r v i c e w i l l n o t t r y t o c a l l
DDS_DataReaderListener_on_data_available, however, the application
can force a call to the DDS_DataReader objects that have data by means of the
DDS_Subscriber_notify_datareaders operation.

3.5.6.3 DDS_DataReaderListener_on_liveliness_changed (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_liveliness_changed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_LivelinessChangedStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more DDS_DataWriter objects
that were writing instances read through this DDS_DataReader has changed.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataReader reader - contain a pointer to the DDS_DataReader for

which the liveliness of one or more DDS_DataWriter objects has changed
(this is an input to the application provided by the Data Distribution Service).

in const DDS_LivelinessChangedStatus *status - contain the
DDS_LivelinessChangedStatus struct (this is an input to the application
provided by the Data Distribution Service).

Return Value
<none>
434
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more DDS_DataWriter objects that were writing instances read through this
DDS_DataReader has changed. In other words, some DDS_DataWriter have
become “alive” or “not alive”. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener i s i n s t a l l e d a n d e n a b le d f o r t h e
DDS_LIVELINESS_CHANGED_STATUS.
The Data Distribution Service will provide a pointer to the DDS_DataReader in the
parameter reader and the DDS_LivelinessChangedStatus struct for use by
the application.

3.5.6.4 DDS_DataReaderListener_on_requested_deadline_missed (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_requested_deadline_missed
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedDeadlineMissedStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the DDS_DataReader was expecting
through its DDS_DeadlineQosPolicy was not respected.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataReader reader - contain a pointer to the DDS_DataReader for

which the deadline was missed (this is an input to the application provided by
the Data Distribution Service).

in const DDS_RequestedDeadlineMissedStatus *status - contain the
DDS_RequestedDeadlineMissedStatus struct (this is an input to the
application provided by the Data Distribution Service).

Return Value
<none>
435
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the DDS_DataReader was expecting through its DDS_DeadlineQosPolicy
was not respected for a specific instance. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
relevant DDS_DataReaderListener is installed and enabled for the
DDS_REQUESTED_DEADLINE_MISSED_STATUS.
The Data Distribution Service will provide a pointer to the DDS_DataReader in the
parameter reader and the DDS_RequestedDeadlineMissedStatus struct
in the parameter status for use by the application.

3.5.6.5 DDS_DataReaderListener_on_requested_incompatible_qos (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_requested_incompatible_qos
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_RequestedIncompatibleQosStatus *status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataReader reader - a pointer to the DDS_DataReader provided by

the Data Distribution Service.
in const DDS_RequestedIncompatibleQosStatus *status - the

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS struct provided by the Data
Distribution Service.

Return Value
<none>
436
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation
may be left empty when this functionality is not needed. This operation will only be
called when the relevant DDS_DataReaderListener is installed and enabled for
the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS.
The Data Distribution Service will provide a pointer to the DDS_DataReader in the
parameter reader and the DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
struct in the parameter status, for use by the application.
The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS in the mask in the call to
DDS_DataReader_set_listener. When the DDS_DataReaderListener on
the DDS_DataReader i s n o t e n a b l e d f o r t h e
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS, the status change will propagate
to the DDS_SubscriberListener of the DDS_Subscriber (if enabled) or to the
DDS_DomainParticipantListener of the DDS_DomainParticipant (if
enabled).

3.5.6.6 DDS_DataReaderListener_on_sample_lost (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_sample_lost
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SampleLostStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.6.7 DDS_DataReaderListener_on_sample_rejected (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_sample_rejected
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SampleRejectedStatus *status);
437
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters
inout void *listener_data - a pointer to a user defined object which may be

used for identification of the Listener.
in DDS_DataReader reader - contain a pointer to the DDS_DataReader for

which a sample has been rejected (this is an input to the application provided by
the Data Distribution Service).

in const DDS_SampleRejectedStatus *status - conta in the
DDS_SampleRejectedStatus struct (this is an input to the application
provided by the Data Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DDS_DataReaderListener i s i n s t a l l e d a n d e n a b le d f o r t h e
DDS_SAMPLE_REJECTED_STATUS.
The Data Distribution Service will provide a pointer to the DDS_DataReader in the
parameter reader and the DDS_SampleRejectedStatus struct in the
parameter status for use by the application.

3.5.6.8 DDS_DataReaderListener_on_subscription_matched (abstract)

Synopsis
#include <dds_dcps.h>
void
 DDS_DataReaderListener_on_subscription_matched
 (void *listener_data,
 DDS_DataReader reader,
 const DDS_SubscriptionMatchedStatus *status);

This operation is not yet supported. It is scheduled for a future release.
438
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.7 Class DDS_ReadCondition
The DDS_DataReader objects can create a set of DDS_ReadCondition (and
DDS_StatusCondition) objects which provide support (in conjunction with
DDS_WaitSet objects) for an alternative communication style between the Data
Distribution Service and the application (i .e. , wait-based rather than
notification-based).
DDS_ReadCondition objects allow an DDS_DataReader to specify the data
samples it is interested in (by specifying the desired sample-states, view-states, and
instance-states); see the parameter definitions for DDS_DataReader's
DDS_DataReader_create_readcondition operation. This allows the Data
Distribution Service to trigger the condition only when suitable information is
available. DDS_ReadCondition objects are to be used in conjunction with a
DDS_WaitSet. More than one DDS_ReadCondition may be attached to the same
DDS_DataReader.
The interface description of this class is as follows:

/*
 * interface DDS_ReadCondition
 */
/*
 * inherited from DDS_Condition
 */
/* DDS_boolean
 * DDS_ReadCondition_get_trigger_value
 * (DDS_ReadCondition _this);
 */
/*
 * implemented API operations
 */

DDS_SampleStateMask
 DDS_ReadCondition_get_sample_state_mask
 (DDS_ReadCondition _this);

DDS_ViewStateMask
 DDS_ReadCondition_get_view_state_mask
 (DDS_ReadCondition _this);

DDS_InstanceStateMask
 DDS_ReadCondition_get_instance_state_mask
 (DDS_ReadCondition _this);

DDS_DataReader
 DDS_ReadCondition_get_datareader
 (DDS_ReadCondition _this);
439
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The next paragraphs describe the usage of all DDS_ReadCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.7.1 DDS_ReadCondition_get_datareader

Synopsis
#include <dds_dcps.h>
DDS_DataReader
 DDS_ReadCondition_get_datareader
 (DDS_ReadCondition _this);

Description
Thi s ope ra t i on r e tu rns t he DDS_DataReader a s soc i a t ed w i th t he
DDS_ReadCondition.

Parameters
in DDS_ReadCondition _this - the DDS_ReadCondition object on which

the operation is operated.

Return Value
DDS_DataReader - Result value is a pointer to the DDS_DataReader.

Detailed Description
Thi s ope ra t i on r e tu rns t he DDS_DataReader a s soc i a t ed w i th t he
DDS_ReadCondition. Note that there is exactly one DDS_DataReader associated
with each DDS_ReadCondition (i.e. the DDS_DataReader that created the
DDS_ReadCondition object).

3.5.7.2 DDS_ReadCondition_get_instance_state_mask

Synopsis
#include <dds_dcps.h>
DDS_InstanceStateMask
 DDS_ReadCondition_get_instance_state_mask
 (DDS_ReadCondition _this);

Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.
440
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
in DDS_ReadCondition _this - the DDS_ReadCondition object on which

the operation is operated.

Return Value
DDS_InstanceStateMask - Result value are the instance_states specified

when the DDS_ReadCondition was created.

Detailed Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.
The instance_states returned are the instance_states specified when the
DDS_ReadCondition was c r ea t e d . instance_states c an b e
DDS_ALIVE_INSTANCE_STATE ,
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE ,
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a combination of these.

3.5.7.3 DDS_ReadCondition_get_sample_state_mask

Synopsis
#include <dds_dcps.h>
DDS_SampleStateMask
 DDS_ReadCondition_get_sample_state_mask
 (DDS_ReadCondition _this);

Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.

Parameters
in DDS_ReadCondition _this - the DDS_ReadCondition object on which

the operation is operated.

Return Value
DDS_SampleStateMask - Result value are the sample_states specified when

the DDS_ReadCondition was created.

Detailed Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.
441
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The sample_states returned are the sample_states specified when the
DDS_ReadCondition was c r ea t e d . sample_states c an b e
DDS_READ_SAMPLE_STATE, DDS_NOT_READ_SAMPLE_STATE or both.

3.5.7.4 DDS_ReadCondition_get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_ReadCondition_get_trigger_value
 (DDS_ReadCondition _this);

3.5.7.5 DDS_ReadCondition_get_view_state_mask

Synopsis
#include <dds_dcps.h>
DDS_ViewStateMask
 DDS_ReadCondition_get_view_state_mask
 (DDS_ReadCondition _this);

Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.

Parameters
in DDS_ReadCondition _this - the DDS_ReadCondition object on which

the operation is operated.

Return Value
DDS_ViewStateMask - Result value are the view_states specified when the

DDS_ReadCondition was created.

Detailed Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the DDS_ReadCondition.
The view_states returned are the view_states specified when the
DDS_ReadCondition was c re a t ed . view_states c a n b e
DDS_NEW_VIEW_STATE, DDS_NOT_NEW_VIEW_STATE or both.
442
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.8 Class DDS_QueryCondition
DDS_QueryCondition objects are specialized DDS_ReadCondition objects that
allow the application to specify a filter on the locally available data. The
DDS_DataReader objects accept a set of DDS_QueryCondition objects for the
DDS_DataReader and provide support (in conjunction with DDS_WaitSet
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., wait-based rather than notification-based).

Query Function
DDS_QueryCondition objects allow an application to specify the data samples it
is interested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for DDS_DataReader's
DDS_DataReader_read/DDS_DataReader_take operations. This allows the
Data Distribution Service to trigger the condition only when suitable information is
available. DDS_QueryCondition objects are to be used in conjunction with a
DDS_WaitSet. More than one DDS_QueryCondition may be attached to the
same DDS_DataReader.
The query (query_expression) is similar to an SQL WHERE clause and can be
parameterized by arguments that are dynamically changeable with the
DDS_QueryCondition_set_query_arguments operation.
The interface description of this class is as follows:

/*
 * interface DDS_QueryCondition
 */
/*
 * inherited from DDS_ReadCondition
 */
/* DDS_SampleStateMask
 * DDS_QueryCondition_get_sample_state_mask
 * (DDS_QueryCondition _this);

 */
/* DDS_ViewStateMask
 * DDS_QueryCondition_get_view_state_mask
 * (DDS_QueryCondition _this);
 */

/* DDS_InstanceStateMask
 * DDS_QueryCondition_get_instance_state_mask
 * (DDS_QueryCondition _this);
 */

/* DDS_DataReader
 * DDS_QueryCondition_get_datareader
 * (DDS_QueryCondition _this);
443
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 */
/* DDS_boolean
 * DDS_QueryCondition_get_trigger_value
 * (DDS_QueryCondition _this);
 */
/*
 * implemented API operations
 */

DDS_string
 DDS_QueryCondition_get_query_expression
 (DDS_QueryCondition _this);

DDS_ReturnCode_t
 DDS_QueryCondition_get_query_parameters
 (DDS_QueryCondition _this,
 DDS_StringSeq *query_parameters);

DDS_ReturnCode_t
 DDS_QueryCondition_set_query_parameters
 (DDS_QueryCondition _this,
 const DDS_StringSeq *query_parameters);

The next paragraphs describe the usage of all DDS_QueryCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.8.1 DDS_QueryCondition_get_datareader (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DataReader
 DDS_QueryCondition_get_datareader
 (DDS_QueryCondition _this);

3.5.8.2 DDS_QueryCondition_get_instance_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_InstanceStateMask
 DDS_QueryCondition_get_instance_state_mask
 (DDS_QueryCondition _this);
444
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.8.3 DDS_QueryCondition_get_query_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_QueryCondition_get_query_parameters
 (DDS_QueryCondition _this,
 DDS_StringSeq *query_parameters);

Description
This operat ion re turns the query_parameters associated with the
DDS_QueryCondition.

Parameters
in DDS_QueryCondition _this - the DDS_QueryCondition object on which

the operation is operated.
inout DDS_StringSeq *query_parameters - a handle to a sequence of

strings that will be used to store the parameters used in the SQL expression.

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operat ion obtains the query_parameters associated with the
DDS_QueryCondition. That is, the parameters specified on the last successful call
t o DDS_QueryCondition_set_query_arguments o r, i f
DDS_QueryCondition_set_query_arguments was never called, the
arguments specified when the DDS_QueryCondition were created. The resulting
handle contains a sequence of strings with the parameters used in the SQL
expression (i.e., the %n tokens in the expression). The number of parameters in the
result sequence will exactly match the number of %n tokens in the query expression
associated with the DDS_QueryCondition.

Return Code
When the operation returns:
• DDS_RETCODE_OK - the existing set of query parameters applied to this
DDS_QueryCondition has successfully been copied into the specified
query_parameters parameter.
445
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_ALREADY_DELETED - the DDS_QueryCondition has already

been deleted.
• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.8.4 DDS_QueryCondition_get_query_expression

Synopsis
#include <dds_dcps.h>
DDS_string
 DDS_QueryCondition_get_query_expression
 (DDS_QueryCondition _this);

Description
T h i s o p e r a t i o n r e t u r n s t h e q u e r y e x p r e s s i o n a s s o c i a t e d w i t h t h e
DDS_QueryCondition.

Parameters
in DDS_QueryCondition _this - the DDS_QueryCondition object on which

the operation is operated.

Return Value
DDS_string - Result value is a pointer to the query expression associated with the

DDS_QueryCondition.

Detailed Description
T h i s o p e r a t i o n r e t u r n s t h e q u e r y e x p r e s s i o n a s s o c i a t e d w i t h t h e
DDS_QueryCondition . That i s , the express ion speci f ied when the
DDS_QueryCondition was created. The operation will return DDS_OBJECT_NIL
when there was an internal error or when the DDS_QueryCondition was already
deleted. If there were no parameters, an empty sequence is returned.
It is the applications responsibility to free the allocated memory for the
DDS_StringSeq.

3.5.8.5 DDS_QueryCondition_get_sample_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.
446
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <dds_dcps.h>
DDS_SampleStateMask
 DDS_QueryCondition_get_sample_state_mask
 (DDS_QueryCondition _this);

3.5.8.6 DDS_QueryCondition_get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
 DDS_QueryCondition_get_trigger_value
 (DDS_QueryCondition _this);

3.5.8.7 DDS_QueryCondition_get_view_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
DDS_ReadCondition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ViewStateMask
 DDS_QueryCondition_get_view_state_mask
 (DDS_QueryCondition _this);

3.5.8.8 DDS_QueryCondition_set_query_parameters

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
 DDS_QueryCondition_set_query_parameters
 (DDS_QueryCondition _this,
 const DDS_StringSeq *query_parameters);

Description
Thi s ope ra t i on changes t he que ry pa ramete r s a s soc i a t ed w i th t he
DDS_QueryCondition.

Parameters
in DDS_QueryCondition _this - the DDS_QueryCondition object on which

the operation is operated.
447
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in const DDS_StringSeq *query_parameters - a sequence of strings which
are the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value
DDS_ReturnCode_t - Poss ib le re tu rn codes o f the opera t ion a re :

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION , DDS_RETCODE_BAD_PARAMETER , DDS_RETCODE_
ALREADY_DELETED or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
Thi s ope ra t i on changes t he que ry pa ramete r s a s soc i a t ed w i th t he
DDS_QueryCondition. The parameter query_parameters is a sequence of
strings which are the parameters values used in the SQL query string (i.e., the “%n”
tokens in the expression). The number of values in query_parameters must be
equal or greater than the highest referenced %n token in the query_expression
(e.g. if %1 and %8 are used as parameter in the query_expression, the
query_parameters should at least contain n+1 = 9 values).

Return Code
When the operation returns:
• DDS_RETCODE_OK - the query parameters associated with the
DDS_QueryCondition are changed.

• DDS_RETCODE_ERROR - an internal error has occurred.
• DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.
• DDS_RETCODE_BAD_PARAMETER - the number of parameters in
query_parameters does not match the number of “%n” tokens in the
expression for this DDS_QueryCondition or one of the parameters is an illegal
parameter.

• DDS_RETCODE_ALREADY_DELETED - the DDS_QueryCondition has already
been deleted.

• DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
448
API Reference

�������	

APPENDICES

Appendix

A Quality Of Service
Each DDS_Entity is accompanied by an <DDS_Entity>Qos structure that
implements the basic mechanism for an application to specify Quality of Service
attributes. This structure consists of DDS_Entity specific QosPolicy attributes.
QosPolicy attributes are structured types where each type specifies the
information that controls an DDS_Entity related (configurable) attribute of the
Data Distribution Service.

Affected Entities
Each DDS_Entity can be configured with a set of QosPolicy settings. However,
any DDS_Entity canno t suppor t any QosPolicy. Fo r ins t ance , a
DDS_DomainParticipant supports different QosPolicy settings than a
DDS_Topic or a DDS_Publisher. The set of QosPolicy settings is implemented
as a struct of QosPolicy structs, identified as <DDS_Entity>Qos. Each
<DDS_Entity>Qos struct only contains those QosPolicy structs relevant to the
specific DDS_Entity. The <DDS_Entity>Qos struct serves as the parameter to
operations which require a Qos . <DDS_Entity>Qos struct is the API
implementation of the QoS. Depending on the specific <DDS_Entity>Qos, it
controls the behaviour of a DDS_Topic, DDS_DataWriter, DDS_DataReader,
DDS_Publisher, DDS_Subscriber, DDS_DomainParticipant or
DDS_DomainParticipantFactory1.

Basic Usage
The basic way to modify or set the <DDS_Entity>Qos is by using an
DDS_<Entity>_get_qos operation to get all QosPolicy settings from this
DDS_Entity (that is the <DDS_Entity>Qos), modify several specific QosPolicy
settings and put them back using an DDS_<DDS_Entity>_set_qos operation to
set all QosPolicy settings on this DDS_Entity (that is the <DDS_Entity>Qos).
An example o f these ope ra t ions fo r the DDS_DataWriterQos a re

1. Note that the DDS_DomainParticipantFactory is a special kind of entity: it does not
inherit from DDS_Entity, nor does it have a DDS_Listener or
DDS_StatusCondition, but its behaviour can be controlled by its own set of
QosPolicies.
451
C Reference Guide�������	

 Appendices
DDS_Publisher_get_default_datawriter_qos and DDS_Publisher_
set_default_datawriter_qos, which take the DDS_DataWriterQos as a
parameter.
The interface description of this struct is as follows:

/*
 * struct <name>QosPolicy
 * see appendix
 */
/*
 * struct <DDS_Entity>Qos
 */

 struct DDS_DomainParticipantFactoryQos
 { DDS_EntityFactoryQosPolicy entity_factory; };

struct DDS_DomainParticipantQos
 { DDS_UserDataQosPolicy user_data;
 DDS_EntityFactoryQosPolicy entity_factory;
 DDS_SchedulingQosPolicy watchdog_scheduling;
 DDS_SchedulingQosPolicy listener_scheduling; };
struct DDS_TopicQos
 { DDS_TopicDataQosPolicy topic_data;
 DDS_DurabilityQosPolicy durability;
 DDS_DurabilityServiceQosPolicy durability_service;
 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_TransportPriorityQosPolicy transport_priority;
 DDS_LifespanQosPolicy lifespan;
 DDS_OwnershipQosPolicy ownership; };
struct DDS_DataWriterQos
 { DDS_DurabilityQosPolicy durability;
 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_TransportPriorityQosPolicy transport_priority;
 DDS_LifespanQosPolicy lifespan;
 DDS_UserDataQosPolicy user_data;
 DDS_OwnershipQosPolicy ownership;
 DDS_OwnershipStrengthQosPolicy ownership_strength;
 DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;};
struct DDS_PublisherQos
452
C Reference Guide �������	

Appendices
 { DDS_PresentationQosPolicy presentation;
 DDS_PartitionQosPolicy partition;
 DDS_GroupDataQosPolicy group_data;
 DDS_EntityFactoryQosPolicy entity_factory; };
struct DDS_DataReaderQos
 { DDS_DurabilityQosPolicy durability;
 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_UserDataQosPolicy user_data;
 DDS_OwnershipQosPolicy ownership;
 DDS_TimeBasedFilterQosPolicy time_based_filter;
 DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle;};
struct DDS_SubscriberQos
 { DDS_PresentationQosPolicy presentation;
 DDS_PartitionQosPolicy partition;
 DDS_GroupDataQosPolicy group_data;
 DDS_EntityFactoryQosPolicy entity_factory; };

/*
 * define <DDS_Entity>_QOS_DEFAULT
 */

#define DDS_PARTICIPANT_QOS_DEFAULT
#define DDS_TOPIC_QOS_DEFAULT
#define DDS_DATAWRITER_QOS_DEFAULT
#define DDS_PUBLISHER_QOS_DEFAULT
#define DDS_DATAREADER_QOS_DEFAULT
#define DDS_SUBSCRIBER_QOS_DEFAULT
#define DDS_DATAWRITER_QOS_USE_TOPIC_QOS
#define DDS_DATAREADER_QOS_USE_TOPIC_QOS

/*
 * implemented API operations
 * <no operations>
 */

The next paragraphs describe the usage of each <DDS_Entity>Qos struct.

DDS_DataReaderQos
Synopsis
#include <dds_dcps.h>

struct DDS_DataReaderQos
 { DDS_DurabilityQosPolicy durability;
 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
453
C Reference Guide�������	

 Appendices
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_UserDataQosPolicy user_data;
 DDS_OwnershipQosPolicy ownership;
 DDS_TimeBasedFilterQosPolicy time_based_filter;
 DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle;};

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_DataReader.

Attributes
DDS_DurabilityQosPolicy durability - whether the data should be stored

for late joining readers.
DDS_DeadlineQosPolicy deadline - the period within which a new sample is

expected.
DDS_LatencyBudgetQosPolicy latency_budget - used by the Data

Distribution Service for optimization.
DDS_LivelinessQosPolicy liveliness - the way the liveliness of the

DDS_DataReader is asserted to the Data Distribution Service.
DDS_ReliabilityQosPolicy reliability - the reliability of the data

distribution.
DDS_DestinationOrderQosPolicy destination_order - the order in

which the DDS_DataReader timely orders the data.
DDS_HistoryQosPolicy history - how samples should be stored.
DDS_ResourceLimitsQosPolicy resource_limits - the maximum amount

of resources to be used.
DDS_UserDataQosPolicy user_data - used to attach additional information to

the DDS_DataReader.
DDS_OwnershipQosPolicy ownership - whether a DataWriter exclusively

owns an instance.
DDS_TimeBasedFilterQosPolicy time_based_filter - the maximum data

rate at which the DDS_DataReader will receive changes.
454
C Reference Guide �������	

Appendices
DDS_ReaderDataLifecycleQosPolicy reader_data_lifecycle - the
minimum time after which a data instance is disposed of when the
instance_state has become
 DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
 DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Detailed Description
A QosPolicy can be set when the DDS_DataReader is created with the
DDS_Subscriber_create_datareader operation (or modified with the
DDS_DataReader_set_qos ope ra t ion) . Bo th ope ra t ions t ake the
DDS_DataReaderQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_DataReader_set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DataReader creation time or prior to calling the
DDS_DataReader_enable operation on the DDS_DataReader.
See Struct QosPolicy on page 55 for a list of all <name>QosPolicy settings, their
meaning, characteristics and possible values, as well as if it applies to a
DDS_DataReader.
The initial value of the default DDS_DataReaderQos in the DDS_Subscriber are
given in the following table:

Table 18 DDS_DATAREADER_QOS_DEFAULT

QosPolicy Attribute Value
durability kind DDS_VOLATILE_DURABILITY_QOS

deadline period DDS_DURATION_INFINITE

latency_budget duration 0

liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration DDS_DURATION_INFINITE

reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history kind DDS_KEEP_LAST_HISTORY_QOS

depth 1
455
C Reference Guide�������	

 Appendices
DDS_DataWriterQos
Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterQos

 { DDS_DurabilityQosPolicy durability;
 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_TransportPriorityQosPolicy transport_priority;
 DDS_LifespanQosPolicy lifespan;
 DDS_UserDataQosPolicy user_data;
 DDS_OwnershipQosPolicy ownership;
 DDS_OwnershipStrengthQosPolicy ownership_strength;
 DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle;};

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_DataWriter.

Attributes
DDS_DurabilityQosPolicy durability - whether the data should be stored

for late joining readers.
DDS_DeadlineQosPolicy deadline - the period within which a new sample is

written.

resource_limits max_samples DDS_LENGTH_UNLIMITED

max_instances DDS_LENGTH_UNLIMITED

max_samples_ per_instance DDS_LENGTH_UNLIMITED

user_data value.length 0

ownership kind DDS_SHARED_OWNERSHIP_QOS

time_based_filter minimum_separation 0

reader_data_lifecycle autopurge_
nowriter_samples_delay

DDS_DURATION_INFINITE

autopurge_
disposed_samples_delay

DDS_DURATION_INFINITE

Table 18 DDS_DATAREADER_QOS_DEFAULT

QosPolicy Attribute Value
456
C Reference Guide �������	

Appendices
DDS_LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

DDS_LivelinessQosPolicy liveliness - the way the liveliness of the
DDS_DataWriter is asserted to the Data Distribution Service.

DDS_ReliabilityQosPolicy reliability - the reliability of the data
distribution.

DDS_DestinationOrderQosPolicy destination_order - the order in
which the DDS_DataReader timely orders the data.

DDS_HistoryQosPolicy history - how samples should be stored.
DDS_ResourceLimitsQosPolicy resource_limits - the maximum amount

of resources to be used.
DDS_TransportPriorityQosPolicy transport_priority - a priority hint

for the underlying transport layer.
DDS_LifespanQosPolicy lifespan - the maximum duration of validity of the

data written by the DDS_DataWriter.
DDS_UserDataQosPolicy user_data - used to attach additional information to

the DDS_DataWriter.
DDS_OwnershipQosPolicy ownership - whether a DataWriter exclusively

owns an instance.
DDS_OwnershipStrengthQosPolicy ownership_strength - the strength to

determine the ownership.
DDS_WriterDataLifecycleQosPolicy writer_data_lifecycle - whether

unregistered instances are disposed of automatically or not.

Detailed Description
A QosPolicy can be set when the DDS_DataWriter is created with the
DDS_Publisher_create_datawriter operation (or modified with the
DDS_DataWriter_set_qos ope ra t ion) . Bo th ope ra t ions t ake the
DDS_DataWriterQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_DataWriter_set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DataWriter creation time or prior to calling the
DDS_DataWriter_enable operation on the DDS_DataWriter.
The Struct QosPolicy provides the list of all <name>QosPolicy settings, their
meaning, characteristics and possible values, as well as if it applies to a
DDS_DataWriter.
457
C Reference Guide�������	

 Appendices
The initial value of the default DDS_DataWriterQos in the DDS_Publisher are
given in the following table:

DDS_DomainParticipantFactoryQos
Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantFactoryQos

 { DDS_EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_DomainParticipantFactory.

Table 19 DDS_DATAWRITER_QOS_DEFAULT

QosPolicy Attribute Value
durability kind DDS_VOLATILE_DURABILITY_QOS

deadline period DDS_DURATION_INFINITE

latency_budget duration 0

liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration DDS_DURATION_INFINITE

reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history kind DDS_KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples DDS_LENGTH_UNLIMITED

max_instances DDS_LENGTH_UNLIMITED

max_samples_
per_instance

DDS_LENGTH_UNLIMITED

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE

user_data value.length 0

ownership kind DDS_SHARED_OWNERSHIP_QOS

ownership_strength value 0

writer_data_lifecycle autodispose_
unregistered_instances

TRUE
458
C Reference Guide �������	

Appendices
Attributes
DDS_EntityFactoryQosPolicy entity_factory - whether a just created

DomainParticipant should be enabled.

Detailed Description
The QosPolicy c a n n o t b e s e t a t c r e a t i o n t im e , s i n c e t h e
DDS_DomainParticipantFactory is a pre-existing object that can only be
obtained with the DDS_DomainParticipantFactory_get_instance operation
or its alias DDS_TheParticipantFactory. Therefore its QosPolicy is
initialized to a default value according to Table 20:

A f t e r c r e a t i o n t h e QosPolicy c a n b e m od i f i e d w i th t h e
DDS_DomainParticipantFactory_set_qos operation, which takes the
DDS_DomainParticipantFactoryQos struct as a parameter.

DDS_DomainParticipantQos
Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantQos

 { DDS_UserDataQosPolicy user_data;
 DDS_EntityFactoryQosPolicy entity_factory;
 DDS_SchedulingQosPolicy watchdog_scheduling;
 DDS_SchedulingQosPolicy listener_scheduling; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_DomainParticipant.

Attributes
DDS_UserDataQosPolicy user_data - used to attach additional information to

the DDS_DomainParticipant.
DDS_EntityFactoryQosPolicy entity_factory - whether a just created

DDS_Entity should be enabled.
DDS_SchedulingQosPolicy watchdog_scheduling - the scheduling

parameters used to create the watchdog thread.

Table 20 Default Values for DDS_DomainParticipantFactoryQos

QosPolicy Attribute Value
entity_factory autoenable_created_entities TRUE
459
C Reference Guide�������	

 Appendices
DDS_SchedulingQosPolicy listener_scheduling - the scheduling
parameters used to create the listener thread.

Detailed Description
A DDS_DomainParticipant will spawn different threads for different purposes:
• A listener thread is spawned to perform the callbacks to all DDS_Listener

objects attached to the various DDS_Entities contained in the
DDS_DomainParticipant. The scheduling parameters for this thread can be
specified in the listener_scheduling field of the
DDS_DomainParticipantQos.

• A watchdog thread is spawned to report the the Liveliness of all DDS_Entities
contained in the DDS_DomainParticipant whose
DDS_LivelinessQosPolicyKind in their DDS_LivelinessQosPolicy is
set to DDS_AUTOMATIC_LIVELINESS_QOS. The scheduling parameters for this
thread can be specified in the watchdog_scheduling field of the
DDS_DomainParticipantQos.

A QosPolicy can be set when the DDS_DomainParticipant is created with the
DDS_DomainParticipantFactory_create_participant operation (or
modified with the DDS_DomainParticipant_set_qos operation). Both
operations take the DDS_DomainParticipantQos struct as a parameter. There
may be cases where several policies are in conflict. Consistency checking is
performed each time the policies are modified when they are being created and, in
case they are already enabled, via the DDS_DomainParticipant_set_qos
operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_DomainParticipant creation time or prior to calling the
DDS_DomainParticipant_enable o p e r a t i o n o n t h e
DDS_DomainParticipant.
The initial value of the default DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory are given in the following table:

Table 21 DDS_PARTICIPANT_QOS_DEFAULT

QosPolicy Attribute Value
user_data value.length 0

entity_factory autoenable_created_entities TRUE

watchdog_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0
460
C Reference Guide �������	

Appendices
DDS_PublisherQos
Synopsis
#include <dds_dcps.h>
struct DDS_PublisherQos

 { DDS_PresentationQosPolicy presentation;
 DDS_PartitionQosPolicy partition;
 DDS_GroupDataQosPolicy group_data;
 DDS_EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_Publisher.

Attributes
DDS_PresentationQosPolicy presentation - the dependency of changes to

data-instances.
DDS_PartitionQosPolicy partition - the partitions in which the

DDS_Publisher is active.
DDS_GroupDataQosPolicy group_data - used to attach additional information

to the DDS_Publisher.
DDS_EntityFactoryQosPolicy entity_factory - whether a just created

DDS_DataWriter should be enabled.

Detailed Description
A QosPolicy can be set when the DDS_Publisher is created with the
DDS_DomainParticipant_create_publisher operation (or modified with the
DDS_Publisher_set_qos o p e r a t i o n) . B o t h o p e ra t i o n s t a k e t h e
DDS_PublisherQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_Publisher_set_qos operation.

listener_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0

Table 21 DDS_PARTICIPANT_QOS_DEFAULT

QosPolicy Attribute Value
461
C Reference Guide�������	

 Appendices
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_Publisher creation time or prior to calling the
DDS_Publisher_enable operation on the DDS_Publisher.
T h e in i t i a l v a l u e o f t h e d e f a u l t DDS_PublisherQos i n t h e
DDS_DomainParticipant are given in the following table:

DDS_SubscriberQos
Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberQos

 { DDS_PresentationQosPolicy presentation;
 DDS_PartitionQosPolicy partition;
 DDS_GroupDataQosPolicy group_data;
 DDS_EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_Subscriber.

Attributes
DDS_PresentationQosPolicy presentation - the dependency of changes to

data-instances.
DDS_PartitionQosPolicy partition - the partitions in which the

DDS_Subscriber is active.
DDS_GroupDataQosPolicy group_data - used to attach additional information

to the DDS_Subscriber.
DDS_EntityFactoryQosPolicy entity_factory - whether a just created

DDS_DataReader should be enabled.

Table 22 DDS_PUBLISHER_QOS_DEFAULT

QosPolicy Attribute Value
presentation access_scope DDS_INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE

partition name.length 0

group_data value.length 0

entity_factory autoenable_
created_entities

TRUE
462
C Reference Guide �������	

Appendices
Detailed Description
A QosPolicy can be set when the DDS_Subscriber is created with the
DDS_DomainParticipant_create_subscriber operation (or modified with
the DDS_Subscriber_set_qos operation). Both operations take the
DDS_SubscriberQos struct as a parameter. There may be cases where several
policies are in conflict. Consistency checking is performed each time the policies
are modified when they are being created and, in case they are already enabled, via
the DDS_Subscriber_set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DDS_Subscriber creation time or prior to calling the
DDS_Subscriber_enable operation on the DDS_Subscriber.
T h e i n i t i a l v a lu e o f t h e d e f a u l t DDS_SubscriberQos i n t h e
DDS_DomainParticipant are given in the following table:

DDS_TopicQos
Synopsis
#include <dds_dcps.h>
struct DDS_TopicQos

 { DDS_TopicDataQosPolicy topic_data;
 DDS_DurabilityQosPolicy durability;
 DDS_DurabilityServiceQosPolicy durability_service;

 DDS_DeadlineQosPolicy deadline;
 DDS_LatencyBudgetQosPolicy latency_budget;
 DDS_LivelinessQosPolicy liveliness;
 DDS_ReliabilityQosPolicy reliability;
 DDS_DestinationOrderQosPolicy destination_order;
 DDS_HistoryQosPolicy history;
 DDS_ResourceLimitsQosPolicy resource_limits;
 DDS_TransportPriorityQosPolicy transport_priority;
 DDS_LifespanQosPolicy lifespan;

Table 23 DDS_SUBSCRIBER_QOS_DEFAULT

QosPolicy Attribute Value
presentation access_scope DDS_INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE

partition name.length 0

group_data value.length 0

entity_factory autoenable_
created_entities

TRUE
463
C Reference Guide�������	

 Appendices
 DDS_OwnershipQosPolicy ownership; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DDS_Topic.

Attributes
DDS_TopicDataQosPolicy topic_data - used to attach additional information

to the DDS_Topic.
DDS_DurabilityQosPolicy durability - whether the data should be stored

for late joining readers.
DDS_DurabilityServiceQosPolicy durability_service - the behaviour

of the “transient/persistent service” of the Data Distribution System regarding
Transient and Persistent DDS_Topic instances.

DDS_DeadlineQosPolicy deadline - the period within which a new sample is
expected or written.

DDS_LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

DDS_LivelinessQosPolicy liveliness - the way the liveliness of the
DDS_Topic is asserted to the Data Distribution Service.

DDS_ReliabilityQosPolicy reliability - the reliability of the data
distribution.

DDS_DestinationOrderQosPolicy destination_order - the order in
which the DDS_DataReader timely orders the data.

DDS_HistoryQosPolicy history - how samples should be stored.
DDS_ResourceLimitsQosPolicy resource_limits - the maximum amount

of resources to be used.
DDS_TransportPriorityQosPolicy transport_priority - a priority hint

for the underlying transport layer.
DDS_LifespanQosPolicy lifespan - the maximum duration of validity of the

data written by a DDS_DataWriter.
DDS_OwnershipQosPolicy ownership - whether a DDS_DataWriter

exclusively owns an instance.

Detailed Description
A QosPolicy can be se t when the DDS_Topic i s c rea ted wi th the
DDS_DomainParticipant_create_topic operation (or modified with the
DDS_Topic_set_qos operation). Both operations take the DDS_TopicQos struct
464
C Reference Guide �������	

Appendices
as a parameter. There may be cases where several policies are in conflict.
Consistency checking is performed each time the policies are modified when they
a r e b e i n g c r e a t e d a n d , i n c a s e t he y a r e a l r e a d y e na b l e d , v i a t h e
DDS_Topic_set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specif ied e i ther a t DDS_Topic c reat ion t ime or pr ior to ca l l ing the
DDS_Topic_enable operation on the DDS_Topic.
The initial value of the default DDS_TopicQos in the DDS_DomainParticipant
are given in the following table:

Table 24 DDS_TOPIC_QOS_DEFAULT

QosPolicy Attribute Value
topic_data value.length 0

durability kind DDS_VOLATILE_DURABILITY_QOS

durability_service service_cleanup_delay 0

history_kind DDS_KEEP_LAST_HISTORY_QOS

history_depth 1

max_samples DDS_LENGTH_UNLIMITED

max_instances DDS_LENGTH_UNLIMITED

max_samples_per_instance DDS_LENGTH_UNLIMITED

deadline period DDS_DURATION_INFINITE

latency_budget duration 0

liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration DDS_DURATION_INFINITE

reliability kind DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS

history kind DDS_KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples DDS_LENGTH_UNLIMITED

max_instances DDS_LENGTH_UNLIMITED

max_samples_per_instance DDS_LENGTH_UNLIMITED

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE

ownership kind DDS_SHARED_OWNERSHIP_QOS
465
C Reference Guide�������	

 Appendices
466
C Reference Guide �������	

Appendix

B API Constants and Types
These constants and types are taken from the dds_dcps.h include file.
/* Duration and Time
*/
 struct DDS_Duration_t
 {
 DDS_long sec;
 DDS_unsigned_long nanosec;
 };

 #define DDS_DURATION_INFINITE_SEC 0x7fffffff
 #define DDS_DURATION_INFINITE_NSEC 0x7fffffffU
 #define DDS_DURATION_ZERO_SEC 0
 #define DDS_DURATION_ZERO_NSEC 0U
 #define DDS_DURATION_INFINITE {

DDS_DURATION_INFINITE_SEC,
DDS_DURATION_INFINITE_NSEC }

 #define DDS_DURATION_ZERO {
DDS_DURATION_ZERO_SEC,
DDS_DURATION_ZERO_NSEC }

 struct DDS_Time_t
 {
 DDS_long sec;
 DDS_unsigned_long nanosec;
 };

/*
 * Pre-defined values
 *
*/
 #define DDS_HANDLE_NIL DDS_HANDLE_NIL_NATIVE
 #define DDS_LENGTH_UNLIMITED -1
 #define DDS_TIMESTAMP_INVALID_SEC -1
 #define DDS_TIMESTAMP_INVALID_NSEC 4294967295U
 #define DDS_TIMESTAMP_INVALID {

DDS_TIMESTAMP_INVALID_SEC,
DDS_TIMESTAMP_INVALID_NSEC }

/* -----
 * Return codes
 * ----- */
 #define DDS_RETCODE_OK 0
467
C Reference Guide�������	

 Appendices
 #define DDS_RETCODE_ERROR 1
 #define DDS_RETCODE_UNSUPPORTED 2
 #define DDS_RETCODE_BAD_PARAMETER 3
 #define DDS_RETCODE_PRECONDITION_NOT_MET 4
 #define DDS_RETCODE_OUT_OF_RESOURCES 5
 #define DDS_RETCODE_NOT_ENABLED 6
 #define DDS_RETCODE_IMMUTABLE_POLICY 7
 #define DDS_RETCODE_INCONSISTENT_POLICY 8
 #define DDS_RETCODE_ALREADY_DELETED 9
 #define DDS_RETCODE_TIMEOUT 10
 #define DDS_RETCODE_NO_DATA 11
 #define DDS_RETCODE_ILLEGAL_OPERATION 12

/* -----
 * DDS_Status to support listeners and conditions
 * ----- */
 #define DDS_INCONSISTENT_TOPIC_STATUS 1U
 #define DDS_OFFERED_DEADLINE_MISSED_STATUS 2U
 #define DDS_REQUESTED_DEADLINE_MISSED_STATUS 4U
 #define DDS_OFFERED_INCOMPATIBLE_QOS_STATUS 32U
 #define DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS 64U
 #define DDS_SAMPLE_LOST_STATUS 128U
 #define DDS_SAMPLE_REJECTED_STATUS 256U
 #define DDS_DATA_ON_READERS_STATUS 512U
 #define DDS_DATA_AVAILABLE_STATUS 1024U
 #define DDS_LIVELINESS_LOST_STATUS 2048U
 #define DDS_LIVELINESS_CHANGED_STATUS 4096U
 #define DDS_PUBLICATION_MATCHED_STATUS 8192U
 #define DDS_SUBSCRIPTION_MATCHED_STATUS 16384U

 #define DDS_ANY_STATUS 0xFFFF

/*
 * States
 * */
/*
 * Sample states to support reads
 */
 #define DDS_READ_SAMPLE_STATE 1U
 #define DDS_NOT_READ_SAMPLE_STATE 2U
/*
 * This is a bit-mask DDS_SampleStateKind
 */
 #define DDS_ANY_SAMPLE_STATE 65535U

/*
 * View states to support reads
 */
468
C Reference Guide �������	

Appendices
 #define DDS_NEW_VIEW_STATE 1U
 #define DDS_NOT_NEW_VIEW_STATE 2U
/*
 * This is a bit-mask DDS_ViewStateKind
 */
 #define DDS_ANY_VIEW_STATE 65535U

/*
 * Instance states to support reads
 */
 #define DDS_ALIVE_INSTANCE_STATE 1U
 #define DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE 2U
 #define DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE 4U

/*
 * This is a bit-mask DDS_InstanceStateKind
 */
 #define DDS_ANY_INSTANCE_STATE 65535U
 #define DDS_NOT_ALIVE_INSTANCE_STATE 6U

/*
 * Participant Factory define
 */
 #define TheParticipantFactory

(DDS_DomainParticipantFactory_get_instance())

/*
 * Qos defines
 * */
#define DDS_PARTICIPANT_QOS_DEFAULT NULL
#define DDS_TOPIC_QOS_DEFAULT NULL
#define DDS_PUBLISHER_QOS_DEFAULT NULL
#define DDS_SUBSCRIBER_QOS_DEFAULT NULL
#define DDS_DATAREADER_QOS_DEFAULT NULL
#define DDS_DATAWRITER_QOS_DEFAULT NULL
#define DDS_DATAWRITER_QOS_USE_TOPIC_QOS ((DDS_DataWriterQos *)-1)
#define DDS_DATAREADER_QOS_USE_TOPIC_QOS ((DDS_DataReaderQos *)-1)

/* QosPolicy
 * /
 #define DDS_USERDATA_QOS_POLICY_NAME "UserData"
 #define DDS_DURABILITY_QOS_POLICY_NAME "Durability"
 #define DDS_PRESENTATION_QOS_POLICY_NAME "Presentation"
 #define DDS_DEADLINE_QOS_POLICY_NAME "Deadline"
 #define DDS_LATENCYBUDGET_QOS_POLICY_NAME "LatencyBudget"
 #define DDS_OWNERSHIP_QOS_POLICY_NAME "Ownership"
 #define DDS_OWNERSHIPSTRENGTH_QOS_POLICY_NAME "OwnershipStrength"
 #define DDS_LIVELINESS_QOS_POLICY_NAME "Liveliness"
 #define DDS_TIMEBASEDFILTER_QOS_POLICY_NAME "TimeBasedFilter"
469
C Reference Guide�������	

 Appendices
 #define DDS_PARTITION_QOS_POLICY_NAME "Partition"
 #define DDS_RELIABILITY_QOS_POLICY_NAME "Reliability"
 #define DDS_DESTINATIONORDER_QOS_POLICY_NAME "DestinationOrder"
 #define DDS_HISTORY_QOS_POLICY_NAME "History"
 #define DDS_RESOURCELIMITS_QOS_POLICY_NAME "ResourceLimits"
 #define DDS_ENTITYFACTORY_QOS_POLICY_NAME "EntityFactory"
 #define DDS_WRITERDATALIFECYCLE_QOS_POLICY_NAME

"WriterDataLifecycle"
 #define DDS_READERDATALIFECYCLE_QOS_POLICY_NAME

"ReaderDataLifecycle"
 #define DDS_TOPICDATA_QOS_POLICY_NAME "TopicData"
 #define DDS_GROUPDATA_QOS_POLICY_NAME "GroupData"
 #define DDS_TRANSPORTPRIORITY_QOS_POLICY_NAME "TransportPriority"
 #define DDS_LIFESPAN_QOS_POLICY_NAME "Lifespan"
 #define DDS_DURABILITYSERVICE_QOS_POLICY_NAME "DurabilityService"

 #define DDS_INVALID_QOS_POLICY_ID 0
 #define DDS_USERDATA_QOS_POLICY_ID 1
 #define DDS_DURABILITY_QOS_POLICY_ID 2
 #define DDS_PRESENTATION_QOS_POLICY_ID 3
 #define DDS_DEADLINE_QOS_POLICY_ID 4
 #define DDS_LATENCYBUDGET_QOS_POLICY_ID 5
 #define DDS_OWNERSHIP_QOS_POLICY_ID 6
 #define DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ID 7
 #define DDS_LIVELINESS_QOS_POLICY_ID 8
 #define DDS_TIMEBASEDFILTER_QOS_POLICY_ID 9
 #define DDS_PARTITION_QOS_POLICY_ID 10
 #define DDS_RELIABILITY_QOS_POLICY_ID 11
 #define DDS_DESTINATIONORDER_QOS_POLICY_ID 12
 #define DDS_HISTORY_QOS_POLICY_ID 13
 #define DDS_RESOURCELIMITS_QOS_POLICY_ID 14
 #define DDS_ENTITYFACTORY_QOS_POLICY_ID 15
 #define DDS_WRITERDATALIFECYCLE_QOS_POLICY_ID 16
 #define DDS_READERDATALIFECYCLE_QOS_POLICY_ID 17
 #define DDS_TOPICDATA_QOS_POLICY_ID 18
 #define DDS_GROUPDATA_QOS_POLICY_ID 19
 #define DDS_TRANSPORTPRIORITY_QOS_POLICY_ID 20
 #define DDS_LIFESPAN_QOS_POLICY_ID 21
 #define DDS_DURABILITYSERVICE_QOS_POLICY_ID 22
470
C Reference Guide �������	

Appendix

C Platform Specific IDL Interface
The IDL code in the next paragraphs are taken from the OMG C Language Mapping
Specification.

dds_dcps.idl
#define DOMAINID_TYPE_NATIVE string
#define HANDLE_TYPE_NATIVElong long
#define HANDLE_NIL_NATIVE0
#define BUILTIN_TOPIC_KEY_TYPE_NATIVElong
#define TheParticipantFactory
#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS
module DDS {
 typedef DOMAINID_TYPE_NATIVE DomainId_t;
 typedef HANDLE_TYPE_NATIVE InstanceHandle_t;
 typedef BUILTIN_TOPIC_KEY_TYPE_NATIVE BuiltinTopicKey_t[3];
 typedef sequence<InstanceHandle_t> InstanceHandleSeq;
 typedef long ReturnCode_t;
 typedef long QosPolicyId_t;
 typedef sequence<string> StringSeq;
 struct Duration_t {

long sec;
unsigned long nanosec;

 };
 struct Time_t {

long sec;
unsigned long nanosec;

 };
 //
 // Pre-defined values
 //
 const InstanceHandle_t HANDLE_NIL= HANDLE_NIL_NATIVE;
 const long LENGTH_UNLIMITED= -1;
 const long DURATION_INFINITE_SEC= 0x7fffffff;
 const unsigned long DURATION_INFINITE_NSEC= 0x7fffffff;
 const long DURATION_ZERO_SEC= 0;
471
C Reference Guide�������	

 Appendices
 const unsigned long DURATION_ZERO_NSEC= 0;
 const long TIMESTAMP_INVALID_SEC= -1;
 const unsigned long TIMESTAMP_INVALID_NSEC= 0xffffffff;
 //
 // Return codes
 //
 const ReturnCode_t RETCODE_OK = 0;
 const ReturnCode_t RETCODE_ERROR = 1;
 const ReturnCode_t RETCODE_UNSUPPORTED = 2;
 const ReturnCode_t RETCODE_BAD_PARAMETER = 3;
 const ReturnCode_t RETCODE_PRECONDITION_NOT_MET = 4;
 const ReturnCode_t RETCODE_OUT_OF_RESOURCES = 5;
 const ReturnCode_t RETCODE_NOT_ENABLED = 6;
 const ReturnCode_t RETCODE_IMMUTABLE_POLICY = 7;
 const ReturnCode_t RETCODE_INCONSISTENT_POLICY = 8;
 const ReturnCode_t RETCODE_ALREADY_DELETED = 9;
 const ReturnCode_t RETCODE_TIMEOUT = 10;
 const ReturnCode_t RETCODE_NO_DATA = 11;
 const ReturnCode_t RETCODE_ILLEGAL_OPERATION = 12;

 //
 // Status to support listeners and conditions
 //
 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask; // bit-mask StatusKind
 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;
 struct InconsistentTopicStatus {

long total_count;
long total_count_change;

 };
 struct SampleLostStatus {

long total_count;
long total_count_change;

 };
 enum SampleRejectedStatusKind {

NOT_REJECTED,
REJECTED_BY_INSTANCE_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
472
C Reference Guide �������	

Appendices
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
 };
 struct SampleRejectedStatus {

long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

 };
 struct LivelinessLostStatus {

long total_count;
long total_count_change;

 };
 struct LivelinessChangedStatus {

long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;

 };
 struct OfferedDeadlineMissedStatus {

long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };
 struct RequestedDeadlineMissedStatus {

long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };
 struct QosPolicyCount {

QosPolicyId_t policy_id;
long count;

 };
 typedef sequence<QosPolicyCount> QosPolicyCountSeq;
 struct OfferedIncompatibleQosStatus {

long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };
 struct RequestedIncompatibleQosStatus {

long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };
 struct PublicationMatchedStatus {

long total_count;
long total_count_change;
long current_count;
473
C Reference Guide�������	

 Appendices
long current_count_change;
InstanceHandle_t last_subscription_handle;

 };
 struct SubscriptionMatchedStatus {

long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;

 };
 //
 // Listeners
 //
 interface Listener;
 interface Entity;
 interface TopicDescription;
 interface Topic;
 interface ContentFilteredTopic;
 interface MultiTopic;
 interface DataWriter;
 interface DataReader;
 interface Subscriber;
 interface Publisher;
 typedef sequence<Topic> TopicSeq;
 typedef sequence<DataReader> DataReaderSeq;
 interface Listener {
 };
 interface TopicListener : Listener {

void
on_inconsistent_topic(
 in Topic the_topic,
 in InconsistentTopicStatus status);

 };
 interface DataWriterListener : Listener {

void
on_offered_deadline_missed(
 in DataWriter writer,
 in OfferedDeadlineMissedStatus status);

void
on_offered_incompatible_qos(
 in DataWriter writer,
 in OfferedIncompatibleQosStatus status);

void
on_liveliness_lost(
 in DataWriter writer,
 in LivelinessLostStatus status);

void
on_publication_matched(
 in DataWriter writer,
 in PublicationMatchedStatus status);
474
C Reference Guide �������	

Appendices
 };
 interface PublisherListener : DataWriterListener {
 };
 interface DataReaderListener : Listener {

void
on_requested_deadline_missed(
 in DataReader reader,
 in RequestedDeadlineMissedStatus status);

void
on_requested_incompatible_qos(
 in DataReader reader,
 in RequestedIncompatibleQosStatus status);

void
on_sample_rejected(
 in DataReader reader,
 in SampleRejectedStatus status);

void
on_liveliness_changed(
 in DataReader reader,
 in LivelinessChangedStatus status);

void
on_data_available(
 in DataReader reader);

void
on_subscription_matched(
 in DataReader reader,
 in SubscriptionMatchedStatus status);

void
on_sample_lost(
 in DataReader reader,
 in SampleLostStatus status);

 };
 interface SubscriberListener : DataReaderListener {

void
on_data_on_readers(
 in Subscriber subs);

 };
 interface DomainParticipantListener : TopicListener,

 PublisherListener,
 SubscriberListener {

 };
 //
 // Conditions
 //
 interface Condition {

boolean
get_trigger_value();

 };
 typedef sequence<Condition> ConditionSeq;
 interface WaitSet {
475
C Reference Guide�������	

 Appendices
ReturnCode_t
wait(
 inout ConditionSeq active_conditions,
 in Duration_t timeout);
ReturnCode_t
attach_condition(
 in Condition cond);
ReturnCode_t
detach_condition(
 in Condition cond);
ReturnCode_t
get_conditions(
 inout ConditionSeq attached_conditions);

 };
 interface GuardCondition : Condition {

ReturnCode_t
set_trigger_value(
 in boolean value);

 };
 interface StatusCondition : Condition {

StatusMask
get_enabled_statuses();
ReturnCode_t
set_enabled_statuses(
 in StatusMask mask);
Entity
get_entity();

 };
 // Sample states to support reads
 typedef unsigned long SampleStateKind;
 typedef sequence <SampleStateKind> SampleStateSeq;
 const SampleStateKind READ_SAMPLE_STATE = 0x0001 << 0;
 const SampleStateKind NOT_READ_SAMPLE_STATE = 0x0001 << 1;
 // This is a bit-mask SampleStateKind
 typedef unsigned long SampleStateMask;
 const SampleStateMask ANY_SAMPLE_STATE = 0xffff;
 // View states to support reads
 typedef unsigned long ViewStateKind;
 typedef sequence<ViewStateKind> ViewStateSeq;
 const ViewStateKind NEW_VIEW_STATE = 0x0001 << 0;
 const ViewStateKind NOT_NEW_VIEW_STATE = 0x0001 << 1;
 // This is a bit-mask ViewStateKind
 typedef unsigned long ViewStateMask;
 const ViewStateMask ANY_VIEW_STATE = 0xffff;
 // Instance states to support reads
 typedef unsigned long InstanceStateKind;
 typedef sequence<InstanceStateKind> InstanceStateSeq;
 const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001 << 0;
 const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE = 0x0001

 << 1;
476
C Reference Guide �������	

Appendices
 const InstanceStateKind NOT_ALIVE_NO_WRITERS_INSTANCE_STATE =
 0x0001 << 2;

 // This is a bit-mask InstanceStateKind
 typedef unsigned long InstanceStateMask;
 const InstanceStateMask ANY_INSTANCE_STATE = 0xffff;
 const InstanceStateMask NOT_ALIVE_INSTANCE_STATE = 0x006;
 interface ReadCondition : Condition {

SampleStateMask
get_sample_state_mask();
ViewStateMask
get_view_state_mask();
InstanceStateMask
get_instance_state_mask();
DataReader
get_datareader();

 };
 interface QueryCondition : ReadCondition {

string
get_query_expression();
ReturnCode_t
get_query_parameters(
 inout StringSeq query_parameters);
ReturnCode_t
set_query_parameters(
 in StringSeq query_parameters);

 };
 //
 // Qos
 //
 const string USERDATA_QOS_POLICY_NAME = "UserData";
 const string DURABILITY_QOS_POLICY_NAME = "Durability";
 const string PRESENTATION_QOS_POLICY_NAME = "Presentation";
 const string DEADLINE_QOS_POLICY_NAME = "Deadline";
 const string LATENCYBUDGET_QOS_POLICY_NAME = "LatencyBudget";
 const string OWNERSHIP_QOS_POLICY_NAME = "Ownership";
 const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME=

 "OwnershipStrength";
 const string LIVELINESS_QOS_POLICY_NAME = "Liveliness";
 const string TIMEBASEDFILTER_QOS_POLICY_NAME= "TimeBasedFilter";
 const string PARTITION_QOS_POLICY_NAME = "Partition";
 const string RELIABILITY_QOS_POLICY_NAME = "Reliability";
 const string DESTINATIONORDER_QOS_POLICY_NAME =

 "DestinationOrder";
 const string HISTORY_QOS_POLICY_NAME = "History";
 const string RESOURCELIMITS_QOS_POLICY_NAME= "ResourceLimits";
 const string ENTITYFACTORY_QOS_POLICY_NAME = "EntityFactory";
 const string WRITERDATALIFECYCLE_QOS_POLICY_NAM=

 "WriterDataLifecycle";
 const string READERDATALIFECYCLE_QOS_POLICY_NAM=

 "ReaderDataLifecycle";
477
C Reference Guide�������	

 Appendices
 const string TOPICDATA_QOS_POLICY_NAME = "TopicData";
 const string GROUPDATA_QOS_POLICY_NAME = "GroupData";
 const string TRANSPORTPRIORITY_QOS_POLICY_NAME=

 "TransportPriority";
 const string LIFESPAN_QOS_POLICY_NAME = "Lifespan";
 const string DURABILITYSERVICE_QOS_POLICY_NAME=

 "DurabilityService";
 const QosPolicyId_t INVALID_QOS_POLICY_ID = 0;
 const QosPolicyId_t USERDATA_QOS_POLICY_ID = 1;
 const QosPolicyId_t DURABILITY_QOS_POLICY_ID = 2;
 const QosPolicyId_t PRESENTATION_QOS_POLICY_ID = 3;
 const QosPolicyId_t DEADLINE_QOS_POLICY_ID = 4;
 const QosPolicyId_t LATENCYBUDGET_QOS_POLICY_ID = 5;
 const QosPolicyId_t OWNERSHIP_QOS_POLICY_ID = 6;
 const QosPolicyId_t OWNERSHIPSTRENGTH_QOS_POLICY_ID = 7;
 const QosPolicyId_t LIVELINESS_QOS_POLICY_ID = 8;
 const QosPolicyId_t TIMEBASEDFILTER_QOS_POLICY_ID = 9;
 const QosPolicyId_t PARTITION_QOS_POLICY_ID = 10;
 const QosPolicyId_t RELIABILITY_QOS_POLICY_ID = 11;
 const QosPolicyId_t DESTINATIONORDER_QOS_POLICY_ID = 12;
 const QosPolicyId_t HISTORY_QOS_POLICY_ID = 13;
 const QosPolicyId_t RESOURCELIMITS_QOS_POLICY_ID = 14;
 const QosPolicyId_t ENTITYFACTORY_QOS_POLICY_ID = 15;
 const QosPolicyId_t WRITERDATALIFECYCLE_QOS_POLICY_ID= 16;
 const QosPolicyId_t READERDATALIFECYCLE_QOS_POLICY_ID= 17;
 const QosPolicyId_t TOPICDATA_QOS_POLICY_ID = 18;
 const QosPolicyId_t GROUPDATA_QOS_POLICY_ID = 19;
 const QosPolicyId_t TRANSPORTPRIORITY_QOS_POLICY_ID = 20;
 const QosPolicyId_t LIFESPAN_QOS_POLICY_ID = 21;
 const QosPolicyId_t DURABILITYSERVICE_QOS_POLICY_ID = 22;
 struct UserDataQosPolicy {

sequence<octet> value;
 };
 struct TopicDataQosPolicy {

sequence<octet> value;
 };
 struct GroupDataQosPolicy {

sequence<octet> value;
 };
 struct TransportPriorityQosPolicy {

long value;
 };
 struct LifespanQosPolicy {

Duration_t duration;
 };
 enum DurabilityQosPolicyKind {

VOLATILE_DURABILITY_QOS,
TRANSIENT_LOCAL_DURABILITY_QOS,
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS
478
C Reference Guide �������	

Appendices
 };
 struct DurabilityQosPolicy {

DurabilityQosPolicyKind kind;
 };
 enum PresentationQosPolicyAccessScopeKind {

INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

 };
 struct PresentationQosPolicy {

PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

 };
 struct DeadlineQosPolicy {

Duration_t period;
 };
 struct LatencyBudgetQosPolicy {

Duration_t duration;
 };
 enum OwnershipQosPolicyKind {

SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

 };
 struct OwnershipQosPolicy {

OwnershipQosPolicyKind kind;
 };
 struct OwnershipStrengthQosPolicy {

long value;
 };
 enum LivelinessQosPolicyKind {

AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

 };
 struct LivelinessQosPolicy {

LivelinessQosPolicyKind kind;
Duration_t lease_duration;

 };
 struct TimeBasedFilterQosPolicy {

Duration_t minimum_separation;
 };
 struct PartitionQosPolicy {

StringSeq name;
 };
 enum ReliabilityQosPolicyKind {

BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS

 };
 struct ReliabilityQosPolicy {
479
C Reference Guide�������	

 Appendices
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

 };
 enum DestinationOrderQosPolicyKind {

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

 };
 struct DestinationOrderQosPolicy {

DestinationOrderQosPolicyKind kind;
 };
 enum HistoryQosPolicyKind {

KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

 };
 struct HistoryQosPolicy {

HistoryQosPolicyKind kind;
long depth;

 };
 struct ResourceLimitsQosPolicy {

long max_samples;
long max_instances;
long max_samples_per_instance;

 };
 struct EntityFactoryQosPolicy {

boolean autoenable_created_entities;
 };
 struct WriterDataLifecycleQosPolicy {

boolean autodispose_unregistered_instances;
 };
 struct ReaderDataLifecycleQosPolicy {

Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;

 };
 struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };
 struct DomainParticipantFactoryQos {
 EntityFactoryQosPolicy entity_factory;
 };
 struct DomainParticipantQos {

UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_factory;

 };
 struct TopicQos {

TopicDataQosPolicy topic_data;
480
C Reference Guide �������	

Appendices
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

 };
 struct DataWriterQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDataLifecycleQosPolicy writer_data_lifecycle;

 };
 struct PublisherQos {

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };
 struct DataReaderQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
DDS_OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;
ReaderDataLifecycleQosPolicy reader_data_lifecycle;

 };
 struct SubscriberQos {
481
C Reference Guide�������	

 Appendices
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };
 //
 struct ParticipantBuiltinTopicData {

BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

 };
 struct TopicBuiltinTopicData {

BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

 };
 struct PublicationBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };
 struct SubscriptionBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
482
C Reference Guide �������	

Appendices
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };
 //
 interface Entity {
 // ReturnCode_t
 // set_qos(
 // in EntityQos qos);
 //
 // ReturnCode_t
 // get_qos(
 // inout EntityQos qos);
 //
 // ReturnCode_t
 // set_listener(
 // in Listener l,
 // in StatusMask mask);
 //
 // Listener
 // get_listener();

ReturnCode_t
enable();
StatusCondition
get_statuscondition();
StatusMask
get_status_changes();

 };
 //
 interface DomainParticipant : Entity {
 // Factory interfaces

Publisher
create_publisher(
 in PublisherQos qos,
 in PublisherListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_publisher(
 in Publisher p);
Subscriber
create_subscriber(
483
C Reference Guide�������	

 Appendices
 in SubscriberQos qos,
 in SubscriberListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_subscriber(
 in Subscriber s);
Subscriber
get_builtin_subscriber();
Topic
create_topic(
 in string topic_name,
 in string type_name,
 in TopicQos qos,
 in TopicListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_topic(
 in Topic a_topic);
Topic
find_topic(
 in string topic_name,
 in Duration_t timeout);
TopicDescription
lookup_topicdescription(
 in string name);
ContentFilteredTopic
create_contentfilteredtopic(
 in string name,
 in Topic related_topic,
 in string filter_expression,
 in StringSeq expression_parameters);
ReturnCode_t
delete_contentfilteredtopic(
 in ContentFilteredTopic a_contentfilteredtopic);
MultiTopic
create_multitopic(
 in string name,
 in string type_name,
 in string subscription_expression,
 in StringSeq expression_parameters);
ReturnCode_t
delete_multitopic(
 in MultiTopic a_multitopic);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in DomainParticipantQos qos);
ReturnCode_t
get_qos(
484
C Reference Guide �������	

Appendices
 inout DomainParticipantQos qos);
ReturnCode_t
set_listener(
 in DomainParticipantListener a_listener,
 in StatusMask mask);
DomainParticipantListener
get_listener();
ReturnCode_t
ignore_participant(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_topic(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_publication(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_subscription(
 in InstanceHandle_t handle);
DomainId_t
get_domain_id();
ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_qos(
 in PublisherQos qos);
ReturnCode_t
get_default_publisher_qos(
 inout PublisherQos qos);
ReturnCode_t
set_default_subscriber_qos(
 in SubscriberQos qos);
ReturnCode_t
get_default_subscriber_qos(
 inout SubscriberQos qos);
ReturnCode_t
set_default_topic_qos(
 in TopicQos qos);
ReturnCode_t
get_default_topic_qos(
 inout TopicQos qos);

 boolean
contains_entity(
 in InstanceHandle_t a_handle);
ReturnCode_t
get_current_time(
 inout Time_t current_time);

 };
 interface DomainParticipantFactory {
 //
485
C Reference Guide�������	

 Appendices
 // DomainParticipantFactory
 // get_instance();
 //

DomainParticipant
create_participant(
 in DomainId_t domainId,
 in DomainParticipantQos qos,
 in DomainParticipantListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_participant(
 in DomainParticipant a_participant);
DomainParticipant
lookup_participant(
 in DomainId_t domainId);
ReturnCode_t
set_default_participant_qos(
 in DomainParticipantQos qos);
ReturnCode_t
get_default_participant_qos(
 inout DomainParticipantQos qos);

ReturnCode_t
set_qos(
 in DomainParticipantFactoryQos qos);
ReturnCode_t
get_qos(
 inout DomainParticipantFactoryQos qos);

 };
 interface TypeSupport {
 // ReturnCode_t
 // register_type(
 // in DomainParticipant domain,
 // in string type_name);
 //
 // string
 // get_type_name();
 };
 //
 interface TopicDescription {

string
get_type_name();

string
get_name();

DomainParticipant
get_participant();

 };
 interface Topic : Entity, TopicDescription {

ReturnCode_t
set_qos(
486
C Reference Guide �������	

Appendices
 in TopicQos qos);
ReturnCode_t

get_qos(
 inout TopicQos qos);
ReturnCode_t

set_listener(
 in TopicListener a_listener,
 in StatusMask mask);
TopicListener_ptr
get_listener();
// Access the status
ReturnCode_t
get_inconsistent_topic_status(
 inout InconsistentTopicStatus a_status);

 };
 interface ContentFilteredTopic : TopicDescription {

string
get_filter_expression();
ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);
ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);
Topic
get_related_topic();

 };
 interface MultiTopic : TopicDescription {

string
get_subscription_expression();
ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);
ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);

 };
 //
 interface Publisher : Entity {

DataWriter
create_datawriter(
 in Topic a_topic,
 in DataWriterQos qos,
 in DataWriterListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_datawriter(
 in DataWriter a_datawriter);
DataWriter
lookup_datawriter(
487
C Reference Guide�������	

 Appendices
 in string topic_name);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in PublisherQos qos);
ReturnCode_t
get_qos(
 inout PublisherQos qos);
ReturnCode_t
set_listener(
 in PublisherListener a_listener,
 in StatusMask mask);
PublisherListener
get_listener();
ReturnCode_t
suspend_publications();
ReturnCode_t
resume_publications();
ReturnCode_t
begin_coherent_changes();
ReturnCode_t
end_coherent_changes();
ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);
DomainParticipant
get_participant();
ReturnCode_t
set_default_datawriter_qos(
 in DataWriterQos qos);
ReturnCode_t
get_default_datawriter_qos(
 inout DataWriterQos qos);
ReturnCode_t
copy_from_topic_qos(
 inout DataWriterQos a_datawriter_qos,
 in TopicQos a_topic_qos);

 };
 interface DataWriter : Entity {
 // InstanceHandle_t
 // register_instance(
 // in Data instance_data);
 //
 // InstanceHandle_t
 // register_instance_w_timestamp(
 // in Data instance_data,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
488
C Reference Guide �������	

Appendices
 // unregister_instance(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // unregister_instance_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // write(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // write_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // dispose(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle);
 //
 // ReturnCode_t
 // dispose_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 //
 // InstanceHandle_t lookup_instance(
 // in Data instance_data);

ReturnCode_t
set_qos(
 in DataWriterQos qos);
ReturnCode_t
get_qos(
 inout DataWriterQos qos);
ReturnCode_t
set_listener(
 in DataWriterListener a_listener,
 in StatusMask mask);
DataWriterListener
489
C Reference Guide�������	

 Appendices
get_listener();
Topic
get_topic();
Publisher
get_publisher();
ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);
// Access the status
ReturnCode_t
get_liveliness_lost_status(
 inout LivelinessLostStatus status);
ReturnCode_t
get_offered_deadline_missed_status(
 inout OfferedDeadlineMissedStatus status);
ReturnCode_t
get_offered_incompatible_qos_status(
 inout OfferedIncompatibleQosStatus status);
ReturnCode_t
get_publication_matched_status(
 inout PublicationMatchedStatus status);
ReturnCode_t

assert_liveliness();
ReturnCode_t

get_matched_subscriptions(
 inout InstanceHandleSeq subscription_handles);
ReturnCode_t

get_matched_subscription_data(
 inout SubscriptionBuiltinTopicData subscription_data,
 in InstanceHandle_t subscription_handle);

 };
 //
 interface Subscriber : Entity {

DataReader
create_datareader(
 in TopicDescription a_topic,
 in DataReaderQos qos,
 in DataReaderListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_datareader(
 in DataReader a_datareader);
ReturnCode_t
delete_contained_entities();
DataReader
lookup_datareader(
 in string topic_name);
ReturnCode_t
get_datareaders(
 inout DataReaderSeq readers,
490
C Reference Guide �������	

Appendices
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);
ReturnCode_t
notify_datareaders();
ReturnCode_t

set_qos(
 in SubscriberQos qos);
ReturnCode_t

get_qos(
 inout SubscriberQos qos);
ReturnCode_t
set_listener(
 in SubscriberListener a_listener,
 in StatusMask mask);
SubscriberListener
get_listener();
ReturnCode_t
begin_access();
ReturnCode_t
end_access();
DomainParticipant
get_participant();
ReturnCode_t
set_default_datareader_qos(
 in DataReaderQos qos);
ReturnCode_t
get_default_datareader_qos(
 inout DataReaderQos qos);
ReturnCode_t
copy_from_topic_qos(
 inout DataReaderQos a_datareader_qos,
 in TopicQos a_topic_qos);

 };
 interface DataReader : Entity {
 // ReturnCode_t
 // read(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in SampleStateMask sample_states,
491
C Reference Guide�������	

 Appendices
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // read_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // take_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // read_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_next_instance(
 // inout DataSeq data_values,
492
C Reference Guide �������	

Appendices
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // return_loan(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq);
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 //
 // InstanceHandle_t
 // lookup_instance(
 // in Data instance);

ReadCondition
create_readcondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
493
C Reference Guide�������	

 Appendices
 in InstanceStateMask instance_states);
QueryCondition
create_querycondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states,
 in string query_expression,
 in StringSeq query_parameters);
ReturnCode_t
delete_readcondition(
 in ReadCondition a_condition);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in DataReaderQos qos);
ReturnCode_t
get_qos(
 inout DataReaderQos qos);
ReturnCode_t
set_listener(
 in DataReaderListener a_listener,
 in StatusMask mask);
DataReaderListener
get_listener();
TopicDescription
get_topicdescription();
Subscriber
get_subscriber();
ReturnCode_t
get_sample_rejected_status(
 inout SampleRejectedStatus status);
ReturnCode_t
get_liveliness_changed_status(
 inout LivelinessChangedStatus status);
ReturnCode_t
get_requested_deadline_missed_status(
 inout RequestedDeadlineMissedStatus status);
ReturnCode_t
get_requested_incompatible_qos_status(
 inout RequestedIncompatibleQosStatus status);
ReturnCode_t
get_subscription_matched_status(
 inout SubscriptionMatchedStatus status);
ReturnCode_t
get_sample_lost_status(
 inout SampleLostStatus status);
ReturnCode_t
wait_for_historical_data(
 in Duration_t max_wait);
494
C Reference Guide �������	

Appendices
ReturnCode_t
get_matched_publications(
 inout InstanceHandleSeq publication_handles);
ReturnCode_t
get_matched_publication_data(
 inout PublicationBuiltinTopicData publication_data,
 in InstanceHandle_t publication_handle);

 };
 struct SampleInfo {

SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;

 };
 typedef sequence<SampleInfo> SampleInfoSeq;
};
Foo.idl
 // Implied IDL for type "Foo"
 // Example user defined structure
 struct Foo {

long dummy;
 };
 typedef sequence<Foo> FooSeq;
 #include "dds_dcps.idl"
 interface FooTypeSupport : DDS::TypeSupport {

DDS::ReturnCode_t
register_type(
 in DDS::DomainParticipant participant,
 in string type_name);
string
get_type_name();

 };
 interface FooDataWriter : DDS::DataWriter {

DDS::InstanceHandle_t
register_instance(
 in Foo instance_data);
DDS::InstanceHandle_t
register_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
495
C Reference Guide�������	

 Appendices
unregister_instance(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);
DDS::ReturnCode_t
unregister_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
write(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);
DDS::ReturnCode_t
write_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
dispose(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle);
DDS::ReturnCode_t
dispose_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);
DDS::InstanceHandle_t
lookup_instance(
 in Foo instance_data);

 };
 interface FooDataReader : DDS::DataReader {

DDS::ReturnCode_t
read(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
take(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
496
C Reference Guide �������	

Appendices
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
take_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
read_next_sample(
 inout Foo data_values,
 inout DDS::SampleInfo sample_info);
DDS::ReturnCode_t
take_next_sample(
 inout Foo data_values,
 inout DDS::SampleInfo sample_info);
DDS::ReturnCode_t
read_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
take_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
take_next_instance(
497
C Reference Guide�������	

 Appendices
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
take_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
return_loan(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq);
DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);
DDS::InstanceHandle_t
lookup_instance(
 in Foo instance);

 };
498
C Reference Guide �������	

Appendix

D SampleStates, ViewStates and
InstanceStates

Data is made available to the application by the following operations on
DDS_DataReader o b j e c t s : DDS_DataReader_read a n d
DDS_DataReader_take opera t ions . The genera l semant ics o f the
DDS_DataReader_read operations is that the application only gets access to the
matching data; the data remain available in the Data Distribution Services and can
be read again. The semantics of the DDS_DataReader_take operations is that the
data is not available in the Data Distribution Service; that data will no longer be
accessible to the DDS_DataReader. Consequently, it is possible for a
DDS_DataReader to access the same sample multiple times but only if all previous
accesses were DDS_DataReader_read operations.
Each of these operations returns an ordered collection of Data values and
associated DDS_SampleInfo objects. Each data value represents an atom of data
information (i.e., a value for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the DDS_HistoryQosPolicy allow
for it.

SampleInfo Class
DDS_SampleInfo is the information that accompanies each sample that is ‘read’ or
‘taken’. It contains, among others, the following information:
• The sample_state (DDS_READ_SAMPLE_STATE or

 DDS_NOT_READ_SAMPLE_STATE);
• The view_state, (DDS_NEW_VIEW_STATE or DDS_NOT_NEW_VIEW_STATE);
• The instance_state (DDS_ALIVE_INSTANCE_STATE,
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE or
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE).

sample_state
For each sample, the Data Distribution Service internally maintains a
sample_state specific to each DDS_DataReader. The sample_state can
either be DDS_READ_SAMPLE_STATE or DDS_NOT_READ_SAMPLE_STATE.
499
C Reference Guide�������	

 Appendices
• DDS_READ_SAMPLE_STATE indicates that the DDS_DataReader has already
accessed that sample by means of DDS_DataReader_read. Had the sample been
accessed by DDS_DataReader_take it would no longer be available to the
DDS_DataReader;

• DDS_NOT_READ_SAMPLE_STATE indicates that the DDS_DataReader has not
accessed that sample before.

Figure 20: State Chart of the sample_state for a Single Sample

State per Sample
The sample_state available in the DDS_SampleInfo reflect the sample_state
of each sample. The sample_state can be different for all samples in the returned
collection that refer to the same instance.

new sample received

take /

read

read

READ_SAMPLE_STATE

take /

(first time seen)

NOT_READ_SAMPLE_STATE

sample is “overwritten”

sample is “overwritten”
500
C Reference Guide �������	

Appendices
instance_state
For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state can be:
• DDS_ALIVE_INSTANCE_STATE indicates that:

 - samples have been received for the instance
 - there are live DDS_DataWriter objects writing the instance
 - the instance has not been explicitly disposed of (or else samples have been

received after it was disposed of)
• DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was

disposed of by a DDS_DataWriter either explicitly by means of the
DDS_DataWriter_dispose operation or implicitly in case the
autodispose_unregistered_instances field of the
WriterDataLyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, DDS_WriterDataLifecycleQosPolicy), and no
new samples for that instance have been written afterwards.

• DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has
been declared as not-alive by the DDS_DataReader because it detected that there
are no live DDS_DataWriter objects writing that instance.

DDS_OwnershipQosPolicy
The precise events that cause the instance_state to change depends on the
setting of the DDS_OwnershipQosPolicy:
• If DDS_OwnershipQosPolicy is set to DDS_EXCLUSIVE_OWNERSHIP_QOS,

then the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE only if the DDS_DataWriter
that “owns” the instance explicitly disposes of it. The instance_state becomes
DDS_ALIVE_INSTANCE_STATE again only if the DDS_DataWriter that owns
the instance writes it;

• If DDS_OwnershipQosPolicy is set to DDS_SHARED_OWNERSHIP_QOS, then
the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE if any DDS_DataWriter
explicitly disposes of the instance. The instance_state becomes
DDS_ALIVE_INSTANCE_STATE as soon as any DDS_DataWriter writes the
instance again.
501
C Reference Guide�������	

 Appendices
Figure 21: State Chart of the instance_state for a Single Instance

Snapshot
The instance_state available in the DDS_SampleInfo is a snapshot of the
instance_state of the instance at the time the collection was obtained (i.e. at the
time DDS_DataReader_read or DDS_DataReader_take was called). The
instance_state is therefore the same for all samples in the returned collection
that refer to the same instance.

view_state
For each instance (identified by the key), the Data Distribution Service internally
maintains a view_state relative to each DDS_DataReader. The view_state
can either be DDS_NEW_VIEW_STATE or DDS_NOT_NEW_VIEW_STATE.

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE

ALIVE_INSTANCE_STATE

NOT_ALIVE_DISPOSED_INSTANCE_STATE

sample received

sample for 'never seen'

no "live"instance disposed

sample received/

[no samples in the DDS_DataReader [no samples in

"live" DDS_DataWriter detected/

DDS_DataWritersof by DDS_DataWriter

the DDS_DataReader] && no "live" DDS_DataWriters]

instance received/
502
C Reference Guide �������	

Appendices
• DDS_NEW_VIEW_STATE indicates that either this is the first time that the
DDS_DataReader has ever accessed samples of that instance, or else that the
DDS_DataReader has accessed previous samples of the instance, but the instance
has since been reborn (i.e. becomes not-alive and then alive again);

• DDS_NOT_NEW_VIEW_STATE indicates that the DDS_DataReader has already
accessed samples of the same instance and that the instance has not been reborn
since.

Figure 22: State Chart of the view_state for a Single Instance

Snapshot
The view_state available in the DDS_SampleInfo is a snapshot of view_state
of the instance relative to the DDS_DataReader used to access the samples at the
time the collection was obtained (i.e. at the time DDS_DataReader_read or
DDS_DataReader_take was called). The view_state is therefore the same for
all samples in the returned collection that refer to the same instance.

sample for 'never seen'
instance received/

NEW_VIEW_STATE

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]

sample received

read/take

read/take

NOT_NEW_VIEW_STATE
503
C Reference Guide�������	

 Appendices
State Masks
State Definitions

All states are available as a constant. These convenience constants can be used to
create a bit-mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.
The sample state definitions indicates whether or not the matching data sample has
already been read:
• DDS_READ_SAMPLE_STATE: sample has already been read;
• DDS_NOT_READ_SAMPLE_STATE: sample has not been read.
The view state definitions indicates whether the DDS_DataReader has already seen
samples for the most-current generation of the related instance:
• DDS_NEW_VIEW_STATE: all samples of this instance are new;
• DDS_NOT_NEW_VIEW_STATE: some or all samples of this instance are not new.
The instance state definitions indicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:
• DDS_ALIVE_INSTANCE_STATE: this instance is currently in existence;
• DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of

by a DDS_DataWriter;
• DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been

disposed of by the DDS_DataReader because none of the DDS_DataWriter
objects currently “alive” (according to the DDS_LivelinessQosPolicy) are
writing the instance.

Pre-defined Bit Mask Definitions
For convenience, some pre-defined bit-masks are available as a constant definition.
These bit-mask constants can be used where a state bit-mask is required. They can
also be used for testing whether certain bits are set.
The sample state bit-mask definition selects both sample states:
• DDS_ANY_SAMPLE_STATE: either the sample has already been read or not read;
The view state bit-mask definition selects both view states:
• DDS_ANY_VIEW_STATE: either the sample has already been seen or not seen;
The instance state bit-mask definitions selects a combination of instance states:
• DDS_NOT_ALIVE_INSTANCE_STATE: this instance was disposed of by a
DDS_DataWriter or the DDS_DataReader;

• DDS_ANY_INSTANCE_STATE: this instance is either in existence or not in
existence.
504
C Reference Guide �������	

Appendices
Operations Concerning States
The application accesses data by means of the operations DDS_DataReader_read
or DDS_DataReader_take on the DDS_DataReader. These operations return an
ordered collection of DDS_DataSamples consisting of a DDS_SampleInfo part
and a Data part. The way the Data Distribution Service builds this collection (i.e.,
the data-samples that are parts of the list as well as their order) depends on
QosPolicy settings set on the DDS_DataReader and the DDS_Subscriber, as
well as the source timestamp of the samples and the parameters passed to the
DDS_DataReader_read/DDS_DataReader_take operations, namely:
• the desired sample states (i.e., DDS_READ_SAMPLE_STATE,
DDS_NOT_READ_SAMPLE_STATE, or DDS_ANY_SAMPLE_STATE);

• the desired view states (i.e., DDS_NEW_VIEW_STATE,
DDS_NOT_NEW_VIEW_STATE, or DDS_ANY_VIEW_STATE);

• the desired instance states (DDS_ALIVE_INSTANCE_STATE,
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE,
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
DDS_NOT_ALIVE_INSTANCE_STATE, or DDS_ANY_INSTANCE_STATE).

The DDS_DataReader_read and DDS_DataReader_take operations are
non-blocking and just deliver what is currently available that matches the specified
states.
On output, the collection of Data values and the collection of DDS_SampleInfo
structures are of the same length and are in a one-to-one correspondence. Each
DDS_SampleInfo provides information, such as the source_timestamp, the
sample_state, view_state, and instance_state, etc., about the matching
sample.
Some elements in the returned collection may not have valid data. If the
instance_state i n t h e DDS_SampleInfo i s
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE o r
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
instance in the collection, that is, the one whose DDS_SampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limits imposed by the DDS_ResourceLimitsQosPolicy.

read
The act of reading a sample sets its sample_state to DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it will also set
the view_state of the instance to DDS_NOT_NEW_VIEW_STATE. It will not affect
the instance_state of the instance.
505
C Reference Guide�������	

 Appendices
take
The act of taking a sample removes it from the DDS_DataReader so it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
i n s t a n c e , i t w i l l a l s o s e t t h e view_state o f t h e i n s t a n c e t o
DDS_NOT_NEW_VIEW_STATE. It will not affect the instance_state of the
instance.

read_w_condition
In case the DDS_ReadCondition is a ‘plain’ DDS_ReadCondition and not the
specialized DDS_QueryCondition, the operation is equivalent to calling
DDS_DataReader_read and passing as sample_states, view_states and
instance_states the value of the corresponding at t r ibutes in the
DDS_ReadCondition. Using this operation the application can avoid repeating the
same parameters specified when creating the DDS_ReadCondition.

take_w_condition
The act of taking a sample removes it from the DDS_DataReader so it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
i n s t a n c e , i t w i l l a l s o s e t t h e view_state o f t h e i n s t a n c e t o
DDS_NOT_NEW_VIEW_STATE. It will not affect the instance_state of the
instance.
In case the DDS_ReadCondition is a ‘plain’ DDS_ReadCondition and not the
specialized DDS_QueryCondition, the operation is equivalent to calling
DDS_DataReader_take and passing as sample_states, view_states and
instance_states the value of the corresponding at t r ibutes in the
DDS_ReadCondition. Using this operation the application can avoid repeating the
same parameters specified when creating the DDS_ReadCondition.

read_next_sample
The DDS_DataReader_read_next_sample operation is semantically equivalent
to the DDS_DataReader_read operation where the input Data sequence has
max_len=1, the sample_states=DDS_NOT_READ_SAMPLE_STATE, the
view_states=DDS_ANY_VIEW_STATE, and the
instance_states=DDS_ANY_INSTANCE_STATE.

take_next_sample
The DDS_DataReader_take_next_sample operation is semantically equivalent
to the DDS_DataReader_take operation where the input sequence has
max_len=1, the sample_states=DDS_NOT_READ_SAMPLE_STATE, the
view_states=DDS_ANY_VIEW_STATE, and the
instance_states=DDS_ANY_INSTANCE_STATE.
506
C Reference Guide �������	

Appendices
read_instance
The act of reading a sample sets its sample_state to DDS_READ_SAMPLE_STATE.
If the sample belongs to the most recent generation of the instance, it will also set
the view_state of the instance to DDS_NOT_NEW_VIEW_STATE. It will not affect
the instance_state of the instance.

take_instance
The act of taking a sample removes it from the DDS_DataReader so it cannot be
‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the
i n s t a n c e , i t w i l l a l s o s e t t h e view_state o f t h e i n s t a n c e t o
DDS_NOT_NEW_VIEW_STATE. It will not affect the instance_state of the
instance.
507
C Reference Guide�������	

 Appendices
508
C Reference Guide �������	

Appendix

E Class Inheritance
This appendix gives an overview of the inheritance relations of the DCPS classes.

Figure 23 DCPS Inheritance

FooDataReader
(from Topic-Definition Module)

FooDataWriter
(from Topic-Definition Module)

FooTypeSupport
(from Topic-Definition Module)

TopicListener

<<Interface>>

TypeSupport
(from Topic-Definition Module)

<<Interface>>

TopicDescription
(from Topic-Definition Module)

DataReaderListener
(from Subscription Module)

<<Interface>> QueryCondition
(from Subscription Module)

SampleInfo
(from Subscription Module)

SubscriberListener
(from Subscription Module)

<<Interface>>

DataWriterListener
(from Publication Module)

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>>

GuardCondition
(from Infrastructure Module)

Listener
(from Infrastructure Module)

<<Interface>>

Status
(from Infrastructure Module)

DataWriter
(from Publication Module)

Entity
(from Infrastructure Module)

DataReader
(from Subscription Module)

StatusCondition
(from Infrastructure Module)

Condition
(from Infrastructure Module)

ReadCondition
(from Subscription Module)

WaitSet
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

Topic
(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

DomainParticipantFactory
(from Domain Module)

DomainParticipantListener
(from Domain Module)

DomainParticipant
(from Domain Module)
509
C Reference Guide�������	

 Appendices
510
C Reference Guide �������	

Appendix

F Listeners, Conditions and
Waitsets

Listeners and DDS_Conditions (DDS_Conditions in conjunction with
DDS_WaitSets) are two mechanisms that allow the application to be made aware
of changes in the communication status. Listeners provide an event-based
mechanism for the Data Distribution Service to asynchronously alert the application
of the occurrence of relevant status changes. DDS_Conditions in conjunction with
DDS_WaitSets provide a state-based mechanism for the Data Distribution Service
to synchronously communicate the relevant status changes to the application.
Both mechanisms are based on the communication statuses associated with an
DDS_Entity object. Not all statuses are applicable to all DDS_Entity objects.
Which status is applicable to which DDS_Entity object is listed in the next table:

Table 25 Communication Status

DDS_Entity Status Name Description
DDS_Topic DDS_INCONSISTENT_TOPIC_STATUS Another DDS_Topic exists with the same

name but with different characteristics.
DDS_Subscriber DDS_DATA_ON_READERS_STATUS New information is available.
511
C Reference Guide�������	

 Appendices
The statuses may be classified in:
• read communication statuses: i.e., those that are related to arrival of data, namely
DDS_DATA_ON_READERS and DDS_DATA_AVAILABLE

• plain communication statuses: i.e., all the others.

DDS_DataReader DDS_SAMPLE_REJECTED_STATUS A (received) sample has been rejected.
DDS_LIVELINESS_CHANGED_STATUS T h e l i v e l i n e s s o f o n e o r m o r e

DDS_DataWriter objects, that were
w r i t i n g i n s t a n c e s r e a d t h r o u g h t h e
DDS_DataReader objects has changed.
Some DDS_DataWriter object have
become “alive” or “not alive”.

DDS_REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataReader
w a s e x p e c t i n g t h r o u g h i t s
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DDS_DATA_AVAILABLE_STATUS New information is available.
DDS_SAMPLE_LOST_STATUS A sample has been lost (never received).
DDS_SUBSCRIPTION_
MATCHED_STATUS

The DDS_DataReader has found a
DDS_DataWriter that matches the
ZWDDS_Topic and has compatible QoS.

DDS_DataWriter DDS_LIVELINESS_LOST_STATUS The liveliness that the DDS_DataWriter
h a s c o m m i t t e d t h r o u g h i t s
DDS_LivelinessQosPolicy was not
respected; thus DDS_DataReader objects
will consider the DDS_DataWriter as no
longer “alive”.

DDS_OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataWriter
h a s c o m m i t t e d t h r o u g h i t s
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what was requested.

DDS_PUBLICATION_
MATCHED_STATUS

T h e DDS_DataWriter h a s f o u n d
DDS_DataReader that matches the
DDS_Topic and has compatible QoS.

Table 25 Communication Status (Continued)

DDS_Entity Status Name Description
512
C Reference Guide �������	

Appendices
For each plain communication status, there is a corresponding status struct. The
in fo rma t ion f rom th i s s t ruc t can be r e t r i eved wi th t he ope ra t ions
get_<status_name>_status . F o r e x a m p l e , t o g e t t h e
DDS_INCONSISTENT_TOPIC status (which information is stored in the
DDS_InconsistentTopicStatus struct), the application must call the operation
DDS_Topic_get_inconsistent_topic_status. A plain communication
status can only be read from the DDS_Entity on which it is applicable. For the read
communication statuses there is no struct available to the application.

Communication Status Event
Conceptually associated with each DDS_Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operat ion to read the StatusChangedFlag) . The
StatusChangedFlag is only conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener will only be activated when the StatusChangedFlag changes from
FALSE to TRUE (provided the Listener is attached and enabled for this particular
status). The conditions which cause the StatusChangedFlag to change is slightly
different for the plain communication status and the read communication status.
For the plain communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever the plain communication status changes and it is
reset to FALSE each time the application accesses the plain communication status
via the proper get_<status_name>_status operation on the DDS_Entity.
The communication status is also reset to FALSE whenever the associated
Listener operation is called as the Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
c a l l i n g t h e l i s t e n e r m e a n s t h a t i f t h e a p p l i c a t i o n c a l l s t h e
get_<status_name>_status from inside the listener it will see the status
already reset.
An exception to this rule is when the associated Listener is the nil listener, in
other word, a listener with value DDS_OBJECT_NIL. Such a listener is treated as a
NOOP1 for all statuses activated in its bitmask and the act of calling this 'nil' listener
does not reset the corresponding communication statuses.

1. Short for No-Operation, an instruction that peforms nothing at all.

513

C Reference Guide�������	

 Appendices
Figure 24: Plain Communication Status State Chart

For example, the value of the StatusChangedFlag associated with the
DDS_RequestedDeadlineMissedStatus will become TRUE each time a new
de ad l i ne pa s se s (wh ic h i nc r ea se s t h e t o t a l _ c o u n t f i e ld w i t h i n
DDS_RequestedDeadlineMissedStatus). The value changes to FALSE when
the app l i c a t i on acce s se s t he s t a t u s v i a t h e c o r r e s p o n d i n g
DDS_DataReader_get_requested_deadline_missed_status operation on
the proper DDS_Entity, or when the the on_requested_deadline_missed
operation on the Listener attached to this DDS_Entity or one its containing
entities is invoked.
For the read communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE when data arrives, or when the InstanceState of a
contained instance changes. This can be caused by either:
• The arrival of the notification that an instance has been disposed by:

 - the DDS_DataWriter that owns it if its OwnershipQosPolicyKind =
DDS_EXCLUSIVE_OWNERSHIP_QOS

 - or by any DDS_DataWriter if its OwnershipQosPolicyKind =
DDS_SHARED_OWNERSHIP_QOS.

• The loss of liveliness of the DDS_DataWriter of an instance for which there is
no other DDS_DataWriter.

• The arrival of the notification that an instance has been unregistered by the only
DDS_DataWriter that is known to be writing the instance.

The read communication statuses are reset to FALSE again in the following
circumstances:

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

CurrentStatus != SavedStatus
get_<status_name>_status
OR invocation of corres-

event which can cause
the activation of a Listener

ponding Listener operation
514
C Reference Guide �������	

Appendices
• The status flag of the DDS_DATA_AVAILABLE_STATUS becomes FALSE when
either the corresponding listener operation (on_data_available) is called, or
the read or take operation (or any of its variants) is called on the associated
DDS_DataReader.

Figure 25: Read Communication Status DDS_DataReader Statecraft

• The status flag of the DDS_DATA_ON_READERS_STATUS becomes FALSE when
any of the following events occurs:
 - The corresponding listener operation (on_data_on_readers) is called on the

corresponding DDS_Subscriber.
 - The on_data_available listener operation is called on any
DDS_DataReader belonging to the DDS_Subscriber.

 - The read or take operation (or any of its variants) is called on any
DDS_DataReader belonging to the DDS_Subscriber.

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

Data arrives OR
on_data_available OR
read/take or any of its
variants

event which can cause
the activation of a Listener

 change in InstanceState of a contained instance
515
C Reference Guide�������	

 Appendices
Figure 26: DDS_Subscriber Statecraft for a Read Communication
Status

Listeners
The Listeners provide for an event-based mechanism to asynchronously inform
the application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the Listener is activated, it will call the
corresponding on_<status_name> operation of that Listener. Each
on_<status_name> operation available in the Listener of an DDS_Entity is
also available in the Listener of the factory of the DDS_Entity.
For both the read communication statuses and the plain communication statuses a
Listener is only activated when a Listener is attached to this particular
DDS_Entity and enabled for this particular status. Statuses are enabled according
to the DDS_StatusKindMask parameter that was passed at creation time of the
DDS_Entity, or that was passed to the DDS_<DDS_Entity>_set_listener
operation .
When an event occurs for a particular DDS_Entity and for a particular status, but
the applicable Listener is not activated for this status, the status is propagated up
to the factory of this DDS_Entity. For this factory, the same propagation rules
apply. When even the DDS_DomainParticipantListener is not attached or
enabled for this status, the application will not be notified about this event. This
means, that a status change on a contained DDS_Entity only invokes the
Listener of its factory if the Listener of the contained DDS_Entity itself does
not handle the trigger event generated by the status change.

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

Data arrives OR change in InstanceState
on_data_on_readers OR
on_data_available OR
read/take or any of its

event which can cause
the activation of a Listener

 of any contained DataReader
variants
516
C Reference Guide �������	

Appendices
Figure 27: DCPS Listeners

The event propagation is also applicable to the read communication statuses.
H o w ev e r, s i n c e t h e e v e n t h e r e i s t h e a r r i va l o f da t a , bo th t h e
DDS_DATA_ON_READERS and DDS_DATA_AVAILABLE status are TRUE. The Data
Distribution Service will first attempt to handle the DDS_DATA_ON_READERS status
and try to activate the DDS_SubscriberListener. When this Listener is not
a c t i v a t e d f o r t h i s s t a t u s , t h e e v e n t w i l l p r o p a g a t e t o t h e
DDS_DomainParticipantListener. Only when the DDS_DATA_ON_READERS
status can not be handled, the Data Distribution Service will attempt to handle the
DDS_DATA_AVAILABLE status and try to activate the DDS_DataReaderListener.
In case this Listener is not activated for this status, the event will follow the
propagation rules as described above.

Conditions and Waitsets
The DDS_Conditions in conjunction with DDS_WaitSets provide for a
wait-based mechanism to synchronously inform the application of status changes. A
DDS_Condition can be either a DDS_ReadCondition, DDS_QueryCondition,
DDS_StatusCondition o r DDS_GuardCondition . To c r e a t e a
DDS_Condition one of the following operations can be used:

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener
517
C Reference Guide�������	

 Appendices
• DDS_ReadCondition created by
 DDS_DataReader_create_readcondition

• DDS_QueryCondition created by
 DDS_DataReader_create_querycondition

• DDS_StatusCondition retrieved by
 DDS_<Entity>_get_statuscondition on an DDS_<Entity>

• DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc

Note that the DDS_QueryCondition is a specialized DDS_ReadCondition. The
DDS_GuardCondition is a different kind of DDS_Condition since it is not
c o n t r o l l e d by a s t a t u s b u t d i r e c t l y b y t h e a p p l i c a t i o n (w h e n a
DDS_GuardCondition is initially created, the trigger_value is FALSE). The
DDS_StatusCondition is present by default with each DDS_Entity, therefore, it
does not have to be created.

Figure 28: DCPS DDS_WaitSets

A DDS_WaitSet may have one or several DDS_Conditions attached to it. An
application thread may block execution (blocking may be limited by a timeout) by
waiting on a DDS_WaitSet until the trigger_value of one or more of the
DDS_Conditions become TRUE . When a DDS_Condition , whose
trigger_value evaluates to TRUE, is attached to a DDS_WaitSet that is currently
being waited on (using the DDS_WaitSet_wait operation), the DDS_WaitSet will
unblock immediately.
This (wait-based) mechanism is generally used as follows:
• The application creates a DDS_WaitSet
• The application indicates which relevant information it wants to be notified of, by

creating or retrieving DDS_Condition objects (DDS_StatusCondition,
DDS_ReadCondition, DDS_QueryCondition or DDS_GuardCondition) and
attach them to a DDS_WaitSet

• It then waits on that DDS_WaitSet (using DDS_WaitSet_wait) until the
trigger_value of one or several DDS_Condition objects (in the
DDS_WaitSet) become TRUE

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
518
C Reference Guide �������	

Appendices
• When the thread is unblocked, the application uses the result of the
DDS_WaitSet_wait (i.e., the list of DDS_Condition objects with
trigger_value==TRUE) to actually get the information:
 - if the condition is a DDS_StatusCondition and the status changes refer to a

plain communication status, by calling get_status_changes and then
get_<communication_status> on the relevant DDS_Entity

 - if the condition is a DDS_StatusCondition and the status changes refer to the
read communication status:
DDS_DATA_ON_READERS, by calling get_status_changes and then
DDS_Subscriber_get_datareaders on the relevant DDS_Subscriber
and then DDS_DataReader_read/DDS_DataReader_take on the returned
DDS_DataReader objects
DDS_DATA_AVAILABLE, by calling get_status_changes and then
DDS_DataReader_read /DDS_DataReader_take on the relevant
DDS_DataReader.

 - if it is a DDS_ReadCondition or a DDS_QueryCondition, by calling directly
DDS_DataReader_read_w_condition / DDS_DataReader_take_
w_condition on the DDS_DataReader with the DDS_Condition as a
parameter.
519
C Reference Guide�������	

 Appendices
Figure 29 DCPS DDS_Conditions

No extra information is passed from the Data Distribution Service to the application
when a DDS_WaitSet_wait returns only the list of triggered DDS_Condition
objects. Therefore, it is the application responsibility to investigate which
DDS_Condition objects have triggered the DDS_WaitSet.

Blocking Behaviour
The result of a DDS_WaitSet_wait operation depends on the state of the
DDS_WaitSet , which in turn depends on whether at least one attached
DDS_Condition has a trigger_value of TRUE. If the DDS_WaitSet_wait
operation is called on DDS_WaitSet with state BLOCKED it will block the calling
thread. If DDS_WaitSet_wait is called on a DDS_WaitSet with state
UNBLOCKED it will return immediately. In addition, when the DDS_WaitSet
transitions from state BLOCKED to state UNBLOCKED it wakes up the thread (if
any) that had called DDS_WaitSet_wait on it. Note that there can only be one
thread waiting on a single DDS_WaitSet.

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
520
C Reference Guide �������	

Appendices
Figure 30: Blocking Behaviour of a Waitset State Chart

DDS_StatusCondition Trigger State
The trigger_value of a DDS_StatusCondition is the boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
T h a t i s , trigger_value==FALSE o n l y i f a l l t h e v a lu e s o f t h e
StatusChangedFlags are FALSE.
The sensitivity of the DDS_StatusCondition to a particular communication
status is controlled by the bit-mask of enabled_statuses set on the
DDS_Condition b y m e a n s o f t h eDDS_StatusCondition_set_
enabled_statuses operation.

DDS_ReadCondition and DDS_QueryCondition Trigger State
Similar to the DDS_StatusCondition, a DDS_ReadCondition also has a
trigger_value that determines whether the attached DDS_WaitSet is
BLOCKED or UNBLOCKED. However, unlike the DDS_StatusCondition, the
trigger_value of the DDS_ReadCondition is tied to the presence of at least
one sample managed by the Data Distribution Service with SampleState,
ViewState, and InstanceState matching those of the DDS_ReadCondition.
Additionally, for the DDS_QueryCondition, the data associated with the sample,
must be such that the query_expression evaluates to TRUE.
The fact that the trigger_value of a DDS_ReadCondition is dependent on the
presence of samples on the associated DDS_DataReader implies that a single
DDS_DataReader_take operation can potentially change the trigger_value of
several DDS_ReadCondition or DDS_QueryCondition objects. For example, if
all samples are taken, any DDS_ReadCondition or DDS_QueryCondition

UNBLOCKED

BLOCKED

[at least one attached condition has
trigger_value == TRUE]

[all attached conditions have
trigger_value == FALSE]

DDS_WaitSet_wait
Block calling thread

DDS_WaitSet_wait
Do not block. Return immediately

Wakeup waiting threads
521
C Reference Guide�������	

 Appendices
o b j ec t s a s soc i a t e d w i th t he DDS_DataReader t ha t h a d t he i r
trigger_value==TRUE before will see the trigger_value change to FALSE.
Note that this does not guarantee that DDS_WaitSet objects, that had those
DDS_Condition objects separately attached to, will not be woken up. Once we
have trigger_value==TRUE on a DDS_Condition it may wake up the
DDS_WaitSet i t w a s a t t a c h e d t o , t he c o n d i t i o n t r a n s i t i o n s t o
trigger_value==FALSE does not 'un-wake up' the DDS_WaitSet as
'un-wakening' is not possible. The consequence is that an application blocked on a
DDS_WaitSet may return from the wait with a list of DDS_Condition objects
some of which are no longer “active”. This is unavoidable if multiple threads are
concurrently waiting on separate DDS_WaitSet objects and taking data associated
wi th t he s ame DDS_DataReader DDS_Entity. I n o t he r wor ds , a
DDS_WaitSet_wait may return with a list of DDS_Condition objects which all
have a trigger_value==FALSE. This only means, that at some point one or more
of the DDS_Condition objects have had a trigger_value==TRUE but no longer
do.

DDS_GuardCondition Trigger State
The trigger_value of a DDS_GuardCondition is completely controlled by the
application via the operation DDS_GuardCondition_set_trigger_value. This
DDS_Condition can be used to implement an application defined wake-up of the
blocked thread.
522
C Reference Guide �������	

Appendix

G DDS_Topic Definitions
The Data Distribution Service distributes its data in structured data types, called
topics. The first step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

DDS_Topic Definition Example
All data distributed using the Data Distribution Service has to be defined as a topic.
A topic is a structured data type, like a C-struct with several members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

};
#pragma keylist Foo
};

This is the definition of a topic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent C-struct which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL pre-processor: idlpp -l c -S
<idl_filename>.idl, a tool which translates the IDL topic definition into an
equivalent C definition. The -l C option indicates that C-code has to be generated,
the -S option indicates that this C code should be StandAlone C code, i.e. it must not
have any dependency on external ORB libraries. In this example, the pre-processor
will generate the classes SPACE_FooTypeSupport, SPACE_FooDataWriter and
SPACE_FooDataReader which contain the type specific operations.
The prefix SPACE_ is generated from the IDL-module-name. The types of the fields
are prescribed by the IDL-to-C mapping. After the Data Distribution Service
IDL-pre-processor is run, the application will use the generated code.
523
C Reference Guide�������	

 Appendices
Complex Topics
The Foo topic is relatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. For a reference of this subset, see the
BNF-notation in Appendix , Data Distribution Service IDL Subset in BNF Notation.
It is important to know that the pre-processor accepts all IDL constructs but only the
subset is being processed.
Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. a struct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs. For
more information regarding the IDL to C mapping.

IDL Pre-processor
This section contains the specification of the subset of OMG IDL that can be used to
define the topics.

IDL to Host Language Mapping
The Data Distribution Service IDL pre-processor translates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of a module defining several structs and typedefs.

Data Distribution Service IDL Keywords
The identifiers listed in this appendix are reserved for use as keywords in IDL and
may not be used otherwise, unless escaped with a leading underscore.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses
const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
524
C Reference Guide �������	

Appendices
Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords are illegal. For example, boolean is a valid keyword; Boolean and
BOOLEAN are illegal identifiers.

Data Distribution Service IDL Pragma Keylist
To define a topic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. When the <pragmakeylist> has no <field_id>,
the topic is available but no key is set. To define the keylist the definition, written in
BNF-notation, is as follows:

<pragmakeylist>::= “#pragma keylist” <type_id>
<field_id>*

<type_id>::= <struct_type_identifier>
 | <union_type_identifier>

<field_id>::= <member_declarator>
 | <element_spec_declarator>

In case of a struct, <type_id> is a <struct_type_identifier>. In case of a union,
<type_id> is a <union_type_identifier>. The <struct_type_identifier> is the
identifier used in the struct declaration. The <union_type_identifier> is the
identifier used in the union declaration. The <field_id> is the identifier of a field in
the struct or union identified by <type_id>. In case of a struct, <field_id> is a
<member_declarator> which is one of the declarators used in the struct member. In
case of a union, <field_id> is a <element_spec_declarator> which is one of the
declarators used in the element specification in a case of the union.
For example, for the Foo example in Appendix , DDS_Topic Definition Example the
next pragma must be used to have the pre-processor generate the typed classes
(SPACE_FooTypeSupport, SPACE_FooDataWriter and
 SPACE_FooDataReader).

#pragma keylist Foo userID index

Note that in this example the userID and the index are used as a key.

Data Distribution Service IDL Subset in BNF Notation
Only a subset is used by the pre-processor. A description of the Data Distribution
Service IDL subset, written in BNF-notation, is as follows:

<definition>::= <type_dcl> “;”
 | <const_dcl> “;”

custom home out supports wchar
default import primarykey switch wstring
double in private TRUE
525
C Reference Guide�������	

 Appendices
 | <module> “;”
<module>::= “module” <identifier> “{“ <definition>+ “}”
<scoped_name>::= <identifier>

 | “::” <identifier>
 | <scoped_name> “::” <identifier>

<const_dcl>::= “const” <const_type>
 <identifier> “=” <const_exp>

<const_type>::= <integer_type>
 | <char_type>
 | <boolean_type>
 | <floating_pt_type>
 | <string_type>
 | <scoped_name>
 | <octet_type>

<const_exp>::= <or_expr>
<or_expr>::= <xor_expr>

 | <or_expr> “|” <xor_expr>
<xor_expr>::= <and_expr>

 | <xor_expr> “^” <and_expr>
<and_expr>::= <shift_expr>

 | <and_expr> “&” <shift_expr>
<shift_expr>::= <add_expr>

 | <shift_expr> “>>” <add_expr>
 | <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
 | <add_expr> “+” <mult_expr>
 | <add_expr> “-” <mult_expr>

<mult_expr>::= <unary_expr>
 | <mult_expr> “*” <unary_expr>
 | <mult_expr> “/” <unary_expr>
 | <mult_expr> “%” <unary_expr>

<unary_expr>::= <unary_operator> <primary_expr>
 | <primary_expr>

<unary_operator>::= “-”
 | “+”
 | “~”

<primary_expr>::= <scoped_name>
 | <literal>
 | “(” <const_exp> “)”

<literal>::= <integer_literal>
 | <string_literal>
 | <character_literal>
 | <floating_pt_literal>
 | <boolean_literal>

<boolean_literal>::= “TRUE”
 | “FALSE”

<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

 | <struct_type>
 | <union_type>
526
C Reference Guide �������	

Appendices
 | <enum_type>
<type_declarator>::= <type_spec> <declarators>
<type_spec>::= <simple_type_spec>

 | <constr_type_spec>
<simple_type_spec>::= <base_type_spec>

 | <template_type_spec>
 | <scoped_name>

<base_type_spec>::= <floating_pt_type>
 | <integer_type>
 | <char_type>
 | <boolean_type>
 | <octet_type>

<template_type_spec>::= <sequence_type>
 | <string_type>

<constr_type_spec>::= <struct_type>
 | <union_type>
 | <enum_type>

<declarators>::= <declarator> { “,” <declarator> }*
<declarator>::= <simple_declarator>

 | <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating_pt_type>::= “float”

 | “double”
<integer_type>::= <signed_int>

 | <unsigned_int>
<signed_int>::= <signed_short_int>

 | <signed_long_int>
 | <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

 | <unsigned_long_int>
 | <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long”
<char_type>::= “char”
<boolean_type>::= “boolean”
<octet_type>::= “octet”
<struct_type>::= “struct” <identifier> “{” <member_list> “}”
<member_list>::= <member>+
<member>::= <type_spec> <declarators> “;”
<union_type>::= “union” <identifier> “switch”

 “(” <switch_type_spec> “)”
 “{” <switch_body> “}”

<switch_type_spec>::= <integer_type>
 | <char_type>
 | <boolean_type>
527
C Reference Guide�������	

 Appendices
 | <enum_type>
 | <scoped_name>

<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec> “;”
<case_label>::= “case” <const_exp> “:”

 | “default” “:”
<element_spec>::= <type_spec> <declarator>
<enum_type>::= “enum” <identifier>

 “{” <enumerator> { “,” <enumerator> }* “}”
<enumerator>::= <identifier>
<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

 <positive_int_const> “>”
 | “sequence” “<” <simple_type_spec> “>”

<string_type>::= “string” “<” <positive_int_const> “>”
 | “string”

<array_declarator>::= <identifier> <fixed_array_size>+
<fixed_array_size>::= “[” <positive_int_const> “]”
528
C Reference Guide �������	

Appendix

H DCPS Queries and Filters
A subset of SQL syntax is used in several parts of OpenSplice:
• the filter_expression in the DDS_ContentFilteredTopic
• the topic_expression in the DDS_MultiTopic
• the query_expression in the DDS_QueryReadCondition.
Those expressions may use a subset of SQL, extended with the possibility to use
program variables in the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:
• the NonTerminals are typeset in italics
• the ‘Terminals’ are quoted and typeset in a fixed width font
• the TOKENS are typeset in small caps
• the notation (element // ‘,’) represents a non-empty comma-separated list of

elements.

SQL Grammar in BNF
Expression::= FilterExpression

 | TopicExpression
 | QueryExpression

FilterExpression::= Condition
TopicExpression::= SelectFrom {Where } ‘;’
QueryExpression::= {Condition}{‘ORDER BY’ (FIELDNAME // ‘,’) }
SelectFrom::= ‘SELECT’ Aggregation ‘FROM’ Selection
Aggregation::= ‘*’

 | (SubjectFieldSpec // ‘,’)
SubjectFieldSpec::= FIELDNAME

 | FIELDNAME ‘AS’ FIELDNAME
 | FIELDNAME FIELDNAME

Selection::= TOPICNAME
 | TOPICTNAME NaturalJoin JoinItem

JoinItem::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
 | ‘(’ TOPICNAME NaturalJoin JoinItem ‘)’

NaturalJoin::= ‘INNER NATURAL JOIN’
 | ‘NATURAL JOIN’
 | ‘NATURAL INNER JOIN’

Where::= ‘WHERE’ Condition
Condition::= Predicate

 | Condition ‘AND’ Condition
529
C Reference Guide�������	

 Appendices
 | Condition ‘OR’ Condition
 | ‘NOT’ Condition
 | ‘(’ Condition ‘)’

Predicate::= ComparisonPredicate
 | BetweenPredicate

ComparisonPredicate::= FIELDNAME RelOp Parameter
 | Parameter RelOp FIELDNAME

BetweenPredicate::= FIELDNAME ‘BETWEEN’ Range
 | FIELDNAME ‘NOT BETWEEN’ Range

RelOp::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’ | like
Range::= Parameter ‘AND’ Parameter
Parameter::= INTEGERVALUE

 | FLOATVALUE
 | STRING
 | ENUMERATEDVALUE
 | PARAMETER

Note: INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are
all aliases, in the sense that they have the same semantics. The aliases are all
supported because they all are part of the SQL standard.

SQL Token Expression
The syntax and meaning of the tokens used in the SQL grammar is described as
follows:
FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot
‘.’ is used to navigate through nested structures. The number of dots that may be
used in a fieldname is unlimited. The field-name can refer to fields at any depth in
the data structure. The names of the field are those specified in the IDL definition of
the corresponding structure, which may or may not match the field names that
appear on the C mapping of the structure
TOPICNAME - A topic name is an identifier for a topic, and is defined as any series
of characters ‘a’, ..., ‘z’, ‘A’, ..., ‘Z’, ‘0’, ..., ‘9’, ‘-’, ‘_’ but may not
start with a digit
INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign,
representing a decimal integer value within the range of the system. A hexadecimal
number is preceded by 0x and must be a valid hexadecimal expression
FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and
optionally including a floating point (‘.’). A power-of-ten expression may be
post-fixed, which has the syntax en, where n is a number, optionally preceded by a
plus or minus sign
530
C Reference Guide �������	

Appendices
STRING - Any series of characters encapsulated in single quotes, except a new-line
character or a right quote. A string starts with a left or right quote, but ends with a
right quote
ENUMERATEDVALUE - An enumerated value is a reference to a value declared within
an enumeration. The name of the value must correspond to the names specified in
the IDL definition of the enumeration, and must be encapsulated in single quotes.
An enum value starts with a left or right quote, but ends with a right quote.
PARAMETER - A parameter is of the form %n, where n represents a natural number
(zero included) smaller than 100. It refers to the n + 1th argument in the given
context.
Note: when RelOp is ‘like’, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is ‘?’, any zero
or more characters is ‘*’

SQL Examples
Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, x, y, z”, and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.
Example of a topic_expression:

“SELECT flight_name, x, y, z AS height FROM ‘Location’ NATURAL JOIN
‘FlightPlan’ WHERE height < 1000 AND x <23”.

Example of a query_expression or a filter_expression:
“height < 1000 AND x <23”.
531
C Reference Guide�������	

 Appendices
532
C Reference Guide �������	

BIBLIOGRAPHY

Bibl iography
[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object

Management Group
[2] OMG C Language Mapping Specification formal/99-07-35, Object Management Group (OMG)
[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,

formal/02-06-01, Object Management Group
535
C Reference Guide�������	

Bibliography
536
C Reference Guide �������	

GLOSSARY

Glossary
Acronyms
Acronym Meaning
CORBA Common Object Request Broker Architecture
DCPS Data Centric Publish/Subscribe
DDS Data Distribution Service
DLRL Data Local Reconstruction Layer
IDL Interface Definition Language

OMG Object Management Group
ORB Object Request Broker
QoS Quality of Service
SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
539
C Reference Guide�������	

Glossary
540
C Reference Guide �������	

INDEX

Index

A
About the C Reference Guide. xxi Affected Entities. 451

B
Basic Usage . 451
Bibliography . 535

Blocking Behaviour . 520
Blocking Behaviour of a Waitset State Chart . 521

C
C Reference Guide Document Structure 3
Changeable . 61
Class DDS_Condition 121
Class DDS_ContentFilteredTopic 211
Class DDS_DataReader (abstract) 349
Class DDS_DataSample. 421
Class DDS_DataWriter (abstract) 257
Class DDS_DomainEntity (abstract)55
Class DDS_DomainParticipant 131
Class DDS_DomainParticipantFactory 179
Class DDS_Entity (abstract). 48
Class DDS_GuardCondition 122
Class DDS_MultiTopic 217
Class DDS_Publisher . 232
Class DDS_QueryCondition 443
Class DDS_ReadCondition 439

Class DDS_StatusCondition 125
Class DDS_Subscriber 326
Class DDS_Topic. 202
Class DDS_TopicDescription (abstract) 199
Class DDS_TypeSupport (abstract) 225
Class DDS_WaitSet . 114
Class Model of the DCPS Topic-Definition

Module . 198
Class SPACE_FooDataReader. 383
Class SPACE_FooDataWriter 279
Class SPACE_FooTypeSupport. 226
Communication Status 511
Communication Status Event 513
Complex Topics . 524
Conditions and waitsets 517
Contacts . xxiii

D
Data Distribution Service Defined Type 10
Data Distribution Service IDL Keywords 524
Data Distribution Service IDL Pragma Keylist 525
Data Distribution Service IDL Subset in BNF

Notation. 525
Data Type “Foo” Typed Classes Pre-processor

Generation . 42
DCPS DDS_Conditions 121, 520
DCPS DDS_Status Values 100
DCPS DDS_WaitSets. 114, 518
DCPS Domain Module’s Class Model. . . . 40, 131
DCPS Infrastructure Module’s Class Model 38, 48

DCPS Inheritance. 509
DCPS Listeners . 97, 517
DCPS Module Composition. 37
DCPS Publication Module’s Class Model 43
DCPS Subscription Module’s Class Model 44
DCPS Topic-Definition Module’s Class Model 41
DDS___alloc . 19
DDS___alloc . 17
DDS___alloc . 19
DDS__allocbuf. 18
DDS_Condition_get_trigger_value 122
DDS_ContentFilteredTopic_get_expression_para
543
C Reference Guide�������	

 Index
meters . 212
DDS_ContentFilteredTopic_get_filter_expression

213
DDS_ContentFilteredTopic_get_name (inherited)

214
DDS_ContentFilteredTopic_get_participant

(inherited). 214
DDS_ContentFilteredTopic_get_related_topic 214
DDS_ContentFilteredTopic_get_type_name

(inherited). 215
DDS_ContentFilteredTopic_set_expression_para

meters . 215
DDS_DataReader . 515
DDS_DataReader_create_querycondition . . . 355
DDS_DataReader_create_readcondition 356
DDS_DataReader_delete_contained_entities . 358
DDS_DataReader_delete_readcondition 359
DDS_DataReader_enable (inherited) 360
DDS_DataReader_get_key_value (abstract). . 360
DDS_DataReader_get_listener 361
DDS_DataReader_get_liveliness_changed_status

361
DDS_DataReader_get_matched_publication_data

362
DDS_DataReader_get_matched_publications 363
DDS_DataReader_get_qos 363
DDS_DataReader_get_requested_deadline_misse

d_status. 364
DDS_DataReader_get_requested_incompatible_q

os_status . 365
DDS_DataReader_get_sample_lost_status . . . 366
DDS_DataReader_get_sample_rejected_status368
DDS_DataReader_get_status_changes (inherited)

369
DDS_DataReader_get_statuscondition (inherited)

369
DDS_DataReader_get_subscriber. 369
DDS_DataReader_get_subscription_match_status

370
DDS_DataReader_get_topicdescription 370
DDS_DataReader_lookup_instance (abstract) 272,

371
DDS_DATAREADER_QOS_DEFAULT . . . 455
DDS_DataReader_read (abstract) 371
DDS_DataReader_read_instance (abstract) . . 372

DDS_DataReader_read_next_instance (abstract).
372

DDS_DataReader_read_next_instance_w_conditi
on (abstract) . 373

DDS_DataReader_read_next_sample (abstract). .
373

DDS_DataReader_read_w_condition (abstract). .
373

DDS_DataReader_return_loan (abstract) 374
DDS_DataReader_set_listener 374
DDS_DataReader_set_qos 377
DDS_DataReader_take (abstract) 378
DDS_DataReader_take_instance (abstract) . . 379
DDS_DataReader_take_next_instance (abstract) .

379
DDS_DataReader_take_next_instance_w_conditi

on (abstract) . 380
DDS_DataReader_take_next_sample (abstract). .

380
DDS_DataReader_take_w_condition (abstract) . .

380
DDS_DataReader_wait_for_historical_data. . 381
DDS_DataReaderListener. 34
DDS_DataReaderListener interface 431
DDS_DataReaderListener__alloc. 432
DDS_DataReaderListener_on_data_available

(abstract) . 433
DDS_DataReaderListener_on_liveliness_changed

(abstract) . 434
DDS_DataReaderListener_on_requested_deadline

_missed (abstract) 435
DDS_DataReaderListener_on_requested_incomp

atible_qos (abstract) 436
DDS_DataReaderListener_on_sample_lost

(abstract) . 437
DDS_DataReaderListener_on_sample_rejected

(abstract) . 437
DDS_DataReaderListener_on_subscription_matc

h (abstract) . 438
DDS_DataReaderQos 453
DDS_DataWriter_assert_liveliness 261
DDS_DataWriter_dispose (abstract). 263
DDS_DataWriter_dispose_w_timestamp

(abstract) . 263, 279
DDS_DataWriter_enable (inherited) 263
544
C Reference Guide

�������	

 Index
DDS_DataWriter_get_key_value (abstract). . . 264
DDS_DataWriter_get_listener 264
DDS_DataWriter_get_liveliness_lost_status . . 264
DDS_DataWriter_get_matched_subscription_data

266
DDS_DataWriter_get_matched_subscriptions.266
DDS_DataWriter_get_offered_deadline_missed_s

tatus . 266
DDS_DataWriter_get_offered_incompatible_qos_

status . 267
DDS_DataWriter_get_publication_match_status .

269
DDS_DataWriter_get_publisher 269
DDS_DataWriter_get_qos 269
DDS_DataWriter_get_status_changes (inherited) .

270
DDS_DataWriter_get_statuscondition (inherited) .

271
DDS_DataWriter_get_topic 271
DDS_DATAWRITER_QOS_DEFAULT 458
DDS_DataWriter_register_instance (abstract) .272
DDS_DataWriter_register_instance_w_timestamp

(abstract) . 272
DDS_DataWriter_set_listener 273
DDS_DataWriter_set_qos 275
DDS_DataWriter_unregister_instance (abstract) . .

276
DDS_DataWriter_unregister_instance_w_timesta

mp (abstract) . 277
DDS_DataWriter_write (abstract) 278
DDS_DataWriter_write_w_timestamp (abstract) .

278
DDS_DataWriterListener 31
DDS_DataWriterListener interface 319
DDS_DataWriterListener__alloc 320
DDS_DataWriterListener_on_liveliness_lost

(abstract) . 321
DDS_DataWriterListener_on_offered_deadline_

missed (abstract) . 322
DDS_DataWriterListener_on_offered_incompatib

le_qos (abstract) . 323
DDS_DataWriterListener_on_publication_match

(abstract) . 324
DDS_DataWriterQos . 456
dds_dcps.idl . 471

DDS_DeadlineQosPolicy. 63, 65, 77
DDS_DestinationOrderQosPolicy 66
DDS_DomainParticipant_assert_liveliness . . . 136
DDS_DomainParticipant_contains_entity 137
DDS_DomainParticipant_create_contentfilteredto

pic . 138
DDS_DomainParticipant_create_multitopic . . 139
DDS_DomainParticipant_create_publisher . . . 141
DDS_DomainParticipant_create_subscriber . . 143
DDS_DomainParticipant_create_topic 146
DDS_DomainParticipant_delete_contained_entiti

es . 149
DDS_DomainParticipant_delete_contentfilteredto

pic . 150
DDS_DomainParticipant_delete_multitopic . . 152
DDS_DomainParticipant_delete_publisher . . . 153
DDS_DomainParticipant_delete_subscriber . . 154
DDS_DomainParticipant_delete_topic 156
DDS_DomainParticipant_enable (inherited) . . 157
DDS_DomainParticipant_find_topic 158
DDS_DomainParticipant_get_builtin_subscriber .

159
DDS_DomainParticipant_get_current_time . . 160
DDS_DomainParticipant_get_default_publisher_

qos . 161
DDS_DomainParticipant_get_default_subscriber_

qos . 163
DDS_DomainParticipant_get_default_topic_qos .

164
DDS_DomainParticipant_get_discovered_particip

ant_data . 166
DDS_DomainParticipant_get_discovered_particip

ants . 165
DDS_DomainParticipant_get_discovered_topic_d

ata . 166
DDS_DomainParticipant_get_discovered_topics .

166
DDS_DomainParticipant_get_domain_id 166
DDS_DomainParticipant_get_listener 167
DDS_DomainParticipant_get_qos 168
DDS_DomainParticipant_get_status_changes

(inherited) . 169
DDS_DomainParticipant_get_statuscondition

(inherited) . 169
DDS_DomainParticipant_ignore_participant . 169
545
C Reference Guide�������	

 Index
DDS_DomainParticipant_ignore_publication 169
DDS_DomainParticipant_ignore_subscription 170
DDS_DomainParticipant_ignore_topic 170
DDS_DomainParticipant_lookup_topicdescriptio

n . 170
DDS_DomainParticipant_set_default_publisher_q

os . 171
DDS_DomainParticipant_set_default_subscriber_

qos . 172
DDS_DomainParticipant_set_default_topic_qos .

174
DDS_DomainParticipant_set_listener 175
DDS_DomainParticipant_set_qos. 178
DDS_DomainParticipantFactory_create_participa

nt. 180
DDS_DomainParticipantFactory_delete_participa

nt. 183
DDS_DomainParticipantFactory_get_default_part

icipant_qos . 184
DDS_DomainParticipantFactory_get_instance 186
DDS_DomainParticipantFactory_lookup_particip

ant. 187
DDS_DomainParticipantFactory_set_default_part

icipant_qos . 188
DDS_DomainParticipantListener 27
DDS_DomainParticipantListener interface. . . 191
DDS_DomainParticipantListener__alloc 193
DDS_DomainParticipantListener_on_data_availa

ble (inherited, abstract) 194
DDS_DomainParticipantListener_on_data_on_rea

ders (inherited, abstract). 194
DDS_DomainParticipantListener_on_inconsistent

_topic (inherited, abstract) 195
DDS_DomainParticipantListener_on_liveliness_c

hanged (inherited, abstract) 195
DDS_DomainParticipantListener_on_liveliness_l

ost (inherited, abstract). 195
DDS_DomainParticipantListener_on_offered_dea

dline_missed (inherited, abstract) 196
DDS_DomainParticipantListener_on_offered_inc

ompatible_qos (inherited, abstract) 196
DDS_DomainParticipantListener_on_publication

_match (inherited, abstract) 196
DDS_DomainParticipantListener_on_requested_d

eadline_missed (inherited, abstract). 196

DDS_DomainParticipantListener_on_requested_i
ncompatible_qos (inherited, abstract) . . . 197

DDS_DomainParticipantListener_on_sample_lost
(inherited, abstract) 197

DDS_DomainParticipantListener_on_sample_reje
cted (inherited, abstract) 197

DDS_DomainParticipantListener_on_subscription
_match (inherited, abstract) 198

DDS_DomainParticipantQos 458
DDS_DurabilityQosPolicy 67
DDS_DurabilityServiceQosPolicy 70
DDS_Entity_enable . 49
DDS_Entity_get_instance_handle 51
DDS_Entity_get_listener (abstract) 52
DDS_Entity_get_qos (abstract) 52
DDS_Entity_get_status_changes 53
DDS_Entity_get_statuscondition 54
DDS_Entity_set_listener (abstract). 54
DDS_Entity_set_qos (abstract). 55
DDS_EntityFactoryQosPolicy 73
DDS_free . 21
DDS_GroupDataQosPolicy 73
DDS_GuardCondition__alloc. 123
DDS_GuardCondition_get_trigger_value

(inherited). 124
DDS_GuardCondition_set_trigger_value. . . . 124
DDS_HistoryQosPolicy 74
DDS_InconsistentTopicStatus 101
DDS_LatencyBudgetQosPolicy 77
DDS_LifespanQosPolicy 78
DDS_Listener interface. 96
DDS_LivelinessChangedStatus 102
DDS_LivelinessLostStatus 104
DDS_LivelinessQosPolicy 79, 80
DDS_MultiTopic_get_expression_parameters 218
DDS_MultiTopic_get_name (inherited) 219
DDS_MultiTopic_get_participant (inherited). 219
DDS_MultiTopic_get_subscription_expression. .

220
DDS_MultiTopic_get_type_name (inherited) 220
DDS_MultiTopic_set_expression_parameters 221
DDS_OfferedDeadlineMissedStatus 105
DDS_OfferedIncompatibleQosStatus 106
DDS_OwnershipQosPolicy 81, 501
DDS_OwnershipStrengthQosPolicy. 84
546
C Reference Guide

�������	

 Index
DDS_PARTICIPANT_QOS_DEFAULT 459, 460
DDS_PartitionQosPolicy 84
DDS_PresentationQosPolicy 85
DDS_PublicationMatchStatus 108
DDS_Publisher_begin_coherent_changes 234
DDS_Publisher_copy_from_topic_qos 236
DDS_Publisher_create_datawriter 237
DDS_Publisher_delete_contained_entities . . . 240
DDS_Publisher_delete_datawriter 241
DDS_Publisher_enable (inherited). 242
DDS_Publisher_end_coherent_changes. 243
DDS_Publisher_get_default_datawriter_qos . . 243
DDS_Publisher_get_listener 245
DDS_Publisher_get_participant 245
DDS_Publisher_get_qos. 246
DDS_Publisher_get_status_changes (inherited) . .

247
DDS_Publisher_get_statuscondition (inherited) . .

247
DDS_Publisher_lookup_datawriter 248
DDS_PUBLISHER_QOS_DEFAULT 462
DDS_Publisher_resume_publications 248
DDS_Publisher_set_default_datawriter_qos . . 249
DDS_Publisher_set_listener. 251
DDS_Publisher_set_qos 253
DDS_Publisher_suspend_publications. 255
DDS_PublisherListener 30
DDS_PublisherListener interface. 314
DDS_PublisherListener__alloc 317
DDS_PublisherListener_on_liveliness_lost

(inherited, abstract) 317
DDS_PublisherListener_on_offered_deadline_mi

ssed (inherited, abstract) 318
DDS_PublisherListener_on_offered_incompatible

_qos (inherited, abstract) 318
DDS_PublisherListener_on_publication_match

(inherited, abstract) 318
DDS_PublisherQos. 461
DDS_QueryCondition_get_datareader (inherited).

444
DDS_QueryCondition_get_instance_state_mask

(inherited) . 444
DDS_QueryCondition_get_query_arguments .445
DDS_QueryCondition_get_query_expression .446
DDS_QueryCondition_get_sample_state_mask

(inherited) . 446
DDS_QueryCondition_get_trigger_value

(inherited) . 447
DDS_QueryCondition_get_view_state_mask

(inherited) . 447
DDS_QueryCondition_set_query_arguments . 447
DDS_ReadCondition_get_datareader 440
DDS_ReadCondition_get_instance_state_mask . .

440
DDS_ReadCondition_get_sample_state_mask 441
DDS_ReadCondition_get_trigger_value

(inherited) . 442
DDS_ReadCondition_get_view_state_mask . . 442
DDS_ReaderDataLifecycleQosPolicy 87
DDS_ReliabilityQosPolicy 88
DDS_RequestedDeadlineMissedStatus 109
DDS_RequestedIncompatibleQosStatus 109
DDS_ResourceLimitsQosPolicy 90
DDS_SampleInfo . 421
DDS_SampleLostStatus 111
DDS_SampleRejectedStatus 112
DDS_sequence_get_release 17
DDS_sequence_set_release 16
DDS_StatusCondition_get_enabled_statuses . 127
DDS_StatusCondition_get_entity 128
DDS_StatusCondition_get_trigger_value

(inherited) . 129
DDS_StatusCondition_set_enabled_statuses. . 129
DDS_string_alloc . 20
DDS_Subscriber. 515
DDS_Subscriber Statecraft for a Read

Communication Status 516
DDS_Subscriber_begin_access 329
DDS_Subscriber_copy_from_topic_qos 329
DDS_Subscriber_create_datareader. 330
DDS_Subscriber_delete_contained_entities . . 333
DDS_Subscriber_delete_datareader. 335
DDS_Subscriber_enable (inherited) 336
DDS_Subscriber_end_access. 336
DDS_Subscriber_get_datareaders 336
DDS_Subscriber_get_default_datareader_qos. 337
DDS_Subscriber_get_listener 338
DDS_Subscriber_get_participant. 339
DDS_Subscriber_get_qos 339
DDS_Subscriber_get_status_changes (inherited) .
547
C Reference Guide�������	

 Index
340
DDS_Subscriber_get_statuscondition (inherited).

341
DDS_Subscriber_lookup_datareader 341
DDS_Subscriber_notify_datareaders 342
DDS_SUBSCRIBER_QOS_DEFAULT . . . 463
DDS_Subscriber_set_default_datareader_qos 343
DDS_Subscriber_set_listener 345
DDS_Subscriber_set_qos 347
DDS_SubscriberListener. 32
DDS_SubscriberListener__alloc 427
DDS_SubscriberListener_on_data_available

(inherited, abstract) 427
DDS_SubscriberListener_on_data_on_readers

(abstract). 428
DDS_SubscriberListener_on_liveliness_changed

(inherited, abstract) 429
DDS_SubscriberListener_on_requested_deadline

_missed (inherited, abstract) 429
DDS_SubscriberListener_on_requested_incompat

ible_qos (inherited, abstract) 429
DDS_SubscriberListener_on_sample_lost

(inherited, abstract) 430
DDS_SubscriberListener_on_sample_rejected

(inherited, abstract) 430
DDS_SubscriberListener_on_subscription_match

(inherited, abstract) 430
DDS_SubscriberQos . 462
DDS_SubscriptionMatchStatus. 113
DDS_TimeBasedFilterQosPolicy 93
DDS_Topic Definition Example 523
DDS_Topic_enable (inherited) 203
DDS_Topic_get_inconsistent_topic_status . . 204
DDS_Topic_get_listener 205

DDS_Topic_get_name (inherited) 205
DDS_Topic_get_participant (inherited) 205
DDS_Topic_get_qos. 206
DDS_Topic_get_status_changes (inherited). . 207
DDS_Topic_get_statuscondition (inherited) . 207
DDS_Topic_get_type_name (inherited) 207
DDS_TOPIC_QOS_DEFAULT. 465
DDS_Topic_set_listener 207
DDS_Topic_set_qos . 209
DDS_TopicDataQosPolicy 93
DDS_TopicDescription_get_name 200
DDS_TopicDescription_get_participant. 201
DDS_TopicDescription_get_type_name 201
DDS_TopicListener . 29
DDS_TopicListener interface 222
DDS_TopicListener__alloc 223
DDS_TopicListener_on_inconsistent_topic

(abstract) . 223
DDS_TopicQos. 463
DDS_TransportPriorityQosPolicy 94
DDS_TypeSupport__alloc (abstract) 226
DDS_TypeSupport_get_type_name (abstract) 226
DDS_TypeSupport_register_type (abstract). . 226
DDS_UserDataQosPolicy. 95
DDS_WaitSet__alloc 114
DDS_WaitSet_attach_condition 115
DDS_WaitSet_detach_condition 116
DDS_WaitSet_get_conditions 118
DDS_WaitSet_wait . 119
DDS_WriterDataLifecycleQosPolicy. 95
Default attributes. 59
Document Structure . 3
Domain Module . 39, 131

F
Functionality . 37

I
IDL Mapping Rules for Sequences 9
IDL Pre-processor . 524
IDL to Host Language Mapping 524

Infrastructure Module 38, 48
Inheritance of Abstract Operations 35
instance_state . 501
548
C Reference Guide

�������	

 Index
L
Listeners . 516 Listeners Interfaces . 22

M
Memory Management . 9

O
Operations. 4 Operations Concerning States 505

P
Plain Communication Status State Chart 514
Plain Sequences . 10
Pre-defined Bit Mask Definitions. 504
Pre-processor Generation of the Typed Classes for

Data Type “Foo” . 199
Publication Module 42, 231
Publication Type Specific Classes 257

Q
QosPolicy Basics . 62
QosPolicy Default Attributes 59

QosPolicy Objects . 11
QosPolicy Settings . 56

R
read . 505
Read Communication Status sDDS_DataReader

Statecraft . 515
read_instance . 507
read_next_sample . 506
read_w_condition . 506
Requested/Offered . 56
Requested/Offered

DDS_DestinationOrderQosPolicy 67

Requested/Offered DDS_DurabilityQosPolicy . 69
Requested/Offered DDS_PresentationQosPolicy .

87
Requested/Offered DDS_ReliabilityQosPolicy 82,

90
Resources and operations 12
Return Codes . 7
Return Value . 240
RxO . 61

S
sample_state . 499
SampleInfo Class . 499
Sequences . 11
Sequences DDS_ . 13
Sequences Embeded in QosPolicy Objects 11
Sequences Embeded in Status Objects 12
Signal Handling . 8

Snapshot . 502, 503
SPACE_FooDataReader_create_querycondition

(inherited) . 388
SPACE_FooDataReader_create_readcondition

(inherited) . 389
SPACE_FooDataReader_delete_contained_entitie

s (inherited) . 389
549
C Reference Guide�������	

 Index
SPACE_FooDataReader_delete_readcondition
(inherited). 389

SPACE_FooDataReader_enable (inherited) . . 389
SPACE_FooDataReader_get_key_value 390
SPACE_FooDataReader_get_listener (inherited).

390
SPACE_FooDataReader_get_liveliness_changed_

status (inherited). 390
SPACE_FooDataReader_get_matched_publicatio

n_data (inherited) 390
SPACE_FooDataReader_get_matched_publicatio

ns (inherited) . 391
SPACE_FooDataReader_get_qos (inherited) . 391
SPACE_FooDataReader_get_requested_deadline

_missed_status (inherited) 391
SPACE_FooDataReader_get_requested_incompat

ible_qos_status (inherited) 391
SPACE_FooDataReader_get_sample_lost_status

(inherited). 392
SPACE_FooDataReader_get_sample_rejected_sta

tus (inherited) . 392
SPACE_FooDataReader_get_status_changes

(inherited). 392
SPACE_FooDataReader_get_statuscondition

(inherited). 392
SPACE_FooDataReader_get_subscriber

(inherited). 393
SPACE_FooDataReader_get_subscription_match

_status (inherited). 393
SPACE_FooDataReader_get_topicdescription

(inherited). 393
SPACE_FooDataReader_read 394
SPACE_FooDataReader_read_instance 399
SPACE_FooDataReader_read_next_instance 401
SPACE_FooDataReader_read_next_instance_w_

condition. 404
SPACE_FooDataReader_read_next_sample . 406
SPACE_FooDataReader_read_w_condition . 406
SPACE_FooDataReader_return_loan. 408
SPACE_FooDataReader_set_listener (inherited) .

410
SPACE_FooDataReader_set_qos (inherited) . 410
SPACE_FooDataReader_take. 411
SPACE_FooDataReader_take_instance 412
SPACE_FooDataReader_take_next_sample . 418

SPACE_FooDataReader_take_w_condition . 419
SPACE_FooDataReader_wait_for_historical_data

(inherited). 420
SPACE_FooDataWriter_assert_liveliness

(inherited). 283
SPACE_FooDataWriter_dispose 284
SPACE_FooDataWriter_dispose_w_timestamp .

288, . 314
SPACE_FooDataWriter_enable (inherited) . . 289
SPACE_FooDataWriter_get_key_value. 290
SPACE_FooDataWriter_get_listener (inherited) .

291
SPACE_FooDataWriter_get_liveliness_lost_statu

s (inherited) . 291
SPACE_FooDataWriter_get_matched_subscriptio

n_data (inherited) 291
SPACE_FooDataWriter_get_matched_subscriptio

ns (inherited) . 292
SPACE_FooDataWriter_get_offered_deadline_mi

ssed_status (inherited) 292
SPACE_FooDataWriter_get_offered_incompatibl

e_qos_status (inherited) 292
SPACE_FooDataWriter_get_publication_match_s

tatus (inherited) . 292
SPACE_FooDataWriter_get_publisher (inherited)

293
SPACE_FooDataWriter_get_qos (inherited) . 293
SPACE_FooDataWriter_get_status_changes

(inherited). 293
SPACE_FooDataWriter_get_statuscondition

(inherited). 293
SPACE_FooDataWriter_get_topic (inherited) 294
SPACE_FooDataWriter_register_instance. . . 294
SPACE_FooDataWriter_register_instance_w_tim

estamp . 298
SPACE_FooDataWriter_set_listener (inherited) .

299
SPACE_FooDataWriter_set_qos (inherited) . 299
SPACE_FooDataWriter_unregister_instance. 299
SPACE_FooDataWriter_unregister_instance_w_ti

mestamp . 303
SPACE_FooDataWriter_write 305
SPACE_FooDataWriter_write_w_timestamp 309
SPACE_FooTypeSupport__alloc 227
SPACE_FooTypeSupport_get_type_name. . . 228
550
C Reference Guide

�������	

 Index
SPACE_FooTypeSupport_register_type 229
SQL Examples . 531
SQL Grammar in BNF 529
SQL Token Expression. 530
Standard Defined Type. 10
State Chart of the instance_state for a Single

Instance . 502
State Chart of the sample_state for a Single Sample

500
State Chart of the view_state for a Single Instance

503
State Definitions .504

State Masks . 504
State per Sample. 500
Status Description Per DDS_Entity 98
Status Objects. 12
Status Per DDS_Entity 125
Struct DDS_Listener . 24
Struct DDS_SampleInfo. 421
Struct DDS_Status . 98
Struct QosPolicy. 55
Subscription Module 44, 325
Subscription Type Specific Classes 349

T
take . 506
take_next_instance . 414
take_next_sample . 506
take_w_condition . 506
The DCPS Publication Module’s Class Model 231
The DCPS Subscription Module’s Class Model . .

325

Thread Safety . 8
Topic-Definition Module 40, 198
Topic-Definition type specific classes 224
Trigger State of the DDS_GuardCondition . . . 522
Trigger State of the DDS_ReadCondition and

DDS_QueryCondition. 521
Trigger State of the DDS_StatusCondition . . . 521

U
User Defined Type . 10

V
view_state . 502
551
C Reference Guide�������	

 Index
552
C Reference Guide

�������	

	C Reference Guide
	Table of Contents
	List of Figures
	Preface
	About the C Reference Guide
	Contacts

	Introduction
	About the C Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 Thread Safety
	1.2 Signal Handling
	1.3 Memory Management
	1.3.1 IDL Mapping Rules for Sequences
	1.3.1.1 Standard Defined Type
	1.3.1.2 User Defined Type
	1.3.1.3 Data Distribution Service Defined Type

	1.3.2 Plain Sequences
	1.3.3 Sequences Embedded in QosPolicy Objects
	1.3.4 Sequences Embedded in Status Objects
	1.3.5 Resources and operations
	1.3.5.1 Sequences DDS_<sequence-name>
	1.3.5.2 DDS_sequence_set_release

	1.4 Listeners Interfaces
	1.4.1 Struct DDS_<Entity>Listener
	1.4.2 DDS_DomainParticipantListener
	1.4.3 DDS_TopicListener
	1.4.4 DDS_PublisherListener
	1.4.5 DDS_DataWriterListener
	1.4.6 DDS_SubscriberListener
	1.4.7 DDS_DataReaderListener

	1.5 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Class DDS_Entity (abstract)
	3.1.1.1 DDS_Entity_enable
	3.1.1.2 DDS_Entity_get_instance_handle
	3.1.1.3 DDS_Entity_get_listener (abstract)
	3.1.1.4 DDS_Entity_get_qos (abstract)
	3.1.1.5 DDS_Entity_get_status_changes
	3.1.1.6 DDS_Entity_get_statuscondition
	3.1.1.7 DDS_Entity_set_listener (abstract)
	3.1.1.8 DDS_Entity_set_qos (abstract)

	3.1.2 Class DDS_DomainEntity (abstract)
	3.1.3 Struct QosPolicy
	3.1.3.1 DDS_DeadlineQosPolicy
	3.1.3.2 DDS_DestinationOrderQosPolicy
	3.1.3.3 DDS_DurabilityQosPolicy
	3.1.3.4 DDS_DurabilityServiceQosPolicy
	3.1.3.5 DDS_EntityFactoryQosPolicy
	3.1.3.6 DDS_GroupDataQosPolicy
	3.1.3.7 DDS_HistoryQosPolicy
	3.1.3.8 DDS_LatencyBudgetQosPolicy
	3.1.3.9 DDS_LifespanQosPolicy
	3.1.3.10 DDS_LivelinessQosPolicy
	3.1.3.11 DDS_OwnershipQosPolicy
	3.1.3.12 DDS_OwnershipStrengthQosPolicy
	3.1.3.13 DDS_PartitionQosPolicy
	3.1.3.14 DDS_PresentationQosPolicy
	3.1.3.15 DDS_ReaderDataLifecycleQosPolicy
	3.1.3.16 DDS_ReliabilityQosPolicy
	3.1.3.17 DDS_ResourceLimitsQosPolicy
	3.1.3.18 DDS_SchedulingQosPolicy
	3.1.3.19 DDS_TimeBasedFilterQosPolicy
	3.1.3.20 DDS_TopicDataQosPolicy
	3.1.3.21 DDS_TransportPriorityQosPolicy
	3.1.3.22 DDS_UserDataQosPolicy
	3.1.3.23 DDS_WriterDataLifecycleQosPolicy

	3.1.4 DDS_Listener interface
	3.1.5 Struct DDS_Status
	3.1.5.1 DDS_InconsistentTopicStatus
	3.1.5.2 DDS_LivelinessChangedStatus
	3.1.5.3 DDS_LivelinessLostStatus
	3.1.5.4 DDS_OfferedDeadlineMissedStatus
	3.1.5.5 DDS_OfferedIncompatibleQosStatus
	3.1.5.6 DDS_PublicationMatchedStatus
	3.1.5.7 DDS_RequestedDeadlineMissedStatus
	3.1.5.8 DDS_RequestedIncompatibleQosStatus
	3.1.5.9 DDS_SampleLostStatus
	3.1.5.10 DDS_SampleRejectedStatus
	3.1.5.11 DDS_SubscriptionMatchedStatus

	3.1.6 Class DDS_WaitSet
	3.1.6.1 DDS_WaitSet__alloc
	3.1.6.2 DDS_WaitSet_attach_condition
	3.1.6.3 DDS_WaitSet_detach_condition
	3.1.6.4 DDS_WaitSet_get_conditions
	3.1.6.5 DDS_WaitSet_wait

	3.1.7 Class DDS_Condition
	3.1.7.1 DDS_Condition_get_trigger_value

	3.1.8 Class DDS_GuardCondition
	3.1.8.1 DDS_GuardCondition__alloc
	3.1.8.2 DDS_GuardCondition_get_trigger_value (inherited)
	3.1.8.3 DDS_GuardCondition_set_trigger_value

	3.1.9 Class DDS_StatusCondition
	3.1.9.1 DDS_StatusCondition_get_enabled_statuses
	3.1.9.2 DDS_StatusCondition_get_entity
	3.1.9.3 DDS_StatusCondition_get_trigger_value (inherited)
	3.1.9.4 DDS_StatusCondition_set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DDS_DomainParticipant
	3.2.1.1 DDS_DomainParticipant_assert_liveliness
	3.2.1.2 DDS_DomainParticipant_contains_entity
	3.2.1.3 DDS_DomainParticipant_create_contentfilteredtopic
	3.2.1.4 DDS_DomainParticipant_create_multitopic
	3.2.1.5 DDS_DomainParticipant_create_publisher
	3.2.1.6 DDS_DomainParticipant_create_subscriber
	3.2.1.7 DDS_DomainParticipant_create_topic
	3.2.1.8 DDS_DomainParticipant_delete_contained_entities
	3.2.1.9 DDS_DomainParticipant_delete_contentfilteredtopic
	3.2.1.10 DDS_DomainParticipant_delete_multitopic
	3.2.1.11 DDS_DomainParticipant_delete_publisher
	3.2.1.12 DDS_DomainParticipant_delete_subscriber
	3.2.1.13 DDS_DomainParticipant_delete_topic
	3.2.1.14 DDS_DomainParticipant_enable (inherited)
	3.2.1.15 DDS_DomainParticipant_find_topic
	3.2.1.16 DDS_DomainParticipant_get_builtin_subscriber
	3.2.1.17 DDS_DomainParticipant_get_current_time
	3.2.1.18 DDS_DomainParticipant_get_default_publisher_qos
	3.2.1.19 DDS_DomainParticipant_get_default_subscriber_qos
	3.2.1.20 DDS_DomainParticipant_get_default_topic_qos
	3.2.1.21 DDS_DomainParticipant_get_discovered_participants
	3.2.1.22 DDS_DomainParticipant_get_discovered_participant_data
	3.2.1.23 DDS_DomainParticipant_get_discovered_topics
	3.2.1.24 DDS_DomainParticipant_get_discovered_topic_data
	3.2.1.25 DDS_DomainParticipant_get_domain_id
	3.2.1.26 DDS_DomainParticipant_get_listener
	3.2.1.27 DDS_DomainParticipant_get_qos
	3.2.1.28 DDS_DomainParticipant_get_status_changes (inherited)
	3.2.1.29 DDS_DomainParticipant_get_statuscondition (inherited)
	3.2.1.30 DDS_DomainParticipant_ignore_participant
	3.2.1.31 DDS_DomainParticipant_ignore_publication
	3.2.1.32 DDS_DomainParticipant_ignore_subscription
	3.2.1.33 DDS_DomainParticipant_ignore_topic
	3.2.1.34 DDS_DomainParticipant_lookup_topicdescription
	3.2.1.35 DDS_DomainParticipant_set_default_publisher_qos
	3.2.1.36 DDS_DomainParticipant_set_default_subscriber_qos
	3.2.1.37 DDS_DomainParticipant_set_default_topic_qos
	3.2.1.38 DDS_DomainParticipant_set_listener
	3.2.1.39 DDS_DomainParticipant_set_qos

	3.2.2 Class DDS_DomainParticipantFactory
	3.2.2.1 DDS_DomainParticipantFactory_create_participant
	3.2.2.2 DDS_DomainParticipantFactory_delete_participant
	3.2.2.3 DDS_DomainParticipantFactory_get_default_participant_qos
	3.2.2.4 DDS_DomainParticipantFactory_get_instance
	3.2.2.5 DDS_DomainParticipantFactory_get_qos
	3.2.2.6 DDS_DomainParticipantFactory_lookup_participant
	3.2.2.7 DDS_DomainParticipantFactory_set_default_participant_qos
	3.2.2.8 DDS_DomainParticipantFactory_set_qos

	3.2.3 DDS_DomainParticipantListener interface
	3.2.3.1 DDS_DomainParticipantListener__alloc
	3.2.3.2 DDS_DomainParticipantListener_on_data_available (inherited, abstract)
	3.2.3.3 DDS_DomainParticipantListener_on_data_on_readers (inherited, abstract)
	3.2.3.4 DDS_DomainParticipantListener_on_inconsistent_topic (inherited, abstract)
	3.2.3.5 DDS_DomainParticipantListener_on_liveliness_changed (inherited, abstract)
	3.2.3.6 DDS_DomainParticipantListener_on_liveliness_lost (inherited, abstract)
	3.2.3.7 DDS_DomainParticipantListener_on_offered_deadline_missed (inherited, abstract)
	3.2.3.8 DDS_DomainParticipantListener_on_offered_incompatible_qos (inherited, abstract)
	3.2.3.9 DDS_DomainParticipantListener_on_publication_matched (inherited, abstract)
	3.2.3.10 DDS_DomainParticipantListener_on_requested_deadline_missed (inherited, abstract)
	3.2.3.11 DDS_DomainParticipantListener_on_requested_incompatible_qos (inherited, abstract)
	3.2.3.12 DDS_DomainParticipantListener_on_sample_lost (inherited, abstract)
	3.2.3.13 DDS_DomainParticipantListener_on_sample_rejected (inherited, abstract)
	3.2.3.14 DDS_DomainParticipantListener_on_subscription_matched (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Class DDS_TopicDescription (abstract)
	3.3.1.1 DDS_TopicDescription_get_name
	3.3.1.2 DDS_TopicDescription_get_participant
	3.3.1.3 DDS_TopicDescription_get_type_name

	3.3.2 Class DDS_Topic
	3.3.2.1 DDS_Topic_enable (inherited)
	3.3.2.2 DDS_Topic_get_inconsistent_topic_status
	3.3.2.3 DDS_Topic_get_listener
	3.3.2.4 DDS_Topic_get_name (inherited)
	3.3.2.5 DDS_Topic_get_participant (inherited)
	3.3.2.6 DDS_Topic_get_qos
	3.3.2.7 DDS_Topic_get_status_changes (inherited)
	3.3.2.8 DDS_Topic_get_statuscondition (inherited)
	3.3.2.9 DDS_Topic_get_type_name (inherited)
	3.3.2.10 DDS_Topic_set_listener
	3.3.2.11 DDS_Topic_set_qos

	3.3.3 Class DDS_ContentFilteredTopic
	3.3.3.1 DDS_ContentFilteredTopic_get_expression_parameters
	3.3.3.2 DDS_ContentFilteredTopic_get_filter_expression
	3.3.3.3 DDS_ContentFilteredTopic_get_name (inherited)
	3.3.3.4 DDS_ContentFilteredTopic_get_participant (inherited)
	3.3.3.5 DDS_ContentFilteredTopic_get_related_topic
	3.3.3.6 DDS_ContentFilteredTopic_get_type_name (inherited)
	3.3.3.7 DDS_ContentFilteredTopic_set_expression_parameters

	3.3.4 Class DDS_MultiTopic
	3.3.4.1 DDS_MultiTopic_get_expression_parameters
	3.3.4.2 DDS_MultiTopic_get_name (inherited)
	3.3.4.3 DDS_MultiTopic_get_participant (inherited)
	3.3.4.4 DDS_MultiTopic_get_subscription_expression
	3.3.4.5 DDS_MultiTopic_get_type_name (inherited)
	3.3.4.6 DDS_MultiTopic_set_expression_parameters

	3.3.5 DDS_TopicListener Interface
	3.3.5.1 DDS_TopicListener__alloc
	3.3.5.2 DDS_TopicListener_on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition Type Specific Classes
	3.3.6.1 Class DDS_TypeSupport (abstract)
	3.3.6.2 DDS_TypeSupport__alloc (abstract)
	3.3.6.3 DDS_TypeSupport_get_type_name (abstract)
	3.3.6.4 DDS_TypeSupport_register_type (abstract)
	3.3.6.5 Class SPACE_FooTypeSupport
	3.3.6.6 SPACE_FooTypeSupport__alloc
	3.3.6.7 SPACE_FooTypeSupport_get_type_name
	3.3.6.8 SPACE_FooTypeSupport_register_type

	3.4 Publication Module
	3.4.1 Class DDS_Publisher
	3.4.1.1 DDS_Publisher_begin_coherent_changes
	3.4.1.2 DDS_Publisher_copy_from_topic_qos
	3.4.1.3 DDS_Publisher_create_datawriter
	3.4.1.4 DDS_Publisher_delete_contained_entities
	3.4.1.5 DDS_Publisher_delete_datawriter
	3.4.1.6 DDS_Publisher_enable (inherited)
	3.4.1.7 DDS_Publisher_end_coherent_changes
	3.4.1.8 DDS_Publisher_get_default_datawriter_qos
	3.4.1.9 DDS_Publisher_get_listener
	3.4.1.10 DDS_Publisher_get_participant
	3.4.1.11 DDS_Publisher_get_qos
	3.4.1.12 DDS_Publisher_get_status_changes (inherited)
	3.4.1.13 DDS_Publisher_get_statuscondition (inherited)
	3.4.1.14 DDS_Publisher_lookup_datawriter
	3.4.1.15 DDS_Publisher_resume_publications
	3.4.1.16 DDS_Publisher_set_default_datawriter_qos
	3.4.1.17 DDS_Publisher_set_listener
	3.4.1.18 DDS_Publisher_set_qos
	3.4.1.19 DDS_Publisher_suspend_publications
	3.4.1.20 DDS_Publisher_wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Class DDS_DataWriter (abstract)
	3.4.2.2 DDS_DataWriter_assert_liveliness
	3.4.2.3 DDS_DataWriter_dispose (abstract)
	3.4.2.4 DDS_DataWriter_dispose_w_timestamp (abstract)
	3.4.2.5 DDS_DataWriter_enable (inherited)
	3.4.2.6 DDS_DataWriter_get_key_value (abstract)
	3.4.2.7 DDS_DataWriter_get_listener
	3.4.2.8 DDS_DataWriter_get_liveliness_lost_status
	3.4.2.9 DDS_DataWriter_get_matched_subscription_data
	3.4.2.10 DDS_DataWriter_get_matched_subscriptions
	3.4.2.11 DDS_DataWriter_get_offered_deadline_missed_status
	3.4.2.12 DDS_DataWriter_get_offered_incompatible_qos_status
	3.4.2.13 DDS_DataWriter_get_publication_matched_status
	3.4.2.14 DDS_DataWriter_get_publisher
	3.4.2.15 DDS_DataWriter_get_qos
	3.4.2.16 DDS_DataWriter_get_status_changes (inherited)
	3.4.2.17 DDS_DataWriter_get_statuscondition (inherited)
	3.4.2.18 DDS_DataWriter_get_topic
	3.4.2.19 DDS_DataWriter_lookup_instance (abstract)
	3.4.2.20 DDS_DataWriter_register_instance (abstract)
	3.4.2.21 DDS_DataWriter_register_instance_w_timestamp (abstract)
	3.4.2.22 DDS_DataWriter_set_listener
	3.4.2.23 DDS_DataWriter_set_qos
	3.4.2.24 DDS_DataWriter_unregister_instance (abstract)
	3.4.2.25 DDS_DataWriter_unregister_instance_w_timestamp (abstract)
	3.4.2.26 DDS_DataWriter_wait_for_acknowledgments
	3.4.2.27 DDS_DataWriter_write (abstract)
	3.4.2.28 DDS_DataWriter_write_w_timestamp (abstract)
	3.4.2.29 DDS_DataWriter_writedispose (abstract)
	3.4.2.30 DDS_DataWriter_writedispose_w_timestamp (abstract)
	3.4.2.31 Class SPACE_FooDataWriter
	3.4.2.32 SPACE_FooDataWriter_assert_liveliness (inherited)
	3.4.2.33 SPACE_FooDataWriter_dispose
	3.4.2.34 SPACE_FooDataWriter_dispose_w_timestamp
	3.4.2.35 SPACE_FooDataWriter_enable (inherited)
	3.4.2.36 SPACE_FooDataWriter_get_key_value
	3.4.2.37 SPACE_FooDataWriter_get_listener (inherited)
	3.4.2.38 SPACE_FooDataWriter_get_liveliness_lost_status (inherited)
	3.4.2.39 SPACE_FooDataWriter_get_matched_subscription_data (inherited)
	3.4.2.40 SPACE_FooDataWriter_get_matched_subscriptions (inherited)
	3.4.2.41 SPACE_FooDataWriter_get_offered_deadline_missed_status (inherited)
	3.4.2.42 SPACE_FooDataWriter_get_offered_incompatible_qos_status (inherited)
	3.4.2.43 SPACE_FooDataWriter_get_publication_matched_status (inherited)
	3.4.2.44 SPACE_FooDataWriter_get_publisher (inherited)
	3.4.2.45 SPACE_FooDataWriter_get_qos (inherited)
	3.4.2.46 SPACE_FooDataWriter_get_status_changes (inherited)
	3.4.2.47 SPACE_FooDataWriter_get_statuscondition (inherited)
	3.4.2.48 SPACE_FooDataWriter_get_topic (inherited)
	3.4.2.49 SPACE_FooDataWriter_lookup_instance
	3.4.2.50 SPACE_FooDataWriter_register_instance
	3.4.2.51 SPACE_FooDataWriter_register_instance_w_timestamp
	3.4.2.52 SPACE_FooDataWriter_set_listener (inherited)
	3.4.2.53 SPACE_FooDataWriter_set_qos (inherited)
	3.4.2.54 SPACE_FooDataWriter_unregister_instance
	3.4.2.55 SPACE_FooDataWriter_unregister_instance_w_timestamp
	3.4.2.56 SPACE_FooDataWriter_wait_for_acknowledgments (inherited)
	3.4.2.57 SPACE_FooDataWriter_write
	3.4.2.58 SPACE_FooDataWriter_write_w_timestamp
	3.4.2.59 SPACE_FooDataWriter_writedispose
	3.4.2.60 SPACE_FooDataWriter_writedispose_w_timestamp

	3.4.3 DDS_PublisherListener interface
	3.4.3.1 DDS_PublisherListener__alloc
	3.4.3.2 DDS_PublisherListener_on_liveliness_lost (inherited, abstract)
	3.4.3.3 DDS_PublisherListener_on_offered_deadline_missed (inherited, abstract)
	3.4.3.4 DDS_PublisherListener_on_offered_incompatible_qos (inherited, abstract)
	3.4.3.5 DDS_PublisherListener_on_publication_matched (inherited, abstract)

	3.4.4 DDS_DataWriterListener interface
	3.4.4.1 DDS_DataWriterListener__alloc
	3.4.4.2 DDS_DataWriterListener_on_liveliness_lost (abstract)
	3.4.4.3 DDS_DataWriterListener_on_offered_deadline_missed (abstract)
	3.4.4.4 DDS_DataWriterListener_on_offered_incompatible_qos (abstract)
	3.4.4.5 DDS_DataWriterListener_on_publication_matched (abstract)

	3.5 Subscription Module
	3.5.1 Class DDS_Subscriber
	3.5.1.1 DDS_Subscriber_begin_access
	3.5.1.2 DDS_Subscriber_copy_from_topic_qos
	3.5.1.3 DDS_Subscriber_create_datareader
	3.5.1.4 DDS_Subscriber_delete_contained_entities
	3.5.1.5 DDS_Subscriber_delete_datareader
	3.5.1.6 DDS_Subscriber_enable (inherited)
	3.5.1.7 DDS_Subscriber_end_access
	3.5.1.8 DDS_Subscriber_get_datareaders
	3.5.1.9 DDS_Subscriber_get_default_datareader_qos
	3.5.1.10 DDS_Subscriber_get_listener
	3.5.1.11 DDS_Subscriber_get_participant
	3.5.1.12 DDS_Subscriber_get_qos
	3.5.1.13 DDS_Subscriber_get_status_changes (inherited)
	3.5.1.14 DDS_Subscriber_get_statuscondition (inherited)
	3.5.1.15 DDS_Subscriber_lookup_datareader
	3.5.1.16 DDS_Subscriber_notify_datareaders
	3.5.1.17 DDS_Subscriber_set_default_datareader_qos
	3.5.1.18 DDS_Subscriber_set_listener
	3.5.1.19 DDS_Subscriber_set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Class DDS_DataReader (abstract)
	3.5.2.2 DDS_DataReader_create_querycondition
	3.5.2.3 DDS_DataReader_create_readcondition
	3.5.2.4 DDS_DataReader_delete_contained_entities
	3.5.2.5 DDS_DataReader_delete_readcondition
	3.5.2.6 DDS_DataReader_enable (inherited)
	3.5.2.7 DDS_DataReader_get_key_value (abstract)
	3.5.2.8 DDS_DataReader_get_listener
	3.5.2.9 DDS_DataReader_get_liveliness_changed_status
	3.5.2.10 DDS_DataReader_get_matched_publication_data
	3.5.2.11 DDS_DataReader_get_matched_publications
	3.5.2.12 DDS_DataReader_get_qos
	3.5.2.13 DDS_DataReader_get_requested_deadline_missed_status
	3.5.2.14 DDS_DataReader_get_requested_incompatible_qos_status
	3.5.2.15 DDS_DataReader_get_sample_lost_status
	3.5.2.16 DDS_DataReader_get_sample_rejected_status
	3.5.2.17 DDS_DataReader_get_status_changes (inherited)
	3.5.2.18 DDS_DataReader_get_statuscondition (inherited)
	3.5.2.19 DDS_DataReader_get_subscriber
	3.5.2.20 DDS_DataReader_get_subscription_matched_status
	3.5.2.21 DDS_DataReader_get_topicdescription
	3.5.2.22 DDS_DataReader_lookup_instance (abstract)
	3.5.2.23 DDS_DataReader_read (abstract)
	3.5.2.24 DDS_DataReader_read_instance (abstract)
	3.5.2.25 DDS_DataReader_read_next_instance (abstract)
	3.5.2.26 DDS_DataReader_read_next_instance_w_condition (abstract)
	3.5.2.27 DDS_DataReader_read_next_sample (abstract)
	3.5.2.28 DDS_DataReader_read_w_condition (abstract)
	3.5.2.29 DDS_DataReader_return_loan (abstract)
	3.5.2.30 DDS_DataReader_set_listener
	3.5.2.31 DDS_DataReader_set_qos
	3.5.2.32 DDS_DataReader_take (abstract)
	3.5.2.33 DDS_DataReader_take_instance (abstract)
	3.5.2.34 DDS_DataReader_take_next_instance (abstract)
	3.5.2.35 DDS_DataReader_take_next_instance_w_condition (abstract)
	3.5.2.36 DDS_DataReader_take_next_sample (abstract)
	3.5.2.37 DDS_DataReader_take_w_condition (abstract)
	3.5.2.38 DDS_DataReader_wait_for_historical_data
	3.5.2.39 Class SPACE_FooDataReader
	3.5.2.40 SPACE_FooDataReader_create_querycondition (inherited)
	3.5.2.41 SPACE_FooDataReader_create_readcondition (inherited)
	3.5.2.42 SPACE_FooDataReader_delete_contained_entities (inherited)
	3.5.2.43 SPACE_FooDataReader_delete_readcondition (inherited)
	3.5.2.44 SPACE_FooDataReader_enable (inherited)
	3.5.2.45 SPACE_FooDataReader_get_key_value
	3.5.2.46 SPACE_FooDataReader_get_listener (inherited)
	3.5.2.47 SPACE_FooDataReader_get_liveliness_changed_status (inherited)
	3.5.2.48 SPACE_FooDataReader_get_matched_publication_data (inherited)
	3.5.2.49 SPACE_FooDataReader_get_matched_publications (inherited)
	3.5.2.50 SPACE_FooDataReader_get_qos (inherited)
	3.5.2.51 SPACE_FooDataReader_get_requested_deadline_missed_status (inherited)
	3.5.2.52 SPACE_FooDataReader_get_requested_incompatible_qos_status (inherited)
	3.5.2.53 SPACE_FooDataReader_get_sample_lost_status (inherited)
	3.5.2.54 SPACE_FooDataReader_get_sample_rejected_status (inherited)
	3.5.2.55 SPACE_FooDataReader_get_status_changes (inherited)
	3.5.2.56 SPACE_FooDataReader_get_statuscondition (inherited)
	3.5.2.57 SPACE_FooDataReader_get_subscriber (inherited)
	3.5.2.58 SPACE_FooDataReader_get_subscription_matched_status (inherited)
	3.5.2.59 SPACE_FooDataReader_get_topicdescription (inherited)
	3.5.2.60 SPACE_FooDataReader_lookup_instance
	3.5.2.61 SPACE_FooDataReader_read
	3.5.2.62 SPACE_FooDataReader_read_instance
	3.5.2.63 SPACE_FooDataReader_read_next_instance
	3.5.2.64 SPACE_FooDataReader_read_next_instance_w_condition
	3.5.2.65 SPACE_FooDataReader_read_next_sample
	3.5.2.66 SPACE_FooDataReader_read_w_condition
	3.5.2.67 SPACE_FooDataReader_return_loan
	3.5.2.68 SPACE_FooDataReader_set_listener (inherited)
	3.5.2.69 SPACE_FooDataReader_set_qos (inherited)
	3.5.2.70 SPACE_FooDataReader_take
	3.5.2.71 SPACE_FooDataReader_take_instance
	3.5.2.72 SPACE_FooDataReader_take_next_instance
	3.5.2.73 SPACE_FooDataReader_take_next_instance_w_condition
	3.5.2.74 SPACE_FooDataReader_take_next_sample
	3.5.2.75 SPACE_FooDataReader_take_w_condition
	3.5.2.76 SPACE_FooDataReader_wait_for_historical_data (inherited)

	3.5.3 Class DDS_DataSample
	3.5.4 Struct DDS_SampleInfo
	3.5.4.1 DDS_SampleInfo

	3.5.5 DDS_SubscriberListener Interface
	3.5.5.1 DDS_SubscriberListener__alloc
	3.5.5.2 DDS_SubscriberListener_on_data_available (inherited, abstract)
	3.5.5.3 DDS_SubscriberListener_on_data_on_readers (abstract)
	3.5.5.4 DDS_SubscriberListener_on_liveliness_changed (inherited, abstract)
	3.5.5.5 DDS_SubscriberListener_on_requested_deadline_missed (inherited, abstract)
	3.5.5.6 DDS_SubscriberListener_on_requested_incompatible_qos (inherited, abstract)
	3.5.5.7 DDS_SubscriberListener_on_sample_lost (inherited, abstract)
	3.5.5.8 DDS_SubscriberListener_on_sample_rejected (inherited, abstract)
	3.5.5.9 DDS_SubscriberListener_on_subscription_matched (inherited, abstract)

	3.5.6 DDS_DataReaderListener interface
	3.5.6.1 DDS_DataReaderListener__alloc
	3.5.6.2 DDS_DataReaderListener_on_data_available (abstract)
	3.5.6.3 DDS_DataReaderListener_on_liveliness_changed (abstract)
	3.5.6.4 DDS_DataReaderListener_on_requested_deadline_missed (abstract)
	3.5.6.5 DDS_DataReaderListener_on_requested_incompatible_qos (abstract)
	3.5.6.6 DDS_DataReaderListener_on_sample_lost (abstract)
	3.5.6.7 DDS_DataReaderListener_on_sample_rejected (abstract)
	3.5.6.8 DDS_DataReaderListener_on_subscription_matched (abstract)

	3.5.7 Class DDS_ReadCondition
	3.5.7.1 DDS_ReadCondition_get_datareader
	3.5.7.2 DDS_ReadCondition_get_instance_state_mask
	3.5.7.3 DDS_ReadCondition_get_sample_state_mask
	3.5.7.4 DDS_ReadCondition_get_trigger_value (inherited)
	3.5.7.5 DDS_ReadCondition_get_view_state_mask

	3.5.8 Class DDS_QueryCondition
	3.5.8.1 DDS_QueryCondition_get_datareader (inherited)
	3.5.8.2 DDS_QueryCondition_get_instance_state_mask (inherited)
	3.5.8.3 DDS_QueryCondition_get_query_parameters
	3.5.8.4 DDS_QueryCondition_get_query_expression
	3.5.8.5 DDS_QueryCondition_get_sample_state_mask (inherited)
	3.5.8.6 DDS_QueryCondition_get_trigger_value (inherited)
	3.5.8.7 DDS_QueryCondition_get_view_state_mask (inherited)
	3.5.8.8 DDS_QueryCondition_set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DDS_DataReaderQos
	DDS_DataWriterQos
	DDS_DomainParticipantFactoryQos
	DDS_DomainParticipantQos
	DDS_PublisherQos
	DDS_SubscriberQos
	DDS_TopicQos

	B API Constants and Types
	C Platform Specific IDL Interface
	dds_dcps.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State per Sample

	instance_state
	DDS_OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	read_w_condition
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Class Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	DDS_StatusCondition Trigger State
	DDS_ReadCondition and DDS_QueryCondition Trigger State
	DDS_GuardCondition Trigger State

	G DDS_Topic Definitions
	DDS_Topic Definition Example
	Complex Topics
	IDL Pre-processor
	IDL to Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL Subset in BNF Notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

