OpenSplice DDS

Version 4.x

C+ + Reference Guide

v PRISMTECH

OpenSplice DDS

C+ + REFERENCE GUIDE

& PRISMTECH

Part Number: OS-CPPREFG Doc Issue 22, 8 September 2009

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

i
& PRISMTECH C++ Reference Guide

CONTENTS

Table of Contents

Preface

I ntroduction

About the C++ ReferenceGuide i, XVii

@011 1= ox £ XiX

About the C++ Reference Guide 3
Document SLrUCtUIeo 3
PN aLiONS . .ottt e 4
APl Reference
Chapter 1 DCPS API General Description 7
L1 Thread Safety e e e 8
1.2 Signal Handling. i 8
1.3 Memory Managementt e e 9
131 Reference Countt 9
1.3.2 ReferenCe TYPeS . ..ot 9
1320 POINEr TYPES . ..ottt et e e e e e e 9
1322 Var ReferenCe TYPeS . ..o oot e e e 10
13,23 ASSIgNMEN . . oottt 10
L4 Listener Interfacesot e 12
1.5 Inheritance of Abstract Operationscoiiiriennn.. 13
Chapter 2 DCPSModules 15
20 Functionality e 15
2.2 InfrastructureModule. 16
23 Domain Module. 17
2.4 Topic-DefinitionModule 18
2.5 Publication Module. 20
2.6 SubscriptionModule 21
Chapter 3 DCPS Classes and Operations 25
3.1 InfrastructureModule. 26
3.1.1 ClassEntity (abstract)coiii i e e 26
L1 T enable 27
3.1.1.2 get_instance handle. 29
3113 get_listener (AbStract)o 30
3114 get_qos(abstract) 30
3115 get status Changes. o vt 30
& PRISMTECH v

C++ Reference Guide

Table of Contents

get_statuscondition. 32
set listener (abstract) e 32
Set gos(AbStract) . ..o oo 33
Class DomainEntity (abstract).co i 33
Struct QOSPOIICY . . oo 33
DeadlineQoSPOlICYot 41
DestinationOrderQosPolicy 43
DurabilityQosPolicy 45
DurabilityServiceQosPolicy 48
EntityFactoryQosPolicyo 50
GroupDataQOoSPOlICYo 51
HistoryQosPolicyo 52
LatencyBudgetQosPolicy 54
LifespanQosPolicyt e 56
LivelinessQosPolicy. 57
OwnershipQosPolicy 59
OwnershipStrengthQosPolicy, 61
PartitionQosPolicyt 62
PresentationQosPolicy i 63
ReaderDatalifecycleQosPolicy, 65
ReliabilityQosPolicy. 66
ResourceLimitsQosPolicy 68
SchedulingQosPolicy 69
TimeBasedFilterQosPolicy.t 70
TopicDataQosPoliCy. . ..o 71
TransportPriorityQosPolicy ... 71
UserDataQosPoliCyot 72
WriterDatalifecycleQosPolicy ..., 73
Listener Interface. 74
SHUCE SEBLUS. . . . oo ottt et e e e e e e 75
InconsistentTOpICStatUS oo 79
LivelinessChangedStatusot 79
LivelinessLostStatus. oot 81
OfferedDeadlineMissedStatus 82
OfferedincompatibleQosStatuscoiii i 83
PublicationMatchedStatus 85
RequestedDeadlineMissedStatuso oo 86
ReguestedincompatibleQosStatus o i, 87
SampleLostStatus.o 89
SampleRgectedStatus 89
SubscriptionMatchedStatus 91
ClassWaitSel.o 91

Vi
& PRISMTECH

C++ Reference Guide

Table of Contents

& PRISMTECH

attach condition 92
detach condition. i e 93
get conditions. e 94
WAt . L 95
Class Condition oot 97
get_trigger_valuet 98
Class GuardConditiont 98
get trigger value(inherited) o L, 99
set trigger value. e 99
Class StatusCondition e 100
get_enabled StatUSES. . .. oo oot 102
OBt BNLItY ..ot 103
get_trigger_value(inherited) 103
set enabled StalUSES. 104
Domain Module. 106
ClassDomainParticipant e 106
assert_ liVEliNeSSo 110
contains entity e 111
create_contentfilteredtopic. i 112
create MUItitopICot 113
create publisher 115
create subscriber e 117
Creale fOPIC. . o vttt et et e e e 119
delete contained entities. i 122
delete_contentfilteredtopic............ i 123
delete multitopic ... e 125
delete publisher 126
delete subscriber 127
delete tOPIC. ... oot 128
enable (inherited) 130
fiNd tOPIC . ..o e 130
get_builtin_subscriber. 131
get_current_time. 132
get_default_publisher qos i 133
get_default_subscriber qos ... 134
get_default_topic gOS. oot 136
get_discovered participantS. 137
get_discovered participant data L 137
get_discovered tOpICS.o vt 137
get_discovered topic data. 138
get_ domain id ... 138
get liStener . ..o 139

VII

C++ Reference Guide

Table of Contents

viii

C++ Reference Guide

0T o (01 139
get_status changes(inherited) L 140
get_statuscondition (inherited) i 140
ignore_participant. 141
ignore_publication 141
ignore_SUDSCHPLION o 141

[T 10 £ = (] o 142
lookup _topicdescription. 142
set default publisher qoso 143
set_default_subscriber qos. 144
set_default_topic goOS. 145
Set liSteNer ..o 147
SEl OS .ttt e e 149
Class DomainParticipantFactoryt 150
create participant e 151
delete participant 154
get_default_participant_qoS.c.ciiiiii i 155
QL INSEANCE . ..ot e 156
0T o (01 157
lookup participantco it e 158
set_default_participant_qoS i 159
S gOS . .o 160
DomainParticipantListener interface., 161
on_data available (inherited, abstract). 163
on_data_on readers (inherited, abstract) 163
on_inconsistent_topic (inherited, abstract). 164
on_liveliness_changed (inherited, abstract) 164
on_liveliness lost (inherited, abstract). 164
on_offered_deadline_missed (inherited, abstract) 164
on_offered_incompatible_gos (inherited, abstract) 165
on_publication_matched (inherited, abstract) 165
on_requested_deadline_missed (inherited, abstract) 165
on_requested_incompatible_qos (inherited, abstract) 165
on_sample_lost (inherited, abstract). 166
on_sample_rejected (inherited, abstract) 166
on_subscription_matched (inherited, abstract). 166
Topic-DefinitionModule i 167
Class TopicDescription (abstract) 168
OB MM, . 169
get_participant 169
Ot tYPE NAIME . . .ottt 170
ClasS TOPIC .ottt 171
& PRISMTECH

Table of Contents

& PRISMTECH

enable (inherited) 172
get_inconsistent_topic Status.c i 172
get listenero e 173
get_name(inherited). 174
get_participant (inherited) 174
OBL OS . .ottt 174
get_status changes(inherited) oL 175
get_statuscondition (inherited) oL 175
get type name(inherited) 176
et IS ONEr .. e e 176

S 00 . i 177
Class ContentFilteredTOpIiC. oo ot 179
get_expression_ParameterS. . ..o v i 180
get filter eXpression. e 181
get name(inherited). 182
get_participant (inherited) 182
get_related tOPIC. . .. oot 182
get type name(inherited) 183
SEt_ EXPression_ParameterS. . ..o vt 183
ClassMUItI TOPIC . .« ot ot e e e e e e e e e 184
get_expression_parameters.o 185
get_name(inherited). 186
get_participant (inherited) 187
get_SUbSCiption eXPression. . ..o oot 187
get type name(inherited) 188
Set eXpression parameterS. . ..o v it i 188
TopicListenerinterface 189
on_inconsistent_topic (abstract) 190
Topic-Definition Type SpecificClasses 191
Class TypeSupport (abstract) 191
get type name(@bstract) 192
register type(abstract) 192
Class FOOTYPESUPPOIt . . . ottt e et e 192
gel_type name 193
(101K (= 1Y/ < P 194
Publication Module. 195
ClassPublisher. 196
begin coherent_ changes. i 198
copy_from topiC gOS. oot 200
create datawriter.o e 201
delete contained entities......... ... i 204
delete datawriter. e 205
IX

C++ Reference Guide

Table of Contents

X
C++ Reference Guide

enable (inherited) 206
end coherent changes............ i i 206
get default datawriter oS ...t 207
get listener 208
get_partiCipant e 209
OB 00S . . it 209
get_status changes (inherited) L 210
get_statuscondition (inherited) i 211
lookup datawriter. 211
resume_publications. e 211
set_default_datawriter gos........... .o 212
St LISt eNer ..o 214
SEL OS i it e e 216
suspend _publications. 217
wait for_acknowledgments............. 218
Publication Type SpecificClasses. oo 219
Class DataWriter (abstract) ... 220
assert livelineSS 223
dispose (abstract)co i 224
dispose w_timestamp (abstract). i 224
enable (inherited) 225
get key value(abstract). 225
Oet ISteNer . . . 225
get_liveliness [ost StatusS.o iei i e 226
get_matched subscription data. 227
get matched subscriptions. i 227
get_offered_deadline missed status 227
get_offered_incompatible gos status, 228
get_publication_matched status. i, 230
get publisher e 230
0 T S (01 230
get_status changes(inherited) L 231
get_statuscondition (inherited) L, 232
1< S (o o 232
lookup_instance (abstract) 233
register instance(abstract). i 233
register_instance w_timestamp (abstract) 233
Set ligtener ... 233
S gOS . .o 235
unregister_instance (abstract). 237
unregister_instance_w_timestamp (abstract) 237
wait_for_acknowledgments................ 237
& PRISMTECH

Table of Contents

& PRISMTECH

write (@bstract) 238
write w_timestamp (abstract) L 239
writedispose (abstract)c 239
writedispose w_timestamp (abstract)l 239
ClassFooDataWritert e 240
assert_liveliness (inherited) o 243
AiSPOSE . oo 243
dispose w_timestamp. 247
enable(inherited) 248
get_ key value. 248
get_listener (inherited) 250
get_liveliness lost_status (inherited) 250
get_matched subscription_data (inherited) 250
get_matched subscriptions (inherited). 250
get_offered deadline missed status (inherited) 251
get_offered_incompatible_gos_status (inherited) 251
get_publication_matched_status (inherited). 251
get_publisher (inherited). i 251
get gos(inherited) 252
get_status changes(inherited) L, 252
get_statuscondition (inherited) L. 252
get_topic (inherited) 252
[0OKUP _INStaNCeo 252
register iNStanCe. . ..ot e 254
register instance w timestampt 256
set listener (inherited) 257
set_ qos(inherited) 257
unregister instanCe.ooo it 257
unregister_instance w_timestamp oo 261
W L e 262
write W timestamp.o 265
WHEEdISPOSE . . ot ot e 266
writedispose w_timestamp.o 270
PublisherListener Interface i 272
on_liveliness_lost (inherited, abstract) L 273
on_offered_deadline_missed (inherited, abstract) 273
on_offered_incompatible_qos (inherited, abstract) 273
on_publication_matched (inherited, abstract) 274
DataWriterListener Interface. i 274
on_liveliness lost (abstract) i 275
on_offered_deadline missed (abstract) 276
on_offered_incompatible qos (abstract) 277
Xl

C++ Reference Guide

Table of Contents

xii
C++ Reference Guide

on_publication_matched (abstract). 278
SubscriptionModule 279
Class Subscriber 280
begin_access. 282
COPY_from _OPIC gOS. . .« .o v ettt 282
create datareader 284
delete contained entities........... i i 287
delete datareader 288
enable(inherited) i 289
BN BCCESS . ittt 289
get_datareaders. 289
get_default datareader oSt 290
get listenero 291
get participant e 292
0 S (01 292
get_status changes (inherited) L. 293
get_statuscondition (inherited) 293
lookup datareader i e 294
notify datareaders i e 294
set default datareader QOS oo 296
Set listener ... 297
S 00 299
Subscription Type SpecificClasses.t 301
ClassDataReader (abstract) 301
create_querycondition 306
create readcondition. 307
delete contained entities. i i e 308
delete readcondition. e 310
enable (inherited) o 311
get key value(abstract). 311
get liStener ... e 311
get liveliness changed status.. i 312
get_matched publication data. 313
get_matched publications i, 313
OB 00S . . it 313
get_requested deadline missed status, 314
get_requested incompatible gos status 315
get sample lost status. 316
get_sample regected_ status 318
get_status changes (inherited) L. 319
get_statuscondition (inherited) 319
get_ SUDSCHibEr. ... o 319
& PRISMTECH

Table of Contents

& PRISMTECH

get_subscription matched status. 320
get_topicdesCription i e 320
lookup instance(abstract) i 321
read (Abstract) 321
read instance (abstract) 321
read next_instance (abstract) 322
read next_instance w_condition (abstract) 322
read_next sample(abstract)........... i 323
read w_condition (abstract) i 323
return_loan (abstract) 323
SEt LISt ENer .. 324
S g0S . i e 326
take (ADSIract)o 327
take instance (abstract) i 328
take next instance(abstract) i 328
take _next_instance_ w_condition (abstract) 328
take next_sample(abstract) 329
take w_condition (abstract) 329
wait_for_historical data.............. i 329
ClassFooDataReadert 331
create_querycondition (inherited). L 336
create_readcondition (inherited). L 336
delete_contained_entities (inherited) 336
delete readcondition (inherited). o 337
enable (inherited) 337
get key value. 337
get_listener (inherited) 337
get_liveliness_changed_status (inherited) 338
get_matched publication_data (inherited) 338
get_matched publications (inherited) 338
get gos(inherited) 338
get_requested deadline missed_status (inherited) 339
get_requested_incompatible_gos_status (inherited). 339
get_sample lost_status (inherited) L. 339
get_sample _rejected_status (inherited)l 339
get_status changes (inherited) il 339
get_statuscondition (inherited) o o 340
get_subscriber (inherited) 340
get_subscription_matched_status (inherited) 340
get_topicdescription (inherited) L 340
[0OKUP _INStaNCEo 341
1= 341

xiii

C++ Reference Guide

Table of Contents

Xiv
C++ Reference Guide

read iNStanCeot e 346
read next instance.t e 347
read_next _instance w_condition............... 350
read next_sample. e 352
read w_condition. 352
FEEUMN _J0@N . . .o 354
set_listener (inherited) 356
set gos(inherited) i 356
taKE . L 356
take INStaNCE i e e 358
take next instanCe.t 359
take_next_instance w_condition................ 361
take next sample. ... o 363
take w condition. e 363
wait_for_historical_data(inherited)................. 365
ClassDataSampleo e 365
Struct Samplelnfo 365
Samplelnfo.o 366
SubscriberListener Interface 369
on_data available (inherited, abstract). 370
on_data on readers(abstract) 371
on_liveliness_changed (inherited, abstract) 372
on_requested_deadline_missed (inherited, abstract) 372
on_requested_incompatible _qos (inherited, abstract) 372
on_sample_lost (inherited, abstract). 373
on_sample_regjected (inherited, abstract) 373
on_subscription_matched (inherited, abstract). 373
DataReaderListener Interface 373
on_data available(abstract). ... 375
on_liveliness changed (abstract) oo 376
on_requested deadline missed (abstract) 377
on_requested_incompatible gos (abstract) 378
on_sample lost (abstract). 379
on_sample rejected (abstract) 379
on_subscription_matched (abstract). 380
ClassReadCondition.ovu e e 381
get datareader. i e 382
get instance state mask 382
get sample state mask 383
get_trigger_value(inherited) 384
get View_State maskv oo 384
ClassQueryConditiont e e 385
& PRISMTECH

Table of Contents

& PRISMTECH

get_datareader (inherited). 386
get_instance state mask (inherited). L 386

el qUErY ParameterS.ot 386
get_qUErY EXPreSSION . . . oo ittt et et 387
get_sample _state mask (inherited) L, 388
get_trigger_value (inherited) 388

get view_state mask (inherited) oL 389

SEl qUErY parameterS. e 389
Quality Of Service 393
Affected ENtitieso 393
BaSiCUSAgE e e 393
DataReaderQosSot 395
DAtV eI Q0S. . . ot e e e e 397
DomainParticipantFactoryQost 400
DomainParticipantQoS. oot 401
PUDIISNErQOS . . .o 402
SUbSCIibErQOS . . . o 403
TOPICQOS . . ottt 405
.. 407
API Constantsand Types 409
Platform Specific Model IDL Interface 415
dds deps.idl . ..o 415
SampleStates, ViewStates and I nstanceStates 443
Samplelnfo Class. e 443
SAMPIE Sto 443
INStANCE Stale. . . .o e e e e 444
VIBW St . oo e e e 446
State Masks 448
Operations Concerning StateS oo vttt 449
ClassInheritance 453
Listeners, Conditions and Waitsets 455
Communication StatusBvent e 456
LIS N S, . o e e e 459
Conditionsand WatSelSot i e e e e 461
StatusCondition Trigger Stateo v oot e 464
ReadCondition and QueryCondition Trigger State. 464
GuardCondition Trigger State. oot e 465
XV

C++ Reference Guide

Table of Contents

Topic Definitions 467
Topic DefinitionExample. 467
CompPIEX TOPICS. . . . ettt et e e e e e e e 468
I L Pre-PrOCESSOr .« v v v vt e et e e e e 468
IDL-to-Host Language Mapping.o v oo i e e e e e e e 468
DataDistribution Service IDL Keywords., 468
Data Distribution Service IDL PragmaKeylist. 469
Data Distribution Service IDL subset in BNF-notation 469
DCPS Queriesand Filters 473
SOL Grammar inBNF e e 473
SQL TOKEN EXPreSSION . . . oottt et ettt e e 474
SQL EXamples. 475
Bibliography 479
Glossary 483
I ndex 487

XVi s
C++ Reference Guide PrRISMTECH

Preface

About the C++ Reference Guide

The C++ Reference Guide provides a detailed explanation of the OpenSplice DDS
(Subscription Paradigm for the Logical I nterconnection of Concurrent Engines)
Application Programming Interfaces for the C++ language.

Thisreference guide is based on the OMG'’s Data Distribution Service Specification
and C++ Language Mapping Specification.

The C++ Reference Guide focuses on the Data Centric Publish Subscribe (DCPS)
layer and does not cover the DLRL layer. The purpose of the DCPS is the
distribution of data (publish/subscribe). The structure of the DCPSis divided into
five modules. Each module consists of several classes, which in turn generally
contain several operations.

Intended Audience

The C++ Reference Guide is intended to be used by C++ programmers who are
using OpenSplice DDS to develop applications.

Organisation

& PRISMTECH

The C++ Reference Guide is organised as follows:
An Introduction describes the details of the document structure.

A Bibliography and Glossary are provided at the end of the guide with, respectively,
details of recommended references and definitions.

Chapter 1, DCPS API General Description, is a general description of the DCPS
APl and its error codes.

Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.

Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.

The following appendices are included, as well a Bibliography containing
references material and Glossary:

Appendix A, Quality Of Service

Appendix B, API Constants and Types

Appendix C, Platform Specific Model IDL Interface
Appendix D, SampleSates, ViewSates and InstanceSates
Appendix E, Class Inheritance

Appendix F, Listeners, Conditions and Waitsets

XVii
C++ Reference Guide

Preface

Appendix G, Topic Definitions

Appendix H, DCPS Queries and Filters

Conventions

i

C++

Java

Sep 1:

XVviii

The conventions listed below are used to guide and assist the reader in
understanding the C++ Reference Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or specia information.

Information applies to Windows (e.g. NT, 2000, XP) only.
Information appliesto Unix based systems (e.g. Solaris) only.
C language specific

C++ language specific

Javalanguage specific

Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xix, are as hypertext links: click on the reference to go to the item.

% Commands or input which the user enters on the
command line of their computer terminal

courier fontsindicate programming code and file names.
Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set 1d field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and I talic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from a menu.

One of several steps required to complete atask.

& PRISMTECH

C++ Reference Guide

Preface

Contacts

PrismTech can be reached at the following contact points for information and
technical support.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited

6 Lincoln Knoll Lane PrismTech House

Suite 100 5th Avenue Business Park
Burlington, MA Gateshead

01803 NE11 ONG

USA UK

Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //Amww.prismtech.com

Genera Enquiries: info@prismtech.com

XiX

& PRISMTECH C++ Reference Guide

http://www.prismtech.com
mailto: info@prismtech.com

Preface

XX

C++ Reference Guide & PRISMTECH

INTRODUCTION

About the C++ Reference Guide

Document Structure

&4 PRISMTECH

The C++ Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.

Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, asindicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific Model IDL Interface. These structs are described in the respective
chapters.

* In the classes as described in the PIM, which are implemented as a class in the
PSM, the operations are described in detail.

In the classes as described in the PIM, which are implemented as a struct in the
PSM, the struct contents are described in detail .

The order of the modules and classes is conform the PIM part.
The order of the operations or struct contents is al phabetical.
 Each description of aclass or struct starts with the API description header file.

DDS-DCPS
detailed description

Modules...

Structs... Classes...

Operations...

Figurel C++ Reference Guide Document Structure

3
C++ Reference Guide

Introduction

Operations

Several types of operations are described in this manual. The different types of
operations are: basic, inherited, abstract and abstract interface. All operations of any
type can be found in their respective class. The details of their description depends
on the type of operation.

Basic operations are described in detail in the class they are implemented in.

* Inherited operations only refer to the operation in the class they are inherited
from. The detailed description is not repeated.

» Abstract operations only refer to the type specific implementations in their
respective derived class. The detailed description is not repeated.

» Abstract operations which are implemented as an interface (Listeners), are
described in detail in their class. These operations must be implemented in the
application.

4

C++ Reference Guide & PRISMTECH

AP| REFERENCE

CHAPTER

1 DCPS API General Description

The structure of the DCPSis divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain

several operations.

Some of these operations have an operation return code of type ReturncCode_t,
which is defined in the next table:

Table 1 Return Codes

ReturnCode t

Return Code Description

RETCODE_OK

Successful return

RETCODE_ERROR

Generic, unspecified error

RETCODE_BAD_PARAMETER

Illegal parameter value

RETCODE_UNSUPPORTED

Unsupported operation or QosPolicy setting. Can only
be returned by operations that are optional or operations
that uses an optional <Entity>QoS asa parameter

RETCODE_ALREADY_DELETED

The object target of this operation has already been
deleted

RETCODE_OUT_OF_RESOURCES

Service ran out of the resources needed to complete the
operation

RETCODE_NOT_ENABLED

Operation invoked on an Ent ity that isnot yet enabled

RETCODE_IMMUTABLE_POLICY

Application attempted to modify an immutable
QosPolicy

RETCODE_INCONSISTENT_POLICY

Application specified a set of policies that are not
consistent with each other

RETCODE_PRECONDITION_NOT_MET

A pre-condition for the operation was not met

RETCODE_TIMEOUT

The operation timed out

RETCODE_ILLEGAL_OPERATION

An operation was invoked on an inappropriate object or
at an inappropriate time (as determined by QosPolicies
that control the behaviour of the object in question).
There is no precondition that could be changed to make
the operation succeed.

& This code can not be returned in C++.

RETCODE_NO_DATA

Indicates a situation where the operation did not return
any data

& PRISMTECH

-
API Reference

1 DCPS API General Description 1.1 Thread Safety

The name scope (name space) of these return codes is Dps. The operation return
codes RETCODE_OK, RETCODE_ERROR, RETCODE_BAD_PARAMETER,
RETCODE_UNSUPPORTED and RETCODE_ALREADY_DELETED are default for
operations that return an operation return code and are therefore not explicitly
mentioned in the DDS specification. However, in this manual they are mentioned
along with each operation.

Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return RETCODE_UNSUPPORTED
when called from the application. See Appendix B (APl Constants and Types).

The return code RETCODE_ILLEGAL_OPERATION can never be returned in C++: it
indicates that you try to invoke an operation on the wrong class, which in areal
Object Oriented language like C++ is never possible.

Thread Safety

All operations are thread safe.

Signal Handling

8
API Reference

The Data Distribution Service sets signal handlers in order to assure that resources
are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.

If the application needs to set signal handlers for its own use, two situations can
occur. In thefirst case the application setsasigna handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it's own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In
the second case the Data Distribution Service has already set a signal handler for a
specific signal and the application program redefines the signal handling by setting
itsown handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed as last) or to call the exit function itself when
the cached signal is meant to terminate the application process.

The Data Distribution Service will conditionally set the signal handlers when
creating the DomainParticipantFactory, which is the first call to
DDS: :DomainParticipantFactory: :get_instance for C++.

The Data Distribution Service only sets signal handlers for signals that have the
default behaviour of terminating the process without dumping a core.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

Memory M anagement

When objects are being created, they will occupy memory space. To avoid memory
leaks when they are not used any more, these objects will have to be deleted in order
to release the memory space. However, when using pointers, it is difficult to keep
track of which object has been released and which has not. When objects are not
being released, the memory leak will finally use up all the resources and the
application will fail.

Reference Count

The DDS AP is described as a collection of IDL interfaces in the PSM. According
to the IDL to C++ language mapping these interfaces must be mapped onto C++
classesthat inherit from acorBa: : Object class. OpenSplice can currently borrow
this class from any ORB installed on your system, but it also provides its own
implementation libraries: which library is used depends on whether you use the
Corba C++ API (CCPP) or the standalone C++ API (SACPP).

In order to cope with the memory management problems described above, CORBA
objects keep some internal administration. In this administration, a reference count
isincluded. This reference count holds the number of references to the object
(assuming ownership). In other words, when a second reference is being made to the
same object, the reference count in the internal administration of the object, must be
increased. This way, both references may assume ownership of the same object.
When one of the references runs out of scope, the reference count must be decreased
by one. In this case the object must not be released because the reference count has
not reach zero yet. Only when the second reference runs out of scope, the reference
count reaches zero and the object must be released.

Reference Types

CORBA defines two types of references. The first oneisthe basic <class>_ptr
type. When thistype is used, the application must explicitly increase or decrease the
reference count. The second oneisthe <class>_var type. Thistype is a smart
pointer, which automatically updates the reference count of an object when that
object is assigned to it and also updates the reference of the previous assigned
object. When this type is used, the application does not have to increase or decrease
the reference count. Best practice isto use these <class>_var typesinstead of the
<class>_ptr types. However, under certain conditionsa<class>_ptr type must
be used (refer to Section 1.3.2.2, Var Reference Types).

Pointer Types

When using <class>_ptr types the application must explicitly increase or
decrease the reference count, by using the CORBA defined functions:

9

&4 PRISMTECH AP| Reference

1 DCPS API General Description 1.3 Memory Management

» _duplicate - creates another reference to the object. The object is not being
copied but only the reference count in the internal administration of the object is
increased and a new <class>_ptr type is returned. Both references have
ownership. In other words, when one of them runs out of scope, the reference
count must be decreased by calling _release. Only when _release is caled
for both of them, the object is removed;

» _release - informsthe CORBA aobject that the application will not be using the
reference any more. As a result, the operation will explicitly decrease the
reference count of an object. After releasing, the application must not use the
reference because from this moment on, it is unknown whether the object ill
exists.

When more references to <class>_ptr type are made by assignment, the
reference count is not increased. When more references to <class>_ptr type are
made by _duplicate, the reference count isincreased on every call. Therefore
_release must be called once for every _duplicate to decrease the reference
count.

Var Reference Types

To prevent errors, CORBA defines the <class>_var types which assumes
ownership of the object it isreferring to. An _var typeis considered to be a smart
pointer, which not only includes the reference to the object but also automatically
updates the internal reference count of the object.

Assignment

10
API Reference

Assignment for <class>_ptr typesand <class>_var typesisdefined for:

<class>_ptr types to <class>_var types

<class>_var types to <class>_var types

<class>_var types to <class>_ptr types
For instance, the result of a create_publisher (which returns a
publisher_ptr) can directly be assigned to a Publisher_var type. This
assignment would transfer ownership of the publisher object to the reference of
Publisher_var type.

My_Publisher_var = create_publisher (PUBLISHER_QOS_DEFAULT,

PublisherListener::_nil());

This assignment will wrap the return type publisher_ptr in type Publisher_var and
transfer ownership to My_Publisher_var. In other words, when My_Publisher_var runs out
of scope, the Publisher isautomatically removed.

The next assignment does not concern <class>_var types, but isonly presented to
show what will happen when a<class>_var typeisnot used.

My_Publisher_ptr = create_publisher (PUBLISHER_QOS_DEFAULT,
PublisherListener::_nil());

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

&4 PRISMTECH

This assignment will not wrap, but only makes a copy of the return type
Publisher_ptr. The reference count is not automatically updated and the
application has to make sure to release the object. In other words, when
My_Publisher_ptr runsout of scope, the publisher isnot automatically removed
and can not be removed any more since there is no reference available (not even by
delete_contained_entities).

Another_Publisher_var = My_Publisher_var;

This assignment will create another reference to the publisher. The object is not
being copied but only the reference count in the internal administration of the
Publisher_var typeisincreased. Both another_pPublisher_var and
My Publisher_var have ownership. In other words, when one of them runs out of
scope, the reference count is decreased. Only when both of them run out of scope,
the publisher isremoved.

Another_Publisher_ptr = My_Publisher_var;

This assignment will type cast the type publisher_var tO type publisher_ptr
and only makes a copy of the reference vy_publisher_var. The ownership is not
transferred and the application may not release the object on account of
Another_Publisher ptr because the internal reference count was not increased.
However, the application must be careful not to use another_Publisher_ptr When
My_Publisher_var runs out of scope because in that case, the publisher is
automatically removed and the another_pPublisher_ptr variableisinvalid.

Var Reference Types Side Effect

Asmentioned, under certain conditionsa<class>_ptr type must be used, because
the <class>_var type will cause a problem when a type cast is being done on an
object. For example, the cast of an object of class Datawriter to the class
<type>DataWriter.

When creating a Datawriter, the create_datawriter operation returns a
generic patawriter_ptr type (which we assign to patawriter_var). However, an
object of the Datawriter class does not have awrite operation. To be ableto use
such a typed operation, the application must perform a dynamic cast to the
<type>DataWriter_ptr type. For example, when we have a Datawriter for
thetype Foo, it looks like:
GenericWriter_var = create_datawriter (MyTopic,
MyWriterQos, _nil);
My_Writer_var = dynamic_cast<FooDataWriter_ptr>
GenericWriter var.in());
The problem here is that there are two patawriter_var type references to the
object without aduplication. Thisis because a cast only copies the same information
and does not increase the internal counter. In other words, both patawriter_var

11
API Reference

1 DCPS API General Description 1.4 Listener Interfaces

types considers to be the sole owner of the object, and therefore do not increase its
reference counter. When one of the patawriter_var typesrun out of scope, the
entire object is removed, because the internal administration only had one reference
accounted for. Therefore, when the second patawriter_var type runsout of scope,
the behaviour of your application has become undefined (most probably the
application will eventually crash). This problem can be solved by using an explicit
call to the patawriter::_duplicate operation before assigning it to the second
_var type, or by using apatawriter_ptr typeinstead of apatawriter_var type
because a patawriter_ptr type does not automatically decrease the reference
counter when it runs out of scope.

GenericWriter_ptr = create_datawriter (MyTopic,

MyWriterQos, _nil);
My _Writer_var =
dynamic_cast<FooDataWriter_ptr> (GenericWriter_ptr.in());

Note in this case that cenericwriter_ptr must not be used after the assignment,
since it will not be valid as soon asmy_writer_var runsout of scope.

Lisene Interfaces

12
API Reference

The Listener providesageneric mechanism (actually acallback function) for the
Data Distribution Service to notify the application of relevant asynchronous
communication status change events, such as a missed deadline, violation of a
QosPolicy Setting, etc

TheListener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. A user defined class for these operations must be provided by the
application which must extend from the specific Listener class (according to the
IDL-to-C++ specification an interface in IDL is mapped on a class in the C++
programming language). All Listener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

Each DCPS Ent ity supportsits own specialized kind of Listener. Therefore, the
following Listeners are available:

e DomainParticipantListener

e TopicListener

e PublisherListener

e DataWriterListener

» SubscriberListener

e DataReaderListener

& PRISMTECH

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

Since aDataReader an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener must be of type
DataReaderListener. A user defined class must be provided by the
application (for instance My_DataReaderListener) which must extend from
the DataReaderListener class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

As an example, one of the operations in the bataReaderListener isthe
on_liveliness_changed. This operation (implemented by the application) will
be called by the Data Distribution Service when the liveliness of the associated
DataWriter has changed. In other words, it serves as a callback function to the
event of achangein liveliness. The parameters of the operation are supplied by the
Data Distribution Service. In this example, the reference to the DataReader and
the status of the liveliness are provided.

I nheritance of Abgtract Operations

&4 PRISMTECH

The information provided in this guide is based on:
* the PIM part of the DDS-DCPS specification for module descriptions
* the PSM part of the DDS-DCPS specification for class and operation descriptions.

Refer to the OMG’s Data Distribution Service Revised Final Adopted Specification,
ptc/04-03-07, for additional information.

At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM defines the interface for an application to interact with the Data
Distribution Service (see Appendix C (Platform Specific Model IDL Interface)).
The DCPS API for the C++ language is as specified in the OMG's C++ Language
Mapping Specification.

Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective

derived class (e.g. get_gos and set_qgos). These operations are commented out in
the IDL PSM.

13
API Reference

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

14

API Reference & PRISMTECH

CHAPTER

DCPS Modules

DCPSis divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.

Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces,
structs and operations are described in the next chapter.

Domain Module

/ N|
Subscription
Module

1

Publication
Module

|
|
|
|

'Topic-Definition
Module

v
Infrastructure
Module

Figure2 DCPS Module Composition

Functionality

The modules listed below provide the associated functions in the Data Distribution
Service:

I nfrastructure Module - This module defines the abstract classes and interfaces,
which are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service
(event-based and state-based);

15

& PRISMTECH API Reference

2 DCPS Modules

2.2 InfrastructureModule

Domain M odule - This module contains the DomainParticipant class, whichis
the entry point of the application and bomainParticipantListener
interface;

Topic-Definition Module - This module contains the Topic,
ContentFilteredTopic and MultiTopic classes. It also contains the
TopicListener interface and all support to define Topic objects and assign
QosPolicy settingsto them;

Publication M odule - This module contains the Publisher and DataWriter
classes. It also containsthe PublisherListener and DataWriterListener
interfaces;

Subscription Module - This module contains the subscriber, DataReader,
ReadCondition and QueryCondition classes. It also contains the
SubscriberListener and DataReaderListener interfaces.

I nfrastructure M odule

16
API Reference

This module defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by Listeners, the
state-based interaction is supported by waitsSets and Conditions.

<<Interface>>
Listener

QosPolicy listener

name : string

Entity

enable() 0.1
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

WaitSet

status
I |

——— attach_condition()

detach_condition()
get_conditions()
wait()

*

*

ReadCondition
1 (from Subscription Module)

Condition

get_trigger_value()

N

statuscondition

DomainParticipant 1 .
(from Domain Module) | o \[DomainEntity StatusCondition —
(& T 1 GuardCondition QueryCondition
(from Subscription Module)
get_enabled_statuses() y
get_entity() set_trigger_value()
set_enabled_statuses()
Figure 3 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
* Entity (abstract)
* DomainEntity (abstract)
& PRISMTECH

2 DCPS Modules

QosPolicy (abstract, struct)
Listener (interface)
Status (abstract, struct)
WaitSet

Condition
GuardCondition

StatusCondition

Domain M odule

This module contains the class DomainParticipant, which acts as an entry point
of the Data Distribution Service and acts as a factory for many of the classes. The
DomainParticipant aso actsasacontainer for the other objects that make up the
Data Distribution Service. It isolates applications within the same Domain from
other applicationsin adifferent Domain on the same set of computers. A Domain isS
a “virtual network” and applications with the same domainId are isolated from
applications with adifferent domain1d. In thisway, several independent distributed
applications can coexist in the same physical network without interfering, or even
being aware of each other.

&4 PRISMTECH

2.3 DomainModule

17
API Reference

2 DCPS Modules

<<Interface>>
PublisherListener
(from Publication Module)

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
TopicListener

on_inconsistent_topic()

DomainParticipantListener <<implicit>>

0.1

<<implicit>> qos

*

«
default_publisher_gos

QosPolicy

(from Infrastructure Module)

default_participant_qos default_subscriber_qgos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_gos()
get_instance()
lookup_participant()
set_default_participant_qos()

<<create>>

Entity
(from Infrastructure Module)

i

2.4 Topic-Definition Module

DomainParticipant

* default_topic_gqos
*

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gqos()
get_default_subscriber_gos()
get_default_topic_qgos()
get_domain_id()
get_listener()

get_gos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gos()
set_default_subscriber_gos()
set_default_topic_qos()
set_listener()

set_gos()

<<create>>
<<create>> Publisher Subscriber
(from Publication Module) (from Subscription Module)
/
/
/

bs

DomainEntity
(from Infrastructure Module)

*
! T
<<create>> Topic

—————— > (from Topic-Definition Module)

i <<implicit>:

TopicDescription
(from Topic-Definition Module)

MultiTopic

(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

<<create>>

<<create>>

Figure4 DCPS Domain Module’s Class M odel

This module contains the following classes:

* DomainParticipant

* DomainParticipantFactory

* DomainParticipantListener (interface)

2.4 Topic-Definition Module

This module contains the Topic, ContentFilteredTopic and MultiTopic
classes. It also contains the TopicListener interface and all support to define
Topic objects and assign QosPolicy settingsto them.

18
API Reference

& PRISMTECH

2 DCPS Modules 2.4 Topic-Definition Module

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
TopicDescription

DomainParticipant
DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
1
get_expression_parameters()
5 get_subscription_expression()
Topic * set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() !
get_qos()
set_listener() <_I_<Intesrface>n>
set_qos() ypesuppo!
1 get_type_name()
register_type()
* 0.1 *
QosPolicy <<Interface>> StatusCondition . N WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) | (from Infrastructure Module)

on_inconsistent_topic()
Figure5 DCPS Topic-Definition Module's Class M odel
This module contains the following classes:

e TopicDescription (abstract)

* Topic

* ContentFilteredTopic

* MultiTopic

* TopicListener (interface)

* Topic-Definition type specific classes

“Topic-Definition type specific classes’ contains the generic class and the generated

data type specific classes. In case of datatype Foo (this also applies to other types);
“Topic-Definition type specific classes’ contains the following classes:

* TypeSupport (abstract)
e FooTypeSupport

19
&4 PRISMTECH AP| Reference

2 DCPS Modules

<<Interface>>
TypeSupport

DataWriter
(from Publication Module)

get_type_name()
register_type()

§

FooTypeSupport

2.5 PublicationModule

DataReader
(from Subscription Module)

FooDataWriter

FooDataReader

get_type_name()
register_type()

dispose()
dispose_w_timestamp()
get_key_value()

register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

get_key_value()
read()
read_instance()
read_next_instance()

read_next_instance_w_condition()

read_next_sample()
read_w_condition()
return_loan()

take()
take_instance()
take_next_instance()

take_next_instance_w_condition()

take_next_sample()
take_w_condition()

Figure 6 Data Type“Foo” Typed Classesfor Pre-processor Generation

Publication M odule

This module supports writing of the data, it contains the publisher and
DataWriter classes. It also contains the publisherListener and
DataWriterListener interfaces. Furthermore, it contains all support needed for

publication.

20
API Reference

& PRISMTECH

2 DCPS Modules

<<create>>

DataWriter

assert_liveliness()

<<abstract>> dispose()

<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()

get_qgos()

get_topic()

<<abstract>> register()

<<abstract>> register_w_timestamp()
set_listener()

set_qos()

<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()

<<abstract>> write_w_timestamp()

(from Infrastructure Module)

QosPolicy

<<implicit>>

2.6 Subscription Module

Publisher

<<implicit>>

Topic

(from Topic-Definition Module)

0.1

<<implicit>>
1T =

StatusCondition

(from Infrastructure Module)

0.1

<<implicit>>

0.1

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

WaitSet

(from Infrastructure Module)

gos

default_datawriter_qos

<<implicit>>

<<create>> /

begin_coherent_changes()
copy._from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()

get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qgos()
set_listener()

set_qos()
suspend_publications()

N

/4 .

<<implicit>>

DomainParticipant
(from Domain Module)

1

<<Interface>>
PublisherListener

Figure7 DCPS Publication Modul€e's Class M odel
This module contains the following classes:

* Publisher

« Publication type specific classes

e PublisherListener (interface)

* DataWriterListener (interface)

“Publication type specific classes’ contains the generic class and the generated data
type specific classes. In case of datatype Foo (this also applies to other types);
“Publication type specific classes’ contains the following classes:

* DataWriter (abstract)

* FooDataWriter

2.6 Subscription Module

This module supports access to the data, it contains the subscriber,
DataReader, ReadCondition and QueryCondition classes. It aso contains
the subscriberListener and DataReaderListener interfaces. Furthermore,
it contains all support needed for subscription.

&4 PRISMTECH

21
API Reference

2 DCPS Modules

DataSample

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()

<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()

get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()

<<abstract>> lookup_instance()
<<abstract>> read()

<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()

set_listener()

set_gos()

<<abstract>> take()

<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

2.6 Subscription Module

Samplelnfo
sample_state
view_state
instance_state
1 |source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count <<implicit>>
sample_rank QosPolic implici
- y
generation_rank - qos
absolute_generation_rank name : string
*
i
* * *
<<implicit>> ‘ default_datareader_qos
TopicDescription Topic
(from Topic-Definition Module) }7 (from Topic-Definition Module)
,
1 [
*
<<implicit>> <<implicit>> <<implicit>>
o..i o
WaitSet StatusCondition
(from Infrastructure Module) (from Infrastructure Module)
* *
<<create>> * —
* <<implicit>>
*
ReadCondition QueryCondition

0.1

<<Interface>>
DataReaderListener

*

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

<<create>>

get_query_arguments()
get_query_expression()
set_query_arguments()

<<create>>

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

DomainParticipant
(from Domain Module)

\L <<create>>

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()

get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()

set_qos()

<<implicit>>

0.1

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure8 DCPS Subscription Modul€e's Class M odel
This module contains the following classes:

* Subscriber

Subscription type specific classes

22
API Reference

DataSample

SampleInfo (struct)

SubscriberListener (interface)

DataReaderListener (interface)

ReadCondition

QueryCondition

& PRISMTECH

2 DCPS Modules 2.6 Subscription Module

“Subscription type specific classes’ contains the generic class and the generated
datatype specific classes. In case of datatype Foo (this also applies to other types);
“ Subscription type specific classes’ contains the following classes:

* DataReader (abstract)

* FooDataReader

23

&4 PRISMTECH AP| Reference

2 DCPS Modules 2.6 Subscription Module

24

API Reference & PRISMTECH

CHAPTER

& PRISMTECH

DCPS Classes and Operations

This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.

The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.

Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.

The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.

25
API Reference

3 DCPS Classes and Operations

3.1 Infrastructure M odule

QosPolicy

Entity

listener

<<Interface>>

name : string

status
I |

|

DomainParticipant
(from Domain Module)

@
@

enable()

<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

Listener
* 0.1

3.1 InfrastructureModule

WaitSet

attach_condition()
detach_condition()
get_conditions()

set_enabled_statuses()

wait()
B
Condition ReadCondition
1 (from Subscription Module)
get_trigger_value()
statuscondition
i ‘ DomainEntity StatusCondition — —‘7 .
T 1 GuardCondition QueryCondition
(from Subscription Module)
get_enabled_statuses() K e ———
get_entity() set_trigger_value()

Figure9 DCPSInfrastructure Module's Class M odel
This module contains the following classes:

Entity (abstract)

DomainEntity (abstract)
QosPolicy (abstract, struct)
Listener (interface)
Status (abstract, struct)

WaitSet

Condition

GuardCondition

StatusCondition

3.1.1 ClassEntity (abstract)
Thisclassisthe abstract base classfor all the DCPS objects. It acts as ageneric class

26
API Reference

for Entity objects.
The interface description of this classis asfollows:

class Entity
{
//

// abstract operations (implemented in class

// DomainParticipant,
// Publisher,

//

Topic,
DataWriter,

Subscriber and DataReader)

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

// ReturnCode_t

// set_gos
// (const EntityQos& qos) ;
// ReturnCode_t
// get_gos
// (EntityQosé& gos) ;
// ReturnCode_t
// set_listener
// (EntityListener_ptr a_listener,
// StatusMask mask) ;
// EntityListener_ptr
// get_listener
// (void) ;
//
// implemented API operations
//
ReturnCode_t
enable
(void) ;

StatusCondition_ptr
get_statuscondition
(void) ;
StatusMask
get_status_changes
(void) ;
InstanceHandle_t
get_instance_handle
(void) ;

}s
The next paragraphs list all Entity operations. The abstract operations are listed
but not fully described because they are not implemented in this specific class. The

full description of these operationsis given in the subclasses, which contain the type
specific implementation of these operations.

3.1.1.17 enable

&4 PRISMTECH

Scope

DDS: :Entity

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;

27
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

28
API Reference

Description

This operation enables the Entity on which it is being called when the Entity
was created with the EntityFactoryQosPolicy Set tO FALSE.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_ DELETED, RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation enables the Entity. Created Entity objects can start in either an
enabled or disabled state. This is controlled by the value of the
EntityFactoryQosPolicy on the corresponding factory for the Entity.
Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet
activated, so it is still possible to change there immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.

Creating disabled entities can make sense when the creator of the Entity does not
yet know which QoS settings to apply, thus allowing another piece of code to set the
QoS later on. Thisisfor example the case in the DLRL, where the 0bjectHomes
create all underlying DCPS entities but do not know which QoS settings to apply.
The user can then apply the required QoS settings afterwards.

The default setting of EntityFactoryQosPolicy issuch that, by default, entities
are created in an enabled state so that it is not necessary to explicitly call enable on
newly created entities.

The enable operation isidempotent. Calling enable on an already enabled
Entity returns RETCODE_OK and has no effect.

If an Entity has not yet been enabled, the only operations that can be invoked on it
are: the onesto set, get or copy the gosPolicy settings, the onesthat set (or get) the
listener, the ones that get the statusCondition, the get_status_changes
operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or lookup® other Entities. Other operations will
return the error RETCODE_NOT_ENABLED.

Entities created from afactory that is disabled, are created disabled regardless of
the setting of the EntityFactoryQosPolicy.

1. Thisincludes the lookup_topicdescription, but not the find_topic.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Cadlling enable 0n an Entity whose factory is not enabled will fail and return
RETCODE_PRECONDITION_NOT_MET.

If the EntityFactoryQosPolicy hasautoenable created_entities Setto
TRUE, the enable operation on the factory will automatically enable all Entities
created from the factory.

The Listeners associated with an Entity are not called until the Entity is
enabled. conditions associated with an Ent ity that is not enabled are "inactive”,
that is, havea trigger_value which iSFALSE.

Return Code

When the operation returns:

* RETCODE_OK - the application enabled the Ent ity (or it was already enabled)

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - thefactory of the Entity isnot enabled.

get_instance_handle

&4 PRISMTECH

Scope

DDS: :Entity

Synopsis

#include <ccpp_dds_dcps.h>
InstanceHandle_t

get_instance_handle
(void) ;

Description

This operation returns the instance_handle of the builtin topic sample that
represents the specified Entity.

Parameters

<none>

Return Value

InstanceHandle_t - Result valueisthe instance_handle of the builtin topic
sample that represents the state of thisentity.

29
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description

Therelevant state of some Ent ity objects are distributed using builtin topics. Each
builtin topic sample represents the state of a specific Entity and has a unique
instance_handle. This operation returnsthe instance_handle of the builtin
topic sample that represents the specified Entity.

Some Entities (Publisher and Subscriber) do not have a corresponding
builtin topic sample, but they still have an instance_handle that uniquely
identifiesthe Entity. The instance_handles obtained thisway can also be used
to check whether a specific Entity islocated in a specific DomainParticipant.
(See Section 3.2.1.2, contains_entity, on page 111.)

get_listener (abstract)

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
EntityListener_ptr
get_listener
(void) ;

get_qos (abstract)

This abstract operation is defined as a generic operation to access a struct with the
QosPolicy settings. Each subclass derived from this class, bomainpParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader Will provide a
class specific implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(EntityQos& gos) ;

get_status changes

30
API Reference

Scope

DDS: :Entity

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

get_status_changes
(void) ;

Description

This operation returns a mask with the communication statuses in the entity that
are “triggered”.

Parameters
<none>

Return Value
StatusMask - abit mask in which each bit shows which value has changed.

Detailed Description

This operation returns a mask with the communication statuses in the entity that
are triggered. That is the set of communication statuses whose value have changed
since the last time the application called this operation. This operation shows
whether a change has occurred even when the status seems unchanged because the
status changed back to the original status.

When the Entity is first created or if the Entity is not enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.

Theresult value is abit mask in which each bit shows which value has changed. The
relevant bits represent one of the following statuses:

+ INCONSISTENT_TOPIC_STATUS

« OFFERED_DEADLINE_MISSED_STATUS

« REQUESTED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

« SAMPLE_LOST_STATUS

+ SAMPLE_REJECTED_STATUS

« DATA_ON_READERS_STATUS

« DATA_AVAILABLE_STATUS

« LIVELINESS_LOST_STATUS

« LIVELINESS_CHANGED_STATUS

« PUBLICATION_MATCHED_STATUS

+ SUBSCRIPTION_MATCHED_STATUS

31
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type statusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener interfaces for each
Entity for moreinformation.

get_statuscondition

Scope

DDS: :Entity

Synopsis

#include <ccpp_dds_dcps.h>
StatusCondition_ptr

get_statuscondition
(void) ;

Description

This operation allows access to the statusCondition associated with the
Entity.

Parameters

<none>

Return Value

StatusCondition -the StatusCondition Of theEntity.

Detailed Description

Each Entity hasa statusCondition associated with it. This operation allows
access to the statusCondition associated with the Entity. The returned
condition can then be added to awaitset so that the application can wait for
specific status changes that affect the Entity.

set_listener (abstract)

32
API Reference

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(EntityListener_ptr a_listener,

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

StatusMask mask) ;

set_qos (abstract)

This abstract operation is defined as a generic operation to modify the gospPolicy
settings. Each subclass derived from this class, DomainParticipant, Topic,
Publisher, Subscriber, DataWriter and DataReader Will provide a
class-specific implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_gos
(const EntityQos& qos) ;

Class DomainEntity (abstract)

This classisthe abstract base class for the all entities except bomainParticipant.
The main purpose is to express that DomainParticipant isa specia kind of
Entity, which acts as a container of all other Ent 1ty objects, but cannot contain
another bomainParticipant withinitself. Therefore, this classis not part of the
IDL interfacein the DCPS PSM description.

The class DomainEntity does not contain any operations.

Sruct QosPolicy

Each Entity provides an <Entity>Qos structure that implements the basic
mechanism for an application to specify Quality of Service attributes. This structure
consists of Entity specific QosPolicy attributes. QosPolicy attributes are
structured types where each type specifies the information that controlsan Entity
related (configurable) property of the Data Distribution Service.

All gospPolicies applicable to an Entity are aggregated in a corresponding
<Entity>Qos, Which is a compound structure that is set atomically so that it
represents a coherent set of QosPolicy attributes.

Compound types are used whenever multiple attributes must be set coherently to
define a consistent attribute for aQosPolicy.

33

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

A full description of any <Entity>Qos isgivenin Appendix A, Quality Of Service.
The complete list of individual QosPolicy Settings and their meaning is described
in this paragraph.

QosPolicy
name : string
HistoryQosPolicy UserDataQosPolicy PartitionQosPolicy
kind : HistoryQosPolicyKind value [*] : octet — name[*] : string —
depth : long

- - ReliabilityQosPolicy
TopicD. Pol
opichataQosPolicy kind : ReliabilityQosPolicyKind

value [*] : octet max_blocking_time : Duration_t

LifespanQosPolicy
duration : Duration_t

OwnershipQosPolicy GroupDataQosPolicy LivelinessQosPolicy

kind : OwnershipQosPolicyKind value [*] : octet — kind : LivelinessQosPolicyKind
lease_duration : Duration_t

OwnershipStrengthQosPolicy

LatencyBudgetQosPolicy
duration : Duration_t —

l

DeadlineQosPolicy
period : Duration_t ResourceLimitsQosPolicy
max_samples : long
max_instances : long —
/[\ max_samples_per_instance : long

DurabilityQosPolicy
kind : DurabilityQosPolicyKind —

value : long

WriterDataLifecycleQosPolicy
autodispose_unregistered_instances : boolean

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TimeBasedFilterQosPolicy
minimum_separation : Duration_t —

DestinationOrderQosPolicy
kind : DestinationOrderQosPolicyKind ——

EntityFactoryQosPolicy
PresentationQosPolicy autoenable_created_entities : boolean ——
access_scope : PresentationQosPolicyAccessScopeKind TransportPriorityQosPolicy
coherent_access : boolean value : long]

ordered_access : boolean

DurabilityServiceQosPolicy
service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long
max_samples : long
max_instances : long
max_samples_per_instance : long

Figure 10 QosPalicy Settings
Requested/Offered

In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy onthe offering side. For example, if aDataReader requeststo receive
data reliably while the corresponding patawriter defines a best-effort
QosPolicy, communication will not happen as requested. This means, the

34

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

specification for gosPolicy follows the Requested/Offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. When using this pattern:

« the requesting side can specify arequested attribute for a particular gosPolicy
« the offering side specifies an offered attribute for that QosPolicy

The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPolicy Settings are compatible, communication is established. If
the two QosPolicy Settings are not compatible, the Data Distribution Service will
not establish communication between the two Ent ity objects and notify this fact
by means of the OFFERED_INCOMPATIBLE_QOS Status on the offering side and the
REQUESTED_INCOMPATIBLE_QOS Status on the requesting side. The application
can detect thisfact by meansof aListener Or Condition.

The interface description of these QosPaliciesis asfollows:

// struct <Entity>Qos

// see appendix

//

// struct <name>QosPolicy
//

struct UserDataQosPolicy
{ OctetSeq wvalue; };
struct TopicDataQosPolicy
{ OctetSeq wvalue; };
struct GroupDataQosPolicy
{ OctetSeq value; };
struct TransportPriorityQosPolicy
{ Long value; };
struct LifespanQosPolicy
{ Duration_t duration; };
enum DurabilityQosPolicyKind
{ VOLATILE_DURABILITY_ QOS,
TRANSIENT LOCAL_DURABILITY_ QOS,
TRANSIENT DURABILITY QOS,
PERSISTENT_DURABILITY_QOS };
struct DurabilityQosPolicy
{ DurabilityQosPolicyKind kind; };
enum PresentationQosPolicyAccessScopeKind
{ INSTANCE_PRESENTATION_ QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS };
struct PresentationQosPolicy
{ PresentationQosPolicyAccessScopeKind access_scope;
Boolean coherent_access;
Boolean ordered_access; };
struct DeadlineQosPolicy

35
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

{ Duration_t period; };
struct LatencyBudgetQosPolicy
{ Duration_t duration; };
enum OwnershipQosPolicyKind
{ SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS };
struct OwnershipQosPolicy
{ OwnershipQosPolicyKind kind; };
struct OwnershipStrengthQosPolicy
{ Long value; };
enum LivelinessQosPolicyKind
{ AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_ PARTICIPANT_ LIVELINESS_QOS,
MANUAL_BY_ TOPIC_LIVELINESS_QOS };
struct LivelinessQosPolicy
{ LivelinessQosPolicyKind kind;
Duration_t lease_duration; };
struct TimeBasedFilterQosPolicy
{ Duration_t minimum_separation; };
struct PartitionQosPolicy
{ StringSeq name; };
enum ReliabilityQosPolicyKind
{ BEST_EFFORT_RELIABILITY QOS,
RELIABLE_RELIABILITY_ QOS };
struct ReliabilityQosPolicy
{ ReliabilityQosPolicyKind kind;
Duration_t max _blocking time; };
enum DestinationOrderQosPolicyKind
{ BY_RECEPTION_timestamp_ DESTINATIONORDER_QOS,
BY_SOURCE_timestamp_ DESTINATIONORDER_QOS };
struct DestinationOrderQosPolicy
{ DestinationOrderQosPolicyKind kind; };
enum HistoryQosPolicyKind
{ KEEP_LAST_ HISTORY_QOS,
KEEP_ALL_HISTORY_QOS };
struct HistoryQosPolicy
{ HistoryQosPolicyKind kind;
Long depth; };
struct ResourceLimitsQosPolicy
{ Long max_samples;
Long max_instances;
Long max_samples_per_instance; };
struct EntityFactoryQosPolicy
{ Boolean autoenable_created_entities; };
struct WriterDatalLifecycleQosPolicy
{ Boolean autodispose_unregistered_instances; };
struct ReaderDatalLifecycleQosPolicy
{ Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay; };
struct DurabilityServiceQosPolicy

36

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

{ Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
Long history_depth;
Long max_samples;
Long max_instances;
Long max_samples_per_instance; };
enum SchedulingClassQosPolicyKind
{ SCHEDULE_DEFAULT,
SCHEDULE_TIMESHARING,
SCHEDULE_REALTIME };
struct SchedulingClassQosPolicy
{ SchedulingClassQosPolicyKind kind; };
enum SchedulingPriorityQosPolicyKind
{ PRIORITY_RELATIVE,
PRIORITY_ABSOLUTE };
struct SchedulingPriorityQosPolicy
{ SchedulingPriorityQosPolicyKind kind; };
struct SchedulingQosPolicy
{ SchedulingClassQosPolicy scheduling_class;
SchedulingPriorityQosPolicy scheduling_priority_kind;
long scheduling_priority; };

Default Attributes

The default attributes of each gosPolicy arelisted in the next table:

Table 2 QosPolicy Default Attributes

QosPalicy Attribute Value

user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DURATION_INFINITE

durability kind VOLATILE_DURABILITY_QOS

presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

deadline period DURATION_INFINITE

latency_budget duration 0

ownership_strength value 0

ownership kind SHARED_OWNERSHIP_QOS

liveliness kind AUTOMATIC_LIVELINESS_QOS
lease_duration DURATION_INFINITE

& PRISMTECH 37

API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 2 QosPolicy Default Attributes (Continued)

QosPalicy Attribute Value

time_based_filter minimum_separation 0

partition name.length 0

reliability kind BEST_EFFORT_RELIABILITY_QOS
max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_

DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS
depth 1

resource_limits max_samples LENGTH_UNLIMITED
max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

entity_factory autoenable_ TRUE
created_entities

writer_data_lifecycle |autodispose_ TRUE
unregistered_instances

reader_data_lifecycle |autopurge_ DURATION_INFINITE
nowriter_samples_delay
autopurge_ DURATION_INFINITE
disposed_samples_delay

durability_service history kind KEEP_LAST
history_ depth 1
max_samples LENGTH_UNLIMITED
max_instances LENGTH_UNLIMITED

max_samples_per_ instance LENGTH_UNLIMITED

service_cleanup_delay 0

watchdog_scheduling, scheduling_class.kind SCHEDULE_DEFAULT
listener_scheduling

scheduling _priority_kind. |PRIORITY_RELATIVE
kind

scheduling priority 0

RxO

The gosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “Rx0O”
(Requested/Offered) property. The rxo property of each gospPolicy islisted in
Table 3 on page 39. Please note:

38

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

e A RxO setting of ves indicates that the gosPolicy can be set at both ends
(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined.

* A RxO setting of no indicates that the gospPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible.

¢ A RxO setting of Not applicable indicates that the QospPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply.

Changeable

The changeable property determines whether the gosPolicy can be changed
after the Entity is enabled. In other words, a QosPolicy With changeable
setting of No is considered “immutable” and can only be specified either at Entity
creation time or prior to caling the enable operation on the Entity.

When the application triesto change aQosPolicy with changeable Setting of No,
the Data Distribution Service will notify this by returning a
RETCODE_IMMUTABLE_POLICY.

The basic way to modify or set the <Entity>Qos isby using a get_gos and
set_gos operation to get all gosPolicy settings from this Entity (that isthe
<Entity>Qos), modify several specific QosPolicy Settings and put them back
using an user operation to set all gosPolicy settings on thisentity (that isthe
<Entity>Qos). An example of these operationsfor the batawriter are get_qgos
and set_gos, which take the <Entity>Qos as aparameter.

The “RxQO” setting and the “changeable” setting of each gospPolicy arelisted in

the next table:
Table 3 QosPolicy Basics
QosPalicy Concerns Entity RxO Changeable
After
Enabling
user_data DomainParticipant No Yes
DataReader
DataWriter
topic_data Topic No Yes
group_data Publisher No Yes
Subscriber
transport_priority Topic Not applicable Yes
DataWriter

39

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations

Table 3 QosPolicy Basics (Continued)

3.1 InfrastructureModule

QosPalicy Concerns Entity RxO Changeable
After
Enabling

lifespan Topic Not applicable Yes
DataWriter

durability Topic Yes No
DataReader
DataWriter

presentation Publisher Yes No
Subscriber

deadline Topic Yes Yes
DataReader
DataWriter

latency_budget Topic Yes Yes
DataReader
DataWriter

ownership Topic Yes No
DataReader
DataWriter

ownership_strength DataWriter Not applicable Yes

liveliness Topic Yes No
DataReader
DataWriter

time_based_filter DataReader Not applicable Yes

partition Publisher No Yes
Subscriber

reliability Topic Yes No
DataReader
DataWriter

destination_order Topic Yes No
DataReader
DataWriter

40 & PRISMTECH

API Reference

3 DCPS Classes and Operations

Table 3 QosPolicy Basics (Continued)

3.1 InfrastructureModule

QosPoalicy Concerns Entity RxO Changeable
After
Enabling
history Topic No No
DataReader
DataWriter
resource_limits Topic No No
DataReader
DataWriter
entity_factory DomainParticipantFactory No Yes
DomainParticipant
Publisher
Subscriber
writer_data_lifecycle |DataWriter Not applicable Yes
reader_data_lifecycle |DataReader Not applicable Yes
durability_service Topic No No
scheduling DomainParticipant Not applicable No

&4 PRISMTECH

The next paragraphs describe the usage of each <name>QosPolicy Struct.

3.1.3.1 DeadlineQosPalicy

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

struct DeadlineQosPolicy
{ Duration_t period; };

Description

This QosPolicy defines the period within which a new sample is expected by the
DataReader Or to bewritten by the batawriter.

Attributes

Duration_t period - specifiesthe period within which anew sampleis expected

or to be written.

41
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

42
API Reference

Detailed Description

This QosPolicy will set the period within which a batarReader expects a new
sample or, in case of anpatawriter, the period in which it expects applications to
write the sample. The default value of the period iS DURATION_INFINITE,
indicating that there is no deadline. The QosPolicy may be used to monitor the
real-time behaviour, aL.i stener Or aStatusCondition may be used to catch the
event that is generated when adeadline is missed.

DeadlineQosPolicy isinstance oriented (i.e. the period is monitored for each
individual instance).

The exact consequences of a missed deadline depend on the Entity in which it
ocurred, and the ownershipQosPolicy vaue of that Entity:

*In case a pataWriter mMisses an instance deadline (regardless of its
OwnershipQosPolicy Setting), an of fered_deadline_missed_status iS
raised, which can be detected by either a Listener or a StatusCondition.
There are no further consequences.

eIn <case a DataReader misses an instance deadline, a
requested_deadline_missed_status iS raised, which can be detected by
either aListener Or asStatusCondition. In casethe ownershipQosPolicy
is set to sHARED, there are no further consequences. In case the
OwnershipQosPolicy iS Set t0 EXCLUSIVE, the ownership of that instance on
that particular bataReader is transferred to the next available highest strength
DataWriter, but thiswill have no impact on the instance_state wWhatsoever.
So even when a deadline is missed for an instance that has no other
(lower-strength) Datawriters to transfer ownership to, the instance_state
remains unchanged. See also Section 3.1.3.11, Owner shipQosPoalicy.

This QosPolicy is applicableto aDataReader, aDataWriter and a Topic.

After enabling of the concerning Entity, thisQosPolicy may be changed by
using the set_qgos operation.

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_TINCOMPATIBLE_QOS status on the offering side and
REQUESTED_TINCOMPATIBLE_QOS status on the requesting side is raised.

Table 4 DeadlineQosPolicy

Period Compatibility
offered period < requested period compatible

offered period = requested period compatible

offered period > requested period INcompatible

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DatarReader. AS a consequence,
aDpatawriter that has an incompatible gos with respect to what a bataReader
specifies, is not allowed to send its data to that specific bataReader. A
DataReader that has an incompatible gos with respect to what a batawriter
specifies, does not get any data from that particular Datawriter.

Changing an existing deadline period using the set_gos operation on either the
DataWriter Of DataReader May have consequences for the connectivity between
readers and writers, depending on their rRxo values. (See also in Section 3.1.3, Sruct
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
deadline period pw and a reader with deadline period pr, where pw <= Pr. Inthis
case a connection between that reader and that writer is established. Now suppose
Pw is changed so that pw > Pr, then the existing connection between reader and
writer will be lost, and the reader will behave as if the writer unregistered all its
instances, transferring the ownership of these instances when appropriate. See also
Section 3.1.3.11, Owner shipQosPalicy.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospPolicy for
the Topic, DataReader and DataWriter are consistent.

DestinationOr der QosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum DestinationOrderQosPolicyKind
{ BY_RECEPTION_timestamp_DESTINATIONORDER_QOS,
BY_ SOURCE_timestamp_DESTINATIONORDER_QOS };
struct DestinationOrderQosPolicy
{ DestinationOrderQosPolicyKind kind; };

Description
ThisQosPolicy controlsthe order in which the bataReader storesthe data

43
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

a4
API Reference

Attributes

DestinationOrderQosPolicyKind kind - controlsthe order in which the
DataReader Sstoresthe data.

Detailed Description

This QosPolicy controlsthe order in which the bataReader storesthe data. The
order of storage is controlled by the timestamp. However a choice can be made to
use the timestamp of the bataReader (time of reception) or the timestamp of the
DataWriter (Source timestamp).

ThisQosPolicy isapplicableto abatawriter, DataReader and a Topic. After
enabling of the concerning entity, this gosPo1licy cannot be changed any more.

Attribute

The gosPolicy iscontrolled by the attribute kind which may be:
e BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

. BY_SOURCE_TIMESTAMP_ DESTINATIONORDER_QOS

When set to BY_ RECEPTION_TIMESTAMP DESTINATIONORDER_QOS, the orderis
based on the timestamp, at the moment the sample was received by the
DataReader.

When set to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, which was set by the batawriter. This means that the
system needs some time synchronisation.

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS Status on the requesting side is raised.

Table 5 Requested/Offered DestinationOr der QosPolicy

\ggted BY_RECEPTION |BY_SOURCE_tim

Offer _timestamp estamp

BY_RECEPTION_timestamp |compatible INcompatible
BY_SOURCE_timestamp compatible compatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DataReader. AS aconsequence,
aDataWriter that has an incompatible gos with respect to what a bataReader

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

specified, is not allowed to send its data to that specific bataReader. A
DataReader that has an incompatible gos with respect to what a batawriter
specified, does not get any data from that particular batawriter.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DataWriter are consstent.

DurabilityQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum DurabilityQosPolicyKind
{ VOLATILE DURABILITY QOS,
TRANSIENT_ LOCAL_DURABILITY_QOS,
TRANSIENT_ DURABILITY_QOS,
PERSISTENT_DURABILITY_ QOS };
struct DurabilityQosPolicy
{ DurabilityQosPolicyKind kind; };

Description
ThisQosPolicy controls whether the data should be stored for late joining readers.

Attributes

DurabilityQosPolicyKind kind - specifies the type of durability from
VOLATILE_DURABILITY_QOS (short life) t0 PERSISTENT_DURABILITY_QOS
(long life).

Detailed Description

The decoupling between pataReader and Datawriter offered by the Data
Distribution Service allows an application to write data even if there are no current
readers on the network. Moreover, abataReader that joins the network after some
data has been written could potentially be interested in accessing the most current
values of the data as well as some history. This QosPol1icy controls whether the
Data Distribution Service will actually make data available to late-joining
DataReaders.

ThisQosPolicy isapplicableto abataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy cannot be changed any more.

45
API Reference

3 DCPS Classes and Operations

46
API Reference

Attributes
The gosPolicy iscontrolled by the attribute kind which may be:

3.1 InfrastructureModule

* VOLATILE_DURABILITY QOS - the samples are not available to late-joining
DataReaders. In other words, only bataReaders, which were present at the
time of the writing and have subscribed to this Topic, will receive the sample.
When a pataReader subscribes afterwards (late-joining), it will only be able to
read the next written sample. This setting is typicaly used for data, which is
updated quickly

* TRANSIENT_LOCAL_DURABILITY_QOS - the functionality behind this setting is
not yet implemented. It is scheduled for afuture release

* TRANSIENT_DURABILITY_QOS - some samples are available to late-joining
DataReaders (stored in memory). This means that the late-joining
DataReaders are able to read these previously written samples. The
DataReader does not necessarily have to exist at the time of writing. Not all
samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the Datawriter and will
outlive the patawriter. This may be used to implement reallocation of
applications because the datais saved in the Data Distribution Service (not in the
DataWriter). This setting is typicaly used for state related information of an
application. In this case aso the burabilityServiceQosPolicy Settings are
relevant for the behaviour of the Data Distribution Service

* PERSISTENT_DURABILITY_QOS - the datais stored in permanent storage (e.g.
hard disk). This means that the samples are also available after a system restart.
The samples not only outlives the Datawriters, but even the Data Distribution
Service and the system. This setting istypically used for attributes and settings for
an application or the sysem. In this case aso the
DurabilityServiceQosPolicy Settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_TINCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 6 Requested/Offered DurabilityQosPolicy

Requested| VOLATILE TRANSIENT PERSISTENT
%’d\
VOLATILE compatible incompatible INcompatible
TRANSIENT compatible compatible INcompatible
PERSISTENT compatible compatible compatible
& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

This means that the Request/Offering mechanism is applicable between:

* the DatawWriter and the pDataReader. If the QosPolicy settings between
DataWriter and DataReader are inconsistent, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the pataReader will be
informed via an OFFERED_TNCOMPATTIBLE_QOS Status change

 the patawriter and the Data Distribution Service (as a built-in DataReader).
If the QosPolicy settings between pDatawriter and the Data Distribution
Service are inconsistent, no communication between them is established. In that
case data published by the patawriter will not be maintained by the service and
as a consequence will not be available for late joining pataReaders. The
QosPolicy of the Data Distribution Service in the role of DataReader is
specified by the Topic QosPolicy

« the Data Distribution Service (asabuilt-in Datawriter) and the DataReader. If
the QospPolicy settings between the Data Distribution Service and the
DataReader areinconsistent, no communication between them is established. In
that case the Data Distribution Service will not publish historical data to late
joining pataReaders. The gosPolicy of the Data Distribution Service in the
role of patawriter isspecified by the Topic QosPolicy.

Cleanup
The DurabilityQosPolicy kind Setting TRANSTENT_DURABILITY_QOS and
PERSISTENT_DURABILITY_QOS determine that the

DurabilityServiceQosPolicy applies for the Topic. It controls amongst
others at which time the durability service is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:

e the instance has been explicitly disposed of (instance_state =
NOT_ALTIVE_DISPOSED_INSTANCE_STATE),

 and the system detects that there are no more “live” Datawriter objectswriting
the instance, that is, all Datawriter either unregister_instance the
instance (Call unregister_instance operation) or losetheir liveliness,

» and atime interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the bpDurabilityServiceQosPolicy attribute
service_cleanup_delay iS apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for

47
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

TopicQos

This QosPolicy can be set on aTopic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and DataWriter are consstent.

Dur abilityServiceQosPolicy

48
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct DurabilityServiceQosPolicy
{ Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
Long history_depth;
Long max_samples;
Long max_instances;
Long max_samples_per_instance; };

Description

ThisQosPolicy controls the behaviour of the durability service regarding transient
and persistent data.

Attributes

Duration_t service_cleanup_delay - Specifies how long the durability
service must wait beforeit is alowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

HistoryQosPolicyKind history_kind - specifiesthe type of history, which
may be KEEP_LAST_HISTORY_QOS Of KEEP_ALL_HISTORY_QOS, the
durability service must apply for the transient or persistent topic data-instances.

Long history_depth - specifies the number of samples of each instance of data
(identified by its key) that is managed by the durability service for the transient
or persistent topic data-instances. If history_kind is
KEEP_LAST_HISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_ instance for thisQospPolicy to be consistent.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Long max_samples - specifiesthe maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

Long max_instances - Specifies the maximum number of instances the durability
service - manage for the transient or persistent topic data-instances.

Long max_samples_per_ instance - Specifiesthe maximum number of samples
of any single instance the durability service will manage for the transient or
persistent topic data-instances. If history_kind iSKEEP_LAST_HISTORY_QOS,
max_samples_per_instance must be greater than or equal to
history depth for thisQosPolicy to be consistent.

Detailed Description

ThisQosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limitsit must apply.

Cleanup

The setting of the burabilityServiceQosPolicy only applies when kind of
the burabilityQosPolicy iS either TRANSIENT_DURABILITY_QOS Or
PERSISTENT_DURABILITY_QOS. The service_cleanup_delay Setting
controls at which time the durability service” is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:

e the instance has been explicitly disposed of (instance_state
NOT_ALTVE_DISPOSED_INSTANCE_STATE),

 and the system detects that there are no more “live” Datawriter objectswriting
the instance, that is, all Datawriter either unregister_instance the
instance (Call unregister_instance operation) or losetheir liveliness,

» and atime interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the attribute service_cleanup_delay iS apparent in the situation
where an application disposes of an instance and it crashes before having a
chance to complete additional tasks related to the disposition. Upon re-start the
application may ask for initial datato regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

49
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Histor

Theattributeshistory_kind and history_depth apply to the history settings of
the durability service'sinternal batawriter and DataReader managing the topic.
The HistoryQosPolicy behaviour, as described in paragraph 3.1.3.7
(HistoryQosPoalicy), applies to these attributes.

Resource Limits

The attributes max_samples, max_instances and max_samples_
per_instance apply to the resource limits of the Durability Service's internal
DataWriter and DataReader managing the topic. The
ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(ResourceL imitsQosPolicy) applies to these attributes.

TopicQos

This gosPolicy can be set on a Topic only. After enabling of the concerning
Topic, thisQosPolicy can not be changed any more.

EntityFactoryQosPolicy

50
API Reference

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

struct EntityFactoryQosPolicy
{ Boolean autoenable_created_entities; };

Description

This QosPolicy controls the behaviour of the Entity as afactory for other
entities.

Attributes

Boolean autoenable_created_entities - Specifies whether the entity acting
as a factory automatically enables the instances it creates. If
autoenable created entities is TrRUE the factory will automatically enable each
created Entity, otherwise it will not.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This gosPolicy controls the behaviour of the Entity as afactory for other
entities. It concerns only bomainParticipantFactory (as factory for
DomainParticipant), DomainParticipant (as factory for publisher,
Subscriber, and Topic), Publisher (as factory for batawriter), and
Subscriber (asfactory for DataReader).

This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.

The setting of autoenable_created_entities to TRUE indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time anew Entity is created. Therefore, the Entity returned by
create_<entity> Will aready be enabled. A setting of FALSE indicates that the
Entity will not be automatically enabled: the application will need to enable it
explicitly by means of the enable operation. See Section 3.1.1.1, enable, for a
detailed description about the differences between enabled and disabled entities.

The default setting of autoenable _created_entities iSTRUE meaning that by
default it is not necessary to explicitly call enable on newly created entities.

GroupDataQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

struct GroupDataQosPolicy
{ OctetSeq value; };

Description

This gosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopics.

Attributes

OctetSeg value - asequence of octets that holds the application group data. By
default, the sequence has length O.

Detailed Description

This gosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopic. An application that discovers a new Entity of the listed kind, can

51
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

use this information to add additional functionality. The GroupDataQosPolicy IS
changeable and updates of the BuiltinTopic instance must be expected. Note that the
Data Distribution Service is not aware of the real structure of the group data (the
Data Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

HistoryQosPolicy

52
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum HistoryQosPolicyKind
{ KEEP_LAST HISTORY_QOS,
KEEP_ALL_HISTORY QOS };
struct HistoryQosPolicy
{ HistoryQosPolicyKind kind;
Long depth; };

Description

This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes

HistoryQosPolicyKind kind - specifies the type of history, which may be
KEEP_LAST_HISTORY_QOS Of KEEP_ALL_HISTORY_QOS.

Long depth - specifies the number of samples of each instance of data (identified
by its key) managed by thisEntity.

Detailed Description

ThisQosPolicy controlswhether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver all samples, or do something in between.
In other words, how the patawriter Or DataReader should store samples.
Normally, only the most recent sample is available but some history can be stored.

DataWriter

On the publishing side this QosPolicy controls the samples that should be
maintained by the Datawriter on behalf of existing batakReader objects. The
behaviour with respect to a batarReader objects discovered after a sampleis
written is controlled by the burabilityQosPolicy.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DataReader

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service.

ThisQosPolicy isapplicableto a bataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute ki nd which can be:

* KEEP_LAST_HISTORY_QOS - the Data Distribution Service will only attempt to
keep the latest values of the instance and discard the older ones. The attribute
“depth” determines how many samplesin history will be stored. In other words,
only the most recent samples in history are stored. On the publishing side, the
Data Distribution Service will only keep the most recent “depth” samples of each
instance of data (identified by its key) managed by the patawriter. On the
subscribing side, the DataReader will only keep the most recent “depth”
samples received for each instance (identified by its key) until the application
“takes’ them via the DataReader: : take operation.
KEEP_LAST HISTORY_ QOS - isthe default kind. The default value of depth is
1, indicating that only the most recent value should be delivered. If adepth other
than 1 is specified, it should be compatible with the settings of the
ResourcelimitsQosPolicy max_samples_per_instance. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance, otherwise a
RETCODE_INCONSISTENT_POLICY iSgenerated on relevant operations

* KEEP_ALL_HISTORY_QOS - al samples are stored, provided, the resources are
available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data
(identified by itskey) managed by the batawriter until they can be delivered to
al subscribers. On the subscribing side, the Data Distribution Service will
attempt to keep all samples of each instance of data (identified by its key)
managed by the DataReader. These samples are kept until the application
“takes’ them from the Data Distribution Service via the DataReader: : take
operation. The setting of depth has no effect. Its implied vaue is
LENGTH_UNLIMITED. The resources that the Data Distribution Service can useto
keep this history are limited by the settings of the ResourceLimitsQosPolicy.
If the limit is reached, the behaviour of the Data Distribution Service will depend
on the ReliabilityQosPolicy. If the ReliabilityQosPolicy iS
BEST_EFFORT_RELIABILITY_QOS, the old vaues are discarded. If
ReliabilityQosPolicy IS RELIABLE_RELIABILITY Q0S, the Data
Distribution Service will block the Datawriter until it can deliver the necessary
old valuesto all subscribers.

53
APl Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service. On the publishing side
this gosPolicy controls the samples that should be maintained by the
DataWriter on behalf of DataReader objects. The behaviour with respect to a
DataReader Objects discovered after a sample is written is controlled by the
DurabilityQosPolicy. In more detail, thisQospPolicy specifies the behaviour
of the Data Distribution Service in case the value of a sample changes (one or more
times) before it can be successfully communicated to one or more Subscribers.

Requested/Offered

The setting of the gosPolicy offered isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side or
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and DatawWriter are consistent.

L atencyBudgetQosPoalicy

54
API Reference

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

struct LatencyBudgetQosPolicy
{ Duration_t duration; };

Description

Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the batarReader and
the application is notified of thisfact.

Attributes

Duration_t duration - Specifiesthe maximum acceptable additional delay from
the time the data is written until the datais delivered.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Detailed Description

This QosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DataReader and the application is notified of thisfact. This QosPolicy provides
a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimise its internal operation. The default value of the
duration iszero, indicating that the delay should be minimized.

ThisQosPolicy isapplicableto a bataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy may be changed by using the
set_gos operation.

Requested/Offered

ThisgosPolicy is considered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered gosPolicy are incompatible, the
notification OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TNCOMPATIBLE_QOS status on the requesting side is raised.

Table 7 L atencyBudgetQosPoalicy

Duration Compatibility

offered duration < requested duration |compatible

offered duration = requested duration |compatible

offered duration > requested duration |INcompatible

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.

Changing an existing latency budget using the set_qos operation on either the
DataWriter Or DataReader may have consequences for the connectivity between
readers and writers, depending on their Rx0 values. (See also in Section 3.1.3, Sruct
QosPalicy, the paragraph entitled Requested/Offered.) Consider a writer with
budget Bw and a reader with budget Br, where Bw <= Br. In this case a connection
between that reader and that writer is established. Now suppose Bw is changed so
that Bw > Br, then the existing connection between reader and writer will be lost,
and the reader will behave asif the writer unregistered all its instances, transferring
the ownership of these instances when appropriate. See also Section 3.1.3.11,
OwnershipQosPalicy.

55
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos

This QosPolicy can be set on aTopic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and DataWriter are consstent.

L ifespanQosPolicy

56
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct LifespanQosPolicy
{ Duration_t duration; };

Description

This gosPolicy specifies the duration of the validity of the data written by the
DataWriter.

Attributes
Duration_t duration - Specifiesthelength in time of the validity of the data.

Detailed Description

This QosPolicy specifies the duration of the validity of the data written by the
DataWriter. When this time has expired, the data will be removed or if it has not
been delivered yet, it will not be delivered at all. In other words, the duration is
the time in which the datais still valid. This means that during this period a
DataReader Can accessthe dataor if the data has not been delivered yet, it still will
be delivered. The default value of the duration iS DURATION_INFINITE,
indicating that the data does not expire.

ThisQosPolicy isapplicableto aDatawriter and aTopic. After enabling of the
concerning Entity, thisQosPolicy may be changed by using the set_gos
operation.

Requested/Offered

The setting of this gosPolicy isonly applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
will not be rejected on account of this QosPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side will not be raised.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DataWriter are consstent.

LivelinessQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum LivelinessQosPolicyKind
{ AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS };
struct LivelinessQosPolicy
{ LivelinessQosPolicyKind kind;
Duration_t lease_duration; };

Description
ThisQosPolicy controlsthe way theliveliness of an Entity isbeing determined.

Attributes

LivelinessQosPolicyKind kind - controlsthe way the liveliness of an Entity
is determined.

Duration_t lease_duration - specifiesthe duration of the interval within
which the liveliness must be reported.
Detailed Description

This QosPolicy controls the way the liveliness of an Entity isbeing determined.
The liveliness must be reported periodically beforethe 1ease_duration expires.

ThisQosPolicy isapplicable to a bataReader, aDataWriter and aTopic.
After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Attributes

The QosPolicy iscontrolled by the attribute ki nd which can be:

* AUTOMATIC_LIVELINESS_QOS - the Data Distribution Service will take care of
reporting the Liveliness automatically with a rate determined by the
lease_duration.

57
API Reference

3 DCPS Classes and Operations

58
API Reference

3.1 InfrastructureModule

* MANUAL_BY_PARTICIPANT LIVELINESS_QOS - the application must take care
of reporting the liveliness before the 1ease_duration expires. If an Entity
reports its liveliness, all Entities within the same DomainParticipant that
havetheir liveliness kind set to MANUAL_BY PARTICIPANT LIVELINESS_QOS,
can be considered alive by the Data Distribution Service. Liveliness can reported
explicitty by caling the operation assert_liveliness on the
DomainParticipant or implicitly by writing some data.

* MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the 1ease_duration expires. This can explicitly
be done by calling the operation assert_liveliness On the DatawWriter Or
implicitly by writing some data.

The 1lease_duration specifies the duration of the interval within which the

liveliness should be reported.

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 8 LivelinessQosPolicy

Requested | AUTOMATIC | MANUAL_BY_ | MANUAL_BY_
h‘ﬂ\ PARTICIPANT TOPIC
AUTOMATIC compatible INcompatible INcompatible
MANUAL_BY_PARTICIPANT |compatible compatible incompatible
MANUAL_BY_TOPIC compatible compatible compatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DataReader. AS a consequence,
aDataWwriter that has an incompatible gos with respect to what a bataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible gos with respect to what a batawriter
specified does not get any data from that particular batawriter.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and DatawWriter are consistent.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Owner shipQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum OwnershipQosPolicyKind
{ SHARED OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS };
struct OwnershipQosPolicy
{ OwnershipQosPolicyKind kind; };

Description
ThisQosPolicy specifieswhether aDatawriter exclusively owns an instance.

Attributes

OwnershipQosPolicyKind kind - Specifieswhether anatawriter exclusively
owns an instance.

Detailed Description

This QosPolicy specifies whether a batawriter exclusively may own an
instance. In other words, whether multiple patawriter objects can write the same
instance at the same time. The DataReader objects will only read the
modifications on an instance from the Datawriter owning the instance.

Exclusive ownership is on an instance-by-instance basis. That is, a Subscriber
can receive values written by a lower strength patawriter aslong as they affect
instances whose values have not been written or registered by a higher-strength
DataWriter.

ThisQosPolicy isapplicable to a bataReader, aDataWriter and aTopic.
After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Attribute

The QosPolicy iscontrolled by the attribute ki nd which can be:

* SHARED OWNERSHIP_Q0sS (default) - the same instance can be written by
multiple Datawriter objects. All updates will be made available to the
DataReader Objects. In other words it does not have a specific owner

* EXCLUSIVE_OWNERSHIP_ Q0S - the instance will only be accepted from one
DataWriter which is the only one whose modifications will be visible to the
DataReader Objects.

59
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

60
API Reference

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 9 Requested/Offered Owner shipQosPolicy

\g@ted SHARED EXCLUSIVE
Offer

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Whether communication is established is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. The value of the owNERSHIP kind offered must exactly match the
one requested or else they are considered incompatible. As a consequence, a
DataWriter that has an incompatible gos with respect to what a bataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible Qos with respect to what a Datawriter
specified does not get any data from that particular batawriter.

Exclusive ownership

The patawriter with the highest ownershipStrengthQosPolicy value and
being alive (depending onthe LivelinessQosPolicy) and which has not violated
its DeadlineQosPolicy contract with respect to the instance, will be considered
the owner of the instance. Consequently, the ownership can change as a result of:

*a DatawWriter in the system with a higher vaue of the
OownershipStrengthQosPolicy modifiesthe instance

» achange in the ownershipStrengthQosPolicy value (becomes less) of the
DataWriter owning the instance

* a change in the liveliness (becomes not alive) of the batawriter owning the
instance

+ a deadline with respect to the instance that is missed by the patawriter that
owns the instance.

Timeline

Each pataReader may detect the change of ownership at a different time. In other
words, at a particular point in time, the bataReader 0objects do not have a
consistent picture of who owns each instance for that Topic. Outside this grey area
in time all pataReader objects will consider the same patawriter to be the
owner.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

If multiple Datawriter objects with the same ownershipStrengthQosPolicy
modify the same instance, all bataReader objects will make the same choice of the
particular batawriter that isthe owner. The bataReader isaso notified of this
via a status change that is accessible by means of the Listener Or Condition
mechanisms.

Ownership of an Instance

DataWriter objects are not aware whether they own a particular instance. Thereis
no error or notification given to abatawriter that modifies an instance it does not
currently own.

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DataWriter are consistent.

Owner shipStrengthQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct OwnershipStrengthQosPolicy
{ Long value; };

Description

This QosPolicy specifies the value of the ownership strength of a patawriter
used to determine the ownership of an instance.

Attributes
Long value - specifies the ownership strength of the batawriter.

Detailed Description

This QosPolicy specifies the value of the ownership strength of a patawriter
used to determine the ownership of an instance. This ownership is used to arbitrate
among multiple patawriter objectsthat attempt to modify the sameinstance. This
QosPolicy only applies if the OwnershipQosPolicy iS of kind
EXCLUSIVE_OWNERSHIP_Q0S. For more information, see
OwnershipQosPolicy.

61
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

This gosPolicy is applicable to a batawriter only. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_gos
operation. When changed, the ownership of the instances may change with it.

PartitionQosPolicy

62
API Reference

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>
struct PartitionQosPolicy
{ StringSeqg name; };

Description

This QosPolicy specifiesthelogical partitions in which the subscribers
and publishers are active.

Attributes

StringSeq name - holds the sequence of strings, which specifies the
partitions.

Detailed Description

This QosPolicy specifiesthelogical partitions inside the domain in which the
Subscribers and Publishers are active. This QosPolicy is particularly used
to create a separate subspace, like a real domain versus a simulation domain. A
Publisher and/or subscriber can participate in more than one partition.
Each string in the sequence of strings name defines a partition name. A
partition name may contain wildcards. Sharing apartition meansthat at least
one of the partition names in the sequence matches. When none of the
partition names match, it isnot considered an “incompatible” QoS and does not
trigger any listeners Or conditions. It only means, no communication is
established. The default value of the attribute is an empty (zero-sized) sequence.
Thisistreated as a specia value that matches the “ partition”.

ThisQospPolicy isapplicableto apPublisher and Subscriber. After enabling of
the concerning Entity, thisQosPolicy may be changed by using the set_gos
operation. When changed, it modifies the association of DatakReader and
DataWriter objects. It may establish new associations or break existing
associations. By default, patawriter and DataReader objects belonging to a
Publisher OfF Subscriber that do not specify a PartitionQosPolicy, will
participate in the default partition. In this case the partition name is“".

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Requested/Offered

The offered setting of this gosPo1licy isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QospPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side or
REQUESTED_TNCOMPATIBLE_QOS status on the requesting side will not be raised

PresentationQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum PresentationQosPolicyAccessScopeKind
{ INSTANCE_PRESENTATION_ QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS };
struct PresentationQosPolicy
{ PresentationQosPolicyAccessScopeKind access_scope;
Boolean coherent_access;
Boolean ordered_access; };

Note: ThisQospPolicy isnot yet implemented. It is scheduled for afuture release.

Description

This gosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes

PresentationQosPolicyAccessScopeKind access_scope - Specifiesthe
samples controlled by this policy.

Boolean coherent_access - functionality behind this setting is not yet
implemented. It is scheduled for a future release specifies whether the access
should be coherent or not.

Boolean ordered_access - functionality behind this setting is not yet
implemented. It is scheduled for a future release specifies whether the access
should be ordered or not.

Detailed Description

This gosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of

63
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
Entity objects for which the order and coherency of changes can be preserved.

ThisQospPolicy isapplicableto apPublisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy cannot be changed any more.

Attributes

The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only INSTANCE_PRESENTATION_QOS
(the lowest level) is implemented, coherent access and ordered access are not
applicable.

The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. Thisis the case even if the same application thread
makes the changes using the same patawriter. Thisis the default
access_scope.

Note that this gosPolicy controls the ordering at which related changes are made
available to the subscriber. In other words the subscriber can access the
changes in the proper order. However, it does not necessarily imply that the
Subscriber Will indeed access the changes in the correct order. For that to occur,
the application at the subscriber end must use the proper logic in reading the
DataReader.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_TINCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 10 Requested/Offered PresentationQosPalicy

Requested INSTANCE Topic Group
M
instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

The default settings for this policy the only settings are currently supported.
Deviations from the default setting will be ignored by the Publisher or Subscriber.

64

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Reader Datal ifecycleQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct ReaderDatalifecycleQosPolicy
{ Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay; };

Description

This QosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
becomes either NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes

Duration_t autopurge _nowriter_samples_delay - Specifiesthe duration
for which the patarReader will maintain information regarding a data instance
for which the instance_state becomes
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration value
iSDURATTION_INFINITE. When the delay time has expired, the datainstanceis
marked so that it can be purged in the next garbage collection sweep.

Duration_t autopurge_disposed_samples_delay - specifiesthe duration
for which the patarReader will maintain information regarding a data instance
for which the instance_state becomes
NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration value is
DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Detailed Description

This QosPolicy specifies the maximum duration for which the batareader will
maintain information regarding a data instance for which the instance_state
becomes either NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
NOT_ALIVE_DISPOSED_INSTANCE_STATE. The DataReader manages resources
for instances and samples of those instances. The amount of resources managed
depends on other gosPolicies likethe HistoryQosPolicy and the
ResourceLimitsQosPolicy. The DataReader can only release resources for
data instances for which all samples have been taken and the instance_state has
become NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
NOT_ALIVE_DISPOSED_INSTANCE_STATE. If an application does not take the

65
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

samples belonging to a data instance with such an instance_state, the
DataReader Will never be able to release the maintained resources. By means of
this QosPolicy the application can instruct the bataReader to release all
resources related to the concerning data instance after a specified duration.

This QosPolicy is applicable to a DatarReader only. After enabling of the
concerning DataReader, this QosPolicy can be changed using the set_gos
operation.

ReliabilityQosPolicy

66
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum ReliabilityQosPolicyKind
{ BEST_EFFORT RELIABILITY_ QOS,
RELIABLE_RELIABILITY_QOS };
struct ReliabilityQosPolicy
{ ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time; };

Description
This gosPolicy controlsthe level of reliability of the data distribution offered or
requested by the batawriters and DataReaders.

Attributes

ReliabilityQosPolicyKind kind - specifiesthe type of reliability which may
be BEST_EFFORT_RELIABILITY_QOS Of RELIABLE_RELIABILITY_QOS.

Duration_t max_blocking_time - Specifies the maximum timethewrite
operation may block when the patawriter does not have space to store the
value written.

Detailed Description

This gosPolicy controlsthe level of reliability of the data distribution requested
by apataReader or offered by abpatawriter. In other words, it controls whether
datais alowed to get lost in transmission or not.

This QosPolicy isapplicable to a bataReader, Datawriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute kind which can be:

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

* RELIABLE_RELIABILITY_QOS - the Data Distribution Service will attempt to
deliver all samples in the patawriters history; arrival-checks are performed
and data may get re-transmitted in case of lost data. In the steady-state (no
modifications communicated via the batawriter) the Data Distribution Service
guarantees that all samples in the patawriter history will eventualy be
delivered to the al pataReader objects. Outside the steady-state the
HistoryQosPolicy and ResourceLimitsQosPolicy determine how
samples become part of the history and whether samples can be discarded from it.
Inthiscase also themax_blocking time must be set

* BEST_EFFORT_RELIABILITY_QOS - the Data Distribution Service will only
attempt to deliver the data; no arrival-checks are being performed and any lost
data is not re-transmitted (non-reliable). Presumably new values for the samples
are generated often enough by the application so that it is not necessary to resent
or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
HistoryQosPolicy and ResourceLimitsQosPolicy. In case the
HistoryQosPolicy kind iS set t0 KEEP_ALL_HISTORY_QOS, thewrite
operation onthe patawriter may block if the modification would cause one of the
limits, specified in the ResourcelLimitsQosPolicy, to be exceeded. Under these
circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configuresthe maximum duration the write operation
may block.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 11 Requested/Offered ReliabilityQosPolicy

\g{ggted BEST EFFORT RELIABLE
Offer

BEST_EFFORT compatible INcompatible
RELTABLE compatible compatible

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the QospPolicy for
the Topic, DataReader and DataWriter are consstent.

67
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Resour cel. imitsQosPolicy

68
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct ResourceLimitsQosPolicy
{ Long max_samples;
Long max_instances;
Long max_samples_per_instance; };

Note: This gosPolicy isnot yet fully implemented. Missing features are
scheduled for afuture release.

Description

ThisQosPolicy will specify the maximum amount of resources, which can be used
by abpataWriter Or DataReader.

Attributes

Long max_samples - the maximum number of data samples for all instances for
any single batawWriter (Of DataReader). By default, LENGTH_UNLIMITED.

Long max_instances - the maximum number of instances for any single
DataWriter (OF DataReader). By default, LENGTH_UNLIMITED. Any other
value than LENGTH_UNLIMITED Will currently be ignored.

Long max_samples_per._instance - the maximum number of samples of any
single instance for any single batawWriter (Or DataReader). By default,
LENGTH_UNLIMITED.

Detailed Description

This gosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy Settings.

This QosPolicy isapplicableto a bataReader, aDataWriter and a Topic.
After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Requested/Offered

The value of the gosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
OFFERED_TINCOMPATIBLE_QOS status on the offering side or
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Resource Limits

If the patawriter objects are publishing samples faster than they are taken by the
DataReader Objects, the Data Distribution Service will eventualy hit against some
of the gosPolicy-imposed resource limits. Note that this may occur when just a
single bataReader cannot keep up with its corresponding batawWriter.

In case the HistoryQosPolicy ISKEEP_LAST_HISTORY_QOS, the setting of
ResourceLimitsQosPolicy max_samples per_ instance must be
compatible with the HistoryQosPolicy depth. For these two QosPolicy
settings to be compatible, they must verify that depth <=
max_samples_per_instance.

TopicQos

ThisgosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_qgos. That way the application can relatively easily ensure the QospPolicy for
the Topic, DataReader and DataWriter are consstent.

SchedulingQosPalicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
enum SchedulingClassQosPolicyKind
{ SCHEDULE_DEFAULT,
SCHEDULE_TIMESHARING,
SCHEDULE_REALTIME };
struct SchedulingClassQosPolicy
{ SchedulingClassQosPolicyKind kind; };
enum SchedulingPriorityQosPolicyKind
{ PRIORITY_RELATIVE,
PRIORITY_ABSOLUTE };
struct SchedulingPriorityQosPolicy
{ SchedulingPriorityQosPolicyKind kind; };
struct SchedulingQosPolicy
{ SchedulingClassQosPolicy scheduling class;
SchedulingPriorityQosPolicy scheduling_priority_kind;
Long scheduling priority; };

Description

This QosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the DomainParticipant.

69
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

A\

Note that some scheduling parameters may not be supported by the underlying
Operating System, or that you may need special privileges to select particular
settings.

Attributes

SchedulingClassQosPolicyKind scheduling class.kind - specifies the
scheduling class used by the Operating System, which may be
SCHEDULE_DEFAULT, SCHEDULE_TIMESHARING Of SCHEDULE_REALTIME.
Threads can only be spawned within the scheduling classes that are supported
by the underlying Operating System.

SchedulingPriorityQosPolicyKind scheduling priority_kind.kind -
specifies the priority type, which may be either PRIORITY_RELATIVE Of
PRIORITY_ABSOLUTE.

Long scheduling priority - SpECIerS the priority that will be aSSIgned to threads
spawned by the DomainParticipant. Threads can only be spawned with
priorities that are supported by the underlying Operating System.

Detailed Description

This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the bomainParticipant. Note that some scheduling parameters may
not be supported by the underlying Operating System, or that you may need special
privileges to select particular settings. Refer to the documentation of your OS for
more details on this subject.

Although the behaviour of the scheduling_class is highly dependent on the
underlying OS, in general it can be said that when running in a Timesharing class
your thread will have to yield execution to other threads of equal priority regularly.
In a Realtime class your thread normally runs until completion, and can only be
pre-empted by higher priority threads. Often the highest range of priorities is not
accessible through a Timesharing Class.

The scheduling_priority_kind determines whether the specified
scheduling_priority should beinterpreted as an absolute priority, or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DomainParticipant.

TimeBasedFilter QosPolicy

70
API Reference

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

struct TimeBasedFilterQosPolicy
{ Duration_t minimum_separation; };
Note: ThisQospPolicy isnot yet implemented. It is scheduled for afuture release.

TopicDataQosPolicy

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct TopicDataQosPolicy
{ OctetSeqg value; };

Description

This QosPolicy allows the application to attach additional information to a Topic
Entity. Thisinformation is distributed with the BuiltinTopics.

Attributes

OctetSeqg value - asequence of octets that holds the application topic data. By
default, the sequence has length O.

Detailed Description

This QosPolicy allows the application to attach additional information to a Topic
Entity. Thisinformation is distributed with the BuiltinTopic. An application that
discovers a new Topic entity, can use this information to add additional
functionality. The TopicDataQosPolicy iS changeable and updates of the
BuiltinTopic instance must be expected. Note that the Data Distribution Service
is not aware of the real structure of the topic data (the Data Distribution System
handles it as an opague type) and that the application is responsible for correct
mapping on structural types for the specific platform.

TransportPriorityQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct TransportPriorityQosPolicy
{ Long wvalue; };

71
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description

This gosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by the batawriter.

Attributes

Long value - specifies the priority with which the Data Distribution System can
handle the data produced by the Datawriter.

Detailed Description

ThisQosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by apatawriter. ThisQosPolicy isconsidered to be a
hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
type is supported. By default the transport priority is set to 0.

The TransportPriorityQosPolicy iS applicable to both Topic and
DataWriter entities. After enabling of the concerning Entities, this
QosPolicy may be changed by using the set_qgos operation.

TopicQos

Note that changing this gosPo1licy for the Topic does not influence the behaviour
of the Data Distribution System for existing batawriter entities because this
QosPolicy isonly used by the operation copy_from_topic_gos and when
specifying DATAWRITER_QOS_USE_TOPIC_QOS when creating the batawriter.

User DataQosPolicy

72
API Reference

Scope

DDS

Synopsis

#include <ccpp_dds_dcps.h>

struct UserDataQosPolicy
{ OctetSeq value; };

Description

This gospPolicy allows the application to attach additional information to a

DomainParticipant, DataReader Of DataWriter entity. Thisinformation is

distributed with the Builtin Topics.

Attributes

OctetSeq value - asequence of octets that holds the application user data. By
default, the sequence has length O.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This gosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader Of DataWriter entity. Thisinformationis
distributed with the Builtin Topics. An application that discovers anew Entity of
the listed kind, can use this information to add additional functionality. The
UserDataQosPolicy ischangeable and updates of the Builtin Topic instance must
be expected. Note that the Data Distribution Service is hot aware of the real
structure of the user data (the Data Distribution System handles it as an opague
type) and that the application is responsible for correct mapping on structural types
for the specific platform.

Writer Datal ifecycleQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct WriterDatalifecycleQosPolicy
{ Boolean autodispose_unregistered_instances; };
Note: The functionality behind this gosPolicy isnot yet fully implemented.
Missing features are scheduled for afuture release.

Description

This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the batawriter.

Attributes

Boolean autodispose_unregistered_instances - Specifies whether the
Data Distribution Service should automatically dispose instances that are
unregistered by thisDatawriter.

Detailed Description

This QosPolicy controls the behaviour of the batawriter with regards to the
lifecycle of the data-instances it manages; that is, those data-instances that have
been registered, either explicitly using one of the register operations, or
implicitly by directly writing the data using the special HANDLE_NIL parameter.
(See also Section 3.4.2.50, register_instance, on page 254).

The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the batawriter:

73
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

e If the patawriter unregisters the instance explicitly using either
unregister instance Of unregister instance w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

* If the Datawriter unregistersitsinstances implicitly becauseit is deleted or if a
DataReader detects a loss of liveliness of a connected Datawriter, then the
autodispose_unregistered_instances flag determines whether the
concerned instances are automatically disposed (TRUE) or not (FALSE).

The default value for the autodispose_unregistered_instances flagis
TRUE. FOr TRANSTENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when a loss of
itsliveliness is detected.

Lisener Interface

74
API Reference

This interface is the abstract base interface for all Listener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of a QosPolicy Setting, etc. Each DCPS Entity
supports its own specialized kind of Listener. Listeners are related to changes
in communication status. For each Ent ity type, one specific Listener isderived
from thisinterface. In the following modules, the following Li steners are derived
from this interface:

e DomainParticipantListener
e TopicListener

e PublisherListener

e DataWriterListener

e SubscriberListener

e DataReaderListener

The Entity type specific Listener interfaces are part of the application which
must implement the interface operations. A user defined class for these operations
must be provided by the application which must extend from the specific Listener
class. All Listener operations must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

& PRISMTECH

3 DCPS Classes and Operations

<<Interface>>
Listener
(from Infrastructure Module)

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_gos()
on_publication_match()

3.1 InfrastructureModule

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_gos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

<<Interface>>
PublisherListener

DomainParticipantListener

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure 11 DCPSListeners

The base class Listener does not contain any operations.

Sruct Satus
Each concrete Entity classhasaset of status attributes and for each attribute the
Entity class provides an operation to read the value. Changesto status attributes
will affect associated statusCondition and (invoked and associated) Listener

objects.

The communi cation statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each

Entity.

Table 12 Satus Description Per Entity

Entity Satus Meaning
Topic INCONSISTENT_TOPIC_STATUS | Another Topic existswith the same name but
with different characteristics.
Subscriber DATA_ON_READERS_STATUS New information is available.
&4 PRISMTECH >

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 12 Satus Description Per Entity

Entity Satus Meaning
DataReader SAMPLE_REJECTED_STATUS A (received) sample has been rejected.
LIVELINESS_CHANGED_STATUS |Theliveliness of one or more batawriter
objects that were writing instances read
through the bataReader has changed. Some
DataWriter have become“alive” or “not
aive’.
REQUESTED_ The deadline that the bataReader was
DEADLINE_MISSED_STATUS expecting through its DeadlineQosPolicy
was not respected for a specific instance.
REQUESTED_ A QosPolicy Setting was incompatible with
INCOMPATIBLE_QOS_STATUS what is offered.
DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS |TheDataReader hasfound abatawriter
that matches the Topic and has compatible
QosS.
DataWriter LIVELINESS_LOST_STATUS Theliveliness that the batawriter has

committed through its
LivelinessQosPolicy Was not respected;
thus pataReader objectswill consider the
DataWriter asnolonger “alive’.

OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the Datawriter has
committed through itSbeadlineQosPolicy
was not respected for a specific instance.

OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy Setting was incompatible with
what was requested.

PUBLICATION_MATCH_STATUS

The batawriter hasfound DataReader
that matches the Topic and has compatible
QoS.

76
API Reference

A status attribute can be retrieved with the operation
get_<status_name>_status. For example, to get the
InconsistentTopicStatus value, the application must call the operation
get_inconsistent_topic_status.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The statusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.

For the plain communication status, the StatusChangedFlag isinitialy set to
FALSE. It becomes TRUE whenever the plain communication status changes and it
isreset to FALSE each time the application accesses the plain communication
Status viathe proper get_<status_name>_status operation on the Entity.

A flag set means that a change has occurred since the last time the application has
read its value.

———

LivelinessChangedStatus LivelinessLostStatus
SampleLostStatus active_count : long total_count

| [total_count: long g‘t:atic\/!g/egc)cfr:{(mc:hfr:‘ge o total_count_change
total_count_change : long active_ _change : long
inactive_count_change : long

RequestedincompatibeQosStatus

. - - - total_count
InconsistentTopicStatus OfferedDeadlineMissedStatus total_count_change

total_count : long total_count : long last_policy_id
total_count_change : long total_count_change : long policies [*]
last_instance_handle : InstanceHandle_t

SampleRejectedStatus

total_count : long

total_count_change : long

last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

total_count_change

PublicationMatchStatus

SubscriptionMatchStatus

total_count : long

total_count : long

OfferedIincompatibleQosStatus
total_count

last_policy_id
policies [¥]

QosPolicyCount

total_count_change : long

total_count_change : long L [policy_id
last_subscription_handle : InstanceHandle_t

last_publication_handle : InstanceHandle_t count

Figure 12 DCPS Satus Values

Each status attributeisimplemented as a struct and therefore does not provide any
operations. The interface description of these structsis as follows:

// struct <name>Status
//
struct InconsistentTopicStatus
{ Long total_count;
Long total_count_change; };
struct SampleLostStatus
{ Long total_count;

77
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations

78
API Reference

Long total_count_change; };
enum SampleRejectedStatusKind
{ NOT_REJECTED,
REJECTED_BY_ INSTANCES_LIMIT,
REJECTED_BY_ SAMPLES_LIMIT,
REJECTED_BY_ SAMPLES_PER_INSTANCE LIMIT };
struct SampleRejectedStatus
{ Long total_count;
Long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle; };
struct LivelinessLostStatus
{ Long total_count;
Long total_count_change; };
struct LivelinessChangedStatus
{ Long alive_count;
Long not_alive_count;
Long alive_count_change;
Long not_alive_count_change;
InstanceHandle_t last_publication_handle;
struct OfferedDeadlineMissedStatus
{ Long total_count;
Long total_count_change;
InstanceHandle_t last_instance_handle; };
struct RequestedDeadlineMissedStatus
{ Long total_count;
Long total_count_change;
InstanceHandle_t last_instance_handle; };
struct OfferedIncompatibleQosStatus
{ Long total_count;
Long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeqg policies; };
struct RequestedIncompatibleQosStatus
{ Long total_count;
Long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeqg policies; };
struct PublicationMatchedStatus
{ Long total_count;
Long total_count_change;
Long current_count;
Long current_count_change;
InstanceHandle_t last_subscription_handle;
struct SubscriptionMatchedStatus
{ Long total_count;
Long total_count_change;
Long current_count;
Long current_count_change;
InstanceHandle_t last_publication_handle;

Y

Y

Y

3.1 InfrastructureModule

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

//
// 1implemented API operations
// <no operations>

The next paragraphs describe the usage of each <name>status struct.

I nconsistentTopicStatus

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct InconsistentTopicStatus
{ Long total_count;
Long total_count_change; };

Description

This struct contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

Attributes

Long total_count - the total detected cumulative count of Topic creations,
whose name matches the Topic to which this status is attached and whose
characteristics are inconsi stent.

Long total_count_change - thechangein total_count sincethelast timethe
Listener wascalled or the status wasread.

Detailed Description

This struct contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

The attribute total_count holds the total detected cumulative count of Topic
creations, whose name matches the Topic to which this status is attached and
whose characteristics are inconsistent .

The attribute total_count_change holds the incremental number of inconsistent
Topics, sincethelast timethe Listener wascalled or the status was read.

LivelinessChangedStatus

&4 PRISMTECH

Scope

DDS

79
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

80
API Reference

Synopsis
#include <ccpp_dds_dcps.h>
struct LivelinessChangedStatus
{ Long alive_count;
Long not_alive_count;
Long alive_count_change;
Long not_alive_count_change;
InstanceHandle_t last_publication_handle; };

Description

This struct contains the statistics about whether the liveliness of one or more
connected Dataliriter objects has changed.

Attributes

Long alive_count - thetotal count of currently alive batawriter objects that
write the topic read by the DatarReader to which this status is attached.

Long not_alive_count - the total count of currently not alive batawWriter
objects that wrote the topic read by the DatarReader to which this status is
attached.

Long alive_count_change - thechangein alive_count sincethelast timethe
Listener was called or the status was read.

Long not_alive_count_change - the changein not_alive_count Since the
last timethe Listener wascalled or the status was read.

InstanceHandle_t last_publication_handle - handle to the last
DataWriter whose changein liveliness caused this status to change.

Detailed Description

This struct contains the statistics about whether the liveliness of one or more
connected DatawWriter Objects that were writing instances read through the
DataReader has changed. In other words, some Datawriter have become
“aive” or “not aive’.

The attribute alive_count holds the total number of currently alive batawriter
objects that write the topic read by the patareader to which this status is
attached. This count increases when a newly-matched Datawriter asserts its
liveliness for the first time or when abatawriter previously considered to be not
alive reasserts its liveliness. The count decreases when a Datawriter considered
alive fails to assert its liveliness and becomes not alive, whether because it was
deleted normally or for some other reason.

The attribute not_alive_count holds the total count of currently not alive
DataWriters that wrote the topic read by the DatarReader to which this status
is attached, and that are no longer asserting their liveliness. This count increases

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

A

when apatawriter considered alive fails to assert its liveliness and becomes not
alive for some reason other than the normal deletion of that batawriter. It
decreases when a previously not alive batawriter ether reassertsits liveliness or
is deleted normally.

The attribute alive_count_change holdsthe changein alive_count since the
last timethe Listener was called or the status was read.

The attribute not_alive_count_change holds the change in
not_alive_ count sincethelast timethe Listener was caled or the status
was read.

The attribute 1ast_publication_handle contains the instance handle to the
PublicationBuiltinTopicData instance that represents the last datawriter
whose change in liveliness caused this status to change. Be aware that this handle
belongs to another datareader, the
PublicationBuiltinTopicDataDataReader in the builtin-subscriber, and has
no meaning in the context of the datareader from which the
LivelinessChangedStatus was obtained. If the builtin-subscriber has not
explicitly been obtained using get_builtin_subscriber on the
DomainParticipant, then there is no
PublicationBuiltinTopicDataDataReader as well, in which case the
last_publication_handle will be set to HANDLE NIL.

LivelinessL ostSatus

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct LivelinessLostStatus
{ Long total_count;
Long total_count_change; };

Description

This struct contains the statistics about whether the liveliness of the Datawriter to
which this status is attached has been committed through its
LivelinessQosPolicy.

Attributes

Long total_count - the total cumulative count of times the batawriter to
which this status is attached failed to actively signal its liveliness within the
offered liveliness period.

81
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Long total_count_change - thechangein total_count sincethelast timethe
Listener was called or the status was read.

Detailed Description

This struct contains the statistics about whether the liveliness of the Datawriter to
which this status is attached has been committed through its
LivelinessQosPolicy. In other words, whether the batawriter failed to
actively signal its liveliness within the offered liveliness period. In such a case, the
connected DataReader oObjects will consider the Datawriter as no longer
“alive’.

The attribute total_count holds the total cumulative number of times that the
previously-alive Datawriter became not alive dueto afailureto actively signal its
liveliness within its offered liveliness period. This count does not change when an
already not alive patawriter simply remains not alive for another liveliness
period.

The attribute total_count_change holds the changein total_count since the
last timethe Listener was caled or the status was read.

OfferedDeadlineM issedSatus

82
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct OfferedDeadlineMissedStatus
{ Long total_count
Long total_count_change
InstanceHandle_t last_instance_handle }

Description

This struct contains the statistics about whether the deadline that the Datawriter
to which this status is attached has committed through its Dead1lineQosPolicy
was not respected for a specific instance.

Attributes

Long total_count - the total cumulative count of times the batawriter to
which this status is attached failed to write within its offered deadline.

Long total_count_change - the changein total_count sincethe last time the
Listener wascaled or the status was read.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

InstanceHandle t last_instance_handle - the handleto thelast instancein
the batawriter to which this status is attached, for which an offered
deadline was missed.

Detailed Description

This struct contains the statistics about whether the deadline that the batawWriter
to which this status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.

The attribute total_count holdsthe total cumulative number of offered deadline
periods elapsed during which the Datawriter to which this status is attached
failed to provide data. Missed deadlines accumulate; that is, each deadline period
the total_count will beincremented by one.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener was called or the status was read.

The attribute 1ast_instance handle holds the handle to the last instance in the
DataWriter to which this status is attached, for which an offered deadline was
missed.

OfferedlncompatibleQosStatus

&4 PRISMTECH

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct OfferedIncompatibleQosStatus
{ Long total_count
Long total_count_change
QosPolicyId_t last_policy_id
QosPolicyCountSeq policies }

Description

This struct contains the statistics about whether an offered gospPolicy setting was
incompatible with the requested QosPolicy Setting.

Attributes

Long total_count - the total cumulative count of DataReader objects
discovered by the batawriter with the same Topic and Partition and with
arequested pataReaderQos that was incompatible with the one offered by the
DataWriter.

Long total_count_change - thechangein total_count sincethelast timethe
Listener was called or the Status was read.

83
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

84
API Reference

QosPolicyId_ t last_policy_id - theid of one of the QosPolicy settings
that was found to be incompatible with what was offered, the last time an
incompatibility was detected.

QosPolicyCountSeq policies - alist containing for each Qospolicy thetota
number of times that the concerned patawriter discovered aDataReader
for the same Topic and arequested DataReaderQos that isincompatible with
the one offered by the batawriter.

Detailed Description

This struct contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested QosPolicy Setting.

The Request/Offering mechanism is applicable between:

* the pDataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed viaan OFFERED_INCOMPATIBLE_QOS Status change.

* the patawriter and the Durability Service (as a built-in DataReader). If the
QosPolicy Settings between patawriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
published by the patawriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of bataReader is specified by
the DurabilityServiceQosPolicy inthe Topic.

* the Durability Service (as a built-in Datawriter) and the DataReader. If the
QosPolicy settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining bataReaders.
The gosPolicy of the Durability Servicein therole of batawriter isspecified
by the burabilityServiceQosPolicy inthe Topic.

The attribute total_count holds the total cumulative count of DatarReader
objects discovered by the batawriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the batawriter.

The attribute total_count_change holds the changein total_count since the
last timethe Listener was caled or the status was read.

The attribute 1ast_policy_id holdstheid of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last time an
incompatibility was detected.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

The attribute policies holds alist containing for each gosPolicy the total
number of times that the concerned patawriter discovered an incompatible
DataReader for the same Topic.Each element in the list represents a counter for a
different QosPolicy, identified by acorresponding unique index number. A named
list of all index numbers is expressed as a set of constants in the API. See Table 13,
Overview of all named QosPolicy indexes for an overview of all these constants.

Table 13 Overview of all named QosPolicy indexes

Index name Index Value
INVALID_QOS_POLICY_ID 0
USERDATA_QOS_POLICY_ID 1
DURABILITY_QOS_POLICY_ID 2
PRESENTATION_QOS_POLICY_ID 3
DEADLINE_QOS_POLICY_ID 4
LATENCYBUDGET_QOS_POLICY_ID 5
OWNERSHIP_QOS_POLICY_ID 6
OWNERSHIPSTRENGTH_QOS_POLICY_ID 7
LIVELINESS_QOS_POLICY_ID 8
TIMEBASEDFILTER_QOS_POLICY_ID 9
PARTITION_QOS_POLICY_ID 10
RELIABILITY_QOS_POLICY_ID 11
DESTINATIONORDER_QOS_POLICY_ID 12
HISTORY_QOS_POLICY_ID 13
RESOURCELIMITS_QOS_POLICY_ID 14
ENTITYFACTORY_QOS_POLICY_ID 15
WRITERDATALIFECYCLE_QOS_POLICY_ID 16
READERDATALIFECYCLE_QOS_POLICY_ID 17
TOPICDATA_QOS_POLICY_ID 18
GROUPDATA_QOS_POLICY_ID 19
TRANSPORTPRIORITY_QOS_POLICY_ID 20
LIFESPAN_QOS_POLICY_ID 21
DURABILITYSERVICE_QOS_POLICY_ID 22

3.1.5.6 PublicationM atchedStatus

&4 PRISMTECH

Scope
DDS

85
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <ccpp_dds_dcps.h>
struct PublicationMatchedStatus
{ Long total_count
Long total_count_change
Long current_count;
Long current_count_change;
InstanceHandle_t last_subscription_handle }

Description

The functionality behind the publicationMatchedStatus iS not yet
implemented. It is scheduled for afuture release.

RequestedDeadlineMissedStatus

86
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct RequestedDeadlineMissedStatus
{ Long total_count
Long total_count_change
InstanceHandle_t last_instance_handle }

Description

This struct contains the statistics about whether the deadline that the DataReader
to which this status is attached was expecting through its DeadlineQosPolicy,
was not respected for a specific instance.

Attributes

Long total_ count - the tota cumulative count of the missed deadlines detected
for any instance read by the bataReader to which this status is attached.

Long total_count_change - thechangein total_count sincethelast timethe
Listener wascalled or the status wasread.

InstanceHandle t last_instance_ handle - the handle to the last instance
in the DataReader to which this status is attached for which a missed
deadline was detected.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This struct contains the statistics about whether the deadline that the bataReader
to which this status is attached was expecting through itS DeadlineQosPolicy
was not respected for a specific instance. Missed deadlines accumulate, that is, each
deadline period the total_count will be incremented by one for each instance for
which data was not received.

The attribute total count holds the total cumulative count of the missed
deadlines detected for any instance read by the pataRreader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener was called or the status was read.

The attribute 1ast_instance handle holds the handle to the last instance in the
DataReader for which amissed deadline was detected.

Requestedl ncompatibleQosStatus
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct RequestedIncompatibleQosStatus
{ Long total_count
Long total_count_change
QosPolicyId_t last_policy_id
QosPolicyCountSeq policies }

Description

This struct contains the statistics about whether arequested gosPolicy Setting was
incompatible with the offered QosPolicy setting.

Attributes

Long total_count - the total cumulative count of batawriter objects,
discovered by the batarReader to which this status is attached, with the
same Topic and an offered patawriterQos that was incompatible with the
one requested by the DataReader.

Long total_count_change - thechangein total_count sincethelast timethe
Listener was called or the status was read.

QosPolicyId t last_policy_ id - the <name>_Q0S_POLICY_ ID of one of
the QosPolicies that was found to be incompatible with what was requested,
the last time an incompatibility was detected.

87

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

88
API Reference

QosPolicyCountSeq policies - alist containing (for each gospPolicy) the
total number of times that the concerned pataReader discovered a
DataWriter with the same Topic and an offered DatawriterQos that is
incompatible with the one requested by the bataReader.

Detailed Description

This struct contains the statistics about whether arequested gosPolicy setting was
incompatible with the offered QosPo1licy setting.

The Request/Offering mechanism is applicable between:

* the patawriter and the pataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_TINCOMPATIBLE_QOS status change and the pataReader will be
informed via an OFFERED_TINCOMPATIBLE_QOS status change.

* the Datawriter and the Durability Service (as a built-in DatarReader). If the
QosPolicy settings between patawriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
published by the patawriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of bataReader is specified by
the DurabilityServiceQosPolicy inthe Topic.

* the Durability Service (as a built-in Datawriter) and the DataReader. If the
QosPolicy Settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining bataReaders.
The QosPolicy of the Durability Servicein therole of batawriter is specified
by the DurabilityServiceQosPolicy inthe Topic.

The attribute total_count holds the total cumulative count of Datawriter
objects discovered by the patarReader with the same Topic and an offered
DataWriterQos that was incompatible with the one requested by the
DataReader.

The attribute total_count_change holds the changein total_count since the
last timethe Listener was caled or the status was read.

The attribute 1ast_policy_id holdsthe <name>_Qo0s_proLIcY_ID of one of the
QosPolicies that was found to be incompatible with what was requested, the last
time an incompatibility was detected.

The attribute policies holds alist containing for each QosPolicy the total
number of times that the concerned patarReader discovered an incompatible
DataWriter for the same Topic. Each element in the list represents a counter for a

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

different gosPolicy, identified by acorresponding unigue index number. A named
list of all index numbersis expressed as a set of constants in the API. See Table 13,
Overview of all named QosPolicy indexes, on page 85 for an overview of all these
constants.

Samplel ostStatus

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SamplelLostStatus
{ Long total_count
Long total_count_change }

Description

This struct contains the statistics about whether a sample has been lost (never
received).

Attributes

Long total_count - the total cumulative count of all samples lost across all
instances of data published under the Topic.

Long total_count_change - thechangein total_count sincethelast timethe
Listener was caled or the status was read.

Detailed Description

This struct contains the statistics about whether a sample has been lost (never
received). The status is independent of the differencesin instances, in other words, it
includes all sampleslost across all instances of data published under the Topic.

total_count holdsthe total cumulative count of all samples lost across all
instances of data published under the Topic.

total_count_change holdsthe changein total_count since the last time the
Listener was caled or the status was read.

SampleRg ectedSatus

&4 PRISMTECH

Scope
DDS

Synopsis

#include <ccpp_dds_dcps.h>

89
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

90
API Reference

enum SampleRejectedStatusKind
{ NOT_REJECTED
REJECTED_BY_ INSTANCES_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT }
struct SampleRejectedStatus
{ Long total_count
Long total_count_change
SampleRejectedStatusKind last_reason
InstanceHandle_t last_instance_handle }

Description
This struct contains the statistics about samples that have been rejected.

Attributes

Long total_count - the total cumulative count of samples rejected by the
DataReader to which this status is attached.

Long total_count_change - the changein total_count sincethe last time the
Listener wascaled or the status was read.

SampleRejectedStatusKind last_reason - the reason for rejecting the last
sample.

InstanceHandle t last_instance_handle - the handleto the instance which
would have been updated by the last sample that was rejected.

Detailed Description
This struct contains the statistics about whether a received sample has been rejected.

The attribute total_count holdsthetotal cumulative count of samples rejected by
the DataReader to which this status is attached.

The attribute total_count_change holds the changein total_count Since the
last timethe Listener was caled or the status was read.

The attribute 1ast_reason holds the reason for rejecting the last sample. The
attribute can have the following values:

* NOT_REJECTED - N0 sample has been rejected yet.

* REJECTED_BY_INSTANCES_LIMIT - the sample was rejected because it would
exceed the maximum number of instances st by the
ResourceLimitsQosPolicy.

* REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it would
exceed the maximum number of samples set by the ResourceLimits
QosPolicy.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was rejected
because it would exceed the maximum number of samples per instance set by the
ResourceLimitsQosPolicy

The attribute 1ast_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

SubscriptionM atchedStatus

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SubscriptionMatchedStatus
{ Long total_count
Long total_count_change
Long current_count;
Long current_count_change;
InstanceHandle_t last_publication_handle }

Description

The functionality behind the subscriptionMatchedStatus iS not yet
implemented. It is scheduled for afuture release.

Class WaitSet

&4 PRISMTECH

A waitset object allows an application to wait until one or more of the attached
Condition objects evaluatesto TRUE or until the timeout expires.

Thewaitset has no factory and must be created by the application. It is directly
created as an object by using waitset constructors.

WaitSet

Condition
attach_condition()
,.|detach_condition()
get_conditions()
wait()

Figure 13 DCPS WaitSets
The interface description of this classis asfollows:

get_trigger_value()

class WaitsSet
{
//
// implemented API operations
//
ReturnCode_t
wait

91
API Reference

3 DCPS Classes and Operations

(ConditionSeg& active_conditions,
const Duration_t& timeout) ;
ReturnCode_t
attach_condition
(Condition_ptr cond) ;
ReturnCode_t
detach_condition
(Condition_ptr cond) ;
ReturnCode_t
get_conditions
(ConditionSeg& attached_conditions) ;
Y

The following paragraphs describe the usage of all WaitSet operations.

attach_condition

92
API Reference

Scope

DDS: :WaitSet

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

attach_condition
(Condition_ptr cond) ;

Description
This operation attachesacondition tothewaitset.

Parameters
in Condition_ptr cond-apointertoacondition.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER Of RETCODE_OUT_OF_

RESOURCES.

Detailed Description

This operation attachesa condition to thewaitsSet. The parameter cond must be
either a ReadCondition, QueryCondition, StatusCondition Or

GuardCondition. To get this parameter see:
* ReadCondition created by create_readcondition

* QueryCondition created by create_querycondition

* StatusCondition retrieved by get_statuscondition OnanEntity

3.1 InfrastructureModule

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

e GuardCondition created by the C++ operation new.

When aGuardcondition isinitialy created, the trigger_value iSFALSE.
When a condition, whose trigger_value evaluates to TRUE, is attached to a
waitSet that iscurrently being waited on (using thewait operation), thewaitset
will unblock immediately.

Return Code

When the operation returns:

* RETCODE_OK - the Condition isattached to thewaitset

* RETCODE_ERROR - an internal error has occurred

e RETCODE_BAD_PARAMETER - the parameter cond isnot avalid condition_ptr

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

detach_condition

&4 PRISMTECH

Scope

DDS: :WaitSet

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

detach_condition
(Condition_ptr cond) ;

Description
This operation detaches a Condition fromthewaitset.

Parameters
in Condition ptr cond-apointertoaconditioninthewaitset.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_
RESOURCES Of RETCODE_ PRECONDITION_NOT_MET.

Detailed Description

This operation detaches a condition from thewaitset. If the Ccondition was
not attached to this waitset, the operation returns
RETCODE_PRECONDITION_NOT_MET.

93
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Code

When the operation returns:

* RETCODE_OK - the Condition isdetached from thewaitset.
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter cond is not a vaid
Condition_ptr.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION NOT MET - the Condition was not attached to this
WaitSet.

get_conditions

94
API Reference

Scope

DDS: :WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_conditions
(ConditionSeqg out attached_conditions) ;

Description
This operation retrieves the list of attached conditions.

Parameters

inout ConditionSeg& attached_conditions - areferenceto aseqguence
which is used to pass the list of attached conditions.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation retrieves the list of attached conditions in the waitset. The
parameter attached_conditions iSareference to a sequence which afterwards
will refer to the sequence of attached conditions. The attached _conditions
sequence and its buffer may be pre-allocated by the application and therefore must
either be re-used in a subsequent invocation of the get_conditions operation or
be released by invoking its destructor either implicitly or explicitly. If the
pre-allocated sequence is not big enough to hold the number of triggered

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

wait

&4 PRISMTECH

Conditions, the sequence will automatically be (re-)allocated to fit the required
size. The resulting sequence will either be an empty sequence, meaning there were
no conditions attached, or will contain alist of ReadCcondition,
QueryCondition, StatusCondition and GuardCondition. These conditions
previously have been attached by attach_condition and were created by there
respective create operation:

* ReadCondition created by create_readcondition

* QueryCondition created by create_querycondition

* StatusCondition retrieved by get_statuscondition OnanEntity
* GuardCondition created by the C++ operation new.

Return Code

When the operation returns:

* RETCODE_OK - thelist of attached conditionsis returned
* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Scope

DDS: :WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
wait
(ConditionSeqg& active_conditions,
const Duration_t& timeout) ;

Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditionsthat is attached to thewaitset.

Parameters

inout ConditionSeq active conditions - asequence which is used to pass
thelist of all the attached conditions that have atrigger_value Of TRUE.

95
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

96
API Reference

in const Duration_té& timeout - the maximum duration to block for thewait,
after which the application thread is unblocked. The special constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_OUT_OF_RESOURCES, RETCODE_TIMEOUT Of
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluateto TRUE that is attached to thewaitset. If al of the
conditions attached to thewaitset have a trigger_value Of FALSE, thewait
operation will block the calling thread. The result of the operation is the
continuation of the application thread after which the result is left in
active_conditions. Thisisareferenceto a sequence, which will contain the list
of all the attached conditions that have a trigger_value of TRUE. The
active_conditions sequence and its buffer may be pre-allocated by the
application and therefore must either be re-used in a subsequent invocation of the
wait operation or be released by invoking its destructor either implicitly or
explicitly. If the pre-allocated sequence is not big enough to hold the number of
triggered conditions, the sequence will automatically be (re-)allocated to fit the
required size. The parameter timeout specifies the maximum duration for the
wait to block the calling application thread (when none of the attached conditions
has a trigger_value of TRUE). In that case the return value is
RETCODE_TIMEOUT and the active_conditions sequenceisleft empty. Sinceit
is not allowed for more than one application thread to be waiting on the same
waitset, the operation returns immediately with the value
RETCODE_PRECONDITION_NOT_MET When the wait operation isinvoked on a
waitSet which aready has an application thread blocking on it.

Return Code

When the operation returns:

e RETCODE_OK - o least one of the attached conditions hasatrigger value
of TRUE.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming TRUE.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* RETCODE_PRECONDITION_NOT MET - the waitSet aready has an application
thread blocking on it.

Class Condition

This classisthe base class for al the conditions that may be attached to awaitset.
This base class is specialized in three classes by the Data Distribution Service:
GuardCondition, StatusCondition and ReadCondition (also thereisa
QueryCondition which isaspeciaized ReadCondition).

Each condition hasatrigger_value that can be TRUE or FALSE and is set by
the Data Distribution Service (except a GuardCondition) depending on the
evauation of the condition.

Condition

get_trigger_value()

StatusCondition GuardCondition
get_enabled_statuses() set_trigger_value()
ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
get_datareader() statuscondition
get_instance_state_mask() 0.1
get_sample_state_mask() .
get_view_state_mask() entity
1
/ QueryCondition Entity
<<create>> ‘ enable()
get_query_arguments() <<abstract>> get_listener()
L get_query_expression() <<abstract>> get_qos()
set_query_arguments() get_status_changes()
1 A get_statuscondition()
DataReader <<abstract>> set_listener() -
- <<create>J <<abstract>> set_qos() DataWriter

Subscriber %

DomainEntity

Publisher

V

Topic

Figure 14 DCPS Conditions
The interface description of thisclassis asfollows:

class Condition
{
//
// implemented API operations
//
Boolean
get_trigger_value

97
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

(void) ;
Y

The next paragraph describes the usage of the condition operation.

get_trigger value

Scope

DDS: :Condition

Synopsis

#include <ccpp_dds_dcps.h>
Boolean

get_trigger_value
(void) ;

Description
This operation returnsthe trigger_value Of the condition.

Parameters
<none>

Return Value

Boolean-isthetrigger_value.

Detailed Description

A Condition hasatrigger_value that can be TRUE or FALSE and is set by the
Data Distribution Service (except a GuardCondition). This operation returns the
trigger_value Of thecondition.

Class GuardCondition

98
API Reference

A GuardCondition object isaspecific Condition Whose trigger_value iS
completely under the control of the application. The Guardcondition has no
factory and must be created by the application. The GuardCondition isdirectly
created as an object by using the GuardCondition constructor. When a
GuardCondition isinitialy created, the trigger_value iSFALSE. The purpose
of the GuardCondition iSto provide the means for an application to manually
wake up awaitset. Thisis accomplished by attaching the Guardcondition to
the waitset and setting the trigger_value by means of the
set_trigger_value operation.

The interface description of this classis asfollows:

class GuardCondition

{

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void) ;
//
// implemented API operations
//
ReturnCode_t
set_trigger_value
(Boolean wvalue) ;
Y
The next paragraphs describe the usage of all Guardcondition operations. The
inherited operation is listed but not fully described since it is not implemented in
this class. The full description of this operation is given in the class from which it is

inherited. Thisis described in their respective paragraph.

get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
get_trigger_value
(void) ;

set_trigger _value

Scope

DDS: :GuardCondition
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_trigger_value
(Boolean value);

Description

This operation setsthe trigger_value Of the GuardCondition.

Parameters
in Boolean value - the boolean valueto which the Guardcondition is set

99
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK Or
RETCODE_ERROR.

Detailed Description

A GuardCondition object is aspecific condition which trigger_value is
completely under the control of the application. This operation must be used by the
application to manually wake-up awaitsSet. This operation sets the
trigger_value Of the GuardCcondition to the parameter value. The
GuardCondition isdirectly created using the GuardCcondition constructor.
When aGuardCondition isinitialy created, the trigger_valueis FALSE.

Return Code
When the operation returns:

* RETCODE_OK - the specified trigger_value has successfully been applied.
* RETCODE_ERROR - an internal error has occurred.

3.1.9 ClassSatusCondition

100
API Reference

Entity objectsthat have status attributes also have a statusCondition, accessis
provided to the application by the get_statuscondition operation.

The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Table 14 Satus Per Entity

Entity Status Name
Topic INCONSISTENT_TOPIC_STATUS
Subscriber DATA_ON_READERS_STATUS
DataReader SAMPLE_REJECTED_STATUS

LIVELINESS_CHANGED_STATUS

REQUESTED_DEADLINE_MISSED_STATUS

REQUESTED_INCOMPATIBLE_QOS_STATUS

DATA_AVAILABLE_STATUS

SAMPLE_LOST_STATUS

SUBSCRIPTION_MATCHED_STATUS

DataWriter LIVELINESS_LOST_STATUS

OFFERED_DEADLINE_MISSED_STATUS

OFFERED_INCOMPATIBLE_QOS_STATUS

PUBLICATION_MATCHED_STATUS

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

The trigger_value Of the StatusCondition depends on the communication
statuses of that Entity (e.g., missed deadline) and also depends on the value of the
StatusCondition attribute mask (enabled_statuses mask). A
StatusCondition can be attached to awaitset in order to allow an application
to suspend until the trigger_value has become TRUE.

The trigger_value of aStatusCondition will be TRUE if one of the enabled
StatusChangedFlags iSsSet. That is, trigger_value==FALSE only if all the
values of the statusChangedFlags are FALSE.

The sensitivity of the statusCondition to aparticular communication status is
controlled by the list of enabled_statuses Set on the condition by means of the
set_enabled_statuses operation.

When the enabled_statuses are not changed by the set_enabled_statuses
operation, all statuses are enabled by default.

The interface description of this classis asfollows:

class StatusCondition

{

//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void) ;
//
// implemented API operations
//
StatusMask
get_enabled_statuses
(void) ;

ReturnCode_t
set_enabled_statuses
(StatusMask mask) ;

Entity_ptr
get_entity
(void) ;
Y
The next paragraphs describe the usage of all statusCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

101
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

get_enabled_statuses

102
API Reference

Scope

DDS: :StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_enabled_statuses
(void) ;

Description

This operation returns the list of enabled communication statuses of the
StatusCondition.

Parameters
<none>

Return Value

StatusMask - a bit mask in which each bit shows which status is taken into
account for the statusCondition.

Detailed Description

The trigger_value Of the statusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled statuses onthe StatusCondition.

This operation returns the list of communication statuses that are taken into account
to determine the trigger_value Of the StatusCondition. This operation
returns the statuses that were explicitly set on the last call to
set_enabled_statuses O, if set_enabled statuses was never called, the
default list.

The result value is a bit mask in which each bit shows which status is taken into
account for the statusCondition. The relevant bits represents one of the
following statuses:

« INCONSISTENT_TOPIC_STATUS

« OFFERED_DEADLINE_MISSED_STATUS

« REQUESTED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

« SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

« DATA_ON_READERS_STATUS
« DATA_AVATILABLE_STATUS

« LIVELINESS_LOST_STATUS

« LIVELINESS_CHANGED_STATUS

« PUBLICATION_MATCHED_STATUS

+ SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type statusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener objects for each
Entity for moreinformation.

get_entity
Scope

DDS: :StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
Entity_ptr
get_entity
(void) ;

Description

This operation returns the Ent ity associated with the statusCondition or the
NULL pointer.

Parameters
<none>

Return Value

Entity_ptr - apointer to the Entity associated with the statusCondition or
the NULL pointer.

Detailed Description

This operation returns the Ent i ty associated with the statusCondition. Note
that there is exactly one Ent ity associated with each statuscondition. When
the Entity was already deleted (there is no associated Entity any more), the
NULL pointer is returned.

get_trigger value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

103

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
get_trigger_value
(void) ;

set_enabled statuses

104
API Reference

Scope

DDS: :StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_enabled_statuses
(StatusMask mask) ;

Description

This operation sets the list of communication statuses that are taken into account to
determinethe trigger_value of the StatusCondition.

Parameters

in StatusMask mask - abit mask in which each bit sets the status which is taken
into account for the statusCondition.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR Of RETCODE_ALREADY_DELETED.

Detailed Description

The trigger_value Of the statusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled _statuses onthe StatusCondition.

This operation sets the list of communication statuses that are taken into account to
determine the trigger_value Of the sStatusCondition. This operation may
changethe trigger_value Of the StatusCondition.

WaitSet objects behaviour depend on the changes of the trigger_value of their
attached conditions. Therefore, any waitset to which the statusCondition
is attached is potentially affected by this operation.

If this function is not invoked, the default list of enabled_statuses includes al
the statuses.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

The parameter mask is abit mask in which each bit shows which statusis taken into
account for the statusCondition. The relevant bits represents one of the
following states:

INCONSISTENT_TOPIC_STATUS
OFFERED_DEADLINE_MISSED_STATUS
REQUESTED_DEADLINE_MISSED_STATUS
OFFERED_INCOMPATIBLE_QOS_STATUS
REQUESTED_INCOMPATIBLE_QOS_STATUS
SAMPLE_LOST_STATUS
SAMPLE_REJECTED_STATUS
DATA_ON_READERS_STATUS
DATA_AVAILABLE_STATUS
LIVELINESS_LOST_STATUS
LIVELINESS_CHANGED_STATUS
PUBLICATION_MATCHED_STATUS
SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type statusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener objects for each
Entity for moreinformation.

Return Code
When the operation returns:

&4 PRISMTECH

RETCODE_OK - thelist of communication statuses is set
RETCODE_ERROR - aninternal error has occurred.

RETCODE,_ALREADY_DELETED - the StatusCondition has aready been
deleted.

105
API Reference

3 DCPS Classes and Operations

3.2 Domain Module

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

default_participant_qos

<<Interface>>
TopicListener

on_inconsistent_topic()

1

DomainParticipantListener

<<implicit>>

*

QosPolicy

(from Infrastructure Module)

0.1

<<implicit>> qo0s

«
default_publisher_gos

* default_topic_gos

*

default_subscriber_gos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_gos()

<<create>>

Entity

(from Infrastructure Module)

|

3.2 DomainModule

<<create>>
<<create>> Publisher Subscriber
(from Publication Module) (from Subscription Module)

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gos()
get_default_subscriber_gos()
get_default_topic_gos()
get_domain_id()
get_listener()

get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gqos()
set_default_subscriber_gos()
set_default_topic_gos()
set_listener()

set_qos()

1

-

/
/
/
N

DomainEntity

(from Infrastructure Module)

<<create>> Topic

(from Topic-Definition Module)

<<implicit>>

TopicDescription
(from Topic-Definition Module)

N

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic

(from Topic-Definition Module)

<<create>>

<<create>>

Figure 15 DCPS Domain Modul€e's Class M odel
This module contains the following classes:
e DomainParticipant
» DomainParticipantFactory

* DomainParticipantListener (interface).

3.2.1 ClassDomainParticipant

106
API Reference

All the DCPS Ent ity objects are attached to a DomainParticipant.

A DomainParticipant represents the local membership of the applicationin a
Domain.

A pomain isadistributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
Publishers and the subscribers attached to the same bomain can interact.

This class implements several functions:
* it actsasacontainer for al other Entity objects

it acts as a factory for the Publisher,
ContentFilteredTopic and MultiTopic Objects

Subscriber, Topic,

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

* it provides access to the built-in Topic objects

* it providesinformation about Topic objects

3.2 DomainModule

* It isolates applications within the same Domain (sharing the same domainId)
from other applications in a different bomain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other.

* It provides administration services in the pomain, offering operations, which
adlow the application to ignore locally any information about a given

Participant, Publication, Subscription Of Topic.

The interface description of this classis asfollows:

class DomainParticipant

{

!/
/7
/7
/7
/7
/7
!/
//
/7
/7
/7
/7
!/
//
/7

inherited from class Entity

StatusCondition_ptr
get_statuscondition
(void) ;
StatusMask
get_status_changes
(void) ;
ReturnCode_t
enable
(void) ;

implemented API operations

Publisher ptr
create_publisher
(const PublisherQos& gos,
PublisherListener_ptr a_listener,
StatusMask mask) ;
ReturnCode_t
delete_publisher
(Publisher_ptr p);
Subscriber_ptr
create_subscriber
(const SubscriberQos& gos,
SubscriberListener_ptr a_listener,
StatusMask mask) ;
ReturnCode_t
delete_subscriber
(Subscriber_ptr s);
Subscriber_ptr
get_builtin_subscriber
(void) ;

107
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Topic_ptr
create_topic
(const char* topic_name,
const char* type_name,
const TopicQos& gos,
TopicListener_ptr a_listener,
StatusMask mask) ;
ReturnCode_t
delete_topic
(Topic_ptr a_topic);
Topic_ptr
find_topic
(const char* topic_name,
const Duration_t& timeout) ;
TopicDescription_ptr
lookup_topicdescription
(const char* name) ;
ContentFilteredTopic_ptr
create_contentfilteredtopic
(const char* name,
Topic_ptr related_topic,
const char* filter_expression,
const StringSeqg& expression_parameters) ;
ReturnCode_t
delete_contentfilteredtopic
(ContentFilteredTopic_ptr
a_contentfilteredtopic);
MultiTopic_ptr
create_multitopic
(const char* name,
const char* type_name,
const char* subscription_expression,
const StringSeg& expression_parameters) ;
ReturnCode_t
delete_multitopic
(MultiTopic_ptr a_multitopic);
ReturnCode_t
delete_contained_entities
(void) ;
ReturnCode_t
set_qgos
(const DomainParticipantQos& gos) ;
ReturnCode_t
get_gos
(DomainParticipantQos& gos) ;
ReturnCode_t
set_listener
(DomainParticipantListener_ptr a_listener,
StatusMask mask) ;
DomainParticipantListener_ptr

108

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

get_listener
(void) ;
ReturnCode_t
ignore_participant
(InstanceHandle_t handle);
ReturnCode_t
ignore_topic
(InstanceHandle_t handle) ;
ReturnCode_t
ignore_publication
(InstanceHandle_t handle);
ReturnCode_t
ignore_subscription
(InstanceHandle_t handle) ;
DomainId_t
get_domain_id
(void) ;
ReturnCode_t
get_discovered_participants
(InstanceHandleSeqg& participant_handles) ;
ReturnCode_t
get_discovered_participant_data
(ParticipantBuiltinTopicData& participant_data,
InstanceHandle_t handle) ;
ReturnCode_t
get_discovered_topics
(InstanceHandleSeqg& topic_handles) ;
ReturnCode_t
get_discovered_topic_data
(TopicBuiltinTopicData& topic_data,
InstanceHandle_t handle) ;
ReturnCode_t
assert_liveliness
(void) ;
ReturnCode_t
set_default_publisher_gos
(const PublisherQos& gos) ;
ReturnCode_t
get_default_publisher_gos
(PublisherQos& gos) ;
ReturnCode_t
set_default_subscriber_gos
(const SubscriberQos& gos) ;
ReturnCode_t
get_default_subscriber_gos
(SubscriberQos& gos) ;
ReturnCode_t
set_default_topic_gos
(const TopicQos& gos) ;
ReturnCode_t

109

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_default_topic_gos
(TopicQos& gos) ;
Boolean
contains_entity
(InstanceHandle_t a_handle) ;
ReturnCode_t
get_current_time
(Time_t& current_time) ;
}i
The next paragraphs describe the usage of all DomainParticipant operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

assert_liveliness

110
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

assert_liveliness
(void) ;

Description
This operation asserts the liveliness for the bomainParticipant.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the DomainParticipant.
This way, the Data Distribution Service isinformed that the bomainParticipant
is still alive. This operation only needs to be used when the DomainParticipant
contains pataWriters with the LivelinessQosPolicy set to
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, and it will only affect the
liveliness of those Datawriters.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Writing data viathe write operation of aDatawriter will assert the liveliness on
the pataWwriter itself and its DomainParticipant. Therefore,
assert_liveliness isonly needed when not writing regularly.

The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy.

Return Code

When the operation returns:

* RETCODE_OK - theliveliness of thisbomainParticipant has successfully been
asserted.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the DomainParticipant iSnot enabled.

contains_entity

&4 PRISMTECH

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
Boolean

contains_entity
(InstanceHandle_t a_handle) ;

Description

This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant Or any of its contained entities.
Parameters

in InstanceHandle_ t a_handle - anEntity inthe DataDistribution System.

Return Value

Boolean - TRUE if a_handle represents an Entity that is created by the
DomainParticipant Or any of itscontained Entities. Otherwise the return
valueiSFALSE.

111
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation checks whether or not the given Entity represented by a_handle
is created by the bomainParticipant itself (TopicDescription, Publisher
or subscriber) or created by any of its contained entities (DataReader,
ReadCondition, QueryCondition, DataWriter, €tC.).

Return value is TRUE if a_handle represents an Entity that is created by the
DomainParticipant Or any of its contained Entities. Otherwise the return
valueisFALSE.

create contentfilteredtopic

112
API Reference

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ContentFilteredTopic_ptr
create_contentfilteredtopic

(const char* name,

Topic_ptr related_topic,

const char* filter_expression,

const StringSeg& expression_parameters) ;

Description

This operation creates a ContentFilteredTopic for aDomainParticipant in
order to allow pataReaders to subscribe to a subset of the topic content.

Parameters
in const char* name - the name of the contentFilteredTopic.

in Topic_ptr related_topic - the pointer to the base topic on which the
filtering will be applied. Therefore, afiltered topic is based on an existing Topic.

in const char* filter_ expression - the SQL expression (subset of SQL),
which defines the filtering.

in const StringSeqg& expression_parameters - the handle to a sequence
of strings with the parameter value used in the SQL expression (i.e., the number
of %n tokens in the expression). The number of values in
expression_parameters mMmust be equal or greater than the highest
referenced %n token inthe filter_ expression (e.g.if $1 and %8 are used
as parameter inthe filter_expression, the expression_parameters
should at least containn+1 = 9 values).

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

ContentFilteredTopic_ptr - the pointer to the newly created
ContentFilteredTopic. In case of an error, aNULL pointer is returned.

Detailed Description

This operation creates a ContentFilteredTopic fOr aDomainParticipant in
order to allow pataReaders to subscribe to a subset of the topic content. The base
topic, which is being filtered is defined by the parameter related_topic. The
resulting ContentFilteredTopic only relatesto the samples published under the
related_topic, which have been filtered according to their content. The resulting
ContentFilteredTopic only exists at the batarReader side and will never be
published. The samples of the related_topic arefiltered according to the SQL
expression (which is a subset of SQL) as defined in the parameter
filter_expression (see Appendix H, DCPS Queries and Filters).

The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
parameter expression_parameters. The number of values in
expression_parameters Mmust be equal or greater than the highest referenced
%n tokeninthe filter_expression (e.g. if $1 and %8 are used as parameter in
the filter expression, the expression_parameters should at least contain
n+l = 9 vaues).

The filter_expression isastring that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated Topics. It isan SQL expression where the wHERE clause gives the
content filter.

create_multitopic

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
MultiTopic_ptr
create_multitopic
(const char* name,
const char* type_name,
const char* subscription_expression,
const StringSeq& expression_parameters) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

113
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

114
API Reference

Description

This operation createsaMultiTopic for aDomainParticipant inorder to alow
DataReaders to subscribe to afiltered/re-arranged combination and/or subset of
the content of severa topics.

Parameters
in const char* name - the name of the multi topic.

in const char* type_name - the name of the type of the MultiTopic. This
type_name Must have been registered using register_type prior to calling
this operation.

in const char* subscription_expression -the SQL expression (subset of
SQL), which defines the selection, filtering, combining and re-arranging of the
sample data.

in const StringSeqg& expression_parameters - the handleto a sequence
of strings with the parameter value used in the SQL expression (i.e., the number
of %n tokens in the expression). The number of values in
expression_parameters mMmust be equal or greater than the highest
referenced %n token in the subscription_expression (e.g. if $1 and %8 are used
as parameter in the subscription_expression, the
expression_parameters should at least containn+1 = 9 values).

Return Value

MultiTopic_ptr - isthe pointer to the newly created MultiTopic. In case of an
error, aNULL pointer is returned.

Detailed Description

This operation createsaMultiTopic for aDomainParticipant in order to alow
DataReaders to subscribe to afiltered/re-arranged combination and/or subset of
the content of several topics. Beforethe MultiTopic can be created, the
type_name Of the MultiTopic must have been registered prior to calling this
operation. Registering is done, using the register_type operation from
TypeSupport. The list of topics and the logic, which defines the selection,
filtering, combining and re-arranging of the sample data, is defined by the SQL
expression (subset of SQL) defined in subscription_expression. The
subscription_expression may also contain parameters, which appear as %n
tokens in the expression. These parameters are defined in
expression_parameters. The number of valuesin expression_parameters
must be equal or greater than the highest referenced %n token in the

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

subscription_expression (e.g.if $1 and %8 are used as parameter in the
subscription_expression, the expression parameters should at |east
containn+1 = 9 vaues).

The subscription_expression iSastring that specifiesthe criteriato select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It isan SQL expression where the SELECT
clause provides the fields to be kept, the FroM part provides the hames of the
Topics that are searched for those fields, and the wHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.

The pataReader, Which is associated with amMultiTopic only accesses
information which exist locally in the DatarReader, based on the Topics used in
the subscription expression. The actual MultiTopic will never be
produced, only theindividual Topics.

create publisher

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Publisher_ptr
create_publisher
(const PublisherQos& gos,
PublisherListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates a Publisher with the desired gosPolicy settings and if
applicable, attaches the optionally specified PublisherListener toit.

Parameters

in const PublisherQos& gos - acollection of QosPolicy settings for the
new Publisher. In case these settings are not self consistent, N0 Publisher is
created.

in PublisherListener_ptr a_listener - a pointer to the
publisherListener instance which will be attached to the new publisher.
It is permitted to use NULL as the value of the listener: this behaves as a
PublisherListener Whose operations perform no action.

in StatusMask mask - abit-mask in which each bit enables the invocation of
the PublisherListener for acertain status.

115
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

116
API Reference

Return Value

publisher_ptr - Return value is a pointer to the newly created publisher. In
case of an error, the NULL pointer is returned.

Detailed Description

This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it. When the
PublisherListener isnot applicable, the NULL pointer must be supplied instead.
To delete the publisher the operation delete_publisher Of
delete_contained_entities must be used.

In case the specified QosPolicy settings are not consistent, N0 Publisher is
created and the NULL pointer is returned.

Default QoS

The constant PUBLISHER_QOS_DEFAULT can be used as parameter gos to create a
Publisher with the default PublisherQos as set in the DomainParticipant.
The effect of using PUBLISHER_QOS_DEFAULT iS the same as calling the operation
get_default_publisher_gos and using the resulting pPublisherQos to create
the Publisher.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
callsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the PublisherListener:

+ OFFERED_DEADLINE_MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
« LIVELINESS_LOST_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant aNy_sTATUS can be used
to select all statuses applicable to the PublisherListener.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener Of acontained Datawriter, the DataWriterListener
on that contained patawriter iSinvoked instead of the PublisherListener.
This means that a status change on a contained Datawriter only invokes the
PublisherListener if the contained batawriter itself does not handle the
trigger event generated by the status change.

In case a communication status is not activated in the mask of the
PublisherListener, the DomainParticipantListener Of the containing
DomainParticipant isinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Publisher specific behaviour when needed. In case the
DomainParticipantListener isaso not attached or the communication status
is not activated in itsmask, the application is not notified of the change.

create subscriber

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Subscriber_ptr
create_subscriber
(const SubscriberQos& gos,
SubscriberListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates a subscriber with the desired QosPolicy settings and if
applicable, attaches the optionally specified subscriberListener toit.

Parameters

in const SubscriberQos& gos - acollection of QospPolicy settings for the
new subscriber. In case these settings are not self consistent, no
Subscriber IS created.

in SubscriberListener_ptr a_listener - a pointer to the
SubscriberListener instance which will be attached to the new
Subscriber. It is permitted to use NULL as the value of the listener: this
behaves as a subscriberListener Whose operations perform no action.

117
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

118
API Reference

in StatusMask mask - abit-mask in which each bit enables the invocation of
the subscriberListener for acertain status.

Return Value

Subscriber_ptr - Return value is a pointer to the newly created subscriber. In
case of an error, the NULL pointer is returned.

Detailed Description

This operation creates a subscriber with the desired QospPolicy settings and if
applicable, attaches the optionally specified subscriberListener toit. When the
SubscriberListener iS not applicable, the NULL pointer must be supplied
instead. To delete the subscriber the operation delete_subscriber Or
delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, N0 Subscriber IS
created and the NULL pointer is returned.

Default QoS

The constant SUBSCRIBER_QOS_DEFAULT can be used as parameter gos to create
a Subscriber with the default subscriberQos as set in the
Domainparticipant. The effect of using SUBSCRIBER_QOS_DEFAULT is the
same as calling the operation get_default_subscriber_gos and using the
resulting subscriberQos to create the subscriber.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated subscriberListener
operation is invoked and the communication status is reset to FATSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
callsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the subscriberListener:

+ REQUESTED_DEADLINE_MISSED_STATUS (propagated)
« REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
e SAMPLE_LOST_STATUS (propagated)
« SAMPLE_REJECTED_STATUS (propagated)
o DATA_AVAILABLE_STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
e SUBSCRIPTION_MATCHED_STATUS (propagated).
& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

e DATA_ON_READERS_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaTUS can be used
to select al statuses applicable to the subscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener Of acontained DataReader, the DataReaderListener
on that contained pataReader isinvoked instead of the subscriberListener.
This means that a status change on a contained pataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

In case a communication status is not activated in the mask of the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Subscriber specific behaviour when needed. In case the
DomainParticipantListener iSaso not attached or the communication status
IS not activated in itSmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

create _topic

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr

119
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

120
API Reference

create_topic
(const char* topic_name,
const char* type_name,
const TopicQos& gos,
TopicListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates areference to anew or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener toit.

Parameters

in const char* topic_name - the name of the Topic to be created. A new
Topic Will only be created, when no Topic, with the same name, is found
within the DomainParticipant.

in const char* type_name - aloca dias of the data type, which must have
been registered before creating the Topic.

in const TopicQos& gos - acollection of QosPolicy settings for the new
Topic. In case these settings are not self consistent, no Topic iscreated.

in TopicListener_ptr a_listener - apointer tothe TopicListener
instance which will be attached to the new Topic. Itis permitted to use NULL as
the value of the listener: this behaves as a TopicListener whose operations
perform no action.

in StatusMask mask - abit-mask in which each bit enables the invocation of
the TopicListener for acertain status.

Return Value

Topic_ptr - Return value is a pointer to the new or existing Topic. In case of an
error, the NULL pointer is returned.

Detailed Description

This operation creates areference to anew or existing Topic under the given name,
for a specific type, with the desired gosPolicy settings and if applicable, attaches
the optionally specified TopicListener toit. When the TopicListener is not
applicable, the NuLL pointer must be supplied instead. In case the specified
QosPolicy Settings are not consistent, no Topic is created and the NULL pointer is
returned. To delete the Topic the operation delete_topic oOr
delete_contained_entities must be used.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Default QoS

The constant ToOPTIC_QOS_DEFAULT can be used as parameter gos to create a
Topic with the default TopicQos as set in the DomainParticipant. The effect
of using TOPIC_QOS_DEFAULT iS the same as calling the operation
get_default_topic_gos and using theresulting TopicQos to createthe Topic.

The Topic is bound to the type type_name. Prior to creating the Topic, the
type_name must have been registered with the Data Distribution Service.
Registering the type_name is done using the data type specific register_type
operation.

Existing Topic Name

Before creating a new Topic, this operation performs a
lookup_topicdescription for the specified topic_name. When a Topic is
found with the same name in the current domain, the QoS and type_name of the
found Topic are matched against the parameters gos and type_name. When they
arethe same, no Topic iscreated but a new proxy of the existing Topi c isreturned.
When they are not exactly the same, no Topic is created and the NULL pointer is
returned.

When a Topic is obtained multiple times, it must also be deleted that same number
of timesusing delete_topic or caling delete_contained_entities onceto
delete al the proxies.

Local Proxy

Since aTopic isaglobal concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not a reference to a Topic
but to alocally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
create, a new proxy is created. Therefore the Topic must be deleted the same
number of times, as the Topic was created with the same topic_name per
Domain. In other words, each reference (local proxy) must be deleted separately.

Communication Satus

For each communication status, the statusChangedFlag flagisinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated TopicListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
callsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the TopicListener:

121
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

¢ INCONSISTENT_TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create atailored mask. The special constant ANY_sTATUS can be used
to select all statuses applicable to the TopicListener.

Satus Propagation

In case acommunication statusis not activated in themask of the TopicListener,
the DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe bomainParticipantListener of the
containing bomainParticipant and aTopic specific behaviour when needed. In
case the pomainParticipantListener is also not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

delete contained_entities

122
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

delete_contained_entities
(void) ;

Description

This operation deletes all the Entity objects that were created on the
DomainParticipant.

Parameters

<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_
OUT_OF_RESOURCES Of RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the Entity objects that were created on the
DomainParticipant. In other words, it deletes all Publisher, Subscriber,
Topic, ContentFilteredTopic andMultiTopic objects. Prior to deleting each

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

contained Entity, this operation regressively calls the corresponding
delete_contained_entities operation on each Entity (if applicable). In
other words, all Entity objectsin the publisher and Subscriber are deleted,
including the Datawriter and DataReader. AlSO the QueryCondition and
ReadCondition Objects contained by the batarReader are deleted.

Topic

Since aTopic isagloba concept in the system, access is provided through a local
proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics localy available through this proxy. Such aproxy is created by the
create_topic Of find_topic operation. When a reference to the same Topic
was created multiple times (either by create_topic or find_topic), all
references (local proxies) are deleted. With the last proxy, the Topic itself isalso
removed from the system.

& Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if acontained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
deletethe DomainParticipant.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE _PRECONDITION NOT MET - one or more of the contained entities are
in a state where they cannot be deleted.

delete_contentfilteredtopic
Scope

DDS: :DomainParticipant

123

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

124
API Reference

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_contentfilteredtopic
(ContentFilteredTopic_ptr a_contentfilteredtopic);

Description
This operation deletesaContentFilteredTopic.

Parameters

in ContentFilteredTopic ptr a_contentfilteredtopic - areferenceto
the contentFilteredTopic, whichisto be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletesacontentFilteredTopic.

The deletion of acontentFilteredTopic iSnot alowed if there are any existing
DataReader Objects that are using the contentFilteredTopic. If the
delete_contentfilteredtopic operation is called on a
ContentFilteredTopic With existing bataReader Objects attached to it, it will
return PRECONDITION_NOT_MET.

The delete_contentfilteredtopic operation must be called on the same
DomainParticipant oObject used to create the ContentFilteredTopic. If
delete_contentfilteredtopic iscaled on adifferent DomainParticipant
the operation will have no effect and it will return PRECONDITION_NOT_ MET.
Return Code

When the operation returns:

* RETCODE_OK - the contentFilteredTopic isdeleted

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_contentfilteredtopic iSnot
avalid contentFilteredTopic_ptr

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e RETCODE_PRECONDITION_NOT MET - the operation is caled on a different
DomainParticipant, asused whenthe contentFilteredTopic Was created,
or the contentFilteredTopic is being used by one or more DataReader
objects.

delete_multitopic

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_multitopic
(MultiTopic_ptr a_multitopic);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description
This operation deletesamMultiTopic.

Parameters

in MultiTopic_ptr a_multitopic-apointertothemMultiTopic,whichisto
be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletesamMultiTopic.

The deletion of aMultiTopic isnot alowed if there are any existing bataReader
objects that are using theMultiTopic. If the delete multitopic operationis
called on aMultiTopic With existing bataReader objects attached to it, it will
return RETCODE_PRECONDITION_NOT_MET.

125
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

The delete_multitopic operation must be called on the same
DomainParticipant Object used to create the MultiTopic. If
delete_multitopic iscaled on adifferent bomainParticipant the operation
will have no effect and it will return RETCODE_PRECONDITION_NOT MET.

Return Code

When the operation returns:

* RETCODE_OK - theMultiTopic isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_multitopic is not a valid
MultiTopic_ptr

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_PRECONDITION_NOT MET - the operation is called on a different
DomainParticipant, as used when the MultiTopic was created, or the
MultiTopic isbeing used by one or more bataReader objects.

delete_publisher

126
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

delete_publisher
(Publisher_ptr p);

Description
This operation deletesa publisher.

Parameters
in Publisher ptr p-apointertothe publisher, whichisto be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation deletes a Publisher. A Publisher cannot be deleted when it has
any attached patawriter objects. When the operation is called on a Publisher
with DataWriter objects, the operation returns
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, asused when the publisher was created, the operation
has no effect and returns RETCODE_ PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the Publisher isdeleted

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter p isnot avalid Publisher_ptr

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the operation is caled on a different
DomainParticipant, a used when the publisher was created, or the
Publisher CONtains one or More DataWriter Objects.

delete subscriber

&4 PRISMTECH

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

delete_subscriber
(Subscriber_ptr s);

Description

This operation deletes a Subscriber.

Parameters
in Subscriber ptr s-apointertothe subscriber, which isto be deleted.

127
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES OF RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletes a subscriber. A Subscriber cannot be deleted when it
has any attached pataReader objects. When the operation is called on a
Subscriber With DataReader oDbjects, the operation returns
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, asused when the subscriber was created, the operation
has no effect and returns RETCODE_ PRECONDITION_NOT_MET.

Return Code
When the operation returns:

RETCODE_OK - the Subscriber is deleted
RETCODE_ERROR - an internal error has occurred.
RETCODE_BAD_PARAMETER - the parameter s isnot avalid Ssubscriber_ptr

RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted

RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

RETCODE_PRECONDITION_NOT_MET - the operation is caled on a different
DomainParticipant, as used when the subscriber was created, or the
Subscriber contains one or more DataReader Objects.

delete topic

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

128
API Reference

delete_topic
(Topic_ptr a_topic);

Description
This operation deletesa Topic.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Parameters
in Topic_ptr a_topic - apointertothe Topic, whichisto be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletes a Topic. A Topic cannot be deleted when there are any
DataReader, DataWriter, ContentFilteredTopic Of MultiTopic Objects,
which are using the Topic. When the operation is called on a Topic referenced by
any of these objects, the operation returns RETCODE_PRECONDITION_NOT_MET.
When the operation is called on a different bomainParticipant, as used when
the Topic was created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET.

Local proxy

Since aTopic isaglobal concept in the system, access is provided through alocal
proxy. In other words, the reference is actually not areference to aTopic but to the
local proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic Of find_topic operation. This operation will delete the local
proxy. When a reference to the same Topic was created multiple times (either by
create_topic Or find_topic), each reference (local proxy) must be deleted
separately. When this proxy is the last proxy for this Topic, the Topic itself isalso
removed from the system. As mentioned, a proxy may only be deleted when there
are no other entities attached to it. However, it is possible to delete a proxy while
there are entities attached to a different proxy.

Return Code

When the operation returns:

* RETCODE_OK - the Topic is deleted

* RETCODE_ERROR - aninternal error has occurred.

e RETCODE_BAD_PARAMETER - the parameter a_topic ishot avalid Topic_ptr

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

129
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_PRECONDITION_NOT _MET - the operation is caled on a different
DomainParticipant, asused when the Topic was created, or the Topic istill
referenced by other objects.

enable (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

find_topic

130
API Reference

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr
find_topic
(const char* topic_name,
const Duration_té& timeout) ;

Description

This operation gives access to an existing (or ready to exist) enabled Topic, based
onits topic_name.

Parameters

in const char* topic_name - the name of the Topic that the application
wants access to.

in const Duration_t& timeout -the maximum duration to block for the
DomainParticipant_find_topic, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
Topic_ptr - Return value is a pointer to the Topi ¢ found.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation gives access to an existing Topic, based on its topic_name. The
operation takes as arguments the topic_name of the Topic and atimeout.

If aTopic of the same topic_name aready exists, it gives access to this Topic.
Otherwise it waits (blocks the caller) until another mechanism creates it. This other
mechanism can be another thread, a configuration tool, or some other Data
Distribution Service utility. If after the specified t imeout the Topic can still not be
found, the caller gets unblocked and the NULL pointer is returned.

A Topic obtained by means of £ind_topic, must also be deleted by means of
delete_topic S0 that the local resources can be released. If a Topic is obtained
multiple times it must also be deleted that same number of times using
delete_topic Or caling delete_contained_entities onceto delete all the
proxies.

A Topic that is obtained by means of find_topic in a specific
DomainParticipant can only be used to create bataReaders and
DataWriters inthal DomainParticipant if its corresponding TypeSupport
has been registered to that same DomainParticipant.

Local Proxy

Since aTopic isaglobal concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not areference to a Topic
but to alocally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
time this operation is called, a new proxy is created. Therefore the Topic must be
deleted the same number of times, as the Topic was created with the same
topic_name per Domain. In other words, each reference (local proxy) must be
deleted separately.

get_builtin_subscriber

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Subscriber_ptr
get_builtin_subscriber
(void) ;

131
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Description

This operation returns the built-in subscriber associated with the
DomainParticipant.

Parameters
<none>

Return Value

Subscriber_ptr - Result value is a pointer to the built-in Subscriber
associated with the bomainParticipant.

Detailed Description

This operation returns the built-in subscriber associated with the
DomainParticipant. Each DomainParticipant contains several built-in
Topic objects. The built-in subscriber contains the corresponding DataReader
objects to access them. All these DataReader objects belong to a single built-in
Subscriber. Note that there is exactly one built-in subscriber associated with
each DomainParticipant.

get_current_time

132
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_current_time
(Time_t& current_time) ;

Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received datain current_time.

Parameters

inout Time_t& current_time - thevalue of the current time as used by the
Data Distribution System. The input value of current_time isignored.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_NOT_ENABLED.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well asreceived datain current_time.
Theinput value of current_time isignored by the operation.

Return Code

When the operation returns:

* RETCODE_OK - the value of the current timeisreturned in current_time.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter current_time iS not a valid
reference.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the DomainParticipant iSnot enabled.

get_default_publisher _gos
Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_default_publisher_gos
(PublisherQos& gos) ;

Description

This operation gets the struct with the default Publisher QosPolicy Settings of
the DomainParticipant.

Parameters

inout PublisherQos& gos - areferenceto the publisherQos struct (provided
by the application) in which the default gosPolicy settings for the
Publisher arewritten.

133

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation gets the struct with the default Publisher QosPolicy settings of
the bomainParticipant (that isthe publisherQos) which is used for newly
created publisher Objects, in case the constant PUBLISHER_QOS_DEFAULT iS
used. The default PublisherQos isonly used when the constant is supplied as
parameter gos to specify the publisherQos inthe create_publisher
operation. The application must provide the publisherQos struct in which the
QosPolicy Settings can be stored and pass the gos reference to the operation. The
operation writes the default gosPolicy settings to the struct referenced to by gos.
Any settingsin the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_publisher_gos, Of, if the call was never made,
the default values as specified for each QosPolicy Setting as defined in Table 2 on

page 37
Return Code
When the operation returns:

* RETCODE_OK - the default pPublisher QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
PublisherQos parameter.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_default_subscriber _gos

134
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_default_subscriber_gos
(SubscriberQos& gos) ;

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Description

This operation gets the struct with the default subscriber QosPolicy settings of
the DomainParticipant.

Parameters

inout SubscriberQos& gos - areferencetothegospolicy struct (provided by
the application) in which the default gosPolicy settings for the subscriber
iswritten.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation gets the struct with the default subscriber QosPolicy settings of
the DomainParticipant (that isthe subscribergos) which is used for newly
created subscriber oObjects, in case the constant SUBSCRIBER_QOS_DEFAULT iS
used. The default subscriberQos isonly used when the constant is supplied as
parameter gos to specify the subscriberQos in the create_subscriber
operation. The application must provide the QoS struct in which the policy can be
stored and pass the gos reference to the operation. The operation writes the default
QosPolicy to the struct referenced to by gos. Any settings in the struct are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_subscriber_ gos, of, if the call was never made,
the default values as specified for each QosPolicy defined in Table 2 on page 37
Return Code

When the operation returns:

* RETCODE_OK - the default subscriber QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
SubscriberQos parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

135
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_default_topic_qos

136
API Reference

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_default_topic_gos
(TopicQos& gos) ;

Description

This operation gets the struct with the default Topic QosPolicy Settings of the
DomainParticipant.

Parameters

inout TopicQos& gos - areferencetothe gospPolicy struct (provided by the
application) in which the default gosPolicy settingsfor the Topic iswritten.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation gets the struct with the default Topic QosPolicy Settings of the
DomainParticipant (that isthe TopicQos) which is used for newly created
Topic objects, in case the constant ToPIC_Q0S_DEFAULT is used. The default
TopicQos isonly used when the constant is supplied as parameter gos to specify
the TopicQos inthe create_topic operation. The application must provide the
QoS struct in which the policy can be stored and pass the gos reference to the
operation. The operation writes the default QosPolicy to the struct referenced to
by gos. Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_topic_gos, or, if the call was never made, the
default values as specified for each gosPolicy defined in Table 2 on page 37
Return Code

When the operation returns:

* RETCODE_OK - the default Topic QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
TopicQos parameter.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_discovered participants
Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_discovered_participants
(InstanceHandleSeqg& participant_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_discovered_participant_data
Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_discovered_participant_data
(ParticipantBuiltinTopicData& participant_data,
InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_discovered_topics
Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_discovered_topics
(InstanceHandleSeqg& topic_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future rel ease.

137

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_discovered _topic_data

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_discovered_topic_data
(TopicBuiltinTopicData& topic_data,
InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_domain_id

138
API Reference

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
DomainId_t

get_domain_id
(void) ;

Description

This operation returns the bomainId of the Domain to which this
DomainParticipant is attached.

Parameters

<none>

Return Value
DomainId t -resultisthe bomainId.

Detailed Description

This operation returns the bomainId of the Domain to which this
DomainParticipant isattached. A bomainId consists of a string that represents
a URI to the location of the configuration file (e.qg.
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.

A DomainId may contain the NULL pointer: in that case the location of the
configuration file is extracted from the environment variable called 0sPL._URT.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

get_listener

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
DomainParticipantListener_ptr

get_listener
(void) ;

Description
This operation allows accessto abomainParticipantListener.

Parameters
<none>

Return Value

DomainParticipantListener_ptr - result is a pointer to the
DomainParticipantListener attached to the bomainParticipant

Detailed Description

This operation alows access to aDomainParticipantListener attached to the
DomainParticipant. Whenno DomainParticipantListener was attached to
the DomainParticipant, the NULL pointer isreturned

get_qos

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(DomainParticipantQos& gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DomainParticipant.

139
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

inout DomainParticipantQos& gos - areference to the destination
DomainParticipantQos Struct in which the gospPolicy settings will be
copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DomainParticipant on which this operation is used. This
DomainparticipantQos isstored at thelocation pointed to by the gos parameter.

Return Code
When the operation returns:

* RETCODE_OK - the existing set of QoS policy vaues applied to this
DomainParticipant has successfully been copied into the specified
DomainParticipantQos parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status _changes (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_status_changes
(void) ;

get_statuscondition (inherited)

140
API Reference

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition
get_statuscondition_ptr
(void) ;

3.2.1.30 ignore_participant

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
ignore_participant
(InstanceHandle_t handle);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

3.2.1.31 ignore_publication

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
ignore_publication
(InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

3.2.1.32 ignore_subscription

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
ignore_subscription
(InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

141
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

ignore_topic

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
ignore_topic
(InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

lookup_topicdescription

142
API Reference

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
TopicDescription_ptr
lookup_topicdescription
(const char* name) ;

Description

This operation gives access to a locally-created TopicDescription, with a
matching name.

Parameters

in const char* name - the name of the TopicDescription tolook for.

Return Value

TopicDescription_ptr - Return valueis a pointer to the Topichescription
found. When no such TopicDescription isfound, the NULL pointer is
returned.

Detailed Description

The operation lookup_topicdescription gives access to alocally-created
TopicDescription, based onits name. The operation takes as argument the name
of the Topicbhescription.

If one or more local TopicDescription proxies (see aso section 3.2.1.15) of the
same name already exist, a pointer to one of the already existing local proxiesis
returned: 1ookup_topicdescription Will never create a new local proxy. That

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

means that the proxy that is returned does not need to be deleted separately from its
original. When no local proxy exists, it returns the NULL pointer. The operation
never blocks.

The operation lookup_topicdescription may be used to locate any
locally-created Topic, ContentFilteredTopic andMultiTopic Object.

set_default_publisher _gos

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_default_publisher_gos
(const PublisherQos& gos) ;

Description
This operation sets the default PublisherQos Of the DomainParticipant.

Parameters

in const PublisherQos& gos - acollection of QosPolicy settings, which
contains the new default gospPolicy settings for the newly created
Publishers.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation sets the default PublisherQos Of the DomainParticipant (that
is the struct with the gosPolicy settings) which is used for newly created
Publisher objects, in case the constant PUBLISHER_QOS_DEFAULT is used. The
default PublisherQos isonly used when the constant is supplied as parameter gos
to specify the publisherQos inthe create_publisher operation. The
publisherQos is aways self consistent, because its policies do not depend on
each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_publisher_gos.

143
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Code

When the operation returns:

* RETCODE_OK - the new default PublisherQos isset
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnhot avalid publisherQos. It
contains a QosPolicy setting with an enum value that is outside its legal
boundaries.

e RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

set_default_subscriber _qos
Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_default_subscriber_gos
(const SubscriberQos& gos) ;

Description
This operation sets the default subscriberQos Of the DomainParticipant.

Parameters

in const SubscriberQos& gos - acollection of QosPolicy settings, which
contains the new default gospPolicy settings for the newly created
Subscribers.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

144

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation sets the default subscriberQos Of the DomainParticipant (that
is the struct with the gosPolicy settings) which is used for newly created
Subscriber Objects, in case the constant SUBSCRIBER_QOS_DEFAULT IS used.
The default subscriberQos isonly used when the constant is supplied as
parameter gos to specify the subscriberQos in the create_subscriber
operation. The subscriberQos is aways self consistent, because its policies do
not depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_subscriber_gos.

Return Code

When the operation returns:

* RETCODE_OK - the new default subscriberQos isset
* RETCODE_ERROR - aninternal error has occurred.

* RETCODE,_BAD_PARAMETER - the parameter gos isnot avalid publisherQos. It
contains a QosPolicy Setting with an enum value that is outside its legal
boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_default_topic_qgos

&4 PRISMTECH

Scope

DDS: :DomainParticipant
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_default_topic_gos
(const TopicQos& gos) ;

Description
This operation sets the default TopicQos of the DomainParticipant.

145
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

146
API Reference

Parameters

in const TopicQos& gos - acollection of gosPolicy settings, which contains
the new default QosPolicy settings for the newly created Topics.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation sets the default TopicQos of the DomainParticipant (that isthe
struct with the QosPolicy settings) which is used for newly created Topic oObjects,
in case the constant Tor1C_Q0S_DEFAULT is used. The default TopicQos isonly
used when the constant is supplied as parameter gos to specify the TopicQos inthe
create_topic operation. This operation checks if the TopicQos is self
consistent. If it is not, the operation has no effect and returns
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_topic_gos.

Return Code

When the operation returns:

* RETCODE_OK - the new default TopicQos is set
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos is not a valid TopicQos. It
contains a QosPolicy Setting with an invalid buration_t value or an enum
valuethat is outside its legal boundaries

* RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_INCONSISTENT POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

set_listener

&4 PRISMTECH

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(DomainParticipantListener_ptr a_listener,
StatusMask mask) ;

Description

This operation attaches a bomainParticipantListener to the
DomainParticipant.

Parameters

in DomainParticipantListener_ptr a_listener - apointer to the
DomainParticipantListener instance, which will be attached to the
DomainParticipant.

in StatusMask mask - abit mask in which each bit enables the invocation of the
DomainParticipantListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a bomainParticipantListener to the
DomainParticipant. Only one DomainParticipantListener can be
attached to each bomainParticipant. If aDomainParticipantListener Was
aready attached, the operation will replace it with the new one. Whena_1listener
istheNULL pointer, it represents alistener that is treated as aNOOP! for all statuses
activated in the bit mask.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated

1. Short for No-Operation, an instruction that does nothing.

147
API Reference

3 DCPS Classes and Operations

148
API Reference

3.2 DomainModule

DomainParticipantListener operation isinvoked and the communication
statusisreset to FALSE, asthe listener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application callsthe get_<status_name>_status from inside the listener it
will seethe status already reset. An exception to thisrule isthe NULL listener, which
does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the bomainParticipantListener:

* INCONSISTENT TOPIC_STATUS (propagated)
* OFFERED_DEADLINE_MISSED_STATUS (propagated)
* REQUESTED_DEADLINE_MISSED_STATUS (propagated)
* OFFERED_INCOMPATIBLE QOS_STATUS (propagated)
* REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* SAMPLE_LOST_STATUS (propagated)
* SAMPLE_REJECTED_STATUS (propagated)
* DATA_ON_READERS_STATUS (propagated)
* DATA_AVAILABLE_STATUS (propagated)
* LIVELINESS_LOST_STATUS (propagated)
* LIVELINESS_CHANGED_STATUS (propagated)
* PUBLICATION_MATCHED_STATUS (propagated)
* SUBSCRIPTION_MATCHED_STATUS (propagated)

Status bits are declared as a constant and can be used by the application in an or
operation to create a tailored mask. The special constant ANy _STATUS can be used
to select al statuses applicable to the DomainParticipantlListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication statusis also activated onthe Listener of
acontained entity, the Listener on that contained entity is invoked instead of the
DomainParticipantListener. This meansthat a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_ STATUS €an not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code

When the operation returns:

* RETCODE_OK - the DomainParticipantListener isattached

* RETCODE_ERROR - aninternal error has occurred

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
set_qos

Scope

DDS: :DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_gos
(const DomainParticipantQos& gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a

DomainParticipant.

Parameters

in const DomainParticipantQos& gos - new set of QosPolicy Settings for
the DomainParticipant.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

149

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DomainParticipant. The parameter gos containsthe gospPolicy settingswhich
is checked for self-consistency.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DomainParticipantQos IS Set
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

Class DomainParticipantFactory

The purpose of this class is to allow the creation and destruction of
DomainParticipant Objects. DomainParticipantFactory itself has no
factory. It is a pre-existing singleton object that can be accessed by means of the
get_instance operation on the bomainParticipantFactory class.

The pre-defined value TheParticipantFactory can aso be used as an aias for
the singleton factory returned by the operation get_instance.

The interface description of this classis asfollows:

class DomainParticipantFactory
{
//
// implemented API operations
//
static DomainParticipantFactory ptr
get_instance
(void) ;
DomainParticipant_ptr
create_participant
(DomainId_t domainId,
const DomainParticipantQos& gos,
DomainParticipantListener_ptr a_listener,
StatusMask mask) ;
ReturnCode_t
delete_participant
(DomainParticipant_ptr a_participant) ;

150

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DomainParticipant_ptr
lookup_participant
(DomainId_t domainId) ;
ReturnCode_t
set_default_participant_gos
(const DomainParticipantQos& gos) ;
ReturnCode_t
get_default_participant_gos
(DomainParticipantQos& gos) ;
ReturnCode_t
set_qgos
(const DomainParticipantFactoryQos& gos) ;
ReturnCode_t
get_gos
(DomainParticipantFactoryQos& gos) ;

Y

The next paragraphs describe the usage of all bomainParticipantFactory
operations.

3.2.2.1 create participant

&4 PRISMTECH

Scope

DDS: :DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
create_participant
(DomainId_t domainId,
const DomainParticipantQosé& gos,
DomainParticipantListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates a new DomainParticipant which will join the domain
identified by domain1d, with the desired bomainParticipantQos and attaches
the optionally specified DomainParticipantListener tOit.

Parameters

in DomainId_t domainId - the ID of the Domain to which the
DomainParticipant iSjoined. This should be a URI to the location of the
configuration file that identifies the configuration details of the Domain.

in const DomainParticipantQos& gos - aDomainParticipantQos for
the new DomainParticipant. When this set of QosPolicy settingsis
inconsistent, N0 DomainParticipant iScreated.

151
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

152
API Reference

in DomainParticipantListener_ptr a_listener - apointer to the
DomainParticipantListener instance which will be attached to the new
DomainParticipant. It is permitted to use NULL as the value of the listener:
this behaves as a DomainParticipantListener Whose operations perform
no action.

in StatusMask mask - abit-mask in which each bit enables the invocation of
the DomainParticipantListener for acertain status.

Return Value

DomainParticipant_ptr - a pointer to the newly created
DomainParticipant. In case of an error, the NULL pointer isreturned.

Detailed Description

This operation creates a new DomainParticipant, with the desired
DomainParticipantQos and attaches the optionally specified
DomainParticipantListener t0it. The DomainParticipant signifiesthat
the calling application intends to join the bomain identified by the domainId
argument.

If the specified QosPo1icy Settings are not consistent, the operation will fail; no
DomainParticipant is created and the operation returns the NULL pointer. To
delete the DomainParticipant the operation delete_participant must be
used.

I dentifying the Domain

The bomainParticipant will attach to the bomain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
the location of the configuration file (e.g.
“file:///projects/DDS/ospl.xml”). Thisfile specifies all configuration
details of the Domain to which it refers. See the Deployment Guide for further
detail s about the contents of this configuration file.

A NULL pointer may be assigned to the bomainId: in that case the location of the
configuration fileis extracted from the environment variable called ospL_urz. This
variable will be initialized when you source the release. com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice
product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.

It is recommended to use this osp1,_UrT variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.2 DomainModule

Default QoS

The constant PARTTICIPANT_QOS_DEFAULT can be used as parameter gos to create
aDomainParticipant with the default DomainParticipantQos as set in the
DomainParticipantfactory. The effect of using
PARTICIPANT_QOS_DEFAULT is the same as calling the operation
get_default_participant_gos and using the resulting
DomainParticipantQos to createthe DomainParticipant.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DomainParticipantListener operation isinvoked and the communication
statusis reset to FALSE, as the listener implicitly accesses the status which is passed
as a parameter to that operation. The fact that the status is reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the bomainParticipantListener:

+ INCONSISTENT_TOPIC_STATUS (propagated)
« OFFERED_DEADLINE_MISSED_STATUS (propagated)
« REQUESTED_DEADLINE_MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
+ REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
¢ SAMPLE_LOST_STATUS (propagated)
+ SAMPLE_REJECTED_STATUS (propagated)
« DATA_ON_READERS_STATUS (propagated)
« DATA_AVAILABLE_STATUS (propagated)
¢ LIVELINESS_LOST_STATUS (propagated)
+ LIVELINESS_CHANGED_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated)
+ SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaATUS can be used
to select all statuses applicable to the bomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication statusis also activated on the Listener of
acontained entity, the Listener on that contained entity isinvoked instead of the

153
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DomainParticipantListener. This means that a status change on a contained
entity only invokes the bomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_AVATLABLE_STATUS (in that order).

delete participant

154
API Reference

Scope

DDS: :DomainParticipantFactory
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

delete_participant
(DomainParticipant_ptr a_participant) ;

Description
This operation deletesabomainParticipant.

Parameters

in DomainParticipant_ptr a_participant - a pointer to the
DomainParticipant, Whichisto be deleted.

Return Value

ReturnCode_t - return codes can be RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_OUT_OF RESOURCES Of RETCODE_
PRECONDITION NOT MET.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation deletes a bomainParticipant. A DomainParticipant cannot
be deleted when it has any attached Entity objects. When the operation is called
On abDomainParticipant With existing Entity objects, the operation returns
RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the DomainParticipant isdeeted
e RETCODE_ERROR - an internal error has occurred.

* RETCODE,_BAD_PARAMETER - the parameter a_participant is not a valid
DomainParticipant_ptr

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the DomainParticipant contains one
or more Entity objects.

get_default_participant_gos

&4 PRISMTECH

Scope

DDS: :DomainParticipantFactory
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_default_participant_gos
(DomainParticipantQos& gos) ;

Description

This operation gets the default bomainParticipantQos of the
DomainParticipantFactory.

Parameters

inout DomainParticipantQos& qgos - a reference to the
DomainParticipantQos struct (provided by the application) in which the
default DomainParticipantQos for the DomainParticipant iswritten.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR OF RETCODE_OUT_OF_RESOURCES.

155
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation gets the default pomainParticipantQos of the
DomainParticipantFactory (that isthe struct with the QosPolicy settings)
which is used for newly created bomainParticipant objects, in case the constant
PARTICIPANT_ QOS_DEFAULT isused. The default DomainParticipantQos is
only used when the constant is supplied as parameter gos to specify the
DomainParticipantQos inthe create_participant operation. The
application must provide the bomainParticipantQos struct in which the
QosPolicy settings can be stored and provide a reference to the struct. The
operation writes the default gosPolicy settings to the struct referenced to by gos.
Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_participant_gos, or, if the call was never
made, the default values as specified for each gosPolicy setting as defined in
Table 2 on page 37

Return Code

When the operation returns:

* RETCODE_OK - the default DomainParticipant QosPolicy Settings of this
DomainParticipantFactory have successfully been copied into the specified
DomainParticipantQos parameter.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_instance

156
API Reference

Scope

DDS: :DomainParticipantFactory
Synopsis

#include <ccpp_dds_dcps.h>

static DomainParticipantFactory ptr

get_instance
(void) ;

Description
This operation returns the DomainParticipantFactory Singleton.

Parameters
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

DomainParticipantFactory_ptr - a pointer to the
DomainParticipantFactory.

Detailed Description

This operation returns the DomainParticipantFactory singleton. The operation
isidempotent, that is, it can be called multiple times without side-effects and it
returns the same bomainParticipantFactory instance.

The operation is static and must be called upon its class
(DomainParticipantFactory: :get_instance) .

The pre-defined value TheParticipantFactory can also be used as an dias for
the singleton factory returned by the operation get_instance.

get_gos
Scope

DDS: :DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(DomainParticipantFactoryQos& gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DomainParticipantFactory.

Parameters

inout DomainParticipantFactoryQos& qos - areferenceto the destination
DomainparticipantFactoryQos struct in which the Qospolicy settings
will be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR Of RETCODE_OUT_OF_RESOURCES.

157

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation allows access to the existing set of QoS policies of a
DomainParticipantFactory on which this operation is used. This
DomainparticipantFactoryQos IS stored at the location pointed to by the gos
parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy vaues applied to this
DomainParticipantFactory has successfully been copied into the specified
DomainParticipantFactoryQos parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

lookup_participant

158
API Reference

Scope

DDS: :DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
lookup_participant
(DomainId_t domainId) ;

Description

This operation retrieves a previously created bomainParticipant belonging to
the specified domainTd.

Parameters

in const DomainId_t domainId - thelD of the Domain for which ajoining
DomainParticipant should beretrieved. This should be aURI to thelocation
of the configuration file that identifies the configuration details of the Domain.

Return Value

DomainParticipant_ptr - Return value is a pointer to the
DomainParticipant retrieved. When no such bomainParticipant IS
found, the NULL pointer is returned.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation retrieves a previously created bomainParticipant belonging to
the specified domain1d. If no such bomainParticipant exists, the operation will
return NULL.

The domainId used to search for a specific DomainParticipant must be
identical to the domainId that was used to create that specific
DomainParticipant: a NULL pointer will not be resolved on this level. That
means that a DomainParticipant that was created using adomainId Set to NULL
will not be found if you try to look it up using a hard-coded URI that has the same
contents as the environment variable 0SPL_URT.

If multiple bomainParticipant entities belonging to the specified domainId
exist, then the operation will return one of them. It is not specified which one.

set_default_participant_gos

&4 PRISMTECH

Scope

DDS: :DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_default_participant_gos
(const DomainParticipantQos& gos) ;

Description

This operation sets the default bomainParticipantQos of the
DomainParticipantFactory.

Parameters

in const DomainParticipantQos& gos - the DomainParticipantQos
struct, which contains the new default DomainParticipantQos for the newly
created DomainParticipants.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation sets the default bomainParticipantQos of the
DomainParticipantFactory (that isthe struct with the QosPolicy settings)
which is used for newly created DomainParticipant Objects, in case the constant
PARTICIPANT_QOS_DEFAULT isused. The default DomainParticipantQos iS
159

API Reference

3 DCPS Classes and Operations 3.2 DomainModule

only used when the constant is supplied as parameter gos to specify the
DomainParticipantQos inthe create_participant operation. The
DomainParticipantQos IS aways self consistent, because its policies do not
depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY.

The values set by this operation are returned by
get_default_participant_gos.
Return Code
When the operation returns:
* RETCODE_OK - the new default DomainParticipantQos iSSet
* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.
set_gos

Scope

DDS: :DomainParticipantFactory
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_qgos
(const DomainParticipantFactoryQos& gos) ;

Description

This operation replaces the existing set of QosPolicy settings for a

DomainParticipantFactory.

Parameters

in const DomainParticipantFactoryQos& gos - must contain the new set
of QosPolicy settingsfor the DomainParticipantFactory.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR Of RETCODE_OUT_OF_RESOURCES.

160

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DomainParticipantFactory. The parameter gos must contain the struct with
the QosPolicy Settings.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DomainParticipantFactoryQos iS Set.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DomainParticipantListener interface

&4 PRISMTECH

Since abomainParticipant iSan Entity, it hasthe ability to have aListener
associated with it. In this case, the associated Listener should be of type
DomainParticipantListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DomainParticipantListener class. All
DomainParticipantListener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DomainParticipantListener provides ageneric mechanism (actualy a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
aQosPolicy setting, etc. The bomainParticipantListener is related to
changesin communication status statusConditions.

The interface description of thisclassis asfollows:

class DomainParticipantListener
{

//

// inherited from TopicListener
//

// wvoid

// on_inconsistent_topic

161
API Reference

3 DCPS Classes and Operations

162
API Reference

//
//
//
//
//
//
//
//
//

//
//
//
//

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//

//
//
//
//

//
//
//
//

(Topic_ptr the_topic,
const InconsistentTopicStatus& status) =

inherited from PublisherListener

void

on_offered_deadline_missed

void

(DataWriter_ptr writer,

3.2 DomainModule

0;

const OfferedDeadlineMissedStatus& status)

on_offered_incompatible_gos

void

(DataWriter_ptr writer,

const OfferedIncompatibleQosStatus& status)

on_liveliness_lost

void

(DataWriter_ptr writer,
const LivelinessLostStatus& status) = 0;

on_publication_matched

(DataWriter_ptr writer,
const PublicationMatchedStatus& status)

inherited from SubscriberListener

void

on_

void

on_

void

on_

void

on_

void

on_

data_on_readers
(Subscriber_ptr subs) = 0;

requested_deadline_missed
(DataReader_ptr reader,

const RequestedDeadlineMissedStatus& status)

requested_incompatible_gos
(DataReader_ptr reader,

const RequestedIncompatibleQosStatus& status)

sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;

liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) =

0;

0;

0;

0;

= 0;

= 0;

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

// wvoid

// on_data_available

// (DataReader_ptr reader) = 0;

// void

// on_subscription_matched

// (DataReader_ptr reader,

// const SubscriptionMatchedStatus& status) = 0;
// void

// on_sample_lost

// (DataReader_ptr reader,

// const SamplelLostStatus& status) = 0;
//

// implemented API operations

// <no operations>

//

};
The next paragraphs list all DomainParticipantListener operations. Since
these operations are all inherited, they are listed but not fully described because they
are not implemented in this class. The full description of these operationsisgivenin
the classes from which they are inherited.

on_data available (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_data_available
(DataReader_ptr reader) = 0;

on_data on_readers (inherited, abstract)

This operation is inherited and therefore not described here. See the class
SubscriberListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_data_on_readers
(Subscriber_ptr subs) = 0;

163

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

on_inconsistent_topic (inherited, abstract)

This operation is inherited and therefore not described here. See the class
TopicListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_inconsistent_topic
(Topic_ptr the_topic,
const InconsistentTopicStatus& status) = 0;

on_liveliness_changed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) = 0;

on_liveliness lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_liveliness_lost
(DataWriter_ptr writer,
const LivelinessLostStatus& status) = 0;

on_offered_deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_offered_deadline_missed
(DataWriter_ptr writer,
const OfferedDeadlineMissedStatus& status) = 0;

164
API Reference & PRISMTECH

3 DCPS Classes and Operations

3.2 DomainModule

on_offered_incompatible _qgos (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis

#include <ccpp_dds_dcps.h>
void
on_offered_incompatible_gos
(DataWriter_ptr writer,
const OfferedIncompatibleQosStatus& status) = 0;

on_publication_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_publication_matched
(DataWriter_ptr writer,
const PublicationMatchedStatus& status) = 0;
Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_requested deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_requested_deadline_missed
(DataReader_ptr reader,
const RequestedDeadlineMissedStatus& status) = 0;

on_requested_incompatible _qos (inherited, abstract)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_requested_incompatible_gos
(DataReader_ptr reader,
const RequestedIncompatibleQosStatus& status) = 0;

165
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

on_sample lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_lost
(DataReader_ptr reader,
const SampleLostStatusé& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_sample regjected (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;

on_subscription_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_subscription_matched
(DataReader_ptr reader,
const SubscriptionMatchedStatus& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

166
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

3.3 Topic-Definition Module

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
TopicDescription

DomainParticipant
DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
1
get_expression_parameters()
- . get_subscription_expression()
Topic set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() 1
get_qos()
set_listener() Tln;tesrzace;?
set_qos() ypesupp
1 get_type_name()
register_type()
* 0.1 *
QosPolicy <<In.ler.face>> StatusCondition * * WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) == (from Infrastructure Module)

on_inconsistent_topic()

Figure 16 DCPS Topic-Definition Module's Class M odel
This module contains the following classes:

* TopicDescription (abstract)

« Topic

e ContentFilteredTopic

e MultiTopic

* TopicListener (interface)
 Topic-Definition type specific classes.

“Topic-Definition type specific classes’” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>TypeSupport isgenerated (based on IDL) by calling the pre-processor.

167

&4 PRISMTECH API Reference

3 DCPS Classes and Operations

3.3 Topic-Definition Module

DataReader
(from Subscription Module)

<<Interface>> DataWriter
TypeSupport (from Publication Module)
get_type_name()
register_type()
FooTypeSupport FooDataWriter

FooDataReader

get_type_name()
register_type()

dispose()
dispose_w_timestamp()
get_key_value()

register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

get_key_value()

read()

read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()

return_loan()

take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Figure 17 Data Type“Foo” Typed Classes Pre-processor Generation
For instance, for the fictional datatype Foo (this also applies to other types)

“Topic-Definition type specific classes’ contains the following classes:

* TypeSupport (abstract)
* FooTypeSupport.

Topic objects conceptualy fit between publications and subscriptions. Publications
must be known in such away that subscriptions can refer to them unambiguously. A
Topic ismeant to fulfil that purpose: it associates aname (unique in the bomain), a

datatype, and TopicQos related to the dataitself.

Class TopicDescription (abstract)
This class is an abstract class. It is the base class for Topic,

168
API Reference

ContentFilteredTopic andMultiTopic.

The Topicbhescription atribute type_name defines an unique data type that is
made available to the Data Distribution Service via the TypeSupport.
TopicDescription hasaso aname that allowsit to be retrieved locally.

The interface description of this class is as follows:
class TopicDescription

{
//

// implemented API operations

//
char*
get_type_name

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

(void) ;
char*
get_name
(void) ;
DomainParticipant_ptr
get_participant
(void) ;
I

The next paragraphs describe the usage of al TopicDescription operations.
get_name
Scope

DDS: : TopicDescription
Synopsis

#include <ccpp_dds_dcps.h>
char*

get_name
(void) ;

Description
This operation returns the name used to create the Topicbescription.

Parameters
<none>

Return Value
char* - isthe name of the TopicDescription.

Detailed Description
This operation returns the name used to create the Topicbescription.

get_participant
Scope

DDS: : TopicDescription

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
get_participant
(void) ;

169

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description

This operation returns the bomainParticipant associated with the
TopicDescription O the NULL pointer.

Parameters
<none>

Return Value

DomainParticipant_ptr - apointer to the bomainParticipant associated
with the TopicDescription or the NULL pointer.

Detailed Description

This operation returns the bomainParticipant associated with the
TopicDescription. Note that there is exactly one bomainParticipant
associated with each TopicbDescription. When the Topicbescription was
already deleted (there is no associated DomainParticipant any more), the NULL
pointer is returned.

get_type name

170
API Reference

Scope

DDS: :TopicDescription
Synopsis

#include <ccpp_dds_dcps.h>
char*

get_type_name
(void) ;

Description
This operation returns the registered name of the data type associated with the

TopicDescription.

Parameters
<none>

Return Value
char* - the name of the datatype of the Topicbescription.

Detailed Description

This operation returns the registered name of the data type associated with the
TopicDescription.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Class Topic
Topic isthe most basic description of the data to be published and subscribed.

&4 PRISMTECH

A Topic isidentified by its name, which must be unigue in the whole bomain. In
addition (by virtue of extending Topicbhescription) it fully identifies the type of
data that can be communicated when publishing or subscribing to the Topic.

Topic isthe only TopicbDescription that can be used for publications and
therefore a specialized Datawriter isassociated to the Topic.

The interface description of this classis asfollows:

class Topic

{

/7
/7
/7
!/
//
/7
/7
/7
/7
!/
//
/7
/7
/7
/7
//
//
/7

/7
/7
//

/7
/7
/7
/7
//
//

inherited from class Entity

StatusCondition_ptr
get_statuscondition
(void) ;
StatusMask
get_status_changes
(void) ;
ReturnCode_t
enable
(void) ;

inherited from class TopicDescription

char*
get_type_name
(void) ;

char*
get_name
(void) ;

DomainParticipant_ptr
get_participant
(void) ;

implemented API operations

ReturnCode_t
set_qgos
(const TopicQos& gos) ;
ReturnCode_t
get_gos
(TopicQos& gos) ;
ReturnCode_t

171
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

set_listener
(TopicListener_ptr a_listener,
StatusMask mask) ;
TopicListener_ptr
get_listener
(void) ;
ReturnCode_t
get_inconsistent_topic_status
(InconsistentTopicStatus& a_status) ;
Y
The next paragraphs describe the usage of all Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. Thefull description of these operationsis given in the classes from which they
are inherited.

enable (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_inconsistent_topic_status

172
API Reference

Scope

DDS: : Topic

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_inconsistent_topic_status
(InconsistentTopicStatus& a_status) ;

Description
This operation obtainsthe InconsistentTopicStatus of the Topic.

Parameters

inout InconsistentTopicStatus& a_status - the contents of the
InconsistentTopicStatus Struct of the Topic will be copied into the
location specified by a_status.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the InconsistentTopicStatus Of the Topic. The
InconsistentTopicStatus can aso be monitored using a TopicListener OF
by using the associated statusCondition.

Return Code

When the operation returns:

e RETCODE_OK - the current InconsistentTopicStatus Of this Topic has
successfully been copied into the specified a_status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the Topic has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_listener

&4 PRISMTECH

Scope

DDS: : Topic

Synopsis

#include <ccpp_dds_dcps.h>
TopicListener_ptr

get_listener
(void) ;

Description
This operation allows accessto aTopicListener.

Parameters
<none>

Return Value

TopicListener_ptr - result is apointer to the TopiclListener attached to the
Topic.

173
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description

This operation allows accessto a TopicListener attached to the Topic. When no
TopicListener Was attached to the Topic, the NULL pointer is returned.

get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_name
(void) ;

get_participant (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
get_participant
(void) ;

get_qos
Scope

DDS: : Topic

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_gos
(TopicQos& gos) ;

Description
This operation allows access to the existing set of QoS policiesfor aTopic.

Parameters

inout TopicQos& gos - areference to the destination TopicQos struct in which
the QosPolicy Settings will be copied.

174

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of aTopic onwhich
this operation isused. ThisTopicQos isstored at the location pointed to by the gos
parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this Topic has
successfully been copied into the specified TopicQos parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the Topic has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status _changes (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_status_changes
(void) ;

get_statuscondition (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
get_statuscondition
(void) ;

175
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

get_type _name (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_type_name
(void) ;

set_listener

176
API Reference

Scope

DDS: : Topic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(TopicListener_ptr a_listener,
StatusMask mask) ;

Description
This operation attaches a TopicListener tothe Topic.

Parameters

in TopicListener ptr a_listener - apointer tothe TopicListener
instance, which will be attached to the Topic.

in StatusMask mask - abit mask in which each bit enables the invocation of the
TopicListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation attaches a TopicListener to the Topic. Only one
TopicListener can be attached to each Topic. If aTopicListener wasaready
attached, the operation will replace it with the new one. When a_listener isthe
NULL pointer, it represents a listener that is treated as a NOOP! for all statuses
activated in the bit mask.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Communication Satus

For each communication status, the statusChangedFlag flag isinitialy set to
FALSE. It becomes TRUE whenever that plain communication status changes. For
each plain communication status activated in the mask, the associated
TopicListener operation isinvoked and the communication status is reset to
FALSE, as the listener implicitly accesses the status which is passed as a parameter
to that operation. The status is reset prior to calling the listener, so if the application
calsthe get_<status_name> frominside the listener it will seethe status already
reset. An exception to thisrule is the NuLL listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the TopicListener:

¢ INCONSISTENT_ _TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaTUS can be used
to select all statuses applicable to the TopicListener.

Satus Propagation

In case acommunication status is not activated in themask of the TopicListener,
the DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe DomainParticipantListener Of the
containing bomainParticipant and a Topic specific behaviour when needed. In
case the pomainParticipantListener IS also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code

When the operation returns:

* RETCODE_OK - the TopicListener is attached

e RETCODE_ERROR - aninterna error has occurred

* RETCODE_ALREADY_DELETED - the Topic hasalready been deleted.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_qos

&4 PRISMTECH

Scope

DDS: : Topic

1. Short for No-Operation, an instruction that does nothing.

177
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

178
API Reference

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_gos
(const TopicQos& gos) ;

Description
This operation replaces the existing set of QosPolicy settingsfor aTopic.

Parameters
in const TopicQos& gos -thenew set of QosPolicy settingsfor the Topic.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_IMMUTABLE_POLICY Of RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy Settingsfor a Topic. The
parameter gos contains the struct with the QosPolicy settings which is checked
for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled Topic, which can only be set before the Topic
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY isreturned.
In other words, the application must provide the currently set gosPolicy Settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qgos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and aRETCODE_INCONSISTENT_POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

e RETCODE_OK - the new TopicQos is set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos is not a valid TopicQos. It
contains a QosPolicy Sefting with an invalid buration_t value or an enum
value that is outside its legal boundaries.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the Topic hasalready been deleted
* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable

QosPolicy setting with adifferent value than set during enabling of the Topic

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting

QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

Class ContentFilteredTopic

&4 PRISMTECH

ContentFilteredTopic isaspeciaization of Topicbhescription that alows
for content based subscriptions.

ContentFilteredTopic describes a more sophisticated subscription that

indicates the subscriber does not necessarily want to see all values of each
instance published under the Topic. Rather, it only wants to see the values whose

contents satisfy certain criteria. Therefore this class must be used to request
content-based subscriptions.

The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.

The interface description of this classis asfollows:

class ContentFilteredTopic

{

//

// inherited from class TopicDescription
//

// char*

// get_type_name

// (void) ;

// char*

// get_name

// (void) ;

// DomainParticipant_ptr
// get_participant
// (void) ;
//
// implemented API operations
//
char*
get_filter_expression

179
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

(void) ;

ReturnCode_t
get_expression_parameters
(StringSeg& expression_parameters) ;

ReturnCode_t
set_expression_parameters
(const StringSeqg& expression_parameters) ;
Topic_ptr
get_related_topic
(void) ;
}i
The next paragraphs describe the usage of all contentFilteredTopic
operations.

get_expression_parameters
Scope

DDS: :ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_expression_parameters
(StringSeg& expression_parameters) ;

Description

This operation obtains the expression parameters associated with the

ContentFilteredTopic.

Parameters

inout StringSeqg& expression_parameters - areference to a sequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

180

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Detailed Description

This operation obtains the expression parameters associated with the
ContentFilteredTopic. That is, the parameters specified on the last successful
call to set_expression parameters, Or if set_expression parameters
was never called, the parameters specified when the ContentFilteredTopic was
created.

The resulting reference holds a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the contentFilteredTopic.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of expression parameters applied to this
ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the ContentFilteredTopic has aready
been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_filter_expression

&4 PRISMTECH

Scope

DDS: :ContentFilteredTopic

Synopsis

#include <ccpp_dds_dcps.h>

char*
get_filter_expression

(void) ;
Description

This operation returns the filter_expression associated with the
ContentFilteredTopic.

Parameters
<none>

181
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
char* - ahandleto a string which holds the SQL filter expression.

Detailed Description

This operation returns the filter_expression associated with the
ContentFilteredTopic. That is, the expression specified when the
ContentFilteredTopic Was created.

The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

get_name (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_name
(void) ;

get_participant (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
get_participant
(void) ;

get_related_topic

182
API Reference

Scope

DDS: :ContentFilteredTopic
Synopsis

#include <ccpp_dds_dcps.h>
Topic_ptr

get_related_topic
(void) ;

Description
This operation returns the Topi c associated with the ContentFilteredTopic.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Parameters
<none>

Return Value
Topic_ptr - apointer to the base topic on which the filtering will be applied.

Detailed Description

This operation returns the Topic associated with the ContentFilteredTopic.
That is, the Topic specified when the contentFilteredTopic was created. This
Topic isthe base topic on which the filtering will be applied.

get_type name (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_type_name
(void) ;

set_expression_parameters

&4 PRISMTECH

Scope

DDS: :ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_expression_parameters
(const StringSeqg& expression_parameters) ;

Description

This operation changes the expression parameters associated with the
ContentFilteredTopic.

Parameters

in const StringSeq& expression_parameters - areferenceto asequence
of strings with the parameters used in the SQL expression (i.e., the number of
%n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription expression.

183
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
ContentFilteredTopic. The parameter expression_parameters isahandle
to a sequence of strings with the parameters used in the SQL expression. The
number of valuesin expression_parameters must be equal or greater than the
highest referenced %n tokeninthe filter_expression (for example, if $1 and
%8 are used as parameter in the filter_expression, the
expression_parameters should at least containn+1 = 9 values). Thisisthe
filter expression specified when the ContentFilteredTopic Was created.

Return Code

When the operation returns:

* RETCODE_OK - the new expression parameters are set
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this ContentFilteredTopic Or one of the parameters is an
illegal parameter

* RETCODE_ALREADY DELETED - the ContentFilteredTopic has aready
been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

ClassMultiTopic

184
API Reference

MultiTopic isaspecialization of Topicbescription that allows subscriptions
to combine, filter and/or rearrange data coming from several Topics.

MultiTopic alows amore sophisticated subscription that can select and combine
data received from multiple Topics into a single data type (specified by the
inherited type_name). The data will then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL expression with
parametersto adapt the filter clause.

Theinterface description of this classis asfollows:

class MultiTopic

{

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

//

// inherited from class TopicDescription
//

// char*

// get_type_name

// (void) ;

// char*

// get_name

// (void) ;

// DomainParticipant_ptr

// get_participant

// (void) ;

//

// implemented API operations

//

char*
get_subscription_expression

(void) ;

ReturnCode_t
get_expression_parameters
(StringSeg& expression_parameters) ;

ReturnCode_t
set_expression_parameters
(const StringSeq& expression_parameters) ;
}s
The next paragraphs describe the usage of all MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

Note: MultiTopic operations have not been yet been implemented. Multitopic
functionality is scheduled for a future release.

get_expression_parameters

&4 PRISMTECH

Scope

DDS: :MultiTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_expression_parameters
(StringSeg& expression_parameters) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

185
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description
This operation returns the expression parameters associated with the MultiTopic.

Parameters

inout StringSeg& expression_parameters - areferenceto a sequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the expression parameters associated with the MultiTopic.
That is, the parameters specified on the last successful call to
set_expression_parameters, O if set_expression_parameters Was
never called, the parameters specified when the MultiTopic was created.

Theresulting reference holds a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parametersin the result sequence will exactly match the number of %n tokensin the
filter expression associated with theMultiTopic.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of expression parameters applied to this
MultiTopic has successfully been copied into the specified
expression_parameters parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY_DELETED - theMultiTopic hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

get_name (inherited)

186
API Reference

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*

get_name

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_participant (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
get_participant
(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

get_subscription_expression

&4 PRISMTECH

Scope
DDS: :MultiTopic
Synopsis
#include <ccpp_dds_dcps.h>
char*

get_subscription_expression

(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.
Description
This operation returns the subscription expression associated with theMul tiTopic.

Parameters
<none>

Return Value
char* - result isahandle to a string which holds the SQL subscription expression.

Detailed Description

This operation returns the subscription expression associated with theMul tiTopic.
That is, the expression specified when theMultiTopic was created.

The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It isan SQL expression where the SELECT
clause provides the fields to be kept, the From part provides the hames of the

187
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Topics that are searched for those fields, and the wHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.

get_type name (inherited)

This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_type_name
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

set_expression_parameters

188
API Reference

Scope
DDS: :MultiTopic
Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t

set_expression_parameters

(const StringSeqg& expression_parameters) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
Description
This operation changes the expression parameters associated with theMul tiTopic.

Parameters

in const StringSeqg& expression_parameters - the handle to a sequence
of strings with the parameters used in the SQL expression.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with theMul tiTopic.
The parameter expression_parameters isahandle to a sequence of strings with
the parameters used in the SQL expression. The number of parameters in

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

expression_parameters must exactly match the number of %n tokensin the
subscription expression associated with the MultiTopic. Thisis the subscription
expression specified when the MultiTopic was created.

Return Code

When the operation returns:

* RETCODE_OK - the new expression parameters are set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for thisMultiTopic or one of the parametersisanillegal parameter.

* RETCODE_ALREADY DELETED-theMultiTopic hasalready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

TopicListener interface

&4 PRISMTECH

Since aTopic isan Entity, it hasthe ability to have aL.istener associated with
it. In this case, the associated Listener should be of type TopicListener. This
interface must be implemented by the application. A user defined class must be
provided by the application which must extend from the TopicListener class. All
TopicListener operations must be implemented in the user defined class, it isup
to the application whether an operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The TopicListener provides a generic mechanism (actually a callback function)
for the Data Distribution Service to notify the application of relevant asynchronous
status change events, such as an inconsistent Topic. The TopicListener iS
related to changes in communication status.

The interface description of this classis asfollows:

class TopicListener

{

//

// abstract external operations

//

void
on_inconsistent_topic

(Topic_ptr the_topic,
const InconsistentTopicStatus& status) = 0;

//

// implemented API operations

189
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

// <no operations>

//

}:
The next paragraph describes the usage of the TopicListener operation. This
abstract operation is fully described since it must be implemented by the
application.

on_inconsistent_topic (abstract)

190
API Reference

Scope

DDS: :TopicListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_inconsistent_topic
(Topic_ptr the_topic,
const InconsistentTopicStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the InconsistentTopicStatus changes.

Parameters

in Topic_ptr the_topic - contain apointer to the Topic on which the conflict
occurred (thisis an input to the application).

in const InconsistentTopicStatus& status - contain the
InconsistentTopicStatus struct (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
InconsistentTopicStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
relevant TopicListener iS installed and enabled for the
InconsistentTopicStatus. The InconsistentTopicStatus Will change
when another Topic exists with the same topic_name but different
characteristics.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

The Data Distribution Service will call the TopicListener operation with a
parameter the_topic, which will contain areference to the Topic on which the
conflict occurred and a parameter status, which will contain the
InconsistentTopicStatus Struct.

Topic-Definition Type Specific Classes

This paragraph describes the generic Typesupport class and the derived
application type specific <type>TypeSupport classes which together implement
the application Topic interface. For each application type, used as Topic datatype,
the pre-processor generates a <type>DataReader class from an IDL type
description. The FooTypeSupport class that would be generated by the
pre-processor for afictional type Foo describes the <type>TypeSupport classes.

Class TypeSupport (abstract)

&4 PRISMTECH

The Topic, MultiTopic OF ContentFilteredTopic IS bound to a datatype
described by the type name argument. Prior to creating a Topic, MultiTopic Or
ContentFilteredTopic, the datatype must have been registered with the Data
Distribution Service. This is done using the data type specific register_type
operation on a derived class of the Typesupport interface. A derived classis
generated for each data type used by the application, by calling the pre-processor.

The interface description of thisclassis asfollows:

class TypeSupport
{

//

// abstract operations

//

// ReturnCode_t

// register_type

// (Domainparticipant_ptr domain,
// const char* type_name) ;
// char*

// get_type_name

// (void) ;

//

// implemented API operations

// <no operations>

//

};
The next paragraph list the TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation is given in the FooTypesupport class (for the data
type example Foo), which contains the data type specific implementation of this
operation.

191
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

get_type name (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>TypeSupport class. For further explanation see the description for the
fictional datatype Foo derived FooTypeSupport class.

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_type_name
(void) ;

register_type (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>TypeSupport class. For further explanation see the description for the
fictional datatype Foo derived FooTypeSupport class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
register_type
(Domainparticipant_ptr domain,
const char* type_name) ;

Class FooTypeSupport

192
API Reference

The pre-processor generates from IDL type descriptions the application
<type>TypeSupport classes. For each application datatype that isused as Topic
data type, atyped class <type>TypeSupport is derived from the TypeSupport
class. In this paragraph, the class FooTypeSupport describes the operations of
these derived <type>TypeSupport classes as an example for the fictional
application type Foo (defined in the module spPACE).

For instance, for an application, the definitions are located in the space.id1 file.
The pre-processor will generate a ccpp_space . h includefile.

General note: The name ccpp_Space.h isderived from the IDL file space. id1,
that defines SPACE: : Foo, for al relevant SPACE: : FooDataWriter operations.

The Topic, MultiTopic OfF ContentFilteredTopic iSbound to a data type
described by the type_name argument. Prior to creating a Topic, MultiTopic Of
ContentFilteredTopic, the datatype must have been registered with the Data
Distribution Service. Thisis done using the data type specific register_type
operation on the <type>TypeSupport class for each data type. A derived classis
generated for each data type used by the application, by calling the pre-processor.

The interface description of this classis asfollows:

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

class FooTypeSupport
{
//
// implemented API operations
//
ReturnCode_t
register_type
(DomainParticipant_ptr domain,
const char* type_name) ;
char*
get_type_name
(void) ;
Y

The next paragraph describes the usage of the FooTypeSupport operation.
get_type_name
Scope

SPACE: :FooTypeSupport
Synopsis

#include <ccpp_Space.h>
char*

get_type_name
(void) ;

Description

This operation returns the default name of the data type associated with the
FooTypeSupport.

Parameters
<none>

Return Value
char* - the name of the datatype of the FooTypeSupport.

Detailed Description

This operation returns the default name of the data type associated with the
FooTypeSupport. The default name is derived from the type name as specified in
the IDL definition. It is composed of the scope names and the type name, each
separated by “: :”, in order of lower scope level to deeper scope level followed by
the type name.

193

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

register_type

194
API Reference

Scope

SPACE: : FooTypeSupport

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
register_type
(DomainParticipant_ptr domain,
const char* type_name) ;

Description
This operation registers a new data type nameto aDomainParticipant.

Parameters

in Domainparticipant_ptr domain - apointer to aDomainParticipant
object to which the new datatypeis registered.

in const char* type_name - alocal aiasof the new datatype to be registered.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_OUT_
OF_RESOURCES Of RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation registers a new data type name to abomainParticipant. This
operation informs the Data Distribution Service, in order to allow it to manage the
new registered data type. This operation also informs the Data Distribution Service
about the key definition, which allows the Data Distribution Service to distinguish
different instances of the same datatype.

Precondition

A type_name cannot be registered with two different <type>TypeSupport
classes (this means of a different data type) with the same DomainParticipant.
When the operation is called on the same DomainParticipant with the same
type_name for adifferent <type>TypeSupport class, the operation returns
RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the same
<type>TypeSupport classes with the same bomainParticipant and the same
or different type_name multiple times. All registrations return RETCODE_OK, but
any subsequent registrations with the same type_name areignored.

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

Return Code

When the operation returns:

3.4 PublicationModule

* RETCODE_OK - the FooTypeSupport class is registered with the new data type
name to the bomainParticipant oOr the FooTypeSupport class was already

registered

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD_PARAMETER - the domain parameter is a NULL pointer or the
parameter type_name has zero length

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation

* RETCODE_PRECONDITION_NOT_MET - this type_name is aready registered
with thisDomainParticipant for adifferent <type>TypeSupport class.

3.4 Publication Module

<<create>>

DataWriter

assert_liveliness()

<<abstract>> dispose()

<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()

get_qos()

get_topic()

<<abstract>> register()

<<abstract>> register_w_timestamp()
set_listener()

set_qos()

<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()

<<abstract>> write_w_timestamp()

QosPolicy

(from Infrastructure Module)

<<implicit>>

Publisher

qos

<<implicit>>

*

default_datawriter_qos

(from Topic-Definition Module)

Topic

<<implicit>>
10N

0.1

<<implicit>>

0.1

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

0.1 <<implicit>>

StatusCondition
(from Infrastructure Module)

<<create>> /

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()

get_qgos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()

set_qos()
suspend_publications()

/4 .

<<implicit>>

WaitSet

(from Infrastructure Module)

DomainParticipant
(from Domain Module)

1

<<Interface>>
PublisherListener

Figure 18 DCPS Publication Module's Class M odéel

195
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

This module contains the following classes:
e Publisher

* Publication type specific classes

* PublisherListener (interface)

* DataWriterListener (interface).

The paragraph “Publication type specific classes’ contains the generic class and the
generated data type specific classes. For each data type, a data type specific class
<type>DataWriter iSgenerated (based on IDL) by calling the pre-processor.

For instance, for the fictional datatype Foo (this also applies to other types)
“Publication type specific classes’” contains the following classes:

* DataWriter (abstract)
* FooDataWriter.

A publisher isan object responsible for data distribution. It may publish data of
different data types. A patawriter actsas atyped accessor to a Publisher. The
DataWriter isthe object the application must use to communicate the existence
and value of data-objects of a given data type to a publisher. When data-object
values have been communicated to the publisher through the appropriate
DataWriter, itisthe Publisher’s responsbility to perform the distribution. The
Publisher will do this according to its own publisherQos, and the
DataWriterQos attached to the corresponding patawriter. A publication is
defined by the association of a patawriter to a Publisher. This association
expresses the intent of the application to publish the data described by the
DataWriter inthe context provided by the Publisher.

ClassPublisher

196
API Reference

The publisher actson behalf of one or more patawriter objects that belong to
it. When it is informed of a change to the data associated with one of its
DataWriter objects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the publisherQos
and the DataWriterQos.

The interface description of this classis asfollows:

class Publisher

{

//

// inherited from class Entity
//

// StatusCondition_ptr

// get_statuscondition

// (void) ;

// StatusMask

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

/7
//
//
/7
/7
/7
/7
//

get_status_changes
(void) ;
ReturnCode_t
enable
(void) ;

implemented API operations

DataWriter_ptr
create_datawriter
(Topic_ptr a_topic,
const DataWriterQos& gos,
DataWriterListener_ptr a_listener,
StatusMask mask) ;

ReturnCode_t
delete_datawriter
(DataWriter_ptr a_datawriter);

DataWriter_ptr
lookup_datawriter
(const char* topic_name) ;
ReturnCode_t
delete_contained_entities
(void) ;

ReturnCode_t
set_qgos
(const PublisherQosé& gos) ;
ReturnCode_t
get_gos
(PublisherQos& gos) ;
ReturnCode_t
set_listener
(PublisherListener_ptr a_listener,
StatusMask mask) ;
PublisherListener_ptr
get_listener
(void) ;
ReturnCode_t
suspend_publications
(void) ;

ReturnCode_t
resume_publications
(void) ;

ReturnCode_t
begin_coherent_changes
(void) ;

3.4 PublicationModule

197
API Reference

3 DCPS Classes and Operations

ReturnCode_t
end_coherent_changes
(void) ;

ReturnCode_t
wait_for_ acknowledgments
(const Duration_t& max_wait);

DomainParticipant_ptr
get_participant
(void) ;

ReturnCode_t
set_default_datawriter_gos
(const DataWriterQos& gos) ;

ReturnCode_t
get_default_datawriter_gos
(DataWriterQos& gos) ;

ReturnCode_t
copy_from_topic_gos
(DataWriterQos& a_datawriter_gos,
const TopicQos& a_topic_gos);
Y

3.4 PublicationModule

The next paragraphs describe the usage of all Publisher operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. Thefull description of these operationsis given in the classes from which they

areinherited.
begin_coherent_changes

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
begin_coherent_changes
(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

198
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using batawWriter objects attached to this publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using patawriter objects attached to this publisher. The
‘coherent set’ will be completed by amatching call t0 end_coherent_changes.

A ‘coherent set’ isa set of modifications that must be propagated in such away that
they areinterpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the publisher or one of its connected
Subscribers may change, alate-joining DataReader may appear on the
network, or a communication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave asif it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with the last
cdl to end_coherent_changes.

The support for ‘ coherent changes' enables a publishing application to change the
value of several data-instances that could belong to the same or different topics and
have those changes be seen ‘atomically’ by the readers. Thisisuseful in caseswhere
the values are inter-related (for example, if there are two data-instances representing
the *altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneously interpret that the aircraft is on acollision course).

Return Code

When the operation returns:

e RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

199
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

copy_from_topic_qos

200
API Reference

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
copy_from_topic_gos
(DataWriterQos& a_datawriter_gos,
const TopicQos& a_topic_gos);

Description

This operation will copy policiesin a_topic_gos to the corresponding policiesin
a_datawriter_gos.

Parameters

inout DataWriterQos& a_datawriter_gos - the destination
DataWriterQos Struct to which the QosPolicy Settings should be copied.

in const TopicQos& a_topic_gos - the source TopicQos struct, which
should be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation will copy the gospPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datawriter_gos (replacing the values
ina_datawriter_gos, if present). This will only apply to the common
QosPolicy Settingsin each <Entity>Qos.

Thisis a*“convenience” operation, useful in combination with the operations
get_default_datawriter_gos and Topic: :get_gos. The operation
copy_from_topic_gos can be used to merge the patawriter default
QosPolicy Settings with the corresponding ones on the TopicQos. The resulting
DataWriterQos can then be used to create a new DatawWriter, Or Set its
DataWriterQos.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

This operation does not check the resulting a_datawriter_gos for consistency.
Thisis because the “merged” a_datawriter_gos may not be the final one, as the
application can still modify some gosPolicy settings prior to applying the
DataWriterQos tothe DatawWriter.

Return Code

When the operation returns:

* RETCODE_OK - the QosPolicy Settings are copied from the Topic to the
DataWriter

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

create datawriter
Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>

DataWriter_ptr

create_datawriter
(Topic_ptr a_topic,

const DataWriterQos& gos,
DataWriterListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates a Datawriter with the desired patawriterQos, for the
desired Topic and attaches the optionally specified batawriterListener toit.

Parameters

in Topic_ptr a_topic - apointer tothe topic for which the batawriter is
created.

in const DataWriterQos& gos - the DatawriterQos for the new
DataWriter. In case these settings are not self consistent, N0 Datawriter is
created.

201

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

202
API Reference

in DataWriterListener_ptr a_listener - a pointer to the
DataWriterListener instance which will be attached to the new
DataWriter. It is permitted to use NULL as the value of the listener: this
behaves asapatawriterListener Whose operations perform no action.

Return Value

DataWriter_ ptr - Return valueisapointer to the newly created batawriter. In
case of an error, the NULL pointer is returned.

Detailed Description

This operation creates a batawriter With the desired patawriterQos, for the
desired Topic and attaches the optionally specified DatawWriterListener toit.
The returned patawriter is attached (and belongs) to the Publisher on which
this operation is being called. To delete the patawriter the operation
delete_datawriter Of delete_contained_entities must be used.

Application Data Type

The patawriter returned by this operation is an object of a derived class, specific
to the data type associated with the Topic. For each application-defined data type
<type> thereis aclass <type>Datalriter generated by calling the
pre-processor. This data type specific class extends Datawriter and contains the
operations to write data of datatype <type>.

QosPalicy

The possible application pattern to construct the batawriterQos for the

DataWriter iStO:

* Retrieve the QosPolicy settings on the associated Topic by means of the
get_gos operation on the Topic

* Retrieve the default DataWriterQos by means of the
get_default_datawriter_gos operation onthe publisher

* Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

» Usetheresulting DatawriterQos to construct the batavriter.

In case the specified QosPolicy Settings are not consistent, N0 DataWriter IS
created and the NULL pointer is returned.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Default QoS

The constant DATAWRITER_QOS_DEFAULT Can be used as parameter gos to create
aDatawWriter with the default DatawriterQos as set in the Publisher. The
effect of using DATAWRITER_QOS_DEFAULT IS the same as calling the operation
get_default_datawriter_gos and using the resulting DatawriterQos to
createthe Datawriter.

The special DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DataWriter with a combination of the default patawriterQos and the
TopicQos. The effect of using DATAWRITER_QOS_USE_TOPIC_QOS iSthe sameas
calling the operation get_default_datawriter_gos and retrieving the
TopicQos (by means of the operation Topic: :get_gos) and then combining
these two QosPolicy settings using the operation copy_from_topic_gos,
whereby any common policy that is set on the TopicQos “overrides” the
corresponding policy on the default DatawriterQos. The resulting
DataWriterQos isthen applied to create the batawriter.

Communication Satus

For each communication status, the statusChangedrlag flag isinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in themask, the associated DatawriterListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calsthe get _<status _name>_ status from inside the listener it will see the
status already reset.

The following statuses are applicable to the bataWriterListener:
« OFFERED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« LIVELINESS_LOST_STATUS

« PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select all statuses applicableto the DatawriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DataWriterListener, the PublisherListener Of the containing publisher
isinvoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe PublisherListener Of the containing
publisher and aDataWriter Specific behaviour when needed. In case the

203
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

communication status is not activated in the mask of the PublisherListener as
well, the communication status will be propagated to the
DomainParticipantListener Of the containing bomainParticipant. In case
the DomainParticipantListener iS also not attached or the communication
statusis not activated in itsmask, the application is not notified of the change.

delete _contained_entities

204
API Reference

Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

delete_contained_entities
(void) ;

Description

This operation deletes all the batawriter objects that were created by means of
one of the create_datawriter operations on the publisher.

Parameters

<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the patawriter objects that were created by means of
one of the create_datawriter operations on the publisher. In other words, it
deletes all contained Datawriter Objects.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
delete the publisher

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - one or more of the contained entities are
in a state where they cannot be deleted.

delete datawriter

&4 PRISMTECH

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_datawriter
(DataWriter_ptr a_datawriter);

Description
This operation deletes abatawriter that belongsto the publisher.

Parameters

in DataWriter ptr a_datawriter - apointertothepatawriter, whichisto
be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletes a batawriter that belongs to the Publisher. When the
operation is called on a different Publisher, as used when the batawriter was
created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET. The deletion of the Datawriter will
automatically unregister all instances. Depending on the settings of
WriterDataLifecycleQosPolicy, the deletion of the batawriter may also
dispose of all instances.

205
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Code

When the operation returns:

* RETCODE_OK - the DataWriter iSsdeeted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_datawriter is not a valid
DataWriter_ptr

* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
Publisher, asused when the Datawriter was created.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;

end_coherent_changes
Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
end_coherent_changes
(void) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
begin_coherent_changes.

Parameters

<none>

206

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
Publisher_begin_coherent_changes. If there is ho matching call to
Publisher_begin_coherent_changes, the operation will return the error
PRECONDITION NOT MET.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

get_default_datawriter_qos
Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_default_datawriter_gos
(DataWriterQos& gos) ;

Description
This operation gets the default DatawriterQos of the Publisher.

Parameters

inout DataWriterQos& gos - areferenceto the bataWwriterQos struct
(provided by the application) in which the default DatawriterQos for the
DataWriter iswritten.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

207

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation gets the default DatawriterQos of the Publisher (that isthe
struct with the gosPolicy settings) which is used for newly created DatawWriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos isonly used when the constant is supplied as parameter gos to
specify the patawriterQos in the create_datawriter operation. The
application must provide the DatawriterQos struct in which the QospPolicy
settings can be stored and pass the gos reference to the operation. The operation
writes the default DatawriterQos to the struct referenced to by qos. Any settings
in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_datawriter gos, of, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2 on

page 37.
Return Code
When the operation returns:

* RETCODE_OK - the default DatawWriter QosPolicy Settings of this Publisher
have successfully been copied into the specified DatawriterQos parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_listener

208
API Reference

Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>
PublisherListener_ptr

get_listener
(void) ;

Description
This operation allows accessto a PublisherListener.

Parameters
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

pPublisherListener_ptr - result is apointer to the PublisherListener
attached to the Publisher.

Detailed Description

This operation allows access to a PublisherListener attached to the
Publisher. When no PublisherListener was attached to the Publisher, the
NULL pointer is returned.

get_participant

Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>
DomainParticipant_ptr

get_participant
(void) ;

Description

This operation returns the DomainParticipant associated with the publisher
or the NULL pointer.

Parameters

<none>

Return Value

DomainParticipant_ptr - apointer to the DomainParticipant associated
with the Publisher or the NULL pointer.

Detailed Description

This operation returns the bomainParticipant associated with the publisher.
Note that there is exactly one bomainParticipant associated with each
publisher. When the publisher was already deleted (there is no associated
DomainParticipant any more), the NULL pointer isreturned.

get_qos

&4 PRISMTECH

Scope

DDS: : Publisher

209
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(PublisherQos& gos) ;

Description
This operation allows access to the existing set of QoS policiesfor arPublisher.

Parameters

inout PublisherQos& gos - areference to the destination publisherQos
struct in which the gosPo1licy settings will be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a Publisher on
which this operation is used. This publisherQos is stored at the location pointed
to by the gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this Publisher
has successfully been copied into the specified PublisherQos parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)

210
API Reference

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_status_changes
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
get_statuscondition
(void) ;

lookup_datawriter
Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>
DataWriter_ptr

lookup_datawriter
(const char* topic_name) ;

Description

This operation returns a previously created patawriter belonging to the

Publisher which isattached to a Topic with the matching topic_name.

Parameters

in const char* topic_name - the name of the Topic, which is attached to the
Datawriter tolook for.

Return Value

DataWriter_ ptr - Return valueis a pointer to the batawriter found. When no
such patawriter isfound, the NULL pointer isreturned.

Detailed Description

This operation returns a previously created patawriter belonging to the
Publisher which is attached to a Topic with the matching topic_name. When
multiple patawriter objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

resume_publications
Scope

DDS: : Publisher

211

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
resume_publications
(void) ;

Description
This operation resumes a previously suspended publication.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED Or RETCODE_PRECONDITION_
NOT_MET

Detailed Description

If the Publisher is suspended, this operation will resume the publication of all
DataWriter Objects contained by this publisher. All data held in the history
buffer of the patawriter'sis actively published to the consumers. When the
operation returns all patawriter's have resumed the publication of suspended
updates.

Return Code

When the operation returns:

* RETCODE_OK - the Publisher has been suspended

* RETCODE_ERROR - an internal error has occurred

* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the Publisher isnot enabled.
* RETCODE_PRECONDITION_NOT_MET - the Publisher isnot suspended

set_default_datawriter_qos

212
API Reference

Scope

DDS: : Publisher

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_default_datawriter_gos
(const DataWriterQos& gos) ;

Description
This operation sets the default batawriterQos of the Publisher.

Parameters

in const DataWriterQos& gos -theDatawriterQos struct, which contains
the new default batawriterQos for the newly created atawriters.

Return Value

ReturnCode_t - Possible return codes of the operation are;: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Ofr
RETCODE_INCONSISTENT_ POLICY.

Detailed Description

This operation sets the default batawriterQos of the Publisher (that isthe
struct with the QosPolicy settings) which is used for newly created pataviriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos iSonly used when the constant is supplied as parameter gos to
specify the DataWriterQos inthe create_datawriter operation. The
set_default_datawriter_gos operation checksif the DatawriterQos is salf
consistent. If it is not, the operation has no effect and returns
RETCODE_INCONSISTENT_POLICY.

The values set by this operation arereturned by get_default_datawriter_gos.

Return Code

When the operation returns:

* RETCODE_OK - the new default DatawriterQos is set
e RETCODE_ERROR - an interna error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter gos isnot avalid DatalriterQos.
It contains a QosPolicy Setting with an invalid buration_t value or an enum
value that is outside its legal boundaries.

* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted

213
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

set_listener

214
API Reference

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(PublisherListener_ptr a_listener,
StatusMask mask) ;

Description
This operation attaches a PublisherListener to the Publisher.

Parameters

in PublisherListener_ptr a_listener - a pointer to the
PublisherListener instance, which will be attached to the Publisher.

in StatusMask mask - abit mask in which each bit enables the invocation of the
PublisherListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation attaches a PublisherListener to the Publisher. Only one
PublisherListener can be attached to each Publisher. If a
pPublisherListener was already attached, the operation will replace it with the
new one. When a_1listener isthe NULL pointer, it represents a listener that is
treated as a NOOP" for all statuses activated in the bit mask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener

1. Short for No-Operation, an instruction that does nothing.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to thisrule isthe NuLL listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the PublisherListener:

« OFFERED_DEADLINE_MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
¢ LIVELINESS_LOST_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaATUS can be used
to select all statuses applicableto the PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener Of acontained DataWriter, the DataWriterListener
on that contained Datawriter isinvoked instead of the PublisherListener.
This means, that a status change on a contained patawriter only invokes the
PublisherListener if the contained batawriter itself does not handle the
trigger event generated by the status change.

In case a status is not activated in the mask of the PublisherListener, the
DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe DomainParticipantListener Of the
containing bomainParticipant and a Publisher specific behaviour when
needed. In case the DomainParticipantListener iSaso not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

Return Code

When the operation returns:

* RETCODE_OK - the PublisherListener is attached

* RETCODE_ERROR - an internal error has occurred

* RETCODE_ALREADY DELETED - the Publisher hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

215
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

set_qos

216
API Reference

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_gos
(const PublisherQos& gos) ;

Description
This operation replaces the existing set of QosPolicy Settingsfor a Publisher.

Parameters

in const PublisherQos& gos - thenew set of QosPolicy settings for the
Publisher.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a Publisher.
The parameter gos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change aQospPolicy
setting for an enabled Publisher, which can only be set before the Publisher is
enabled, the operation will fail and aRETCODE_IMMUTABLE_POLICY isreturned. In
other words, the application must provide the currently set QosPolicy Settingsin
case of the immutable QosPolicy settings. Only the mutable QosPolicy settings
can be changed. When gos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new PublisherQos is set

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid publisherQos. It
contains a QosPolicy Setting with an enum value that is outside its legal
boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Publisher.

suspend_publications
Scope

DDS: : Publisher

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

suspend_publications
(void) ;

Description

This operation will suspend the dissemination of the publications by all contained
DataWriter Objects.

Parameters

<none>

Return Value

ReturnCode_t - Possible return codes of the operation are;: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_NOT_ENABLED.

217

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation suspends the publication of all batawriter objects contained by
this Publisher. The data written, disposed or unregistered by abatawWriter iS
stored in the history buffer of the batawriter and therefore, depending on its QoS
settings, the following operations may block (see the operation descriptions for
more information):

* DDS: :DataWriter.dispose

e DDS: :DataWriter.dispose_w_timestamp

* DDS::DataWriter.write

* DDS: :DataWriter.write_w_timestamp

* DDS: :DataWriter.writedispose

e DDS: :DataWriter.writedispose_w_timestamp

* DDS::DataWriter.unregister_instance

* DDS::DataWriter.unregister_instance_w_timestamp

Subsequent calls to this operation have no effect. When the publisher is deleted
before resume_publications iscalled, al suspended updates are discarded.
Return Code

When the operation returns:

* RETCODE_OK - the Publisher has been suspended

* RETCODE_ERROR - an internal error has occurred

* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e RETCODE_NOT ENABLED - the Publisher isnot enabled.

wait_for_acknowledgments

218
API Reference

Scope

DDS: : Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
wait_for_acknowledgments
(const Duration_t& max_wait);

Note: This operation is not yet implemented. It is scheduled for afuture release.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Description

This operation blocks the calling thread until either all data written by the contained
DataWriters IS acknowledged by the matched pataReaders, or until the
duration specified by max_wait parameter elapses, whichever happens first.

Parameters

in const Duration_t& max_wait - the maximum duration to block for the
wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if one or more of the contained
DataWriters has itS ReliabilityQosPolicyKind set to
RELIABLE_RELIABILITY_QO0S. Otherwise the operation will return immediately
with RETCODE_OK.

It blocks the calling thread until either all data written by the contained reliable
DataWriters iSacknowledged by all matched DataRrReader entities that have
their ReliabilityQosPolicyKind Set t0 RELIABLE_RELIABILITY_QOS, Of
else the duration specified by themax_wait parameter elapses, whichever happens
first. A return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

Publication Type Specific Classes

&4 PRISMTECH

This paragraph describes the generic patawiriter classand the derived application
type specific <type>DataWriter classes which together implement the
application publication interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataWriter class from an IDL type
description. The FooDataWriter class that would be generated by the
pre-processor for afictional type Foo describesthe <type>DatawWriter classes.

219
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Class DataWriter (abstract)

220
API Reference

DataWriter alows the application to set the value of the sample to be published
under agiven Topic.

A DataWriter isattached to exactly one publisher which acts asafactory for it.

A patawriter isbound to exactly one Topic and therefore to exactly one data
type. The Topic must exist prior to the batawriter's creation.

DataWriter iSan abstract class. It must be specialized for each particular
application data type. For a fictional application data type Foo (defined in the
module spACE) the specialized classwould be SPACE: : FooDataWriter.
Theinterface description of this classis asfollows:

class DataWriter

{

//

// inherited from class Entity
//

// StatusCondition_ptr

// get_statuscondition
// (void) ;

// StatusMask

// get_status_changes
// (void) ;

// ReturnCode_t

// enable

// (void) ;

//

// abstract operations (implemented in the data type specific
// DataWriter)

//

// InstanceHandle_t

// register_instance

// (const <data>& instance_data) ;
//

// InstanceHandle_t

// register_instance_w_timestamp

// (const <data>& instance_data,
// const Time_t& source_timestamp) ;
//

// ReturnCode_t

// unregister_instance

// (const <data>& instance_data,
// InstanceHandle_t handle) ;

//

// ReturnCode_t

// unregister_instance_w_timestamp
// (const <data>& instance_data,
// InstanceHandle_t handle,

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
!/
/7
/7
/7
/7
//
//
/7

const Time_t& source_timestamp) ;

ReturnCode_t
write
(const <data>& instance_data,
InstanceHandle_t handle) ;

ReturnCode_t
write_w_timestamp
(const <data>& instance_data,
InstanceHandle_t handle,
const Time_t& source_timestamp) ;

ReturnCode_t
dispose
(const <data>& instance_data,
InstanceHandle_t instance_handle) ;

ReturnCode_t
dispose_w_timestamp
(const <data>& instance_data,
InstanceHandle_t instance_handle,
const Time_t& source_timestamp) ;

ReturnCode_t
writedispose
(const <data>& instance_data,
InstanceHandle_t instance_handle) ;

ReturnCode_t
writedispose_w_timestamp
(const <data>& instance_data,
InstanceHandle_t instance_handle,
const Time_t& source_timestamp) ;

ReturnCode_t
get_key value
(<data>& key_holder,
InstanceHandle_t handle) ;

InstanceHandle_t
lookup_instance
(const <data>& instance_data) ;

implemented API operations
ReturnCode_t

set_qgos
(const DataWriterQos& gos) ;

221
API Reference

3 DCPS Classes and Operations

222
API Reference

ReturnCode_t
get_gos
(DataWriterQos& gos) ;

ReturnCode_t
set_listener
(DataWriterListener_ptr a_listener,
StatusMask mask) ;

DataWriterListener_ptr
get_listener
(void) ;

Topic_ptr
get_topic
(void) ;

Publisher_ ptr
get_publisher
(void) ;

ReturnCode_t
wait_for_acknowledgments
(const Duration_t& max_wait) ;

ReturnCode_t
get_liveliness_lost_status
(LivelinessLostStatus& status);

ReturnCode_t
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatus& status) ;

ReturnCode_t
get_offered_incompatible_gos_status
(OfferedIncompatibleQosStatus& status) ;

ReturnCode_t
get_publication_matched_status
(PublicationMatchedStatus& status) ;

ReturnCode_t
assert_liveliness
(void) ;

ReturnCode_t
get_matched_subscriptions

(InstanceHandleSeqg& subscription_handles) ;

ReturnCode_t

3.4 PublicationModule

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

get_matched_subscription_data
(SubscriptionBuiltinTopicData& subscription_data,
InstanceHandle_t subscription_handle) ;
};
The next paragraphs describe the usage of all patawriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they areinherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data
type specific implementation of these operations.

assert_liveliness

&4 PRISMTECH

Scope

DDS: :DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
assert_liveliness
(void) ;

Description
This operation asserts the liveliness for the Datawriter.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the patawriter. This way,
the Data Distribution Service is informed that the corresponding batawriter is
il aive. This operation is used in combination with the LivelinessQosPolicy
set to MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS. See Section 3.1.3.10,
LivelinessQosPolicy, on page 57, for more information on
LivelinessQosPolicy.

223
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Writing dataviathe write operation of aDatawriter will assert the liveliness on
the patawriter itself and its containing DomainParticipant. Therefore,
assert_liveliness isonly needed when not writing regularly.

The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy. Asserting the liveliness for this Datawriter can aso
be achieved by asserting the liveliness to the DomainParticipant.

Return Code

When the operation returns:

* RETCODE_OK - theliveliness of thispDatawriter has successfully been asserted.
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_ALREADY DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the Datawriter iSnot enabled.

dispose (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
dispose
(const <data>& instance_data,
InstanceHandle_t instance_handle) ;

dispose_w_timestamp (abstract)

224
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
dispose_w_timestamp

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

(const <data>& instance_data,
InstanceHandle_t instance_handle,
const Time_t& source_timestamp) ;

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;

get_key value (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Dataliriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_key_value
(<data>& key_holder,
InstanceHandle_t handle) ;

get_listener
Scope
DDS: :DataWriter
Synopsis
#include <ccpp_dds_dcps.h>
DataWriterListener_ptr

get_listener
(void) ;

Description
This operation allows accessto aDataWriterListener.

Parameters
<none>

225
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

DataWriterListener_ptr - result isapointer to the atawriterListener
attached tothe batawriter.

Detailed Description

This operation allows access to a DatawWriterListener attached to the
DataWriter. When no DatawWriterListener Was attached to the Datawriter,
the NULL pointer is returned.

get_liveliness lost_status

226
API Reference

Scope

DDS: :DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_liveliness_lost_status
(LivelinessLostStatus& status);

Description
This operation obtainsthe LivelinessLostStatus struct of the Datawriter.

Parameters

inout LivelinessLostStatus& status - the contents of the
LivelinessLostStatus Struct of the Datawriter will be copied into the
location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtainsthe LivelinessLostStatus struct of the atawriter.
This struct contains the information whether the liveliness (that the batawriter
has committed through its1.i velinessQosPolicy) was respected.

This means, that the status represents whether the Datawriter failed to actively
signal its liveliness within the offered liveliness period. If the liveliness is lost, the
DataReader oObjectswill consider the batawriter asno longer “alive’.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

The LivelinessLostStatus can also be monitored using a
DataWriterListener Or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current LivelinessLostStatus Of this DataWriter has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE,_ALREADY_DELETED - the DataWriter hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_matched _subscription_data

Scope

DDS: :DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_matched_subscription_data
(SubscriptionBuiltinTopicData& subscription_data,
InstanceHandle_t subscription_handle) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_matched_subscriptions

Scope

DDS: :DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_matched_subscriptions
(InstanceHandleSeqg& subscription_handles) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_offered_deadline missed_status

&4 PRISMTECH

Scope

DDS: :DataWriter

227
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatus& status) ;

Description

This operation obtains the of feredDeadlineMissedStatus struct of the
DataWriter.

Parameters

inout OfferedDeadlineMissedStatus& status - the contents of the
Of feredDeadlineMissedStatus Struct of the Datawriter will be copied
into the location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the of feredDeadlineMissedStatus struct of the
DataWriter. This struct contains the information whether the deadline (that the
DataWriter has committed through its DeadlineQosPolicy) was respected for
each instance.

The of feredDeadlineMissedStatus can also be monitored using a
DataWriterListener Or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current LivelinessLostStatus Of this DatawWriter has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_offered_incompatible_gos_status

228
API Reference

Scope

DDS: :DataWriter

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_offered_incompatible_gos_status
(Of feredIncompatibleQosStatus& status);

Description

This operation obtains the of feredIncompatibleQosStatus struct of the
DataWriter.

Parameters

inout OfferedIncompatibleQosStatus& status - the contents of the
Of feredIncompatibleQosStatus struct of the patawriter will be copied
into the location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the of feredIncompatibleQosStatus struct of the
DataWriter. This struct contains the information whether a QospPolicy setting
was incompatible with the requested gosPolicy Setting.

This means, that the status represents whether a DataReader object has been
discovered by the patawriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the batawriter.

The offeredIncompatibleQosStatus can also be monitored using a
DataWriterListener Or by using the associated statusCondition.

Return Code

When the operation returns:

e RETCODE_OK - the current OfferedIncompatibleQosStatus Of this
DataWriter has successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

229
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

get_publication_matched_status

Scope

DDS: :DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_publication_matched_status
(PublicationMatchedStatus& status) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_publisher

Scope

DDS: :DataWriter

Synopsis

#include <ccpp_dds_dcps.h>
Publisher_ptr

get_publisher
(void) ;

Description
This operation returns the publisher to which the batawriter belongs.

Parameters
<none>

Return Value

Publiher ptr - Return value is a pointer to the Publisher to which the
DataWriter belongs.

Detailed Description

This operation returns the publisher to which the batawriter belongs, thus the
Publisher that has created the DatawWriter. If the Datawriter is aready
deleted, the NULL pointer is returned.

get_qos

230
API Reference

Scope

DDS: :DataWriter

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(DataWriterQos& gos) ;

Description

This operation allows access to the existing list of gosPolicy settings for a

DataWriter.

Parameters

inout DataWriterQos& gos - areferenceto the destination DatawWriterQos
struct in which the gosPo1icy settings will be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_OQUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing list of gosPolicy settings of a
DataWriter onwhichthisoperationisused. ThisDatawriterQos isstored at the
location pointed to by the gos parameter.

Return Code

When the operation returns:

* RETCODE,_OK - the existing set of QoS policy values applied to thisDatawriter
has successfully been copied into the specified DatawiriterQos parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis

#include <ccpp_dds_dcps.h>

StatusMask
get_status_changes

231
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
get_statuscondition
(void) ;

get_topic
Scope

DDS: :DataWriter

Synopsis

#include <ccpp_dds_dcps.h>
Topic_ptr

get_topic
(void) ;

Description
This operation returns the Topic which is associated with the Datawriter.

Parameters
<none>

Return Value

Topic_ptr - Return value is a pointer to the Topic which is associated with the
DataWriter.

Detailed Description

This operation returns the Topic which is associated with the batawriter, thus
the Topic with which the Datawriter iscreated. If the Datawriter isalready
deleted, the NULL pointer is returned.

232

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

lookup_instance (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
lookup_instance
(const <data>& instance_data) ;

register_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
register_instance
(const <data>& instance_data) ;

register_instance_w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
register_instance_w_timestamp
(const <data>& instance_data,
const Time_t& source_timestamp) ;

set_listener

&4 PRISMTECH

Scope
DDS: :DataWriter

233
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

234
API Reference

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(DataWriterListener_ptr a_listener,
StatusMask mask) ;

Description
This operation attachesaDatawWriterListener tothe Datawriter.

Parameters

in DataWriterListener_ptr a_listener - a pointer to the
DataWriterListener instance, which will be attached to the batawriter.

in StatusMask mask - abit mask in which each bit enables the invocation of the
DataWriterListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation attaches a DataWriterListener {0 the Datawriter. Only one
DataWriterListener can be attached to each patawriter. If a
DataWriterListener was aready attached, the operation will replace it with the
new one. When a_1listener isthe NULL pointer, it represents a listener that is
treated as a NOOP" for all statuses activated in the bit mask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DatawriterListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to thisruleis the NULL listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the DatawriterListener:

1. Short for No-Operation, an instruction that does nothing.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

e OFFERED_DEADLINE_MISSED_STATUS
e OFFERED_INCOMPATIBLE_QOS_STATUS
e LIVELINESS_LOST_STATUS

e PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the DatawriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DataWriterListener, the PublisherListener Of the containing Publisher
isinvoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour in the PublisherListener of the containing
pPublisher and aDataWriter Specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
well, the communication status will be propagated to the
DomainParticipantListener Of the containing bomainParticipant. In case
the DomainParticipantListener isaso not attached or the communication
status is not activated in itSmask, the application is not notified of the change.

Return Code

When the operation returns:

* RETCODE_OK - the DataWriterListener isattached

* RETCODE_ERROR - aninternal error has occurred

* RETCODE_ALREADY DELETED - the Datawriter hasalready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Set_qos

&4 PRISMTECH

Scope

DDS: :DataWriter

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_qgos
(const DataWriterQos& gos) ;

Description
This operation replaces the existing set of QosPolicy settingsfor abatawriter.

235
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

236
API Reference

Parameters

in const DataWriterQos& gos - new set of QosPolicy settings for the
DataWriter.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALLREADY_ DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_IMMUTABLE_POLICY Of RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settingsfor abatavriter.
The parameter gos contains the struct with the gospPolicy settings whichis
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled patawriter, which can only be set before the
DataWriter iS enabled, the operation will fail and a
RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application must
provide the presently set gosPolicy settingsin case of the immutable gospPolicy
settings. Only the mutable gosPo1licy settings can be changed. When gos contains
conflicting QosPolicy settings (not self-consistent), the operation will fail and a
RETCODE_TNCONSTSTENT_POLICY iS returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new default DatawriterQos is set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid DatawriterQos.
It contains a QosPolicy Setting with an invalid buration_t value or an enum
value that is outside its legal boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - theDatawWriter hasalready been deleted

* RETCODE_IMMUTABLE_POLICY - the parameter gqos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataWriter.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_INCONSISTENT POLICY - the parameter gos contains an

inconsistent QosPolicy sSettings, e.g. a history depth that is higher than the
specified resource limits.

unregister _instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
unregister_instance
(const <data>& instance_data,
InstanceHandle_t handle) ;

unregister _instance w_timestamp (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
unregister_instance_w_timestamp
(const <data>& instance_data,
InstanceHandle_t handle,
const Time_t& source_timestamp) ;

wait_for_acknowledgments

&4 PRISMTECH

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

wait_for_acknowledgments
(const Duration_t& max_wait) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

237
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Description

This operation blocks the calling thread until either all data written by the
DataWriter iSacknowledged by the matched patarReaders, or until the duration
specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in const Duration_t& max wait - themaximum duration to block for the
wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if the DataWriter has its
ReliabilityQosPolicyKind Sett0 RELIABLE_RELIABILITY_QOS. Otherwise
the operation will return immediately with RETCODE_OK.

It blocks the calling thread until either all data written by the patawriter is
acknowledged by all matched patarReader entities that have their
ReliabilityQosPolicyKind Set t0O RELIABLE_RELIABILITY_QOS, oOr €lsethe
duration specified by the max_wait parameter elapses, whichever happensfirst. A
return value of RETCODE_0K indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

write (abstract)

238
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawriter class.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
write
(const <data>& instance_data,
InstanceHandle_t handle) ;

write w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
write_w_timestamp
(const <data>& instance_data,
InstanceHandle_t handle,
const Time_t& source_timestamp) ;

writedispose (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Dataliriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawriter class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
writedispose
(const <data>& instance_data,
InstanceHandle_t handle) ;

writedispose w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawriter class.

239
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
writedispose_w_timestamp
(const <data>& instance_data,
InstanceHandle_t handle,
const Time_té& source_timestamp) ;

Class FooDataWriter

240
API Reference

The pre-processor generates from IDL type descriptions the application
<type>DataWriter classes. For each application datatype that is used as Topic
data type, atyped class <type>Datawriter is derived from the Datawriter
class. In this paragraph, the class FoobDatawriter in the namespace SPACE
describes the operations of these derived <type>DatawWriter classes as an
example for the fictional application type Foo (defined in the module spPaACE).

For instance, for an application, the definitions are located in the space.id1 file.
The pre-processor will generate a ccpp_Space.h includefile.

General note: The name ccpp_Space.h isderived from the IDL file space. id1,
that defines SPACE: : Foo, for al relevant SPACE: : FooDataWwriter operations.

A Foobatawriter is attached to exactly one publisher which acts as a factory
for it. The FooDataWriter isbound to exactly one Topic that has been registered
to use a data type Foo. The Topic must exist prior to the FooDatawWriter
creation.

The interface description of this classis asfollows:

class FooDataWriter

{

//

// inherited from class Entity

//

// StatusCondition_ptr

// get_statuscondition

// (void) ;

// StatusMask

// get_status_changes

// (void) ;

// ReturnCode_t

// enable

// (void) ;

//

// inherited from class DataWriter
//

// ReturnCode_t

// set_gos

// (const DataWriterQos& gos) ;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

//
//
/7

/7
/7
//
//

/7
/7
/7

//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
/7
/7

/7
/7
/7

!/
/7
/7

/7
//
/7

/7
/7
/7

ReturnCode_t
get_gos
(DataWriterQos& gos) ;

ReturnCode_t
set_listener
(DataWriterListener_ptr a_listener,
StatusMask mask) ;

DataWriterListener_ptr
get_listener
(void) ;

Topic_ptr
get_topic
(void) ;

Publisher_ptr
get_publisher
(void) ;

ReturnCode_t
wait_for_acknowledgments
(const Duration_t& max_wait) ;

ReturnCode_t
get_liveliness_lost_status
(LivelinessLostStatus& status);

ReturnCode_t
get_offered_deadline_missed_status
(Of feredDeadlineMissedStatus& status) ;

ReturnCode_t
get_offered_incompatible_gos_status

(OfferedIncompatibleQosStatus& status);

ReturnCode_t
get_publication_matched_status
(PublicationMatchedStatus& status) ;

ReturnCode_t
assert_liveliness
(void) ;

ReturnCode_t
get_matched_subscriptions

3.4 PublicationModule

(InstanceHandleSeqg& subscription_handles) ;

241
API Reference

3 DCPS Classes and Operations

242
API Reference

//
//
//
//
//
//
//

ReturnCode_t
get_matched_subscription_data

3.4 PublicationModule

(SubscriptionBuiltinTopicData& subscription_data,

InstanceHandle_t subscription_handle) ;

implemented API operations

InstanceHandle_t
register_instance
(const Foo& instance_data);
InstanceHandle_t
register_instance_w_timestamp
(const Foo& instance_data,
const Time_té& time_stamp) ;
ReturnCode_t
unregister_instance
(const Foo& instance_data,
InstanceHandle_t handle) ;
ReturnCode_t
unregister_instance_w_timestamp
(const Foo& instance_data,
InstanceHandle_t handle,
const Time_t& time_stamp) ;
ReturnCode_t
write
(const Foo& instance_data,
InstanceHandle_t handle) ;
ReturnCode_t
write_w_timestamp
(const Foo& instance_data,
InstanceHandle_t handle,
const Time_té& time_stamp) ;
ReturnCode_t
dispose
(const Foo& instance_data,

InstanceHandle_t instance_handle) ;

ReturnCode_t
dispose_w_timestamp
(const Foo& instance_data,

InstanceHandle_t instance_handle,

const Time_t& time_stamp) ;
ReturnCode_t
writedispose
(const Foo& instance_data,

InstanceHandle_t instance_handle) ;

ReturnCode_t
writedispose_w_timestamp
(const Foo& instance_data,

InstanceHandle_t instance_handle,

const Time_té& time_stamp) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

ReturnCode_t
get_key_value
(Foo& key_holder,
InstanceHandle_t handle) ;
InstanceHandle_t
lookup_instance
(const Foo& instance_data) ;
I

The next paragraphs describe the usage of all Foobatawriter operations. The
inherited operations are listed but not fully described because they are not

implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

assert_liveliness (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
assert_liveliness
(void) ;

dispose

&4 PRISMTECH

Scope
SPACE: :FooDataWriter
Synopsis
#include <ccpp_Space.h>
ReturnCode_t
dispose

(const Foo& instance_data,
InstanceHandle_t instance_handle) ;

Description

This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters

in const Foo& instance_data - the actual instance to be disposed of.

in InstanceHandle t instance handle - the handle to the instance to be
disposed of.

243
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

244
API Reference

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected DataReader and, dependent on the QospPolicy settings, alsoin
the Transient and Persistent stores, will be marked for deletion by setting their
InstanceStateKind tONOT_ALIVE_DISPOSED_INSTANCE_ STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the patawriter itself and on
the containing DomainParticipant.

Effects on DataReaders

Actua deletion of the instance administration in a connected DataReader Will be
postponed until the following conditions have been met:
» the instance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it.
- A DatawWriter can register an instance explicitly by using one of the special
operati ONSregister_instance Of register_instance_w_timestamp.
- A DataWriter can register an instance implicitly by using the special constant
HANDLE_NTIL in any of the other batawriter operations.
- A DataWriter can unregister an instance explicitly by using one of the special
operati ons unregister_instance or unregister_instance_

w_timestamp.

- A patawriter will unregister all its contained instances implicitly when it is
deleted.

-When a pDataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider al instances registered by that batawriter as
being implicitly unregistered.

« and the application must have consumed al samples belonging to the instance,
either implicitly or explicitly.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

- An application can consume samples explicitly by invoking the take operation,
or one of itsvariants, on itSDataReaders.

-The pataReader can consume disposed samples implicitly when the
autopurge disposed _samples delay of the ReaderData
LifecycleQosPolicy hasexpired.

The DataReader may also remove instances that haven't been disposed first: this
happens when the autopurge_nowriter_samples_delay Of the
ReaderDatalifecycleQosPolicy has expired after the instance is considered
unregistered by all connected DatawWriters (i.e. when it has a
InstanceStateKind Of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
Reader Datal ifecycleQosPalicy, on page 65.

Effects on Transent/Persistent Sores

Actual deletion of the instance administration in the connected Transient and

Persistent stores will be postponed until the following conditions have been met:

* theinstance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it. (See above.)

* and the period of time specified by the service_cleanup_delay dtributein
the burabilityServiceQosPolicy 0Onthe Topic must have elapsed after the
instance is considered unregistered by all connected batawriters.

See a'so Section 3.1.3.4, DurabilityServiceQosPolicy, on page 48.

Instance Handle

The HaNDLE_NIL handle value can be used for the parameter instance_handle.
This indicates the identity of the instance isautomatically deduced from the
instance_data (by means of the key).

If instance_handle is any value other than HANDLE_NTIL, it must correspond to
the value that was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.

The sample that is passed as instance_data isonly used to check for consistency
between its key values and the supplied instance_handle: the sample itself will

not actually be delivered to the connected DataReaders. Usethe writedispose
operation if the sampleitself should be delivered together with the dispose request.

Blocking

If the HistoryQosPolicy iSSet to KEEP_ALL_HISTORY_QOS, thedispose
operation on the patawriter may block if the modification would cause datato be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, to be

245
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

246
API Reference

exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the dispose operation
may block (waiting for space to become available). If max_blocking_time
elapses before the Datawriter is able to store the modification without exceeding
the limits, the SPACE_FooDataWriter_dispose operation will fail and returns
RETCODE_TIMEOUT.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
// check a specific bound.
#endif
By defining a macro called 0sp1._0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL,_BOUNDS_CHECK.

Since the dispose operation merely uses the sample to check for consistency
between its key values and the supplied instance_handle, only these keyfields
will be validated against the restrictions imposed by the IDL to C++ language
mapping, where:

* an enum may not exceed the value of its highest label

* astring (bounded or unbounded) may not be NnuLL. (Use »~ for an empty string
instead)

* the length of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code

When the operation returns:

* RETCODE_OK - the Data Distribution Service is informed that the instance data
must be disposed of

* RETCODE_ERROR - an internal error has occurred

* RETCODE_BAD PARAMETER - instance_handle is not a vaid handle or
instance_data isnot avalid sasmple.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT MET - the instance_handle has not been
registered with this FooDatawriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy €lapsed.

dispose_w_timestamp

&4 PRISMTECH

Scope

SPACE: :FooDataWriter

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
dispose_w_timestamp
(const Foo& instance_data,
InstanceHandle_t instance_handle,
const Time_t& source_timestamp) ;

Description

This operation requests the Data Distribution Service to mark the instance for

deletion and provides avaue for the source_timestamp explicitly.

Parameters
in const Foo& instance_data - the actua instance to be disposed of.

in InstanceHandle t instance_ handle - the handle to the instance to be
disposed of.

in Time_ t source_timestamp - source_timestamp IS the timestamp which
is provided for the DataReader.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OKX,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY__
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET O RETCODE_TIMEOUT.

247
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation performs the same functions as di spose except that the application
provides the value for the source_timestamp that is made available to connected
DataReader Objects. This timestamp isimportant for the interpretation of the
DestinationOrderQosPolicy.

Return Code

When the operation returns:

e RETCODE_OK - the Data Distribution Service is informed that the instance data
must be disposed of

e RETCODE_ERROR - an internal error has occurred

* RETCODE_BAD PARAMETER - instance_handle is not a valid handle or
instance_data isnot avalid sample.

* RETCODE_ALREADY_DELETED - the Foobatawriter hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION NOT MET - the instance handle has not been
registered with this FooDatalriter.

e RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose_w_timestamp operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
enable
(void) ;

get_key value

248
API Reference

Scope

SPACE: :FooDataWriter

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_key _value
(Foo& key holder,
InstanceHandle_t handle) ;

Description
This operation retrieves the key value of a specific instance.

Parameters

inout Foo& key_holder - areference to the sample in which the key values are
stored.

in InstanceHandle_t handle - the handle to the instance from which to get
the key value.

Return Value

ReturnCode_t - Possible return codes of the operation are;: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED Of
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation retrieves the key value of the instance referenced to by
instance_handle. When the operation is called with a HANDLE_NTIL handle
value as an instance_handle, the operation will return
RETCODE_BAD_PARAMETER. The operation will only fill the fields that form the key
inside the key_holder instance. This means, the non-key fields are not applicable
and may contain garbage.

The operation must only be called on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the key_holder instance contains the key values of the instance;
* RETCODE_ERROR - aninternal error has occurred

* RETCODE_BAD PARAMETER - handle isnot avalid handle

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

249
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.
* RETCODE_PRECONDITION_NOT_MET - thisinstanceis not registered.

get_listener (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
DataWriterListener_ptr
get_listener
(void) ;

get_liveliness lost_status (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_liveliness_lost_status
(LivelinessLostStatus& status);

get_matched_subscription_data (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_matched_subscription_data
(SubscriptionBuiltinTopicData& subscription_data,
InstanceHandle_t subscription_handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_matched_subscriptions (inherited)

250
API Reference

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_matched_subscriptions
(InstanceHandleSeqg& subscription_handles) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_offered_deadline_missed_status (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatus& status);

get_offered_incompatible_gos_status (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_offered_incompatible_gos_status
(OfferedIncompatibleQosStatus& status);

get_publication_matched_status (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_publication_matched_status
(PublicationMatchedStatus& status) ;
Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

get_publisher (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
Publisher_ptr
get_publisher
(void) ;

251
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

get_qos (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_gos
(DataWriterQos& gos) ;

get_status changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusMask
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusCondition_ptr
get_statuscondition
(void) ;

get_topic (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
Topic_ptr
get_topic
(void) ;

lookup_instance
Scope
SPACE: :FooDataWriter

252

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Synopsis
#include <ccpp_Space.h>
InstanceHandle_t
lookup_instance
(const Foo& instance_data) ;

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in const Foo& instance_data - areference to the instance for which the
corresponding instance handle needs to be looked up.

Return Value

InstanceHandle_t - Result valueis the instance handle which corresponds to the
instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter is only used for the purpose of
examining the fields that define the key. The instance handle can be used in any
write, dispose Of unregister operations (or their time stamped variants) that
operate on a specific instance. Note that Datawriter instance handles are local,
and are not interchangeable with batareader instance handles nor with instance
handles of an other patawriter.

This operation does not register the instance in question. If the instance has not been
previously registered, if the Datawriter is already deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value HANDLE_NTL.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.
#endif

253
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

By defining a macro called 0sp1._0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL,_BOUNDS_CHECK.

Since the 1ookup_instance operation merely uses the sample to determine its
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to C++ language mapping:

» an enum may not exceed the value of its highest label

* astring (bounded or unbounded) may not be NnuLL. (Use »~ for an empty string
instead)

* the length of abounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a HANDLE_NIL. More specific information about the

context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

register_instance

254
API Reference

Scope

SPACE: :FooDataWriter

Synopsis

#include <ccpp_Space.h>
InstanceHandle_t

register_instance
(const Foo& instance_data) ;

Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters

in const Foo& instance_data - theinstance, which the application writes to
or disposes of .

Return Value

InstanceHandle_t - Result value is the handle to the instance, which may be
used for writing and disposing of. In case of an error, aHANDLE_NIL handle
valueisreturned.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Detailed Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such aswrite, write_w_timestamp,
unregister_instance, unregister_instance_w_timestamp, dispose,
dispose_w_timestamp, writedispose and writedispose_w_timestamp

When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive batawriter operations. In case of an error, a HANDLE_NIL
handle value is returned.

The explicit use of this operation is optional as the application can directly call the
write, write_w_timestamp, unregister_instance,
unregister_instance_w_timestamp, dispose, dispose_w_timestamp,
writedispose and writedispose_w_timestamp operations and specify a
HANDLE_NIL handle value to indicate that the sample should be examined to
identify the instance.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader Objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Blocking

If the HistoryQosPolicy iS set to KEEP_ALL_HISTORY_0QOS, the
register_instance operation on the patawWriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the register_instance operation may block (waiting for space
to become available). If max_blocking_time elapses beforethe Datawriter is
able to store the modification without exceeding the limits, the
register_instance operation will fail and returns HANDLE_NTL.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.
#endif

255
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

By defining a macro called 0sp1._0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL,_BOUNDS_CHECK.

Sincethe register_instance operation merely uses the sample to determine its
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to C++ language mapping:

» an enum may not exceed the value of its highest label

* astring (bounded or unbounded) may not be NnuLL. (Use »~ for an empty string
instead)

* the length of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a HANDLE_NIL. More specific information about the
context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

Multiple Calls

If this operationis called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance.

register_instance w_timestamp

256
API Reference

Scope
SPACE: :FooDataWriter
Synopsis
#include <ccpp_Space.h>
InstanceHandle_t
register_instance_w_timestamp

(const Foo& instance_data,
const Time_t& source_timestamp) ;

Description

This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides avalue for the source_timestamp
explicitly.

Parameters

in Foo instance_data - theinstance, which the application will write to or
dispose of .

in const Time_t& source_timestamp - thetimestamp used.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

InstanceHandle_t - Result value is the handle to the Instance, which must be
used for writing and disposing. In case of an error, aHANDLE_NIL handle value
isreturned.

Detailed Description

This operation performs the same functions as register_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Multiple Calls

If this operation is called for an already registered instance, it just returns the already
allocated instance handle. The source_timestamp isignored in that case.

set_listener (inherited)

This operation is inherited and therefore not described here. See the class
Datawriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
set_listener
(DataWriterListener_ptr a_listener,
StatusMask mask) ;

set_qos (inherited)

This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
set_qgos
(const DataWriterQosé& gos) ;

unregister _instance

&4 PRISMTECH

Scope
SPACE: : FooDataWriter

Synopsis

#include <ccpp_Space.h>

257
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

258
API Reference

ReturnCode_t
unregister_instance
(const Foo& instance_data,
InstanceHandle_t handle) ;

Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters

in const Foo& instance_data - the instance to which the application was
writing or disposing.

in InstanceHandle_t handle - the handleto theinstance, which has been used
for writing and disposing.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_TIMEOUT.

Detailed Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
action of register_instance Of register_instance_w_timestamp. It
should only be called on an instance that is currently registered. This operation
should be called just once per instance, regardless of how many times
register_instance wascaled for that instance. Thisoperation also indicates
that the Data Distribution Service can locally remove al information regarding that
instance. The application should not attempt to use the handle, previously
allocated to that instance, after calling this operation.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader Objects. This timestamp isimportant for the interpretation of the
DestinationOrderQosPolicy.

Effects

If, after unregistering, the application wants to modify (write or dispose) the
instance, it hasto register the instance again, or it has to use the special
handle vaue HANDLE_NTIL.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

This operation does not indicate that the instance should be deleted (that is the
purpose of dispose). This operation just indicates that the batawriter no longer
has “anything to say” about the instance. If thereis no other batawriter that
has registered the instance as well, then the Tnstancestatekind in all connected
DataReaders Will be changed tONOT_ALIVE_NO_WRITERS_ INSTANCE_STATE,
provided this InstanceStatekKind was not already set to
NOT_ALIVE_DISPOSED_INSTANCE_STATE. In the last case the
InstanceStateKind will not be effected by the unregister_instance cal,
see also Figure 21, Sate Chart of the instance_state for a Sngle Instance, on page
446.

This operation can affect the ownership of the data instance. If the
DataWriter wasthe exclusive owner of the instance, caling this operation will
release that ownership, meaning ownership may be transferred to another,
possibly lower strength, Datawriter.

The operation must be called only on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Instance Handle

The HANDLE_NIL handle value can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle is any value other than HANDLE_NIL, then it must correspond to the
valuereturned by register_instance Of register_instance_w_timestamp
when the instance (identified by its key) was registered. If thereis no
correspondence, the result of the operation is unspecified.

The sample that is passed as instance_data isonly used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders.

Blocking

If the HistoryQosPolicy iS set to KEEP_ALL_HISTORY_QOS, the
unregister_instance operation on the patawriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourcelLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the unregister_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DataWriter is able to store the modification without exceeding the limits, the
unregister_instance operation will fail and returns RETCODE_TIMEOUT.

259
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

260
API Reference

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining a macro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPI,_BOUNDS_CHECK.

Sincethe unregister_instance operation merely uses the sample to check for
consistency between its key values and the supplied instance_handle, only
these keyfields will be validated against the restrictions imposed by the IDL to C++
language mapping, where:

 an enum may not exceed the value of its highest |abel

* astring (bounded or unbounded) may not be nuLL. (Use ~ for an empty string
instead)

» the length of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code

When the operation returns:

* RETCODE_OK - the Data Distribution Service isinformed that the instance will not
be modified any more

e RETCODE_ERROR - an internal error has occurred.

* RETCODE BAD PARAMETER - handle isnot avalid handle or instance data
isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawriter hasalready been deleted
* RETCODE_NOT_ENABLED - the FooDatawriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
thisFooDatawriter.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

unregister_instance w_timestamp

&4 PRISMTECH

Scope

SPACE: :FooDataWriter

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
unregister_instance_w_timestamp
(const Foo& instance_data,
InstanceHandle_t handle,
const Time_t& source_timestamp) ;

Description

This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters

in Foo instance_data - theinstance to which the application was writing or
disposing.

in InstanceHandle_t handle - the handleto theinstance, which has been used
for writing and disposing.

in const Time_t& source_timestamp - thetimestamp used.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functionsasunregister_instance except that
the application provides the value for the source_timestamp that is made
available to connected pataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

261
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

262

API Reference

Return Code
When the operation returns:

e RETCODE_OK - the Data Distribution Serviceisinformed that the instance will not
be modified any more

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawriter hasalready been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter isnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
thisFooDatawriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance_w_timestamp operation, which could not be
resolved before max_blocking time oOf the ReliabilityQosPolicy
elapsed.

write

Scope

SPACE: : FooDataWriter

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
write
(const Foo& instance_data,
InstanceHandle_t handle) ;

Description
This operation modifies the value of a datainstance.

Parameters
in const Foo& instance_data - the datato be written.

in InstanceHandle_t handle - the handle to the instance as supplied by
register_instance.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected DataReader 0Objects.
This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the patawriter itself and on
the containing bomainParticipant.

Before writing datato an instance, the instance may be registered with the
register_instance Of register_instance_w_timestamp operation. The
handle returned by one of the register_instance operations can be supplied to
the parameter handle of the write oOperation. However, it is also possible to
supply the special HANDLE_NIL handle value, which means, that the identity of the
instance isautomatically deduced from the instance_data (identified by the

key).

Instance Handle

The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle is any value other than HANDLE_NIL, it must correspond to the value
returned by register_instance Of register_instance_w_timestamp when
the instance (identified by its key) was registered. Passing such a registered
handle helps the Data Distribution Service to process the sample more efficiently.
If thereis no correspondence between handle and sample, the result of the operation
is unspecified.

Blocking

If the HistoryQosPolicy isset to KEEP_ALL_HISTORY_QOS, thewrite
operation on the patawriter may block if the modification would cause datato be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, iS
exceeded. Under these circumstances, the max_blocking time attribute of the
ReliabilityQosPolicy configuresthe maximum timethe write operation may

263
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

264
API Reference

block (waiting for space to become available). If max_blocking_time elapses
before the patawriter is able to store the modification without exceeding the
limits, thewrite operation will fail and returns RETCODE_TIMEOUT.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK

// check a specific bound.

#endif
By defining a macro called 0sp1,_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPI,_BOUNDS_CHECK.

Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C++ language mapping, where:

* an enum may not exceed the value of its highest label

* astring (bounded or unbounded) may not be nuLL. (Use »~ for an empty string
instead)

* the length of abounded string may not exceed the limit specified in IDL

« the length of abounded sequence may not exceed the limit specified in IDL

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Be aware that it is not possible for the middleware to determine whether aunion is
correctly initialized, since according to the IDL-C++ language mapping a union just
returnsits current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code

When the operation returns:

* RETCODE_OK - the value of adatainstance is modified

e RETCODE_ERROR - an internal error has occurred

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
thisFooDataWriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy €lapsed.

write_ w_timestamp

Scope

SPACE: :FooDataWriter

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
write_w_timestamp
(const Foo& instance_data,
InstanceHandle_t handle,
const Time_t& source_timestamp) ;

Description

This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.

Parameters

in const Foo& instance data - the datato be written.

in InstanceHandle_t handle - the handle to the instance as supplied by
register_instance.

in const Time t& source_ timestamp - thetimestamp used.

265

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as write except that the application
provides the value for the parameter source_timestamp that is made available to
connected DataReader Objects. This timestamp isimportant for the interpretation
of the DestinationOrderQosPolicy.

Return Code

When the operation returns:

* RETCODE_OK - the value of adatainstanceis modified

* RETCODE_ERROR - an internal error has occurred

e RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDatawWriter hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT MET - the handle has not been registered with
thisFooDataWriter.

e RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write_w_timestamp operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

writedispose

266
API Reference

Scope

SPACE: : FooDataWriter

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
writedispose
(const Foo& instance_data,

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

InstanceHandle_t handle) ;

Description
This operation modifies and disposes a data instance.

Parameters
in const Foo& instance_data - the datato bewritten and disposed.

in InstanceHandle_t handle - the handle to the instance as supplied by
register_instance.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected DataReader and, dependent on the QospPolicy Settings,
aso in the Transient and Persistent stores, will be modified and marked for deletion
by setting their InstanceStateKind t0O NOT_ALIVE_DISPOSED_
INSTANCE_STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the patawriter itself and on
the containing bomainParticipant.

Effects on DataReaders

Actual deletion of the instance administration in a connected bataReader Will be
postponed until the following conditions have been met:

* theinstance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it.

- A DatawWriter can register an instance explicitly by using one of the special
operaIions register_instance Of register_instance_w_timestamp.

- A Dataliriter can register an instance implicitly by using the special constant
HANDLE_NTIL in any of the other batawriter operations.

267

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

268
API Reference

- A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

- A patawriter Will unregister al its contained instances implicitly when it is
deleted.

-When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider al instances registered by that Datawriter as
being implicitly unregistered.

« and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.

- An application can consume samples explicitly by invoking the take operation,
or one of itsvariants, on itSbataReaders.

-The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy hasexpired.

The DatarReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay of the
ReaderDatalLifecycleQosPolicy has expired after the instance is considered
unregistered by all connected patawriters (i.e. when it has a
InstanceStateKind Of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
Reader Datal ifecycleQosPolicy, on page 65.

Effects on Transient/Persistent Sores

Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:

» the instance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it. (See above.)

« and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy onthe Topic must have elapsed after the
instance is considered unregistered by all connected batawriters.

See also Section 3.1.3.4, DurabilityServiceQaosPolicy, on page 48.

Instance Handle

The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

If handle isany value other than HANDLE_NTL, it must correspond to the value that
was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.

The sample that is passed as instance_data Will actually be delivered to the
connected DataReaders, but will immediately be marked for deletion.

Blocking

If the HistoryQosPolicy iS Set to KEEP_ALL_HISTORY_QOS, the
writedispose operation on the patawriter may block if the modification
would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the SPACE_FooDataWriter_writedispose operation may
block (waiting for space to become available). If max_blocking_ time elapses
before the Datawriter is able to store the modification without exceeding the
limits, the writedispose operation will fail and returns RETCODE_TIMEOUT.

Sample Validation

OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
// check a specific bound.
#endif

By defining amacro called 0sPL_0SPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPIL_BOUNDS_CHECK.

Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C++ language mapping, where:

* an enum may not exceed the value of its highest |abel

* astring (bounded or unbounded) may not be NuLL. (Use »~ for an empty string
instead)

« the length of abounded string may not exceed the limit specified in IDL
* the length of abounded sequence may not exceed the limit specified in IDL

269
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Be aware that it is not possible for the middleware to determine whether aunion is
correctly initialized, since according to the IDL-C++ language mapping a union just
returnsits current contentsin the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code
When the operation returns:

* RETCODE_OK - the Data Distribution Service has modified the instance and
marked it for deletion.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE BAD PARAMETER - handle isnot avalid handle or instance data
isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawriter hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
this SPACE_FooDataWriter.

e RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

writedispose w_timestamp

270
API Reference

Scope

SPACE: :FooDataWriter
Synopsis

#include <ccpp_Space.h>

ReturnCode_t
writedispose_w_timestamp

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

(const Foo& instance_data,
InstanceHandle_t handle,
const Time_té& source_timestamp) ;

Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides avalue for the source_timestamp explicitly.

Parameters
in const Foo& instance_data - the datato bewritten and disposed.

in InstanceHandle_t handle - the handle to the instance as supplied by
register_instance.

in const Time_t& source_timestamp - thetimestamp used.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as writedispose except that the
application provides the value for the source_timestamp that is made available
to connected pataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Return Code

When the operation returns:

* RETCODE _OK - the Data Distribution Service has modified the instance and
marked it for deletion.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE _BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_ MET - the handle has not been registered with
this SPACE_FooDataWriter.

271
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose_w_timestamp operation, which could not be resolved
beforemax_blocking_time Of theReliabilityQosPolicy elapsed.

PublisherListener Interface

272
API Reference

Since apPublisher iSan Entity, it hasthe ability to have aListener associated
with it. In this case, the associated Listener should be of type
pPublisherListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
PublisherListener class. All PublisherListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The publisherListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy Setting, etc. The publisherListener iS related to changesin
communication status.

The interface description of this classis asfollows:

class PublisherListener {

//

// inherited from DataWriterListener

//

// wvoid

// on_offered_deadline_missed

// (DataWriter_ptr writer,

// const OfferedDeadlineMissedStatus& status) = 0;
// wvoid

// on_offered_incompatible_gos

// (DataWriter_ptr writer,

// const OfferedIncompatibleQosStatus& status) = 0;
// wvoid

// on_liveliness_lost

// (DataWriter_ptr writer,

// const LivelinessLostStatus& status) = 0;

// wvoid

// on_publication_matched

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

// (DataWriter_ptr writer,

// const PublicationMatchedStatus& status) = 0;
//

// implemented API operations

// <no operations>

//

Y

The next paragraphs list all PublisherListener operations. Since these
operations are al inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operationsis givenin the
classes from which they are inherited.

on_liveliness lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_liveliness_lost
(DataWriter_ptr writer,
const LivelinesslLostStatus& status) = 0;

on_offered_deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_offered _deadline_missed
(DataWriter_ptr writer,
const OfferedDeadlineMissedStatus& status) = 0;

on_offered_incompatible _qos (inherited, abstract)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_offered_incompatible_gos
(DataWriter_ptr writer,
const OfferedIncompatibleQosStatus& status) = 0;

273
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

on_publication_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_publication_matched
(DataWriter_ptr writer,
const PublicationMatchedStatus& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DataWriterLisener Interface

274
API Reference

Since apataWriter iSan Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DataWriterListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DataWriterListener class. All DatawriterListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DatawriterListener provides ageneric mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The bataWriterListener is related to changesin
communication status.

The interface description of this classis asfollows:

class DataWriterListener
{
// abstract external operations
void
on_offered_deadline_missed
(DataWriter_ptr writer,
const OfferedDeadlineMissedStatus& status) = 0;

void
on_offered_incompatible_gos
(DataWriter_ptr writer,

const OfferedIncompatibleQosStatus& status) = 0;

void

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

on_liveliness_lost
(DataWriter_ptr writer,
const LivelinessLostStatus& status) = 0;

void
on_publication_matched
(DataWriter_ptr writer,

const PublicationMatchedStatus& status) = 0;
// 1implemented API operations
// <no operations>

}s
The next paragraphs describe the usage of all batawriterListener operations.
These abstract operations are fully described because they must be implemented by
the application.

on_liveliness lost (abstract)

&4 PRISMTECH

Scope
DDS: :DataWriterListener
Synopsis
#include <ccpp_dds_dcps.h>
void

on_liveliness_lost

(DataWriter_ptr writer,
const LivelinessLostStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Servicewhenthe LivelinessLostStatus changes.

Parameters

in DataWriter_ptr writer - CONtains a pointer to the batawriter on which
theLivelinessLostStatus haschanged (thisisan input to the application).

in const LivelinessLostStatus& status - contains the
LivelinessLostStatus struct (thisisan input to the application).

Return Value

<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
LivelinessLostStatus changes. The implementation may be left empty when

275
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

this functionality is not needed. This operation will only be called when the relevant
DataWriterListener isinstalled and enabled for the liveliness lost status. The
liveliness lost status will change when the liveliness that the batawriter has
committed through its .ivelinessQosPolicy was not respected. In other words,
the patawriter failed to actively signa its liveliness within the offered liveliness
period. As aresult, the DataReader objects will consider the Datawriter asno
longer “alive’.

The Data Distribution Servicewill call thepatawriterListener operationwith a
parameter writer, which will contain areference to the Datawriter onwhich the

conflict occurred and a parameter status, which will contain the
LivelinessLostStatus Struct.

on_offered_deadline_missed (abstract)

276
API Reference

Scope

DDS: :DataWriterListener

Synopsis

#include <ccpp_dds_dcps.h>

void
on_offered_deadline_missed

(DataWriter_ptr writer,
const OfferedDeadlineMissedStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the 0f feredbDeadlineMissedStatus changes.
Parameters

in DataWriter ptr writer - coOntain apointer to the batawriter on which
the Of feredDeadl ineMissedStatus has changed (thisis an input to the
application).

in const OfferedDeadlineMissedStatus& status - contain the
Of feredDeadlineMissedStatus struct (thisis an input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OfferedDeadlineMissedStatus changes. The implementation may be left

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

empty when this functionality is not needed. This operation will only be called when
the relevant batawriterListener isinstalled and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
deadline that the Datawriter has committed through its DeadlineQosPolicy
was not respected for a specific instance.

The Data Distribution Service will call theDatawriterListener operation with a
parameter writer, which will contain areference to the Datawriter onwhichthe
conflict occurred and a parameter status, which will contain the
OfferedDeadlineMissedStatus Struct.

on_offered_incompatible _qos (abstract)

&4 PRISMTECH

Scope

DDS: :DataWriterListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_offered_incompatible_gos
(DataWriter_ptr writer,
const OfferedIncompatibleQosStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the OFFERED_TINCOMPATIBLE_QOS_STATUS changes.

Parameters

in DataWriter ptr writer - cOntain apointer to the batawriter on which
the OFFERED_INCOMPATIBLE_QOS_STATUS has changed (thisis an input to
the application).

in const OfferedIncompatibleQosStatus& status - contain the
Of feredIncompatibleQosStatus Struct (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be |eft
empty when this functionality is not needed. This operation will only be called when
the relevant pataWriterListener is installed and enabled for the

277
API Reference

3 DCPS Classes and Operations

3.4 PublicationModule

OFFERED_INCOMPATIBLE_QOS_STATUS. The incompatible gos status will
change when a bataReader object has been discovered by the patawriter with

the same Topic and arequested bataReaderQos that was incompatible with the
one offered by the batawriter.

The Data Distribution Service will call thepatawriterListener operation witha
parameter writer, which will contain areference to the batawriter onwhich the
conflict occurred and a parameter status, which will contain the
Of feredIncompatibleQosStatus Struct.

on_publication_matched (abstract)

278
API Reference

Scope
DDS: :DataWriterListener

Synopsis

#include <ccpp_dds_dcps.h>
void
on_publication_matched
(DataWriter_ptr writer,
const PublicationMatchedStatus& status) = 0;

Description
This operation is not yet supported. It is scheduled for afuture release.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

3.5 Subscription Module

Samplelnfo
DataSample sample_state DomainParticipant
— view_state ' i
; (from Domain Module)
instance_state
* 1 |source_timestamp

instance_handle

disposed_generation_count <<create>>
DataReader no_writers_generation_count <<implicit>> -

sample_rank QosPolicy Implici Subscriber
create_querycondition() generation_rank . St = qos
create_readcondition() absolute_generation_rank name - string N begin_access()
delete_contained_entities() . copy_from_topic_gos()
delete_readcondition() A create_datareader()
<<abstract>> get_key_value() * * delete_contained_entities()
get_listener() L delete_datareader()
get_liveliness_changed_status() <<implicit>> default_datareader_qos”|eng_access()
get_matched_publ!cat!on_data() get_datareaders()
get_matched_publications() get_default_datareader_qos()
get_gos() TopicDescription Topic get_listener()
get_requested_deadline_missed_status() (from Topic-Definition Module) —__ (from Topic-Definition Module) get_participant()
get_requested_incompatible_qos_status() get_gos()
getﬁsampleilo‘stistatus() N lookup_datareader()
getisabmple_BreJ()ectedislalus() R 1 | notify_datareaders()
get_subscriber o L L set_default_datareader_qos()
get_subscription_match_status() <<implicit>> <<implicit>> <<implicit>> set_listener()
get_topicdescription() set_qos()
<<abstract>> lookup_instance() 0.. 0.
<<abstract>> read()
<<abstract>> read_lnstaqce() WaitSet StatusCondition
<<abstract>>read_next_instance() " (from Infrastructure Module) (from Infrastructure Module) A
<<abstract>> read_next_instance_w_condition() 1 <<implicit>>
<<abstract>> read_next_sample() 1 * *
sSaberace e conien) oo

. * <<implicit>>

setiliste(r;er() N\ * <<Interface>>
set_qos ReadCondition ” iberLi
<<abstract>> take() QueryCondition SubscriberListener
<<abstract>> take_instance()
<<abstract>> take_next_instance() gg:—ﬁjas‘g:::eg&e mask) get_query_arguments() on_data_on_readers()
<<abstract>> take_next_instance_w_condition() get_sample State m ask() get_query_expression()

<<abstract>> take_next_sample() set_query_arguments()

<<abstract>> take_w_condition()

Lo

<<Interface>>
DataReaderListener

get_view_state_mask()

<<create>>

<<create>>

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

Figure 19 DCPS Subscription Modul€e's Class M odel
This module contains the following classes:
e Subscriber
* Subscription type specific classes
e DataSample
e SampleInfo (Struct)
e SubscriberListener (interface)
* DataReaderListener (interface)
» ReadCondition

®* QueryCondition.

279

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

“Subscription type specific classes’ contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader iSgenerated (based on IDL) by calling the pre-processor.

For instance, for the fictional data type rFoo (this also applies to other types)
“ Subscription type specific classes’ contains the following classes:

* DataReader (abstract)
* FooDataReader.

A subscriber isan object responsible for receiving published data and making it
available (according to the subscriberQos) to the application. It may receive and
dispatch Topic with data of different specified data types. To access the received
data, the application must use a typed DataReader attached to the subscriber.
Thus, a subscription is defined by the association of a DatakReader with a
Subscriber. Thisassociation expresses the intent of the application to subscribe to
the data described by the bataRrReader in the context provided by the subscriber.

Class Subscriber

280
API Reference

A subscriber isthe object responsible for the actual reception of the data
resulting from its subscriptions.

A Subscriber acts on behalf of one or more Datareader Objects that are related
to it. When it receives data (from the other parts of the system), it indicates to the
application that data is available through its DataReaderListener and by
enabling related conditions. The application can access the list of concerned
DataReader Objectsthrough the operation get_datareaders and then accessthe
data available through operations on the DataReader.

The interface description of this classis asfollows:

class Subscriber

{

//

// inherited from class Entity
//

// StatusCondition_ptr

// get_statuscondition

// (void) ;

// StatusMask

// get_status_changes

// (void) ;

// ReturnCode_t

// enable

// (void) ;

//

// implemented API operations
//

DataReader_ptr

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

create_datareader
(TopicDescription_ptr a_topic,
const DataReaderQos& gos,
DataReaderListener_ptr a_listener,
StatusMask mask) ;

ReturnCode_t
delete_datareader
(DataReader_ptr a_datareader) ;

ReturnCode_t
delete_contained_entities
(void) ;

DataReader_ptr
lookup_datareader
(const char* topic_name) ;

ReturnCode_t
get_datareaders
(DataReaderSeqg& readers,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

ReturnCode_t
notify datareaders
(void) ;

ReturnCode_t
set_gos
(const SubscriberQos& gos) ;

ReturnCode_t
get_qgos
(SubscriberQos& gos) ;
ReturnCode_t
set_listener
(SubscriberListener_ptr a_listener,
StatusMask mask) ;

SubscriberListener_ptr
get_listener
(void) ;

ReturnCode_t
begin_access

(void) ;

ReturnCode_t

3.5 Subscription Module

281
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

end_access
(void) ;

DomainParticipant_ptr
get_participant
(void) ;

ReturnCode_t
set_default_datareader_gos
(const DataReaderQos& gos) ;

ReturnCode_t
get_default_datareader_gos
(DataReaderQos& gos) ;

ReturnCode_t
copy_from_topic_gos
(DataReaderQos& a_datareader_gos,
const TopicQos& a_topic_gos);
}:

The next paragraphs describe the usage of all subscriber operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

begin_access

Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
begin_access
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

copy_from_topic_qgos

282
API Reference

Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
copy_from_topic_gos
(DataReaderQos& a_datareader_gos,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

const TopicQos& a_topic_gos);

Description

This operation will copy the policiesin a_topic_gos to the corresponding policies
ina_datareader_gos.

Parameters

inout DataReaderQosé& a_datareader_ gos - the destination
DataReaderQos Struct to which the gosPolicy settings will be copied.

in const TopicQos& a_topic_gos - the source TopicQos, which will be
copied.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation will copy the gosPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datareader_gos (replacing the values
ina_datareader_qgos, if present).

Thisis a“convenience” operation, useful in combination with the operations
get_default_datawriter_gos and Topic::get_gos. The operation
copy_from_topic_gos can be used to merge the DataReader default
QosPolicy Settings with the corresponding ones on the Topic. The resulting
DataReaderQos can then be used to create a new bataReader, Or Set its
DataReaderQos.

This operation does not check the resulting a_datareader_gos for self
consistency. This is because the “merged” a_datareader_gos may not be the
final one, as the application can still modify some QosPolicy settings prior to
applying the bataReaderQos t0 the DataReader.

Return Code
When the operation returns:

* RETCODE_OK - the QosPolicy settings have successfully been copied from the
TopicQos tothe DataReaderQos

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the Subscriber hasaready been deleted.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

283

APl Reference

3 DCPS Classes and Operations 3.5 Subscription Module

create datareader

284
API Reference

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>

DataReader_ptr

create_datareader
(TopicDescription_ptr a_topic,

const DataReaderQos& gos,
DataReaderListener_ptr a_listener,
StatusMask mask) ;

Description

This operation creates abataReader With the desired gosPolicy Settings, for the
desired TopicDescription and attaches the optionally specified
DataWriterListener tOit.

Parameters

in TopicDescription_ptr a_topic -apointertothe Topichescription
for which the patareader is created. This may be a Topic, MultiTopic Or
ContentFilteredTopic.

in const DataReaderQos& gos - the struct with the QosPol1icy settings for
the new DataReader, When these QosPolicy Settings are not self consistent,
No DataReader iS created.

in DataReaderListener_ptr a_listener - a pointer to the
DataReaderListener instance which will be attached to the new
DataReader. It is permitted to use NULL as the value of the listener: this
behaves asaDatawriterListener Whose operations perform no action.

in StatusMask mask - abit-mask in which each bit enables the invocation of
the DataReaderListener for acertain status.

Return Value

DataReader_ptr - apointer to the newly created pataReader. In case of an
error, the NULL pointer is returned.

Detailed Description

This operation creates a DataReader With the desired QosPolicy settings, for the
desired TopicDescription and attaches the optionally specified
DataReaderListener t0 it. The TopicDescription may be a Topic,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

MultiTopic OF ContentFilteredTopic. Thereturned DataReader iS attached
(and belongs) to the subscriber. To delete the DataReader the operation
delete_datareader Or delete_contained entities must be used.

Application Data Type

The pataReader returned by this operation is an object of a derived class, specific
to the data type associated with the Topicbescription. For each
application-defined data type <type> there is aclass <type>DataReader
generated by calling the pre-processor. This data type specific class extends
DataReader and contains the operationsto read data of datatype <type>.

Because the bataReader may read a Topic, ContentFilteredTopic Of
MultiTopic, the DataReader is associated with the TopicDescription. The
DataWriter can only write a Topic, not a ContentFilteredTopic OF
MultiTopic, because these two are constructed at the subscriber side.

QosPalicy

The common application pattern to construct the Qospolicy settings for the
DataReader iStO:

* Retrieve the QosPolicy settings on the associated TopicDescription by
means of the get_qgos operation on the Topicbescription

* Retrieve the default DataReaderQos by means of the
get_default_datareader_gos operation on the subscriber

» Combine those two QosPolicy Settings and selectively modify policies as
desired (copy_from_topic_gos)

» Usetheresulting QosPolicy Settings to construct the DataReader.

* In case the specified gosPolicy settings are not self consistent, N0 bataReader
is created and the NULL pointer is returned.

Default QoS

The constant DATAREADER_QOS_DEFAULT can be used as parameter gos to create
aDataReader With the default DatarReaderQos as set in the Subscriber. The
effect of using DATAREADER_QOS_DEFAULT IS the same as calling the operation
get_default_datareader_gos and using the resulting bataReaderQos to
create the DataReader.

The special DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DataReader with a combination of the default bataReaderQos and the
TopicQos. The effect of using DATAREADER_QOS_USE_TOPIC_QOS iSthe sameas
calling the operation get_default_datareader_gos and retrieving the
TopicQos (by means of the operation Topic: :get_gos) and then combining
these two QosPolicy settings using the operation copy_from_topic_gos,

285
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

286
API Reference

whereby any common policy that is set on the TopicQos “overrides” the
corresponding policy on the default bataReaderQos. The resulting
DataReaderQos iSthen applied to create the bataReader.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the bataReaderListener:

e REQUESTED_DEADLINE_MISSED_STATUS
e REQUESTED_INCOMPATIBLE_QOS_STATUS
e SAMPLE_LOST_STATUS

e SAMPLE_REJECTED_STATUS

e DATA_AVAILABLE_STATUS

e LTVELINESS_CHANGED_STATUS

¢ SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create atailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the DataReaderListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DataReaderListener, the subscriberListener of the containing
Subscriber isinvoked (if attached and activated for the status that occurred). This
allows the application to set a default behaviour in the subscriberListener of
the containing subscriber and a bataReader specific behaviour when needed.
In case the communication status is not activated in the mask of the
SubscriberListener aswell, the communication status will be propagated to the
DomainParticipantListener Of the containing DomainParticipant. In case
the DomainParticipantListener isaso not attached or the communication
statusis not activated in itsmask, the application is not notified of the change.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

delete_contained_entities

&4 PRISMTECH

Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_contained_entities
(void) ;

Description

This operation deletes all the patarReader objects that were created by means of
the create_datareader operation on the subscriber.

Parameters
<none>

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation deletes all the batarReader objects that were created by means of
the create_datareader operation on the subscriber. In other words, it deletes
all contained pataReader objects. Prior to deleting each pataReader, this
operation recursively calls the corresponding delete_contained_entities
operation on each DataReader. In other words, all bataReader objectsin the
Subscriber are deleted, including the QueryCondition and ReadCondition
objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if acontained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_Jloan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:

287
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
delete the subscriber;

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e RETCODE_PRECONDITION_NOT MET - one or more of the contained entities are
in a state where they cannot be del eted.

delete datareader

288
API Reference

Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_datareader
(DataReader_ptr a_datareader) ;

Description
This operation deletes a DataReader that belongsto the subscriber.

Parameters

in DataReader_ptr a_datareader - apointer tothe DataReader, Whichisto
be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletes a bataReader that belongs to the subscriber. When the
operation is caled on adifferent subscriber, as used when the bataReader was
created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataReader iS not
alowed if there are any ReadCondition OfF QueryCondition Objectsthat are
attached to the pataReader. In that case the operation returns
RETCODE_PRECONDITION_NOT_ MET.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

RETCODE_OK - the DataReader is deleted
RETCODE._ERROR - an internal error has occurred.

RETCODE,_BAD_PARAMETER - the parameter a_datareader is not a valid
DataReader_ptr

RETCODE,_ALREADY_DELETED - the Subscriber hasalready been deleted

RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

RETCODE,_PRECONDITION_NOT_MET - the operation is called on a different
Subscriber, as used when the bataReader was created, or the bataReader
contains one or more ReadCondi tion OF QueryCondition objects.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t

enable
(void) ;

end_access

Scope
DDS: : Subscriber
Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

end_access
(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

get_datareaders

&4 PRISMTECH

Scope

DDS: : Subscriber

289
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis

#include <ccpp_dds_dcps.h>

ReturnCode_t

get_datareaders
(DataReaderSeg& readers,

SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_default_datareader _qos
Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_default_datareader_gos
(DataReaderQos& gos) ;

Description
This operation gets the default gosPolicy settings of the DatarReader.

Parameters

inout DataReaderQos& gos - areference tothe bataReaderQos struct
(provided by the application) in which the default gosPolicy settings for the
DataReader arewritten.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation gets the default QosPolicy Settings of the DataReader (that isthe
DataReaderQos) Which is used for newly created bataReader oObjects, in case
the constant DATAREADER_QOS_ DEFAULT is used. The default DataReaderQos
is only used when the constant is supplied as parameter gos to specify the
DataReaderQos inthe create_datareader operation. The application must
provide the batarReaderQos struct in which the QosPo11icy Settings can be stored

290
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

and pass the gos reference to the operation. The operation writes the default
QosPolicy settingsto the struct referenced to by gos. Any settingsin the struct are
overwritten.

The values retrieved by this operation match the values specified on the last
successful call to set_default_datareader_ gos, of, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2 on

page 37.
Return Code
When the operation returns:

e RETCODE_OK - the default pDataReader QosPolicy settings of this
Subscriber have successfully been copied into the specified batarReaderQos
parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Ssubscriber has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_listener

&4 PRISMTECH

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>
SubscriberListener_ptr

get_listener
(void) ;

Description
This operation allows accessto a SubscriberListener.

Parameters
<none>

Return Value

SubscriberListener_ptr - result is a pointer to the SubscriberListener
attached to the Subscriber.

291
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation allows access to a SubscriberListener attached to the
Subscriber. When no subscriberListener was attached to the subscriber,
the NULL pointer is returned.

get_participant

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>
DomainParticipant_ptr

get_participant
(void) ;

Description

This operation returns the DomainParticipant associated with the subscriber
or the NULL pointer.

Parameters

<none>

Return Value

DomainParticipant_ptr - apointer to the bomainParticipant associated
with the subscriber or the NULL pointer.

Detailed Description

This operation returns the DomainParticipant associated with the subscriber.
Note that there is exactly one DomainParticipant associated with each
Subscriber. When the subscriber was already deleted (there is no associated
DomainParticipant any more), the NULL pointer is returned.

get_qos

292
API Reference

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

get_gos
(SubscriberQos& gos) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation allows access to the existing set of QoS policiesfor a subscriber.

Parameters

inout SubscriberQos& gos - areferenceto the destination SubscriberQos
struct in which the gosPolicy settings will be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a Subscriber
on which this operation is used. This subscriberQos is stored at the location
pointed to by the gos parameter.

Return Code

When the operation returns:

* RETCODE,_OK - the existing set of QoS policy values applied to this subscriber
has successfully been copied into the specified subscriberQos parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Subscriber hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_status_changes
(void) ;

get_statuscondition (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

293
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
get_statuscondition
(void) ;

lookup_datareader

Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
lookup_datareader
(const char* topic_name) ;

Description

This operation returns a previously created bataReader belonging to the
Subscriber Which is attached to a Topic with the matching topic_name.

Parameters

in const char* topic_name - the name of the Topic, which is attached to the
DataReader tolook for.

Return Value

DataReader ptr - Return value is areference to the bataReader found. When
no such patareader isfound, the NULL pointer is returned.

Detailed Description

This operation returns a previously created bataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name. When
multiple DataReader objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

This operation may be used on the built-in subscriber, which returns the built-in
DataReader Objectsfor the built-in Topics.

notify datareaders

294
API Reference

Scope

DDS: : Subscriber

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
notify datareaders
(void) ;

Description

This operation invokes the on_data_available oOperation on
DataReaderListener objects which are attached to the contained bataReader
entities having new, available data.

Parameters

<none>

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, DDS_RETCODE_ALREADY_DELETED or

DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation invokes the on_data_available operation on the
DataReaderListener Objects attached to contained pataReader entities that
have received information, but which have not yet been processed by those
DataReaders.

Thenotify_datareaders operation ignores the bit mask value of individual
DataReaderListener oObjects, even when the DATA_AVAILABLE_STATUS bit
has not been set on a bataReader that has new, available data. The
on_data_available operation will still be invoked, when the
DATA_AVAILABLE_STATUS bit has not been set on a bataReader, but will not
propagate to the DomainParticipantListener.

When the bataReader has attached a NULL listener, the event will be consumed
and will not propagate to the DomainParticipantListener. (Remember that a
NULL listener isregarded as alistener that handles al its events as aNoop).

Return Code

When the operation returns:

* RETCODE_OK - all appropriate listeners have been invoked

* RETCODE_ERROR - aninterna error has occurred

* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted

295
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_OUT_OF RESOURCES - there are insufficient Data Distribution Service
resources to complete this operation

set_default_datareader qos

296
API Reference

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_default_datareader_gos
(const DataReaderQos& gos) ;

Description
This operation sets the default DataReaderQos of the DataReader.

Parameters

in const DataReaderQos& gos -the DataReaderQos struct, which contains
the new default QosPolicy settings for the newly created DataReaders.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation sets the default DataReaderQos Of the DataReader (that is the
struct with the QosPolicy Settings). This QosPolicy isused for newly created
DataReader Objectsin case the constant DATAREADER _QOS_DEFAULT iS used as
parameter gos to specify the DataReaderQos inthe create_datareader
operation. This operation checks if the bataReaderQos is self consistent. If itis
not, the operation has no effect and returns RETCODE_INCONSISTENT _POLICY.

The values set by this operation arereturned by get_default_datareader_gos.

Return Code

When the operation returns:

e RETCODE_OK - the new default DataReaderQos is Set
* RETCODE_ERROR - an internal error has occurred.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid DataReaderQos.
It contains a QosPolicy Setting with an invalid buration_t value or an enum
value that is outside its legal boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE,_ALREADY_DELETED - the Subscriber hasalready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

set_listener
Scope

DDS: : Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(SubscriberListener_ptr a_listener,
StatusMask mask) ;

Description
This operation attaches a SubscriberListener t0 the Subscriber.

Parameters

in SubscriberListener_ptr a_listener - a pointer to the
SubscriberListener instance, which will be attached to the subscriber.

in StatusMask mask - abit mask in which each bit enables the invocation of the
SubscriberListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are;: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_
OUT_OF_RESOURCES.

297

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

298
API Reference

Detailed Description

This operation attaches a subscriberListener to the subscriber. Only one
SubscriberListener can be attached to each subscriber. If a
SubscriberListener Was already attached, the operation will replace it with the
new one. When a_1listener iSthe NULL pointer, it represents a listener that is
treated as a NOOP! for all statuses activated in the bit mask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated subscriberListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
already reset. An exception to thisruleisthe NULL listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the subscriberListener:

+ REQUESTED_DEADLINE MISSED_STATUS (propagated)
« REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
+ SAMPLE_LOST_STATUS (propagated)
« SAMPLE_REJECTED_STATUS (propagated)
« DATA AVAILABLE_ STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
+ SUBSCRIPTION_MATCHED_ STATUS (propagated).

e DATA_ON_READERS_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANy _STATUS can be used
to select all statuses applicable to the subscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener Of acontained DataReader, the DataReaderListener
on that contained DataReader isinvoked instead of the subscriberListener.
This means, that a status change on a contained pataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

1. Short for No-Operation, an instruction that does nothing.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

In case a communication status is not activated in the mask of the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Subscriber specific behaviour when needed. In case the
DomainParticipantListener iSalso not attached or the communication status
isnot activated in itsmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_ AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses. they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can hot be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_aAVATLABLE_STATUS (in that order).

Return Code

When the operation returns:

* RETCODE_OK - the subscriberListener iSattached

e RETCODE_ERROR - aninterna error has occurred

* RETCODE_ALREADY_DELETED - the Ssubscriber hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_qos

&4 PRISMTECH

Scope

DDS: : Subscriber

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t

set_gos
(const SubscriberQos& gos) ;

Description
This operation replaces the existing set of QosPolicy Settingsfor a subscriber.

299
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

300
API Reference

Parameters

in const SubscriberQos& gos - hew set of QosPolicy settings for the
Subscriber.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settingsfor a subscriber.
The parameter gos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QospPolicy
setting for an enabled subscriber, which can only be set before the subscriber
is enabled, the operation will fail and aRETCODE_IMMUTABLE_POLICY iSreturned.
In other words, the application must provide the presently set QosPolicy Settings
in case of the immutable QosPolicy settings. Only the mutable gosPolicy
settings can be changed. When gos contains conflicting gosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new SubscriberQos IS Set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid subscriberQos.
It contains a QosPolicy setting with an enum value that is outside its lega
boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy sefting with a different value than set during enabling of the
Subscriber.

Subscription Type Specific Classes

“Subscription type specific classes’ contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader IS generated (based on IDL) by calling the pre-processor. In
case of data type Foo (this also applies to other types); “ Subscription type specific
classes’ contains the following classes:

This paragraph describes the generic DatarReader class and the derived application
type specific <type>DataReader classes which together implement the
application subscription interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataReader class from an IDL type
description. The FoobataReader class that would be generated by the
pre-processor for afictional type Foo describesthe <type>DataReader classes.

Class DataReader (abstract)

&4 PRISMTECH

A DataReader alows the application:
* to declare data it wishesto receive (i.e., make a subscription)
* to access data received by the associated Subscriber.

A DataReader refersto exactly one TopicDescription (either a Topic, a
ContentFilteredTopic Or aMultiTopic) that identifies the samples to be
read. The DataReader may give access to several instances of the data type, which
are distinguished from each other by their key.

DataReader IS an abstract class. It is specialized for each particular application
datatype. For afictional application datatype“Foo” (defined in the module sPACE)
the specialized classwould be SPACE: : FooDataReader.

The interface description of this classis asfollows:

class DataReader

{

//

// inherited from class Entity
//

// StatusCondition_ptr

// get_statuscondition
// (void) ;

// StatusMask

// get_status_changes
// (void) ;

// ReturnCode_t

// enable

301
API Reference

3 DCPS Classes and Operations

302
API Reference

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

(void) ;

abstract operations (implemented in the data type
specific DataReader)

ReturnCode_t
read
(<data>Seqg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
take
(<data>Seqg& data_values,
SampleInfoSeqg& info_sedq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
read_w_condition
(<data>Seg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
ReadCondition a_condition) ;
ReturnCode_t
take_w_condition
(<data>Seg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
ReadCondition a_condition) ;
ReturnCode_t
read_next_sample
(<data>& data_values,
SampleInfo sample_info) ;
ReturnCode_t
take_next_sample
(<data>& data_values,
SampleInfo sample_info);
ReturnCode_t
read_instance
(<data>Seqg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
!/
/7
/7
/7
/7
//
//
/7
/7
/7
/7
/7

ReturnCode_t
take_instance
(<data>Seg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
read_next_instance
(<data>Seg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
take_next_instance
(<data>Seg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
read_next_instance_w_condition
(<data>Seg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition a_condition) ;
ReturnCode_t
take_next_instance_w_condition
(<data>Seg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition a_condition) ;
ReturnCode_t
return_loan
(<data>Seg& data_values,
SampleInfoSeqg& info_seq) ;
ReturnCode_t
get_key_value
(<data>& key_ holder,
InstanceHandle_t handle) ;
InstanceHandle_t

3.5 Subscription Module

303
API Reference

3 DCPS Classes and Operations

304
API Reference

lookup_instance
(const <data>& instance_data) ;

// implemented API operations

ReadCondition_ptr
create_readcondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

QueryCondition_ptr
create_querycondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states,
const char* query_expression,
const StringSeqg& query parameters) ;

ReturnCode_t
delete_readcondition
(ReadCondition_ptr a_condition) ;

ReturnCode_t
delete_contained_entities
(void) ;

ReturnCode_t
set_qgos
(const DataReaderQos& gos) ;

ReturnCode_t
get_gos
(DataReaderQos& gos) ;

ReturnCode_t
set_listener
(DataReaderListener_ptr a_listener,
StatusMask mask) ;

DataReaderListener_ptr
get_listener
(void) ;

TopicDescription_ptr
get_topicdescription
(void) ;

Subscriber_ ptr
get_subscriber

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Y

(void) ;

ReturnCode_t
get_sample_rejected_status
(SampleRejectedStatus& status);

ReturnCode_t
get_liveliness_changed_status
(LivelinessChangedStatus& status) ;

ReturnCode_t
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatus& status) ;

ReturnCode_t
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatus& status) ;

ReturnCode_t
get_subscription_matched_status
(SubscriptionMatchedStatus& status) ;

ReturnCode_t
get_sample_lost_status
(SamplelostStatus& status) ;

ReturnCode_t
walt_for _historical_data
(const Duration_t& max_wait) ;

ReturnCode_t
get_matched_publications
(InstanceHandleSeg& publication_handles) ;

ReturnCode_t
get_matched_publication_data
(PublicationBuiltinTopicData& publication_data,
InstanceHandle_t publication_handle) ;

The next paragraphs describe the usage of all batarReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operationsis given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operationsis|ocated in the subclasses that contain the data type
specific implementation of these operations.

305
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

create _querycondition

306
API Reference

Scope

DDS: :DataReader

Synopsis

#include <ccpp_dds_dcps.h>

QueryCondition_ptr

create_querycondition
(SampleStateMask sample_states,

ViewStateMask view_states,
InstanceStateMask instance_states,
const char* query_expression,
const StringSeq& query_parameters) ;

Description
This operation creates a new QueryCondition for the DataReader.

Parameters

in SampleStateMask sample_states - amask, which selects only those
samples with the desired sample states.

in ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

in InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

in const char* query_ expression - the query string, which must be a subset
of the SQL query language.

in const StringSeg& query parameters - asequence of strings which are
the parameter values used in the SQL query string (i.e., the “%n” tokensin the
expression). The number of valuesin query_parameters must be equal or
greater than the highest referenced $n token in the query_expression (e.g.
if 1 and %8 are used as parameters in the query_expression, the
query_parameters should at least containn+1 = 9 values).

Return Value

QueryCondition_ptr - Result valueisapointer to the QueryCondition. When
the operation fails, the NULL pointer is returned.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation creates anew QueryCondition for the bataReader. The returned
QueryCondition is attached (and belongs) to the batarReader. When the
operation fails, the NULL pointer is returned. To delete the QueryCondition the
operation delete_readcondition Of delete_contained_entities must be
used.

Sate Masks

The result of the Querycondition also depends on the selection of samples
determined by three masks:

* sample_states iSthe mask, which selects only those samples with the desired
sample statesREAD_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Or both

* view_states is the mask, which selects only those samples with the desired
view StaleSNEW_VIEW_STATE, NOT_NEW_VIEW_STATE Or both

* instance_states iS the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of a
combination of these.

L Expression

The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must
be set in the sequence of strings defined by the parameter query_parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of valuesin query_parameters must be equal or greater than the highest
referenced %n token in the query_expression (e.g.if $1 and 28 are used as
parametersin the query_expression, the query parameters should at least
containn+1 = 9 values).

create readcondition

&4 PRISMTECH

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReadCondition_ptr
create_readcondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

307
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation creates a new ReadCondition for the bataReader.

Parameters

in SampleStateMask sample_states - amask, which selects only those
samples with the desired sample states.

in ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

in InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

Return Value

ReadCondition_ptr - Result value is a pointer to the ReadCondition. When
the operation fails, the NULL pointer is returned.

Detailed Description

This operation creates a new ReadcCondition for the batarReader. The returned
ReadCondition is attached (and belongs) to the batareader. When the
operation fails, the NULL pointer is returned. To delete the ReadCondition the
operation delete_readcondition Of delete_contained_entities must be
used.

Sate Masks

The result of the ReadCondition depends on the selection of samples determined
by three masks:

* sample_states isthe mask, which selects only those samples with the desired
sample stateS READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Or both

* view_states IS the mask, which selects only those samples with the desired
view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both

* instance_states iS the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE STATE Of a
combination of these.

delete contained_entities

308
API Reference

Scope

DDS: :DataReader

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_contained_entities
(void) ;

Description

This operation deletes all the Ent ity objects that were created by means of one of
the“create_" operations on the DatarReader.

Parameters

<none>

Return Value

ReturnCode_t - Possible return codes of the operation are;: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation deletes all the Entity objects that were created by means of one of
the “create_" operations on the bataReader. In other words, it deletes all
QueryCondition and ReadCondition Objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
deletethe DataReader

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the DataReader hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION NOT MET - one or more of the contained entities are
in a state where they cannot be deleted.

309
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

delete readcondition

310
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
delete_readcondition
(ReadCondition_ptr a_condition) ;

Description

This operation deletes a ReadCondition OF QueryCondition Which is attached
to the DataRrReader.

Parameters

in ReadCondition_ptr a_condition - apointer tothe ReadCondition oOf
QueryCondition which isto be deleted.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation deletes a ReadCondition OF QueryCondition Which is attached
to the DataReader. Since aQueryCondition isaspeciaized ReadCondition,
the operation can also be used to delete a QueryCondition. A ReadCondition
Or QueryCondition cannot be deleted when it is not attached to thispataRrReader.
When the operation is called on a ReadCondition Of QueryCondition which
was not attached to this pataReader, the operation returns
RETCODE_PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* RETCODE_OK - the ReadCondition Or QueryCondition isdeleted
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e RETCODE_PRECONDITION_NOT MET - the operation is caled on a different

DataReader, as used when the ReadCondition Or QueryCondition was
created.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
enable
(void) ;

get_key value (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_key_value
(<data>& key_ holder,
InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_listener

Scope

DDS: :DataReader

Synopsis

#include <ccpp_dds_dcps.h>

DataReaderListener_ptr

get_listener
(void) ;

Description
This operation allows accessto aDataReaderListener.

311
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
<none>

Return Value

datareaderlistener_ptr - result is a pointer to the DataReaderListener
attached to the DataReader.

Detailed Description

This operation allows access to a DataReaderListener attached to the
DataReader. When no DataReaderListener was attached to the bataReader,
the NULL pointer is returned.

get_liveliness changed_status

312
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_liveliness_changed_status
(LivelinessChangedStatus& status) ;

Description
This operation obtains the LivelinessChangedStatus struct of the
DataReader.
Parameters

inout LivelinessChangedStatus& status - the contents of the
LivelinessChangedStatus struct of the DataReader will be copied into
the location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This obtains returns the Livel inessChangedStatus struct of the batareader.
This struct contains the information whether the liveliness of one or more
DataWriter Objectsthat were writing instances read by the batarReader has
changed. In other words, some patawriter have become “alive’ or “not aive’.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

The LivelinessChangedStatus can also be monitored using a
DataReaderListener Or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current LivelinessChangedStatus Of this DataReader
has successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE,_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_matched publication_data

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_matched_publication_data
(PublicationBuiltinTopicData& publication_data,
InstanceHandle_t publication_handle) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_matched publications

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_matched_publications
(InstanceHandleSeqg& publication_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_qgos

&4 PRISMTECH

Scope

DDS: :DataReader

313
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_gos
(DataReaderQos& gos) ;

Description
This operation allows access to the existing set of QoS policiesfor abataReader.

Parameters

inout DataReaderQos& gos - apointer to the destination batarReaderQos
struct in which the gosPo1licy settings will be copied.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a DataReader
on which this operation is used. This bataReaderQos is stored at the location
pointed to by the gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of gosPolicy values applied to thispataReader
has successfully been copied into the specified bataReaderQos parameter.

* RETCODE_FERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_requested_deadline missed_status

314
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatus& status);

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation obtains the RequestedDeadl ineMissedStatus Struct of the
DataReader.

Parameters

inout RequestedDeadlineMissedStatus& status - the contents of the
RequestedDeadlineMissedStatus Struct of the bataReader will be
copied into the location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the RequestedDeadl ineMissedStatus Struct of the
DataReader. This struct contains the information whether the deadline that the
DataReader Was expecting through its DeadlineQosPolicy Was not respected
for a specific instance.

The RequestedDeadlineMissedStatus can also be monitored using a
DataReaderListener OF by using the associated StatusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current RequestedDeadlineMissedStatus Of this
DataReader has successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_requested_incompatible_qos status

&4 PRISMTECH

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatus& status) ;

315
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation obtains the RequestedIncompatibleQosStatus struct of the
DataReader.

Parameters

inout ReqguestedIncompatibleQosStatus& status - the contents of the
RequestedIncompatibleQosStatus Struct of the DataReader will be
copied into the location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the RequestedIncompatibleQosStatus struct of the
DataReader. This struct contains the information whether a gospPolicy setting
was incompatible with the offered gosPolicy setting.

The Request/Offering mechanism is applicable between the patawriter and the
DataReader. If the QosPolicy Settings between Datawriter and DataReader
are inconsistent, no communication between them is established. In addition the
DatawWriter will be informed via a REQUESTED_INCOMPATIBLE_QOS Status
change and the DpataReader will be informed via an
OFFERED_INCOMPATIBLE_QOS Status change.

The RequestedIncompatibleQosStatus can also be monitored using a
DataReaderListener Of by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current RequestedIncompatibleQosStatus Of this
DataReader has successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_sample lost_status

316
API Reference

Scope

DDS: :DataReader

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_sample_lost_status
(SampleLostStatus& status);

Description
This operation obtainsthe samplelLostStatus struct of the bataReader.

Parameters

inout SampleLostStatus& status - the contents of the samplelLostStatus
struct of the Datareader will be copied into the location specified by status.

Note: Thisstatusis not yet implemented. It is scheduled for afuture release. Until it
isimplemented al returned attribute values will beinitialized to 0.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the sampleLostStatus struct of the batakReader. This
struct contains information whether samples have been lost. This only applies when
the ReliabilityQosPolicy IS set to RELIABLE. If the
ReliabilityQosPolicy iSSet to BEST EFFORT the Data Distribution Service
will not report the loss of samples.

The sampleLostStatus can aso be monitored using abataReaderListener
or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current sampleLostStatus Of thiS DataReader has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE,_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

317
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

get_sample rejected status

318
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_sample_rejected_status
(SampleRejectedStatus& status);

Detailed Description
This operation obtainsthe sampleRejectedStatus struct of the DatarReader.

Parameters

inout SampleRejectedStatus& status - the contents of the
SampleRejectedStatus Struct of the batareader will be copied into the
location specified by status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Or RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the sampleRejectedStatus struct of the bataReader.
This struct contains the information whether a received sample has been rejected.

The sampleRejectedStatus can also be monitored using a
DataReaderListener Of by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current SampleRejectedStatus Of this DataReader has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_status changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
get_status_changes
(void) ;
get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
get_statuscondition
(void) ;

get_subscriber
Scope

DDS: :DataReader

Synopsis

#include <ccpp_dds_dcps.h>
Subscriber_ptr

get_subscriber
(void) ;

Description
This operation returns the subscriber to which the Datareader belongs.

Parameters
<none>

Return Value

Subscriber_ptr - Return value is a pointer to the subscriber to which the
DataReader belongs.

319

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation returns the subscriber to which the batarReader belongs, thus
the subscriber that has created the DataReader. If the DataReader is aready
deleted, the NULL pointer is returned.

get_subscription_matched_status

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
get_subscription_matched_status
(SubscriptionMatchedStatus& status);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_topicdescription

320
API Reference

Scope

DDS: :DataReader

Synopsis

#include <ccpp_dds_dcps.h>
TopicDescription_ptr

get_topicdescription
(void) ;

Description

This operation returns the TopicbDescription which is associated with the
DataReader.

Parameters

<none>

Return Value

TopicDescription_ptr - Return value is a pointer to the
TopicDescription which isassociated with the DataReader.

Detailed Description

This operation returns the Topicbescription Which is associated with the
DataReader, thus the TopicDescription wWith which the DataReader is
created. If the DataReader isaready deleted, the NULL pointer is returned.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

lookup_instance (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader Class.

Synopsis

#include <ccpp_dds_dcps.h>
InstanceHandle_t
lookup_instance
(const <data>& instance_data) ;

read (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader Class.

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t
read
(<data>& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

read_instance (abstract)

&4 PRISMTECH

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t
read_instance
(<data>& data_values,
SampleInfoSeg& info_seq,

321
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Long max_samples,

InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

read_next_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
read_next_instance
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

read_next_instance w_condition (abstract)

322
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
read_next_instance_w_condition
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition a_condition) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

read_next_sample (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader Class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
read_next_sample
(<data>& data_value,
SampleInfo sample_info);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

read_w_condition (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader Class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
read_w_condition
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
ReadCondition a_condition) ;

return_loan (abstract)

&4 PRISMTECH

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
return_loan
(<data>& data_values,
SampleInfoSeg& info_seq) ;

323
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

set_listener

324
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_listener
(DataReaderListener_ptr a_listener,
StatusMask mask) ;

Description
This operation attaches aDataReaderListener {0 the DataReader.

Parameters

in DataReaderListener_ptr a_listener - a pointer to the
DataReaderListener instance, which will be attached to the bataReader.

in StatusMask mask - abit mask in which each bit enables the invocation of the
DataReaderListener for acertain status.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation attaches a DataReaderListener {0 the DataReader. Only one
DataReaderListener can be attached to each pataReader. If a
DataReaderListener Was aready attached, the operation will replace it with the
new one. When a_1listener isthe NULL pointer, it represents a listener that is
treated as a NOOP" for all statuses activated in the bit mask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the

1. Short for No-Operation, an instruction that does nothing.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

get_<status_name>_status from inside the listener it will see the status
already reset. An exception to thisruleis the NULL listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the DataReaderListener:

« REQUESTED_DEADLINE_MISSED_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

+ SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

« DATA_AVAILABLE_STATUS

« LIVELINESS_CHANGED_STATUS

* SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR

operation to create a tailored mask. The special constant ANY_sTaATUS can be used
to select al statuses applicable to the DataReaderListener.

Satus Propagation

In case a communication status is not activated in the mask, the
SubscriberListener Of the DataReaderListener isinvoked (if attached and
activated for the status that occurred). This allows the application to set a default
behaviour in the subscriberListener of the containing Ssubscriber and a
DataReader Specific behaviour when needed. In case the communication status is
not activated in the mask of the subscriberListener as well, the
communication status will be propagated to the DomainParticipantListener
of the containing DomainParticipant. In case the
DomainParticipantListener iSalso not attached or the communication status
isnot activated in itsmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can hot be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_aAVATLABLE_STATUS (in that order).

Return Code
When the operation returns:

325
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_OK - the DataReaderListener iSattached
* RETCODE_ERROR - an internal error has occurred
* RETCODE_ALREADY_DELETED - the DataReader hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

set_qos

326
API Reference

Scope

DDS: :DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_gos
(const DataReaderQos& gos) ;

Description
This operation replaces the existing set of QosPolicy settingsfor abataReader.

Parameters

in const DataReaderQos& gos - gos containsthe new set of QosPolicy
settings for the DataReader.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_IMMUTABLE_POLICY Of RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a DataReader.
The parameter gos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled bataReader, which can only be set before the batarReader
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY iSreturned.
In other words, the application must provide the presently set QosPolicy Settings
in case of the immutable QosPolicy settings. Only the mutable gosPolicy
settings can be changed. When gos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY iS
returned.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DataReaderQos is Set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter gos isnot avalid bataReaderQos.
It contains a QosPolicy Setting with an invalid buration_t value or an enum
value that is outside its legal boundaries

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the DataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter gqos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataReader

* RETCODE_INCONSISTENT POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

take (abstract)

&4 PRISMTECH

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be

used. For further explanation see the description for the fictional datatype Foo

derived FooDataReader class,

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
take
(<data>& data_values,

SampleInfoSeg& info_seq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states)

327
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

take instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
take_instance
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

take _next_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
take_next_instance
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

take next_instance w_condition (abstract)

328
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type rFoo
derived FooDataReader class.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
take_next_instance_w_condition
(<data>& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition a_condition) ;

take next_sample (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t
take_next_sample
(<data>& data_value,
SampleInfo sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

take w_condition (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis

#include <ccpp_dds_dcps.h>
ReturnCode_t
take_w_condition
(<data>& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
ReadCondition a_condition) ;

wait_for_historical_data
Scope
DDS: :DataReader

329
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

330
API Reference

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
wait_for_historical_data
(const Duration_t& max_wait) ;

Description

This operation will block the application thread until all “historical” datais
received.

Parameters

in const Duration_t& max_wait - the maximum duration to block for the
wait_for_historical_data, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED Of RETCODE_TIMEOUT.

Detailed Description

This operation behaves differently for patarReader objects which have a
Non-vOLATILE _DURABILITY_QOS DurabilityQosPolicy and for
DataReader Objects which have a VOLATILE_DURABILITY_QOS
DurabilityQosPolicy.

As soon as an application enables a non-vOLATILE_DURABILITY_QOS
DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the batarReader joined the domain, as well as any new
data written by the Datawriter objects. There are situations where the application
logic may require the application to wait until all “historical” datais received. This
isthe purpose of thewait_for_historical_data operation.

As soon as an application enables a vOLATILE_DURABILITY_QOS DataReader it
will not start receiving “historical” data but only new data written by the
DataWriter objects. By callingwait_for_historical_data theDataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” datais received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Thread Blocking

The operationwait_for_historical_data blocksthe calling thread until either
all “historical” datais received, or the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of RETCODE_OK
indicates that all the “historical” data was received a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
received.

Return Code

When the operation returns:

* RETCODE_OK - the“historical” datais received

e RETCODE_ERROR - an interna error has occurred.

* RETCODE_ALREADY_DELETED - the DataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the DataReader iSnot enabled.
* RETCODE_TIMEOUT - not all dataisreceived beforemax_wait elapsed.

Class FooDataReader

&4 PRISMTECH

The pre-processor generates from IDL type descriptions the application
<type>DataReader Classes. For each application data type that is used as Topic
datatype, atyped class <type>DataReader is derived from the DatarReader
class. In this paragraph, the class FooDataReader in the namespace SPACE
describes the operations of these derived <type>DataReader classes as an
example for the fictional application type Foo (defined in the module sPACE).

For instance, for an application, the definitions are located in the space. id1 file.
The pre-processor will generate a ccpp_sSpace . h includefile.

General note: The name ccpp_Space.h isderived from the IDL file space.idil,
that defines Foo, for al relevant Foobatawriter operations.

Sate Masks

A FooDataReader refersto exactly one Topicbescription (either aTopic, a
ContentFilteredTopic OF aMultiTopic) that identifies the datato be read.
Therefore it refers to exactly one data type. The Topic must exist prior to the
FooDataReader Creation. The FooDataReader may give access to several
instances of the data type, which are distinguished from each other by their key. The
FooDataReader iS attached to exactly one subscriber which acts as a factory
for it.

The interface description of thisclassis asfollows:

331
API Reference

3 DCPS Classes and Operations

332
API Reference

class FooDataReader

{

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//

/7
/7
/7

//
//
//

//
//
//

/7
/7
/7

//
//
//

inherited from class Entity

StatusCondition_ptr
get_statuscondition
(void) ;
StatusMask
get_status_changes
(void) ;
ReturnCode_t
enable
(void) ;

inherited from class DataReader

ReadCondition_ptr
create_readcondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

QueryCondition_ptr
create_querycondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states,
const char* query_expression,
const StringSeqg& query parameters) ;

ReturnCode_t
delete_readcondition
(ReadCondition_ptr a_condition);

ReturnCode_t
delete_contained_entities
(void) ;

ReturnCode_t
set_qgos
(const DataReaderQos& gos) ;

ReturnCode_t
get_gos
(DataReaderQos& gos) ;

ReturnCode_t
set_listener
(DataReaderListener_ptr a_listener,

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

/7

//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
/7
/7

/7
/7
/7

!/
/7
/7

/7
//
/7

/7
/7
/7
/7

StatusMask mask) ;

DataReaderListener_ptr
get_listener
(void) ;

TopicDescription_ptr
get_topicdescription
(void) ;

Subscriber_ptr
get_subscriber
(void) ;

ReturnCode_t
get_sample_rejected_status
(SampleRejectedStatus& status);

ReturnCode_t
get_liveliness_changed_status
(LivelinessChangedStatus& status) ;

ReturnCode_t
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatus& status);

ReturnCode_t
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatus& status);

ReturnCode_t
get_subscription_matched_status
(SubscriptionMatchedStatus& status) ;

ReturnCode_t
get_sample_lost_status
(SamplelostStatus& status) ;

ReturnCode_t
walt_for _historical_data
(const Duration_t& max_wait) ;

ReturnCode_t
get_matched_publications
(InstanceHandleSeqg& publication_handles) ;

ReturnCode_t
get_matched_publication_data
(PublicationBuiltinTopicData& publication_data,
InstanceHandle_t publication_handle) ;
333
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

//
// implemented API operations
//

ReturnCode_t

read
(FooSeg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;
ReturnCode_t
take
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
read_w_condition
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
ReadCondition_ptr a_condition) ;
ReturnCode_t
take_w_condition
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
ReadCondition_ptr a_condition) ;
ReturnCode_t
data_value
(Foo& received_data,
SampleInfo sample_info) ;
ReturnCode_t
take_next_sample
(Foo& data_value,
SampleInfo sample_info) ;
ReturnCode_t
read_instance
(FooSeg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;
ReturnCode_t
take_instance

334

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;
ReturnCode_t
read_next_instance
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);
ReturnCode_t
take_next_instance
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;
ReturnCode_t
read_next_instance_w_condition
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition_ptr a_condition) ;
ReturnCode_t
take_next_instance_w_condition
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition_ptr a_condition) ;
ReturnCode_t
return_loan
(FooSeg& data_values,
SampleInfoSeg& info_seq) ;
ReturnCode_t
get_key _value
(Foo& key_ holder,
InstanceHandle_t handle) ;
InstanceHandle_t
lookup_instance
(const Foo& instance_data) ;

335
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Y

The next paragraphs describe the usage of all FoobDataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

create_querycondition (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis

#include <ccpp_Space.h>

QueryCondition_ptr

create_querycondition
(SampleStateMask sample_states,

ViewStateMask view_states,
InstanceStateMask instance_states,
const char* query_expression,
const StringSeqg& query parameters) ;

create readcondition (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReadCondition_ptr
create_readcondition
(SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

delete_contained_entities (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t

delete_contained_entities
(void) ;

336
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

delete readcondition (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
delete_readcondition
(ReadCondition_ptr a_condition) ;

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
enable
(void) ;

get_key value
Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_key _value
(Foo& key_ holder,
InstanceHandle_t handle) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_listener (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
DataReaderListener_ptr
get_listener
(void) ;

337

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

get_liveliness_changed_status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_liveliness_changed_status
(LivelinessChangedStatus& status) ;

get_matched publication_data (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_matched_publication_data
(PublicationBuiltinTopicData& publication_data,
InstanceHandle_t publication_handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_matched publications (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_matched_publications
(InstanceHandleSeqg& publication_handles) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_gos (inherited)

338
API Reference

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_gos
(DataReaderQos& gos) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_requested_deadline missed_status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatus& status) ;

get_requested_incompatible _qos status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatus& status);

get_sample lost_status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_sample_lost_status
(SampleLostStatus& status) ;

get_sample rejected_status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_sample_rejected_status
(SampleRejectedStatus& status);

get_status _changes (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

339
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_Space.h>
StatusMask
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusCondition_ptr
get_statuscondition
(void) ;

get_subscriber (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
Subscriber_ptr
get_subscriber
(void) ;

get_subscription_matched_status (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
get_subscription_matched_status
(SubscriptionMatchedStatus& status) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_topicdescription (inherited)

340
API Reference

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
TopicDescription_ptr

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_topicdescription
(void) ;

lookup_instance

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
InstanceHandle_t
lookup_instance
(const Foo& instance_data) ;

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in const Foo& instance_data - the instance for which the corresponding
instance handle needs to be looked up.

Return Value

InstanceHandle_t - Result valueisthe instance handle which corresponds to the
instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that bataReader instance handles are local, and are
not interchangeable with batawriter instance handles nor with instance handles
of an other bataReader. If the DataReader is aready deleted, the handle value
HANDLE_NIL isreturned.

read

&4 PRISMTECH

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
read
(FooSeg& data_values,

341
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

342
API Reference

SampleInfoSeg& info_sedq,

Long max_samples,

SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

Description
This operation reads a sequence of Foo samples from the FooDataReader.

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values iS also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure
seguence. info_seq is aso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat isreturned.

in SampleStateMask sample_states - amask, which selects only those
samples with the desired sample states.

in ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

in InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED, RETCODE_PRECONDITION_
NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader. The
datais returned by the parameters data_values and info_seq. The number of
samplesthat isreturned is limited by the parameter max_samples. Thisoperation
is part of the specialized class which is generated for the particular application data
type (in this case type Foo) that is being read. If the FoobataReader has no
samples that meet the constraints, the return value is RETCODE_NO_DATA.

Sate Masks
The read operation depends on a selection of the samples by using three masks:

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

* sample_states isthe mask, which selects only those samples with the desired
sample statesREAD_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Or both

* view_states is the mask, which selects only those samples with the desired
view StaleSNEW_VIEW_STATE, NOT_NEW_VIEW_STATE oOr both

e instance_states iS the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of a
combination of these.

Destination Order

In any case, the relative order between the samples of one instance is consistent with
the DestinationOrderQosPolicy Of the Subscriber.

* When the DestinationOrderQosPolicy kind is
BY_RECEPTION_timestamp_ DESTINATIONORDER_QOS, the samples
belonging to the same instances will appear in the relative order in which they
were received (FIFO)

* When the DestinationOrderQosPolicy kind is
BY_SOURCE_timestamp_ DESTINATIONORDER_QOS, the samples belonging to
the same instances will appear in the relative order implied by the
source_timestamp.

Data Sample

In addition to the sample sequence (data_values), the operation also returns a
sequence of sampleInfo structureswith the parameter info_seq. The info_seq
structures and data_values aso determine the behaviour of this operation.

Resource Control

The initial (input) properties of the data_values and info_seq Sequences
determine the precise behaviour of the read operation. The sequences are modelled
as having three properties: the current-length (1ength), the maximum length
(maximum), and whether or not the sequence container owns the memory of the
dementswithin (release).

Theinitial (input) values of the 1ength, maximum, and release propertiesfor the
data_values and info_seq sequences govern the behaviour of the read
operation as specified by the following rules:

» The values of 1ength, maximum, and release for the two sequences must be
identical. Otherwise read returns RETCODE_PRECONDITION_NOT_ MET

» On successful output, the values of length, maximum, and release are the
same for both sequences

343
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

344
API Reference

* If the input maximum == 0, the received_data and info_seq Sequences are

filled with elements that are “loaned” by the FoobDataReader. On output,
release ISFALSE, length iSSet to the number of values returned, and maximum
IS set to a value verifying maximum >= length. In this case the application will
need to “return theloan” to the Data Distribution Service using the return_loan
operation

* If the input maximum>0 and the input release == FALSE, the read operation

will fail and returns RETCODE_PRECONDITION_NOT_MET. This avoids the
potential hard-to-detect memory leaks caused by an application forgetting to
“return the loan”

e If input maximum>0 and the input release==TRUE, the read operation will

copy the Foo samples and info_seq values into the elements aready inside the
sequences. On output, release IS TRUE, length iS Set to the number of values
copied, and maximum Will remain unchanged. The application can control where
the copy is placed and the application does not need to “return the loan”. The
number of samples copied depends on the relative values of maximum and
max_samples:

- If max_samples==LENGTH_UNLIMITED, a Most maximum values are copied.
The use of this variant lets the application limit the number of samples returned
to what the sequence can accommodate

- If max_samples<=maximum, a mMOst max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate

-If max_samples>maximum, the read operation will fal and returns
RETCODE_PRECONDITION_NOT MET. This avoids the potential confusion
where the application expects to be able to access up to max_samples, but that
number can never be returned, even if they are avalable in the
FooDataReader, because the output sequence cannot accommodate them.

Buffer Loan
As described above, upon return the data_values and info_seq Sequences may

contain e ements “loaned” from the Data Distribution Service. If thisisthe case, the
application will need to usethe return_1loan operation to return the “loan” once it
is no longer using the data in the sequence. Upon return from return_1loan, the
seguence hasmaximum==0 and release==FALSE.

The application can determine whether it is necessary to “return the loan” or not,
based on the state of the sequences, when the read operation was called, or by
accessing the “release” property. However, in many cases it may be simpler to
always call return_loan, asthis operation is harmless (i.e. leaves all elements
unchanged) if the sequence does not have aloan.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

To avoid potential memory leaks, it is not allowed to change the length of the
data_values and info_seq structures for which release==FALSE.
Furthermore, deleting a sequence for which release==FALSE is considered to be
an error except when the sequence is empty.

Data uence

On output, the sequence of data values and the sequence of sampleInfo Structures
are of the same length and are in an one-to-one correspondence. Each sampleInfo
structures provides information, such as the source_timestamp, the
sample_state, view_state, and instance_state, €tc., about the matching
sample.

Some elements in the returned sequence may not have valid data: the valid_data
field in the sampleInfo indicates whether the corresponding data value contains
any meaningful data. If not, the data value is just a‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the sampleInfo that
communicates a change in the instance_state of an instance for which thereis
no ‘real’ sample available.

For example, when an application always ‘takes all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the DatarReader will insert a dummy sample into the
data_values Sequence to accompany the sampleInfo elementinthe info_seq
sequence that communicates the disposal of the instance.

The act of reading a sample setsits sample_state t0O READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it also sets the
view_state Of the instance to NOT_NEwW_VIEW_STATE. It does not affect the
instance_state Of the instance.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

- one or more values of 1length, maximum, and release for the two sequences
are not identical

345

API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

- themaximum>0 and the release==FALSE.

* RETCODE_NO_DATA - no samples that meet the constraints are available.

read_instance

346
API Reference

Scope

SPACE: : FooDataReader

Synopsis

#include <ccpp_Space.h>

ReturnCode_t
read_instance
(FooSeg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader.

Parameters
inout FooSeg& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure

in

in

in

in

in

sequence. info_seq isaso used as an input to control the behaviour of this
operation.

long max_samples - the maximum number of samplesthat is returned.
InstanceHandle t a_handle - the singleinstance, the samples belong to.

SampleStateMask sample_states - a mask, which selects only those
samples with the desired sample states.

ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour isidentical to read except for that all samples
returned belong to the single specified instance whose handle is a_handle. Upon
successful return, the data collection will contain samples all belonging to the same
instance. The datais returned by the parameters data_values and info_seq. The
corresponding SampleInfo.instance_handlein info_seq will havethe value
of a_handle. The DataReader will check that each sample belongs to the
specified instance (indicated by a_hand1e) otherwiseit will not place the samplein
the returned collection.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_handle isnot avalid handle

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED.

- one or more values of 1ength, maximum, and release for the two sequences
are not identical.

- the maximum>0 and the release==FALSE.
* RETCODE_NO_DATA - no samples that meet the constraints are available.

read_next_instance

Scope
SPACE: : FooDataReader

347

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

348
API Reference

Synopsis

#include <ccpp_Space.h>

ReturnCode_t
read_next_instance
(FooSeg& data_values,
SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.

Parameters
inout FooSeg& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure

in

in

in

in

in

sequence. info_seq isalso used as an input to control the behaviour of this
operation.

long max_samples - the maximum number of samplesthat is returned.

InstanceHandle_t a_handle - the current single instance, the returned
samples belong to the next single instance.

SampleStateMask sample_states - amask, which selects only those
samples with the desired sample states.

ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

InstanceStateMask instance_states - amask, which selects only those
samples with the desired instance states.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OKX,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY__
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET O RETCODE_NO_DATA.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is similar to read_instance (all samples
returned belong to a single instance) except that the actual instance is not directly
specified. Rather the samples will all belong to the ‘next’ instance with
instance_handle ‘greater’ (according to some internal-defined order) than
a_handle, that has available samples. The data is returned by the parameters
data_values and info_seq. The corresponding
SampleInfo.instance_handle in info_seq Will has the value of the next
instance with respect to a_handle.

I nstance Order

The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘asif’ each instance handle was represented as a unique integer.

The behaviour of read next instance is‘asif’ the bataReader invoked
read_instance passing the smallest instance_handle among al the ones that:

» aregreater than a_handle

» have available samples (i.e. samples that meet the constraints imposed by the
specified states).

e The specia value HANDLE_NIL is guaranteed to be ‘less than’ any valid
instance_handle. So the wuse of the parameter vaue
a_handle==HANDLE_NIL Will return the samples for the instance which has the
smalest instance_handle among all the instances that contains available
samples.

Typical Use

The operation read_next_instance isintended to be used in an
application-driven iteration where the application starts by passing
a_handle==HANDLE_NIL, examines the samples returned, and then uses the
instance_handle returned in the sampleInfo asthe value of a_handle
argument to the next call to read_next_instance. The iteration continues until
read_next_instance returnsthe return value RETCODE_NO_DATA.

Return Code
When the operation returns:

* RETCODE_OK - asequence of datavaluesisavailable

* RETCODE_ERROR - aninternal error has occurred.

349
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_BAD_PARAMETER - the parameter a_handle ishot avalid handle
* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
-thémax_samples>maximum and max_samples iSNOt LENGTH UNLIMITED

- one or more values of 1length, maximum, and release for the two sequences
are not identical

- themaximum>0 and the release==FALSE.
* RETCODE_NO_DATA - N0 samples that meet the constraints are available.

read_next_instance w_condition

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
read_next_instance_w_condition
(FooSeg& data_values,

SampleInfoSeg& info_sedq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition_ptr a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader, filtered by aReadCondition OF QueryCondition.

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure
sequence. info_seq isalso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat isreturned.

350

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

in InstanceHandle_t a_handle - the current single instance, the returned
samples belong to the next single instance.

in ReadCondition_ptr a_condition - apointer to aReadCondition Of
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition.
The behaviour isidentical to read_next_instance except for that the samples
are filtered by a ReadCondition Or QueryCondition. When using a
ReadCondition, the result is the same as the read_next_instance operation
with the same state parametersfilled in asfor the create_readcondition. Inthis
way, the application can avoid repeating the same parameters, specified when
creating the ReadCondi tion. When using a QqueryCondition, acontent based
filtering can be done. When either using aReadCondition Or QueryCondition,
the condition must be created by this FoobataReader. Otherwise the operation
will fail and returns RETCODE_ PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE,_OK - asequence of datavaluesis available
e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr OfF a_handle isnot avalid handle.

* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

- one or more values of length, maximum, and release for the two sequences
are not identical

351
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

- themaximum>0 and the release==FALSE
* RETCODE_NO_DATA - no samples that meet the constraints are available.

read_next_sample
Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
read_next_sample
(Foo& data_value,
SampleInfo sample_info) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
read_w_condition
Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
read_w_condition
(FooSeg& data_values,

SampleInfoSeg& info_sedq,
Long max_samples,
ReadCondition_ptr a_condition);

Description

This operation reads a sequence of Foo samples from the FooDataReader, filtered
by areadCcondition Or QueryCondition.

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqg& info_seq - thereturned sampleInfo Structure
sequence. info_seq isalso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat is returned.

352

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

in ReadCondition_ptr a_condition - apointer to aReadCondition Of
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FoobataReader, filtered
by aRrReadCondition OF QueryCondition. The condition reference from both
create_readcondition Of create_querycondition may be used. The
behaviour is identical to read except for that the samples are filtered by a
ReadCondition OF QueryCondition. When using arReadcCondition, the result
is the same as the read operation with the same state parameters filled in as for the
create_readcondition. In this way, the application can avoid repeating the
same parameters, specified when creating the Readcondition. When using a
QueryCondition, acontent based filtering can be done. When either using a
ReadCondition OF QueryCondition, the condition must be created by this
FooDataReader. Otherwise the operation will fail and returns
RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT _ENABLED - the FooDataReader IS not enabled.
* RETCODE_PRECONDITION_NOT_MET - one of the following istrue:

-the ReadCondition OF QueryCondition IS not attached to this
FooDataReader

- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

353
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

- one or more values of 1ength, maximum, and release for the two sequences
are not identical

- themaximum>0 and the release==FALSE.
* RETCODE_NO_DATA - no samples that meet the constraints are available.

return_loan

354
API Reference

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
return_loan
(FooSeg& data_values,
SampleInfoSeg& info_seq) ;

Description

This operation indicates to the bataReader that the application is done accessing
the sequence of data_values and info_segq.

Parameters

inout FooSeg& data_values - the sample data sequence which was loaned
from the DataReader.

inout SampleInfoSeg& info_seq - the sampleInfo Structure sequence
which was loaned from the bataReader.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED Of RETCODE_PRECONDITION_
NOT_MET.

Detailed Description

This operation indicates to the bataReader that the application is done accessing
the sequence of data_values and info_seq obtained by some earlier invocation
of the operation read or take (or any of the similar operations) on the
DataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Thedata_values and info_seqg must belong to a single related pair that is, they
should correspond to a pair returned from a single call to the operation read or
take. Thedata values and info_seqg must also have been obtained from the
same DataReader to which they are returned. If either of these conditions is not
met the operation will fail and returns RETCODE_PRECONDITION_NOT_MET.

Buffer Loan

The operation return_1loan allows implementations of the read and take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.

It is not necessary for an application to return the loansimmediately after calling the
operation read or take. However, as these buffers correspond to internal resources
inside the pataReader, the application should not retain them indefinitely.

Calling return loan

The use of the return_loan operation is only necessary if the call to the operation
read Or take “loaned” buffers to the application. This only occurs if the
data_values and info_seq sequences had maximum=0 at the time the operation
read Or take was called. The application may also examine the ‘release’
property of the collection to determine where there is an outstanding loan. However,
calling the operation return_loan onapair of sequences that does not have aloan
is safe and has no side effects.

If the pair of sequences had a loan, upon return from the operation return_loan
the pair of sequences has maximum=0.

Return Code

When the operation returns:

* RETCODE_OK - the DataReader isinformed that the sequences will not be used
any more

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
-thedata_values and info_seq do not belong to asingle related pair

355
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

-the data_values and info_seq were not obtaned from this
FooDataReader

set_listener (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
set_listener
(DataReaderListener_ptr a_listener,
StatusMask mask) ;

set_qos (inherited)

This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
set_qgos
(const DataReaderQos& gos) ;

take

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
take
(FooSeg& data_values,

SampleInfoSeg& info_sedq,
Long max_samples,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

Description

This operation reads a sequence of Foo samples from the FoobataReader and by
doing so, removes the data from the FoobataReader.

356
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - thereturned sampleInfo structure
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat is returned.

in SampleStateMask sample_states - a mask, which selects only those
samples with the desired sample states.

in ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

in InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OKX,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED, RETCODE_PRECONDITION_
NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FoobataReader and by
doing so, removes the data from the FoobataReader, SO it can not be read or taken
again. The behaviour isidentical to read except for that the samples are removed
from the FooDataReader.

Return Code

When the operation returns:

e RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:

- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

357
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

- one or more values of 1ength, maximum, and release for the two sequences

are not identical

- themaximum>0 and the release==FALSE.

* RETCODE_NO_DATA - no samples that meet the constraints are available.

take instance

358
API Reference

Scope

SPACE: : FooDataReader

Synopsis

#include <ccpp_Space.h>

ReturnCode_t
take_instance
(FooSeg& data_values,
SampleInfoSeg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters

inout FooSeg& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure

in

in

in

in

in

sequence. info_seq isaso used as an input to control the behaviour of this
operation.

long max_samples - the maximum number of samplesthat is returned.
InstanceHandle t a_handle - the singleinstance, the samples belong to.

SampleStateMask sample_states - a mask, which selects only those
samples with the desired sample states.

ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

InstanceStateMask instance_states - amask, which selects only
those samples with the desired instance states.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FoobataReader, SO
it can not be read or taken again. The behaviour isidentical to read_instance
except for that the samples are removed from the FooDataReader.

Return Code

When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_BAD_PARAMETER - the parameter a_handle isnot avalid handle
* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader IS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
-themax_samples>maximum and max_samples iSNOt LENGTH UNLIMITED

- one or more values of 1length, maximum, and release for the two sequences
are not identical

- the maximum>0 and the release==FALSE.
e RETCODE_NO_DATA - N0 samples that meet the constraints are available.

take next_instance

&4 PRISMTECH

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
take_next_instance
(FooSeg& data_values,

359
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

360
API Reference

SampleInfoSeg& info_sedq,

Long max_samples,

InstanceHandle_t a_handle,
SampleStateMask sample_states,
ViewStateMask view_states,
InstanceStateMask instance_states) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeg& info_seq - thereturned sampleInfo Structure
seguence. info_seq is aso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat isreturned.

in InstanceHandle_t a_handle - the current single instance, the returned
samples belong to the next single instance.

in SampleStateMask sample_states - amask, which selects only those
samples with the desired sample states.

in ViewStateMask view_states - amask, which selects only those samples
with the desired view states.

in InstanceStateMask instance_states - amask, which selectsonly those
samples with the desired instance states.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FoobataReader, SO
it can not be read or taken again. The behaviour is identical to
read_next_instance except for that the samples are removed from the
FooDataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_BAD_ PARAMETER - the parameter a_handle isnot avalid handle
* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT MET - one of thefollowingistrue:
- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

- one or more values of 1length, maximum, and release for the two sequences
are not identical

- themaximum>0 and the release==FALSE.
* RETCODE_NO_DATA - no samples that meet the constraints are available.

take next_instance w_condition

&4 PRISMTECH

Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
take_next_instance_w_condition
(FooSeg& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
InstanceHandle_t a_handle,
ReadCondition_ptr a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FooDataReader.

361
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

362
API Reference

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqg& info_seq - thereturned sampleInfo Structure
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat is returned.

in InstanceHandle_t a_handle - the current single instance, the returned
samples belong to the next single instance.

in ReadCondition_ptr a_condition - apointer to aReadCondition or
QueryCondition which filters the data before it is returned
by the read operation.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET OFf RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FoobataReader, S0 it can not be read
or taken again. The behaviour is identical to
read_next_instance_w_condition except for that the samples are removed
from the FooDataReader.

Return Code
When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_condition iS not a valid
ReadCondition_ptr Or a_handle isnot avalid handle

* RETCODE_ALREADY DELETED - the FooDataReader has already been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

e RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.
* RETCODE_PRECONDITION_NOT_MET - one of the following istrue:
-the ReadCondition Or QueryCondition IS not attached to this
FooDataReader.
- themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED
- one or more values of 1ength, maximum, and release for the two sequences
are not identical
- the maximum>0 and the release==FALSE.
* RETCODE_NO_DATA - no samples that meet the constraints are available.

take next_sample
Scope

SPACE: : FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
take_next_sample
(Foo& data_value,
SampleInfo sample_info);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

take w_condition
Scope

SPACE: :FooDataReader

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
take_w_condition
(FooSeg& data_values,

SampleInfoSeqg& info_seq,
Long max_samples,
ReadCondition_ptr a_condition) ;

Description

This operation reads a sequence of Foo samples from the FoobataReader, filtered
by aReadCondition Or QueryCondition and by doing so, removes the data
from the FooDataReader.

363

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

364
API Reference

Parameters

inout FooSeg& data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqg& info_seq - thereturned sampleInfo Structure
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samplesthat is returned.

in ReadCondition_ptr a_condition - apointer to aReadCondition Or
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader, filtered
by arReadCondition Or QueryCondition and by doing so, removes the data
from the FoobataReader, SO it can not be read or taken again. The behaviour is
identical t0 read_w_condition except for that the samples are removed from the
FooDataReader

Return Code
When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iSnot enabled.
* RETCODE_PRECONDITION_NOT_MET - one of thefollowingistrue:

& PRISMTECH

3 DCPS Classes and Operations

-the ReadCondition OF QueryCondition
FooDataReader

3.5 Subscription Module

is not attached to this

-themax_samples>maximum and max_samples iSNOt LENGTH_UNLIMITED

- one or more values of 1ength, maximum, and release for the two sequences
are not identical

- themaximum>0 and the release==FALSE.

* RETCODE_NO_DATA - no samples that meet the constraints are available.

wait_for_historical_data (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis

#include <ccpp_Space.h>
ReturnCode_t
wait_for_historical_data

Class DataSample

A DataSample represents an atom of data information (i.e. one value for an
instance) as returned by the bataReader’s read/take operations. It consists of
two parts: A sampleInfo and the pata itself. The pata part is the data as
produced by a Publisher. The sampleInfo part contains additional information
related to the data provided by the Data Distribution Service.

Sruct Samplelnfo

The struct sampleInfo represents the additional information that accompanies the
datain each samplethat is read or taken.

The interface description of this struct is as follows:

&4 PRISMTECH

(const Duration_t& max_wait) ;

struct SampleInfo

{

SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;

Long
Long
Long
Long
Long

disposed_generation_count;
no_writers_generation_count;
sample_rank;
generation_rank;
absolute_generation_rank;

Boolean valid_data;

365
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

};
The next paragraph describes the usage of the sampleInfo struct.

Samplelnfo

366
API Reference

Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SampleInfo
{
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
Long disposed_generation_count;
Long no_writers_generation_count;
Long sample_rank;
Long generation_rank;
Long absolute_generation_rank;
Boolean valid_data;
Y

Description

The struct sampleInfo represents the additional information that accompanies the
datain each sample that is read or taken.

Attributes

SampleStateKind sample_state - Whether or not the corresponding data
sample has already been read.

ViewStateKind view_state - Whether the DataReader has already seen
samples of the most-current generation of the related instance.

InstanceStateKind instance_ state - Whether the instanceis alive, has no
writers or is disposed of.

Time t source_timestamp - thetime provided by the DatawWriter when the
sample was written.

InstanceHandle_t instance_handle - the handle that identifies locally the
corresponding instance.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

InstanceHandle_t publication_handle - the handle that identifies locally
the patawriter that modified the instance. In fact it is the
instance_handle oOf the builtin bcPspPublication sample that describes
thisDatawriter. It can be used as a parameter to the DatarReader operation
get_matched_publication_data to obtainthisbuiltin DcPSPublication
sample.

Long disposed_generation_count - the number of times the instance has
become alive after it was disposed of explicitly by abpatawriter.

Long no_writers_generation_count - the number of times the instance has
become alive after it was disposed of because there were N0 batawWriter
objects.

Long sample_rank - the number of samples related to the same instance that are
found in the collection returned by aread or take operation.

Long generation_rank - the generation difference between the time the sample
was received and the time the most recent sample in the collection was received.

Long absolute_generation_rank - the generation difference between the time
the sample was received and the time the most recent sample was received.

Boolean valid_data - whether the DataSample contains any meaningful data. If
not, the sample is only used to communicate achangeinthe instance_state
of the instance.

Detailed Description

The struct sampleInfo represents the additional information that accompanies the
datain each sample that is read or taken.

Generations

A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==ALIVE_INSTANCE_STATE) at the time the sample was
received’'. Note that the generation counters are initialized to zero when a
DataReader first detects a never-seen-before instance.

Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.

After abpatawriter disposes an instance, the disposed_generation_count

for all patarReaders that aready knew that instance will be incremented the next
time the instance is written again.

367
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

368
API Reference

If the DatarReader detects that there are no live patawriter entities, the
instance_state Of the sample_info will change from
ALIVE_INSTANCE_STATEtONOT_ALIVE_NO_WRITERS_INSTANCE_STATE.The
next time the instance is written, no_writers_generation_count will be
incremented.

Sample Information

SampleInfo isthe additional information that accompanies the datain each sample
that is read or taken. It contains the following information:

* sample_state (READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE)
indicates whether or not the corresponding data sample has already been read

* view_state (NEW_VIEW_STATE, or NOT _NEW_VIEW_STATE) indicates
whether the DataReader has dready seen samples of the most-current
generation of the related instance

* instance_state (ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED__
INSTANCE_STATE, Of NOT_ALIVE NO_WRITERS_INSTANCE_STATE) indicates
whether the instance is alive, has no writers or if it has been disposed of:

- ALIVE_INSTANCE_STATE if thisinstance is currently in existence

- NOT_ALIVE_DISPOSED_INSTANCE_STATE if thisinstance was disposed of by
dDataWriter

- NOT_ALIVE_NO_WRITERS_INSTANCE STATE none of the Datawriter
objects currently “alive” (according to the LivelinessQosPolicy) are
writing the instance.

* source_timestamp indicates the time provided by the Datawriter when the
sample was written

* instance_handle indicates|ocally the corresponding instance

* publication_handle indicates system wide the publisher of the sample, the
local publication handle can be found with the DataReader operation
lookup_instance for thepublication_handle

e disposed_generation_count indicates the number of times the instance has
become dive after it was disposed of explicitly by abpatawriter, at the time the
sample was received

* no_writers_generation_count indicates the number of times the instance
has become dive after its instance_state has been
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, a the time the sample was
received

* sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by aread or take operation

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received

* absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not be in the
returned collection), related to the same instance, was received.

e valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the sampleInfo that
communicates achangeinthe instance_state of aninstancefor which thereis
no ‘real’ sample available.

SubscriberListener Interface

&4 PRISMTECH

Since a subscriber iSan Entity, it has the ability to have aListener
associated with it. In this case, the associated Listener should be of type
SubscriberListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
SubscriberListener class. All subscriberListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The subscriberListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The subscriberListener is related to changesin
communication status.

The interface description of this classis asfollows:

class SubscriberListener

{

//

// inherited from class DataReaderListener

//

// void

// on_requested_deadline_missed

// (DataReader_ptr reader,

// const RequestedDeadlineMissedStatus& status) = 0;
// wvoid

369
API Reference

3 DCPS Classes and Operations

//
//
//

//
//
//
//

//
//
//
//

//
//
//

//
//
//
//

//
//
//
//
//
//
//

//
//
//
//
Y

on_requested_incompatible_gos
(DataReader_ptr reader,
const RequestedIncompatibleQosStatus& status)
void
on_sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;
void
on_liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) = 0;
void
on_data_available
(DataReader_ptr reader) = 0;
void
on_subscription_matched
(DataReader_ptr reader,
const SubscriptionMatchedStatus& status) = 0;
void
on_sample_lost
(DataReader_ptr reader,
const SamplelLostStatus& status) = 0;
abstract external operations

void
on_data_on_readers
(Subscriber_ptr subs) = 0;

implemented API operations
<no operations>

3.5 Subscription Module

The next paragraphs list all subscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operationsis given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

on_data_available (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

370
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
void
on_data_available
(DataReader_ptr reader) = 0;

on_data on_readers (abstract)

&4 PRISMTECH

Scope

DDS: : SubscriberListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_data_on_readers
(Subscriber_ptr subs) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

in Subscriber_ptr subs - containapointer tothe subscriber for which data
isavailable (thisis an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new datais
available for this subscriber. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
SubscriberListener IS installed and enabled for the
DATA_ON_READERS_STATUS.

The Data Distribution Service will provide a reference to the subscriber in the
parameter subs for use by the application.

The statuses DATA_ON_READERS_ STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
look for an attached and activated subscriberListener Or
DomainParticipantListener (in that order) for the

371
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_ STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVATLABLE_STATUS (in that
order).

Note that if on_data_on_readers is caled, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the callback function on_data_available Of DataReaderListener oObjects
that have data by means of thenotify_datareaders operation.

on_liveliness_changed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) = 0;

on_requested deadline _missed (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_requested_deadline_missed
(DataReader_ptr reader,
const RequestedDeadlineMissedStatus& status) = 0;

on_requested_incompatible gos (inherited, abstract)

372
API Reference

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_requested_incompatible_gos
(DataReader_ptr reader,
const RequestedIncompatibleQosStatus& status) = 0;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

on_sample lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_lost
(DataReader_ptr reader,
const SamplelostStatus& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_sample rejected (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;

on_subscription_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
on_subscription_matched
(DataReader_ptr reader,
const SubscriptionMatchedStatus& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DataReader Lisener Interface

Since a DataReader iSan Entity, it has the ability to have aListener
associated with it. In this case, the associated L.istener should be of type
DataReaderListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DataReaderListener class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

373
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

A

374
API Reference

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The bataReaderListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy Setting, etc. The DataReaderListener iSrelated to changes in
communication status.

The interface description of this classis asfollows:

class DataReaderListener

{

//
// abstract external operations
//
void
on_requested_deadline_missed
(DataReader_ptr reader,
const RequestedDeadlineMissedStatus& status) = 0;
void
on_requested_incompatible_gos
(DataReader_ptr reader,
const RequestedIncompatibleQosStatus& status) = 0;
void
on_sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;
void
on_liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) = 0;
void
on_data_available
(DataReader_ptr reader) = 0;
void
on_subscription_matched
(DataReader_ptr reader,
const SubscriptionMatchedStatus& status) = 0;
void
on_sample_lost
(DataReader_ptr reader,
const SampleLostStatus& status) = 0;
//

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

// implemented API operations

// <no operations>

//

};
The next paragraphs describe the usage of all DataReaderListener operations.
These abstract operations are fully described because they must be implemented by

the application.

on_data_available (abstract)

&4 PRISMTECH

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_data_available
(DataReader_ptr reader) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

in DataReader_ ptr reader - CONntain apointer to the bataReader for which
data is available (this is an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new datais
available for this batareader. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
DATA_AVAILABLE_STATUS.

The Data Distribution Service will provide a reference to the DataReader in the
parameter reader for use by the application.

The statuses DATA_ON_READERS_ STATUS and DATA_AVAILABLE_STATUS Will
occur together. In case these status changes occur, the Data Distribution Service will
look for an attached and activated SubscriberListener Ofr
375

API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener, SubscriberListener OF
DomainParticipantListener for the DATA_aAVATLABLE_STATUS (in that
order).

Notethat if on_data_on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the bataReader objects that have data by means of thenotify_datareaders
operation.

on_liveliness_changed (abstract)

376
API Reference

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_liveliness_changed
(DataReader_ptr reader,
const LivelinessChangedStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more patawriter objects that
were writing instances read through this DataReader has changed.

Parameters

in DataReader_ptr reader - COntain apointer to the DatarReader for which
the liveliness of one or more patawriter objects has changed (thisis an input
to the application provided by the Data Distribution Service).

in const LivelinessChangedStatus& status - contain the
LivelinessChangedStatus Struct (thisis an input to the application
provided by the Data Distribution Service).

Return Value
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more bataWriter objects that were writing instances read through this
DataReader has changed. In other words, some Datawriter have become
“alive” or “not alive”. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
LIVELINESS_CHANGED_STATUS.

The Data Distribution Service will provide a reference to the patareader in the
parameter reader and the LivelinessChangedStatus struct for use by the
application.

on_requested deadline_missed (abstract)

&4 PRISMTECH

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_requested_deadline_missed
(DataReader_ptr reader,
const RequestedDeadlineMissedStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the DatarReader was expecting
through its DeadlineQosPolicy was hot respected.

Parameters

in DataReader_ptr reader - CONntain apointer to the bataReader for which
the deadline was missed (thisis an input to the application provided by the Data
Distribution Service).

in const ReqguestedDeadlineMissedStatus& status - contain the
RequestedDeadlineMissedStatus struct (thisisan input to the application
provided by the Data Distribution Service).

Return Value

<none>

377
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the patarReader was expecting through its beadlineQosPolicy was not
respected for a specific instance. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
REQUESTED_DEADLINE_MISSED_STATUS.

The Data Distribution Service will provide areference to the patareader in the
parameter reader and the RequestedbeadlineMissedStatus Struct in the
parameter status for use by the application.

on_requested_incompatible qos (abstract)

378
API Reference

Scope

DDS: :DataReaderListener

Synopsis

#include <ccpp_dds_dcps.h>

void
on_requested_incompatible_gos

(DataReader_ptr reader,
const RequestedIncompatibleQosStatus& status) = 0;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters

in DataReader ptr reader - apointer to the DataReader provided by the
Data Distribution Service.

in const RequestedIncompatibleQosStatus& status - the
RequestedIncompatibleQosStatus Struct provided by the Data
Distribution Service.

Return Value
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be
left empty when this functionality is not needed. This operation will only be called
when the relevant pataReaderListener isinstalled and enabled for the
REQUESTED_INCOMPATIBLE_QOS_STATUS.

The Data Distribution Service will provide a reference to the patareader in the
parameter reader and the RequestedIncompatibleQosStatus Struct in the
parameter status, for use by the application.

The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
REQUESTED_INCOMPATIBLE_QOS_STATUS in the mask in the call to
DataReader: :set_listener. When the DataReaderListener 0On the
DataReader iS not enabled for the REQUESTED_INCOMPATIBLE_QOS_STATUS,
the status change will propagate to the subscriberListener of the Subscriber
(if enabled) or to the DomainParticipantListener of the
DomainParticipant (if enabled).

on_sample lost (abstract)

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_lost
(DataReader_ptr reader,
const SamplelostStatus& status) = 0;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_sample rejected (abstract)

&4 PRISMTECH

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_sample_rejected
(DataReader_ptr reader,
const SampleRejectedStatus& status) = 0;

379
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters

in DataReader_ptr reader - COntain apointer to the bataReader for which a
sample has been rejected (thisis an input to the application provided by the Data
Distribution Service).

in const SampleRejectedStatus& status - contain the
SampleRejectedStatus struct (thisisan input to the application provided by
the Data Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
SAMPLE_REJECTED_STATUS.

The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the sampleRejectedStatus Struct in the parameter
status for use by the application.

on_subscription_matched (abstract)

380
API Reference

Scope

DDS: :DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
on_subscription_matched
(DataReader_ptr reader,
const SubscriptionMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for afuture release.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Class ReadCondition

&4 PRISMTECH

The pataReader Objects can create a set of ReadCondition (and
StatusCondition) objects which provide support (in conjunction with waitset
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., state-based rather than event-based).

ReadCondition objects allow an DataReader to specify the data samplesit is
interested in (by specifying the desired sample-states, view-states, and
instance-states); see the parameter definitions for bataReader's
create_readcondition operation. This alows the Data Distribution Service to
trigger the condition only when suitable information is available. ReadCondition
objects are to be used in conjunction with awaitset. More than one
ReadCondition may be attached to the same DataReader.

The interface description of thisclassis asfollows:

class ReadCondition
{
//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void) ;
//
// implemented API operations
//
SampleStateMask
get_sample_state_mask
(void) ;

ViewStateMask
get_view_state_mask
(void) ;

InstanceStateMask
get_instance_state_mask
(void) ;

DataReader_ptr
get_datareader
(void) ;
};
The next paragraphs describe the usage of all ReadCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

381
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

get_datareader

Scope

DDS: :ReadCondition
Synopsis

#include <ccpp_dds_dcps.h>
DataReader_ptr

get_datareader
(void) ;

Description
This operation returns the DataReader associated with the ReadCondition.

Parameters
<none>

Return Value
DataReader_ ptr - Result valueisapointer to the DataReader.

Detailed Description

This operation returnsthe batarReader associated with the ReadCondition. Note
that there is exactly one bataReader associated with each ReadCondition (i.e.
the DataReader that created the ReadCondition object).

get_instance state mask

382
API Reference

Scope

DDS: :ReadCondition
Synopsis

#include <ccpp_dds_dcps.h>
InstanceStateMask

get_instance_state_mask
(void) ;

Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger value oOf theReadCondition.

Parameters
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

InstanceStateMask - Result value are the instance_states specified when
the ReadCondition was created.

Detailed Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger_value Of theReadCondition.

The instance_states returned are the instance_states specified when the
ReadCondition WwasS created. instance_states can Dbe
ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Or a combination of these.

get_sample state mask

&4 PRISMTECH

Scope

DDS: :ReadCondition
Synopsis

#include <ccpp_dds_dcps.h>
SampleStateMask

get_sample_state_mask
(void) ;

Description

This operation returns the set of sample_states that are taken into account to
determinethe trigger_value of theReadCondition.

Parameters
<none>

Return Value

SampleStateMask - Result value are the sample_states specified when the
ReadCondition was created.

Detailed Description

This operation returns the set of sample_states that are taken into account to
determinethe trigger_value of the Readcondition.

The sample_states returned are the sample_states specified when the
ReadCondition was created. sample_states can be READ_SAMPLE_STATE,
NOT_READ SAMPLE_STATE or both.

383
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

get_trigger_value (inherited)

This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
get_trigger_value
(void) ;

get_view_state mask

384
API Reference

Scope

DDS: :ReadCondition
Synopsis

#include <ccpp_dds_dcps.h>
ViewStateMask

get_view_state_mask
(void) ;

Description

This operation returns the set of view_states that are taken into account to
determinethe trigger_value of theReadCcondition.

Parameters

<none>

Return Value

ViewStateMask - Result value are the view_states specified when the
ReadCondition was created.

Detailed Description

This operation returns the set of view_states that are taken into account to
determinethe trigger value of theReadCondition.

The view_states returned are the view_states specified when the
ReadCondition was created. view_states can be NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE or both.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Class QueryCondition

&4 PRISMTECH

QueryCondition oObjects are specialized ReadCondition objects that allow the
application to specify afilter on thelocally available data. The bataReader objects
accept a set of QueryCondition objectsfor the bataReader and provide support
(in conjunction with waitset objects) for an alternative communication style
between the Data Distribution Service and the application (i.e., state-based rather
than event-based).

Query Function

QueryCondition objects allow an application to specify the data samples it is
interested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for bataReader's
read/take operations. This allows the Data Distribution Service to trigger the
condition only when suitable information is available. QueryCondition objects
are to be used in conjunction with awaitset. More than one QueryCondition
may be attached to the same DataReader.

The query (query_expression) issimilar to an SQL WHERE clause and can be
parameterized by arguments that are dynamically changeable with the
set_query_parameters operation.

The interface description of this classis asfollows:

class QueryCondition

{

//

// inherited from ReadCondition
//

// SampleStateMask

// get_sample_state_mask

// (void) ;

// ViewStateMask
// get_view_state_mask
// (void) ;

// InstanceStateMask
// get_instance_state_mask

// (void) ;

// DataReader_ptr

// get_datareader

// (void) ;

// Boolean

// get_trigger_value
// (void) ;

//

// implemented API operations
385
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

//
char*

get_query_ expression
(void) ;

ReturnCode_t
get_query parameters
(StringSeg& query parameters) ;

ReturnCode_t
set_query_parameters

(const StringSeqg& query_ parameters) ;
Y

The next paragraphs describe the usage of all QueryCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

get_datareader (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
get_datareader
(void) ;

get_instance_state_mask (inherited)

This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceStateMask
get_instance_state_mask
(void) ;

get_query_parameters
Scope
DDS: :QueryCondition

Synopsis

#include <ccpp_dds_dcps.h>

386
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

ReturnCode_t
get_qguery_parameters
(StringSeg& query_parameters) ;
Description

This operation obtains the query_parameters associated with the
QueryCondition.

Parameters

inout StringSeq& query parameters - areferenceto a sequence of strings
that will be used to store the parameters used in the SQL expression.

Return Value

ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED Of RETCODE_OUT_
OF_RESOURCES.

Detailed Description

This operation obtains the query_parameters associated with the
QueryCondition. That is, the parameters specified on the last successful call to
set_query_arguments O, if set_query arguments was never called, the
arguments specified when the QueryCondi tion were created.

The resulting handle contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokensin the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the query
expression associated with the QueryCondition.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of query parameters applied to this
QueryCondition has successfully been copied into the specified
query_parameters parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the QueryCondition hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_query_expression
Scope
DDS: :QueryCondition

387

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
char*
get_query_ expression
(void) ;

Description
This operation returns the query expression associated with the QueryCondition.

Parameters
<none>

Return Value

char~* - Result value is a reference to the query expression associated with the
QueryCondition.

Detailed Description

This operation returns the query expression associated with the Querycondition.
That is, the expression specified when the QueryCondition was created. The
operation will return NuLL when there was an internal error or when the
QueryCondition was already deleted. If there were no parameters, an empty
sequence is returned.

get_sample_state mask (inherited)

This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
SampleStateMask
get_sample_state_mask
(void) ;

get_trigger_value (inherited)

388
API Reference

This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
get_trigger_value
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_view_state mask (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ViewStateMask
get_view_state_mask
(void) ;

Sset_query_parameters
Scope

DDS: :QueryCondition

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
set_query_arguments
(const StringSeqg& parameters) ;

Description
This operation changes the query parameters associated with the QueryCondition.

Parameters

in const StringSeq& query parameters - asequence of strings which are
the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value

ReturnCode_t - Possible return codes of the operation are; RETCODE_OKX,
RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the query parameters associated with the
QueryCondition. The parameter query parameters IS a sequence of strings
which are the parameter values used in the SQL query string (i.e., the “%n” tokens
in the expression). The number of valuesin query parameters must be equal or
greater than the highest referenced %n token in the query_expression (eg. if $1
and %8 are used as parameter in the gquery_expression, the
query_parameters should at least containn+1 = 9 values).

389

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

390
API Reference

Return Code
When the operation returns:

RETCODE_OK - the query parameters associated with the QueryCondition are
changed.

RETCODE_ERROR - an internal error has occurred.

RETCODE,_BAD_PARAMETER - the number of parametersin query_parameters
does not match the number of “%n” tokens in the expression for this
QueryCondition Or oneof the parametersis an illegal parameter.

RETCODE_ALREADY_DELETED - the QueryCondition has aready been
deleted.

RETCODE_OUT_OF _RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

APPENDICES

Appendix

Quality Of Service

Each Entity isaccompanied by an <Entity>Qos structure that implements the
basic mechanism for an application to specify Quality of Service attributes. This
structure consists of Ent ity specific QosPolicy attributes. QosPolicy attributes
are structured types where each type specifies the information that controls an
Entity related (configurable) attribute of the Data Distribution Service. A
QosPolicy atribute struct isidentified as <name>QosPolicy.

Affected Entities

Each Entity can be configured with a set of QosPolicy settings. However, any
Entity cannot support any QosPolicy. For instance, a bomainParticipant
supports different QosPolicy settings than a Topic or a Publisher. The set of
QosPolicy Settingsisimplemented as a struct of QosPolicy structs, identified as
<Entity>Qos. Each <Entity>Qos struct only contains those QosPolicy structs
relevant to the specific Entity. The <Entity>Qos Struct serves as the parameter
to operations which require a Qos. <Entity>Qos struct isthe APl implementation
of the QoS. Depending on the specific <Entity>Qos, it controls the behaviour of a
Topic, DataWriter, DataReader, Publisher, Subscriber,

DomainParticipant Of DomainParticipantFactoryl.

Basic Usage

& PRISMTECH

The basic way to modify or set the <Entity>Qos iS by using an get_gos
operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an set_gos operation to set all QosPolicy settingson thisEntity (that is
the <Entity>Qos). An example of these operations for the batawriterQos are
get_default datawriter gos and set_default_ datawriter gos, which
takethe DatawWriterQos asaparameter.

The interface description of this struct is as follows:

// struct <name>QosPolicy
// see appendix
//

1. Note that the bomainParticipantFactory iS a specia kind of entity: it does not
inherit from Entity, nor does it have a Listener Or StatusCondition, but its
behaviour can be controlled by its own set of QosPolicies.

393
C++ Reference Guide

Appendices

394
C++ Reference Guide

//
//
//

struct <Entity>Qos

struct DomainParticipantFactoryQos

{ EntityFactoryQosPolicy
struct DomainParticipantQos
{ UserDataQosPolicy
EntityFactoryQosPolicy
SchedulingQosPolicy
SchedulingQosPolicy
struct TopicQos
{ TopicDataQosPolicy
DurabilityQosPolicy

DurabilityServiceQosPolicy

DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy

DestinationOrderQosPolicy

HistoryQosPolicy

ResourceLimitsQosPolicy
TransportPriorityQosPolicy

LifespanQosPolicy
OwnershipQosPolicy
struct DataWriterQos

{ DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy

DestinationOrderQosPolicy

HistoryQosPolicy

ResourceLimitsQosPolicy
TransportPriorityQosPolicy

LifespanQosPolicy
UserDataQosPolicy
OwnershipQosPolicy

OwnershipStrengthQosPolicy
WriterDataLifecycleQosPolicy

struct PublisherQos
{ PresentationQosPolicy
PartitionQosPolicy
GroupDataQosPolicy
EntityFactoryQosPolicy
struct DataReaderQos
{ DurabilityQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy
ReliabilityQosPolicy

entity_ factory; };

user_data;
entity_factory;
watchdog_scheduling;
listener_scheduling; };

topic_data;
durability;
durability_ service;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;
ownership; };

durability;
deadline;
latency_budget;
liveliness;
reliability;
destination_order;
history;
resource_limits;
transport_priority;
lifespan;
user_data;
ownership;
ownership_strength;
writer_data_lifecycle;};

presentation;
partition;
group_data;
entity_factory; };

durability;
deadline;
latency_budget;
liveliness;
reliability;

& PRISMTECH

Appendices

DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;

ReaderDatalLifecycleQosPolicy reader_data_lifecycle;};
struct SubscriberQos

{ PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;

EntityFactoryQosPolicy entity_factory; };

//

// define <Entity>_QO0S_DEFAULT

//
#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

//

// 1implemented API operations

// <no operations>

//

The next paragraphs describe the usage of each <Entity>Qos struct.

DataReader Qos

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct DataReaderQos
struct DataReaderQos

{ DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;

395

& PRISMTECH C++ Reference Guide

Appendices

396

OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_ based_filter;
ReaderDatalLifecycleQosPolicy reader_data_lifecycle;};

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abatareader.

Attributes

DurabilityQosPolicy durability - whether the data should be
stored for late joining- deadline - the period within which a new
sample is expected.

LatencyBudgetQosPolicy latency_budget - Used by the Data Distribution
Service for optimization.

LivelinessQosPolicy liveliness - the way the liveliness of the
DataReader IS asserted to the Data Distribution Service.

ReliabilityQosPolicy reliability -thereliability of the data distribution.

DestinationOrderQosPolicy destination_order - the order in which the
DataReader timely ordersthe data.

HistoryQosPolicy history - how samples should be stored.

ResourceLimitsQosPolicy resource_limits - the maximum amount of
resources to be used.

UserDataQosPolicy user_ data - used to attach additional information to the
DataReader.

OwnershipQosPolicy ownership - Whether a DataWriter exclusively owns an
instance.

TimeBasedFilterQosPolicy time_based_filter - the maximum datarate
at which the batareader will receive changes.

ReaderDataLifecycleQosPolicy reader data_lifecycle -the minimum
time after which a datainstance is disposed of when the instance_state has
become either NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Detailed Description

A QosPolicy can be set when the pataReader iS created with the
create_datareader operation (or modified with the set_gos operation). Both
operations take the bataReaderQos struct as a parameter. There may be cases

& PRISMTECH

C++ Reference Guide

Appendices

where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_qgos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DataReader creation time or prior to calling the enable
operation on the DataReader.

Theinitial value of the default DataReaderQos inthe subscriber aregivenin
the following table:

Table 15 QosPolicy Values

QosPalicy Field Value
durability kind VOLATILE_DURABILITY_QOS
deadline period DURATION_INFINITE
latency_budget duration 0
liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE
reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST_ _HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

user_data

value.length

0

ownership

kind

SHARED_OWNERSHIP_QOS

time_based_filter

minimum_separation

0

reader_data_lifecycle

autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE

DataWriter Qos

Scope
DDS

& PRISMTECH

397
C++ Reference Guide

Appendices

398

Synopsis
#include <ccpp_dds_dcps.h>
struct DataWriterQos

{ DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;

OwnershipStrengthQosPolicy ownership_strength;
WriterDataLifecycleQosPolicy writer_data_lifecycle;};

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for abatawriter.

Attributes

DurabilityQosPolicy durability - whether the data should be stored for late
joining readers.

DeadlineQosPolicydeadline - the period within which a new sample is
written.

LatencyBudgetQosPolicy latency_budget - Used by the Data Distribution
Service for optimization.

LivelinessQosPolicy liveliness - the way the liveliness of the
DataWriter isasserted to the Data Distribution Service.

ReliabilityQosPolicy reliability -thereliability of the data distribution.

DestinationOrderQosPolicydestination_order - the order in which the
DataReader timely ordersthe data.

HistoryQosPolicy history - how samples should be stored.

ResourceLimitsQosPolicy resource_limits - the maximum amount of
resources to be used.

TransportPriorityQosPolicy transport_priority-apriority hintforthe
underlying transport layer.

LifespanQosPolicylifespan - the maximum duration of validity of the data
written by the Datawriter.

& PRISMTECH

C++ Reference Guide

Appendices

UserDataQosPolicyuser data - used to attach additional information to the
DataWriter.

OwnershipQosPolicy ownership - Whether a DataWriter exclusively owns an
instance.

OwnershipStrengthQosPolicy ownership_strength - the strength to
determine the ownership.

WriterDataLifecycleQosPolicy writer data_lifecycle - whether
unregistered instances are disposed of automatically or not.

Detailed Description

A QosPolicy can be set when the patawriter is created with the
create_datawriter operation (or modified with the set_qgos operation). Both
operations take the batawriterQos Struct as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at batawriter creation time or prior to calling the enable
operation on the Datawriter.

Theinitial value of the default DatawriterQos inthe Publisher aregiveninthe
following table:

Table 16 DATAWRITER_QOS DEFAULT

QosPolicy Field Value
durability kind VOLATILE_DURABILITY_QOS
deadline period DURATION_INFINITE
latency_ budget duration 0
liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE
reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

& PRISMTECH

399

C++ Reference Guide

Appendices

Table 16 DATAWRITER_QOS DEFAULT (Continued)

QosPalicy Field Value
transport_priority value 0
lifespan duration DURATION_INFINITE
user_data value.length 0
ownership kind SHARED_OWNERSHIP_QOS
ownership_strength value 0
writer_data_lifecycle |autodispose_ TRUE

unregistered_instances

DomainParticipantFactor yQos
Synopsis

#include <ccpp_dds_dcps.h>
struct DomainParticipantFactoryQos
{ EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of

Service attributesfor aDomainParticipantFactory.

Attributes

EntityFactoryQosPolicy entity_factory - whether a just created

DomainParticipant should be enabled.

Detailed Description
The QosPolicy cannot be set at creation time,

since the

DomainParticipantFactory iSapre-existing object that can only be obtained
with the DomainParticipantFactory: :get_instance operation or its alias
TheParticipantFactory. Thereforeits QosPolicy isinitialized to a default

value according to the following table:

Table 17 Default valuesfor DomainParticipantFactoryQos

QosPalicy Attribute Value

entity_factory |autoenable_created_entities TRUE

After creation the QosPo1licy can be modified with the set_qgos operation on the

DomainParticipantFactory, which takes

DomainParticipantFactoryQos Siruct asa parameter.

400
C++ Reference Guide

the

& PRISMTECH

Appendices

DomainParticipantQos

& PRISMTECH

Scope
DDS
Synopsis

#include <ccpp_dds_dcps.h>
struct DomainParticipantQos

{ UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_factory;
SchedulingQosPolicy watchdog_scheduling;
SchedulingQosPolicy listener_scheduling; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for aDomainParticipant.

Attributes

UserDataQosPolicy user data - used to attach additiona information to the
DomainParticipant.

EntityFactoryQosPolicy entity. factory - Whether ajust created Entity
should be enabled.

SchedulingQosPolicy watchdog_scheduling - the scheduling parameters
used to create the watchdog thread.

SchedulingQosPolicy listener_scheduling - the scheduling parameters
used to create the listener thread.

Detailed Description
A DomainParticipant will spawn different threads for different purposes:

* A listener thread is spawned to perform the callbacks to all Listener objects
attached to the various Entities contained in the bomainParticipant. The
scheduling parameters for this thread can be specified in the
listener_scheduling field of the DomainParticipantQos.

« A watchdog thread is spawned to report the the Liveliness of al Entities
contained in the DomainParticipant Whose LivelinessQosPolicyKind in
thelr LivelinessQosPolicy IS Set t0 AUTOMATIC_LIVELINESS_QOS. The
scheduling parameters for this thread can be specified in the
watchdog_scheduling field of the DomainParticipantQos.

A QosPolicy can be set when the bomainParticipant is created with the
create_participant operation (or modified with the set_qgos operation). Both
operations take the DomainParticipantQos struct as a parameter. There may be
401

C++ Reference Guide

Appendices

cases Where several policies are in conflict. Consistency checking is performed each
time the policies are modified when they are being created and, in case they are
aready enabled, viathe set_qgos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DomainParticipant creation time or prior to calling the enable
operation on the DomainParticipant.

The initial value of the default bomainParticipantQos in the
DomainParticipantFactory aregivenin thefollowing table:

Table 18 PARTICIPANT_QOS DEFAULT

QosPoalicy Field Value
user_data value.length 0
entity_factory autoenable_created_entities True
watchdog_scheduling scheduling class.kind SCHEDULE_DEFAULT
scheduling_priority_kind.kind PRIORITY_ RELATIVE
scheduling priority 0
listener_scheduling scheduling class.kind SCHEDULE_DEFAULT
scheduling priority_kind.kind PRIORITY_ RELATIVE
scheduling_priority 0
Publisher Qos
Scope
DDS
Synopsis

#include <ccpp_dds_dcps.h>
struct PublisherQos

{ PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;

EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a Publisher.

402

C++ Reference Guide & PRISMTECH

Appendices

Attributes

PresentationQosPolicy presentation - the dependency of changes to
data-instances.

pPartitionQosPolicy partition - the partitionsin which the publisher is
active.

GroupDataQosPolicy group_data - used to attach additional information to
the publisher.

EntityFactoryQosPolicy entity_factory - Whether a just created
DataWriter should be enabled.

Detailed Description

A QosPolicy can be set when the publisher is created with the
create_publisher operation (or modified with the set_gos operation). Both
operationstake the publisherQos struct as a parameter. There may be cases where
several policies are in conflict. Consistency checking is performed each time the
policies are modified when they are being created and, in case they are already
enabled, viathe set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Publisher creation time or prior to calling the enable operation
onthe publisher.

The initial value of the default PublisherQos in the DomainParticipant are
given in the following table:

Table 19 PUBLISHER_QOS DEFAULT

QosPoalicy Field Value
presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE
partition name.length 0
group_data value.length 0
entity_factory autoenable_created_entities TRUE
Subscriber Qos
Scope
DDS
Synopsis

& PRISMTECH

#include <ccpp_dds_dcps.h>

403
C++ Reference Guide

Appendices

404

struct SubscriberQos

{ PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory; };

Description

This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a Ssubscriber.

Attributes

PresentationQosPolicy presentation - the dependency of changes to
data-instances.

PartitionQosPolicy partition - the partitionsin which the subscriber is
active.

GroupDataQosPolicy group_data - used to attach additional information to
the subscriber.

EntityFactoryQosPolicy entity_factory - Whether ajust created
DataReader should be enabled.

Detailed Description

A QosPolicy can be set when the subscriber is created with the
create_subscriber operation (or modified with the set_gos operation). Both
operations take the subscriberQos struct as a parameter. There may be cases
where several policies arein conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_qgos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at subscriber creation time or prior to calling the enable
operation on the subscriber.

Theinitial value of the default subscriberQos inthe DomainParticipant are
givenin the following table:

Table 20 SUBSCRIBER_QOS_DEFAULT

QosPolicy Field Value
presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

& PRISMTECH

C++ Reference Guide

Appendices

TopicQos

& PRISMTECH

Table 20 SUBSCRIBER_QOS DEFAULT

QosPalicy

Field

Value

partition

name.length

group_data

value.length

entity_factory

autoenable_
created_entities

TRUE

Scope
DDS

Synopsis

#include <ccpp_dds_dcps.h>
struct TopicQos

{ TopicDhataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;

Description

This struct provides the basic mechanism for an application to specify Quality of

LatencyBudgetQosPolicy

latency_budget;

LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;

ResourceLimitsQosPolicy
TransportPriorityQosPolicy
LifespanQosPolicy
OwnershipQosPolicy

Service attributes for a Topic.

Attributes

resource_limits;
transport_priority;
lifespan;
ownership; 1};

TopicDataQosPolicy topic_data - used to attach additional information to
the Topic.

DurabilityQosPolicy durability - whether the data should be stored for late
joining readers.

DurabilityServiceQosPolicy durability_service - the behaviour of the
“transinet/persistent service” of the Data Distribution System regarding
Transient and Persistent Topi c instances.

405
C++ Reference Guide

Appendices

DeadlineQosPolicy deadline - the period within which a new sampleis
expected or written.

LatencyBudgetQosPolicy latency_budget - Used by the Data Distribution
Service for optimization.

LivelinessQosPolicy liveliness - theway the liveliness of the Topic is
asserted to the Data Distribution Service.

ReliabilityQosPolicy reliability -thereliability of the data distribution.

DestinationOrderQosPolicy destination_order - the order in which the
DataReader timely ordersthe data.

HistoryQosPolicy history - how samples should be stored.

ResourceLimitsQosPolicy resource_limits - the maximum amount of
resources to be used.

TransportPriorityQosPolicy transport_priority - apriority hint for the
underlying transport layer.

LifespanQosPolicy 1ifespan - the maximum duration of validity of the data
written by apatawriter.

OwnershipQosPolicy ownership - Whether abpatawriter exclusively owns
an instance.

Detailed Description

A QosPolicy can be set when the Topic is created with the create_topic
operation (or modified with the set_gos operation). Both operations take the
TopicQos Struct as a parameter. There may be cases where several policies are in
conflict. Consistency checking is performed each time the policies are modified
when they are being created and, in case they are already enabled, viathe set_qgos
operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Topic creation time or prior to calling the enable operation on
the Topic.

Theinitial value of the default TopicQos inthe DomainParticipant aregivenin
the following table:

Table 21 TOPIC_QOS DEFAULT

QosPalicy

Field

Value

topic_data

value.length

0

durability

kind

VOLATILE_DURABILITY_QOS

406
C++ Reference Guide

& PRISMTECH

Appendices

Table 21 TOPIC_QOS DEFAULT (Continued)

QosPalicy

Field

Value

durability service

service_cleanup_delay

0

history kind

KEEP_LAST_HISTORY_QOS

history depth

1

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS
lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_ time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST_HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

transport_priority value 0
lifespan duration DURATION_INFINITE
ownership kind SHARED_OWNERSHIP_QOS
407
& PrISMTECH

C++ Reference Guide

Appendices

408

C++ Reference Guide & PRISMTECH

Appendix

API Constants and Types

These constants and types are taken from the dds_dcps . h includefile.

/* ___
* Duration and Time

struct Duration_t
{

Long sec;

ULong nanosec;
Y

const Long DURATION_INFINITE_SEC (Long)2147483647;
const ULong DURATION_INFINITE_NSEC (ULong) 2147483647UL;
const Long DURATION_ZERO_SEC = (Long)0;

const ULong DURATION_ZERO_NSEC = (ULong) 0UL;

const ::DDS::Duration_t DURATION_INFINITE =

{ DURATION_INFINITE_SEC, DURATION_INFINITE_NSEC };
const ::DDS::Duration_t DURATION_ZERO =

{0L, QU};

struct Time_t

{

Long sec;
ULong nanosec;
i
/* ___
* Pre-defined values
K e e e e e e */
const LongLong HANDLE_NIL = (LongLong) 0x0;
const Long LENGTH_UNLIMITED = (Long)-1;
const Long TIMESTAMP_INVALID_SEC = (Long)-1;
const ULong TIMESTAMP_INVALID_NSEC = (ULong)4294967295UL;

const Long RETCODE_OK = (Long)0;

409

& PRISMTECH C++ Reference Guide

Appendices

const Long RETCODE_ERROR = (Long)1l;
const Long RETCODE_UNSUPPORTED = (Long) 2
const Long RETCODE_BAD_PARAMETER = (Long)3
const Long RETCODE_PRECONDITION_NOT_ MET = (Long)4'
const Long RETCODE_OUT_OF_RESOURCES = (Long)5;
const Long RETCODE_NOT_ENABLED = (Long)6;
const Long RETCODE_IMMUTABLE_POLICY = (Long)7;
const Long RETCODE_INCONSISTENT_ POLICY = (Long) 8
const Long RETCODE_ALREADY_DELETED = (Long)9
const Long RETCODE_TIMEOUT = (Long)lO
const Long RETCODE_NO_DATA = (Long)1l1l;
const Long RETCODE_ILLEGAL_OPERATION = (Long)12;
/ *
* Status to support listeners and conditions
*
*/
const ULong INCONSISTENT_ TOPIC_STATUS = (ULong) 1UL;
const ULong OFFERED_DEADLINE_MISSED_STATUS = (ULong) 2UL;
const ULong REQUESTED_DEADLINE_MISSED_STATUS = (ULong) 4UL;
const ULong OFFERED_INCOMPATIBLE_QOS_STATUS = (ULong) 32UL;
const ULong REQUESTED_INCOMPATIBLE_QOS_STATUS = (ULong) 64UL;
const ULong SAMPLE_LOST_STATUS = (ULong) 128UL;
const ULong SAMPLE_REJECTED_STATUS = (ULong) 256UL;
const ULong DATA_ON_READERS_STATUS = (ULong) 512UL;
const ULong DATA_AVAILABLE_STATUS = (ULong) 1024UL;
const ULong LIVELINESS_LOST_STATUS = (ULong) 2048UL;
const ULong LIVELINESS_CHANGED_STATUS = (ULong)4096UL;
const ULong PUBLICATION_MATCHED_STATUS = (ULong) 8192UL;
const ULong SUBSCRIPTION_MATCHED_STATUS = (ULong) 16384UL;
[e * States
K e e e e e e */
/ *
* Sample states to support reads
*/
const ULong READ_SAMPLE_STATE = (ULong) 1UL;
const ULong NOT_READ_SAMPLE_STATE = (ULong) 2UL;
/ *
* This is a bit mask SampleStateKind
*/
const ULong ANY_SAMPLE_STATE = (ULong) 65535UL;
/ *
410 & PRISMTECH

C++ Reference Guide

Appendices

& PRISMTECH

* View states to support reads
*/

const ULong NEW_VIEW_STATE = (ULong) 1UL;

const ULong NOT_NEW_VIEW STATE = (ULong) 2UL;
/*

* This is a bit mask ViewStateKind

*/

const ULong ANY_SAMPLE_STATE (ULong) 65535UL;

/~k

* Instance states to support reads

*/

const ULong ALIVE_INSTANCE_STATE = (ULong) 1UL;

const ULong NOT_ALIVE_DISPOSED_INSTANCE_STATE = (ULong) 2UL;

const ULong NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = (ULong)4UL;
/~k

* This is a bit mask InstanceStateKind

*/

const ULong ANY_INSTANCE_STATE = (ULong) 65535UL;

const ULong NOT_ALIVE_INSTANCE_STATE = (ULong) 6UL;
/* ___

* Participant Factory define

K e e e e e e e */
#define TheParticipantFactory

(::DDS: :DomainParticipantFactory: :get_instance())

/* ___

* Qos defines

K e e e e e e o — — — — — — — — — — — — — — — — — — — — — — — — — — */

#define TheParticipantFactory

(::DDS: :DomainParticipantFactory: :get_instance())
#define PARTICIPANT_QOS_DEFAULT

(*::DDS: :DomainParticipantFactory: :participant_gos_default())
#define TOPIC_QOS_DEFAULT

(*::DDS: :DomainParticipantFactory: :topic_gos_default())
#define PUBLISHER_QOS_DEFAULT

(*::DDS: :DomainParticipantFactory: :publisher_gos_default())
#define SUBSCRIBER_QOS_DEFAULT

(*::DDS: :DomainParticipantFactory: :subscriber_gos_default())
#define DATAREADER_QOS_DEFAULT

(*::DDS: :DomainParticipantFactory: :datareader_gos_default())
#define DATAREADER_QOS_USE_TOPIC_QOS

(*::DDS: :DomainParticipantFactory: :datareader_gos_use_topic_gos())
#define DATAWRITER_QOS_DEFAULT

411
C++ Reference Guide

Appendices

/*

(*::DDS: :DomainParticipantFactory: :datawriter_gos_default())
#define DATAWRITER_QOS_USE_TOPIC_QOS

* QosPolicy

412
C++ Reference Guide

const String USERDATA_QOS_POLICY_NAME

(String) "UserData";

const String DURABILITY_QOS_POLICY_NAME

(String) "Durability";

const String PRESENTATION_QOS_POLICY_NAME

(String) "Presentation";

const String DEADLINE_QOS_POLICY_ NAME

(String) "Deadline";

const String LATENCYBUDGET_ QOS_POLICY_NAME

(String) "LatencyBudget";

const String OWNERSHIP_QOS_POLICY_NAME

(String) "Ownership";

const String OWNERSHIPSTRENGTH_QOS_POLICY NAME

(String) "OwnershipStrength";

const String LIVELINESS_QOS_POLICY_NAME

(String) "Liveliness";

const String TIMEBASEDFILTER_QOS_POLICY_NAME

String) "TimeBasedFilter";

const String PARTITION_QOS_POLICY_ NAME

(String) "Partition";

const String RELIABILITY_QOS_POLICY_NAME

(String) "Reliability";

const String DESTINATIONORDER_QOS_POLICY_NAME

(String) "DestinationOrder";

const String HISTORY_QOS_POLICY_NAME

(String) "History";

const String RESOURCELIMITS_QOS_POLICY_NAME

(String) "ResourceLimits";

const String ENTITYFACTORY_QOS_POLICY_NAME

(String) "EntityFactory";

const String WRITERDATALIFECYCLE_QOS_POLICY_NAME

(String) "WriterDataLifecycle";

const String READERDATALIFECYCLE_QOS_POLICY_NAME

(String) "ReaderDatalLifecycle";

const String TOPICDATA_QOS_POLICY_NAME

(String) "TopicDhata";

const String GROUPDATA_QOS_POLICY_NAME

(String) "GroupDbata";

const String TRANSPORTPRIORITY_QOS_POLICY_NAME

(String) "TransportPriority";

const String LIFESPAN_QOS_POLICY_NAME

(String) "Lifespan";

(*::DDS: :DomainParticipantFactory: :datawriter_gos_use_topic_gos())

& PRISMTECH

Appendices

& PRISMTECH

const String DURABILITYSERVICE_QOS_POLICY_NAME

(String) "DurabilityService";

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long
Long

INVALID_QOS_POLICY_ ID
USERDATA_QOS_POLICY_ID
DURABILITY QOS_POLICY_ ID
PRESENTATION_QOS_POLICY_ ID
DEADLINE_QOS_POLICY_ID
LATENCYBUDGET_QOS_ POLICY_ID
OWNERSHIP_QOS_POLICY ID
OWNERSHIPSTRENGTH_QOS_POLICY_ ID
LIVELINESS_QOS_POLICY_ ID
TIMEBASEDFILTER_QOS_POLICY_ID
PARTITION_QOS_POLICY_ID
RELIABILITY_QOS_POLICY_ ID
DESTINATIONORDER_QOS_POLICY ID
HISTORY_ QOS_POLICY_ ID
RESOURCELIMITS_QOS_POLICY ID
ENTITYFACTORY_QOS_POLICY_ ID
WRITERDATALIFECYCLE_QOS_POLICY_ID
READERDATALIFECYCLE_QOS_POLICY_ ID
TOPICDATA_QOS_POLICY ID
GROUPDATA_QOS_POLICY ID
TRANSPORTPRIORITY_ QOS_POLICY_ID
LIFESPAN_QOS_POLICY_ID
DURABILITYSERVICE_QOS_POLICY_ ID

413
C++ Reference Guide

Appendices

414

C++ Reference Guide & PRISMTECH

Appendix

& PRISMTECH

Platform Soecific Model 1DL

| nterface

The IDL code in the next paragraphs are taken from the OMG C++ Language
Mapping Specification.

dds dcps.idl
#define DOMAINID_TYPE_NATIVE string
#define HANDLE_TYPE_NATIVE long long
#define HANDLE_NIL_NATIVE 0
#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long
#define TheParticipantFactory
#define PARTICIPANT QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS
module DDS {

typedef DOMAINID_TYPE_NATIVE DomainId_t;

typedef HANDLE_TYPE_NATIVE InstanceHandle_t;

typedef BUILTIN_TOPIC_KEY TYPE NATIVE BuiltinTopicKey_ t[31];
typedef sequence<InstanceHandle_t> InstanceHandleSeq;
typedef long ReturnCode_t;

typedef long QosPolicyId_t;

typedef sequence<string> StringSeq;

struct Duration_t {

long sec;

unsigned long nanosec;

Y

struct Time_t {

long sec;

unsigned long nanosec;

Y

//

// Pre-defined values

//

const InstanceHandle_t HANDLE_NIL = HANDLE_NIL_NATIVE;
const long LENGTH_UNLIMITED = -1;

const long DURATION_INFINITE_SEC = Ox7fffffff;

415
C++ Reference Guide

Appendices

416
C++ Reference Guide

const
const
const
const
const
!/

unsigned long DURATION_INFINITE_NSEC= Ox7fffffff;
long DURATION_ZERO_SEC= O0;
unsigned long DURATION_ZERO_NSEC= 0;

long TIMESTAMP_INVALID_SEC=

-1;

unsigned long TIMESTAMP_INVALID_NSEC= Oxffffffff;

// Return codes

//

const
const
const
const
const
const
const
const
const
const
const
const
const

//

ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t
ReturnCode_t

RETCODE_OK

RETCODE_ERROR
RETCODE_UNSUPPORTED
RETCODE_BAD PARAMETER
RETCODE_PRECONDITION_NOT MET
RETCODE_OUT_OF_RESOURCES
RETCODE_NOT_ENABLED
RETCODE_IMMUTABLE_POLICY
RETCODE_INCONSISTENT POLICY
RETCODE_ALREADY DELETED
RETCODE_TIMEOUT
RETCODE_NO_DATA
RETCODE_ILLEGAL_OPERATION

// Status to support listeners and conditions

/!

typedef unsigned
typedef unsigned

const
const
const
const
const
const
const
const
const
const
const
const
const

StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind

long StatusKind;
long StatusMask;
INCONSISTENT TOPIC_STATUS

OFFERED_DEADLINE_MISSED_STATUS
REQUESTED_DEADLINE_MISSED_STATUS =
OFFERED_INCOMPATIBLE_QOS_STATUS
REQUESTED_INCOMPATIBLE_QOS_STATUS=
SAMPLE_LOST_STATUS

StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind

SAMPLE_REJECTED_STATUS
DATA_ON_READERS_STATUS
DATA_AVAILABLE_STATUS
LIVELINESS_LOST_STATUS
LIVELINESS_CHANGED_STATUS
PUBLICATION_MATCHED_STATUS
SUBSCRIPTION_MATCHED_STATUS

struct InconsistentTopicStatus {
long total_count;
long total_count_change;

I

struct SampleLostStatus {
long total_count;
long total_count_change;

Y

enum SampleRejectedStatusKind {
NOT_REJECTED,

P PP WoJo Uk WwNE o
N = O ~e e ~e o ome o~ s

// bit-mask StatusKind

0x0001
0x0001
0x0001
0x0001
0x0001 << 6;

A
A
U = o

0x0001 << 7;
8

0x0001
0x0001
0x0001
0x0001
0x0001
0x0001
0x0001

<<
<<
<<
<<
<<
<<
<<

& PRISMTECH

Appendices

& PRISMTECH

REJECTED_BY_ INSTANCE_LIMIT,
REJECTED_BY_ SAMPLES_LIMIT,
REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT
i
struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;
Y
struct LivelinessLostStatus {
long total_count;
long total_count_change;
Y
struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;
Y
struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;
Y
struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;
Y
struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;
Y
typedef sequence<QosPolicyCount> QosPolicyCountSeq;
struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;
Y
struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies;
Y
struct PublicationMatchedStatus {
long total_count;

417
C++ Reference Guide

Appendices

418
C++ Reference Guide

long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;
Y
struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;
Y
//
// Listeners
//
interface Listener;
interface Entity;
interface TopicDescription;
interface Topic;
interface ContentFilteredTopic;
interface MultiTopic;
interface DataWriter;
interface DataReader;
interface Subscriber;
interface Publisher;
typedef sequence<Topic> TopicSeq;
typedef sequence<DataReader> DataReaderSeq;
interface Listener {
Y
interface TopicListener : Listener {
void
on_inconsistent_topic(
in Topic the_topic,
in InconsistentTopicStatus status);
Y
interface DataWriterListener : Listener {
void
on_offered_deadline_missed (
in DataWriter writer,
in OfferedDeadlineMissedStatus status) ;
void
on_offered_incompatible_gos (
in DataWriter writer,
in OfferedIncompatibleQosStatus status);
void
on_liveliness_lost(
in DataWriter writer,
in LivelinessLostStatus status);
void
on_publication_matched (

& PRISMTECH

Appendices

in DataWriter writer,
in PublicationMatchedStatus status);
Y
interface PublisherlListener : DataWriterListener {
Y
interface DataReaderListener : Listener {
void
on_requested_deadline_missed(
in DataReader reader,
in RequestedDeadlineMissedStatus status);
void
on_requested_incompatible_gos (
in DataReader reader,
in RequestedIncompatibleQosStatus status);
void
on_sample_rejected(
in DataReader reader,
in SampleRejectedStatus status) ;
void
on_liveliness_changed (
in DataReader reader,
in LivelinessChangedStatus status);
void
on_data_available (
in DataReader reader) ;
void
on_subscription_matched (
in DataReader reader,
in SubscriptionMatchedStatus status) ;
void
on_sample_lost (
in DataReader reader,
in SampleLostStatus status);
Y
interface SubscriberListener : DataReaderListener {
void
on_data_on_readers (
in Subscriber subs) ;
Y
interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener {
Y
//
// Conditions
//
interface Condition {
boolean
get_trigger_value() ;
Y

419

& PRISMTECH C++ Reference Guide

Appendices

typedef sequence<Condition> ConditionSeq;
interface WaitSet {
ReturnCode_t
wait (
inout ConditionSeq active_conditions,
in Duration_t timeout) ;
ReturnCode_t
attach_condition (
in Condition cond) ;
ReturnCode_t
detach_condition (
in Condition cond) ;
ReturnCode_t
get_conditions (
inout ConditionSeqg attached_conditions) ;
}i
interface GuardCondition : Condition {
ReturnCode_t
set_trigger_value (
in boolean value) ;
Yi
interface StatusCondition : Condition {
StatusMask
get_enabled statuses() ;
ReturnCode_t
set_enabled_statuses(
in StatusMask mask) ;
Entity
get_entity () ;
Y
// Sample states to support reads
typedef unsigned long SampleStateKind;
typedef sequence <SampleStateKind> SampleStateSeq;
const SampleStateKind READ_SAMPLE_STATE = 0x0001 << O0;
const SampleStateKind NOT_READ_SAMPLE_STATE = 0x0001 << 1;
// This is a bit-mask SampleStateKind
typedef unsigned long SampleStateMask;
const SampleStateMask ANY_SAMPLE_STATE = Oxffff;
// View states to support reads
typedef unsigned long ViewStateKind;
typedef sequence<ViewStateKind> ViewStateSeq;
const ViewStateKind NEW_VIEW_STATE = 0x0001 << O0;
const ViewStateKind NOT _NEW_VIEW_STATE = 0x0001 << 1;
// This is a bit-mask ViewStateKind
typedef unsigned long ViewStateMask;
const ViewStateMask ANY VIEW STATE = Oxffff;
// Instance states to support reads
typedef unsigned long InstanceStateKind;
typedef sequence<InstanceStateKind> InstanceStateSeq;
const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001 << 0;

420

C++ Reference Guide & PRISMTECH

Appendices

& PRISMTECH

const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE = 0x0001

const

<< 1;
InstanceStateKind NOT ALIVE_NO_WRITERS_INSTANCE_STATE =
0x0001 << 2;

// This is a bit-mask InstanceStateKind
typedef unsigned long InstanceStateMask;

const InstanceStateMask ANY_INSTANCE_STATE = Oxffff;
const InstanceStateMask NOT_ALIVE_INSTANCE_STATE = 0x006;
interface ReadCondition : Condition {

SampleStateMask

get_sample_state_mask() ;

ViewStateMask

get_view_state_mask() ;
InstanceStateMask
get_instance_state_mask() ;
DataReader
get_datareader () ;

Y

interface QueryCondition : ReadCondition {

string

get_query_expression() ;
ReturnCode_t
get_query_parameters (
inout StringSeq query_parameters) ;
ReturnCode_t
set_query_parameters (
in StringSeq query_ parameters) ;

Y
//

// Qos

//

const
const
const
const
const
const
const

const
const
const
const
const

const
const
const
const

string USERDATA_QOS_POLICY_NAME = "UserData";
string DURABILITY_QOS_POLICY_NAME = "Durability";
string PRESENTATION_QOS_POLICY_NAME = "Presentation";
string DEADLINE_QOS_POLICY_NAME = "Deadline";
string LATENCYBUDGET_QOS_POLICY_NAME = "LatencyBudget";
string OWNERSHIP_QOS_POLICY_NAME = "Ownership";
string OWNERSHIPSTRENGTH_QOS_POLICY_ NAME=
"OwnershipStrength";

string LIVELINESS_QOS_POLICY_NAME "Liveliness";
string TIMEBASEDFILTER_QOS_POLICY_NAME= "TimeBasedFilter";

string PARTITION_QOS_POLICY_NAME = "Partition";

string RELIABILITY_QOS_POLICY_NAME = "Reliability";

string DESTINATIONORDER_QOS_POLICY_ NAME =
"DestinationOrder";

string HISTORY_QOS_POLICY_ NAME = "History";

string RESOURCELIMITS_QOS_POLICY_NAME= "ResourceLimits";

string ENTITYFACTORY_QOS_POLICY_ NAME = "EntityFactory";

string WRITERDATALIFECYCLE_QOS_POLICY_ NAM=
"WriterDataLifecycle";
421
C++ Reference Guide

Appendices

422
C++ Reference Guide

const string READERDATALIFECYCLE_QOS_POLICY_NAM=
"ReaderDatalifecycle";

string TOPICDATA_QOS_POLICY_ NAME =

string GROUPDATA_QOS_POLICY_NAME

string TRANSPORTPRIORITY_QOS_POLICY_NAME=

const
const
const

const
const

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

"TransportPriority";

string LIFESPAN_QOS_POLICY_NAME =

string DURABILITYSERVICE_QOS_POLICY NAME=
"DurabilityService";

QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t
QosPolicyId_t

INVALID_QOS_POLICY_ID =
USERDATA_QOS_POLICY_ ID =
DURABILITY QOS_POLICY_ ID =
PRESENTATION_QOS_POLICY_ID =
DEADLINE_QOS_POLICY_ID =
LATENCYBUDGET_QOS_POLICY_ID =
OWNERSHIP_QOS_POLICY_ID =
OWNERSHIPSTRENGTH QOS_POLICY ID =
LIVELINESS_QOS_POLICY_ ID =
TIMEBASEDFILTER_QOS_POLICY_ID =
PARTITION_QOS_POLICY_ ID =
RELIABILITY QOS_POLICY_ ID =
DESTINATIONORDER_QOS_POLICY_ID =
HISTORY_ QOS_POLICY ID =
RESOURCELIMITS_QOS_POLICY ID =
ENTITYFACTORY_ QOS_POLICY_ ID =
WRITERDATALIFECYCLE_QOS_POLICY_ ID=
READERDATALIFECYCLE_QOS_POLICY_ ID=
TOPICDATA_QOS_POLICY_ID =
GROUPDATA_QOS_POLICY ID =
TRANSPORTPRIORITY QOS_POLICY ID =
LIFESPAN_QOS_POLICY_ ID =
DURABILITYSERVICE_QOS_POLICY ID =

struct UserDataQosPolicy {
sequence<octet> value;

Y

struct TopicDataQosPolicy {
sequence<octet> value;

I

struct GroupDataQosPolicy {
sequence<octet> value;

Y

struct TransportPriorityQosPolicy {
long value;

I

struct LifespanQosPolicy {

Duration_t duration;

Y

enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_ QOS,
TRANSIENT LOCAL_DURABILITY_QOS,

"TopicData";
"GroupData";

"Lifespan";

0 J o Ul WNBE O

15;
16;
17;
18;
19;
20;
21;
22;

& PRISMTECH

Appendices

& PRISMTECH

TRANSIENT_DURABILITY_QOS,
PERSISTENT DURABILITY_QOS
Y
struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;
Y
enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS
Y
struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;
Y
struct DeadlineQosPolicy {
Duration_t period;
Y
struct LatencyBudgetQosPolicy {
Duration_t duration;
Y
enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS
Y
struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;
Y
struct OwnershipStrengthQosPolicy {
long value;
Y
enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_ TOPIC_LIVELINESS_QOS
Y
struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;
Y
struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;
i
struct PartitionQosPolicy {
StringSeq name;
Y
enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_ QOS,
RELIABLE_RELIABILITY_QOS

423
C++ Reference Guide

Appendices

424
C++ Reference Guide

Y
struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking time;
Y
enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
}i
struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;
Y
enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS
}i
struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;
Yi
struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples_per_instance;
Y
struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;
}i
struct WriterDatalLifecycleQosPolicy {
boolean autodispose_unregistered_instances;
Y
struct ReaderDatalLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;
Y
struct DurabilityServiceQosPolicy {
Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
long history_depth;
long max_samples;
long max_instances;
long max_samples_per_instance;
Y
struct DomainParticipantFactoryQos {
EntityFactoryQosPolicy entity_factory;
}i
struct DomainParticipantQos {
UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_ factory;
i

& PRISMTECH

Appendices

& PRISMTECH

struct TopicQos {

Y

TopicDataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

struct DataWriterQos {

Y

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDatalLifecycleQosPolicy writer_data_lifecycle;

struct PublisherQos {

Y

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity factory;

struct DataReaderQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;
ReaderDatalLifecycleQosPolicy reader_data_lifecycle;

425
C++ Reference Guide

Appendices

Y

struct SubscriberQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

Y

//

struct ParticipantBuiltinTopicData {
BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

Y

struct TopicBuiltinTopicData {
BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

Y

struct PublicationBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

Y

struct SubscriptionBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey t participant_key;

426
C++ Reference Guide

& PRISMTECH

Appendices

string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

i

//

interface Entity {

// ReturnCode_t

// set_qgos(

// in EntityQos gos) ;

//

// ReturnCode_t

// get_qgos(

// inout EntityQos gos) ;

//

// ReturnCode_t

// set_listener (

// in Listener 1,
// in StatusMask mask) ;
//

// Listener
// get_listener();
ReturnCode_t
enable () ;
StatusCondition
get_statuscondition() ;
StatusMask
get_status_changes() ;
i
//
interface DomainParticipant : Entity {
// Factory interfaces
Publisher
create_publisher (
in PublisherQos gos,
in PublisherListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_publisher (
in Publisher p);

427

& PRISMTECH C++ Reference Guide

Appendices

428
C++ Reference Guide

Subscriber
create_subscriber (

in SubscriberQos gos,

in SubscriberListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_subscriber (

in Subscriber s);
Subscriber
get_builtin_subscriber () ;
Topic
create_topic(

in string topic_name,

in string type_name,

in TopicQos dgos,

in TopicListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_topic(

in Topic a_topic);
Topic
find_topic(

in string topic_name,

in Duration_t timeout) ;
TopicDescription
lookup_topicdescription (

in string name) ;
ContentFilteredTopic
create_contentfilteredtopic (

in string name,

in Topic related_topic,

in string filter_expression,

in StringSeq expression_parameters) ;
ReturnCode_t
delete_contentfilteredtopic(

in ContentFilteredTopic a_contentfilteredtopic);
MultiTopic
create_multitopic(

in string name,

in string type_name,

in string subscription_expression,

in StringSeq expression_parameters) ;
ReturnCode_t
delete_multitopic(

in MultiTopic a_multitopic);
ReturnCode_t
delete_contained_entities () ;
ReturnCode_t
set_gos (

in DomainParticipantQos gos) ;

& PRISMTECH

Appendices

& PRISMTECH

ReturnCode_t
get_gos (

inout DomainParticipantQos gos) ;
ReturnCode_t
set_listener (

in DomainParticipantListener a_listener,

in StatusMask mask) ;
DomainParticipantListener
get_listener();
ReturnCode_t
ignore_participant (

in InstanceHandle_t handle);
ReturnCode_t
ignore_topic(

in InstanceHandle_t handle) ;
ReturnCode_t
ignore_publication (

in InstanceHandle_t handle) ;
ReturnCode_t
ignore_subscription (

in InstanceHandle_t handle) ;
DomainId_t
get_domain_id() ;
ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_gos (

in PublisherQos gos) ;
ReturnCode_t
get_default_publisher_ gos(

inout PublisherQos gos) ;
ReturnCode_t
set_default_subscriber_gos (

in SubscriberQos gos) ;
ReturnCode_t
get_default_subscriber_gos (

inout SubscriberQos gos);
ReturnCode_t
set_default_topic_gos(

in TopicQos gos);
ReturnCode_t
get_default_topic_gos (

inout TopicQos gos) ;
boolean
contains_entity (

in InstanceHandle_t a_handle) ;
ReturnCode_t
get_current_time (

inout Time_t current_time) ;
Y

429
C++ Reference Guide

Appendices

interface DomainParticipantFactory {
//
// DomainParticipantFactory
// get_instance();
//
DomainParticipant
create_participant (

in DomainId_t domainId,

in DomainParticipantQos gos,

in DomainParticipantListener a_listener,

in StatusMask mask) ;
ReturnCode_t
delete_participant (

in DomainParticipant a_participant) ;
DomainParticipant
lookup_participant (

in DomainId_t domainId) ;
ReturnCode_t
set_default_participant_gos (

in DomainParticipantQos gos) ;
ReturnCode_t
get_default_participant_gos (

inout DomainParticipantQos gos) ;

ReturnCode_t
set_qgos (
in DomainParticipantFactoryQos gos) ;
ReturnCode_t
get_gos(
inout DomainParticipantFactoryQos gos) ;
i
interface TypeSupport {
// ReturnCode_t
// register_type (

// in DomainParticipant domain,
// in string type_name) ;
!/

// string
// get_type_name() ;
}i
//
interface TopicDescription {
string
get_type_name () ;
string
get_name () ;
DomainParticipant
get_participant () ;
i
interface Topic : Entity, TopicDescription ({
430

C++ Reference Guide & PRISMTECH

Appendices

& PRISMTECH

ReturnCode_t
set_qgos (
in TopicQos gos);
ReturnCode_t
get_gos (
inout TopicQos gos) ;
ReturnCode_t
set_listener (
in TopicListener a_listener,
in StatusMask mask) ;
TopicListener_ptr
get_listener() ;
// Access the status
ReturnCode_t
get_inconsistent_topic_status(
inout InconsistentTopicStatus a_status);
}i
interface ContentFilteredTopic : TopicDescription {
string
get_filter_expression() ;
ReturnCode_t
get_expression_parameters (
inout StringSeq expression_parameters) ;
ReturnCode_t
set_expression_parameters (
in StringSeq expression_parameters) ;
Topic
get_related_topic();
Y
interface MultiTopic : TopicDescription {
string
get_subscription_expression() ;
ReturnCode_t
get_expression_parameters (
inout StringSeq expression_parameters) ;
ReturnCode_t
set_expression_parameters (
in StringSeq expression_parameters) ;
i
//
interface Publisher : Entity {
DataWriter
create_datawriter (
in Topic a_topic,
in DataWriterQos gos,
in DataWriterListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_datawriter (
in DataWriter a_datawriter) ;

431
C++ Reference Guide

Appendices

DataWriter
lookup_datawriter (

in string topic_name) ;
ReturnCode_t
delete_contained_entities () ;
ReturnCode_t
set_gos (

in PublisherQos gos) ;
ReturnCode_t
get_gos (

inout PublisherQos gos);
ReturnCode_t
set_listener (

in PublisherListener a_listener,

in StatusMask mask) ;
PublisherListener
get_listener();
ReturnCode_t
suspend_publications() ;
ReturnCode_t
resume_publications() ;
ReturnCode_t
begin_coherent_changes () ;
ReturnCode_t
end_coherent_changes() ;
ReturnCode_t
wait_for_acknowledgments (

in Duration_t max_wait) ;
DomainParticipant
get_participant () ;
ReturnCode_t
set_default_datawriter_gos (

in DataWriterQos gos) ;
ReturnCode_t
get_default_datawriter_gos (

inout DataWriterQos gos) ;
ReturnCode_t
copy_from_topic_gos (

inout DataWriterQos a_datawriter_gos,

in TopicQos a_topic_gos);
Y
interface DataWriter : Entity {
// InstanceHandle_t
// register_instance(
// in Data instance_data) ;
//
// InstanceHandle_t
// register_instance_w_timestamp (
// in Data instance_data,
// in Time_t source_timestamp) ;

432

C++ Reference Guide & PRISMTECH

Appendices

& PRISMTECH

//
//
//
!/
/7
//
//
//
//
!/
/7
/7
//
//
//
//
//
//
//
//
//
!/
/7
//
//
//
//
!/
//
/7
//
//
//
/7
//
/7
//
//
//
//
/7

ReturnCode_t
unregister_instance (

in Data instance_data,

in InstanceHandle_t handle) ;

ReturnCode_t
unregister_instance_w_timestamp (
in Data instance_data,
in InstanceHandle_t handle,
in Time_t source_timestamp) ;

ReturnCode_t
write(
in Data instance_data,
in InstanceHandle_t handle) ;

ReturnCode_t

write_w_timestamp (
in Data instance_data,
in InstanceHandle_t handle,
in Time_t source_timestamp) ;

ReturnCode_t
dispose (
in Data instance_data,
in InstanceHandle_t instance_handle) ;

ReturnCode_t

dispose_w_timestamp (
in Data instance_data,
in InstanceHandle_t instance_handle,
in Time_t source_timestamp) ;

ReturnCode_t
get_key_value (
inout Data key_holder,
in InstanceHandle_t handle) ;

InstanceHandle_t lookup_instance (
in Data instance_data) ;

ReturnCode_t
set_gos (

in DataWriterQos gos) ;

ReturnCode_t
get_gos (

inout DataWriterQos gos);

ReturnCode_t
set_listener (

in DataWriterListener a_listener,

433
C++ Reference Guide

Appendices

in StatusMask mask) ;
DataWriterListener
get_listener () ;
Topic
get_topic();
Publisher
get_publisher () ;
ReturnCode_t
wait_for_acknowledgments (
in Duration_t max_wait) ;
// Access the status
ReturnCode_t
get_liveliness_lost_status(
inout LivelinessLostStatus status);
ReturnCode_t
get_offered_deadline_missed_status (
inout OfferedDeadlineMissedStatus status);
ReturnCode_t
get_offered_incompatible_gos_status (
inout OfferedIncompatibleQosStatus status);
ReturnCode_t
get_publication_matched_status (
inout PublicationMatchedStatus status) ;
ReturnCode_t
assert_liveliness();
ReturnCode_t
get_matched_subscriptions (
inout InstanceHandleSeq subscription_handles) ;
ReturnCode_t
get_matched_subscription_data(
inout SubscriptionBuiltinTopicData subscription_data,
in InstanceHandle_t subscription_handle) ;
I
//
interface Subscriber : Entity {
DataReader
create_datareader (
in TopicDescription a_topic,
in DataReaderQos gos,
in DataReaderListener a_listener,
in StatusMask mask) ;
ReturnCode_t
delete_datareader (
in DataReader a_datareader) ;
ReturnCode_t
delete_contained_entities () ;
DataReader
lookup_datareader (
in string topic_name) ;
ReturnCode_t

434

C++ Reference Guide & PRISMTECH

Appendices

get_datareaders (
inout DataReaderSeq readers,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);
ReturnCode_t
notify datareaders();
ReturnCode_t
set_gos (
in SubscriberQos gos) ;
ReturnCode_t
get_gos (
inout SubscriberQos gos) ;
ReturnCode_t
set_listener (
in SubscriberlListener a_listener,
in StatusMask mask) ;
SubscriberListener
get_listener();
ReturnCode_t
begin_access() ;
ReturnCode_t
end_access () ;
DomainParticipant
get_participant () ;
ReturnCode_t
set_default_datareader_gos (
in DataReaderQos gos) ;
ReturnCode_t
get_default_datareader_gos (
inout DataReaderQos gos) ;
ReturnCode_t
copy_from_topic_gos (
inout DataReaderQos a_datareader_gos,
in TopicQos a_topic_gos);
Y
interface DataReader : Entity {
// ReturnCode_t

// read(

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,

// in Long max_samples,

// in SampleStateMask sample_states,
// in ViewStateMask view_states,

// in InstanceStateMask instance_states);
//

// ReturnCode_t

// take(

// inout DataSeqg data_values,

// inout SampleInfoSeqg info_seq,

435

& PRISMTECH C++ Reference Guide

Appendices

436
C++ Reference Guide

/!
//
//
//
//
//
/!
/7
//
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/!
//
//
//
//
//
/!
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/!
//

in Long max_samples,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t

read_w_condition (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in Long max_samples,
in ReadCondition a_condition) ;

ReturnCode_t

take_w_condition (
inout DataSeqg data_values,
inout SampleInfoSeq info_seq,
in Long max_samples,
in ReadCondition a_condition) ;

ReturnCode_t
read_next_sample (
inout Data data_values,
inout SampleInfo sample_info);

ReturnCode_t
take_next_sample (
inout Data data_values,
inout SampleInfo sample_info);

ReturnCode_t
read_instance (
inout DataSeqg data_values,
inout SampleInfoSeq info_seq,
in Long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t
take_instance (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in Long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t

& PRISMTECH

Appendices

// read_next_instance (

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,
// in Long max_samples,

// in InstanceHandle_t a_handle,
// in SampleStateMask sample_states,
// in ViewStateMask view_states,
// in InstanceStateMask instance_states);
//

// ReturnCode_t

// take_next_instance (

// inout DataSeq data_values,

// inout SampleInfoSeqg info_seq,
// in Long max_samples,

// in InstanceHandle_t a_handle,
// in SampleStateMask sample_states,
// in ViewStateMask view_states,
// in InstanceStateMask instance_states) ;
//

// ReturnCode_t

// read_next_instance_w_condition (

// inout DataSeq data_values,

// inout SampleInfoSeq info_seq,
// in Long max_samples,

// in InstanceHandle_t a_handle,
// in ReadCondition a_condition) ;
//

// ReturnCode_t

// take_next_instance_w_condition (

// inout DataSeq data_values,

// inout SampleInfoSeqg info_seq,
// in Long max_samples,

// in InstanceHandle_t a_handle,
// in ReadCondition a_condition) ;
//

// ReturnCode_t

// return_loan (

// inout DataSeqg data_values,

// inout SampleInfoSeq info_seq);
//

// ReturnCode_t

// get_key_value (

// inout Data key_holder,

// in InstanceHandle_t handle) ;
//

// InstanceHandle_t

// lookup_instance (

// in Data instance);
ReadCondition

create_readcondition (

& PRISMTECH

437
C++ Reference Guide

Appendices

in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);
QueryCondition
create_qgquerycondition (
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states,
in string query_expression,
in StringSeq query_parameters) ;
ReturnCode_t
delete_readcondition (
in ReadCondition a_condition) ;
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_gos (
in DataReaderQos gos) ;
ReturnCode_t
get_gos (
inout DataReaderQos gos) ;
ReturnCode_t
set_listener (
in DataReaderListener a_listener,
in StatusMask mask) ;
DataReaderListener
get_listener () ;
TopicDescription
get_topicdescription() ;
Subscriber
get_subscriber () ;
ReturnCode_t
get_sample_rejected_status (
inout SampleRejectedStatus status);
ReturnCode_t
get_liveliness_changed_status (
inout LivelinessChangedStatus status) ;
ReturnCode_t
get_requested_deadline_missed_status (
inout RequestedDeadlineMissedStatus status);
ReturnCode_t
get_requested_incompatible_gos_status (
inout RequestedIncompatibleQosStatus status) ;
ReturnCode_t
get_subscription_matched_status (
inout SubscriptionMatchedStatus status);
ReturnCode_t
get_sample_lost_status(
inout SampleLostStatus status);
ReturnCode_t

438

C++ Reference Guide & PRISMTECH

Appendices

wait_for_historical_data(
in Duration_t max_wait) ;
ReturnCode_t
get_matched_publications (
inout InstanceHandleSeq publication_handles) ;
ReturnCode_t
get_matched_publication_data(
inout PublicationBuiltinTopicData publication_data,
in InstanceHandle_t publication_handle) ;
Y
struct SampleInfo {
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;
Y
typedef sequence<SampleInfo> SampleInfoSeq;
Yi
Foo.idl
// Implied IDL for type "Foo"
// Example user defined structure
struct Foo {
long dummy;
Y
typedef sequence<Foo> FooSeq;
#include "dds_dcps.idl"
interface FooTypeSupport : DDS::TypeSupport {
DDS: :ReturnCode_t
register_type (
in DDS::DomainParticipant participant,
in string type_name) ;
string
get_type_name () ;
Y
interface FooDataWriter : DDS::DataWriter {
DDS: : InstanceHandle_t
register_instance (
in Foo instance_data) ;
DDS: : InstanceHandle_t
register_instance_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,

439

& PRISMTECH C++ Reference Guide

Appendices

440
C++ Reference Guide

in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
unregister_instance (
in Foo instance_data,

in DDS::InstanceHandle_t handle) ;

DDS: :ReturnCode_t
unregister_instance_w_timestamp (

in Foo instance_data,

in DDS::InstanceHandle_t handle,

in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
write(
in Foo instance_data,

in DDS::InstanceHandle_t handle) ;

DDS: :ReturnCode_t
write_w_timestamp (

in Foo instance_data,

in DDS::InstanceHandle_t handle,

in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
dispose (
in Foo instance_data,

in DDS::InstanceHandle_t instance_handle) ;

DDS: :ReturnCode_t
dispose_w_timestamp (
in Foo instance_data,

in DDS::InstanceHandle_t instance_handle,
in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
get_key_value (
inout Foo key_holder,

in DDS::InstanceHandle_t handle) ;

DDS: : InstanceHandle_t
lookup_instance (

in Foo instance_data) ;
Y

interface FooDataReader : DDS::DataReader ({

DDS: :ReturnCode_t
read (
inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq,

in Long max_samples,

in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take(
inout FooSeq data_values,

inout DDS::SampleInfoSeqg info_seq,

in Long max_samples,

& PRISMTECH

Appendices

& PRISMTECH

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);
DDS: :ReturnCode_t
read_w_condition(

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_sedq,

in Long max_samples,

in DDS::ReadCondition a_condition) ;
DDS: :ReturnCode_t
take_w_condition (

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_sedq,

in Long max_samples,

in DDS::ReadCondition a_condition) ;
DDS: :ReturnCode_t
read_next_sample (

inout Foo data_values,

inout DDS::SampleInfo sample_info) ;
DDS: :ReturnCode_t
take_next_sample (

inout Foo data_values,

inout DDS::SampleInfo sample_info);
DDS: :ReturnCode_t
read_instance (

inout FooSeqg data_values,

inout DDS::SampleInfoSeq info_seq,

in Long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);
DDS: :ReturnCode_t
take_instance (

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq,

in Long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);
DDS: :ReturnCode_t
read_next_instance (

inout FooSeqg data_values,

inout DDS::SampleInfoSeq info_seq,

in Long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states) ;

C++ Reference Guide

Appendices

442
C++ Reference Guide

DDS: :ReturnCode_t
take_next_instance (
inout FooSeq data_values,
inout DDS::SampleInfoSeqg info_seq,

in Long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::SampleStateMask sample_states,

in DDS::ViewStateMask view_states,

in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
read_next_instance_w_condition(

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq,

in Long max_samples,

in DDS::InstanceHandle_t a_handle,

in DDS::ReadCondition a_condition) ;
DDS: :ReturnCode_t
take_next_instance_w_condition (

inout FooSeqg data_values,

inout DDS::SampleInfoSeq info_seq,
in Long max_samples,

in DDS::InstanceHandle_t a_handle,
in DDS::ReadCondition a_condition) ;

DDS: :ReturnCode_t

return_loan (

inout FooSeq data_values,

inout DDS::SampleInfoSeq info_seq);
DDS: :ReturnCode_t
get_key value (

inout Foo key holder,

in DDS::InstanceHandle_t handle);
DDS: : InstanceHandle_t
lookup_instance (

in Foo instance);

Y

& PRISMTECH

Appendix

SampleSates, ViewSates and

| nstanceSates

Data is made available to the application by the following operations on
DataReader Objects: read and take operations. The general semantics of the
read operations is that the application only gets access to the matching data; the
data remain available in the Data Distribution Services and can be read again. The
semantics of the take operations is that the data is not available in the Data
Distribution Service; that data will no longer be accessible to the bataReader.
Consequently, it is possible for a pataReader to access the same sample multiple
times but only if al previous accesses were read operations.

Each of these operations returns an ordered collection of pata values and
associated sampleInfo objects. Each data value represents an atom of data
information (i.e., avalue for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the HistoryQosPolicy alow for
it.

Samplel nfo Class

SampleInfo istheinformation that accompanies each sample that is ‘read’ or
‘taken’. It contains, among others, the following information:

e The sample_state (READ_SAMPLE_STATE Of NOT_READ_SAMPZWLE_STATE)
e Theview_state (NEW_VIEW_STATE Of NOT_NEW_VIEW_STATE)

e Theinstance_state (ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE Of
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE).

sample sate

& PRISMTECH

For each sample, the Data Distribution Service internally maintains a
sample_state Specific to each DataReader. The sample_state can either be
READ_SAMPLE_STATE Of NOT_READ_SAMPLE_STATE.

READ_SAMPLE_STATE indicates that the bataReader has already accessed that
sample by means of read. Had the sample been accessed by take it would no
longer be available to the bataReader;

443
C++ Reference Guide

Appendices

e NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that
sample before.

new sample received
(first time seen)

A@T_REA D_SAMPL E_STAT}

take/ read
sampleis*“overwritten”
<REA D_SAMPLE_STATE
read
take/

sampleis“overwritten”

®

Figure 20: Single Sample sample _state Sate Chart

Sate Per Sample

The sample_state available in the sampleInfo reflect the sample_state oOf
each sample. The sample_state can be different for all samples in the returned
collection that refer to the same instance.

ingance date

For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state Ccan be

e ALIVE_INSTANCE_STATE, which indicates that
- samples have been received for the instance

444

C++ Reference Guide & PRISMTECH

Appendices

& PRISMTECH

- there arelive batawriter objectswriting the instance

- the instance has not been explicitly disposed of (or else samples have been
received after it was disposed of)

NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was disposed
of by a patawriter, ether explicitly by means of the dispose operation or
implicitly in case the autodispose_unregistered_instances field of the
WriterDataLyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, WriterDataLifecycleQosPolicy) and no new
samples for that instance have been written afterwards.

NOT_ALTVE_NO_WRITERS_TINSTANCE_STATE indicates the instance has been
declared as not-alive by the batarReader becauseit detected that there are no live
DataWriter objectswriting that instance.

Owner shipQosPalicy

The precise events that cause the instance_state to change depends on the
setting of the OwnershipQosPolicy:

If ownershipQosPolicy IS Set t0 EXCLUSIVE_OWNERSHIP_QOS, then the
instance_state beCOMES NOT_ALIVE_DISPOSED_INSTANCE_STATE only if
the Datawriter that “owns’ the instance explicitly disposes of it. The
instance_state becomes ALIVE_INSTANCE_STATE again only if the
DataWriter that ownsthe instance writesit;

If ownershipQosPolicy iS Set t0O SHARED OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE if any
DataWriter explicitly disposes of theinstance. The instance_state becomes
ALIVE_ INSTANCE_STATE asS0ONnasany DataWriter writestheinstance again.

445
C++ Reference Guide

Appendices

view date

446

sample for 'never seen’
instance received/

sample received

sample received/

l "live" DataWriter detected/
- ALIVE_INSTANCE_STATE

no "live"
DataWriters

instance disposed
of by DataWriter

GOT_AL IVE_DISPOSED_| NSTANCE_STATa GOT_AL IVE_NO_WRITERS_INSTA NCE_STATa

[no samplesin
the DataReader]

[no samples in the DataReader
&& no"live" Datawriters]

Figure21: Sate Chart of theinstance _statefor a Single Instance

Snapshot

The instance_state available in the sampleInfo is a snapshot of the
instance_state Of the instance at the time the collection was obtained (i.e. at the
time read or take wascalled). The instance_state istherefore the same for all
samplesin the returned collection that refer to the same instance.

For each instance (identified by the key), the Data Distribution Service internally
maintains aview_ state relative to each bataReader. The view state can
either beNEW VIEW STATE Of NOT NEW VIEW STATE.

& PRISMTECH

C++ Reference Guide

Appendices

& PRISMTECH

NEW_VIEW_STATE indicates that either thisisthe first time that the bataReader
has ever accessed samples of that instance, or else that the DataReader has
accessed previous samples of the instance, but the instance has since been reborn
(i.e. becomes not-alive and then alive again);

* NOT_NEW_VIEW_STATE indicates that the DataReader has already accessed
samples of the same instance and that the instance has not been reborn since.

sample for 'never seen'
instance received/

(NEW_VIEW_STATE ><7

read/take

—»{ NOT_NEW_VIEW_STATE

read/take

sample received

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]

Figure 22: Singlelnstanceview_state Sate Chart
Snapshot

The view_state availablein the sampleTInfo isasnapshot of view_state of
the instance relative to the DataReader used to access the samples at the time the
collection was obtained (i.e. at the time read or take was called). The
view_state istherefore the same for all samples in the returned collection that
refer to the same instance.

447
C++ Reference Guide

Appendices

Sate Masks

448

Sate Definitions

All states are available as a constant. These convenience constants can be used to
create abit mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.

The sample state definitions indicates whether or not the matching data sample has
aready been read:

* READ_SAMPLE_STATE: sample has aready been read;
* NOT_READ_SAMPLE_STATE: sample has not been read.

The view state definitions indicates whether the DatarReader has already seen
samples for the most-current generation of the related instance:

* NEW_VIEW_STATE: all samples of thisinstance are new;
* NOT_NEW_VIEW_STATE: Some or all samples of thisinstance are not new.

Theinstance state definitionsindicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:

* ALTVE_INSTANCE_STATE: thisinstanceis currently in existence;

* NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of by a
DataWriter;

* NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been disposed
of by the DataReader because none of the Datawriter objects currently
“aive’ (according totheLivelinessQosPolicy) arewriting the instance.

Pre-defined Bit Mask Definitions

For convenience, some pre-defined bit masks are available as a constant definition.
These bit mask constants can be used where a state bit mask is required. They can
also be used for testing whether certain bits are set.

The sample state bit mask definition selects both sample states

* ANY_SAMPLE_STATE: either the sample has already been read or not read
The view state bit mask definition selects both view states

* ANY_VIEW_STATE: either the sample has already been seen or not seen

The instance state bit mask definitions selects a combination of instance states

* NOT_ALIVE_INSTANCE_STATE: thisinstance was disposed of by abpatavriter
or the bataReader

e ANY INSTANCE STATE: thisInstanceis either in existence or not in existence

& PRISMTECH

C++ Reference Guide

Appendices

Operations Concer ning Sates

& PRISMTECH

The application accesses data by means of the operations read or take on the
DataReader. These operations return an ordered collection of batasamples
consisting of a SampleInfo part and aData part. The way the Data Distribution
Service builds this collection (i.e., the data-samples that are parts of the list as well
as their order) depends on QosPolicy Settings set on the DataReader and the
Subscriber, aswell as the source timestamp of the samples and the parameters
passed to the read/take operations, namely:

e the desired sample sates (in other words, READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE, Of ANY_SAMPLE_STATE)

e the desired view sates (in other words, NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE, Of ANY_VIEW_STATE)

« the desired instance states
ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
NOT_ALIVE_INSTANCE_STATE, Of ANY_INSTANCE_STATE).

The read and take operations are non-blocking and just deliver what is currently
available that matches the specified states.

On output, the collection of pata values and the collection of sampleInfo
structures are of the same length and are in a one-to-one correspondence. Each
SampleInfo provides information, such asthe source_timestamp, the
sample_state, view_state, and instance_state, €tc., about the matching
sample.

Some elements in the returned collection may not have valid data. If the
instance_state inthe SampleInfo is
NOT_ALIVE_DISPOSED_INSTANCE_STATE Of
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
instance in the collection, that is, the one whose sampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limits imposed by the ResourceLimitsQosPolicy.

read

The act of reading a sample setsitS sample_state t0 READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state Of the instance to NOT_NEwW_VIEW_STATE. It will not affect the
instance_state Of theinstance.

449
C++ Reference Guide

Appendices

450

C++ Reference Guide

take

The act of taking a sample removes it from the DataReader S0 it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of theinstance.

read_w_condition

In case the ReadCondition isa‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling read and passing as
sample states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

take w_condition

The act of taking a sample removes it from the DataReader S0 it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of theinstance.

In case the ReadCondition isa‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling take and passing as
sample_ states, view_states and instance_states the value of the
corresponding attributes in the Readcondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

read_next_sample

The read_next_sample operation is semantically equivalent to the read
operation where the input pata sequence has max_len=1, the
sample_states=NOT_READ_SAMPLE_STATE,
theview_states=ANY_VIEW_STATE,

andthe instance_states=ANY_INSTANCE_STATE.

take next_sample

The take_next_sample operation is semantically equivalent to the take
operation where the input sequence has max_len=1, the
sample_states=NOT_READ_SAMPLE_STATE,
theview_states=ANY_VIEW_STATE,

and the instance_states=ANY_INSTANCE_STATE.

& PRISMTECH

Appendices

& PRISMTECH

read_instance

The act of reading a sample setsits sample_state t0O READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state Of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state Of the instance.

take instance

The act of taking a sample removes it from the DatarReader S0 it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of theinstance.

451
C++ Reference Guide

Appendices

452

C++ Reference Guide & PRISMTECH

Appendix

Class Inheritance

This appendix gives an overview of the inheritance relations of the DCPS classes.

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

DomainParticipant
(from Domain Module)

DomainParticipantFactory
(from Domain Module)

DomainEntity
(from Ir ire Module)

Entity

re Module) TopicDescription

(from Topic-Definition Module)

(from Ir

DataWriter

Topic
(from Publication Module)

(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

DataReader
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

GuardCondition
(from Infrastructure Module)

FooDataWriter
(from Topic-Definition Module)

FooDataReader
(from Topic-Definition Module)

<<Interface>>
TypeSupport

(from Topic-Definition Module)

<<Interface>>
Listener
(from Infrastructure Module)

ReadCondition
(from Subscription Module)

Condition
(from Infrastructure Module)

>

<<Interface>>
DataReaderListener
(from Subscription Module)

<<Interface>>
DataWriterListener
(from Publication Module)

7

7

FooTypeSupport

(from Topic-Definition Module)

QueryCondition

(from Subscription Module)

StatusCondition
(from Infrastructure Module)

<<Interface>>
TopicListener

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Status
(from Infrastructure Module)

WaitSet
(from Infrastructure Module)

Samplelnfo
(from Subscription Module)

QosPolicy
(from Infrastructure Module)

DomainParticipantListener
(from Domain Module)

Figure 23 DCPSInheritance

453

& PRISMTECH C++ Reference Guide

Appendices

454

C++ Reference Guide & PRISMTECH

Appendix

Listeners, Conditions and
Waitsets

Listeners and conditions (Conditions in conjunction with waitsets) are
two mechanisms that allow the application to be made aware of changesin the
communication status. Listeners provide an event-based mechanism for the Data
Distribution Service to asynchronously alert the application of the occurrence of
relevant status changes. conditions in conjunction with waitSets provide a
state-based mechanism for the Data Distribution Service to synchronously
communicate the relevant status changes to the application.

Both mechanisms are based on the communication statuses associated with an
Entity object. Not al statuses are applicableto al Ent ity objects. Which statusis
applicable to which Entity object islisted in the next table.:

Table 22 Communication Sates

Entity Satus Name Description
Topic INCONSISTENT TOPIC_STATUS Another Topic exists with the same name but with
different characteristics.
Subscriber |DATA_ON_READERS_STATUS New information is available.
DataReader |SAMPLE_REJECTED_STATUS A (received) sample has been rejected.
LIVELINESS_CHANGED_STATUS The liveliness of one or more DataWriter
objects, that were writing instances read through
the DataReader objects has changed. Some
DataWriter object have become “alive” or “not
aive’.
REQUESTED_ The deadline that the DataReader was expecting
DEADLINE_MISSED_STATUS through its DeadlineQosPolicy was not
respected for a specific instance.
REQUESTED_ A QosPolicy setting was incompatible with what is
INCOMPATIBLE_QOS_STATUS offered.
DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS The DataReader hasfound aDataWriter that
matches the Topi ¢ and has compatible QoS.
455
& PRISMTECH

C++ Reference Guide

Appendices

Table 22 Communication States (Continued)

Entity

Satus Name Description

DataWriter

LIVELINESS_LOST_STATUS The liveliness that the DataWriter has
committed through its Livel inessQosPolicy
was not respected; thus DataReader objects will
consider the DatawWriter asno longer “active’.

OFFERED_ The deadline that the DatawWriter has committed

DEADLINE_MISSED_STATUS through its DeadlineQosPolicy was not
respected for a specific instance.

OFFERED_ A QosPolicy setting was incompatible with what

INCOMPATIBLE_QOS_STATUS was requested.

PUBLICATION_MATCH_STATUS The DataWriter hasfound DataReader that

matches the Topic and has compatible QoS.

The statuses may be classified in:

* read communication statuses. i.e., those that are related to arrival of data, namely
DATA_ON_READERS and DATA_AVAILABLE;

 plain communication statuses. i.e., al the others.

For each plain communication status, there is a corresponding status struct. The
information from this struct can be retrieved with the operations
get_<status_name>_status. For example, to get the INCONSISTENT _TOPIC
status (which information isstored in the InconsistentTopicStatus struct), the
application must call the operation get_inconsistent_topic_status. A plain
communication status can only be read from the Ent ity on which it is applicable.
For the read communication statuses there is no struct available to the application.

Communication Satus Event

456

Conceptually associated with each Ent ity communication status is a logical
StatusChangedFlag. Thisflag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operation to read the statusChangedFlag). The
StatusChangedFlag isonly conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener Will only be activated when the statusChangedFlag changes from
FALSE to TRUE (provided the Listener is attached and enabled for this particular
status). The conditions which cause the statusCchangedrFlag to changeis sightly
different for the plain communication status and the read communication status.

& PRISMTECH

C++ Reference Guide

Appendices

& PRISMTECH

For the plain communication status, the statusChangedFlag flagisinitially set to
FALSE. It becomes TRUE whenever the plain communication status changesand it is
reset to FALSE each time the application accesses the plain communication status
viathe proper get_<status_name>_status operation onthe Entity.

The communication status is also reset to FALSE whenever the associated
Listener operationiscaled asthe Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
calling the listener means that if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

An exception to thisrule is when the associated Listener isthe 'nil' listener, i.e. a

listener with value NULL. Such a listener is treated as a NOOP? for all statuses
activated in its bit mask and the act of calling this 'nil' listener does not reset the
corresponding communication statuses.

4><StatusChangedFlag = FALSE>

CurrentStatus | = SavedStatus
get_<status_name>_status

OR invocation of
corresponging Listener
operation
event which can cause
the activation of a Listener
—C&atusChangedFlag = TRUE>

Figure24: Plain Communication Satus Sate Chart

For example, the value of the statusChangedFlag associated with the
RequestedDeadlineMissedStatus will become TRUE each time anew deadline
passes (which increases the total_count field within
RequestedDeadlineMissedStatus). The value changes to FaLSE when the
application accesses the status via the corresponding
get_requested_deadline_missed_status Operation on the proper Entity,
or when the on_requested_deadline_missed operation on the Listener
attached to thisent ity or oneits containing entities is invoked.

1. Short for No-Operation, an instruction that does nothing.

457
C++ Reference Guide

Appendices

458

For the read communication status, the statusChangedrFlag flagisinitialy set to
FALSE. It becomes TRUE when data arrives, or when the Instancestate of a
contained instance changes. This can be caused by either:

» Thearrival of the notification that an instance has been disposed by:

-the patawriter that owns it if itS OwnershipQosPolicyKind =
EXCLUSIVE_OWNERSHIP_ QOS
-or by any Datawriter if itS OwnershipQosPolicyKind =
SHARED_OWNERSHIP_QOS.
» The loss of liveliness of the patawriter of an instance for which there is no
other batawriter.

» The arrival of the notification that an instance has been unregistered by the only
DataWriter that isknown to be writing the instance.

—»(SatusChangedFlag = FALSE>
on_data_available OR

read/take or any of its DataarrivesOR o
change in InstanceState of a contained instance

i‘ event which can cause
the activation of a Listener
StatusChangedFlag = TRUE

Figure 25: Read Communication Status DataReader Statecr aft

variants

& PRISMTECH

C++ Reference Guide

Appendices

Lisgeners

& PRISMTECH

—»(Status:hangedfil ag=FAL SE>
on_data_on_readers OR

on data available OR Data arrives OR change in InstanceState
read/take or any of its of any contained DataReader

variants
event which can cause
the activation of a Listener
StatusChangedFlag = TRUE

Figure 26: Subscriber Statecraft for a Read Communication Status

» The status flag of the DATA_ON_READERS_STATUS becomes FALSE when any of
the following events occurs:

- The corresponding listener operation (on_data_on_readers) is caled on the
corresponding subscriber.

- The on_data_available listener operation is caled on any DataReader
belonging to the subscriber.

-The read or take operation (or any of its variants) is called on any
DataReader belonging to the subscriber.

The Listeners provide for an event-based mechanism to asynchronous inform the
application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the 1.i stener is activated, it will call the
corresponding on_<status_name> operation of that .istener. Each
on_<status_name> Operation availablein the Listener Of an Entity iSalso
availableinthe Listener of the factory of the Entity.

For both the read communication statuses and the plain communication statuses a
Listener isonly activated when aListener isattached to thisparticular Entity
and enabled for this particular status. Statuses are enabled according the to the
StatusKindMask parameter that was passed at creation time of the Entity, or
that was passed to the set_1istener operation.

459
C++ Reference Guide

Appendices

When an event occurs for a particular Entity and for a particular status, but the
applicable Listener isnot activated for this status, the status is propagated up to
the factory of this Entity. For thisfactory, the same propagation rules apply. When
eventhe bomainParticipantListener isnot attached or enabled for this status,
the application will not be notified about this event. This means, that a status change
on acontained Entity only invokesthe Listener of itsfactory if the Listener
of the contained Ent ity itself does not handle the trigger event generated by the

status change.
<<Interface>>
Listener
(from Infrastructure Module)
<<Interface>>
<<Interface>> >
DataWriterListener DataReaderListener
on liveliness lostf on_data_available()
on_cIJ\I{felred d_eadli(r)1e missed on_liveliness_changed()
on offered incompatible os(z) on_requested_deadline_missed()
on_ publication me?tch() -4 on_requested_incompatible_qos()
P - on_sample_lost()
on_sample_rejected()
on_subscription_match()
<<Interface>>
TopicListener
on_inconsistent_topic()
<<Interface>> <<Interface>>
PublisherListener SubscriberListener

on_data_on_readers()

DomainParticipantListener

Figure27. DCPSListeners

The event propagation is also applicable to the read communication statuses.
However, since the event here is the arrival of data, both the DATA_ON_READERS
and DATA_AVAILABLE Status are TRUE. The Data Distribution Service will first
attempt to handle the paTa_oN_READERS status and try to activate the
SubscriberListener. When this Listener is not activated for this status the
event will propagate to the DomainParticipantListener. Only when the
DATA_ON_READERS Status can not be handled, the Data Distribution Service will

460
C++ Reference Guide & PRISMTECH

Appendices

attempt to handle the paTa_AVATILABLE status and try to activate the
DataReaderListener. In casethisListener iSnot activated for this status the
event will follow the propagation rules as described above.

Conditionsand Waitsets

& PRISMTECH

The conditions in conjunction with waitsets provide for a state-based
mechanism to synchronously inform the application of status changes. A
Condition can be either a ReadCondition, QueryCondition,
StatusCondition OF GuardCondition. TO create a Condition one of the
following operations can be used:

* ReadCondition created by create_readcondition

* QueryCondition created by create_querycondition

* StatusCondition retrieved by get_statuscondition OnanEntity
* GuardCondition created by the C++ operation new

Note that the QueryCondition is a specialized ReadCondition. The
GuardCondition isadifferent kind of condition sinceit isnot controlled by a
status but directly by the application (when aGuardcondition isinitialy created,
the trigger_value ISFALSE). The StatusCondition ispresent by default with
each Entity, therefore, it does not have to be created.

WaitSet

Condition

attach_condition()
.|detach_condition()
get_conditions()
wait()

Figure 28: DCPS WaitSets

get_trigger_value() *

A wWaitSet may have one or several Conditions attached to it. An application
thread may block execution (blocking may be limited by a timeout) by waiting on a
waitset until the trigger_wvalue of one or more of the conditions become
TRUE. When acondition, whose trigger_ value evaluatesto TRUE, is attached
to awaitset that is currently being waited on (using the wait operation), the
waitset will unblock immediately.

This (state-based) mechanism is generally used as follows:
» The application createsawaitSet.

» The application indicates which relevant information it wants to be notified of, by
creating or retrieving Condition objects (StatusCondition,
ReadCondition, QueryCondition Of GuardCondition) and attach themto a
WaitSet.

461
C++ Reference Guide

Appendices

e It then waits on that waitSet (Using WaitSet::wait) until the

trigger_value Of Oneor severa condition objects(inthewaitset) become

TRUE.
* When the thread is unblocked, the application uses the result of thewait (i.e., the

462
C++ Reference Guide

list of condition objects with trigger_value==TRUE) to actually get the
information:

- if the condition is a statusCondition and the status changes refer to aplain
communication status, by caling get_status_changes and then
get_<communication_status> ontherelevant Entity

- if the condition isa statusCondition and the status changes refer to the read
communication status:

DATA_ON_READERS, by calling get_status_changes and then
get_datareaders on the relevant subscriber and then read/take on the
returned bataReader Objects

DATA_AVAILABLE, by calling get_status_changes and then read/take on
the relevant bataReader

-if it is a ReadCondition Or a QueryCondition, by caling directly
read_w_condition/take w_condition oOn the DataReader with the
Condition asaparameter

& PRISMTECH

Appendices

Condition

get_trigger_value()

StatusCondition GuardCondition

get_enabled_statuses() set_trigger_value()

ReadCondition get_entity() DomainParticipant
set_enabled_statuses()

get_datareader() statuscondition
get_instance_state_mask() 0.1
get_sample_state_mask() .
get_view_state_mask() entity

1

/ QueryCondition Entity
enable()

<<create>> ‘

\

get_query_arguments()
get_query_expression()
set_query_arguments()

<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()

1 A get_statuscondition()
DataReader <<abstract>> set_listener() -
| i:reaj>j <<abstract>> set_qos() DataWriter
Subscriber \ Zﬁ -
DomainEntity Publisher

& PRISMTECH

Topic

Figure29 DCPS Conditions

No extrainformation is passed from the Data Distribution Service to the application
when await returns only the list of triggered condition objects. Therefore, it is
the application responsibility to investigate which condition objects have
triggered thewaitset.

Blocking Behaviour

The result of await operation depends on the state of the waitset, whichin turn
depends on whether at least one attached condition hasatrigger_value Of
TRUE. If the wait operationis called on waitset with state BLOCKED it will
block the calling thread. If wait iscalled on awaitset with state UNBLOCKED it
will return immediately. In addition, when the waitset transitions from state
BLOCKED to state UNBLOCKED it wakes up the thread (if any) that had called
wait onit. Note that there can only be one thread waiting on asingle waitset.

463
C++ Reference Guide

Appendices

WaitSet::wait
Block calling thread

4’(BLOCKED

[all attached conditions have [at least one attached condition has
trigger_value == FAL SE] trigger_value == TRUE]
Wakeup waiting threads

4(UNBLOCKED

Figure 30: Blocking Behaviour of a Waitset State Chart

WaitSet::wait
Do not block. Return immediately

SatusCondition Trigger State

The trigger_value Of a StatusCondition iS the boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
That is, trigger_value==FALSE only if all the values of the
StatusChangedFlags are FALSE.

The sensitivity of the statusCondition to aparticular communication status is
controlled by the bit mask of enabled_statuses Set on the Condition by means
of the set_enabled_statuses operation.

ReadCondition and QueryCondition Trigger Sate

464

Similar tothe statusCondition, aReadCondition dsohasatrigger value
that determines whether the attached waitset is BLOCKED or UNBLOCKED.
However, unlike the statusCondition, the trigger_value of the
ReadCondition istied to the presence of at least one sample managed by the Data
Distribution Service with sampleState, ViewState, and InstanceState
matching those of the ReadCondition. Additionally, for the QueryCondition,
the data associated with the sample, must be such that the query_expression
evaluates to TRUE.

The fact that the trigger_value of aReadCondition isdependent on the presence
of samples on the associated DataReader impliesthat asingle take operation can
potentially change the trigger_value Of several ReadCondition or
QueryCondition objects. For example, if all samples are taken, any
ReadCondition OF QueryCondition Objects associated with the bataReader
that had their trigger_value==TRUE before will see the trigger_value
change to FALSE. Note that this does not guarantee that waitSet objects, that had

& PRISMTECH

C++ Reference Guide

Appendices

those condition objects separately attached to, will not be woken up. Once we
have trigger_value==TRUE ONn aCondition it may wake up the waitset it
was attached to, the condition transitions to trigger_value==FALSE does not
‘'un-wake up' thewaitset as'un-wakening' is not possible. The consequence is that
an application blocked on awaitset may return from the wait with alist of
Condition objects some of which are no longer “active”. Thisis unavoidable if
multiple threads are concurrently waiting on separate waitSet objects and taking
data associated with the same bataReader Entity. In other words, await may
return with a list of condition objects which all have a
trigger_value==FALSE. Thisonly means, that at some point one or more of the
Condition objects have had a trigger_value==TRUE but ho longer do.

GuardCondition Trigger Sate

& PRISMTECH

The trigger_value Of a GuardCondition is completely controlled by the
application via the operation set_trigger_value. ThisCondition can be used
to implement an application defined wake-up of the blocked thread.

465
C++ Reference Guide

Appendices

466

C++ Reference Guide & PRISMTECH

Appendix

Topic Definitions

The Data Distribution Service distributes its data in structured data types, called
topics. Thefirst step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

Topic Definition Example

& PRISMTECH

All data distributed using the Data Distribution Service has to be defined as a topic.
A topicisastructured data type, like a C++-struct with severa members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

}s
#pragma keylist Foo
Y

Thisisthe definition of atopic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent C++-struct which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL pre-processor: idipp -1 c++ -S
<idl_filename>.id1, atool which tranglates the IDL topic definition into an
equivalent C++-definition. The -1 c++ option indicates that the C++ code has to be
generated (in accordance with the OMG C++ Language Mapping Specification.
The -5 option indicates that this C-code should be SandAlone C++ code, in other
words, it must not have any dependency on external ORB libraries. (It is also
possible to use libraries from an existing ORB, so that your DDS application can
al so manage information coming from an external ORB. In that case you should use
the CORBA -cohabitation mode, replacing the -s flag with a -c flag.). In this
example, the pre-processor will generate the classes FooTypeSupport,
FooDataWriter and FooDataReader Which contain the type specific operations.

467
C++ Reference Guide

Appendices

Complex Topics

The Foo topic isrelatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. It is important to know that the pre-processor
accepts al IDL constructs but only the subset is being processed.

Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. a struct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs.

IDL Pre-processor

This section contains the specification of the subset of OMG IDL that can be used to
define the topics.

IDL-to-Host Language Mapping

The Data Distribution Service IDL pre-processor trand ates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of amodule defining several structs and typedefs.

Data Digribution Service IDL Keywords

468

The identifiers listed in this appendix are reserved for use as keywordsin IDL and
may not be used otherwise, unless escaped with aleading underscore.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses
const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

& PRISMTECH

C++ Reference Guide

Appendices

Keywords must be written exactly as shown in the above list. Identifiersthat collide
with keywords areillegal. For example, boolean isavalid keyword; Boolean and
BOOLEAN areillegal identifiers.

Data Digribution ServiceIDL PragmaKeylist

To define a topic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. Whenthe <pragmakeylist>hasno <field id>,
the topic is available but no key is set. To define the keylist the definition, written in
BNF-notation, is as follows:
<pragmakeylist>::= “f#pragma keylist” <type_id> <field_id>*
<type_id>::= <struct_type_identifier>
| <union_type_identifier>
<field_id>::= <member_declarator>
| <element_spec_declarator>

In case of astruct, <type_id>isa<struct_type_identifier>.In caseof
a union, <type_id> is a <union_type_identifier>. The
<struct_type_identifier> istheidentifier used in the struct declaration.
The <union_type_identifier> istheidentifier used in the union
declaration. The<field_id> istheidentifier of afield in the struct or union
identified by <type_id>. In case of a struct, <field_id> is a
<member_declarator> which is one of the declarators used in the struct
member. In case of a union, <field_ id> is a
<element_spec_declarator> which is one of the declarators used in the
element specification in a case of the union.

For example, for the Foo example the next pragma must be used to have the
pre-processor generate the typed classes (FooTypeSupport, FooDataWriter and
FooDataReader).

#pragma keylist Foo userID index

Note that in this example the userTD and the index are used as akey.

Data Digribution Service | DL subset in BNF-notation

& PRISMTECH

Only a subset is used by the pre-processor. A description of the Data Distribution
Service IDL subset, written in BNF-notation, is as shown below.

<definition>::= <type_dcl> “;”

| <const_dcl> »;”

| <module> “;”
<module>::= “module” <identifier> “{“ <definition>+ “}”
<scoped_name>::= <identifier>

| “::” <identifier>

| <scoped_name> “::” <identifier>

469
C++ Reference Guide

Appendices

470

C++ Reference Guide

<const_dcl>::= “const” <const_type>
<identifier> “=" <const_exp>
<const_type>::= <integer_type>

| <char_type>

| <boolean_type>

| <floating_pt_type>
| <string_type>

| <scoped_name>

| <octet_type>

<const_exp>::= <or_expr>
<OY_exXpr>::= <XOr_expr>

| <or_expr> “|” <xor_expr>
<XOY_expr>::= <and_expr>

| <xor_expr> “~” <and_expr>

<and_expr>::= <shift_expr>

| <and_expr> “&” <shift_expr>

<shift_expr>::= <add_expr>

| <shift_expr> “>>" <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-" <mult_expr>
<mult_expr>::= <unary_expr>

<mult_expr> “/” <unary_expr>

| <mult_expr> “*” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr>::= <unary_operator> <primary_expr>

| <primary_expr>

<unary_operator>::= “-"

wan
| v+

|\\ "

<primary_expr>::= <scoped_name>

| <literals>
| “(” <const_exp> “)”

<literal>::= <integer_literal>

| <string_literal>

| <character_literal>

| <floating pt_literal>
| <boolean literal>

<boolean_literal>::= “TRUE”

| “FALSE”
<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>

<type_declarator>::= <type_spec> <declarators>
<type_spec>::= <simple_type_spec>

| <constr_type_spec>

<simple_type_spec>::= <base_type_spec>

& PRISMTECH

Appendices

& PRISMTECH

| <template_type_spec>

| <scoped_name>
<base_type_spec>::= <floating_pt_type>

| <integer_type>

| <char_type>

| <boolean_type>

| <octet_type>

<template_type_spec>::= <sequence_type>
| <string_ type>
<constr_type_spec>::= <struct_type>

| <union_type>
| <enum_type>

<declarators>::= <declarator> { “,” <declarator> }*

<declarator>::= <gimple_declarator>
| <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating pt_type>::= “float”
| “double”
<integer_type>::= <signed_int>
| <unsigned_int>
<signed_int>::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long"”
<char_type>::= “char”

<boolean_type>::= “boolean”

<octet_type>::= “octet”

<struct_type>::= “struct” <identifier> “{” <member_list> }”
<member_list>::= <member>+

<member>: := <type_spec> <declarators> “;”

<union_type>::= “union” <identifier> “switch”

“ (" <switch_type_spec> “)”
“{” <switch_body> “}”
<switch_type_spec>::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec> “;”
<case_label>::= “case” <const_exp> “:”

471
C++ Reference Guide

Appendices

| “default” “:”
<element_spec>::= <type_spec> <declarator>
<enum_type>::= “enum” <identifier>
“{” <enumerator> { “,” <enumerator> }* “}”
<enumerator>::= <identifier>
<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>"
| “sequence” “<” <simple_type_spec> “>”

<string_type>::= “string” “<” <positive_int_const> “>"
| “string”

<array_declarator>::= <identifier> <fixed_array size>+

<fixed_array_size>::= “[” <positive_int_const> “]”

472

C++ Reference Guide & PRISMTECH

Appendix

DCPS Queries and Filters

A subset of SQL syntax isused in several parts of OpenSplice:
e thefilter expressioninthecContentFilteredTopic
¢ the topic_expressionintheMultiTopic

* the query_expression inthe QueryReadCondition

Those expressions may use a subset of SQL, extended with the possibility to use
program variablesin the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:

* theNonTerminals aretypeset initalics
* the *Terminals’ arequoted and typeset in afixed width font
* the TOKENS are typeset in small caps

* the notation (element // ‘,’) represents a non-empty comma-separated list of
elements

SOL Grammar in BNF

& PRISMTECH

Expression::= FilterExpression

| TopicExpression

| QueryExpression
FilterExpression::= Condition
TopicExpression: := SelectFrom {Where } ‘;'
QueryExpression::= {Condition}

SelectFrom: := ‘SELECT’' Aggregation ‘FROM’ Selection

Aggregation::= ‘*'
| (SubjectFieldSpec // “.,')

SubjectFieldSpec: := FIELDNAME
| FIELDNAME ‘AS’ FIELDNAME
| FIELDNAME FIELDNAME

Selection::= TOPICNAME
| TOPICTNAME NaturalJoin JoinItem

JoinItem: := TOPICNAME

473
C++ Reference Guide

Appendices

| TOPICNAME NaturalJoin JoinItem
| ‘' (* TOPICNAME NaturalJoin JoinItem ‘)’

NaturalJoin::= ‘INNER NATURAL JOIN'
| ‘NATURAL JOIN’
| ‘NATURAL INNER JOIN’

Where::= ‘WHERE’ Condition

Condition::= Predicate
| Condition ‘AND’ Condition
| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(' Condition ‘)’

Predicate: := ComparisonPredicate
| BetweenPredicate

ComparisonPredicate: := FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME

BetweenPredicate: := FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN'’ Range

RelOp::: L | Vst | A | Vet | Vo=t | Vet | like
Range::= Parameter ‘AND’ Parameter
Parameter::= INTEGERVALUE

| FLOATVALUE

| STRING

| ENUMERATEDVALUE

| PARAMETER

I INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are all
aliases, in the sense that they have the same semantics. The aliases are all supported
because they all are part of the SQL standard.

SQL Token Expression

The syntax and meaning of the tokens used in the SQL grammar is described as
follows:

* FIELDNAME - A fieldname is a reference to afield in the data-structure. The dot
‘.’ isused to navigate through nested structures. The number of dots that may
be used in afieldnameis unlimited. The field-name can refer to fields at any depth
in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the
fieldnames that appear on the C mapping of the structure.
474

C++ Reference Guide & PRISMTECH

Appendices

e TOPICNAME - A topic nameisan identifier for atopic, and is defined as any series
of characters ‘a’, ..., ‘z’, ‘A", ...,'2’, 0", .., *9’, *=7, *_’ but may not
start with adigit.

* INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus
sign, representing a decima integer value within the range of the system. A
hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

* FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign
and optionally including a floating point (* . *). A power-of-ten expression may
be post-fixed, which has the syntax en, where n is a number, optionally preceded
by aplus or minus sign.

e STRING - Any series of characters encapsulated in single quotes, except a
new-line character or aright quote. A string starts with a left or right quote, but
ends with aright quote.

* ENUMERATEDVALUE - An enumerated value is a reference to a value declared
within an enumeration. The name of the value must correspond to the names
specified in the IDL definition of the enumeration, and must be encapsulated in
single quotes. An enum value starts with aleft or right quote, but ends with aright
quote.

* PARAMETER - A parameter is of the form %n, where n represents a natural number
(zero included) smaller than 100. It refers to the n + 1th argument in the given
context.

Note: when Rel0p is *1ike”, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is * 2/, any zero
or more charactersis * = .

SQL Examples

& PRISMTECH

Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, X, y, 2", and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.
Example of a topic_expression:
“SELECT flight_name, x, y, z AS height FROM ‘Location’
NATURAL JOIN ‘FlightPlan’ WHERE height < 1000 AND x <23”
Example of aquery._expressionOrafilter_expression:
“height < 1000 AND x <23”

475
C++ Reference Guide

Appendices

476

C++ Reference Guide & PRISMTECH

BIBLIOGRAPHY

Bibliography

[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object
Management Group

[2] OMG C++ Language Mapping Specification formal/99-07-35, Object Management Group
(OMG)

[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,
formal/02-06-01, Object Management Group

479

& PRISMTECH C++ Reference Guide

Bibliography

480

C++ Reference Guide & PRISMTECH

GLOSSARY

Glossary

Acronyms

Acronym Meaning

CORBA Common Object Request Broker Architecture

DCPS Data Centric Publish/Subscribe

DDS Data Distribution Service

DLRL DataLoca Reconstruction Layer

IDL Interface Definition Language

OoMG Object Management Group

ORB Object Request Broker

QoS Quality of Service

SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
& PRISMTECH 483

C++ Reference Guide

Glossary

484

C++ Reference Guide & PRISMTECH

INDEX

| nd ex

Affected Entities. 393
API Constantsand Types. 407
Application Responsibility 459
assert_liveliness 110, 223
BasicUsage ..., 393
begin access............ ... it 282
begin_coherent changes. 198
C++ Reference Guide Document Structure.. 3
ClassCondition 97
Class ContentFilteredTopic 179
Class DataReader (abstract) 301
ClassDataSample. 365
Class DataWriter (abstract) 220
Class DomainEntity (abstract) 33
Class DomainParticipant 106
Class DomainParticipantFactory 150
Class Entity (abstract). 26
ClassFooDataReader 331
Class FooDataWriter 240
Class FooTypeSupport.oovvn... 192
Class GuardCondition 98
ClassMultiTopic ...t 184
ClassPublisher......................... 196
Class QueryCondition 385
Class ReadCondition 381
Class StatusCondition. 100
ClassSubscriber. 280
ClassTOpIC. . .o e 171

Data Distribution Service IDL Keywords468
Data Distribution Service IDL Pragma Keylist 469
Data Distribution Service IDL subset in

& PRISMTECH

assert_liveliness (inherited) 243
AsSignment. 10
attach_condition......................... 92
Bibliography. oot 479
Blocking Behavior of a Waitset State Chart . . 464
Blocking Behaviour 463
Class TopicDescription (abstract) 168
Class TypeSupport (abstract) 191
ClassWaitSet.............ccoiiievinn.. 91
Communication States 455
Communication StatusEvent. 456
Complex TOPICS. . . vt 468
Conditionsand Waitsets. 461
contains entity 111
copy_from_topic qos. 200, 282
create_contentfilteredtopic. 112
create datareader 284
create datawriter, 201
create multitopic 113
create participant., 151
create publisher........................ 115
create_querycondition 306
create_querycondition (inherited) 336
create readcondition 307
create_readcondition (inherited) 336
create subscriber 117
create topic ... 119
BNF-notation 469
Data Type “Foo” Typed Classes for Pre-processor
Generation. i 20

487

C++ Reference Guide

Index

488

Data Type “Foo” Typed Classes Pre-processor

Generationcoiiin... 168
DataReaderccoiiiiinn.. 458
DataReaderListener Interface 373
DataReaderQoS.ccoiiiiian.. 395
DATAWRITER _QOS DEFAULT 399
DataWriterListener Interface. 274
DataWriterQos, 397
DCPSConditions 97, 463

DCPS Domain Modul€e' s ClassModd . .. 18, 106
DCPS Infrastructure Modul€ s Class Model 16, 26

DCPSInheritance 453
DCPSListeners.cocvveeiiennn. 75, 460
DCPS Module Composition 15
DCPS Publication Module' s ClassModel 21, 195
DCPSStatusValuescovvnns. 77

DCPS Subscription Module's Class Model 22, 279
DCPS Topic-Definition Module' s Class Model 19,

................................. 167
DCPSWaitSets.coovvvvnnn. 91, 461
dds deps.idl. 415
DeadlineQosPolicy 41,42

delete_contained_entities 122, 204, 287, 308

enable 27
enable (inherited). . . 130, 172, 206, 225, 248, 289,

1L, 337
find topic, 130
get_builtin_subscriber................... 131
get conditions., 94
get current time....................... 132
get datareader......................... 382
get_datareader (inherited) 386
get datareaders................ 289
get_default_datareader gos............... 290
get_default_datawriter gqos............... 207
get_default_participant qos 155

C++ Reference Guide

delete_contained_entities (inherited) 336
delete_contentfilteredtopic 123
delete datareader 288
delete datawriter....................... 205
delete multitopic....................... 125
delete participant 154
delete publisher 126
delete readcondition. 310
delete_readcondition (inherited) 337
delete subscriber. L 127
delete topic. ...l 128
DestinationOrderQosPolicy 43
detach_condition........................ 93
dispose. ... 243
dispose(abstract). 224
dispose w_timestamp................... 247
dispose w_timestamp (abstract)........... 224
Document Structure, .. 3
DomainModule 17, 106
DomainParticipantListener interface 161
DomainParticipantQos 401
DurabilityQosPolicy 45
DurabilityServiceQosPolicy 48
end acCess.o 289
end coherent changes 206
EntityFactoryQosPolicy 50
Functionality 15
get_default_publisher qos 133
get_default_subscriber gos. 134
get_default topic gqos. 136
get_discovered participant data. 137
get_discovered participants.............. 137
get_discovered topic data............... 138
get_discovered topics. 137
get domainid......................... 138
get enabled statuses. 102

& PRISMTECH

getentity 103
get_expression_parameters. 180, 185
get filter expression 181
get_inconsistent_topic status.............. 172
getinstance i 156
get instance handle...................... 29
get_instance state mask 382
get_instance_state mask (inherited) 386
get key value...................... 248, 337
get key value (abstract). 225, 311
get listener........ 139, 173, 208, 225, 291, 311
get listener (abstract) 30
get_listener (inherited) 250, 337
get_liveliness changed_status............. 312
get_liveliness changed_status (inherited)338
get liveliness lost status. 226
get_liveliness lost_status (inherited) 250
get_matched_publication data. 313
get_matched_publication_data (inherited)338
get_matched_publications 313
get_matched_publications (inherited) 338
get_matched_subscription data............ 227
get_matched_subscription_data (inherited) . . . 250
get_matched_subscriptions. 227
get_matched_subscriptions (inherited). 250
get name. e 169
get_name (inherited). 174, 182, 186
get_offered _deadline missed status 227

get_offered_deadline_missed_status (inherited) . .
251

get_offered_incompatible qos status 228

get_offered_incompatible_gos_status (inherited) .
251

get_participant 169, 209, 292
get_participant (inherited) 174, 182, 187
get_publication_match status 230
get_publication_match_status (inherited)251
get publisher 230
get_publisher (inherited) 251
get qoS........... 139, 174, 209, 230, 292, 313
get gqos(abstract) ... 30
HistoryQosPolicy 52
& PRISMTECH

get gos(inherited) 252, 338
get_query_arguments. ... 386
get_query expression.iinan.. 387
get related topic ... 182
get_requested_deadline_missed status. 314

get_requested_deadline_missed_status (inherited)
339

get_requested_incompatible_gos status 315
get_requested_incompatible_gos_status
(inherited) o 339
get sample lost_status. 316
get_sample lost_status (inherited). 339
get sample rejected status 318
get_sample_rejected status (inherited) 339
get sample state mask 383
get_sample_state mask (inherited) 388
get status changes. 30
get_status _changes (inherited) 140, 175, 210, 231,
252, 293, 319, 339
get_statuscondition. 32
get_statuscondition (inherited) 140, 175, 211, 232,
252, 293, 319, 340
get subscriber. ... L 319
get_subscriber (inherited). 340
get_subscription_expression 187
get_subscription_match status. 320
get_subscription_match_status (inherited). . . . 340
get tOPIC. . oo v e 232
get_topic (inherited) 252
get_topicdescription. 320
get_topicdescription (inherited) 340
get trigger value........... 98
get_trigger_vaue (inherited) . . . 99, 103, 384, 388
get typename.................oun. 170, 193
get_type name (abstract) 192
get_type name (inherited) 176, 183, 188
get view state mask............... ..., 384
get_view_state mask (inherited) 389
GroupDataQosPolicy 51
GuardCondition Trigger State 465
489

C++ Reference Guide

Index

IDL Pre-processor.coocvvveenennn.. 468 ignore topic ... 142
IDL-to-Host Language Mapping. 468 InconsistentTopicStatus 79
ignore_participant 141 Infrastructure Module. 16, 26
ignore_publication. 141 Inheritance of Abstract Operations.......... 13
ignore_subscription. 141 instance state 444
L
LatencyBudgetQosPolicy 54 LivelinessQosPalicy 57,58
LifespanQosPolicy 56 lookup datareader...................... 294
Listener Interface. 74 lookup_datawriter...................... 211
Listeners i 459 lookup instance 341
Listenersinterfaces...................... 12 lookup_instance (abstract) 321
LivelinessChangedStatus 79 lookup participant 158
LivelinessLostStatus 81 lookup_topicdescription................. 142
M
Memory Management. 9
N
notify datareaders...................... 294
O
OfferedDeadlineMissedStatus. 82 on_offered_incompatible qos (inherited, abstract)
OfferedincompatibleQosStatus. 83 165, .. 273
on_data available (abstract) 375 on_publication_match (abstract)........... 278
on_data available (inherited, abstract) . . 163,370 on_publication_match (inherited, abstract). . . 165,
on_data on_readers (abstract). 371 274
on_data on_readers (inherited, abstract) 163 on_requested_deadline_missed (abstract). ... 377
on_inconsistent_topic (abstract) 190 on_requested_deadline_missed (inherited,

490

on_inconsistent_topic (inherited, abstract) . . . 164

on_liveliness changed (abstract) 376

on_liveliness_changed (inherited, abstract) . . 164,
372

on_liveliness lost (abstract) 275
on_liveliness lost (inherited, abstract) . . 164, 273
on_offered_deadline_missed (abstract). 276

on_offered_deadline_missed (inherited, abstract)
164, oo 273
on_offered_incompatible_gos (abstract). 277

C++ Reference Guide

abstract)o 372
on_requested_incompatible_gos (abstract). .. 378
on_requested incompatible _qos (inherited,

abstract) ... 165, 372
on_sample lost (abstract) 379
on_sample _lost (inherited, abstract) 166, 373
on_sample rejected (abstract). 379
on_sample _rejected (inherited, abstract) 166, 373
on_subscription_match (abstract) 380
on_subscription_match (inherited, abstract) . . 166,

& PRISMTECH

373 OwnershipQosPolicy 59, 445
Operations. 4 OwnershipStrengthQosPolicy 61
Operations Concerning States 449
PARTICIPANT_QOS DEFAULT 400, 402 PublicationModule 20, 195
PartitionQosPolicy 62 Publication Type Specific Classes. 219
Plain Communication Status State Chart 457 PublicationMatchStatus 85
Pointer Types. ..., 9 PUBLISHER _QOS DEFAULT 403
Pre-defined Bit Mask Definitions. 448 PublisherListener Interface 272
PresentationQosPolicy 63 PublisherQos 402
QosPolicyBasics ... 39 QosPolicy Settings.ooiiaa., 34
QosPolicy Default Attributes 37
read. 341, 449 register_instance (abstract). 233
read (abstract). 321 register_instance w_timestamp............ 256
read_instance 346, 451 register_instance w_timestamp (abstract) 233
read_instance (abstract) 321 register type. 194
read_next_instance...................... 347 register_type(abstract). 192
read_next_instance (abstract).............. 322 ReliabilityQosPolicy 66
read_next_instance w_condition........... 350 Requested Offered DestinationOrderQosPolicy 44,
read_next_instance w_condition (abstract) .. .322 ... e 60
read_next sample................... 352, 450 Requested Offered DurabilityQosPolicy 46
read_next_sample (abstract)............... 323 Requested Offered PresentationQosPolicy64
read_w_condition................... 352, 450 Requested Offered ReliabilityQosPolicy 67
read_w_condition (abstract)............... 323 RequestedDeadlineMissedStatus. 86
ReadCondition and QueryCondition Trigger State RequestedincompatibleQosStatus 87

464 ResourceLimitsQosPolicy 68
ReaderDatal ifecycleQosPolicy 65 resume publications. 211
ReferenceCount. 9 ReturnCodes c.ciiiiiiin.. 7
Reference Types., 9 return loan. 354
register_instance........................ 254 return_loan(abstract)............. ... 323
sample state. i 443 SampleReectedStatus 89
Samplelnfo. 366 set _default datareader qos............... 296
SamplelnfoClass....................... 443 set_default_datawriter qos................ 212
SampleLostStatus. 89 set_default participant gos............... 159

& PRISMTECH 491

C++ Reference Guide

Index

492

set_default_publisher qos................ 143
set default_subscriber gos............... 144
set default topic gos................... 145
set enabled statuses.................... 104
set_expression parameters........... 183, 188
set listener........ 147, 176, 214, 233, 297, 324
set listener (abstract). 32
set_listener (inherited). 257, 356
Sset goS.t 149, 177, 216, 235, 299, 326
set qos(abstract). ... L, 33
set qos(inherited).................. 257, 356
set_query_arguments. 389
set trigger value. L. 99
SignaHandling. 8
Single Instance instance_state State Chart . . . 446
Single Instance view_state State Chart 447
Single Sample sample_state State Chart. 444
Snapshot 446, 447
SQLExamples..................coon... 475
SQL GrammarinBNF 473
SQL Token Expression.................. 474
take 356, 450
take(abstract) 327
take instance...................... 358, 451
take instance (abstract). 328
take next_instance 359
take next_instance (abstract) 328
take_next_instance w_condition 361
take _next_instance_w_condition (abstract) .. 328
take next sample 363, 450
take next_sample(abstract) 329
take w_condition 363, 450
unregister instance 257
unregister_instance (abstract) 237
unregister_instance w_timestamp 261
Var Reference Types.oov... 10

C++ Reference Guide

State Definitions. 448
StateMasksS. 448
StatePer Sample. 444
Status DataReader Statecraft for a Read
Communication.................... 458
Status Description Per Entity 75
StatusPer Entity oL 100
StatusCondition Trigger State. 464
Struct QosPolicy 33
Struct Samplelnfo...................... 365
StructStatus 75
Subscriber 459

Subscriber Statecraft for a Read Communication

Status. ..o 459
SUBSCRIBER_QOS DEFAULT 404
SubscriberListener Interface. 369
SubscriberQos.o 403
SubscriptionModule. 21,279
Subscription Type SpecificClasses 301
SubscriptionMatchStatus 91
suspend_publications 217
take_w_condition (abstract) 329
Thread Safetycooviiiiiin... 8
TimeBasedFilterQosPolicy 70
Topic Definition Example. 467
TOPIC_QOS DEFAULT................ 406
TopicDataQosPolicy..................... 71
Topic-DefinitionModule 18, 167
Topic-Definition Type Specific Classes. 191
TopicListener interface. 189
TopiCQOS. . . v i 405
TransportPriorityQosPolicy 71

unregister_instance w_timestamp (abstract) . 237

UserDataQosPolicy. 72
view state. 446
& PRISMTECH

Index

W

Walt. ... 95

wait_for_historical data.................. 329

wait_for_historical_data (inherited)......... 365

WHTE . 262
& PRISMTECH

write(abstract) oo 238
write w_timestamp 265
write w_timestamp (abstract) 239
WriterDatal ifecycleQosPolicy 73

493

C++ Reference Guide

Index

494

C++ Reference Guide & PRISMTECH

	C++ Reference Guide
	Table of Contents
	Preface
	About the C++ Reference Guide
	Contacts

	Introduction
	About the C++ Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 Thread Safety
	1.2 Signal Handling
	1.3 Memory Management
	1.3.1 Reference Count
	1.3.2 Reference Types
	1.3.2.1 Pointer Types
	1.3.2.2 Var Reference Types
	1.3.2.3 Assignment

	1.4 Listener Interfaces
	1.5 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Class Entity (abstract)
	3.1.1.1 enable
	3.1.1.2 get_instance_handle
	3.1.1.3 get_listener (abstract)
	3.1.1.4 get_qos (abstract)
	3.1.1.5 get_status_changes
	3.1.1.6 get_statuscondition
	3.1.1.7 set_listener (abstract)
	3.1.1.8 set_qos (abstract)

	3.1.2 Class DomainEntity (abstract)
	3.1.3 Struct QosPolicy
	3.1.3.1 DeadlineQosPolicy
	3.1.3.2 DestinationOrderQosPolicy
	3.1.3.3 DurabilityQosPolicy
	3.1.3.4 DurabilityServiceQosPolicy
	3.1.3.5 EntityFactoryQosPolicy
	3.1.3.6 GroupDataQosPolicy
	3.1.3.7 HistoryQosPolicy
	3.1.3.8 LatencyBudgetQosPolicy
	3.1.3.9 LifespanQosPolicy
	3.1.3.10 LivelinessQosPolicy
	3.1.3.11 OwnershipQosPolicy
	3.1.3.12 OwnershipStrengthQosPolicy
	3.1.3.13 PartitionQosPolicy
	3.1.3.14 PresentationQosPolicy
	3.1.3.15 ReaderDataLifecycleQosPolicy
	3.1.3.16 ReliabilityQosPolicy
	3.1.3.17 ResourceLimitsQosPolicy
	3.1.3.18 SchedulingQosPolicy
	3.1.3.19 TimeBasedFilterQosPolicy
	3.1.3.20 TopicDataQosPolicy
	3.1.3.21 TransportPriorityQosPolicy
	3.1.3.22 UserDataQosPolicy
	3.1.3.23 WriterDataLifecycleQosPolicy

	3.1.4 Listener Interface
	3.1.5 Struct Status
	3.1.5.1 InconsistentTopicStatus
	3.1.5.2 LivelinessChangedStatus
	3.1.5.3 LivelinessLostStatus
	3.1.5.4 OfferedDeadlineMissedStatus
	3.1.5.5 OfferedIncompatibleQosStatus
	3.1.5.6 PublicationMatchedStatus
	3.1.5.7 RequestedDeadlineMissedStatus
	3.1.5.8 RequestedIncompatibleQosStatus
	3.1.5.9 SampleLostStatus
	3.1.5.10 SampleRejectedStatus
	3.1.5.11 SubscriptionMatchedStatus

	3.1.6 Class WaitSet
	3.1.6.1 attach_condition
	3.1.6.2 detach_condition
	3.1.6.3 get_conditions
	3.1.6.4 wait

	3.1.7 Class Condition
	3.1.7.1 get_trigger_value

	3.1.8 Class GuardCondition
	3.1.8.1 get_trigger_value (inherited)
	3.1.8.2 set_trigger_value

	3.1.9 Class StatusCondition
	3.1.9.1 get_enabled_statuses
	3.1.9.2 get_entity
	3.1.9.3 get_trigger_value (inherited)
	3.1.9.4 set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DomainParticipant
	3.2.1.1 assert_liveliness
	3.2.1.2 contains_entity
	3.2.1.3 create_contentfilteredtopic
	3.2.1.4 create_multitopic
	3.2.1.5 create_publisher
	3.2.1.6 create_subscriber
	3.2.1.7 create_topic
	3.2.1.8 delete_contained_entities
	3.2.1.9 delete_contentfilteredtopic
	3.2.1.10 delete_multitopic
	3.2.1.11 delete_publisher
	3.2.1.12 delete_subscriber
	3.2.1.13 delete_topic
	3.2.1.14 enable (inherited)
	3.2.1.15 find_topic
	3.2.1.16 get_builtin_subscriber
	3.2.1.17 get_current_time
	3.2.1.18 get_default_publisher_qos
	3.2.1.19 get_default_subscriber_qos
	3.2.1.20 get_default_topic_qos
	3.2.1.21 get_discovered_participants
	3.2.1.22 get_discovered_participant_data
	3.2.1.23 get_discovered_topics
	3.2.1.24 get_discovered_topic_data
	3.2.1.25 get_domain_id
	3.2.1.26 get_listener
	3.2.1.27 get_qos
	3.2.1.28 get_status_changes (inherited)
	3.2.1.29 get_statuscondition (inherited)
	3.2.1.30 ignore_participant
	3.2.1.31 ignore_publication
	3.2.1.32 ignore_subscription
	3.2.1.33 ignore_topic
	3.2.1.34 lookup_topicdescription
	3.2.1.35 set_default_publisher_qos
	3.2.1.36 set_default_subscriber_qos
	3.2.1.37 set_default_topic_qos
	3.2.1.38 set_listener
	3.2.1.39 set_qos

	3.2.2 Class DomainParticipantFactory
	3.2.2.1 create_participant
	3.2.2.2 delete_participant
	3.2.2.3 get_default_participant_qos
	3.2.2.4 get_instance
	3.2.2.5 get_qos
	3.2.2.6 lookup_participant
	3.2.2.7 set_default_participant_qos
	3.2.2.8 set_qos

	3.2.3 DomainParticipantListener interface
	3.2.3.1 on_data_available (inherited, abstract)
	3.2.3.2 on_data_on_readers (inherited, abstract)
	3.2.3.3 on_inconsistent_topic (inherited, abstract)
	3.2.3.4 on_liveliness_changed (inherited, abstract)
	3.2.3.5 on_liveliness_lost (inherited, abstract)
	3.2.3.6 on_offered_deadline_missed (inherited, abstract)
	3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
	3.2.3.8 on_publication_matched (inherited, abstract)
	3.2.3.9 on_requested_deadline_missed (inherited, abstract)
	3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
	3.2.3.11 on_sample_lost (inherited, abstract)
	3.2.3.12 on_sample_rejected (inherited, abstract)
	3.2.3.13 on_subscription_matched (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Class TopicDescription (abstract)
	3.3.1.1 get_name
	3.3.1.2 get_participant
	3.3.1.3 get_type_name

	3.3.2 Class Topic
	3.3.2.1 enable (inherited)
	3.3.2.2 get_inconsistent_topic_status
	3.3.2.3 get_listener
	3.3.2.4 get_name (inherited)
	3.3.2.5 get_participant (inherited)
	3.3.2.6 get_qos
	3.3.2.7 get_status_changes (inherited)
	3.3.2.8 get_statuscondition (inherited)
	3.3.2.9 get_type_name (inherited)
	3.3.2.10 set_listener
	3.3.2.11 set_qos

	3.3.3 Class ContentFilteredTopic
	3.3.3.1 get_expression_parameters
	3.3.3.2 get_filter_expression
	3.3.3.3 get_name (inherited)
	3.3.3.4 get_participant (inherited)
	3.3.3.5 get_related_topic
	3.3.3.6 get_type_name (inherited)
	3.3.3.7 set_expression_parameters

	3.3.4 Class MultiTopic
	3.3.4.1 get_expression_parameters
	3.3.4.2 get_name (inherited)
	3.3.4.3 get_participant (inherited)
	3.3.4.4 get_subscription_expression
	3.3.4.5 get_type_name (inherited)
	3.3.4.6 set_expression_parameters

	3.3.5 TopicListener interface
	3.3.5.1 on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition Type Specific Classes
	3.3.6.1 Class TypeSupport (abstract)
	3.3.6.2 get_type_name (abstract)
	3.3.6.3 register_type (abstract)
	3.3.6.4 Class FooTypeSupport
	3.3.6.5 get_type_name
	3.3.6.6 register_type

	3.4 Publication Module
	3.4.1 Class Publisher
	3.4.1.1 begin_coherent_changes
	3.4.1.2 copy_from_topic_qos
	3.4.1.3 create_datawriter
	3.4.1.4 delete_contained_entities
	3.4.1.5 delete_datawriter
	3.4.1.6 enable (inherited)
	3.4.1.7 end_coherent_changes
	3.4.1.8 get_default_datawriter_qos
	3.4.1.9 get_listener
	3.4.1.10 get_participant
	3.4.1.11 get_qos
	3.4.1.12 get_status_changes (inherited)
	3.4.1.13 get_statuscondition (inherited)
	3.4.1.14 lookup_datawriter
	3.4.1.15 resume_publications
	3.4.1.16 set_default_datawriter_qos
	3.4.1.17 set_listener
	3.4.1.18 set_qos
	3.4.1.19 suspend_publications
	3.4.1.20 wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Class DataWriter (abstract)
	3.4.2.2 assert_liveliness
	3.4.2.3 dispose (abstract)
	3.4.2.4 dispose_w_timestamp (abstract)
	3.4.2.5 enable (inherited)
	3.4.2.6 get_key_value (abstract)
	3.4.2.7 get_listener
	3.4.2.8 get_liveliness_lost_status
	3.4.2.9 get_matched_subscription_data
	3.4.2.10 get_matched_subscriptions
	3.4.2.11 get_offered_deadline_missed_status
	3.4.2.12 get_offered_incompatible_qos_status
	3.4.2.13 get_publication_matched_status
	3.4.2.14 get_publisher
	3.4.2.15 get_qos
	3.4.2.16 get_status_changes (inherited)
	3.4.2.17 get_statuscondition (inherited)
	3.4.2.18 get_topic
	3.4.2.19 lookup_instance (abstract)
	3.4.2.20 register_instance (abstract)
	3.4.2.21 register_instance_w_timestamp (abstract)
	3.4.2.22 set_listener
	3.4.2.23 set_qos
	3.4.2.24 unregister_instance (abstract)
	3.4.2.25 unregister_instance_w_timestamp (abstract)
	3.4.2.26 wait_for_acknowledgments
	3.4.2.27 write (abstract)
	3.4.2.28 write_w_timestamp (abstract)
	3.4.2.29 writedispose (abstract)
	3.4.2.30 writedispose_w_timestamp (abstract)
	3.4.2.31 Class FooDataWriter
	3.4.2.32 assert_liveliness (inherited)
	3.4.2.33 dispose
	3.4.2.34 dispose_w_timestamp
	3.4.2.35 enable (inherited)
	3.4.2.36 get_key_value
	3.4.2.37 get_listener (inherited)
	3.4.2.38 get_liveliness_lost_status (inherited)
	3.4.2.39 get_matched_subscription_data (inherited)
	3.4.2.40 get_matched_subscriptions (inherited)
	3.4.2.41 get_offered_deadline_missed_status (inherited)
	3.4.2.42 get_offered_incompatible_qos_status (inherited)
	3.4.2.43 get_publication_matched_status (inherited)
	3.4.2.44 get_publisher (inherited)
	3.4.2.45 get_qos (inherited)
	3.4.2.46 get_status_changes (inherited)
	3.4.2.47 get_statuscondition (inherited)
	3.4.2.48 get_topic (inherited)
	3.4.2.49 lookup_instance
	3.4.2.50 register_instance
	3.4.2.51 register_instance_w_timestamp
	3.4.2.52 set_listener (inherited)
	3.4.2.53 set_qos (inherited)
	3.4.2.54 unregister_instance
	3.4.2.55 unregister_instance_w_timestamp
	3.4.2.56 write
	3.4.2.57 write_w_timestamp
	3.4.2.58 writedispose
	3.4.2.59 writedispose_w_timestamp

	3.4.3 PublisherListener Interface
	3.4.3.1 on_liveliness_lost (inherited, abstract)
	3.4.3.2 on_offered_deadline_missed (inherited, abstract)
	3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
	3.4.3.4 on_publication_matched (inherited, abstract)

	3.4.4 DataWriterListener Interface
	3.4.4.1 on_liveliness_lost (abstract)
	3.4.4.2 on_offered_deadline_missed (abstract)
	3.4.4.3 on_offered_incompatible_qos (abstract)
	3.4.4.4 on_publication_matched (abstract)

	3.5 Subscription Module
	3.5.1 Class Subscriber
	3.5.1.1 begin_access
	3.5.1.2 copy_from_topic_qos
	3.5.1.3 create_datareader
	3.5.1.4 delete_contained_entities
	3.5.1.5 delete_datareader
	3.5.1.6 enable (inherited)
	3.5.1.7 end_access
	3.5.1.8 get_datareaders
	3.5.1.9 get_default_datareader_qos
	3.5.1.10 get_listener
	3.5.1.11 get_participant
	3.5.1.12 get_qos
	3.5.1.13 get_status_changes (inherited)
	3.5.1.14 get_statuscondition (inherited)
	3.5.1.15 lookup_datareader
	3.5.1.16 notify_datareaders
	3.5.1.17 set_default_datareader_qos
	3.5.1.18 set_listener
	3.5.1.19 set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Class DataReader (abstract)
	3.5.2.2 create_querycondition
	3.5.2.3 create_readcondition
	3.5.2.4 delete_contained_entities
	3.5.2.5 delete_readcondition
	3.5.2.6 enable (inherited)
	3.5.2.7 get_key_value (abstract)
	3.5.2.8 get_listener
	3.5.2.9 get_liveliness_changed_status
	3.5.2.10 get_matched_publication_data
	3.5.2.11 get_matched_publications
	3.5.2.12 get_qos
	3.5.2.13 get_requested_deadline_missed_status
	3.5.2.14 get_requested_incompatible_qos_status
	3.5.2.15 get_sample_lost_status
	3.5.2.16 get_sample_rejected_status
	3.5.2.17 get_status_changes (inherited)
	3.5.2.18 get_statuscondition (inherited)
	3.5.2.19 get_subscriber
	3.5.2.20 get_subscription_matched_status
	3.5.2.21 get_topicdescription
	3.5.2.22 lookup_instance (abstract)
	3.5.2.23 read (abstract)
	3.5.2.24 read_instance (abstract)
	3.5.2.25 read_next_instance (abstract)
	3.5.2.26 read_next_instance_w_condition (abstract)
	3.5.2.27 read_next_sample (abstract)
	3.5.2.28 read_w_condition (abstract)
	3.5.2.29 return_loan (abstract)
	3.5.2.30 set_listener
	3.5.2.31 set_qos
	3.5.2.32 take (abstract)
	3.5.2.33 take_instance (abstract)
	3.5.2.34 take_next_instance (abstract)
	3.5.2.35 take_next_instance_w_condition (abstract)
	3.5.2.36 take_next_sample (abstract)
	3.5.2.37 take_w_condition (abstract)
	3.5.2.38 wait_for_historical_data
	3.5.2.39 Class FooDataReader
	3.5.2.40 create_querycondition (inherited)
	3.5.2.41 create_readcondition (inherited)
	3.5.2.42 delete_contained_entities (inherited)
	3.5.2.43 delete_readcondition (inherited)
	3.5.2.44 enable (inherited)
	3.5.2.45 get_key_value
	3.5.2.46 get_listener (inherited)
	3.5.2.47 get_liveliness_changed_status (inherited)
	3.5.2.48 get_matched_publication_data (inherited)
	3.5.2.49 get_matched_publications (inherited)
	3.5.2.50 get_qos (inherited)
	3.5.2.51 get_requested_deadline_missed_status (inherited)
	3.5.2.52 get_requested_incompatible_qos_status (inherited)
	3.5.2.53 get_sample_lost_status (inherited)
	3.5.2.54 get_sample_rejected_status (inherited)
	3.5.2.55 get_status_changes (inherited)
	3.5.2.56 get_statuscondition (inherited)
	3.5.2.57 get_subscriber (inherited)
	3.5.2.58 get_subscription_matched_status (inherited)
	3.5.2.59 get_topicdescription (inherited)
	3.5.2.60 lookup_instance
	3.5.2.61 read
	3.5.2.62 read_instance
	3.5.2.63 read_next_instance
	3.5.2.64 read_next_instance_w_condition
	3.5.2.65 read_next_sample
	3.5.2.66 read_w_condition
	3.5.2.67 return_loan
	3.5.2.68 set_listener (inherited)
	3.5.2.69 set_qos (inherited)
	3.5.2.70 take
	3.5.2.71 take_instance
	3.5.2.72 take_next_instance
	3.5.2.73 take_next_instance_w_condition
	3.5.2.74 take_next_sample
	3.5.2.75 take_w_condition
	3.5.2.76 wait_for_historical_data (inherited)

	3.5.3 Class DataSample
	3.5.4 Struct SampleInfo
	3.5.4.1 SampleInfo

	3.5.5 SubscriberListener Interface
	3.5.5.1 on_data_available (inherited, abstract)
	3.5.5.2 on_data_on_readers (abstract)
	3.5.5.3 on_liveliness_changed (inherited, abstract)
	3.5.5.4 on_requested_deadline_missed (inherited, abstract)
	3.5.5.5 on_requested_incompatible_qos (inherited, abstract)
	3.5.5.6 on_sample_lost (inherited, abstract)
	3.5.5.7 on_sample_rejected (inherited, abstract)
	3.5.5.8 on_subscription_matched (inherited, abstract)

	3.5.6 DataReaderListener Interface
	3.5.6.1 on_data_available (abstract)
	3.5.6.2 on_liveliness_changed (abstract)
	3.5.6.3 on_requested_deadline_missed (abstract)
	3.5.6.4 on_requested_incompatible_qos (abstract)
	3.5.6.5 on_sample_lost (abstract)
	3.5.6.6 on_sample_rejected (abstract)
	3.5.6.7 on_subscription_matched (abstract)

	3.5.7 Class ReadCondition
	3.5.7.1 get_datareader
	3.5.7.2 get_instance_state_mask
	3.5.7.3 get_sample_state_mask
	3.5.7.4 get_trigger_value (inherited)
	3.5.7.5 get_view_state_mask

	3.5.8 Class QueryCondition
	3.5.8.1 get_datareader (inherited)
	3.5.8.2 get_instance_state_mask (inherited)
	3.5.8.3 get_query_parameters
	3.5.8.4 get_query_expression
	3.5.8.5 get_sample_state_mask (inherited)
	3.5.8.6 get_trigger_value (inherited)
	3.5.8.7 get_view_state_mask (inherited)
	3.5.8.8 set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DataReaderQos
	DataWriterQos
	DomainParticipantFactoryQos
	DomainParticipantQos
	PublisherQos
	SubscriberQos
	TopicQos

	B API Constants and Types
	C Platform Specific Model IDL Interface
	dds_dcps.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State Per Sample

	instance_state
	OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	read_w_condition
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Class Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	StatusCondition Trigger State
	ReadCondition and QueryCondition Trigger State
	GuardCondition Trigger State

	G Topic Definitions
	Topic Definition Example
	Complex Topics
	IDL Pre-processor
	IDL-to-Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL subset in BNF-notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

