
OpenSplice DDS
Version 4.x

C++ Reference Guide
�������	

OpenSplice DDS
C++ REFERENCE GUIDE
Part Number: OS-CPPREFG Doc Issue 22, 8 September 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
C++ Reference Guide

�������	

CONTENTS

Table of Contents
Preface

About the C++ Reference Guide .xvii
Contacts . xix

Introduction
About the C++ Reference Guide 3
Document Structure . 3
Operations . 4

API Reference
Chapter 1 DCPS API General Description 7

1.1 Thread Safety . 8
1.2 Signal Handling. 8
1.3 Memory Management . 9
1.3.1 Reference Count . 9
1.3.2 Reference Types . 9
1.3.2.1 Pointer Types . 9
1.3.2.2 Var Reference Types . 10
1.3.2.3 Assignment . 10
1.4 Listener Interfaces . 12
1.5 Inheritance of Abstract Operations . 13

Chapter 2 DCPS Modules 15
2.1 Functionality . 15
2.2 Infrastructure Module . 16
2.3 Domain Module. 17
2.4 Topic-Definition Module . 18
2.5 Publication Module. 20
2.6 Subscription Module . 21

Chapter 3 DCPS Classes and Operations 25
3.1 Infrastructure Module . 26
3.1.1 Class Entity (abstract) . 26
3.1.1.1 enable . 27
3.1.1.2 get_instance_handle . 29
3.1.1.3 get_listener (abstract) . 30
3.1.1.4 get_qos (abstract) . 30
3.1.1.5 get_status_changes . 30
v
C++ Reference Guide

�������	

Table of Contents
3.1.1.6 get_statuscondition . 32
3.1.1.7 set_listener (abstract) . 32
3.1.1.8 set_qos (abstract) . 33
3.1.2 Class DomainEntity (abstract). 33
3.1.3 Struct QosPolicy . 33
3.1.3.1 DeadlineQosPolicy . 41
3.1.3.2 DestinationOrderQosPolicy . 43
3.1.3.3 DurabilityQosPolicy . 45
3.1.3.4 DurabilityServiceQosPolicy . 48
3.1.3.5 EntityFactoryQosPolicy . 50
3.1.3.6 GroupDataQosPolicy . 51
3.1.3.7 HistoryQosPolicy . 52
3.1.3.8 LatencyBudgetQosPolicy . 54
3.1.3.9 LifespanQosPolicy . 56
3.1.3.10 LivelinessQosPolicy . 57
3.1.3.11 OwnershipQosPolicy . 59
3.1.3.12 OwnershipStrengthQosPolicy . 61
3.1.3.13 PartitionQosPolicy . 62
3.1.3.14 PresentationQosPolicy . 63
3.1.3.15 ReaderDataLifecycleQosPolicy . 65
3.1.3.16 ReliabilityQosPolicy. 66
3.1.3.17 ResourceLimitsQosPolicy . 68
3.1.3.18 SchedulingQosPolicy . 69
3.1.3.19 TimeBasedFilterQosPolicy. 70
3.1.3.20 TopicDataQosPolicy. 71
3.1.3.21 TransportPriorityQosPolicy . 71
3.1.3.22 UserDataQosPolicy . 72
3.1.3.23 WriterDataLifecycleQosPolicy . 73
3.1.4 Listener Interface. 74
3.1.5 Struct Status. 75
3.1.5.1 InconsistentTopicStatus . 79
3.1.5.2 LivelinessChangedStatus . 79
3.1.5.3 LivelinessLostStatus. 81
3.1.5.4 OfferedDeadlineMissedStatus . 82
3.1.5.5 OfferedIncompatibleQosStatus . 83
3.1.5.6 PublicationMatchedStatus . 85
3.1.5.7 RequestedDeadlineMissedStatus . 86
3.1.5.8 RequestedIncompatibleQosStatus . 87
3.1.5.9 SampleLostStatus . 89
3.1.5.10 SampleRejectedStatus . 89
3.1.5.11 SubscriptionMatchedStatus . 91
3.1.6 Class WaitSet. 91
vi
C++ Reference Guide �������	

Table of Contents
3.1.6.1 attach_condition . 92
3.1.6.2 detach_condition. 93
3.1.6.3 get_conditions. 94
3.1.6.4 wait . 95
3.1.7 Class Condition . 97
3.1.7.1 get_trigger_value . 98
3.1.8 Class GuardCondition . 98
3.1.8.1 get_trigger_value (inherited) . 99
3.1.8.2 set_trigger_value. 99
3.1.9 Class StatusCondition . 100
3.1.9.1 get_enabled_statuses. 102
3.1.9.2 get_entity . 103
3.1.9.3 get_trigger_value (inherited) . 103
3.1.9.4 set_enabled_statuses . 104
3.2 Domain Module. 106
3.2.1 Class DomainParticipant . 106
3.2.1.1 assert_liveliness . 110
3.2.1.2 contains_entity . 111
3.2.1.3 create_contentfilteredtopic . 112
3.2.1.4 create_multitopic . 113
3.2.1.5 create_publisher . 115
3.2.1.6 create_subscriber . 117
3.2.1.7 create_topic. 119
3.2.1.8 delete_contained_entities . 122
3.2.1.9 delete_contentfilteredtopic . 123
3.2.1.10 delete_multitopic . 125
3.2.1.11 delete_publisher . 126
3.2.1.12 delete_subscriber . 127
3.2.1.13 delete_topic. 128
3.2.1.14 enable (inherited) . 130
3.2.1.15 find_topic . 130
3.2.1.16 get_builtin_subscriber. 131
3.2.1.17 get_current_time . 132
3.2.1.18 get_default_publisher_qos . 133
3.2.1.19 get_default_subscriber_qos . 134
3.2.1.20 get_default_topic_qos. 136
3.2.1.21 get_discovered_participants . 137
3.2.1.22 get_discovered_participant_data . 137
3.2.1.23 get_discovered_topics. 137
3.2.1.24 get_discovered_topic_data . 138
3.2.1.25 get_domain_id . 138
3.2.1.26 get_listener . 139
vii
C++ Reference Guide

�������	

Table of Contents
3.2.1.27 get_qos . 139
3.2.1.28 get_status_changes (inherited) . 140
3.2.1.29 get_statuscondition (inherited) . 140
3.2.1.30 ignore_participant. 141
3.2.1.31 ignore_publication . 141
3.2.1.32 ignore_subscription . 141
3.2.1.33 ignore_topic . 142
3.2.1.34 lookup_topicdescription . 142
3.2.1.35 set_default_publisher_qos . 143
3.2.1.36 set_default_subscriber_qos. 144
3.2.1.37 set_default_topic_qos . 145
3.2.1.38 set_listener . 147
3.2.1.39 set_qos . 149
3.2.2 Class DomainParticipantFactory . 150
3.2.2.1 create_participant . 151
3.2.2.2 delete_participant . 154
3.2.2.3 get_default_participant_qos . 155
3.2.2.4 get_instance . 156
3.2.2.5 get_qos . 157
3.2.2.6 lookup_participant . 158
3.2.2.7 set_default_participant_qos . 159
3.2.2.8 set_qos . 160
3.2.3 DomainParticipantListener interface. 161
3.2.3.1 on_data_available (inherited, abstract). 163
3.2.3.2 on_data_on_readers (inherited, abstract) . 163
3.2.3.3 on_inconsistent_topic (inherited, abstract). 164
3.2.3.4 on_liveliness_changed (inherited, abstract) . 164
3.2.3.5 on_liveliness_lost (inherited, abstract) . 164
3.2.3.6 on_offered_deadline_missed (inherited, abstract) 164
3.2.3.7 on_offered_incompatible_qos (inherited, abstract) 165
3.2.3.8 on_publication_matched (inherited, abstract) . 165
3.2.3.9 on_requested_deadline_missed (inherited, abstract) 165
3.2.3.10 on_requested_incompatible_qos (inherited, abstract) 165
3.2.3.11 on_sample_lost (inherited, abstract). 166
3.2.3.12 on_sample_rejected (inherited, abstract) . 166
3.2.3.13 on_subscription_matched (inherited, abstract). 166
3.3 Topic-Definition Module . 167
3.3.1 Class TopicDescription (abstract) . 168
3.3.1.1 get_name. 169
3.3.1.2 get_participant . 169
3.3.1.3 get_type_name . 170
3.3.2 Class Topic . 171
viii
C++ Reference Guide �������	

Table of Contents
3.3.2.1 enable (inherited) . 172
3.3.2.2 get_inconsistent_topic_status . 172
3.3.2.3 get_listener . 173
3.3.2.4 get_name (inherited) . 174
3.3.2.5 get_participant (inherited) . 174
3.3.2.6 get_qos . 174
3.3.2.7 get_status_changes (inherited) . 175
3.3.2.8 get_statuscondition (inherited) . 175
3.3.2.9 get_type_name (inherited) . 176
3.3.2.10 set_listener . 176
3.3.2.11 set_qos . 177
3.3.3 Class ContentFilteredTopic . 179
3.3.3.1 get_expression_parameters. 180
3.3.3.2 get_filter_expression. 181
3.3.3.3 get_name (inherited) . 182
3.3.3.4 get_participant (inherited) . 182
3.3.3.5 get_related_topic. 182
3.3.3.6 get_type_name (inherited) . 183
3.3.3.7 set_expression_parameters . 183
3.3.4 Class MultiTopic . 184
3.3.4.1 get_expression_parameters. 185
3.3.4.2 get_name (inherited) . 186
3.3.4.3 get_participant (inherited) . 187
3.3.4.4 get_subscription_expression. 187
3.3.4.5 get_type_name (inherited) . 188
3.3.4.6 set_expression_parameters . 188
3.3.5 TopicListener interface . 189
3.3.5.1 on_inconsistent_topic (abstract) . 190
3.3.6 Topic-Definition Type Specific Classes . 191
3.3.6.1 Class TypeSupport (abstract) . 191
3.3.6.2 get_type_name (abstract) . 192
3.3.6.3 register_type (abstract) . 192
3.3.6.4 Class FooTypeSupport . 192
3.3.6.5 get_type_name . 193
3.3.6.6 register_type . 194
3.4 Publication Module. 195
3.4.1 Class Publisher. 196
3.4.1.1 begin_coherent_changes. 198
3.4.1.2 copy_from_topic_qos . 200
3.4.1.3 create_datawriter. 201
3.4.1.4 delete_contained_entities . 204
3.4.1.5 delete_datawriter. 205
ix
C++ Reference Guide

�������	

Table of Contents
3.4.1.6 enable (inherited) . 206
3.4.1.7 end_coherent_changes . 206
3.4.1.8 get_default_datawriter_qos . 207
3.4.1.9 get_listener . 208
3.4.1.10 get_participant . 209
3.4.1.11 get_qos . 209
3.4.1.12 get_status_changes (inherited) . 210
3.4.1.13 get_statuscondition (inherited) . 211
3.4.1.14 lookup_datawriter. 211
3.4.1.15 resume_publications . 211
3.4.1.16 set_default_datawriter_qos. 212
3.4.1.17 set_listener . 214
3.4.1.18 set_qos . 216
3.4.1.19 suspend_publications . 217
3.4.1.20 wait_for_acknowledgments . 218
3.4.2 Publication Type Specific Classes. 219
3.4.2.1 Class DataWriter (abstract) . 220
3.4.2.2 assert_liveliness . 223
3.4.2.3 dispose (abstract) . 224
3.4.2.4 dispose_w_timestamp (abstract). 224
3.4.2.5 enable (inherited) . 225
3.4.2.6 get_key_value (abstract). 225
3.4.2.7 get_listener . 225
3.4.2.8 get_liveliness_lost_status . 226
3.4.2.9 get_matched_subscription_data . 227
3.4.2.10 get_matched_subscriptions. 227
3.4.2.11 get_offered_deadline_missed_status . 227
3.4.2.12 get_offered_incompatible_qos_status . 228
3.4.2.13 get_publication_matched_status. 230
3.4.2.14 get_publisher . 230
3.4.2.15 get_qos . 230
3.4.2.16 get_status_changes (inherited) . 231
3.4.2.17 get_statuscondition (inherited) . 232
3.4.2.18 get_topic . 232
3.4.2.19 lookup_instance (abstract) . 233
3.4.2.20 register_instance (abstract) . 233
3.4.2.21 register_instance_w_timestamp (abstract) . 233
3.4.2.22 set_listener . 233
3.4.2.23 set_qos . 235
3.4.2.24 unregister_instance (abstract) . 237
3.4.2.25 unregister_instance_w_timestamp (abstract) . 237
3.4.2.26 wait_for_acknowledgments . 237
x
C++ Reference Guide �������	

Table of Contents
3.4.2.27 write (abstract) . 238
3.4.2.28 write_w_timestamp (abstract) . 239
3.4.2.29 writedispose (abstract) . 239
3.4.2.30 writedispose_w_timestamp (abstract) . 239
3.4.2.31 Class FooDataWriter . 240
3.4.2.32 assert_liveliness (inherited) . 243
3.4.2.33 dispose . 243
3.4.2.34 dispose_w_timestamp. 247
3.4.2.35 enable (inherited) . 248
3.4.2.36 get_key_value . 248
3.4.2.37 get_listener (inherited) . 250
3.4.2.38 get_liveliness_lost_status (inherited) . 250
3.4.2.39 get_matched_subscription_data (inherited) . 250
3.4.2.40 get_matched_subscriptions (inherited) . 250
3.4.2.41 get_offered_deadline_missed_status (inherited) 251
3.4.2.42 get_offered_incompatible_qos_status (inherited) 251
3.4.2.43 get_publication_matched_status (inherited) . 251
3.4.2.44 get_publisher (inherited). 251
3.4.2.45 get_qos (inherited) . 252
3.4.2.46 get_status_changes (inherited) . 252
3.4.2.47 get_statuscondition (inherited) . 252
3.4.2.48 get_topic (inherited) . 252
3.4.2.49 lookup_instance . 252
3.4.2.50 register_instance . 254
3.4.2.51 register_instance_w_timestamp . 256
3.4.2.52 set_listener (inherited) . 257
3.4.2.53 set_qos (inherited) . 257
3.4.2.54 unregister_instance . 257
3.4.2.55 unregister_instance_w_timestamp . 261
3.4.2.56 write . 262
3.4.2.57 write_w_timestamp. 265
3.4.2.58 writedispose . 266
3.4.2.59 writedispose_w_timestamp. 270
3.4.3 PublisherListener Interface . 272
3.4.3.1 on_liveliness_lost (inherited, abstract) . 273
3.4.3.2 on_offered_deadline_missed (inherited, abstract) 273
3.4.3.3 on_offered_incompatible_qos (inherited, abstract) 273
3.4.3.4 on_publication_matched (inherited, abstract) . 274
3.4.4 DataWriterListener Interface . 274
3.4.4.1 on_liveliness_lost (abstract) . 275
3.4.4.2 on_offered_deadline_missed (abstract) . 276
3.4.4.3 on_offered_incompatible_qos (abstract) . 277
xi
C++ Reference Guide

�������	

Table of Contents
3.4.4.4 on_publication_matched (abstract). 278
3.5 Subscription Module . 279
3.5.1 Class Subscriber . 280
3.5.1.1 begin_access . 282
3.5.1.2 copy_from_topic_qos . 282
3.5.1.3 create_datareader . 284
3.5.1.4 delete_contained_entities . 287
3.5.1.5 delete_datareader . 288
3.5.1.6 enable (inherited) . 289
3.5.1.7 end_access . 289
3.5.1.8 get_datareaders . 289
3.5.1.9 get_default_datareader_qos . 290
3.5.1.10 get_listener . 291
3.5.1.11 get_participant . 292
3.5.1.12 get_qos . 292
3.5.1.13 get_status_changes (inherited) . 293
3.5.1.14 get_statuscondition (inherited) . 293
3.5.1.15 lookup_datareader . 294
3.5.1.16 notify_datareaders . 294
3.5.1.17 set_default_datareader_qos . 296
3.5.1.18 set_listener . 297
3.5.1.19 set_qos . 299
3.5.2 Subscription Type Specific Classes. 301
3.5.2.1 Class DataReader (abstract) . 301
3.5.2.2 create_querycondition . 306
3.5.2.3 create_readcondition. 307
3.5.2.4 delete_contained_entities . 308
3.5.2.5 delete_readcondition. 310
3.5.2.6 enable (inherited) . 311
3.5.2.7 get_key_value (abstract). 311
3.5.2.8 get_listener . 311
3.5.2.9 get_liveliness_changed_status . 312
3.5.2.10 get_matched_publication_data . 313
3.5.2.11 get_matched_publications . 313
3.5.2.12 get_qos . 313
3.5.2.13 get_requested_deadline_missed_status . 314
3.5.2.14 get_requested_incompatible_qos_status . 315
3.5.2.15 get_sample_lost_status . 316
3.5.2.16 get_sample_rejected_status . 318
3.5.2.17 get_status_changes (inherited) . 319
3.5.2.18 get_statuscondition (inherited) . 319
3.5.2.19 get_subscriber. 319
xii
C++ Reference Guide �������	

Table of Contents
3.5.2.20 get_subscription_matched_status . 320
3.5.2.21 get_topicdescription . 320
3.5.2.22 lookup_instance (abstract) . 321
3.5.2.23 read (abstract) . 321
3.5.2.24 read_instance (abstract) . 321
3.5.2.25 read_next_instance (abstract) . 322
3.5.2.26 read_next_instance_w_condition (abstract) . 322
3.5.2.27 read_next_sample (abstract) . 323
3.5.2.28 read_w_condition (abstract) . 323
3.5.2.29 return_loan (abstract) . 323
3.5.2.30 set_listener . 324
3.5.2.31 set_qos . 326
3.5.2.32 take (abstract) . 327
3.5.2.33 take_instance (abstract) . 328
3.5.2.34 take_next_instance (abstract) . 328
3.5.2.35 take_next_instance_w_condition (abstract) . 328
3.5.2.36 take_next_sample (abstract) . 329
3.5.2.37 take_w_condition (abstract) . 329
3.5.2.38 wait_for_historical_data . 329
3.5.2.39 Class FooDataReader . 331
3.5.2.40 create_querycondition (inherited). 336
3.5.2.41 create_readcondition (inherited) . 336
3.5.2.42 delete_contained_entities (inherited) . 336
3.5.2.43 delete_readcondition (inherited) . 337
3.5.2.44 enable (inherited) . 337
3.5.2.45 get_key_value . 337
3.5.2.46 get_listener (inherited) . 337
3.5.2.47 get_liveliness_changed_status (inherited) . 338
3.5.2.48 get_matched_publication_data (inherited) . 338
3.5.2.49 get_matched_publications (inherited) . 338
3.5.2.50 get_qos (inherited) . 338
3.5.2.51 get_requested_deadline_missed_status (inherited) 339
3.5.2.52 get_requested_incompatible_qos_status (inherited). 339
3.5.2.53 get_sample_lost_status (inherited) . 339
3.5.2.54 get_sample_rejected_status (inherited) . 339
3.5.2.55 get_status_changes (inherited) . 339
3.5.2.56 get_statuscondition (inherited) . 340
3.5.2.57 get_subscriber (inherited) . 340
3.5.2.58 get_subscription_matched_status (inherited) . 340
3.5.2.59 get_topicdescription (inherited) . 340
3.5.2.60 lookup_instance . 341
3.5.2.61 read . 341
xiii
C++ Reference Guide

�������	

Table of Contents
3.5.2.62 read_instance . 346
3.5.2.63 read_next_instance . 347
3.5.2.64 read_next_instance_w_condition . 350
3.5.2.65 read_next_sample . 352
3.5.2.66 read_w_condition . 352
3.5.2.67 return_loan . 354
3.5.2.68 set_listener (inherited) . 356
3.5.2.69 set_qos (inherited) . 356
3.5.2.70 take . 356
3.5.2.71 take_instance . 358
3.5.2.72 take_next_instance . 359
3.5.2.73 take_next_instance_w_condition . 361
3.5.2.74 take_next_sample . 363
3.5.2.75 take_w_condition . 363
3.5.2.76 wait_for_historical_data (inherited) . 365
3.5.3 Class DataSample . 365
3.5.4 Struct SampleInfo . 365
3.5.4.1 SampleInfo . 366
3.5.5 SubscriberListener Interface . 369
3.5.5.1 on_data_available (inherited, abstract). 370
3.5.5.2 on_data_on_readers (abstract) . 371
3.5.5.3 on_liveliness_changed (inherited, abstract) . 372
3.5.5.4 on_requested_deadline_missed (inherited, abstract) 372
3.5.5.5 on_requested_incompatible_qos (inherited, abstract) 372
3.5.5.6 on_sample_lost (inherited, abstract). 373
3.5.5.7 on_sample_rejected (inherited, abstract) . 373
3.5.5.8 on_subscription_matched (inherited, abstract). 373
3.5.6 DataReaderListener Interface . 373
3.5.6.1 on_data_available (abstract) . 375
3.5.6.2 on_liveliness_changed (abstract) . 376
3.5.6.3 on_requested_deadline_missed (abstract) . 377
3.5.6.4 on_requested_incompatible_qos (abstract) . 378
3.5.6.5 on_sample_lost (abstract) . 379
3.5.6.6 on_sample_rejected (abstract) . 379
3.5.6.7 on_subscription_matched (abstract) . 380
3.5.7 Class ReadCondition . 381
3.5.7.1 get_datareader. 382
3.5.7.2 get_instance_state_mask . 382
3.5.7.3 get_sample_state_mask . 383
3.5.7.4 get_trigger_value (inherited) . 384
3.5.7.5 get_view_state_mask . 384
3.5.8 Class QueryCondition . 385
xiv
C++ Reference Guide �������	

Table of Contents
3.5.8.1 get_datareader (inherited) . 386
3.5.8.2 get_instance_state_mask (inherited). 386
3.5.8.3 get_query_parameters. 386
3.5.8.4 get_query_expression . 387
3.5.8.5 get_sample_state_mask (inherited) . 388
3.5.8.6 get_trigger_value (inherited) . 388
3.5.8.7 get_view_state_mask (inherited) . 389
3.5.8.8 set_query_parameters . 389

Appendix A Quality Of Service 393
Affected Entities . 393
Basic Usage . 393
DataReaderQos . 395
DataWriterQos. 397
DomainParticipantFactoryQos . 400
DomainParticipantQos. 401
PublisherQos . 402
SubscriberQos . 403
TopicQos . 405
. 407

Appendix B API Constants and Types 409

Appendix C Platform Specific Model IDL Interface 415
dds_dcps.idl . 415

Appendix D SampleStates, ViewStates and InstanceStates 443
SampleInfo Class . 443
sample_state. 443
instance_state . 444
view_state . 446
State Masks . 448
Operations Concerning States . 449

Appendix E Class Inheritance 453

Appendix F Listeners, Conditions and Waitsets 455
Communication Status Event . 456
Listeners. 459
Conditions and Waitsets . 461
StatusCondition Trigger State . 464
ReadCondition and QueryCondition Trigger State . 464
GuardCondition Trigger State . 465
xv
C++ Reference Guide

�������	

Table of Contents
Appendix G Topic Definitions 467
Topic Definition Example . 467
Complex Topics. 468
IDL Pre-processor . 468
IDL-to-Host Language Mapping . 468
Data Distribution Service IDL Keywords . 468
Data Distribution Service IDL Pragma Keylist . 469
Data Distribution Service IDL subset in BNF-notation . 469

Appendix H DCPS Queries and Filters 473
SQL Grammar in BNF . 473
SQL Token Expression . 474
SQL Examples. 475

Bibliography 479

Glossary 483

Index 487
xvi
C++ Reference Guide �������	

Preface
About the C++ Reference Guide

The C++ Reference Guide provides a detailed explanation of the OpenSplice DDS
(Subscription Paradigm for the Logical Interconnection of Concurrent Engines)
Application Programming Interfaces for the C++ language.
This reference guide is based on the OMG’s Data Distribution Service Specification
and C++ Language Mapping Specification.
The C++ Reference Guide focuses on the Data Centric Publish Subscribe (DCPS)
layer and does not cover the DLRL layer. The purpose of the DCPS is the
distribution of data (publish/subscribe). The structure of the DCPS is divided into
five modules. Each module consists of several classes, which in turn generally
contain several operations.

Intended Audience
The C++ Reference Guide is intended to be used by C++ programmers who are
using OpenSplice DDS to develop applications.

Organisation
The C++ Reference Guide is organised as follows:
An Introduction describes the details of the document structure.
A Bibliography and Glossary are provided at the end of the guide with, respectively,
details of recommended references and definitions.
Chapter 1, DCPS API General Description, is a general description of the DCPS
API and its error codes.
Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.
Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.
The following appendices are included, as well a Bibliography containing
references material and Glossary:
Appendix A, Quality Of Service
Appendix B, API Constants and Types
Appendix C, Platform Specific Model IDL Interface
Appendix D, SampleStates, ViewStates and InstanceStates
Appendix E, Class Inheritance
Appendix F, Listeners, Conditions and Waitsets
xvii
C++ Reference Guide

�������	

Preface
Appendix G, Topic Definitions
Appendix H, DCPS Queries and Filters

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the C++ Reference Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xix, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

C
C++
Java
xviii
C++ Reference Guide

�������	

Preface
Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xix
C++ Reference Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

Preface
xx
C++ Reference Guide

�������	

INTRODUCTION

About the C++ Reference Guide
Document Structure

The C++ Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.
Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, as indicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific Model IDL Interface. These structs are described in the respective
chapters.
• In the classes as described in the PIM, which are implemented as a class in the

PSM, the operations are described in detail.
• In the classes as described in the PIM, which are implemented as a struct in the

PSM, the struct contents are described in detail.
• The order of the modules and classes is conform the PIM part.
• The order of the operations or struct contents is alphabetical.
• Each description of a class or struct starts with the API description header file.

Figure 1 C++ Reference Guide Document Structure

Modules...

DDS-DCPS

Classes...

Operations...

Structs...

detailed description
 3
C++ Reference Guide�������	

Introduction
Operations
Several types of operations are described in this manual. The different types of
operations are: basic, inherited, abstract and abstract interface. All operations of any
type can be found in their respective class. The details of their description depends
on the type of operation.
Basic operations are described in detail in the class they are implemented in.
• Inherited operations only refer to the operation in the class they are inherited

from. The detailed description is not repeated.
• Abstract operations only refer to the type specific implementations in their

respective derived class. The detailed description is not repeated.
• Abstract operations which are implemented as an interface (Listeners), are

described in detail in their class. These operations must be implemented in the
application.
4
C++ Reference Guide

�������	

API REFERENCE

CHAPTER

1 DCPS API General Description
The structure of the DCPS is divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain
several operations.
Some of these operations have an operation return code of type ReturnCode_t,
which is defined in the next table:

Table 1 Return Codes

ReturnCode_t Return Code Description
RETCODE_OK Successful return
RETCODE_ERROR Generic, unspecified error
RETCODE_BAD_PARAMETER Illegal parameter value
RETCODE_UNSUPPORTED Unsupported operation or QosPolicy setting. Can only

be returned by operations that are optional or operations
that uses an optional <Entity>QoS as a parameter

RETCODE_ALREADY_DELETED The object target of this operation has already been
deleted

RETCODE_OUT_OF_RESOURCES Service ran out of the resources needed to complete the
operation

RETCODE_NOT_ENABLED Operation invoked on an Entity that is not yet enabled
RETCODE_IMMUTABLE_POLICY Applicat ion at tempted to modify an immutable

QosPolicy

RETCODE_INCONSISTENT_POLICY Application specified a set of policies that are not
consistent with each other

RETCODE_PRECONDITION_NOT_MET A pre-condition for the operation was not met
RETCODE_TIMEOUT The operation timed out
RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate object or

at an inappropriate time (as determined by QosPolicies
that control the behaviour of the object in question).
There is no precondition that could be changed to make
the operation succeed.

This code can not be returned in C++.
RETCODE_NO_DATA Indicates a situation where the operation did not return

any data
7
 API Reference�������	

1 DCPS API General Description 1.1 Thread Safety

The name scope (name space) of these return codes is DDS. The operation return
codes RETCODE_OK , RETCODE_ERROR , RETCODE_BAD_PARAMETER ,
RETCODE_UNSUPPORTED and RETCODE_ALREADY_DELETED are default for
operations that return an operation return code and are therefore not explicitly
mentioned in the DDS specification. However, in this manual they are mentioned
along with each operation.
Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return RETCODE_UNSUPPORTED
when called from the application. See Appendix B (API Constants and Types).
The return code RETCODE_ILLEGAL_OPERATION can never be returned in C++: it
indicates that you try to invoke an operation on the wrong class, which in a real
Object Oriented language like C++ is never possible.

1.1 Thread Safety
All operations are thread safe.

1.2 Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources
are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.
If the application needs to set signal handlers for its own use, two situations can
occur. In the first case the application sets a signal handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it’s own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In
the second case the Data Distribution Service has already set a signal handler for a
specific signal and the application program redefines the signal handling by setting
its own handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed as last) or to call the exit function itself when
the cached signal is meant to terminate the application process.
The Data Distribution Service will conditionally set the signal handlers when
creating the DomainParticipantFactory, which is the first call to
DDS::DomainParticipantFactory::get_instance for C++.
The Data Distribution Service only sets signal handlers for signals that have the
default behaviour of terminating the process without dumping a core.

UNIX
8
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

1.3 Memory Management
When objects are being created, they will occupy memory space. To avoid memory
leaks when they are not used any more, these objects will have to be deleted in order
to release the memory space. However, when using pointers, it is difficult to keep
track of which object has been released and which has not. When objects are not
being released, the memory leak will finally use up all the resources and the
application will fail.

1.3.1 Reference Count
The DDS API is described as a collection of IDL interfaces in the PSM. According
to the IDL to C++ language mapping these interfaces must be mapped onto C++
classes that inherit from a CORBA::Object class. OpenSplice can currently borrow
this class from any ORB installed on your system, but it also provides its own
implementation libraries: which library is used depends on whether you use the
Corba C++ API (CCPP) or the standalone C++ API (SACPP).
In order to cope with the memory management problems described above, CORBA
objects keep some internal administration. In this administration, a reference count
is included. This reference count holds the number of references to the object
(assuming ownership). In other words, when a second reference is being made to the
same object, the reference count in the internal administration of the object, must be
increased. This way, both references may assume ownership of the same object.
When one of the references runs out of scope, the reference count must be decreased
by one. In this case the object must not be released because the reference count has
not reach zero yet. Only when the second reference runs out of scope, the reference
count reaches zero and the object must be released.

1.3.2 Reference Types
CORBA defines two types of references. The first one is the basic <class>_ptr
type. When this type is used, the application must explicitly increase or decrease the
reference count. The second one is the <class>_var type. This type is a smart
pointer, which automatically updates the reference count of an object when that
object is assigned to it and also updates the reference of the previous assigned
object. When this type is used, the application does not have to increase or decrease
the reference count. Best practice is to use these <class>_var types instead of the
<class>_ptr types. However, under certain conditions a <class>_ptr type must
be used (refer to Section 1.3.2.2, Var Reference Types).

1.3.2.1 Pointer Types
When using <class>_ptr types the application must explicitly increase or
decrease the reference count, by using the CORBA defined functions:
9
API Reference�������	

1 DCPS API General Description 1.3 Memory Management

• _duplicate - creates another reference to the object. The object is not being
copied but only the reference count in the internal administration of the object is
increased and a new <class>_ptr type is returned. Both references have
ownership. In other words, when one of them runs out of scope, the reference
count must be decreased by calling _release. Only when _release is called
for both of them, the object is removed;

• _release - informs the CORBA object that the application will not be using the
reference any more. As a result, the operation will explicitly decrease the
reference count of an object. After releasing, the application must not use the
reference because from this moment on, it is unknown whether the object still
exists.

When more references to <class>_ptr type are made by assignment, the
reference count is not increased. When more references to <class>_ptr type are
made by _duplicate, the reference count is increased on every call. Therefore
_release must be called once for every _duplicate to decrease the reference
count.

1.3.2.2 Var Reference Types
To prevent errors, CORBA defines the <class>_var types which assumes
ownership of the object it is referring to. An _var type is considered to be a smart
pointer, which not only includes the reference to the object but also automatically
updates the internal reference count of the object.

1.3.2.3 Assignment
Assignment for <class>_ptr types and <class>_var types is defined for:

<class>_ptr types to <class>_var types
<class>_var types to <class>_var types
<class>_var types to <class>_ptr types

For ins tance , the resul t of a create_publisher (which re turns a
Publisher_ptr) can directly be assigned to a Publisher_var type. This
assignment would transfer ownership of the Publisher object to the reference of
Publisher_var type.

My_Publisher_var = create_publisher(PUBLISHER_QOS_DEFAULT,
PublisherListener::_nil());

This assignment will wrap the return type Publisher_ptr in type Publisher_var and
transfer ownership to My_Publisher_var. In other words, when My_Publisher_var runs out
of scope, the Publisher is automatically removed.
The next assignment does not concern <class>_var types, but is only presented to
show what will happen when a <class>_var type is not used.

My_Publisher_ptr = create_publisher(PUBLISHER_QOS_DEFAULT,
PublisherListener::_nil());
10
API Reference

�������	

1 DCPS API General Description 1.3 Memory Management

This assignment will not wrap, but only makes a copy of the return type
Publisher_ptr. The reference count is not automatically updated and the
application has to make sure to release the object. In other words, when
My_Publisher_ptr runs out of scope, the Publisher is not automatically removed
and can not be removed any more since there is no reference available (not even by
delete_contained_entities).

Another_Publisher_var = My_Publisher_var;

This assignment will create another reference to the Publisher. The object is not
being copied but only the reference count in the internal administration of the
Publisher_var type is increased. Both Another_Publisher_var and
My_Publisher_var have ownership. In other words, when one of them runs out of
scope, the reference count is decreased. Only when both of them run out of scope,
the Publisher is removed.

Another_Publisher_ptr = My_Publisher_var;

This assignment will type cast the type Publisher_var to type Publisher_ptr
and only makes a copy of the reference My_Publisher_var. The ownership is not
transferred and the application may not release the object on account of
Another_Publisher_ptr because the internal reference count was not increased.
However, the application must be careful not to use Another_Publisher_ptr when
My_Publisher_var runs out of scope because in that case, the Publisher is
automatically removed and the Another_Publisher_ptr variable is invalid.
Var Reference Types Side Effect
As mentioned, under certain conditions a <class>_ptr type must be used, because
the <class>_var type will cause a problem when a type cast is being done on an
object. For example, the cast of an object of class DataWriter to the class
<type>DataWriter.
When creating a DataWriter, the create_datawriter operation returns a
generic DataWriter_ptr type (which we assign to DataWriter_var). However, an
object of the DataWriter class does not have a write operation. To be able to use
such a typed operation, the application must perform a dynamic cast to the
<type>DataWriter_ptr type. For example, when we have a DataWriter for
the type Foo, it looks like:

GenericWriter_var = create_datawriter(MyTopic,
MyWriterQos, _nil);

My_Writer_var = dynamic_cast<FooDataWriter_ptr>
GenericWriter_var.in());

The problem here is that there are two DataWriter_var type references to the
object without a duplication. This is because a cast only copies the same information
and does not increase the internal counter. In other words, both DataWriter_var
11
API Reference�������	

1 DCPS API General Description 1.4 Listener Interfaces

types considers to be the sole owner of the object, and therefore do not increase its
reference counter. When one of the DataWriter_var types run out of scope, the
entire object is removed, because the internal administration only had one reference
accounted for. Therefore, when the second DataWriter_var type runs out of scope,
the behaviour of your application has become undefined (most probably the
application will eventually crash). This problem can be solved by using an explicit
call to the DataWriter::_duplicate operation before assigning it to the second
_var type, or by using a DataWriter_ptr type instead of a DataWriter_var type
because a DataWriter_ptr type does not automatically decrease the reference
counter when it runs out of scope.

GenericWriter_ptr = create_datawriter(MyTopic,
MyWriterQos, _nil);

My_Writer_var =
 dynamic_cast<FooDataWriter_ptr>(GenericWriter_ptr.in());

Note in this case that GenericWriter_ptr must not be used after the assignment,
since it will not be valid as soon as My_Writer_var runs out of scope.

1.4 Listener Interfaces
The Listener provides a generic mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous
communication status change events, such as a missed deadline, violation of a
QosPolicy setting, etc.
The Listener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. A user defined class for these operations must be provided by the
application which must extend from the specific Listener class (according to the
IDL-to-C++ specification an interface in IDL is mapped on a class in the C++
programming language). All Listener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.
Each DCPS Entity supports its own specialized kind of Listener. Therefore, the
following Listeners are available:
• DomainParticipantListener

• TopicListener

• PublisherListener

• DataWriterListener

• SubscriberListener

• DataReaderListener
12
API Reference

�������	

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

Since a DataReader an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener must be of type
DataReaderListener. A user defined class must be provided by the
application (for instance My_DataReaderListener) which must extend from
the DataReaderListener class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.
As an example, one of the operations in the DataReaderListener is the
on_liveliness_changed. This operation (implemented by the application) will
be called by the Data Distribution Service when the liveliness of the associated
DataWriter has changed. In other words, it serves as a callback function to the
event of a change in liveliness. The parameters of the operation are supplied by the
Data Distribution Service. In this example, the reference to the DataReader and
the status of the liveliness are provided.

1.5 Inheritance of Abstract Operations
The information provided in this guide is based on:
• the PIM part of the DDS-DCPS specification for module descriptions
• the PSM part of the DDS-DCPS specification for class and operation descriptions.
Refer to the OMG’s Data Distribution Service Revised Final Adopted Specification,
ptc/04-03-07, for additional information.
At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM defines the interface for an application to interact with the Data
Distribution Service (see Appendix C (Platform Specific Model IDL Interface)).
The DCPS API for the C++ language is as specified in the OMG’s C++ Language
Mapping Specification.
Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective
derived class (e.g. get_qos and set_qos). These operations are commented out in
the IDL PSM.
13
API Reference�������	

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

14
API Reference

�������	

CHAPTER

2 DCPS Modules
DCPS is divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.
Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces,
structs and operations are described in the next chapter.

Figure 2 DCPS Module Composition

2.1 Functionality
The modules listed below provide the associated functions in the Data Distribution
Service:
Infrastructure Module - This module defines the abstract classes and interfaces,

which are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service
(event-based and state-based);

Domain Module

Publication
Module

Subscription
Module

Topic-Definition
Module

Infrastructure
Module
15
 API Reference�������	

2 DCPS Modules 2.2 Infrastructure Module

Domain Module - This module contains the DomainParticipant class, which is
the entry point of the application and DomainParticipantListener
interface;

To pi c - D e f i n i t i o n M o d u l e - T h i s m o d u l e c o n t a i n s t h e Topic ,
ContentFilteredTopic and MultiTopic classes. It also contains the
TopicListener interface and all support to define Topic objects and assign
QosPolicy settings to them;

Publication Module - This module contains the Publisher and DataWriter
classes. It also contains the PublisherListener and DataWriterListener
interfaces;

Subscription Module - This module contains the Subscriber, DataReader,
ReadCondition and QueryCondition classes. It also contains the
SubscriberListener and DataReaderListener interfaces.

2.2 Infrastructure Module
This module defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by Listeners, the
state-based interaction is supported by WaitSets and Conditions.

Figure 3 DCPS Infrastructure Module’s Class Model
This module contains the following classes:
• Entity (abstract)
• DomainEntity (abstract)

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
16
API Reference

�������	

2 DCPS Modules 2.3 Domain Module

• QosPolicy (abstract, struct)
• Listener (interface)
• Status (abstract, struct)
• WaitSet

• Condition

• GuardCondition

• StatusCondition

2.3 Domain Module
This module contains the class DomainParticipant, which acts as an entry point
of the Data Distribution Service and acts as a factory for many of the classes. The
DomainParticipant also acts as a container for the other objects that make up the
Data Distribution Service. It isolates applications within the same Domain from
other applications in a different Domain on the same set of computers. A Domain is
a “virtual network” and applications with the same domainId are isolated from
applications with a different domainId. In this way, several independent distributed
applications can coexist in the same physical network without interfering, or even
being aware of each other.
17
API Reference�������	

2 DCPS Modules 2.4 Topic-Definition Module

Figure 4 DCPS Domain Module’s Class Model
This module contains the following classes:
• DomainParticipant

• DomainParticipantFactory

• DomainParticipantListener (interface)

2.4 Topic-Definition Module
This module contains the Topic, ContentFilteredTopic and MultiTopic
classes. It also contains the TopicListener interface and all support to define
Topic objects and assign QosPolicy settings to them.

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
18
API Reference

�������	

2 DCPS Modules 2.4 Topic-Definition Module

Figure 5 DCPS Topic-Definition Module’s Class Model
This module contains the following classes:
• TopicDescription (abstract)
• Topic

• ContentFilteredTopic

• MultiTopic

• TopicListener (interface)
• Topic-Definition type specific classes
“Topic-Definition type specific classes” contains the generic class and the generated
data type specific classes. In case of data type Foo (this also applies to other types);
“Topic-Definition type specific classes” contains the following classes:
• TypeSupport (abstract)
• FooTypeSupport

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
19
API Reference�������	

2 DCPS Modules 2.5 Publication Module

Figure 6 Data Type “Foo” Typed Classes for Pre-processor Generation

2.5 Publication Module
This module supports writing of the data, it contains the Publisher and
DataWriter classes. I t a lso contains the PublisherListener and
DataWriterListener interfaces. Furthermore, it contains all support needed for
publication.

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
20
API Reference

�������	

2 DCPS Modules 2.6 Subscription Module

Figure 7 DCPS Publication Module’s Class Model
This module contains the following classes:
• Publisher

• Publication type specific classes
• PublisherListener (interface)
• DataWriterListener (interface)
“Publication type specific classes” contains the generic class and the generated data
type specific classes. In case of data type Foo (this also applies to other types);
“Publication type specific classes” contains the following classes:
• DataWriter (abstract)
• FooDataWriter

2.6 Subscription Module
This module supports access to the data, it contains the Subscriber,
DataReader, ReadCondition and QueryCondition classes. It also contains
the SubscriberListener and DataReaderListener interfaces. Furthermore,
it contains all support needed for subscription.

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
21
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

Figure 8 DCPS Subscription Module’s Class Model
This module contains the following classes:
• Subscriber

• Subscription type specific classes
• DataSample

• SampleInfo (struct)
• SubscriberListener (interface)
• DataReaderListener (interface)
• ReadCondition

• QueryCondition

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> lookup_instance()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
22
API Reference

�������	

2 DCPS Modules 2.6 Subscription Module

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. In case of data type Foo (this also applies to other types);
“Subscription type specific classes” contains the following classes:
• DataReader (abstract)
• FooDataReader
23
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

24
API Reference

�������	

CHAPTER

3 DCPS Classes and Operations
This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.
The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.
Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.
The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.
25
 API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1 Infrastructure Module

Figure 9 DCPS Infrastructure Module’s Class Model
This module contains the following classes:
• Entity (abstract)
• DomainEntity (abstract)
• QosPolicy (abstract, struct)
• Listener (interface)
• Status (abstract, struct)
• WaitSet

• Condition

• GuardCondition

• StatusCondition

3.1.1 Class Entity (abstract)
This class is the abstract base class for all the DCPS objects. It acts as a generic class
for Entity objects.
The interface description of this class is as follows:

class Entity
{
//
// abstract operations (implemented in class
// DomainParticipant, Topic,
// Publisher, DataWriter, Subscriber and DataReader)
//

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
26
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

// ReturnCode_t
// set_qos
// (const EntityQos& qos);
// ReturnCode_t
// get_qos
// (EntityQos& qos);
// ReturnCode_t
// set_listener
// (EntityListener_ptr a_listener,
// StatusMask mask);
// EntityListener_ptr
// get_listener
// (void);
//
// implemented API operations
//

ReturnCode_t
 enable
 (void);
StatusCondition_ptr
 get_statuscondition
 (void);
StatusMask
 get_status_changes
 (void);
InstanceHandle_t
 get_instance_handle
 (void);

};

The next paragraphs list all Entity operations. The abstract operations are listed
but not fully described because they are not implemented in this specific class. The
full description of these operations is given in the subclasses, which contain the type
specific implementation of these operations.

3.1.1.1 enable

Scope
DDS::Entity

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 enable
 (void);
27
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This operation enables the Entity on which it is being called when the Entity
was created with the EntityFactoryQosPolicy set to FALSE.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation enables the Entity. Created Entity objects can start in either an
e n a b l e d o r d i s a b l e d s t a t e . T h i s i s c o n t ro l l e d b y t h e v a l u e o f t h e
EntityFactoryQosPolicy on the corresponding factory for the Entity.
Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet
activated, so it is still possible to change there immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.
Creating disabled entities can make sense when the creator of the Entity does not
yet know which QoS settings to apply, thus allowing another piece of code to set the
QoS later on. This is for example the case in the DLRL, where the ObjectHomes
create all underlying DCPS entities but do not know which QoS settings to apply.
The user can then apply the required QoS settings afterwards.
The default setting of EntityFactoryQosPolicy is such that, by default, entities
are created in an enabled state so that it is not necessary to explicitly call enable on
newly created entities.
The enable operation is idempotent. Calling enable on an already enabled
Entity returns RETCODE_OK and has no effect.
If an Entity has not yet been enabled, the only operations that can be invoked on it
are: the ones to set, get or copy the QosPolicy settings, the ones that set (or get) the
listener, the ones that get the StatusCondition, the get_status_changes
operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or lookup1 other Entities. Other operations will
return the error RETCODE_NOT_ENABLED.
Entities created from a factory that is disabled, are created disabled regardless of
the setting of the EntityFactoryQosPolicy.

1. This includes the lookup_topicdescription, but not the find_topic.

28
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Calling enable on an Entity whose factory is not enabled will fail and return
RETCODE_PRECONDITION_NOT_MET.
If the EntityFactoryQosPolicy has autoenable_created_entities set to
TRUE, the enable operation on the factory will automatically enable all Entities
created from the factory.
The Listeners associated with an Entity are not called until the Entity is
enabled. Conditions associated with an Entity that is not enabled are "inactive",
that is, have a trigger_value which is FALSE.

Return Code
When the operation returns:
• RETCODE_OK - the application enabled the Entity (or it was already enabled)
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the factory of the Entity is not enabled.

3.1.1.2 get_instance_handle

Scope
DDS::Entity

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
 get_instance_handle
 (void);

Description
This operation returns the instance_handle of the builtin topic sample that
represents the specified Entity.

Parameters
<none>

Return Value
InstanceHandle_t - Result value is the instance_handle of the builtin topic

sample that represents the state of this Entity.
29
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
The relevant state of some Entity objects are distributed using builtin topics. Each
builtin topic sample represents the state of a specific Entity and has a unique
instance_handle. This operation returns the instance_handle of the builtin
topic sample that represents the specified Entity.
Some Entities (Publisher and Subscriber) do not have a corresponding
builtin topic sample, but they still have an instance_handle that uniquely
identifies the Entity. The instance_handles obtained this way can also be used
to check whether a specific Entity is located in a specific DomainParticipant.
(See Section 3.2.1.2, contains_entity, on page 111.)

3.1.1.3 get_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
EntityListener_ptr
 get_listener
 (void);

3.1.1.4 get_qos (abstract)
This abstract operation is defined as a generic operation to access a struct with the
QosPolicy settings. Each subclass derived from this class, DomainParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader will provide a
class specific implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (EntityQos& qos);

3.1.1.5 get_status_changes

Scope
DDS::Entity

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
30
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 get_status_changes
 (void);

Description
This operation returns a mask with the communication statuses in the Entity that
are “triggered”.

Parameters
<none>

Return Value
StatusMask - a bit mask in which each bit shows which value has changed.

Detailed Description
This operation returns a mask with the communication statuses in the Entity that
are triggered. That is the set of communication statuses whose value have changed
since the last time the application called this operation. This operation shows
whether a change has occurred even when the status seems unchanged because the
status changed back to the original status.
When the Entity is first created or if the Entity is not enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.
The result value is a bit mask in which each bit shows which value has changed. The
relevant bits represent one of the following statuses:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS

• SUBSCRIPTION_MATCHED_STATUS
31
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type StatusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener interfaces for each
Entity for more information.

3.1.1.6 get_statuscondition

Scope
DDS::Entity

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);

Description
This operation allows access to the StatusCondition associated with the
Entity.

Parameters
<none>

Return Value
StatusCondition - the StatusCondition of the Entity.

Detailed Description
Each Entity has a StatusCondition associated with it. This operation allows
access to the StatusCondition associated with the Entity. The returned
condition can then be added to a WaitSet so that the application can wait for
specific status changes that affect the Entity.

3.1.1.7 set_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (EntityListener_ptr a_listener,
32
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 StatusMask mask);

3.1.1.8 set_qos (abstract)
This abstract operation is defined as a generic operation to modify the QosPolicy
settings. Each subclass derived from this class, DomainParticipant, Topic,
Publisher, Subscriber, DataWriter and DataReader will provide a
class-specific implementation of this abstract operation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const EntityQos& qos);

3.1.2 Class DomainEntity (abstract)
This class is the abstract base class for the all entities except DomainParticipant.
The main purpose is to express that DomainParticipant is a special kind of
Entity, which acts as a container of all other Entity objects, but cannot contain
another DomainParticipant within itself. Therefore, this class is not part of the
IDL interface in the DCPS PSM description.
The class DomainEntity does not contain any operations.

3.1.3 Struct QosPolicy
Each Entity provides an <Entity>Qos structure that implements the basic
mechanism for an application to specify Quality of Service attributes. This structure
consists of Entity specific QosPolicy attributes. QosPolicy attributes are
structured types where each type specifies the information that controls an Entity
related (configurable) property of the Data Distribution Service.
All QosPolicies applicable to an Entity are aggregated in a corresponding
<Entity>Qos, which is a compound structure that is set atomically so that it
represents a coherent set of QosPolicy attributes.
Compound types are used whenever multiple attributes must be set coherently to
define a consistent attribute for a QosPolicy.
33
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

A full description of any <Entity>Qos is given in Appendix A, Quality Of Service.
The complete list of individual QosPolicy settings and their meaning is described
in this paragraph.

Figure 10 QosPolicy Settings

Requested/Offered
In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy on the offering side. For example, if a DataReader requests to receive
data reliably while the corresponding DataWriter defines a best-effort
QosPolicy, communication will not happen as requested. This means, the

QosPolicy

name : string

HistoryQosPolicy

kind : HistoryQosPolicyKind
depth : long

LifespanQosPolicy

duration : Duration_t

WriterDataLifecycleQosPolicy

autodispose_unregistered_instances : boolean

UserDataQosPolicy

value [*] : octet

DurabilityQosPolicy

kind : DurabilityQosPolicyKind

PresentationQosPolicy

access_scope : PresentationQosPolicyAccessScopeKind
coherent_access : boolean
ordered_access : boolean

LivelinessQosPolicy

kind : LivelinessQosPolicyKind
lease_duration : Duration_t

PartitionQosPolicy

name[*] : string

ReliabilityQosPolicy

kind : ReliabilityQosPolicyKind
max_blocking_time : Duration_t

DestinationOrderQosPolicy

kind : DestinationOrderQosPolicyKind

ResourceLimitsQosPolicy

max_samples : long
max_instances : long
max_samples_per_instance : long

EntityFactoryQosPolicy

autoenable_created_entities : boolean

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TopicDataQosPolicy

value [*] : octet

GroupDataQosPolicy

value [*] : octet

TransportPriorityQosPolicy

value : long

OwnershipQosPolicy

kind : OwnershipQosPolicyKind

OwnershipStrengthQosPolicy

value : long

TimeBasedFilterQosPolicy

minimum_separation : Duration_t

DeadlineQosPolicy

period : Duration_t

LatencyBudgetQosPolicy

duration : Duration_t

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long
max_samples : long
max_instances : long
max_samples_per_instance : long
34
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

specification for QosPolicy follows the Requested/Offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. When using this pattern:
• the requesting side can specify a requested attribute for a particular QosPolicy
• the offering side specifies an offered attribute for that QosPolicy
The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPolicy settings are compatible, communication is established. If
the two QosPolicy settings are not compatible, the Data Distribution Service will
not establish communication between the two Entity objects and notify this fact
by means of the OFFERED_INCOMPATIBLE_QOS status on the offering side and the
REQUESTED_INCOMPATIBLE_QOS status on the requesting side. The application
can detect this fact by means of a Listener or Condition.
The interface description of these QosPolicies is as follows:

// struct <Entity>Qos
// see appendix
//
// struct <name>QosPolicy
//

struct UserDataQosPolicy
 { OctetSeq value; };
struct TopicDataQosPolicy
 { OctetSeq value; };
struct GroupDataQosPolicy
 { OctetSeq value; };
struct TransportPriorityQosPolicy
 { Long value; };
struct LifespanQosPolicy
 { Duration_t duration; };
enum DurabilityQosPolicyKind
 { VOLATILE_DURABILITY_QOS,
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS };
struct DurabilityQosPolicy
 { DurabilityQosPolicyKind kind; };
enum PresentationQosPolicyAccessScopeKind
 { INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS };
struct PresentationQosPolicy
 { PresentationQosPolicyAccessScopeKind access_scope;
 Boolean coherent_access;
 Boolean ordered_access; };
struct DeadlineQosPolicy
35
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { Duration_t period; };
struct LatencyBudgetQosPolicy
 { Duration_t duration; };
enum OwnershipQosPolicyKind
 { SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS };
struct OwnershipQosPolicy
 { OwnershipQosPolicyKind kind; };
struct OwnershipStrengthQosPolicy
 { Long value; };
enum LivelinessQosPolicyKind
 { AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS };
struct LivelinessQosPolicy
 { LivelinessQosPolicyKind kind;
 Duration_t lease_duration; };
struct TimeBasedFilterQosPolicy
 { Duration_t minimum_separation; };
struct PartitionQosPolicy
 { StringSeq name; };
enum ReliabilityQosPolicyKind
 { BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS };
struct ReliabilityQosPolicy
 { ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time; };
enum DestinationOrderQosPolicyKind
 { BY_RECEPTION_timestamp_DESTINATIONORDER_QOS,
 BY_SOURCE_timestamp_DESTINATIONORDER_QOS };
struct DestinationOrderQosPolicy
 { DestinationOrderQosPolicyKind kind; };
enum HistoryQosPolicyKind
 { KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS };
struct HistoryQosPolicy
 { HistoryQosPolicyKind kind;
 Long depth; };
struct ResourceLimitsQosPolicy
 { Long max_samples;
 Long max_instances;
 Long max_samples_per_instance; };
struct EntityFactoryQosPolicy
 { Boolean autoenable_created_entities; };
struct WriterDataLifecycleQosPolicy
 { Boolean autodispose_unregistered_instances; };
struct ReaderDataLifecycleQosPolicy
 { Duration_t autopurge_nowriter_samples_delay;
 Duration_t autopurge_disposed_samples_delay; };
struct DurabilityServiceQosPolicy
36
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 { Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 Long history_depth;
 Long max_samples;
 Long max_instances;
 Long max_samples_per_instance; };
enum SchedulingClassQosPolicyKind
 { SCHEDULE_DEFAULT,
 SCHEDULE_TIMESHARING,
 SCHEDULE_REALTIME };
struct SchedulingClassQosPolicy
 { SchedulingClassQosPolicyKind kind; };
enum SchedulingPriorityQosPolicyKind
 { PRIORITY_RELATIVE,
 PRIORITY_ABSOLUTE };
struct SchedulingPriorityQosPolicy
 { SchedulingPriorityQosPolicyKind kind; };
struct SchedulingQosPolicy
 { SchedulingClassQosPolicy scheduling_class;
 SchedulingPriorityQosPolicy scheduling_priority_kind;
 long scheduling_priority; };

Default Attributes

The default attributes of each QosPolicy are listed in the next table:
Table 2 QosPolicy Default Attributes

QosPolicy Attribute Value
user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DURATION_INFINITE

durability kind VOLATILE_DURABILITY_QOS

presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE

deadline period DURATION_INFINITE

latency_budget duration 0

ownership_strength value 0

ownership kind SHARED_OWNERSHIP_QOS

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE
37
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

RxO
The QosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxO”
(Requested/Offered) property. The RxO property of each QosPolicy is listed in
Table 3 on page 39. Please note:

time_based_filter minimum_separation 0

partition name.length 0

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

entity_factory autoenable_
created_entities

TRUE

writer_data_lifecycle autodispose_
unregistered_instances

TRUE

reader_data_lifecycle autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE

durability_service history_kind KEEP_LAST

history_depth 1

max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

service_cleanup_delay 0

watchdog_scheduling,
listener_scheduling

scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.
kind

PRIORITY_RELATIVE

scheduling_priority 0

Table 2 QosPolicy Default Attributes (Continued)

QosPolicy Attribute Value
38
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• A RxO setting of Yes indicates that the QosPolicy can be set at both ends
(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined.

• A RxO setting of No indicates that the QosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible.

• A RxO setting of Not applicable indicates that the QosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply.

Changeable
The changeable property determines whether the QosPolicy can be changed
after the Entity is enabled. In other words, a QosPolicy with changeable
setting of No is considered “immutable” and can only be specified either at Entity
creation time or prior to calling the enable operation on the Entity.
When the application tries to change a QosPolicy with changeable setting of No,
t h e D a t a D i s t r i b u t io n Se rv i c e w i l l n o t i f y t h i s b y r e t u r n i n g a
RETCODE_IMMUTABLE_POLICY.
The basic way to modify or set the <Entity>Qos is by using a get_qos and
set_qos operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an user operation to set all QosPolicy settings on this Entity (that is the
<Entity>Qos). An example of these operations for the DataWriter are get_qos
and set_qos, which take the <Entity>Qos as a parameter.
The “RxO” setting and the “changeable” setting of each QosPolicy are listed in
the next table:

Table 3 QosPolicy Basics

QosPolicy Concerns Entity RxO Changeable
After

Enabling
user_data DomainParticipant

DataReader

DataWriter

No Yes

topic_data Topic No Yes
group_data Publisher

Subscriber

No Yes

transport_priority Topic

DataWriter

Not applicable Yes
39
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

lifespan Topic

DataWriter

Not applicable Yes

durability Topic

DataReader

DataWriter

Yes No

presentation Publisher

Subscriber

Yes No

deadline Topic

DataReader

DataWriter

Yes Yes

latency_budget Topic

DataReader

DataWriter

Yes Yes

ownership Topic

DataReader

DataWriter

Yes No

ownership_strength DataWriter Not applicable Yes
liveliness Topic

DataReader

DataWriter

Yes No

time_based_filter DataReader Not applicable Yes
partition Publisher

Subscriber

No Yes

reliability Topic

DataReader

DataWriter

Yes No

destination_order Topic

DataReader

DataWriter

Yes No

Table 3 QosPolicy Basics (Continued)

QosPolicy Concerns Entity RxO Changeable
After

Enabling
40
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The next paragraphs describe the usage of each <name>QosPolicy struct.

3.1.3.1 DeadlineQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct DeadlineQosPolicy
 { Duration_t period; };

Description
This QosPolicy defines the period within which a new sample is expected by the
DataReader or to be written by the DataWriter.

Attributes
Duration_t period - specifies the period within which a new sample is expected

or to be written.

history Topic

DataReader

DataWriter

No No

resource_limits Topic

DataReader

DataWriter

No No

entity_factory DomainParticipantFactory

DomainParticipant

Publisher

Subscriber

No Yes

writer_data_lifecycle DataWriter Not applicable Yes
reader_data_lifecycle DataReader Not applicable Yes
durability_service Topic No No
scheduling DomainParticipant Not applicable No

Table 3 QosPolicy Basics (Continued)

QosPolicy Concerns Entity RxO Changeable
After

Enabling
41
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy will set the period within which a DataReader expects a new
sample or, in case of a DataWriter, the period in which it expects applications to
write the sample. The default value of the period is DURATION_INFINITE,
indicating that there is no deadline. The QosPolicy may be used to monitor the
real-time behaviour, a Listener or a StatusCondition may be used to catch the
event that is generated when a deadline is missed.
DeadlineQosPolicy is instance oriented (i.e. the period is monitored for each
individual instance).
The exact consequences of a missed deadline depend on the Entity in which it
ocurred, and the OwnershipQosPolicy value of that Entity:
• In case a DataWriter misses an instance deadline (regardless of its
OwnershipQosPolicy setting), an offered_deadline_missed_status is
raised, which can be detected by either a Listener or a StatusCondition.
There are no further consequences.

• In case a DataReader misses an instance deadline, a
requested_deadline_missed_status is raised, which can be detected by
either a Listener or a StatusCondition. In case the OwnershipQosPolicy
is set to SHARED, there are no further consequences. In case the
OwnershipQosPolicy is set to EXCLUSIVE, the ownership of that instance on
that particular DataReader is transferred to the next available highest strength
DataWriter, but this will have no impact on the instance_state whatsoever.
So even when a deadline is missed for an instance that has no other
(lower-strength) DataWriters to transfer ownership to, the instance_state
remains unchanged. See also Section 3.1.3.11, OwnershipQosPolicy.

This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy may be changed by
using the set_qos operation.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 4 DeadlineQosPolicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible
42
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader
specifies, is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specifies, does not get any data from that particular DataWriter.
Changing an existing deadline period using the set_qos operation on either the
DataWriter or DataReader may have consequences for the connectivity between
readers and writers, depending on their RxO values. (See also in Section 3.1.3, Struct
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
deadline period Pw and a reader with deadline period Pr, where Pw <= Pr. In this
case a connection between that reader and that writer is established. Now suppose
Pw is changed so that Pw > Pr, then the existing connection between reader and
writer will be lost, and the reader will behave as if the writer unregistered all its
instances, transferring the ownership of these instances when appropriate. See also
Section 3.1.3.11, OwnershipQosPolicy.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.2 DestinationOrderQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum DestinationOrderQosPolicyKind
 { BY_RECEPTION_timestamp_DESTINATIONORDER_QOS,
 BY_SOURCE_timestamp_DESTINATIONORDER_QOS };
struct DestinationOrderQosPolicy
 { DestinationOrderQosPolicyKind kind; };

Description
This QosPolicy controls the order in which the DataReader stores the data.
43
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
DestinationOrderQosPolicyKind kind - controls the order in which the

DataReader stores the data.

Detailed Description
This QosPolicy controls the order in which the DataReader stores the data. The
order of storage is controlled by the timestamp. However a choice can be made to
use the timestamp of the DataReader (time of reception) or the timestamp of the
DataWriter (source timestamp).
This QosPolicy is applicable to a DataWriter, DataReader and a Topic. After
enabling of the concerning entity, this QosPolicy cannot be changed any more.

Attribute
The QosPolicy is controlled by the attribute kind which may be:
• BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

• BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

When set to BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, at the moment the sample was received by the
DataReader.
When set to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, which was set by the DataWriter. This means that the
system needs some time synchronisation.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader

Table 5 Requested/Offered DestinationOrderQosPolicy

BY_RECEPTION
_timestamp

BY_SOURCE_tim
estamp

BY_RECEPTION_timestamp compatible INcompatible
BY_SOURCE_timestamp compatible compatible

Offered
Requested
44
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

specified, is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified, does not get any data from that particular DataWriter.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.3 DurabilityQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum DurabilityQosPolicyKind
 { VOLATILE_DURABILITY_QOS,
 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS };
struct DurabilityQosPolicy
 { DurabilityQosPolicyKind kind; };

Description
This QosPolicy controls whether the data should be stored for late joining readers.

Attributes
DurabilityQosPolicyKind kind - specifies the type of durability from

VOLATILE_DURABILITY_QOS (short life) to PERSISTENT_DURABILITY_QOS
(long life).

Detailed Description
The decoupling between DataReader and DataWriter offered by the Data
Distribution Service allows an application to write data even if there are no current
readers on the network. Moreover, a DataReader that joins the network after some
data has been written could potentially be interested in accessing the most current
values of the data as well as some history. This QosPolicy controls whether the
Data Distribution Service will actually make data available to late-joining
DataReaders.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.
45
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
The QosPolicy is controlled by the attribute kind which may be:
• VOLATILE_DURABILITY_QOS - the samples are not available to late-joining
DataReaders. In other words, only DataReaders, which were present at the
time of the writing and have subscribed to this Topic, will receive the sample.
When a DataReader subscribes afterwards (late-joining), it will only be able to
read the next written sample. This setting is typically used for data, which is
updated quickly

• TRANSIENT_LOCAL_DURABILITY_QOS - the functionality behind this setting is
not yet implemented. It is scheduled for a future release

• TRANSIENT_DURABILITY_QOS - some samples are available to late-joining
DataReaders (stored in memory). This means that the late-joining
DataReaders are able to read these previously written samples. The
DataReader does not necessarily have to exist at the time of writing. Not all
samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the DataWriter and will
outlive the DataWriter. This may be used to implement reallocation of
applications because the data is saved in the Data Distribution Service (not in the
DataWriter). This setting is typically used for state related information of an
application. In this case also the DurabilityServiceQosPolicy settings are
relevant for the behaviour of the Data Distribution Service

• PERSISTENT_DURABILITY_QOS - the data is stored in permanent storage (e.g.
hard disk). This means that the samples are also available after a system restart.
The samples not only outlives the DataWriters, but even the Data Distribution
Service and the system. This setting is typically used for attributes and settings for
an application or the system. In this case also the
DurabilityServiceQosPolicy settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 6 Requested/Offered DurabilityQosPolicy

VOLATILE TRANSIENT PERSISTENT

VOLATILE compatible incompatible INcompatible
TRANSIENT compatible compatible INcompatible
PERSISTENT compatible compatible compatible

Offered
Requested
46
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

This means that the Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are inconsistent, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change

• the DataWriter and the Data Distribution Service (as a built-in DataReader).
If the QosPolicy settings between DataWriter and the Data Distribution
Service are inconsistent, no communication between them is established. In that
case data published by the DataWriter will not be maintained by the service and
as a consequence will not be available for late joining DataReaders. The
QosPolicy of the Data Distribution Service in the role of DataReader is
specified by the Topic QosPolicy

• the Data Distribution Service (as a built-in DataWriter) and the DataReader. If
the QosPolicy settings between the Data Distribution Service and the
DataReader are inconsistent, no communication between them is established. In
that case the Data Distribution Service will not publish historical data to late
joining DataReaders. The QosPolicy of the Data Distribution Service in the
role of DataWriter is specified by the Topic QosPolicy.

Cleanup
The DurabilityQosPolicy kind setting TRANSIENT_DURABILITY_QOS and
PERSISTENT_DURABILITY_QOS d e t e r m in e t h a t t h e
DurabilityServiceQosPolicy applies for the Topic. It controls amongst
others at which time the durability service is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:
• the instance has been explicitly disposed of (instance_state =
NOT_ALIVE_DISPOSED_INSTANCE_STATE),

• and the system detects that there are no more “live” DataWriter objects writing
the instance, that is, all DataWriter either unregister_instance the
instance (call unregister_instance operation) or lose their liveliness,

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

T h e u s e o f t h e DurabilityServiceQosPolicy a t t r i b u t e
service_cleanup_delay is apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
47
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

i n i t i a l d a t a t o r e g a i n i t s s t a t e a n d t h e d e l a y in t r o d u c e d b y t h e
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.4 DurabilityServiceQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct DurabilityServiceQosPolicy
 { Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 Long history_depth;
 Long max_samples;
 Long max_instances;
 Long max_samples_per_instance; };

Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data.

Attributes
Duration_t service_cleanup_delay - specifies how long the durability

service must wait before it is allowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

HistoryQosPolicyKind history_kind - specifies the type of history, which
may be KEEP_LAST_HISTORY_QOS or KEEP_ALL_HISTORY_QOS, the
durability service must apply for the transient or persistent topic data-instances.

Long history_depth - specifies the number of samples of each instance of data
(identified by its key) that is managed by the durability service for the transient
o r p e r s i s t e n t t o p i c d a t a - i n s t a n c e s . I f history_kind i s
KEEP_LAST_HISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_instance for this QosPolicy to be consistent.
48
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Long max_samples - specifies the maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

Long max_instances - specifies the maximum number of instances the durability
service - manage for the transient or persistent topic data-instances.

Long max_samples_per_instance - specifies the maximum number of samples
of any single instance the durability service will manage for the transient or
persistent topic data-instances. If history_kind is KEEP_LAST_HISTORY_QOS,
max_samples_per_instance must be greater than or equal to
history_depth for this QosPolicy to be consistent.

Detailed Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limits it must apply.

Cleanup
The setting of the DurabilityServiceQosPolicy only applies when kind of
the DurabilityQosPolicy is either TRANSIENT_DURABILITY_QOS or
PERSISTENT_DURABILITY_QOS. The service_cleanup_delay setting
controls at which time the durability service” is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:
• the instance has been explicitly disposed of (instance_state =
NOT_ALIVE_DISPOSED_INSTANCE_STATE),

• and the system detects that there are no more “live” DataWriter objects writing
the instance, that is, all DataWriter either unregister_instance the
instance (call unregister_instance operation) or lose their liveliness,

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the attribute service_cleanup_delay is apparent in the situation
where an application disposes of an instance and it crashes before having a
chance to complete additional tasks related to the disposition. Upon re-start the
application may ask for initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.
49
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

History
The attributes history_kind and history_depth apply to the history settings of
the durability service’s internal DataWriter and DataReader managing the topic.
The HistoryQosPolicy behaviour, as described in paragraph 3.1.3.7
(HistoryQosPolicy), applies to these attributes.

Resource Limits
The at t r ibutes max_samples , max_instances and max_samples_
per_instance apply to the resource limits of the Durability Service’s internal
DataWriter and DataReader m a n a g i n g t h e t o p i c . T h e
ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(ResourceLimitsQosPolicy) applies to these attributes.

TopicQos
This QosPolicy can be set on a Topic only. After enabling of the concerning
Topic, this QosPolicy can not be changed any more.

3.1.3.5 EntityFactoryQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct EntityFactoryQosPolicy
 { Boolean autoenable_created_entities; };

Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities.

Attributes
Boolean autoenable_created_entities - specifies whether the entity acting

a s a f a c t o r y a u t o m a t i c a l l y e na b l e s t he i n s t a nce s i t c r ea t e s . I f
autoenable_created_entities is TRUE the factory will automatically enable each
created Entity, otherwise it will not.
50
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities. It concerns only DomainParticipantFactory (as factory for
DomainParticipant), DomainParticipant (as factory for Publisher,
Subscriber, and Topic), Publisher (as factory for DataWriter), and
Subscriber (as factory for DataReader).
This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.
The setting of autoenable_created_entities to TRUE indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time a new Entity is created. Therefore, the Entity returned by
create_<entity> will already be enabled. A setting of FALSE indicates that the
Entity will not be automatically enabled: the application will need to enable it
explicitly by means of the enable operation. See Section 3.1.1.1, enable, for a
detailed description about the differences between enabled and disabled entities.
The default setting of autoenable_created_entities is TRUE meaning that by
default it is not necessary to explicitly call enable on newly created entities.

3.1.3.6 GroupDataQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct GroupDataQosPolicy
 { OctetSeq value; };

Description
This QosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopics.

Attributes
OctetSeq value - a sequence of octets that holds the application group data. By

default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopic. An application that discovers a new Entity of the listed kind, can
51
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

use this information to add additional functionality. The GroupDataQosPolicy is
changeable and updates of the BuiltinTopic instance must be expected. Note that the
Data Distribution Service is not aware of the real structure of the group data (the
Data Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

3.1.3.7 HistoryQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum HistoryQosPolicyKind
 { KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS };
struct HistoryQosPolicy
 { HistoryQosPolicyKind kind;
 Long depth; };

Description
This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes
HistoryQosPolicyKind kind - specifies the type of history, which may be

KEEP_LAST_HISTORY_QOS or KEEP_ALL_HISTORY_QOS.
Long depth - specifies the number of samples of each instance of data (identified

by its key) managed by this Entity.

Detailed Description
This QosPolicy controls whether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver all samples, or do something in between.
In other words, how the DataWriter or DataReader should store samples.
Normally, only the most recent sample is available but some history can be stored.

DataWriter
On the publishing side this QosPolicy controls the samples that should be
maintained by the DataWriter on behalf of existing DataReader objects. The
behaviour with respect to a DataReader objects discovered after a sample is
written is controlled by the DurabilityQosPolicy.
52
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

DataReader
On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• KEEP_LAST_HISTORY_QOS - the Data Distribution Service will only attempt to

keep the latest values of the instance and discard the older ones. The attribute
“depth” determines how many samples in history will be stored. In other words,
only the most recent samples in history are stored. On the publishing side, the
Data Distribution Service will only keep the most recent “depth” samples of each
instance of data (identified by its key) managed by the DataWriter. On the
subscribing side, the DataReader will only keep the most recent “depth”
samples received for each instance (identified by its key) until the application
“takes” them via the DataReader::take operation.
KEEP_LAST_HISTORY_QOS - is the default kind. The default value of depth is
1, indicating that only the most recent value should be delivered. If a depth other
than 1 is specified, it should be compatible with the settings of the
ResourcelimitsQosPolicy max_samples_per_instance. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance, otherwise a
RETCODE_INCONSISTENT_POLICY is generated on relevant operations

• KEEP_ALL_HISTORY_QOS - all samples are stored, provided, the resources are
available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data
(identified by its key) managed by the DataWriter until they can be delivered to
all subscribers. On the subscribing side, the Data Distribution Service will
attempt to keep all samples of each instance of data (identified by its key)
managed by the DataReader. These samples are kept until the application
“takes” them from the Data Distribution Service via the DataReader::take
operation. The setting of depth has no effect. Its implied value is
LENGTH_UNLIMITED. The resources that the Data Distribution Service can use to
keep this history are limited by the settings of the ResourceLimitsQosPolicy.
If the limit is reached, the behaviour of the Data Distribution Service will depend
on the ReliabilityQosPolicy. If the ReliabilityQosPolicy is
BEST_EFFORT_RELIABILITY_QOS, the old values are discarded. If
ReliabilityQosPolicy is RELIABLE_RELIABILITY_QOS, the Data
Distribution Service will block the DataWriter until it can deliver the necessary
old values to all subscribers.
53
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service. On the publishing side
this QosPolicy controls the samples that should be maintained by the
DataWriter on behalf of DataReader objects. The behaviour with respect to a
DataReader objects discovered after a sample is written is controlled by the
DurabilityQosPolicy. In more detail, this QosPolicy specifies the behaviour
of the Data Distribution Service in case the value of a sample changes (one or more
times) before it can be successfully communicated to one or more Subscribers.

Requested/Offered
The setting of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.8 LatencyBudgetQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct LatencyBudgetQosPolicy
 { Duration_t duration; };

Description
Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the DataReader and
the application is notified of this fact.

Attributes
Duration_t duration - specifies the maximum acceptable additional delay from

the time the data is written until the data is delivered.
54
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DataReader and the application is notified of this fact. This QosPolicy provides
a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimise its internal operation. The default value of the
duration is zero, indicating that the delay should be minimized.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy may be changed by using the
set_qos operation.

Requested/Offered
This QosPolicy is considered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered QosPolicy are incompatible, the
notification OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.

Changing an existing latency budget using the set_qos operation on either the
DataWriter or DataReader may have consequences for the connectivity between
readers and writers, depending on their RxO values. (See also in Section 3.1.3, Struct
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
budget Bw and a reader with budget Br, where Bw <= Br. In this case a connection
between that reader and that writer is established. Now suppose Bw is changed so
that Bw > Br, then the existing connection between reader and writer will be lost,
and the reader will behave as if the writer unregistered all its instances, transferring
the ownership of these instances when appropriate. See also Section 3.1.3.11,
OwnershipQosPolicy.

Table 7 LatencyBudgetQosPolicy

Duration Compatibility
offered duration < requested duration compatible
offered duration = requested duration compatible
offered duration > requested duration INcompatible
55
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.9 LifespanQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct LifespanQosPolicy
 { Duration_t duration; };

Description
This QosPolicy specifies the duration of the validity of the data written by the
DataWriter.

Attributes
Duration_t duration - specifies the length in time of the validity of the data.

Detailed Description
This QosPolicy specifies the duration of the validity of the data written by the
DataWriter. When this time has expired, the data will be removed or if it has not
been delivered yet, it will not be delivered at all. In other words, the duration is
the time in which the data is still valid. This means that during this period a
DataReader can access the data or if the data has not been delivered yet, it still will
be delivered. The default value of the duration is DURATION_INFINITE,
indicating that the data does not expire.
This QosPolicy is applicable to a DataWriter and a Topic. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_qos
operation.

Requested/Offered
The setting of this QosPolicy is only applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
wil l not be rejected on account of this QosPolicy. The notif icat ion
OFFERED_INCOMPATIBLE_QOS status on the offering side will not be raised.
56
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.10 LivelinessQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum LivelinessQosPolicyKind
 { AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS };
struct LivelinessQosPolicy
 { LivelinessQosPolicyKind kind;
 Duration_t lease_duration; };

Description
This QosPolicy controls the way the liveliness of an Entity is being determined.

Attributes
LivelinessQosPolicyKind kind - controls the way the liveliness of an Entity

is determined.
Duration_t lease_duration - specifies the duration of the interval within

which the liveliness must be reported.

Detailed Description
This QosPolicy controls the way the liveliness of an Entity is being determined.
The liveliness must be reported periodically before the lease_duration expires.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• AUTOMATIC_LIVELINESS_QOS - the Data Distribution Service will take care of

reporting the Liveliness automatically with a rate determined by the
lease_duration.
57
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• MANUAL_BY_PARTICIPANT_LIVELINESS_QOS - the application must take care
of reporting the liveliness before the lease_duration expires. If an Entity
reports its liveliness, all Entities within the same DomainParticipant that
have their liveliness kind set to MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
can be considered alive by the Data Distribution Service. Liveliness can reported
explicitly by calling the operation assert_liveliness on the
DomainParticipant or implicitly by writing some data.

• MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the lease_duration expires. This can explicitly
be done by calling the operation assert_liveliness on the DataWriter or
implicitly by writing some data.

The lease_duration specifies the duration of the interval within which the
liveliness should be reported.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified does not get any data from that particular DataWriter.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

Table 8 LivelinessQosPolicy

AUTOMATIC MANUAL_BY_
PARTICIPANT

MANUAL_BY_
TOPIC

AUTOMATIC compatible INcompatible INcompatible
MANUAL_BY_PARTICIPANT compatible compatible incompatible
MANUAL_BY_TOPIC compatible compatible compatible

Offered
Requested
58
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.11 OwnershipQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum OwnershipQosPolicyKind
 { SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS };
struct OwnershipQosPolicy
 { OwnershipQosPolicyKind kind; };

Description
This QosPolicy specifies whether a DataWriter exclusively owns an instance.

Attributes
OwnershipQosPolicyKind kind - specifies whether a DataWriter exclusively

owns an instance.

Detailed Description
This QosPolicy specifies whether a DataWriter exclusively may own an
instance. In other words, whether multiple DataWriter objects can write the same
instance at the same time. The DataReader objects will only read the
modifications on an instance from the DataWriter owning the instance.
Exclusive ownership is on an instance-by-instance basis. That is, a Subscriber
can receive values written by a lower strength DataWriter as long as they affect
instances whose values have not been written or registered by a higher-strength
DataWriter.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Attribute
The QosPolicy is controlled by the attribute kind which can be:
• SHARED_OWNERSHIP_QOS (default) - the same instance can be written by

multiple DataWriter objects. All updates will be made available to the
DataReader objects. In other words it does not have a specific owner

• EXCLUSIVE_OWNERSHIP_QOS - the instance will only be accepted from one
DataWriter which is the only one whose modifications will be visible to the
DataReader objects.
59
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. The value of the OWNERSHIP kind offered must exactly match the
one requested or else they are considered incompatible. As a consequence, a
DataWriter that has an incompatible QoS with respect to what a DataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified does not get any data from that particular DataWriter.

Exclusive ownership
The DataWriter with the highest OwnershipStrengthQosPolicy value and
being alive (depending on the LivelinessQosPolicy) and which has not violated
its DeadlineQosPolicy contract with respect to the instance, will be considered
the owner of the instance. Consequently, the ownership can change as a result of:
• a DataWriter in the system with a higher value of the
OwnershipStrengthQosPolicy modifies the instance

• a change in the OwnershipStrengthQosPolicy value (becomes less) of the
DataWriter owning the instance

• a change in the liveliness (becomes not alive) of the DataWriter owning the
instance

• a deadline with respect to the instance that is missed by the DataWriter that
owns the instance.

Timeline
Each DataReader may detect the change of ownership at a different time. In other
words, at a particular point in time, the DataReader objects do not have a
consistent picture of who owns each instance for that Topic. Outside this grey area
in time all DataReader objects will consider the same DataWriter to be the
owner.

Table 9 Requested/Offered OwnershipQosPolicy

SHARED EXCLUSIVE

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Offered
Requested
60
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

If multiple DataWriter objects with the same OwnershipStrengthQosPolicy
modify the same instance, all DataReader objects will make the same choice of the
particular DataWriter that is the owner. The DataReader is also notified of this
via a status change that is accessible by means of the Listener or Condition
mechanisms.

Ownership of an Instance
DataWriter objects are not aware whether they own a particular instance. There is
no error or notification given to a DataWriter that modifies an instance it does not
currently own.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.12 OwnershipStrengthQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct OwnershipStrengthQosPolicy
 { Long value; };

Description
This QosPolicy specifies the value of the ownership strength of a DataWriter
used to determine the ownership of an instance.

Attributes
Long value - specifies the ownership strength of the DataWriter.

Detailed Description
This QosPolicy specifies the value of the ownership strength of a DataWriter
used to determine the ownership of an instance. This ownership is used to arbitrate
among multiple DataWriter objects that attempt to modify the same instance. This
QosPolicy on ly app l ies i f the OwnershipQosPolicy i s o f kind
EXCLUSIVE_OWNERSHIP_QOS . F o r m o r e i n f o r m a t i o n , s e e
OwnershipQosPolicy.
61
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

This QosPolicy is applicable to a DataWriter only. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_qos
operation. When changed, the ownership of the instances may change with it.

3.1.3.13 PartitionQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct PartitionQosPolicy
 { StringSeq name; };

Description
This QosPolicy specifies the logical partitions in which the Subscribers
and Publishers are active.

Attributes
StringSeq name - holds the sequence of strings, which specifies the

partitions.

Detailed Description
This QosPolicy specifies the logical partitions inside the domain in which the
Subscribers and Publishers are active. This QosPolicy is particularly used
to create a separate subspace, like a real domain versus a simulation domain. A
Publisher and/or Subscriber can participate in more than one partition.
Each string in the sequence of strings name defines a partition name. A
partition name may contain wildcards. Sharing a partition means that at least
one of the partition names in the sequence matches. When none of the
partition names match, it is not considered an “incompatible” QoS and does not
trigger any listeners or conditions. It only means, no communication is
established. The default value of the attribute is an empty (zero-sized) sequence.
This is treated as a special value that matches the “partition”.
This QosPolicy is applicable to a Publisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy may be changed by using the set_qos
operation. When changed, it modifies the association of DataReader and
DataWriter objects. It may establish new associations or break existing
associations. By default, DataWriter and DataReader objects belonging to a
Publisher or Subscriber that do not specify a PartitionQosPolicy, will
participate in the default partition. In this case the partition name is ““.
62
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
The offered setting of this QosPolicy is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised

3.1.3.14 PresentationQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum PresentationQosPolicyAccessScopeKind
 { INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS };
struct PresentationQosPolicy
 { PresentationQosPolicyAccessScopeKind access_scope;
 Boolean coherent_access;
 Boolean ordered_access; };

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes
PresentationQosPolicyAccessScopeKind access_scope - specifies the

samples controlled by this policy.
Boolean coherent_access - functionality behind this setting is not yet

implemented. It is scheduled for a future release specifies whether the access
should be coherent or not.

Boolean ordered_access - functionality behind this setting is not yet
implemented. It is scheduled for a future release specifies whether the access
should be ordered or not.

Detailed Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
63
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
Entity objects for which the order and coherency of changes can be preserved.
This QosPolicy is applicable to a Publisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only INSTANCE_PRESENTATION_QOS
(the lowest level) is implemented, coherent access and ordered access are not
applicable.
The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. This is the case even if the same application thread
makes the changes using the same DataWriter. This is the defaul t
access_scope.
Note that this QosPolicy controls the ordering at which related changes are made
available to the Subscriber. In other words the Subscriber can access the
changes in the proper order. However, it does not necessarily imply that the
Subscriber will indeed access the changes in the correct order. For that to occur,
the application at the Subscriber end must use the proper logic in reading the
DataReader.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

The default settings for this policy the only settings are currently supported.
Deviations from the default setting will be ignored by the Publisher or Subscriber.

Table 10 Requested/Offered PresentationQosPolicy

INSTANCE Topic Group

instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Offered
Requested
64
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.15 ReaderDataLifecycleQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct ReaderDataLifecycleQosPolicy
 { Duration_t autopurge_nowriter_samples_delay;
 Duration_t autopurge_disposed_samples_delay; };

Description
This QosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
b e c o m e s e i t h e r NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes
Duration_t autopurge_nowriter_samples_delay - specifies the duration

for which the DataReader will maintain information regarding a data instance
fo r wh ich t he instance_state b e com es
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration value
is DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Duration_t autopurge_disposed_samples_delay - specifies the duration
for which the DataReader will maintain information regarding a data instance
fo r wh ich t he instance_state b e com es
NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration value is
DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Detailed Description
This QosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
b e c o m e s e i t h e r NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE. The DataReader manages resources
for instances and samples of those instances. The amount of resources managed
depends on other QosPolicies like the HistoryQosPolicy and the
ResourceLimitsQosPolicy. The DataReader can only release resources for
data instances for which all samples have been taken and the instance_state has
be com e NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE. If an application does not take the
65
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

samples belonging to a data instance with such an instance_state, the
DataReader will never be able to release the maintained resources. By means of
this QosPolicy the application can instruct the DataReader to release all
resources related to the concerning data instance after a specified duration.
This QosPolicy is applicable to a DataReader only. After enabling of the
concerning DataReader, this QosPolicy can be changed using the set_qos
operation.

3.1.3.16 ReliabilityQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum ReliabilityQosPolicyKind
 { BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS };
struct ReliabilityQosPolicy
 { ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time; };

Description
This QosPolicy controls the level of reliability of the data distribution offered or
requested by the DataWriters and DataReaders.

Attributes
ReliabilityQosPolicyKind kind - specifies the type of reliability which may

be BEST_EFFORT_RELIABILITY_QOS or RELIABLE_RELIABILITY_QOS.
Duration_t max_blocking_time - specifies the maximum time the write

operation may block when the DataWriter does not have space to store the
value written.

Detailed Description
This QosPolicy controls the level of reliability of the data distribution requested
by a DataReader or offered by a DataWriter. In other words, it controls whether
data is allowed to get lost in transmission or not.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
66
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• RELIABLE_RELIABILITY_QOS - the Data Distribution Service will attempt to
deliver all samples in the DataWriters history; arrival-checks are performed
and data may get re-transmitted in case of lost data. In the steady-state (no
modifications communicated via the DataWriter) the Data Distribution Service
guarantees that all samples in the DataWriter history will eventually be
delivered to the all DataReader objects. Outside the steady-state the
HistoryQosPolicy and ResourceLimitsQosPolicy determine how
samples become part of the history and whether samples can be discarded from it.
In this case also the max_blocking_time must be set

• BEST_EFFORT_RELIABILITY_QOS - the Data Distribution Service will only
attempt to deliver the data; no arrival-checks are being performed and any lost
data is not re-transmitted (non-reliable). Presumably new values for the samples
are generated often enough by the application so that it is not necessary to resent
or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
HistoryQosPolicy and ResourceLimitsQosPolicy. In case the
HistoryQosPolicy kind is set to KEEP_ALL_HISTORY_QOS, the write
operation on the DataWriter may block if the modification would cause one of the
limits, specified in the ResourceLimitsQosPolicy, to be exceeded. Under these
c i r c u m s t a n c e s , t h e max_blocking_time a t t r i b u t e o f t h e
ReliabilityQosPolicy configures the maximum duration the write operation
may block.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a tu s on t h e o f f e r i ng s id e an d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

Table 11 Requested/Offered ReliabilityQosPolicy

BEST_EFFORT RELIABLE

BEST_EFFORT compatible INcompatible
RELIABLE compatible compatible

Offered
Requested
67
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.17 ResourceLimitsQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct ResourceLimitsQosPolicy
 { Long max_samples;
 Long max_instances;
 Long max_samples_per_instance; };

Note: This QosPolicy is not yet fully implemented. Missing features are
scheduled for a future release.

Description
This QosPolicy will specify the maximum amount of resources, which can be used
by a DataWriter or DataReader.

Attributes
Long max_samples - the maximum number of data samples for all instances for

any single DataWriter (or DataReader). By default, LENGTH_UNLIMITED.
Long max_instances - the maximum number of instances for any single

DataWriter (or DataReader). By default, LENGTH_UNLIMITED. Any other
value than LENGTH_UNLIMITED will currently be ignored.

Long max_samples_per_instance - the maximum number of samples of any
single instance for any single DataWriter (or DataReader). By default,
LENGTH_UNLIMITED.

Detailed Description
This QosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy settings.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Requested/Offered
The value of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.
68
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Resource Limits
If the DataWriter objects are publishing samples faster than they are taken by the
DataReader objects, the Data Distribution Service will eventually hit against some
of the QosPolicy-imposed resource limits. Note that this may occur when just a
single DataReader cannot keep up with its corresponding DataWriter.
In case the HistoryQosPolicy is KEEP_LAST_HISTORY_QOS, the setting of
ResourceLimitsQosPolicy max_samples_per_instance must be
compatible with the HistoryQosPolicy depth. For these two QosPolicy
s e t t i n g s t o b e c o m p a t i b l e , t h e y m u s t v e r i f y t h a t depth <=
max_samples_per_instance.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.18 SchedulingQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

enum SchedulingClassQosPolicyKind
 { SCHEDULE_DEFAULT,
 SCHEDULE_TIMESHARING,
 SCHEDULE_REALTIME };
struct SchedulingClassQosPolicy
 { SchedulingClassQosPolicyKind kind; };
enum SchedulingPriorityQosPolicyKind
 { PRIORITY_RELATIVE,
 PRIORITY_ABSOLUTE };
struct SchedulingPriorityQosPolicy
 { SchedulingPriorityQosPolicyKind kind; };
struct SchedulingQosPolicy
 { SchedulingClassQosPolicy scheduling_class;
 SchedulingPriorityQosPolicy scheduling_priority_kind;
 Long scheduling_priority; };

Description
This QosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the DomainParticipant.
69
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Note that some scheduling parameters may not be supported by the underlying
Operating System, or that you may need special privileges to select particular
settings.

Attributes
SchedulingClassQosPolicyKind scheduling_class.kind - specifies the

schedu l ing c l a s s used by the Opera t ing Sys t em, which may be
SCHEDULE_DEFAULT, SCHEDULE_TIMESHARING or SCHEDULE_REALTIME.
Threads can only be spawned within the scheduling classes that are supported
by the underlying Operating System.

SchedulingPriorityQosPolicyKind scheduling_priority_kind.kind -
specifies the priority type, which may be either PRIORITY_RELATIVE or
PRIORITY_ABSOLUTE.

Long scheduling_priority - specifies the priority that will be assigned to threads
spawned by the DomainParticipant. Threads can only be spawned with
priorities that are supported by the underlying Operating System.

Detailed Description
This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the DomainParticipant. Note that some scheduling parameters may
not be supported by the underlying Operating System, or that you may need special
privileges to select particular settings. Refer to the documentation of your OS for
more details on this subject.
Although the behaviour of the scheduling_class is highly dependent on the
underlying OS, in general it can be said that when running in a Timesharing class
your thread will have to yield execution to other threads of equal priority regularly.
In a Realtime class your thread normally runs until completion, and can only be
pre-empted by higher priority threads. Often the highest range of priorities is not
accessible through a Timesharing Class.
The scheduling_priority_kind determines whether the specified
scheduling_priority should be interpreted as an absolute priority, or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DomainParticipant.

3.1.3.19 TimeBasedFilterQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
70
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

struct TimeBasedFilterQosPolicy
 { Duration_t minimum_separation; };

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

3.1.3.20 TopicDataQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct TopicDataQosPolicy
 { OctetSeq value; };

Description
This QosPolicy allows the application to attach additional information to a Topic
Entity. This information is distributed with the BuiltinTopics.

Attributes
OctetSeq value - a sequence of octets that holds the application topic data. By

default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a Topic
Entity. This information is distributed with the BuiltinTopic. An application that
discovers a new Topic entity, can use this information to add additional
functionality. The TopicDataQosPolicy is changeable and updates of the
BuiltinTopic instance must be expected. Note that the Data Distribution Service
is not aware of the real structure of the topic data (the Data Distribution System
handles it as an opaque type) and that the application is responsible for correct
mapping on structural types for the specific platform.

3.1.3.21 TransportPriorityQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct TransportPriorityQosPolicy
 { Long value; };
71
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by the DataWriter.

Attributes
Long value - specifies the priority with which the Data Distribution System can

handle the data produced by the DataWriter.

Detailed Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by a DataWriter. This QosPolicy is considered to be a
hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
type is supported. By default the transport priority is set to 0.
The TransportPriorityQosPolicy is applicable to both Topic and
DataWriter entities. After enabling of the concerning Entities, this
QosPolicy may be changed by using the set_qos operation.

TopicQos
Note that changing this QosPolicy for the Topic does not influence the behaviour
of the Data Distribution System for existing DataWriter entities because this
QosPolicy is only used by the operation copy_from_topic_qos and when
specifying DATAWRITER_QOS_USE_TOPIC_QOS when creating the DataWriter.

3.1.3.22 UserDataQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct UserDataQosPolicy
 { OctetSeq value; };

Description
This QosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader or DataWriter entity. This information is
distributed with the Builtin Topics.

Attributes
OctetSeq value - a sequence of octets that holds the application user data. By

default, the sequence has length 0.

72
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader or DataWriter entity. This information is
distributed with the Builtin Topics. An application that discovers a new Entity of
the listed kind, can use this information to add additional functionality. The
UserDataQosPolicy is changeable and updates of the Builtin Topic instance must
be expected. Note that the Data Distribution Service is not aware of the real
structure of the user data (the Data Distribution System handles it as an opaque
type) and that the application is responsible for correct mapping on structural types
for the specific platform.

3.1.3.23 WriterDataLifecycleQosPolicy

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>

struct WriterDataLifecycleQosPolicy
 { Boolean autodispose_unregistered_instances; };

Note: The functionality behind this QosPolicy is not yet fully implemented.
Missing features are scheduled for a future release.

Description
This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the DataWriter.

Attributes
Boolean autodispose_unregistered_instances - specifies whether the

Data Distribution Service should automatically dispose instances that are
unregistered by this DataWriter.

Detailed Description
This QosPolicy controls the behaviour of the DataWriter with regards to the
lifecycle of the data-instances it manages; that is, those data-instances that have
been registered, either explicitly using one of the register operations, or
implicitly by directly writing the data using the special HANDLE_NIL parameter.
(See also Section 3.4.2.50, register_instance, on page 254).
The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the DataWriter:
73
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• If the DataWriter unregisters the instance explicitly using either
unregister_instance or unregister_instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

• If the DataWriter unregisters its instances implicitly because it is deleted or if a
DataReader detects a loss of liveliness of a connected DataWriter, then the
autodispose_unregistered_instances flag determines whether the
concerned instances are automatically disposed (TRUE) or not (FALSE).

The default value for the autodispose_unregistered_instances flag is
TRUE. For TRANSIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when a loss of
its liveliness is detected.

3.1.4 Listener Interface
This interface is the abstract base interface for all Listener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of a QosPolicy setting, etc. Each DCPS Entity
supports its own specialized kind of Listener. Listeners are related to changes
in communication status. For each Entity type, one specific Listener is derived
from this interface. In the following modules, the following Listeners are derived
from this interface:
• DomainParticipantListener

• TopicListener

• PublisherListener

• DataWriterListener

• SubscriberListener

• DataReaderListener

The Entity type specific Listener interfaces are part of the application which
must implement the interface operations. A user defined class for these operations
must be provided by the application which must extend from the specific Listener
class. All Listener operations must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.
74
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Figure 11 DCPS Listeners
The base class Listener does not contain any operations.

3.1.5 Struct Status
Each concrete Entity class has a set of Status attributes and for each attribute the
Entity class provides an operation to read the value. Changes to Status attributes
will affect associated StatusCondition and (invoked and associated) Listener
objects.
The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener

Table 12 Status Description Per Entity

Entity Status Meaning
Topic INCONSISTENT_TOPIC_STATUS Another Topic exists with the same name but

with different characteristics.
Subscriber DATA_ON_READERS_STATUS New information is available.
75
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

A Status a t t r i b u t e c a n b e r e t r i e v e d w i t h t h e o p e r a t i o n
get_<status_name>_status . F o r e x a m p l e , t o g e t t h e
InconsistentTopicStatus value, the application must call the operation
get_inconsistent_topic_status.

DataReader SAMPLE_REJECTED_STATUS A (received) sample has been rejected.
LIVELINESS_CHANGED_STATUS The liveliness of one or more DataWriter

objects that were writing instances read
through the DataReader has changed. Some
DataWriter have become “alive” or “not
alive”.

REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DataReader was
expecting through its DeadlineQosPolicy
was not respected for a specific instance.

REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS The DataReader has found a DataWriter

that matches the Topic and has compatible
QoS.

DataWriter LIVELINESS_LOST_STATUS The liveliness that the DataWriter has
committed through its
LivelinessQosPolicy was not respected;
thus DataReader objects will consider the
DataWriter as no longer “alive”.

OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DataWriter has
committed through its DeadlineQosPolicy
was not respected for a specific instance.

OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what was requested.

PUBLICATION_MATCH_STATUS The DataWriter has found DataReader
that matches the Topic and has compatible
QoS.

Table 12 Status Description Per Entity

Entity Status Meaning
76
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The StatusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.
For the plain communication Status, the StatusChangedFlag is initially set to
FALSE. It becomes TRUE whenever the plain communication Status changes and it
is reset to FALSE each time the application accesses the plain communication
Status via the proper get_<status_name>_status operation on the Entity.
A flag set means that a change has occurred since the last time the application has
read its value.

Figure 12 DCPS Status Values
Each Status attribute is implemented as a struct and therefore does not provide any
operations. The interface description of these structs is as follows:

// struct <name>Status
//

struct InconsistentTopicStatus
 { Long total_count;
 Long total_count_change; };
struct SampleLostStatus
 { Long total_count;

Status

SampleLostStatus

total_count : long
total_count_change : long

InconsistentTopicStatus

total_count : long
total_count_change : long

SampleRejectedStatus

total_count : long
total_count_change : long
last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

PublicationMatchStatus

total_count : long
total_count_change : long
last_subscription_handle : InstanceHandle_t

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

OfferedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

SubscriptionMatchStatus

total_count : long
total_count_change : long
last_publication_handle : InstanceHandle_t

LivelinessLostStatus

total_count
total_count_change

OfferedIncompatibleQosStatus

total_count
total_count_change
last_policy_id
policies [*]

RequestedIncompatibeQosStatus

total_count
total_count_change
last_policy_id
policies [*]

QosPolicyCount

policy_id
count
77
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 Long total_count_change; };
enum SampleRejectedStatusKind
 { NOT_REJECTED,
 REJECTED_BY_INSTANCES_LIMIT,
 REJECTED_BY_SAMPLES_LIMIT,
 REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT };
struct SampleRejectedStatus
 { Long total_count;
 Long total_count_change;
 SampleRejectedStatusKind last_reason;
 InstanceHandle_t last_instance_handle; };
struct LivelinessLostStatus
 { Long total_count;
 Long total_count_change; };
struct LivelinessChangedStatus
 { Long alive_count;
 Long not_alive_count;
 Long alive_count_change;
 Long not_alive_count_change;
 InstanceHandle_t last_publication_handle; };
struct OfferedDeadlineMissedStatus
 { Long total_count;
 Long total_count_change;
 InstanceHandle_t last_instance_handle; };
struct RequestedDeadlineMissedStatus
 { Long total_count;
 Long total_count_change;
 InstanceHandle_t last_instance_handle; };
struct OfferedIncompatibleQosStatus
 { Long total_count;
 Long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies; };
struct RequestedIncompatibleQosStatus
 { Long total_count;
 Long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies; };
struct PublicationMatchedStatus
 { Long total_count;
 Long total_count_change;
 Long current_count;
 Long current_count_change;
 InstanceHandle_t last_subscription_handle; };
struct SubscriptionMatchedStatus
 { Long total_count;
 Long total_count_change;
 Long current_count;
 Long current_count_change;
 InstanceHandle_t last_publication_handle; };
78
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

//
// implemented API operations
// <no operations>

The next paragraphs describe the usage of each <name>Status struct.

3.1.5.1 InconsistentTopicStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct InconsistentTopicStatus

 { Long total_count;
 Long total_count_change; };

Description
This struct contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

Attributes
Long total_count - the total detected cumulative count of Topic creations,

whose name matches the Topic to which this Status is attached and whose
characteristics are inconsistent.

Long total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

Detailed Description
This struct contains the statistics about attempts to create other Topics with the
same name but with different characteristics.
The attribute total_count holds the total detected cumulative count of Topic
creations, whose name matches the Topic to which this Status is attached and
whose characteristics are inconsistent.
The attribute total_count_change holds the incremental number of inconsistent
Topics, since the last time the Listener was called or the Status was read.

3.1.5.2 LivelinessChangedStatus

Scope
DDS
79
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <ccpp_dds_dcps.h>
struct LivelinessChangedStatus

 { Long alive_count;
 Long not_alive_count;
 Long alive_count_change;
 Long not_alive_count_change;
 InstanceHandle_t last_publication_handle; };

Description
This struct contains the statistics about whether the liveliness of one or more
connected DataWriter objects has changed.

Attributes
Long alive_count - the total count of currently alive DataWriter objects that

write the topic read by the DataReader to which this Status is attached.
Long not_alive_count - the total count of currently not alive DataWriter

objects that wrote the topic read by the DataReader to which this Status is
attached.

Long alive_count_change - the change in alive_count since the last time the
Listener was called or the Status was read.

Long not_alive_count_change - the change in not_alive_count since the
last time the Listener was called or the Status was read.

InstanceHandle_t last_publication_handle - handle to the last
DataWriter whose change in liveliness caused this status to change.

Detailed Description
This struct contains the statistics about whether the liveliness of one or more
connected DataWriter objects that were writing instances read through the
DataReader has changed. In other words, some DataWriter have become
“alive” or “not alive”.
The attribute alive_count holds the total number of currently alive DataWriter
objects that write the topic read by the DataReader to which this Status is
attached. This count increases when a newly-matched DataWriter asserts its
liveliness for the first time or when a DataWriter previously considered to be not
alive reasserts its liveliness. The count decreases when a DataWriter considered
alive fails to assert its liveliness and becomes not alive, whether because it was
deleted normally or for some other reason.
The attribute not_alive_count holds the total count of currently not alive
DataWriters that wrote the topic read by the DataReader to which this Status
is attached, and that are no longer asserting their liveliness. This count increases
80
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

when a DataWriter considered alive fails to assert its liveliness and becomes not
alive for some reason other than the normal deletion of that DataWriter. It
decreases when a previously not alive DataWriter either reasserts its liveliness or
is deleted normally.
The attribute alive_count_change holds the change in alive_count since the
last time the Listener was called or the Status was read.
T h e a t t r i b u t e not_alive_count_change h o l d s t h e c h a n g e i n
not_alive_count since the last time the Listener was called or the Status
was read.
The attribute last_publication_handle contains the instance handle to the
PublicationBuiltinTopicData instance that represents the last datawriter
whose change in liveliness caused this status to change. Be aware that this handle
be lo ng s t o an o th er d a t a r e a d e r, t h e
PublicationBuiltinTopicDataDataReader in the builtin-subscriber, and has
n o m e a n i n g i n t h e c o n t e x t o f t h e d a t a r e a d e r f r o m w h i c h t h e
LivelinessChangedStatus was obtained. If the builtin-subscriber has not
expl ic i t ly been obta ined us ing get_builtin_subscriber on the
DomainParticipant , t h e n t h e r e i s n o
PublicationBuiltinTopicDataDataReader as well, in which case the
last_publication_handle will be set to HANDLE_NIL.

3.1.5.3 LivelinessLostStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct LivelinessLostStatus

 { Long total_count;
 Long total_count_change; };

Description
This struct contains the statistics about whether the liveliness of the DataWriter to
w h i c h t h i s Status i s a t t a c h e d h a s b e e n c o m m i t t e d t h ro u g h i t s
LivelinessQosPolicy.

Attributes
Long total_count - the total cumulative count of times the DataWriter to

which this Status is attached failed to actively signal its liveliness within the
offered liveliness period.
81
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Long total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

Detailed Description
This struct contains the statistics about whether the liveliness of the DataWriter to
w h i c h t h i s Status i s a t t a c h e d h a s b e e n c o m m i t t e d t h ro u g h i t s
LivelinessQosPolicy. In other words, whether the DataWriter failed to
actively signal its liveliness within the offered liveliness period. In such a case, the
connected DataReader objects will consider the DataWriter as no longer
“alive”.
The attribute total_count holds the total cumulative number of times that the
previously-alive DataWriter became not alive due to a failure to actively signal its
liveliness within its offered liveliness period. This count does not change when an
already not alive DataWriter simply remains not alive for another liveliness
period.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.

3.1.5.4 OfferedDeadlineMissedStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct OfferedDeadlineMissedStatus

 { Long total_count
 Long total_count_change
 InstanceHandle_t last_instance_handle }

Description
This struct contains the statistics about whether the deadline that the DataWriter
to which this Status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.

Attributes
Long total_count - the total cumulative count of times the DataWriter to

which this Status is attached failed to write within its offered deadline.
Long total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.
82
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

InstanceHandle_t last_instance_handle - the handle to the last instance in
the DataWriter to which this Status is attached, for which an offered
deadline was missed.

Detailed Description
This struct contains the statistics about whether the deadline that the DataWriter
to which this Status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.
The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the DataWriter to which this Status is attached
failed to provide data. Missed deadlines accumulate; that is, each deadline period
the total_count will be incremented by one.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DataWriter to which this Status is attached, for which an offered deadline was
missed.

3.1.5.5 OfferedIncompatibleQosStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct OfferedIncompatibleQosStatus

 { Long total_count
 Long total_count_change
 QosPolicyId_t last_policy_id
 QosPolicyCountSeq policies }

Description
This struct contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.

Attributes
Long total_count - the total cumulative count of DataReader objects

discovered by the DataWriter with the same Topic and Partition and with
a requested DataReaderQos that was incompatible with the one offered by the
DataWriter.

Long total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.
83
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

QosPolicyId_t last_policy_id - the id of one of the QosPolicy settings
that was found to be incompatible with what was offered, the last time an
incompatibility was detected.

QosPolicyCountSeq policies - a list containing for each QosPolicy the total
number of times that the concerned DataWriter discovered a DataReader
for the same Topic and a requested DataReaderQos that is incompatible with
the one offered by the DataWriter.

Detailed Description
This struct contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change.

• the DataWriter and the Durability Service (as a built-in DataReader). If the
QosPolicy settings between DataWriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
published by the DataWriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of DataReader is specified by
the DurabilityServiceQosPolicy in the Topic.

• the Durability Service (as a built-in DataWriter) and the DataReader. If the
QosPolicy settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining DataReaders.
The QosPolicy of the Durability Service in the role of DataWriter is specified
by the DurabilityServiceQosPolicy in the Topic.

The attribute total_count holds the total cumulative count of DataReader
objects discovered by the DataWriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the DataWriter.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_policy_id holds the id of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last t ime an
incompatibility was detected.
84
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The attribute policies holds a list containing for each QosPolicy the total
number of times that the concerned DataWriter discovered an incompatible
DataReader for the same Topic.Each element in the list represents a counter for a
different QosPolicy, identified by a corresponding unique index number. A named
list of all index numbers is expressed as a set of constants in the API. See Table 13,
Overview of all named QosPolicy indexes for an overview of all these constants.

Table 13 Overview of all named QosPolicy indexes

3.1.5.6 PublicationMatchedStatus

Scope
DDS

Index name Index Value
INVALID_QOS_POLICY_ID 0

USERDATA_QOS_POLICY_ID 1

DURABILITY_QOS_POLICY_ID 2

PRESENTATION_QOS_POLICY_ID 3

DEADLINE_QOS_POLICY_ID 4

LATENCYBUDGET_QOS_POLICY_ID 5

OWNERSHIP_QOS_POLICY_ID 6

OWNERSHIPSTRENGTH_QOS_POLICY_ID 7

LIVELINESS_QOS_POLICY_ID 8

TIMEBASEDFILTER_QOS_POLICY_ID 9

PARTITION_QOS_POLICY_ID 10

RELIABILITY_QOS_POLICY_ID 11

DESTINATIONORDER_QOS_POLICY_ID 12

HISTORY_QOS_POLICY_ID 13

RESOURCELIMITS_QOS_POLICY_ID 14

ENTITYFACTORY_QOS_POLICY_ID 15

WRITERDATALIFECYCLE_QOS_POLICY_ID 16

READERDATALIFECYCLE_QOS_POLICY_ID 17

TOPICDATA_QOS_POLICY_ID 18

GROUPDATA_QOS_POLICY_ID 19

TRANSPORTPRIORITY_QOS_POLICY_ID 20

LIFESPAN_QOS_POLICY_ID 21

DURABILITYSERVICE_QOS_POLICY_ID 22
85
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <ccpp_dds_dcps.h>
struct PublicationMatchedStatus

 { Long total_count
 Long total_count_change
 Long current_count;
 Long current_count_change;
 InstanceHandle_t last_subscription_handle }

Description
The functionality behind the PublicationMatchedStatus is not yet
implemented. It is scheduled for a future release.

3.1.5.7 RequestedDeadlineMissedStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct RequestedDeadlineMissedStatus

 { Long total_count
 Long total_count_change
 InstanceHandle_t last_instance_handle }

Description
This struct contains the statistics about whether the deadline that the DataReader
to which this Status is attached was expecting through its DeadlineQosPolicy,
was not respected for a specific instance.

Attributes
Long total_count - the total cumulative count of the missed deadlines detected

for any instance read by the DataReader to which this Status is attached.
Long total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.
InstanceHandle_t last_instance_handle - the handle to the last instance

in the DataReader to which this Status is attached for which a missed
deadline was detected.
86
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This struct contains the statistics about whether the deadline that the DataReader
to which this Status is attached was expecting through its DeadlineQosPolicy
was not respected for a specific instance. Missed deadlines accumulate, that is, each
deadline period the total_count will be incremented by one for each instance for
which data was not received.
The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DataReader for which a missed deadline was detected.

3.1.5.8 RequestedIncompatibleQosStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct RequestedIncompatibleQosStatus

 { Long total_count
 Long total_count_change
 QosPolicyId_t last_policy_id
 QosPolicyCountSeq policies }

Description
This struct contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.

Attributes
Long total_count - the total cumulative count of DataWriter objects,

discovered by the DataReader to which this Status is attached, with the
same Topic and an offered DataWriterQos that was incompatible with the
one requested by the DataReader.

Long total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

QosPolicyId_t last_policy_id - the <name>_QOS_POLICY_ID of one of
the QosPolicies that was found to be incompatible with what was requested,
the last time an incompatibility was detected.
87
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

QosPolicyCountSeq policies - a list containing (for each QosPolicy) the
total number of times that the concerned DataReader discovered a
DataWriter with the same Topic and an offered DataWriterQos that is
incompatible with the one requested by the DataReader.

Detailed Description
This struct contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change.

• the DataWriter and the Durability Service (as a built-in DataReader). If the
QosPolicy settings between DataWriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
published by the DataWriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of DataReader is specified by
the DurabilityServiceQosPolicy in the Topic.

• the Durability Service (as a built-in DataWriter) and the DataReader. If the
QosPolicy settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining DataReaders.
The QosPolicy of the Durability Service in the role of DataWriter is specified
by the DurabilityServiceQosPolicy in the Topic.

The attribute total_count holds the total cumulative count of DataWriter
objects discovered by the DataReader with the same Topic and an offered
DataWriterQos that was incompatible with the one requested by the
DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_policy_id holds the <name>_QOS_POLICY_ID of one of the
QosPolicies that was found to be incompatible with what was requested, the last
time an incompatibility was detected.
The attribute policies holds a list containing for each QosPolicy the total
number of times that the concerned DataReader discovered an incompatible
DataWriter for the same Topic. Each element in the list represents a counter for a
88
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

different QosPolicy, identified by a corresponding unique index number. A named
list of all index numbers is expressed as a set of constants in the API. See Table 13,
Overview of all named QosPolicy indexes, on page 85 for an overview of all these
constants.

3.1.5.9 SampleLostStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SampleLostStatus

 { Long total_count
 Long total_count_change }

Description
This struct contains the statistics about whether a sample has been lost (never
received).

Attributes
Long total_count - the total cumulative count of all samples lost across all

instances of data published under the Topic.
Long total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.

Detailed Description
This struct contains the statistics about whether a sample has been lost (never
received). The status is independent of the differences in instances, in other words, it
includes all samples lost across all instances of data published under the Topic.
total_count holds the total cumulative count of all samples lost across all
instances of data published under the Topic.
total_count_change holds the change in total_count since the last time the
Listener was called or the Status was read.

3.1.5.10 SampleRejectedStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
89
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

enum SampleRejectedStatusKind
 { NOT_REJECTED
 REJECTED_BY_INSTANCES_LIMIT,
 REJECTED_BY_SAMPLES_LIMIT,
 REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT }

struct SampleRejectedStatus
 { Long total_count
 Long total_count_change
 SampleRejectedStatusKind last_reason
 InstanceHandle_t last_instance_handle }

Description
This struct contains the statistics about samples that have been rejected.

Attributes
Long total_count - the total cumulative count of samples rejected by the

DataReader to which this Status is attached.
Long total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.
SampleRejectedStatusKind last_reason - the reason for rejecting the last

sample.
InstanceHandle_t last_instance_handle - the handle to the instance which

would have been updated by the last sample that was rejected.

Detailed Description
This struct contains the statistics about whether a received sample has been rejected.
The attribute total_count holds the total cumulative count of samples rejected by
the DataReader to which this Status is attached.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_reason holds the reason for rejecting the last sample. The
attribute can have the following values:
• NOT_REJECTED - no sample has been rejected yet.
• REJECTED_BY_INSTANCES_LIMIT - the sample was rejected because it would

exceed the maximum number of instances set by the
ResourceLimitsQosPolicy.

• REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it would
exceed the maximum number of samples set by the ResourceLimits
QosPolicy.
90
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was rejected
because it would exceed the maximum number of samples per instance set by the
ResourceLimitsQosPolicy.

The attribute last_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

3.1.5.11 SubscriptionMatchedStatus

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SubscriptionMatchedStatus

 { Long total_count
 Long total_count_change
 Long current_count;
 Long current_count_change;
 InstanceHandle_t last_publication_handle }

Description
The functionality behind the SubscriptionMatchedStatus is not yet
implemented. It is scheduled for a future release.

3.1.6 Class WaitSet
A WaitSet object allows an application to wait until one or more of the attached
Condition objects evaluates to TRUE or until the timeout expires.
The WaitSet has no factory and must be created by the application. It is directly
created as an object by using WaitSet constructors.

Figure 13 DCPS WaitSets
The interface description of this class is as follows:

class WaitSet
{
//
// implemented API operations
//

ReturnCode_t
 wait

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
91
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 (ConditionSeq& active_conditions,
 const Duration_t& timeout);

ReturnCode_t
 attach_condition
 (Condition_ptr cond);
ReturnCode_t
 detach_condition
 (Condition_ptr cond);
ReturnCode_t
 get_conditions
 (ConditionSeq& attached_conditions);

};

The following paragraphs describe the usage of all WaitSet operations.

3.1.6.1 attach_condition

Scope
DDS::WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 attach_condition
 (Condition_ptr cond);

Description
This operation attaches a Condition to the WaitSet.

Parameters
in Condition_ptr cond - a pointer to a Condition.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER or RETCODE_OUT_OF_
RESOURCES.

Detailed Description
This operation attaches a Condition to the WaitSet. The parameter cond must be
either a ReadCondition , QueryCondition , StatusCondition or
GuardCondition. To get this parameter see:
• ReadCondition created by create_readcondition
• QueryCondition created by create_querycondition
• StatusCondition retrieved by get_statuscondition on an Entity
92
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• GuardCondition created by the C++ operation new.
When a GuardCondition is initially created, the trigger_value is FALSE.
When a Condition, whose trigger_value evaluates to TRUE, is attached to a
WaitSet that is currently being waited on (using the wait operation), the WaitSet
will unblock immediately.

Return Code
When the operation returns:
• RETCODE_OK - the Condition is attached to the WaitSet
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - the parameter cond is not a valid Condition_ptr
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.1.6.2 detach_condition

Scope
DDS::WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 detach_condition
 (Condition_ptr cond);

Description
This operation detaches a Condition from the WaitSet.

Parameters
in Condition_ptr cond - a pointer to a Condition in the WaitSet.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_BAD_PARAMETER , RETCODE_OUT_OF_
RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation detaches a Condition from the WaitSet. If the Condition was
n o t a t t a c h e d t o t h i s WaitSet , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.
93
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Code
When the operation returns:
• RETCODE_OK - the Condition is detached from the WaitSet.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter cond is not a valid
Condition_ptr.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the Condition was not attached to this
WaitSet.

3.1.6.3 get_conditions

Scope
DDS::WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_conditions
 (ConditionSeq_out attached_conditions);

Description
This operation retrieves the list of attached conditions.

Parameters
inout ConditionSeq& attached_conditions - a reference to a sequence

which is used to pass the list of attached conditions.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation retrieves the list of attached conditions in the WaitSet. The
parameter attached_conditions is a reference to a sequence which afterwards
will refer to the sequence of attached conditions. The attached_conditions
sequence and its buffer may be pre-allocated by the application and therefore must
either be re-used in a subsequent invocation of the get_conditions operation or
be released by invoking its destructor either implicitly or explicitly. If the
pre-allocated sequence is not big enough to hold the number of triggered
94
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Conditions, the sequence will automatically be (re-)allocated to fit the required
size. The resulting sequence will either be an empty sequence, meaning there were
no condi t ions a t t ached , o r wi l l con ta in a l i s t o f ReadCondition ,
QueryCondition, StatusCondition and GuardCondition. These conditions
previously have been attached by attach_condition and were created by there
respective create operation:
• ReadCondition created by create_readcondition
• QueryCondition created by create_querycondition
• StatusCondition retrieved by get_statuscondition on an Entity
• GuardCondition created by the C++ operation new.

Return Code
When the operation returns:
• RETCODE_OK - the list of attached conditions is returned
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.1.6.4 wait

Scope
DDS::WaitSet

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 wait
 (ConditionSeq& active_conditions,
 const Duration_t& timeout);

Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to the WaitSet.

Parameters
inout ConditionSeq active_conditions - a sequence which is used to pass

the list of all the attached conditions that have a trigger_value of TRUE.
95
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

in const Duration_t& timeout - the maximum duration to block for the wait,
after which the application thread is unblocked. The special constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_OUT_OF_RESOURCES, RETCODE_TIMEOUT or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluate to TRUE that is attached to the WaitSet. If all of the
conditions attached to the WaitSet have a trigger_value of FALSE, the wait
operation will block the calling thread. The result of the operation is the
continuation of the application thread after which the result is left in
active_conditions. This is a reference to a sequence, which will contain the list
of all the attached conditions that have a trigger_value of TRUE. The
active_conditions sequence and its buffer may be pre-allocated by the
application and therefore must either be re-used in a subsequent invocation of the
wait operation or be released by invoking its destructor either implicitly or
explicitly. If the pre-allocated sequence is not big enough to hold the number of
triggered Conditions, the sequence will automatically be (re-)allocated to fit the
required size. The parameter timeout specifies the maximum duration for the
wait to block the calling application thread (when none of the attached conditions
has a trigger_value o f TRUE) . I n t ha t c a se t he r e tu rn va lue i s
RETCODE_TIMEOUT and the active_conditions sequence is left empty. Since it
is not allowed for more than one application thread to be waiting on the same
WaitSet , t h e o p e r a t i o n r e t u r n s i m m e d ia t e ly w i t h t h e v a l u e
RETCODE_PRECONDITION_NOT_MET when the wait operation is invoked on a
WaitSet which already has an application thread blocking on it.

Return Code
When the operation returns:
• RETCODE_OK - at least one of the attached conditions has a trigger_value

of TRUE.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming TRUE.
96
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• RETCODE_PRECONDITION_NOT_MET - the WaitSet already has an application
thread blocking on it.

3.1.7 Class Condition
This class is the base class for all the conditions that may be attached to a WaitSet.
This base class is specialized in three classes by the Data Distribution Service:
GuardCondition, StatusCondition and ReadCondition (also there is a
QueryCondition which is a specialized ReadCondition).
Each Condition has a trigger_value that can be TRUE or FALSE and is set by
the Data Distribution Service (except a GuardCondition) depending on the
evaluation of the Condition.

Figure 14 DCPS Conditions
The interface description of this class is as follows:

class Condition
{
//
// implemented API operations
//

Boolean
 get_trigger_value

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
97
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 (void);
};

The next paragraph describes the usage of the Condition operation.

3.1.7.1 get_trigger_value

Scope
DDS::Condition

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 get_trigger_value
 (void);

Description
This operation returns the trigger_value of the Condition.

Parameters
<none>

Return Value
Boolean - is the trigger_value.

Detailed Description
A Condition has a trigger_value that can be TRUE or FALSE and is set by the
Data Distribution Service (except a GuardCondition). This operation returns the
trigger_value of the Condition.

3.1.8 Class GuardCondition
A GuardCondition object is a specific Condition whose trigger_value is
completely under the control of the application. The GuardCondition has no
factory and must be created by the application. The GuardCondition is directly
created as an object by using the GuardCondition constructor. When a
GuardCondition is initially created, the trigger_value is FALSE. The purpose
of the GuardCondition is to provide the means for an application to manually
wake up a WaitSet. This is accomplished by attaching the GuardCondition to
t he Waitset a n d s e t t i n g th e trigger_value by means o f t he
set_trigger_value operation.
The interface description of this class is as follows:

class GuardCondition
{

98
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

ReturnCode_t
 set_trigger_value
 (Boolean value);

};

The next paragraphs describe the usage of all GuardCondition operations. The
inherited operation is listed but not fully described since it is not implemented in
this class. The full description of this operation is given in the class from which it is
inherited. This is described in their respective paragraph.

3.1.8.1 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 get_trigger_value
 (void);

3.1.8.2 set_trigger_value

Scope
DDS::GuardCondition

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_trigger_value
 (Boolean value);

Description
This operation sets the trigger_value of the GuardCondition.

Parameters
in Boolean value - the boolean value to which the GuardCondition is set.
99
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK or
RETCODE_ERROR.

Detailed Description
A GuardCondition object is a specific Condition which trigger_value is
completely under the control of the application. This operation must be used by the
application to manually wake-up a WaitSet . This operation sets the
trigger_value of the GuardCondition to the parameter value. The
GuardCondition is directly created using the GuardCondition constructor.
When a GuardCondition is initially created, the trigger_value is FALSE.

Return Code
When the operation returns:
• RETCODE_OK - the specified trigger_value has successfully been applied.
• RETCODE_ERROR - an internal error has occurred.

3.1.9 Class StatusCondition
Entity objects that have status attributes also have a StatusCondition, access is
provided to the application by the get_statuscondition operation.
The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Table 14 Status Per Entity

Entity Status Name
Topic INCONSISTENT_TOPIC_STATUS

Subscriber DATA_ON_READERS_STATUS

DataReader SAMPLE_REJECTED_STATUS

LIVELINESS_CHANGED_STATUS

REQUESTED_DEADLINE_MISSED_STATUS

REQUESTED_INCOMPATIBLE_QOS_STATUS

DATA_AVAILABLE_STATUS

SAMPLE_LOST_STATUS

SUBSCRIPTION_MATCHED_STATUS

DataWriter LIVELINESS_LOST_STATUS

OFFERED_DEADLINE_MISSED_STATUS

OFFERED_INCOMPATIBLE_QOS_STATUS

PUBLICATION_MATCHED_STATUS
100
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The trigger_value of the StatusCondition depends on the communication
statuses of that Entity (e.g., missed deadline) and also depends on the value of the
StatusCondition a t t r ibute mask (enabled_statuses mask) . A
StatusCondition can be attached to a WaitSet in order to allow an application
to suspend until the trigger_value has become TRUE.
The trigger_value of a StatusCondition will be TRUE if one of the enabled
StatusChangedFlags is set. That is, trigger_value==FALSE only if all the
values of the StatusChangedFlags are FALSE.
The sensitivity of the StatusCondition to a particular communication status is
controlled by the list of enabled_statuses set on the condition by means of the
set_enabled_statuses operation.
When the enabled_statuses are not changed by the set_enabled_statuses
operation, all statuses are enabled by default.
The interface description of this class is as follows:

class StatusCondition
{
//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

StatusMask
 get_enabled_statuses
 (void);

ReturnCode_t
 set_enabled_statuses
 (StatusMask mask);

Entity_ptr
 get_entity
 (void);

};

The next paragraphs describe the usage of all StatusCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
101
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.9.1 get_enabled_statuses

Scope
DDS::StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_enabled_statuses
 (void);

Description
This operation returns the list of enabled communication statuses of the
StatusCondition.

Parameters
<none>

Return Value
StatusMask - a bit mask in which each bit shows which status is taken into

account for the StatusCondition.

Detailed Description
The trigger_value of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled_statuses on the StatusCondition.
This operation returns the list of communication statuses that are taken into account
to determine the trigger_value of the StatusCondition. This operation
r e t u r n s t h e s t a tu s e s t h a t w e r e e x p l i c i t l y s e t on t he l a s t c a l l t o
set_enabled_statuses or, if set_enabled_statuses was never called, the
default list.
The result value is a bit mask in which each bit shows which status is taken into
account for the StatusCondition. The relevant bits represents one of the
following statuses:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS
102
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS

• SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type StatusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener objects for each
Entity for more information.

3.1.9.2 get_entity

Scope
DDS::StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
Entity_ptr
 get_entity
 (void);

Description
This operation returns the Entity associated with the StatusCondition or the
NULL pointer.

Parameters
<none>

Return Value
Entity_ptr - a pointer to the Entity associated with the StatusCondition or

the NULL pointer.

Detailed Description
This operation returns the Entity associated with the StatusCondition. Note
that there is exactly one Entity associated with each StatusCondition. When
the Entity was already deleted (there is no associated Entity any more), the
NULL pointer is returned.

3.1.9.3 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.
103
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 get_trigger_value
 (void);

3.1.9.4 set_enabled_statuses

Scope
DDS::StatusCondition

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_enabled_statuses
 (StatusMask mask);

Description
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition.

Parameters
in StatusMask mask - a bit mask in which each bit sets the status which is taken

into account for the StatusCondition.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_ALREADY_DELETED.

Detailed Description
The trigger_value of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled_statuses on the StatusCondition.
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition. This operation may
change the trigger_value of the StatusCondition.
WaitSet objects behaviour depend on the changes of the trigger_value of their
attached Conditions. Therefore, any WaitSet to which the StatusCondition
is attached is potentially affected by this operation.
If this function is not invoked, the default list of enabled_statuses includes all
the statuses.
104
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The parameter mask is a bit mask in which each bit shows which status is taken into
account for the StatusCondition. The relevant bits represents one of the
following states:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS

• SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type StatusMask. Not all statuses are
relevant to all Entity objects. See the respective Listener objects for each
Entity for more information.

Return Code
When the operation returns:
• RETCODE_OK - the list of communication statuses is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the StatusCondition has already been

deleted.
105
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2 Domain Module

Figure 15 DCPS Domain Module’s Class Model
This module contains the following classes:
• DomainParticipant

• DomainParticipantFactory

• DomainParticipantListener (interface).

3.2.1 Class DomainParticipant
All the DCPS Entity objects are attached to a DomainParticipant.
A DomainParticipant represents the local membership of the application in a
Domain.
A Domain is a distributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
Publishers and the Subscribers attached to the same Domain can interact.
This class implements several functions:
• it acts as a container for all other Entity objects
• it acts as a factory for the Publisher, Subscriber, Topic,
ContentFilteredTopic and MultiTopic objects

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
106
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• it provides access to the built-in Topic objects
• it provides information about Topic objects
• It isolates applications within the same Domain (sharing the same domainId)

from other applications in a different Domain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other.

• It provides administration services in the Domain, offering operations, which
allow the application to ignore locally any information about a given
Participant, Publication, Subscription or Topic.

The interface description of this class is as follows:
 class DomainParticipant

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// implemented API operations
//

Publisher_ptr
 create_publisher
 (const PublisherQos& qos,

 PublisherListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_publisher
 (Publisher_ptr p);
Subscriber_ptr
 create_subscriber
 (const SubscriberQos& qos,

 SubscriberListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_subscriber
 (Subscriber_ptr s);
Subscriber_ptr
 get_builtin_subscriber
 (void);
107
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Topic_ptr
 create_topic
 (const char* topic_name,

 const char* type_name,
 const TopicQos& qos,
 TopicListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_topic
 (Topic_ptr a_topic);
Topic_ptr
 find_topic
 (const char* topic_name,

 const Duration_t& timeout);
TopicDescription_ptr
 lookup_topicdescription
 (const char* name);
ContentFilteredTopic_ptr
 create_contentfilteredtopic
 (const char* name,

 Topic_ptr related_topic,
 const char* filter_expression,
 const StringSeq& expression_parameters);

ReturnCode_t
 delete_contentfilteredtopic
 (ContentFilteredTopic_ptr

 a_contentfilteredtopic);
MultiTopic_ptr
 create_multitopic
 (const char* name,

 const char* type_name,
 const char* subscription_expression,
 const StringSeq& expression_parameters);

ReturnCode_t
 delete_multitopic
 (MultiTopic_ptr a_multitopic);
ReturnCode_t
 delete_contained_entities
 (void);
ReturnCode_t
 set_qos
 (const DomainParticipantQos& qos);
ReturnCode_t
 get_qos
 (DomainParticipantQos& qos);
ReturnCode_t
 set_listener
 (DomainParticipantListener_ptr a_listener,

 StatusMask mask);
DomainParticipantListener_ptr
108
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 get_listener
 (void);
ReturnCode_t
 ignore_participant
 (InstanceHandle_t handle);
ReturnCode_t
 ignore_topic
 (InstanceHandle_t handle);
ReturnCode_t
 ignore_publication
 (InstanceHandle_t handle);
ReturnCode_t
 ignore_subscription
 (InstanceHandle_t handle);
DomainId_t
 get_domain_id
 (void);
ReturnCode_t
 get_discovered_participants
 (InstanceHandleSeq& participant_handles);
ReturnCode_t
 get_discovered_participant_data
 (ParticipantBuiltinTopicData& participant_data,
 InstanceHandle_t handle);
ReturnCode_t
 get_discovered_topics
 (InstanceHandleSeq& topic_handles);
ReturnCode_t
 get_discovered_topic_data
 (TopicBuiltinTopicData& topic_data,
 InstanceHandle_t handle);
ReturnCode_t
 assert_liveliness
 (void);
ReturnCode_t
 set_default_publisher_qos
 (const PublisherQos& qos);
ReturnCode_t
 get_default_publisher_qos
 (PublisherQos& qos);
ReturnCode_t
 set_default_subscriber_qos
 (const SubscriberQos& qos);
ReturnCode_t
 get_default_subscriber_qos
 (SubscriberQos& qos);
ReturnCode_t
 set_default_topic_qos
 (const TopicQos& qos);
ReturnCode_t
109
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 get_default_topic_qos
 (TopicQos& qos);
Boolean
 contains_entity
 (InstanceHandle_t a_handle);
ReturnCode_t
 get_current_time
 (Time_t& current_time);

};

The next paragraphs describe the usage of all DomainParticipant operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.2.1.1 assert_liveliness

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 assert_liveliness
 (void);

Description
This operation asserts the liveliness for the DomainParticipant.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_NOT_ENABLED.

Detailed Description
This operation will manually assert the liveliness for the DomainParticipant.
This way, the Data Distribution Service is informed that the DomainParticipant
is still alive. This operation only needs to be used when the DomainParticipant
c o n t a i n s DataWriters w i t h t h e LivelinessQosPolicy s e t t o
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, and it will only affect the
liveliness of those DataWriters.
110
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Writing data via the write operation of a DataWriter will assert the liveliness on
the DataWriter i t s e l f and i t s DomainParticipant . The re fo re ,
assert_liveliness is only needed when not writing regularly.
The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the liveliness of this DomainParticipant has successfully been

asserted.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DomainParticipant is not enabled.

3.2.1.2 contains_entity

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 contains_entity
 (InstanceHandle_t a_handle);

Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant or any of its contained entities.

Parameters
in InstanceHandle_t a_handle - an Entity in the Data Distribution System.

Return Value
Boolean - TRUE if a_handle represents an Entity that is created by the

DomainParticipant or any of its contained Entities. Otherwise the return
value is FALSE.
111
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant itself (TopicDescription, Publisher
or Subscriber) or created by any of its contained entities (DataReader,
ReadCondition, QueryCondition, DataWriter, etc.).
Return value is TRUE if a_handle represents an Entity that is created by the
DomainParticipant or any of its contained Entities. Otherwise the return
value is FALSE.

3.2.1.3 create_contentfilteredtopic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ContentFilteredTopic_ptr
 create_contentfilteredtopic
 (const char* name,

Topic_ptr related_topic,
 const char* filter_expression,

const StringSeq& expression_parameters);

Description
This operation creates a ContentFilteredTopic for a DomainParticipant in
order to allow DataReaders to subscribe to a subset of the topic content.

Parameters
in const char* name - the name of the ContentFilteredTopic.
in Topic_ptr related_topic - the pointer to the base topic on which the

filtering will be applied. Therefore, a filtered topic is based on an existing Topic.
in const char* filter_expression - the SQL expression (subset of SQL),

which defines the filtering.
in const StringSeq& expression_parameters - the handle to a sequence

of strings with the parameter value used in the SQL expression (i.e., the number
o f % n t o k e n s i n t h e e x p r e s s i o n) . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest
referenced %n token in the filter_expression (e.g. if %1 and %8 are used
as parameter in the filter_expression, the expression_parameters
should at least contain n+1 = 9 values).
112
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
ContentFilteredTopic_ptr - t he po in te r to the newly c rea ted

ContentFilteredTopic. In case of an error, a NULL pointer is returned.

Detailed Description
This operation creates a ContentFilteredTopic for a DomainParticipant in
order to allow DataReaders to subscribe to a subset of the topic content. The base
topic, which is being filtered is defined by the parameter related_topic. The
resulting ContentFilteredTopic only relates to the samples published under the
related_topic, which have been filtered according to their content. The resulting
ContentFilteredTopic only exists at the DataReader side and will never be
published. The samples of the related_topic are filtered according to the SQL
express ion (which i s a subse t of SQL) as def ined in the parameter
filter_expression (see Appendix H, DCPS Queries and Filters).
The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
pa ra me te r expression_parameters . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest referenced
%n token in the filter_expression (e.g. if %1 and %8 are used as parameter in
the filter_expression, the expression_parameters should at least contain
n+1 = 9 values).
The filter_expression is a string that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated Topics. It is an SQL expression where the WHERE clause gives the
content filter.

3.2.1.4 create_multitopic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
MultiTopic_ptr
 create_multitopic
 (const char* name,
 const char* type_name,
 const char* subscription_expression,
 const StringSeq& expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.
113
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation creates a MultiTopic for a DomainParticipant in order to allow
DataReaders to subscribe to a filtered/re-arranged combination and/or subset of
the content of several topics.

Parameters
in const char* name - the name of the multi topic.
in const char* type_name - the name of the type of the MultiTopic. This

type_name must have been registered using register_type prior to calling
this operation.

in const char* subscription_expression - the SQL expression (subset of
SQL), which defines the selection, filtering, combining and re-arranging of the
sample data.

in const StringSeq& expression_parameters - the handle to a sequence
of strings with the parameter value used in the SQL expression (i.e., the number
o f % n t o k e n s i n t h e e x p r e s s i o n) . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression (e.g. if %1 and %8 are used
as pa ra me te r i n t he subscription_expression , t h e
expression_parameters should at least contain n+1 = 9 values).

Return Value
MultiTopic_ptr - is the pointer to the newly created MultiTopic. In case of an

error, a NULL pointer is returned.

Detailed Description
This operation creates a MultiTopic for a DomainParticipant in order to allow
DataReaders to subscribe to a filtered/re-arranged combination and/or subset of
the content of several topics. Before the MultiTopic can be created, the
type_name of the MultiTopic must have been registered prior to calling this
operation. Registering is done, using the register_type operation from
TypeSupport. The list of topics and the logic, which defines the selection,
filtering, combining and re-arranging of the sample data, is defined by the SQL
expression (subset of SQL) defined in subscription_expression. The
subscription_expression may also contain parameters, which appear as %n
t o k ens i n t he exp re s s ion . Thes e pa r ame te r s a r e de f i ne d i n
expression_parameters. The number of values in expression_parameters
must be equal or greater than the highest referenced %n token in the
114
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

subscription_expression (e.g. if %1 and %8 are used as parameter in the
subscription_expression, the expression_parameters should at least
contain n+1 = 9 values).
The subscription_expression is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It is an SQL expression where the SELECT
clause provides the fields to be kept, the FROM part provides the names of the
Topics that are searched for those fields, and the WHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.
The DataReader, which is associated with a MultiTopic only accesses
information which exist locally in the DataReader, based on the Topics used in
the subscription_expression. The actual MultiTopic will never be
produced, only the individual Topics.

3.2.1.5 create_publisher

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Publisher_ptr
 create_publisher
 (const PublisherQos& qos,
 PublisherListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it.

Parameters
in const PublisherQos& qos - a collection of QosPolicy settings for the

new Publisher. In case these settings are not self consistent, no Publisher is
created.

in PublisherListener_ptr a_listener - a p o i n t e r t o t h e
PublisherListener instance which will be attached to the new Publisher.
It is permitted to use NULL as the value of the listener: this behaves as a
PublisherListener whose operations perform no action.

in StatusMask mask - a bit-mask in which each bit enables the invocation of
the PublisherListener for a certain status.
115
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
Publisher_ptr - Return value is a pointer to the newly created Publisher. In

case of an error, the NULL pointer is returned.

Detailed Description
This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it. When the
PublisherListener is not applicable, the NULL pointer must be supplied instead.
To d e l e t e t h e Publisher t h e o p e r a t i o n delete_publisher o r
delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no Publisher is
created and the NULL pointer is returned.

Default QoS
The constant PUBLISHER_QOS_DEFAULT can be used as parameter qos to create a
Publisher with the default PublisherQos as set in the DomainParticipant.
The effect of using PUBLISHER_QOS_DEFAULT is the same as calling the operation
get_default_publisher_qos and using the resulting PublisherQos to create
the Publisher.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the PublisherListener:
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the PublisherListener.
116
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener of a contained DataWriter, the DataWriterListener
on that contained DataWriter is invoked instead of the PublisherListener.
This means that a status change on a contained DataWriter only invokes the
PublisherListener if the contained DataWriter itself does not handle the
trigger event generated by the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
PublisherListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Publisher s pec i f i c be hav iou r when n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.

3.2.1.6 create_subscriber

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Subscriber_ptr
 create_subscriber
 (const SubscriberQos& qos,
 SubscriberListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a Subscriber with the desired QosPolicy settings and if
applicable, attaches the optionally specified SubscriberListener to it.

Parameters
in const SubscriberQos& qos - a collection of QosPolicy settings for the

new Subscriber. In case these settings are not self consistent, no
Subscriber is created.

in SubscriberListener_ptr a_listener - a p o i n t e r t o t h e
SubscriberListener instance which will be attached to the new
Subscriber. It is permitted to use NULL as the value of the listener: this
behaves as a SubscriberListener whose operations perform no action.
117
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

in StatusMask mask - a bit-mask in which each bit enables the invocation of
the SubscriberListener for a certain status.

Return Value
Subscriber_ptr - Return value is a pointer to the newly created Subscriber. In

case of an error, the NULL pointer is returned.

Detailed Description
This operation creates a Subscriber with the desired QosPolicy settings and if
applicable, attaches the optionally specified SubscriberListener to it. When the
SubscriberListener is not applicable, the NULL pointer must be supplied
instead. To delete the Subscriber the operation delete_subscriber or
delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no Subscriber is
created and the NULL pointer is returned.

Default QoS
The constant SUBSCRIBER_QOS_DEFAULT can be used as parameter qos to create
a Subscriber w i th t h e d e f a u l t SubscriberQos a s s e t i n t h e
Domainparticipant. The effect of using SUBSCRIBER_QOS_DEFAULT is the
same as calling the operation get_default_subscriber_qos and using the
resulting SubscriberQos to create the Subscriber.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated SubscriberListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the SubscriberListener:
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
118
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DATA_ON_READERS_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener of a contained DataReader, the DataReaderListener
on that contained DataReader is invoked instead of the SubscriberListener.
This means that a status change on a contained DataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Subscriber s p e c i f i c b e h a v i o u r w he n n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener , SubscriberListener o r
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

3.2.1.7 create_topic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr
119
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 create_topic
 (const char* topic_name,
 const char* type_name,
 const TopicQos& qos,
 TopicListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a reference to a new or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener to it.

Parameters
in const char* topic_name - the name of the Topic to be created. A new

Topic will only be created, when no Topic, with the same name, is found
within the DomainParticipant.

in const char* type_name - a local alias of the data type, which must have
been registered before creating the Topic.

in const TopicQos& qos - a collection of QosPolicy settings for the new
Topic. In case these settings are not self consistent, no Topic is created.

in TopicListener_ptr a_listener - a pointer to the TopicListener
instance which will be attached to the new Topic. It is permitted to use NULL as
the value of the listener: this behaves as a TopicListener whose operations
perform no action.

in StatusMask mask - a bit-mask in which each bit enables the invocation of
the TopicListener for a certain status.

Return Value
Topic_ptr - Return value is a pointer to the new or existing Topic. In case of an

error, the NULL pointer is returned.

Detailed Description
This operation creates a reference to a new or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener to it. When the TopicListener is not
applicable, the NULL pointer must be supplied instead. In case the specified
QosPolicy settings are not consistent, no Topic is created and the NULL pointer is
r e t u r n e d . To d e l e t e t h e Topic t h e o p e r a t i o n delete_topic o r
delete_contained_entities must be used.
120
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Default QoS
The constant TOPIC_QOS_DEFAULT can be used as parameter qos to create a
Topic with the default TopicQos as set in the DomainParticipant. The effect
of us ing TOPIC_QOS_DEFAULT i s the same as cal l ing the operat ion
get_default_topic_qos and using the resulting TopicQos to create the Topic.
The Topic is bound to the type type_name. Prior to creating the Topic, the
type_name must have been registered with the Data Distribution Service.
Registering the type_name is done using the data type specific register_type
operation.

Existing Topic Name
B e f o r e c r e a t i n g a n e w Topic , t h i s o p e ra t i o n p e r f o r m s a
lookup_topicdescription for the specified topic_name. When a Topic is
found with the same name in the current domain, the QoS and type_name of the
found Topic are matched against the parameters qos and type_name. When they
are the same, no Topic is created but a new proxy of the existing Topic is returned.
When they are not exactly the same, no Topic is created and the NULL pointer is
returned.
When a Topic is obtained multiple times, it must also be deleted that same number
of times using delete_topic or calling delete_contained_entities once to
delete all the proxies.

Local Proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not a reference to a Topic
but to a locally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
create, a new proxy is created. Therefore the Topic must be deleted the same
number of times, as the Topic was created with the same topic_name per
Domain. In other words, each reference (local proxy) must be deleted separately.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated TopicListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the TopicListener:
121
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• INCONSISTENT_TOPIC_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the TopicListener.

Status Propagation
In case a communication status is not activated in the mask of the TopicListener,
the DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the
containing DomainParticipant and a Topic specific behaviour when needed. In
case the DomainParticipantListener is a lso not at tached or the
communication status is not activated in its mask, the application is not notified of
the change.

3.2.1.8 delete_contained_entities

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_contained_entities
 (void);

Description
This operation deletes all the Entity objects that were created on the
DomainParticipant.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_
OUT_OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the Entity objects that were created on the
DomainParticipant. In other words, it deletes all Publisher, Subscriber,
Topic, ContentFilteredTopic and MultiTopic objects. Prior to deleting each
122
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

contained Entity, this operation regressively calls the corresponding
delete_contained_entities operation on each Entity (if applicable). In
other words, all Entity objects in the Publisher and Subscriber are deleted,
including the DataWriter and DataReader. Also the QueryCondition and
ReadCondition objects contained by the DataReader are deleted.

Topic
Since a Topic is a global concept in the system, access is provided through a local
proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic or find_topic operation. When a reference to the same Topic
was created multiple times (either by create_topic or find_topic), all
references (local proxies) are deleted. With the last proxy, the Topic itself is also
removed from the system.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the DomainParticipant.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.2.1.9 delete_contentfilteredtopic

Scope
DDS::DomainParticipant
123
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_contentfilteredtopic
 (ContentFilteredTopic_ptr a_contentfilteredtopic);

Description
This operation deletes a ContentFilteredTopic.

Parameters
in ContentFilteredTopic_ptr a_contentfilteredtopic - a reference to

the ContentFilteredTopic, which is to be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_BAD_PARAMETER ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a ContentFilteredTopic.
The deletion of a ContentFilteredTopic is not allowed if there are any existing
DataReader objects that are using the ContentFilteredTopic. If the
delete_contentfilteredtopic o p e r a t i o n i s c a l l e d o n a
ContentFilteredTopic with existing DataReader objects attached to it, it will
return PRECONDITION_NOT_MET.
The delete_contentfilteredtopic operation must be called on the same
DomainParticipant object used to create the ContentFilteredTopic. If
delete_contentfilteredtopic is called on a different DomainParticipant
the operation will have no effect and it will return PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the ContentFilteredTopic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_contentfilteredtopic is not

a valid ContentFilteredTopic_ptr
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
124
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the ContentFilteredTopic was created,
or the ContentFilteredTopic is being used by one or more DataReader
objects.

3.2.1.10 delete_multitopic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_multitopic
 (MultiTopic_ptr a_multitopic);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation deletes a MultiTopic.

Parameters
in MultiTopic_ptr a_multitopic - a pointer to the MultiTopic, which is to

be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a MultiTopic.
The deletion of a MultiTopic is not allowed if there are any existing DataReader
objects that are using the MultiTopic. If the delete_multitopic operation is
called on a MultiTopic with existing DataReader objects attached to it, it will
return RETCODE_PRECONDITION_NOT_MET.
125
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

The delete_multitopic o p e r a t i o n m u s t b e c a l l e d o n t h e s a m e
DomainParticipant o b j e c t u s e d t o c re a t e t h e MultiTopic . I f
delete_multitopic is called on a different DomainParticipant the operation
will have no effect and it will return RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the MultiTopic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_multitopic is not a valid
MultiTopic_ptr

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the MultiTopic was created, or the
MultiTopic is being used by one or more DataReader objects.

3.2.1.11 delete_publisher

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_publisher
 (Publisher_ptr p);

Description
This operation deletes a Publisher.

Parameters
in Publisher_ptr p - a pointer to the Publisher, which is to be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.
126
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation deletes a Publisher. A Publisher cannot be deleted when it has
any attached DataWriter objects. When the operation is called on a Publisher
w i t h DataWriter o b j e c t s , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, as used when the Publisher was created, the operation
has no effect and returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the Publisher is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter p is not a valid Publisher_ptr
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Publisher was created, or the
Publisher contains one or more DataWriter objects.

3.2.1.12 delete_subscriber

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_subscriber
 (Subscriber_ptr s);

Description
This operation deletes a Subscriber.

Parameters
in Subscriber_ptr s - a pointer to the Subscriber, which is to be deleted.
127
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a Subscriber. A Subscriber cannot be deleted when it
has any attached DataReader objects. When the operation is called on a
Subscriber w i t h DataReader o b j e c t s , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, as used when the Subscriber was created, the operation
has no effect and returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the Subscriber is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter s is not a valid Subscriber_ptr
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Subscriber was created, or the
Subscriber contains one or more DataReader objects.

3.2.1.13 delete_topic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_topic
 (Topic_ptr a_topic);

Description
This operation deletes a Topic.
128
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in Topic_ptr a_topic - a pointer to the Topic, which is to be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a Topic. A Topic cannot be deleted when there are any
DataReader, DataWriter, ContentFilteredTopic or MultiTopic objects,
which are using the Topic. When the operation is called on a Topic referenced by
any of these objects, the operation returns RETCODE_PRECONDITION_NOT_MET.
When the operation is called on a different DomainParticipant, as used when
the Topic w a s c r e a t e d , t h e o p e ra t i o n h a s n o e f f e c t a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Local proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference is actually not a reference to a Topic but to the
local proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic or find_topic operation. This operation will delete the local
proxy. When a reference to the same Topic was created multiple times (either by
create_topic or find_topic), each reference (local proxy) must be deleted
separately. When this proxy is the last proxy for this Topic, the Topic itself is also
removed from the system. As mentioned, a proxy may only be deleted when there
are no other entities attached to it. However, it is possible to delete a proxy while
there are entities attached to a different proxy.

Return Code
When the operation returns:
• RETCODE_OK - the Topic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_topic is not a valid Topic_ptr
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

129

API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Topic was created, or the Topic is still
referenced by other objects.

3.2.1.14 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 enable
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.15 find_topic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr
 find_topic
 (const char* topic_name,
 const Duration_t& timeout);

Description
This operation gives access to an existing (or ready to exist) enabled Topic, based
on its topic_name.

Parameters
in const char* topic_name - the name of the Topic that the application

wants access to.
in const Duration_t& timeout - the maximum duration to block for the

DomainParticipant_find_topic, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
Topic_ptr - Return value is a pointer to the Topic found.
130
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation gives access to an existing Topic, based on its topic_name. The
operation takes as arguments the topic_name of the Topic and a timeout.
If a Topic of the same topic_name already exists, it gives access to this Topic.
Otherwise it waits (blocks the caller) until another mechanism creates it. This other
mechanism can be another thread, a configuration tool, or some other Data
Distribution Service utility. If after the specified timeout the Topic can still not be
found, the caller gets unblocked and the NULL pointer is returned.
A Topic obtained by means of find_topic, must also be deleted by means of
delete_topic so that the local resources can be released. If a Topic is obtained
multiple times it must also be deleted that same number of times using
delete_topic or calling delete_contained_entities once to delete all the
proxies.
A Topic t ha t i s ob ta ined by means o f find_topic in a spec i f i c
DomainParticipant can only be used to create DataReaders and
DataWriters in that DomainParticipant if its corresponding TypeSupport
has been registered to that same DomainParticipant.

Local Proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not a reference to a Topic
but to a locally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
time this operation is called, a new proxy is created. Therefore the Topic must be
deleted the same number of times, as the Topic was created with the same
topic_name per Domain. In other words, each reference (local proxy) must be
deleted separately.

3.2.1.16 get_builtin_subscriber

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
Subscriber_ptr
 get_builtin_subscriber
 (void);
131
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operat ion returns the bui l t- in Subscriber associated with the
DomainParticipant.

Parameters
<none>

Return Value
Subscriber_ptr - Result value is a pointer to the built-in Subscriber

associated with the DomainParticipant.

Detailed Description
This operat ion returns the bui l t- in Subscriber associated with the
DomainParticipant. Each DomainParticipant contains several built-in
Topic objects. The built-in Subscriber contains the corresponding DataReader
objects to access them. All these DataReader objects belong to a single built-in
Subscriber. Note that there is exactly one built-in Subscriber associated with
each DomainParticipant.

3.2.1.17 get_current_time

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_current_time
 (Time_t& current_time);

Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.

Parameters
inout Time_t& current_time - the value of the current time as used by the

Data Distribution System. The input value of current_time is ignored.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_NOT_ENABLED.
132
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.
The input value of current_time is ignored by the operation.

Return Code
When the operation returns:
• RETCODE_OK - the value of the current time is returned in current_time.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter current_time is not a valid

reference.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DomainParticipant is not enabled.

3.2.1.18 get_default_publisher_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_default_publisher_qos
 (PublisherQos& qos);

Description
This operation gets the struct with the default Publisher QosPolicy settings of
the DomainParticipant.

Parameters
inout PublisherQos& qos - a reference to the PublisherQos struct (provided

by the application) in which the default QosPolicy settings for the
Publisher are written.
133
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation gets the struct with the default Publisher QosPolicy settings of
the DomainParticipant (that is the PublisherQos) which is used for newly
created Publisher objects, in case the constant PUBLISHER_QOS_DEFAULT is
used. The default PublisherQos is only used when the constant is supplied as
parameter qos to specify the PublisherQos in the create_publisher
operation. The application must provide the PublisherQos struct in which the
QosPolicy settings can be stored and pass the qos reference to the operation. The
operation writes the default QosPolicy settings to the struct referenced to by qos.
Any settings in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_publisher_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2 on
page 37

Return Code
When the operation returns:
• RETCODE_OK - the default Publisher QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
PublisherQos parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.19 get_default_subscriber_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_default_subscriber_qos
 (SubscriberQos& qos);
134
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation gets the struct with the default Subscriber QosPolicy settings of
the DomainParticipant.

Parameters
inout SubscriberQos& qos - a reference to the QosPolicy struct (provided by

the application) in which the default QosPolicy settings for the Subscriber
is written.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation gets the struct with the default Subscriber QosPolicy settings of
the DomainParticipant (that is the SubscriberQos) which is used for newly
created Subscriber objects, in case the constant SUBSCRIBER_QOS_DEFAULT is
used. The default SubscriberQos is only used when the constant is supplied as
parameter qos to specify the SubscriberQos in the create_subscriber
operation. The application must provide the QoS struct in which the policy can be
stored and pass the qos reference to the operation. The operation writes the default
QosPolicy to the struct referenced to by qos. Any settings in the struct are
overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_subscriber_qos, or, if the call was never made,
the default values as specified for each QosPolicy defined in Table 2 on page 37

Return Code
When the operation returns:
• RETCODE_OK - the default Subscriber QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
SubscriberQos parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
135
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.20 get_default_topic_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_default_topic_qos
 (TopicQos& qos);

Description
This operation gets the struct with the default Topic QosPolicy settings of the
DomainParticipant.

Parameters
inout TopicQos& qos - a reference to the QosPolicy struct (provided by the

application) in which the default QosPolicy settings for the Topic is written.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation gets the struct with the default Topic QosPolicy settings of the
DomainParticipant (that is the TopicQos) which is used for newly created
Topic objects, in case the constant TOPIC_QOS_DEFAULT is used. The default
TopicQos is only used when the constant is supplied as parameter qos to specify
the TopicQos in the create_topic operation. The application must provide the
QoS struct in which the policy can be stored and pass the qos reference to the
operation. The operation writes the default QosPolicy to the struct referenced to
by qos. Any settings in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_topic_qos, or, if the call was never made, the
default values as specified for each QosPolicy defined in Table 2 on page 37

Return Code
When the operation returns:
• RETCODE_OK - the default Topic QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
TopicQos parameter.
136
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.21 get_discovered_participants

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_discovered_participants
 (InstanceHandleSeq& participant_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.22 get_discovered_participant_data

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_discovered_participant_data
 (ParticipantBuiltinTopicData& participant_data,
 InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.23 get_discovered_topics

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_discovered_topics
 (InstanceHandleSeq& topic_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.
137
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.24 get_discovered_topic_data

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_discovered_topic_data
 (TopicBuiltinTopicData& topic_data,
 InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.25 get_domain_id

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
DomainId_t
 get_domain_id
 (void);

Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DomainParticipant is attached.

Parameters
<none>

Return Value
DomainId_t - result is the DomainId.

Detailed Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DomainParticipant is attached. A DomainId consists of a string that represents
a U R I t o t h e l o c a t i o n o f t h e c o n f i g u r a t i o n f i l e (e . g .
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.
A DomainId may contain the NULL pointer: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI.
138
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.26 get_listener

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipantListener_ptr
 get_listener
 (void);

Description
This operation allows access to a DomainParticipantListener.

Parameters
<none>

Return Value
DomainParticipantListener_ptr - r e s u l t i s a p o i n t e r t o t h e

DomainParticipantListener attached to the DomainParticipant.

Detailed Description
This operation allows access to a DomainParticipantListener attached to the
DomainParticipant. When no DomainParticipantListener was attached to
the DomainParticipant, the NULL pointer is returned.

3.2.1.27 get_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (DomainParticipantQos& qos);

Description
This operation allows access to the existing set of QoS policies for a
DomainParticipant.
139
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
inout DomainParticipantQos& qos - a reference to the destination

DomainParticipantQos struct in which the QosPolicy settings will be
copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DomainParticipant o n w h i c h t h i s o p e r a t i o n i s u s e d . T h i s
DomainparticipantQos is stored at the location pointed to by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this
DomainParticipant has successfully been copied into the specified
DomainParticipantQos parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.28 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
 (void);

3.2.1.29 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
140
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition
 get_statuscondition_ptr
 (void);

3.2.1.30 ignore_participant

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 ignore_participant
 (InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.31 ignore_publication

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 ignore_publication
 (InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.32 ignore_subscription

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 ignore_subscription
 (InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.
141
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.33 ignore_topic

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 ignore_topic
 (InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.34 lookup_topicdescription

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
TopicDescription_ptr
 lookup_topicdescription
 (const char* name);

Description
This operation gives access to a locally-created TopicDescription, with a
matching name.

Parameters
in const char* name - the name of the TopicDescription to look for.

Return Value
TopicDescription_ptr - Return value is a pointer to the TopicDescription

found. When no such TopicDescription is found, the NULL pointer is
returned.

Detailed Description
The operation lookup_topicdescription gives access to a locally-created
TopicDescription, based on its name. The operation takes as argument the name
of the TopicDescription.
If one or more local TopicDescription proxies (see also section 3.2.1.15) of the
same name already exist, a pointer to one of the already existing local proxies is
returned: lookup_topicdescription will never create a new local proxy. That
142
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

means that the proxy that is returned does not need to be deleted separately from its
original. When no local proxy exists, it returns the NULL pointer. The operation
never blocks.
The operation lookup_topicdescription may be used to locate any
locally-created Topic, ContentFilteredTopic and MultiTopic object.

3.2.1.35 set_default_publisher_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_publisher_qos
 (const PublisherQos& qos);

Description
This operation sets the default PublisherQos of the DomainParticipant.

Parameters
in const PublisherQos& qos - a collection of QosPolicy settings, which

contains the new default QosPolicy settings for the newly created
Publishers.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation sets the default PublisherQos of the DomainParticipant (that
is the struct with the QosPolicy settings) which is used for newly created
Publisher objects, in case the constant PUBLISHER_QOS_DEFAULT is used. The
default PublisherQos is only used when the constant is supplied as parameter qos
to specify the PublisherQos in the create_publisher operation. The
PublisherQos is always self consistent, because its policies do not depend on
e a c h o t h e r. T h i s m e a n s t h i s o p e r a t i o n n e v e r r e t u r n s t h e
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_publisher_qos.
143
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• RETCODE_OK - the new default PublisherQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos. It

contains a QosPolicy setting with an enum value that is outside its legal
boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.36 set_default_subscriber_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_subscriber_qos
 (const SubscriberQos& qos);

Description
This operation sets the default SubscriberQos of the DomainParticipant.

Parameters
in const SubscriberQos& qos - a collection of QosPolicy settings, which

contains the new default QosPolicy settings for the newly created
Subscribers.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
144
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation sets the default SubscriberQos of the DomainParticipant (that
is the struct with the QosPolicy settings) which is used for newly created
Subscriber objects, in case the constant SUBSCRIBER_QOS_DEFAULT is used.
The default SubscriberQos is only used when the constant is supplied as
parameter qos to specify the SubscriberQos in the create_subscriber
operation. The SubscriberQos is always self consistent, because its policies do
not depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_subscriber_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default SubscriberQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos. It

contains a QosPolicy setting with an enum value that is outside its legal
boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.37 set_default_topic_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_topic_qos
 (const TopicQos& qos);

Description
This operation sets the default TopicQos of the DomainParticipant.
145
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in const TopicQos& qos - a collection of QosPolicy settings, which contains

the new default QosPolicy settings for the newly created Topics.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default TopicQos of the DomainParticipant (that is the
struct with the QosPolicy settings) which is used for newly created Topic objects,
in case the constant TOPIC_QOS_DEFAULT is used. The default TopicQos is only
used when the constant is supplied as parameter qos to specify the TopicQos in the
create_topic operation. This operation checks if the TopicQos is self
c o n s i s t e n t . I f i t i s n o t , t h e o p e ra t i on ha s no e ff e c t and r e tu rn s
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_topic_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default TopicQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid TopicQos. It

contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.
146
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.38 set_listener

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (DomainParticipantListener_ptr a_listener,
 StatusMask mask);

Description
Thi s ope ra t i on a t t a ches a DomainParticipantListener t o t he
DomainParticipant.

Parameters
in DomainParticipantListener_ptr a_listener - a pointer to the

DomainParticipantListener instance, which will be attached to the
DomainParticipant.

in StatusMask mask - a bit mask in which each bit enables the invocation of the
DomainParticipantListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED o r RETCODE_
OUT_OF_RESOURCES.

Detailed Description
Thi s ope ra t i on a t t a ches a DomainParticipantListener t o t he
DomainParticipant. Only one DomainParticipantListener can be
attached to each DomainParticipant. If a DomainParticipantListener was
already attached, the operation will replace it with the new one. When a_listener
is the NULL pointer, it represents a listener that is treated as a NOOP1 for all statuses
activated in the bit mask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d

1. Short for No-Operation, an instruction that does nothing.

147

API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

DomainParticipantListener operation is invoked and the communication
status is reset to FALSE, as the listener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application calls the get_<status_name>_status from inside the listener it
will see the status already reset. An exception to this rule is the NULL listener, which
does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DomainParticipantListener:
• INCONSISTENT_TOPIC_STATUS (propagated)
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_ON_READERS_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated)
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DomainParticipantListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
DomainParticipantListener. This means that a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
148
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• RETCODE_OK - the DomainParticipantListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.39 set_qos

Scope
DDS::DomainParticipant

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const DomainParticipantQos& qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipant.

Parameters
in const DomainParticipantQos& qos - new set of QosPolicy settings for

the DomainParticipant.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.
149
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipant. The parameter qos contains the QosPolicy settings which
is checked for self-consistency.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DomainParticipantQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2 Class DomainParticipantFactory
The purpose of this class is to al low the creat ion and destruct ion of
DomainParticipant objects. DomainParticipantFactory itself has no
factory. It is a pre-existing singleton object that can be accessed by means of the
get_instance operation on the DomainParticipantFactory class.
The pre-defined value TheParticipantFactory can also be used as an alias for
the singleton factory returned by the operation get_instance.
The interface description of this class is as follows:
 class DomainParticipantFactory

{
//
// implemented API operations
//

static DomainParticipantFactory_ptr
 get_instance
 (void);
DomainParticipant_ptr
 create_participant
 (DomainId_t domainId,

 const DomainParticipantQos& qos,
 DomainParticipantListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_participant
 (DomainParticipant_ptr a_participant);
150
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

DomainParticipant_ptr
 lookup_participant
 (DomainId_t domainId);
ReturnCode_t
 set_default_participant_qos
 (const DomainParticipantQos& qos);
ReturnCode_t
 get_default_participant_qos
 (DomainParticipantQos& qos);
ReturnCode_t
 set_qos
 (const DomainParticipantFactoryQos& qos);
ReturnCode_t
 get_qos
 (DomainParticipantFactoryQos& qos);

};

The next paragraphs describe the usage of all DomainParticipantFactory
operations.

3.2.2.1 create_participant

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>

DomainParticipant_ptr
 create_participant
 (DomainId_t domainId,
 const DomainParticipantQos& qos,
 DomainParticipantListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a new DomainParticipant which will join the domain
identified by domainId, with the desired DomainParticipantQos and attaches
the optionally specified DomainParticipantListener to it.

Parameters
in DomainId_t domainId - t he ID o f the Domain t o which the

DomainParticipant is joined. This should be a URI to the location of the
configuration file that identifies the configuration details of the Domain.

in const DomainParticipantQos& qos - a DomainParticipantQos for
the new DomainParticipant. When this set of QosPolicy settings is
inconsistent, no DomainParticipant is created.
151
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

in DomainParticipantListener_ptr a_listener - a pointer to the
DomainParticipantListener instance which will be attached to the new
DomainParticipant. It is permitted to use NULL as the value of the listener:
this behaves as a DomainParticipantListener whose operations perform
no action.

in StatusMask mask - a bit-mask in which each bit enables the invocation of
the DomainParticipantListener for a certain status.

Return Value
DomainParticipant_ptr - a p o i n t e r t o t h e n e w l y c r e a t e d

DomainParticipant. In case of an error, the NULL pointer is returned.

Detailed Description
This operation creates a new DomainParticipant , with the desired
DomainParticipantQos a n d a t t a c h e s t h e o p t i o n a l l y s p e c i f i e d
DomainParticipantListener to it. The DomainParticipant signifies that
the calling application intends to join the Domain identified by the domainId
argument.
If the specified QosPolicy settings are not consistent, the operation will fail; no
DomainParticipant is created and the operation returns the NULL pointer. To
delete the DomainParticipant the operation delete_participant must be
used.

Identifying the Domain
The DomainParticipant will attach to the Domain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
t h e l o c a t i o n o f t h e c o n f i g u r a t i o n f i l e (e . g .
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.
A NULL pointer may be assigned to the DomainId: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI. This
variable will be initialized when you source the release.com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice
product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.
It is recommended to use this OSPL_URI variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.
152
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Default QoS
The constant PARTICIPANT_QOS_DEFAULT can be used as parameter qos to create
a DomainParticipant with the default DomainParticipantQos as set in the
DomainParticipantfactory. The e ff e c t o f u s ing
PARTICIPANT_QOS_DEFAULT i s the same as ca l l ing the opera t ion
get_default_participant_qos a n d u s i n g t h e r e s u l t i n g
DomainParticipantQos to create the DomainParticipant.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DomainParticipantListener operation is invoked and the communication
status is reset to FALSE, as the listener implicitly accesses the status which is passed
as a parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset.
The following statuses are applicable to the DomainParticipantListener:
• INCONSISTENT_TOPIC_STATUS (propagated)
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_ON_READERS_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DomainParticipantListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
153
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

DomainParticipantListener. This means that a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

3.2.2.2 delete_participant

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_participant
 (DomainParticipant_ptr a_participant);

Description
This operation deletes a DomainParticipant.

Parameters
in DomainParticipant_ptr a_participant - a poin ter to the

DomainParticipant, which is to be deleted.

Return Value
ReturnCode_t - return codes can be RETCODE_OK , RETCODE_ERROR ,

RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_RESOURCES or RETCODE_
PRECONDITION_NOT_MET.
154
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation deletes a DomainParticipant. A DomainParticipant cannot
be deleted when it has any attached Entity objects. When the operation is called
on a DomainParticipant with existing Entity objects, the operation returns
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the DomainParticipant is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_participant is not a valid
DomainParticipant_ptr

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the DomainParticipant contains one
or more Entity objects.

3.2.2.3 get_default_participant_qos

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_default_participant_qos
 (DomainParticipantQos& qos);

Description
T h i s o p e r a t i o n g e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory.

Parameters
inout DomainParticipantQos& qos - a r e f e re n c e t o t h e

DomainParticipantQos struct (provided by the application) in which the
default DomainParticipantQos for the DomainParticipant is written.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_OUT_OF_RESOURCES.
155
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
T h i s o p e r a t i o n g e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory (that is the struct with the QosPolicy settings)
which is used for newly created DomainParticipant objects, in case the constant
PARTICIPANT_QOS_DEFAULT is used. The default DomainParticipantQos is
only used when the constant is supplied as parameter qos to specify the
DomainParticipantQos in the create_participant operation. The
application must provide the DomainParticipantQos struct in which the
QosPolicy settings can be stored and provide a reference to the struct. The
operation writes the default QosPolicy settings to the struct referenced to by qos.
Any settings in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_participant_qos, or, if the call was never
made, the default values as specified for each QosPolicy setting as defined in
Table 2 on page 37

Return Code
When the operation returns:
• RETCODE_OK - the default DomainParticipant QosPolicy settings of this
DomainParticipantFactory have successfully been copied into the specified
DomainParticipantQos parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.4 get_instance

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
static DomainParticipantFactory_ptr
 get_instance
 (void);

Description
This operation returns the DomainParticipantFactory singleton.

Parameters
<none>
156
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
DomainParticipantFactory_ptr - a p o i n t e r t o t h e

DomainParticipantFactory.

Detailed Description
This operation returns the DomainParticipantFactory singleton. The operation
is idempotent, that is, it can be called multiple times without side-effects and it
returns the same DomainParticipantFactory instance.
T h e o p e r a t i o n i s s t a t i c a n d m u s t b e c a l l e d u p o n i t s c l a s s
(DomainParticipantFactory::get_instance).
The pre-defined value TheParticipantFactory can also be used as an alias for
the singleton factory returned by the operation get_instance.

3.2.2.5 get_qos

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (DomainParticipantFactoryQos& qos);

Description
This operation allows access to the existing set of QoS policies for a
DomainParticipantFactory.

Parameters
inout DomainParticipantFactoryQos& qos - a reference to the destination

DomainparticipantFactoryQos struct in which the QosPolicy settings
will be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_OUT_OF_RESOURCES.
157
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DomainParticipantFactory on which this operation is used. This
DomainparticipantFactoryQos is stored at the location pointed to by the qos
parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this
DomainParticipantFactory has successfully been copied into the specified
DomainParticipantFactoryQos parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.6 lookup_participant

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 lookup_participant
 (DomainId_t domainId);

Description
This operation retrieves a previously created DomainParticipant belonging to
the specified domainId.

Parameters
in const DomainId_t domainId - the ID of the Domain for which a joining

DomainParticipant should be retrieved. This should be a URI to the location
of the configuration file that identifies the configuration details of the Domain.

Return Value
DomainParticipant_ptr - R e tu r n v a l u e i s a p o in t e r t o t h e

DomainParticipant retrieved. When no such DomainParticipant is
found, the NULL pointer is returned.
158
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation retrieves a previously created DomainParticipant belonging to
the specified domainId. If no such DomainParticipant exists, the operation will
return NULL.
The domainId used to search for a specific DomainParticipant must be
i d e n t i c a l t o t h e domainId t h a t w a s u s e d t o c r e a t e t h a t s p e c i f i c
DomainParticipant: a NULL pointer will not be resolved on this level. That
means that a DomainParticipant that was created using a domainId set to NULL
will not be found if you try to look it up using a hard-coded URI that has the same
contents as the environment variable OSPL_URI.
If multiple DomainParticipant entities belonging to the specified domainId
exist, then the operation will return one of them. It is not specified which one.

3.2.2.7 set_default_participant_qos

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_participant_qos
 (const DomainParticipantQos& qos);

Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory.

Parameters
in const DomainParticipantQos& qos - the DomainParticipantQos

struct, which contains the new default DomainParticipantQos for the newly
created DomainParticipants.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_OUT_OF_RESOURCES.

Detailed Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory (that is the struct with the QosPolicy settings)
which is used for newly created DomainParticipant objects, in case the constant
PARTICIPANT_QOS_DEFAULT is used. The default DomainParticipantQos is
159
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

only used when the constant is supplied as parameter qos to specify the
DomainParticipantQos in the create_participant operation. The
DomainParticipantQos is always self consistent, because its policies do not
depend on each o ther. This means th i s opera t ion never re turns the
RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
get_default_participant_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default DomainParticipantQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.8 set_qos

Scope
DDS::DomainParticipantFactory

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const DomainParticipantFactoryQos& qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipantFactory.

Parameters
in const DomainParticipantFactoryQos& qos - must contain the new set

of QosPolicy settings for the DomainParticipantFactory.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR or RETCODE_OUT_OF_RESOURCES.
160
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipantFactory. The parameter qos must contain the struct with
the QosPolicy settings.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DomainParticipantFactoryQos is set.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.3 DomainParticipantListener interface
Since a DomainParticipant is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DomainParticipantListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
ex t e nd f ro m th e DomainParticipantListener c l a s s . A l l
DomainParticipantListener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DomainParticipantListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
a QosPolicy setting, etc. The DomainParticipantListener is related to
changes in communication status StatusConditions.
The interface description of this class is as follows:
 class DomainParticipantListener

{
//
// inherited from TopicListener
//
// void
// on_inconsistent_topic
161
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

// (Topic_ptr the_topic,
// const InconsistentTopicStatus& status) = 0;
//
// inherited from PublisherListener
//
// void
// on_offered_deadline_missed
// (DataWriter_ptr writer,
// const OfferedDeadlineMissedStatus& status) = 0;

// void
// on_offered_incompatible_qos
// (DataWriter_ptr writer,
// const OfferedIncompatibleQosStatus& status) = 0;

// void
// on_liveliness_lost
// (DataWriter_ptr writer,
// const LivelinessLostStatus& status) = 0;

// void
// on_publication_matched
// (DataWriter_ptr writer,
// const PublicationMatchedStatus& status) = 0;
//
// inherited from SubscriberListener
//
// void
// on_data_on_readers
// (Subscriber_ptr subs) = 0;
// void
// on_requested_deadline_missed
// (DataReader_ptr reader,
// const RequestedDeadlineMissedStatus& status) = 0;

// void
// on_requested_incompatible_qos
// (DataReader_ptr reader,
// const RequestedIncompatibleQosStatus& status) = 0;

// void
// on_sample_rejected
// (DataReader_ptr reader,
// const SampleRejectedStatus& status) = 0;

// void
// on_liveliness_changed
// (DataReader_ptr reader,
// const LivelinessChangedStatus& status) = 0;

162
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

// void
// on_data_available
// (DataReader_ptr reader) = 0;

// void
// on_subscription_matched
// (DataReader_ptr reader,
// const SubscriptionMatchedStatus& status) = 0;

// void
// on_sample_lost
// (DataReader_ptr reader,
// const SampleLostStatus& status) = 0;
//
// implemented API operations
// <no operations>
//
};

The next paragraphs list all DomainParticipantListener operations. Since
these operations are all inherited, they are listed but not fully described because they
are not implemented in this class. The full description of these operations is given in
the classes from which they are inherited.

3.2.3.1 on_data_available (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_data_available
 (DataReader_ptr reader) = 0;

3.2.3.2 on_data_on_readers (inherited, abstract)
This operation is inherited and therefore not described here. See the class
SubscriberListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_data_on_readers
 (Subscriber_ptr subs) = 0;
163
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.3 on_inconsistent_topic (inherited, abstract)
This operation is inherited and therefore not described here. See the class
TopicListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_inconsistent_topic
 (Topic_ptr the_topic,
 const InconsistentTopicStatus& status) = 0;

3.2.3.4 on_liveliness_changed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_changed
 (DataReader_ptr reader,
 const LivelinessChangedStatus& status) = 0;

3.2.3.5 on_liveliness_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_lost
 (DataWriter_ptr writer,
 const LivelinessLostStatus& status) = 0;

3.2.3.6 on_offered_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_deadline_missed
 (DataWriter_ptr writer,
 const OfferedDeadlineMissedStatus& status) = 0;
164
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_incompatible_qos
 (DataWriter_ptr writer,
 const OfferedIncompatibleQosStatus& status) = 0;

3.2.3.8 on_publication_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_publication_matched
 (DataWriter_ptr writer,
 const PublicationMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.2.3.9 on_requested_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_deadline_missed
 (DataReader_ptr reader,
 const RequestedDeadlineMissedStatus& status) = 0;

3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_incompatible_qos
 (DataReader_ptr reader,
 const RequestedIncompatibleQosStatus& status) = 0;
165
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.11 on_sample_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_lost
 (DataReader_ptr reader,
 const SampleLostStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.2.3.12 on_sample_rejected (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_rejected
 (DataReader_ptr reader,
 const SampleRejectedStatus& status) = 0;

3.2.3.13 on_subscription_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_subscription_matched
 (DataReader_ptr reader,
 const SubscriptionMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.
166
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3 Topic-Definition Module

Figure 16 DCPS Topic-Definition Module’s Class Model
This module contains the following classes:
• TopicDescription (abstract)
• Topic

• ContentFilteredTopic

• MultiTopic

• TopicListener (interface)
• Topic-Definition type specific classes.
“Topic-Definition type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>TypeSupport is generated (based on IDL) by calling the pre-processor.

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
167
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Figure 17 Data Type “Foo” Typed Classes Pre-processor Generation
For instance, for the fictional data type Foo (this also applies to other types)
“Topic-Definition type specific classes” contains the following classes:
• TypeSupport (abstract)
• FooTypeSupport.
Topic objects conceptually fit between publications and subscriptions. Publications
must be known in such a way that subscriptions can refer to them unambiguously. A
Topic is meant to fulfil that purpose: it associates a name (unique in the Domain), a
data type, and TopicQos related to the data itself.

3.3.1 Class TopicDescription (abstract)
T h i s c l a s s i s a n a b s t r a c t c l a s s . I t i s t h e b a s e c l a s s f o r Topic ,
ContentFilteredTopic and MultiTopic.
The TopicDescription attribute type_name defines an unique data type that is
made available to the Data Distribution Service via the TypeSupport.
TopicDescription has also a name that allows it to be retrieved locally.
The interface description of this class is as follows:
 class TopicDescription

{
//
// implemented API operations
//

char*
 get_type_name

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
168
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 (void);
char*
 get_name
 (void);
DomainParticipant_ptr
 get_participant
 (void);

};

The next paragraphs describe the usage of all TopicDescription operations.

3.3.1.1 get_name

Scope
DDS::TopicDescription

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_name
 (void);

Description
This operation returns the name used to create the TopicDescription.

Parameters
<none>

Return Value
char* - is the name of the TopicDescription.

Detailed Description
This operation returns the name used to create the TopicDescription.

3.3.1.2 get_participant

Scope
DDS::TopicDescription

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);
169
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description
This operation returns the DomainParticipant associated with the
TopicDescription or the NULL pointer.

Parameters
<none>

Return Value
DomainParticipant_ptr - a pointer to the DomainParticipant associated

with the TopicDescription or the NULL pointer.

Detailed Description
This operation returns the DomainParticipant associated with the
TopicDescription. Note that there is exactly one DomainParticipant
associated with each TopicDescription. When the TopicDescription was
already deleted (there is no associated DomainParticipant any more), the NULL
pointer is returned.

3.3.1.3 get_type_name

Scope
DDS::TopicDescription

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_type_name
 (void);

Description
This operation returns the registered name of the data type associated with the
TopicDescription.

Parameters
<none>

Return Value
char* - the name of the data type of the TopicDescription.

Detailed Description
This operation returns the registered name of the data type associated with the
TopicDescription.
170
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2 Class Topic
Topic is the most basic description of the data to be published and subscribed.
A Topic is identified by its name, which must be unique in the whole Domain. In
addition (by virtue of extending TopicDescription) it fully identifies the type of
data that can be communicated when publishing or subscribing to the Topic.
Topic is the only TopicDescription that can be used for publications and
therefore a specialized DataWriter is associated to the Topic.
The interface description of this class is as follows:
 class Topic

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// inherited from class TopicDescription
//
// char*
// get_type_name
// (void);

// char*
// get_name
// (void);

// DomainParticipant_ptr
// get_participant
// (void);
//
// implemented API operations
//

ReturnCode_t
 set_qos
 (const TopicQos& qos);
ReturnCode_t
 get_qos
 (TopicQos& qos);
ReturnCode_t
171
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 set_listener
 (TopicListener_ptr a_listener,

 StatusMask mask);
TopicListener_ptr
 get_listener
 (void);
ReturnCode_t
 get_inconsistent_topic_status
 (InconsistentTopicStatus& a_status);

};

The next paragraphs describe the usage of all Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited.

3.3.2.1 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 enable
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.2.2 get_inconsistent_topic_status

Scope
DDS::Topic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_inconsistent_topic_status
 (InconsistentTopicStatus& a_status);

Description
This operation obtains the InconsistentTopicStatus of the Topic.

Parameters
inout InconsistentTopicStatus& a_status - the contents of the

InconsistentTopicStatus struct of the Topic will be copied into the
location specified by a_status.
172
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the InconsistentTopicStatus of the Topic. The
InconsistentTopicStatus can also be monitored using a TopicListener or
by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current InconsistentTopicStatus of this Topic has

successfully been copied into the specified a_status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.3 get_listener

Scope
DDS::Topic

Synopsis
#include <ccpp_dds_dcps.h>
TopicListener_ptr
 get_listener
 (void);

Description
This operation allows access to a TopicListener.

Parameters
<none>

Return Value
TopicListener_ptr - result is a pointer to the TopicListener attached to the

Topic.
173
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation allows access to a TopicListener attached to the Topic. When no
TopicListener was attached to the Topic, the NULL pointer is returned.

3.3.2.4 get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_name
 (void);

3.3.2.5 get_participant (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);

3.3.2.6 get_qos

Scope
DDS::Topic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (TopicQos& qos);

Description
This operation allows access to the existing set of QoS policies for a Topic.

Parameters
inout TopicQos& qos - a reference to the destination TopicQos struct in which

the QosPolicy settings will be copied.
174
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Topic on which
this operation is used. This TopicQos is stored at the location pointed to by the qos
parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Topic has

successfully been copied into the specified TopicQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.7 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
 (void);

3.3.2.8 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);
175
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2.9 get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_type_name
 (void);

3.3.2.10 set_listener

Scope
DDS::Topic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (TopicListener_ptr a_listener,
 StatusMask mask);

Description
This operation attaches a TopicListener to the Topic.

Parameters
in TopicListener_ptr a_listener - a pointer to the TopicListener

instance, which will be attached to the Topic.
in StatusMask mask - a bit mask in which each bit enables the invocation of the

TopicListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This opera t ion a t taches a TopicListener to the Topic . Only one
TopicListener can be attached to each Topic. If a TopicListener was already
attached, the operation will replace it with the new one. When a_listener is the
NULL pointer, it represents a listener that is treated as a NOOP1 for all statuses
activated in the bit mask.
176
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that plain communication status changes. For
each plain communication status activated in the mask , the associated
TopicListener operation is invoked and the communication status is reset to
FALSE, as the listener implicitly accesses the status which is passed as a parameter
to that operation. The status is reset prior to calling the listener, so if the application
calls the get_<status_name> from inside the listener it will see the status already
reset. An exception to this rule is the NULL listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the TopicListener:
• INCONSISTENT_TOPIC_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the TopicListener.

Status Propagation
In case a communication status is not activated in the mask of the TopicListener,
the DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the
containing DomainParticipant and a Topic specific behaviour when needed. In
case the DomainParticipantListener is a lso not at tached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code
When the operation returns:
• RETCODE_OK - the TopicListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.11 set_qos

Scope
DDS::Topic

1. Short for No-Operation, an instruction that does nothing.

177

API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const TopicQos& qos);

Description
This operation replaces the existing set of QosPolicy settings for a Topic.

Parameters
in const TopicQos& qos - the new set of QosPolicy settings for the Topic.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_IMMUTABLE_POLICY or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Topic. The
parameter qos contains the struct with the QosPolicy settings which is checked
for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled Topic, which can only be set before the Topic
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned.
In other words, the application must provide the currently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new TopicQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid TopicQos. It

contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries.
178
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Topic has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the Topic

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.3.3 Class ContentFilteredTopic
ContentFilteredTopic is a specialization of TopicDescription that allows
for content based subscriptions.
ContentFilteredTopic describes a more sophisticated subscription that
indicates the Subscriber does not necessarily want to see all values of each
instance published under the Topic. Rather, it only wants to see the values whose
contents satisfy certain criteria. Therefore this class must be used to request
content-based subscriptions.
The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.
The interface description of this class is as follows:
 class ContentFilteredTopic

{
//
// inherited from class TopicDescription
//
// char*
// get_type_name
// (void);

// char*
// get_name
// (void);

// DomainParticipant_ptr
// get_participant
// (void);
//
// implemented API operations
//

char*
 get_filter_expression
179
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 (void);

ReturnCode_t
 get_expression_parameters
 (StringSeq& expression_parameters);

ReturnCode_t
 set_expression_parameters
 (const StringSeq& expression_parameters);
Topic_ptr
 get_related_topic
 (void);

};

The next paragraphs describe the usage of all ContentFilteredTopic
operations.

3.3.3.1 get_expression_parameters

Scope
DDS::ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_expression_parameters
 (StringSeq& expression_parameters);

Description
This operation obtains the expression parameters associated with the
ContentFilteredTopic.

Parameters
inout StringSeq& expression_parameters - a reference to a sequence of

strings that will be used to store the parameters used in the SQL expression.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.
180
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation obtains the expression parameters associated with the
ContentFilteredTopic. That is, the parameters specified on the last successful
call to set_expression_parameters, or if set_expression_parameters
was never called, the parameters specified when the ContentFilteredTopic was
created.
The resulting reference holds a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parameters in
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the ContentFilteredTopic.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of expression parameters applied to this
ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the ContentFilteredTopic has already

been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.3.2 get_filter_expression

Scope
DDS::ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_filter_expression
 (void);

Description
This operation returns the filter_expression associated with the
ContentFilteredTopic.

Parameters
<none>
181
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
char* - a handle to a string which holds the SQL filter expression.

Detailed Description
This operation returns the filter_expression associated with the
ContentFilteredTopic . That is, the expression specified when the
ContentFilteredTopic was created.
The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

3.3.3.3 get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_name
 (void);

3.3.3.4 get_participant (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);

3.3.3.5 get_related_topic

Scope
DDS::ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr
 get_related_topic
 (void);

Description
This operation returns the Topic associated with the ContentFilteredTopic.
182
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
<none>

Return Value
Topic_ptr - a pointer to the base topic on which the filtering will be applied.

Detailed Description
This operation returns the Topic associated with the ContentFilteredTopic.
That is, the Topic specified when the ContentFilteredTopic was created. This
Topic is the base topic on which the filtering will be applied.

3.3.3.6 get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_type_name
 (void);

3.3.3.7 set_expression_parameters

Scope
DDS::ContentFilteredTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_expression_parameters
 (const StringSeq& expression_parameters);

Description
This operation changes the expression parameters associated with the
ContentFilteredTopic.

Parameters
in const StringSeq& expression_parameters - a reference to a sequence

of strings with the parameters used in the SQL expression (i.e., the number of
% n t o k e n s i n t h e e x p r e s s i o n) . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression.
183
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation changes the expression parameters associated with the
ContentFilteredTopic. The parameter expression_parameters is a handle
to a sequence of strings with the parameters used in the SQL expression. The
number of values in expression_parameters must be equal or greater than the
highest referenced %n token in the filter_expression (for example, if %1 and
%8 a r e u s e d a s p a r a m e t e r i n t h e filter_expression, t h e
expression_parameters should at least contain n+1 = 9 values). This is the
filter expression specified when the ContentFilteredTopic was created.

Return Code
When the operation returns:
• RETCODE_OK - the new expression parameters are set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this ContentFilteredTopic or one of the parameters is an
illegal parameter

• RETCODE_ALREADY_DELETED - the ContentFilteredTopic has already
been deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.3.4 Class MultiTopic
MultiTopic is a specialization of TopicDescription that allows subscriptions
to combine, filter and/or rearrange data coming from several Topics.
MultiTopic allows a more sophisticated subscription that can select and combine
data received from multiple Topics into a single data type (specified by the
inherited type_name). The data will then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL expression with
parameters to adapt the filter clause.
The interface description of this class is as follows:
 class MultiTopic

{

184
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

//
// inherited from class TopicDescription
//
// char*
// get_type_name
// (void);

// char*
// get_name
// (void);

// DomainParticipant_ptr
// get_participant
// (void);
//
// implemented API operations
//

char*
 get_subscription_expression
 (void);

ReturnCode_t
 get_expression_parameters
 (StringSeq& expression_parameters);

ReturnCode_t
 set_expression_parameters
 (const StringSeq& expression_parameters);

};

The next paragraphs describe the usage of all MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
Note: MultiTopic operations have not been yet been implemented. Multitopic
functionality is scheduled for a future release.

3.3.4.1 get_expression_parameters

Scope
DDS::MultiTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_expression_parameters
 (StringSeq& expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

185

API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description
This operation returns the expression parameters associated with the MultiTopic.

Parameters
inout StringSeq& expression_parameters - a reference to a sequence of

strings that will be used to store the parameters used in the SQL expression.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the expression parameters associated with the MultiTopic.
T h a t i s , t h e p a r a m e t e r s s p e c i f i e d o n t h e l a s t s u c c e s s f u l c a l l t o
set_expression_parameters, or if set_expression_parameters was
never called, the parameters specified when the MultiTopic was created.
The resulting reference holds a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parameters in the result sequence will exactly match the number of %n tokens in the
filter expression associated with the MultiTopic.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of expression parameters applied to this
MultiTopic has successfully been copied into the specified
expression_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the MultiTopic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.4.2 get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_name
186
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.3 get_participant (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.4 get_subscription_expression

Scope
DDS::MultiTopic

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_subscription_expression
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation returns the subscription expression associated with the MultiTopic.

Parameters
<none>

Return Value
char* - result is a handle to a string which holds the SQL subscription expression.

Detailed Description
This operation returns the subscription expression associated with the MultiTopic.
That is, the expression specified when the MultiTopic was created.
The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It is an SQL expression where the SELECT
clause provides the fields to be kept, the FROM part provides the names of the
187
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Topics that are searched for those fields, and the WHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.

3.3.4.5 get_type_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_type_name
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.6 set_expression_parameters

Scope
DDS::MultiTopic

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_expression_parameters
 (const StringSeq& expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation changes the expression parameters associated with the MultiTopic.

Parameters
in const StringSeq& expression_parameters - the handle to a sequence

of strings with the parameters used in the SQL expression.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation changes the expression parameters associated with the MultiTopic.
The parameter expression_parameters is a handle to a sequence of strings with
the parameters used in the SQL expression. The number of parameters in
188
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

expression_parameters must exactly match the number of %n tokens in the
subscription expression associated with the MultiTopic. This is the subscription
expression specified when the MultiTopic was created.

Return Code
When the operation returns:
• RETCODE_OK - the new expression parameters are set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this MultiTopic or one of the parameters is an illegal parameter.

• RETCODE_ALREADY_DELETED - the MultiTopic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.5 TopicListener interface
Since a Topic is an Entity, it has the ability to have a Listener associated with
it. In this case, the associated Listener should be of type TopicListener. This
interface must be implemented by the application. A user defined class must be
provided by the application which must extend from the TopicListener class. All
TopicListener operations must be implemented in the user defined class, it is up
to the application whether an operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The TopicListener provides a generic mechanism (actually a callback function)
for the Data Distribution Service to notify the application of relevant asynchronous
status change events, such as an inconsistent Topic. The TopicListener is
related to changes in communication status.
The interface description of this class is as follows:
 class TopicListener

{
//
// abstract external operations
//

void
 on_inconsistent_topic
 (Topic_ptr the_topic,

 const InconsistentTopicStatus& status) = 0;
//
// implemented API operations
189
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

// <no operations>
//
};

The next paragraph describes the usage of the TopicListener operation. This
abstract operation is fully described since it must be implemented by the
application.

3.3.5.1 on_inconsistent_topic (abstract)

Scope
DDS::TopicListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_inconsistent_topic
 (Topic_ptr the_topic,
 const InconsistentTopicStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the InconsistentTopicStatus changes.

Parameters
in Topic_ptr the_topic - contain a pointer to the Topic on which the conflict

occurred (this is an input to the application).
in const InconsistentTopicStatus& status - con ta in the

InconsistentTopicStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
InconsistentTopicStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
r e l eva n t TopicListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
InconsistentTopicStatus. The InconsistentTopicStatus will change
when another Topic exists with the same topic_name but different
characteristics.
190
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The Data Distribution Service will call the TopicListener operation with a
parameter the_topic, which will contain a reference to the Topic on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
InconsistentTopicStatus struct.

3.3.6 Topic-Definition Type Specific Classes
This paragraph describes the generic TypeSupport class and the derived
application type specific <type>TypeSupport classes which together implement
the application Topic interface. For each application type, used as Topic data type,
the pre-processor generates a <type>DataReader class from an IDL type
description. The FooTypeSupport class that would be generated by the
pre-processor for a fictional type Foo describes the <type>TypeSupport classes.

3.3.6.1 Class TypeSupport (abstract)
The Topic, MultiTopic or ContentFilteredTopic is bound to a data type
described by the type name argument. Prior to creating a Topic, MultiTopic or
ContentFilteredTopic, the data type must have been registered with the Data
Distribution Service. This is done using the data type specific register_type
operation on a derived class of the TypeSupport interface. A derived class is
generated for each data type used by the application, by calling the pre-processor.
The interface description of this class is as follows:

class TypeSupport
{
//
// abstract operations
//
// ReturnCode_t
// register_type
// (Domainparticipant_ptr domain,
// const char* type_name);
// char*
// get_type_name
// (void);
//
// implemented API operations
// <no operations>
//
};

The next paragraph list the TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation is given in the FooTypeSupport class (for the data
type example Foo), which contains the data type specific implementation of this
operation.
191
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.6.2 get_type_name (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>TypeSupport class. For further explanation see the description for the
fictional data type Foo derived FooTypeSupport class.

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_type_name
 (void);

3.3.6.3 register_type (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>TypeSupport class. For further explanation see the description for the
fictional data type Foo derived FooTypeSupport class.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 register_type
 (Domainparticipant_ptr domain,
 const char* type_name);

3.3.6.4 Class FooTypeSupport
The pre-processor generates from IDL type descriptions the application
<type>TypeSupport classes. For each application data type that is used as Topic
data type, a typed class <type>TypeSupport is derived from the TypeSupport
class. In this paragraph, the class FooTypeSupport describes the operations of
these derived <type>TypeSupport classes as an example for the fictional
application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a ccpp_Space.h include file.
General note: The name ccpp_Space.h is derived from the IDL file Space.idl,
that defines SPACE::Foo, for all relevant SPACE::FooDataWriter operations.
The Topic, MultiTopic or ContentFilteredTopic is bound to a data type
described by the type_name argument. Prior to creating a Topic, MultiTopic or
ContentFilteredTopic, the data type must have been registered with the Data
Distribution Service. This is done using the data type specific register_type
operation on the <type>TypeSupport class for each data type. A derived class is
generated for each data type used by the application, by calling the pre-processor.
The interface description of this class is as follows:

i

192
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

class FooTypeSupport
{
//
// implemented API operations
//

ReturnCode_t
 register_type
 (DomainParticipant_ptr domain,
 const char* type_name);
char*
 get_type_name
 (void);

};

The next paragraph describes the usage of the FooTypeSupport operation.

3.3.6.5 get_type_name

Scope
SPACE::FooTypeSupport

Synopsis
#include <ccpp_Space.h>
char*
 get_type_name
 (void);

Description
This operation returns the default name of the data type associated with the
FooTypeSupport.

Parameters
<none>

Return Value
char* - the name of the data type of the FooTypeSupport.

Detailed Description
This operation returns the default name of the data type associated with the
FooTypeSupport. The default name is derived from the type name as specified in
the IDL definition. It is composed of the scope names and the type name, each
separated by “::”, in order of lower scope level to deeper scope level followed by
the type name.
193
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.6.6 register_type

Scope
SPACE::FooTypeSupport

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 register_type
 (DomainParticipant_ptr domain,
 const char* type_name);

Description
This operation registers a new data type name to a DomainParticipant.

Parameters
in Domainparticipant_ptr domain - a pointer to a DomainParticipant

object to which the new data type is registered.
in const char* type_name - a local alias of the new data type to be registered.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_BAD_PARAMETER , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation registers a new data type name to a DomainParticipant. This
operation informs the Data Distribution Service, in order to allow it to manage the
new registered data type. This operation also informs the Data Distribution Service
about the key definition, which allows the Data Distribution Service to distinguish
different instances of the same data type.

Precondition
A type_name cannot be registered with two different <type>TypeSupport
classes (this means of a different data type) with the same DomainParticipant.
When the operation is called on the same DomainParticipant with the same
type_name for a different <type>TypeSupport class, the operation returns
RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the same
<type>TypeSupport classes with the same DomainParticipant and the same
or different type_name multiple times. All registrations return RETCODE_OK, but
any subsequent registrations with the same type_name are ignored.
194
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• RETCODE_OK - the FooTypeSupport class is registered with the new data type

name to the DomainParticipant or the FooTypeSupport class was already
registered

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the domain parameter is a NULL pointer or the

parameter type_name has zero length
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation
• RETCODE_PRECONDITION_NOT_MET - this type_name is already registered

with this DomainParticipant for a different <type>TypeSupport class.

3.4 Publication Module

Figure 18 DCPS Publication Module’s Class Model

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
195
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

This module contains the following classes:
• Publisher

• Publication type specific classes
• PublisherListener (interface)
• DataWriterListener (interface).
The paragraph “Publication type specific classes” contains the generic class and the
generated data type specific classes. For each data type, a data type specific class
<type>DataWriter is generated (based on IDL) by calling the pre-processor.
For instance, for the fictional data type Foo (this also applies to other types)
“Publication type specific classes” contains the following classes:
• DataWriter (abstract)
• FooDataWriter.
A Publisher is an object responsible for data distribution. It may publish data of
different data types. A DataWriter acts as a typed accessor to a Publisher. The
DataWriter is the object the application must use to communicate the existence
and value of data-objects of a given data type to a Publisher. When data-object
values have been communicated to the Publisher through the appropriate
DataWriter, it is the Publisher’s responsibility to perform the distribution. The
Publisher will do this according to its own PublisherQos , and the
DataWriterQos attached to the corresponding DataWriter. A publication is
defined by the association of a DataWriter to a Publisher. This association
expresses the intent of the application to publish the data described by the
DataWriter in the context provided by the Publisher.

3.4.1 Class Publisher
The Publisher acts on behalf of one or more DataWriter objects that belong to
it. When it is informed of a change to the data associated with one of its
DataWriter objects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the PublisherQos
and the DataWriterQos.
The interface description of this class is as follows:
 class Publisher

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
196
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// implemented API operations
//

DataWriter_ptr
 create_datawriter
 (Topic_ptr a_topic,

 const DataWriterQos& qos,
 DataWriterListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_datawriter
 (DataWriter_ptr a_datawriter);

DataWriter_ptr
 lookup_datawriter
 (const char* topic_name);
ReturnCode_t
 delete_contained_entities
 (void);

ReturnCode_t
 set_qos
 (const PublisherQos& qos);
ReturnCode_t
 get_qos
 (PublisherQos& qos);
ReturnCode_t
 set_listener
 (PublisherListener_ptr a_listener,
 StatusMask mask);
PublisherListener_ptr
 get_listener
 (void);
ReturnCode_t
 suspend_publications
 (void);

ReturnCode_t
 resume_publications
 (void);

ReturnCode_t
 begin_coherent_changes
 (void);
197
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

ReturnCode_t
 end_coherent_changes
 (void);

ReturnCode_t
 wait_for_acknowledgments
 (const Duration_t& max_wait);

DomainParticipant_ptr
 get_participant
 (void);

ReturnCode_t
 set_default_datawriter_qos
 (const DataWriterQos& qos);

ReturnCode_t
 get_default_datawriter_qos
 (DataWriterQos& qos);

ReturnCode_t
 copy_from_topic_qos
 (DataWriterQos& a_datawriter_qos,

 const TopicQos& a_topic_qos);
};

The next paragraphs describe the usage of all Publisher operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited.

3.4.1.1 begin_coherent_changes

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 begin_coherent_changes
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.
198
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DataWriter objects attached to this Publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.

Parameters
<none>

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DataWriter objects attached to this Publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.
A ‘coherent set’ is a set of modifications that must be propagated in such a way that
they are interpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.
A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the Publisher or one of its connected
Subscribers may change, a late-joining DataReader may appear on the
network, or a communication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave as if it had received none of the set.
These calls can be nested. In that case, the coherent set terminates only with the last
call to end_coherent_changes.
The support for ‘coherent changes’ enables a publishing application to change the
value of several data-instances that could belong to the same or different topics and
have those changes be seen ‘atomically’ by the readers. This is useful in cases where
the values are inter-related (for example, if there are two data-instances representing
the ‘altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

199

API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.2 copy_from_topic_qos

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 copy_from_topic_qos
 (DataWriterQos& a_datawriter_qos,
 const TopicQos& a_topic_qos);

Description
This operation will copy policies in a_topic_qos to the corresponding policies in
a_datawriter_qos.

Parameters
inout DataWriterQos& a_datawriter_qos - t he des t ina t ion

DataWriterQos struct to which the QosPolicy settings should be copied.
in const TopicQos& a_topic_qos - the source TopicQos struct, which

should be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datawriter_qos (replacing the values
in a_datawriter_qos, if present). This will only apply to the common
QosPolicy settings in each <Entity>Qos.
This is a “convenience” operation, useful in combination with the operations
get_default_datawriter_qos and Topic::get_qos. The operation
copy_from_topic_qos can be used to merge the DataWriter default
QosPolicy settings with the corresponding ones on the TopicQos. The resulting
DataWriterQos can then be used to create a new DataWriter, or set its
DataWriterQos.
200
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

This operation does not check the resulting a_datawriter_qos for consistency.
This is because the “merged” a_datawriter_qos may not be the final one, as the
application can still modify some QosPolicy settings prior to applying the
DataWriterQos to the DataWriter.

Return Code
When the operation returns:
• RETCODE_OK - the QosPolicy settings are copied from the Topic to the
DataWriter

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.3 create_datawriter

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
DataWriter_ptr
 create_datawriter
 (Topic_ptr a_topic,
 const DataWriterQos& qos,
 DataWriterListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a DataWriter with the desired DataWriterQos, for the
desired Topic and attaches the optionally specified DataWriterListener to it.

Parameters
in Topic_ptr a_topic - a pointer to the topic for which the DataWriter is

created.
in const DataWriterQos& qos - the DataWriterQos for the new

DataWriter. In case these settings are not self consistent, no DataWriter is
created.
201
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

in DataWriterListener_ptr a_listener - a p o i n t e r t o t h e
DataWriterListener instance which will be attached to the new
DataWriter. It is permitted to use NULL as the value of the listener: this
behaves as a DataWriterListener whose operations perform no action.

Return Value
DataWriter_ptr - Return value is a pointer to the newly created DataWriter. In

case of an error, the NULL pointer is returned.

Detailed Description
This operation creates a DataWriter with the desired DataWriterQos, for the
desired Topic and attaches the optionally specified DataWriterListener to it.
The returned DataWriter is attached (and belongs) to the Publisher on which
this operation is being called. To delete the DataWriter the operation
delete_datawriter or delete_contained_entities must be used.

Application Data Type
The DataWriter returned by this operation is an object of a derived class, specific
to the data type associated with the Topic. For each application-defined data type
<type> there is a class <type>DataWriter generated by calling the
pre-processor. This data type specific class extends DataWriter and contains the
operations to write data of data type <type>.

QosPolicy
The possible application pattern to construct the DataWriterQos for the
DataWriter is to:
• Retrieve the QosPolicy settings on the associated Topic by means of the
get_qos operation on the Topic

• Retrieve the default DataWriterQos by means of the
get_default_datawriter_qos operation on the Publisher

• Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

• Use the resulting DataWriterQos to construct the DataWriter.
In case the specified QosPolicy settings are not consistent, no DataWriter is
created and the NULL pointer is returned.
202
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Default QoS
The constant DATAWRITER_QOS_DEFAULT can be used as parameter qos to create
a DataWriter with the default DataWriterQos as set in the Publisher. The
effect of using DATAWRITER_QOS_DEFAULT is the same as calling the operation
get_default_datawriter_qos and using the resulting DataWriterQos to
create the DataWriter.
The special DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DataWriter with a combination of the default DataWriterQos and the
TopicQos. The effect of using DATAWRITER_QOS_USE_TOPIC_QOS is the same as
calling the operation get_default_datawriter_qos and retrieving the
TopicQos (by means of the operation Topic::get_qos) and then combining
these two QosPolicy settings using the operation copy_from_topic_qos,
whereby any common policy that is set on the TopicQos “overrides” the
corresponding policy on the default DataWriterQos . The result ing
DataWriterQos is then applied to create the DataWriter.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataWriterListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the DataWriterListener:
• OFFERED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• LIVELINESS_LOST_STATUS

• PUBLICATION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataWriterListener, the PublisherListener of the containing Publisher
is invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the PublisherListener of the containing
Publisher and a DataWriter specific behaviour when needed. In case the
203
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

communication status is not activated in the mask of the PublisherListener as
w e l l , t h e c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.

3.4.1.4 delete_contained_entities

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_contained_entities
 (void);

Description
This operation deletes all the DataWriter objects that were created by means of
one of the create_datawriter operations on the Publisher.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DataWriter objects that were created by means of
one of the create_datawriter operations on the Publisher. In other words, it
deletes all contained DataWriter objects.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
204
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_OK - the contained Entity objects are deleted and the application may
delete the Publisher

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.4.1.5 delete_datawriter

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_datawriter
 (DataWriter_ptr a_datawriter);

Description
This operation deletes a DataWriter that belongs to the Publisher.

Parameters
in DataWriter_ptr a_datawriter - a pointer to the DataWriter, which is to

be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a DataWriter that belongs to the Publisher. When the
operation is called on a different Publisher, as used when the DataWriter was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataWriter will
automatical ly unregister al l instances . Depending on the set t ings of
WriterDataLifecycleQosPolicy, the deletion of the DataWriter may also
dispose of all instances.
205
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• RETCODE_OK - the DataWriter is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_datawriter is not a valid
DataWriter_ptr

• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
Publisher, as used when the DataWriter was created.

3.4.1.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 enable
 (void);

3.4.1.7 end_coherent_changes

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 end_coherent_changes
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation terminates the ‘coherent set’ initiated by the matching call to
begin_coherent_changes.

Parameters
<none>
206
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operation terminates the ‘coherent set’ initiated by the matching call to
Publisher_begin_coherent_changes. If there is no matching call to
Publisher_begin_coherent_changes, the operation will return the error
PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.1.8 get_default_datawriter_qos

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_default_datawriter_qos
 (DataWriterQos& qos);

Description
This operation gets the default DataWriterQos of the Publisher.

Parameters
inout DataWriterQos& qos - a reference to the DataWriterQos struct

(provided by the application) in which the default DataWriterQos for the
DataWriter is written.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.
207
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation gets the default DataWriterQos of the Publisher (that is the
struct with the QosPolicy settings) which is used for newly created DataWriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos is only used when the constant is supplied as parameter qos to
specify the DataWriterQos in the create_datawriter operation. The
application must provide the DataWriterQos struct in which the QosPolicy
settings can be stored and pass the qos reference to the operation. The operation
writes the default DataWriterQos to the struct referenced to by qos. Any settings
in the struct are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_datawriter_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2 on
page 37.

Return Code
When the operation returns:
• RETCODE_OK - the default DataWriter QosPolicy settings of this Publisher

have successfully been copied into the specified DataWriterQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.9 get_listener

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
PublisherListener_ptr
 get_listener
 (void);

Description
This operation allows access to a PublisherListener.

Parameters
<none>
208
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
PublisherListener_ptr - result is a pointer to the PublisherListener

attached to the Publisher.

Detailed Description
This operation allows access to a PublisherListener attached to the
Publisher. When no PublisherListener was attached to the Publisher, the
NULL pointer is returned.

3.4.1.10 get_participant

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);

Description
This operation returns the DomainParticipant associated with the Publisher
or the NULL pointer.

Parameters
<none>

Return Value
DomainParticipant_ptr - a pointer to the DomainParticipant associated

with the Publisher or the NULL pointer.

Detailed Description
This operation returns the DomainParticipant associated with the Publisher.
Note that there is exactly one DomainParticipant associated with each
Publisher. When the Publisher was already deleted (there is no associated
DomainParticipant any more), the NULL pointer is returned.

3.4.1.11 get_qos

Scope
DDS::Publisher
209
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (PublisherQos& qos);

Description
This operation allows access to the existing set of QoS policies for a Publisher.

Parameters
inout PublisherQos& qos - a reference to the destination PublisherQos

struct in which the QosPolicy settings will be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Publisher on
which this operation is used. This PublisherQos is stored at the location pointed
to by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Publisher

has successfully been copied into the specified PublisherQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.12 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
 (void);
210
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.13 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.4.1.14 lookup_datawriter

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
DataWriter_ptr
 lookup_datawriter
 (const char* topic_name);

Description
This operation returns a previously created DataWriter belonging to the
Publisher which is attached to a Topic with the matching topic_name.

Parameters
in const char* topic_name - the name of the Topic, which is attached to the

DataWriter to look for.

Return Value
DataWriter_ptr - Return value is a pointer to the DataWriter found. When no

such DataWriter is found, the NULL pointer is returned.

Detailed Description
This operation returns a previously created DataWriter belonging to the
Publisher which is attached to a Topic with the matching topic_name. When
multiple DataWriter objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

3.4.1.15 resume_publications

Scope
DDS::Publisher
211
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 resume_publications
 (void);

Description
This operation resumes a previously suspended publication.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED or RETCODE_PRECONDITION_
NOT_MET

Detailed Description
If the Publisher is suspended, this operation will resume the publication of all
DataWriter objects contained by this Publisher. All data held in the history
buffer of the DataWriter's is actively published to the consumers. When the
operation returns all DataWriter's have resumed the publication of suspended
updates.

Return Code
When the operation returns:
• RETCODE_OK - the Publisher has been suspended
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the Publisher is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the Publisher is not suspended

3.4.1.16 set_default_datawriter_qos

Scope
DDS::Publisher
212
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_datawriter_qos
 (const DataWriterQos& qos);

Description
This operation sets the default DataWriterQos of the Publisher.

Parameters
in const DataWriterQos& qos - the DataWriterQos struct, which contains

the new default DataWriterQos for the newly created DataWriters.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DataWriterQos of the Publisher (that is the
struct with the QosPolicy settings) which is used for newly created DataWriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos is only used when the constant is supplied as parameter qos to
specify the DataWriterQos in the create_datawriter operation. The
set_default_datawriter_qos operation checks if the DataWriterQos is self
c o n s i s t e n t . I f i t i s n o t , t h e o p e ra t i on ha s no e ff e c t and r e tu rn s
RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by get_default_datawriter_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default DataWriterQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataWriterQos.

It contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries.

• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
213
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.4.1.17 set_listener

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (PublisherListener_ptr a_listener,
 StatusMask mask);

Description
This operation attaches a PublisherListener to the Publisher.

Parameters
in PublisherListener_ptr a_listener - a p o i n t e r t o t h e

PublisherListener instance, which will be attached to the Publisher.
in StatusMask mask - a bit mask in which each bit enables the invocation of the

PublisherListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation attaches a PublisherListener to the Publisher. Only one
PublisherListener c an be a t t a ched t o e ac h Publisher. I f a
PublisherListener was already attached, the operation will replace it with the
new one. When a_listener is the NULL pointer, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bit mask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener

1. Short for No-Operation, an instruction that does nothing.

214
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the NULL listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the PublisherListener:
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the PublisherListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener of a contained DataWriter, the DataWriterListener
on that contained DataWriter is invoked instead of the PublisherListener.
This means, that a status change on a contained DataWriter only invokes the
PublisherListener if the contained DataWriter itself does not handle the
trigger event generated by the status change.
In case a status is not activated in the mask of the PublisherListener, the
DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the
containing DomainParticipant and a Publisher specific behaviour when
needed. In case the DomainParticipantListener is also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code
When the operation returns:
• RETCODE_OK - the PublisherListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
215
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.18 set_qos

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const PublisherQos& qos);

Description
This operation replaces the existing set of QosPolicy settings for a Publisher.

Parameters
in const PublisherQos& qos - the new set of QosPolicy settings for the

Publisher.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_IMMUTABLE_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Publisher.
The parameter qos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled Publisher, which can only be set before the Publisher is
enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned. In
other words, the application must provide the currently set QosPolicy settings in
case of the immutable QosPolicy settings. Only the mutable QosPolicy settings
can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new PublisherQos is set
216
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos. It

contains a QosPolicy setting with an enum value that is outside its legal
boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Publisher.

3.4.1.19 suspend_publications

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 suspend_publications
 (void);

Description
This operation will suspend the dissemination of the publications by all contained
DataWriter objects.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_NOT_ENABLED.
217
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation suspends the publication of all DataWriter objects contained by
this Publisher. The data written, disposed or unregistered by a DataWriter is
stored in the history buffer of the DataWriter and therefore, depending on its QoS
settings, the following operations may block (see the operation descriptions for
more information):
• DDS::DataWriter.dispose
• DDS::DataWriter.dispose_w_timestamp

• DDS::DataWriter.write
• DDS::DataWriter.write_w_timestamp
• DDS::DataWriter.writedispose
• DDS::DataWriter.writedispose_w_timestamp

• DDS::DataWriter.unregister_instance
• DDS::DataWriter.unregister_instance_w_timestamp
Subsequent calls to this operation have no effect. When the Publisher is deleted
before resume_publications is called, all suspended updates are discarded.

Return Code
When the operation returns:
• RETCODE_OK - the Publisher has been suspended
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the Publisher is not enabled.

3.4.1.20 wait_for_acknowledgments

Scope
DDS::Publisher

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 wait_for_acknowledgments
 (const Duration_t& max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.
218
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation blocks the calling thread until either all data written by the contained
DataWriters is acknowledged by the matched DataReaders, or until the
duration specified by max_wait parameter elapses, whichever happens first.

Parameters
in const Duration_t& max_wait - the maximum duration to block for the

wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operation is intended to be used only if one or more of the contained
DataWriters h a s i t s ReliabilityQosPolicyKind s e t t o
RELIABLE_RELIABILITY_QOS. Otherwise the operation will return immediately
with RETCODE_OK.
It blocks the calling thread until either all data written by the contained reliable
DataWriters is acknowledged by all matched DataReader entities that have
their ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS, or
else the duration specified by the max_wait parameter elapses, whichever happens
first. A return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.2 Publication Type Specific Classes
This paragraph describes the generic DataWriter class and the derived application
type specific <type>DataWriter classes which together implement the
application publication interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataWriter class from an IDL type
description. The FooDataWriter class that would be generated by the
pre-processor for a fictional type Foo describes the <type>DataWriter classes.
219
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.1 Class DataWriter (abstract)
DataWriter allows the application to set the value of the sample to be published
under a given Topic.
A DataWriter is attached to exactly one Publisher which acts as a factory for it.
A DataWriter is bound to exactly one Topic and therefore to exactly one data
type. The Topic must exist prior to the DataWriter's creation.
DataWriter is an abstract class. It must be specialized for each particular
application data type. For a fictional application data type Foo (defined in the
module SPACE) the specialized class would be SPACE::FooDataWriter.
The interface description of this class is as follows:
 class DataWriter

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// abstract operations (implemented in the data type specific
// DataWriter)
//
// InstanceHandle_t
// register_instance
// (const <data>& instance_data);
//
// InstanceHandle_t
// register_instance_w_timestamp
// (const <data>& instance_data,
// const Time_t& source_timestamp);
//
// ReturnCode_t
// unregister_instance
// (const <data>& instance_data,
// InstanceHandle_t handle);
//
// ReturnCode_t
// unregister_instance_w_timestamp
// (const <data>& instance_data,
// InstanceHandle_t handle,
220
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

// const Time_t& source_timestamp);
//
// ReturnCode_t
// write
// (const <data>& instance_data,
// InstanceHandle_t handle);
//
// ReturnCode_t
// write_w_timestamp
// (const <data>& instance_data,
// InstanceHandle_t handle,
// const Time_t& source_timestamp);
//
// ReturnCode_t
// dispose
// (const <data>& instance_data,
// InstanceHandle_t instance_handle);
//
// ReturnCode_t
// dispose_w_timestamp
// (const <data>& instance_data,
// InstanceHandle_t instance_handle,
// const Time_t& source_timestamp);
//
// ReturnCode_t
// writedispose
// (const <data>& instance_data,
// InstanceHandle_t instance_handle);
//
// ReturnCode_t
// writedispose_w_timestamp
// (const <data>& instance_data,
// InstanceHandle_t instance_handle,
// const Time_t& source_timestamp);
//
// ReturnCode_t
// get_key_value
// (<data>& key_holder,
// InstanceHandle_t handle);
//
// InstanceHandle_t
// lookup_instance
// (const <data>& instance_data);
//
// implemented API operations
//

ReturnCode_t
 set_qos
 (const DataWriterQos& qos);

221
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

ReturnCode_t
 get_qos
 (DataWriterQos& qos);

ReturnCode_t
 set_listener
 (DataWriterListener_ptr a_listener,

 StatusMask mask);

DataWriterListener_ptr
 get_listener
 (void);

Topic_ptr
 get_topic
 (void);

Publisher_ptr
 get_publisher
 (void);

ReturnCode_t
 wait_for_acknowledgments
 (const Duration_t& max_wait);

ReturnCode_t
 get_liveliness_lost_status
 (LivelinessLostStatus& status);

ReturnCode_t
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatus& status);

ReturnCode_t
 get_offered_incompatible_qos_status
 (OfferedIncompatibleQosStatus& status);

ReturnCode_t
 get_publication_matched_status
 (PublicationMatchedStatus& status);

ReturnCode_t
 assert_liveliness
 (void);

ReturnCode_t
 get_matched_subscriptions
 (InstanceHandleSeq& subscription_handles);

ReturnCode_t
222
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 get_matched_subscription_data
 (SubscriptionBuiltinTopicData& subscription_data,

 InstanceHandle_t subscription_handle);
};

The next paragraphs describe the usage of all DataWriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data
type specific implementation of these operations.

3.4.2.2 assert_liveliness

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 assert_liveliness
 (void);

Description
This operation asserts the liveliness for the DataWriter.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_NOT_ENABLED.

Detailed Description
This operation will manually assert the liveliness for the DataWriter. This way,
the Data Distribution Service is informed that the corresponding DataWriter is
still alive. This operation is used in combination with the LivelinessQosPolicy
s e t t o MANUAL_BY_PARTICIPANT_LIVELINESS_QOS o r
MANUAL_BY_TOPIC_LIVELINESS_QOS . S e e Se c t io n 3 . 1 .3 .1 0 ,
Liv e l i ne s sQ osPo l i cy, on p a g e 5 7 , fo r m or e i n f o rm a t i on o n
LivelinessQosPolicy.
223
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Writing data via the write operation of a DataWriter will assert the liveliness on
the DataWriter itself and its containing DomainParticipant. Therefore,
assert_liveliness is only needed when not writing regularly.
The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy. Asserting the liveliness for this DataWriter can also
be achieved by asserting the liveliness to the DomainParticipant.

Return Code
When the operation returns:
• RETCODE_OK - the liveliness of this DataWriter has successfully been asserted.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DataWriter is not enabled.

3.4.2.3 dispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 dispose
 (const <data>& instance_data,
 InstanceHandle_t instance_handle);

3.4.2.4 dispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 dispose_w_timestamp
224
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 (const <data>& instance_data,
 InstanceHandle_t instance_handle,
 const Time_t& source_timestamp);

3.4.2.5 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 enable
 (void);

3.4.2.6 get_key_value (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 get_key_value
 (<data>& key_holder,
 InstanceHandle_t handle);

3.4.2.7 get_listener

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
DataWriterListener_ptr
 get_listener
 (void);

Description
This operation allows access to a DataWriterListener.

Parameters
<none>
225
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
DataWriterListener_ptr - result is a pointer to the DataWriterListener

attached to the DataWriter.

Detailed Description
This operation allows access to a DataWriterListener attached to the
DataWriter. When no DataWriterListener was attached to the DataWriter,
the NULL pointer is returned.

3.4.2.8 get_liveliness_lost_status

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_liveliness_lost_status
 (LivelinessLostStatus& status);

Description
This operation obtains the LivelinessLostStatus struct of the DataWriter.

Parameters
inout LivelinessLostStatus& status - t he con ten t s o f t he

LivelinessLostStatus struct of the DataWriter will be copied into the
location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the LivelinessLostStatus struct of the DataWriter.
This struct contains the information whether the liveliness (that the DataWriter
has committed through its LivelinessQosPolicy) was respected.
This means, that the status represents whether the DataWriter failed to actively
signal its liveliness within the offered liveliness period. If the liveliness is lost, the
DataReader objects will consider the DataWriter as no longer “alive”.
226
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

The LivelinessLostStatus c a n a l s o b e m o n i t o r e d u s i n g a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessLostStatus of this DataWriter has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.9 get_matched_subscription_data

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_matched_subscription_data
 (SubscriptionBuiltinTopicData& subscription_data,
 InstanceHandle_t subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.10 get_matched_subscriptions

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_matched_subscriptions
 (InstanceHandleSeq& subscription_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.11 get_offered_deadline_missed_status

Scope
DDS::DataWriter
227
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatus& status);

Description
This operation obtains the OfferedDeadlineMissedStatus struct of the
DataWriter.

Parameters
inout OfferedDeadlineMissedStatus& status - the contents of the

OfferedDeadlineMissedStatus struct of the DataWriter will be copied
into the location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the OfferedDeadlineMissedStatus struct of the
DataWriter. This struct contains the information whether the deadline (that the
DataWriter has committed through its DeadlineQosPolicy) was respected for
each instance.
The OfferedDeadlineMissedStatus can also be monitored using a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessLostStatus of this DataWriter has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.12 get_offered_incompatible_qos_status

Scope
DDS::DataWriter
228
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_offered_incompatible_qos_status
 (OfferedIncompatibleQosStatus& status);

Description
This operation obtains the OfferedIncompatibleQosStatus struct of the
DataWriter.

Parameters
inout OfferedIncompatibleQosStatus& status - the contents of the

OfferedIncompatibleQosStatus struct of the DataWriter will be copied
into the location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the OfferedIncompatibleQosStatus struct of the
DataWriter. This struct contains the information whether a QosPolicy setting
was incompatible with the requested QosPolicy setting.
This means, that the status represents whether a DataReader object has been
discovered by the DataWriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the DataWriter.
The OfferedIncompatibleQosStatus can also be monitored using a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current OfferedIncompatibleQosStatus of this
DataWriter has successfully been copied into the specified status parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
229
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.13 get_publication_matched_status

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_publication_matched_status
 (PublicationMatchedStatus& status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.14 get_publisher

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
Publisher_ptr
 get_publisher
 (void);

Description
This operation returns the Publisher to which the DataWriter belongs.

Parameters
<none>

Return Value
Publiher_ptr - Return value is a pointer to the Publisher to which the

DataWriter belongs.

Detailed Description
This operation returns the Publisher to which the DataWriter belongs, thus the
Publisher that has created the DataWriter. If the DataWriter is already
deleted, the NULL pointer is returned.

3.4.2.15 get_qos

Scope
DDS::DataWriter
230
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (DataWriterQos& qos);

Description
This operation allows access to the existing list of QosPolicy settings for a
DataWriter.

Parameters
inout DataWriterQos& qos - a reference to the destination DataWriterQos

struct in which the QosPolicy settings will be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation allows access to the existing list of QosPolicy settings of a
DataWriter on which this operation is used. This DataWriterQos is stored at the
location pointed to by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this DataWriter

has successfully been copied into the specified DataWriterQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.16 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
231
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 (void);

3.4.2.17 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.4.2.18 get_topic

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
Topic_ptr
 get_topic
 (void);

Description
This operation returns the Topic which is associated with the DataWriter.

Parameters
<none>

Return Value
Topic_ptr - Return value is a pointer to the Topic which is associated with the

DataWriter.

Detailed Description
This operation returns the Topic which is associated with the DataWriter, thus
the Topic with which the DataWriter is created. If the DataWriter is already
deleted, the NULL pointer is returned.
232
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.19 lookup_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
 lookup_instance
 (const <data>& instance_data);

3.4.2.20 register_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

InstanceHandle_t
 register_instance
 (const <data>& instance_data);

3.4.2.21 register_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

InstanceHandle_t
 register_instance_w_timestamp
 (const <data>& instance_data,
 const Time_t& source_timestamp);

3.4.2.22 set_listener

Scope
DDS::DataWriter
233
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (DataWriterListener_ptr a_listener,
 StatusMask mask);

Description
This operation attaches a DataWriterListener to the DataWriter.

Parameters
in DataWriterListener_ptr a_listener - a p o i n t e r t o t h e

DataWriterListener instance, which will be attached to the DataWriter.
in StatusMask mask - a bit mask in which each bit enables the invocation of the

DataWriterListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation attaches a DataWriterListener to the DataWriter. Only one
DataWriterListener can be a t t ached to each DataWriter. I f a
DataWriterListener was already attached, the operation will replace it with the
new one. When a_listener is the NULL pointer, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bit mask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataWriterListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the NULL listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the DataWriterListener:

1. Short for No-Operation, an instruction that does nothing.

234
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• OFFERED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• LIVELINESS_LOST_STATUS

• PUBLICATION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataWriterListener, the PublisherListener of the containing Publisher
is invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the PublisherListener of the containing
Publisher and a DataWriter specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
w e l l , t h e c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.

Return Code
When the operation returns:
• RETCODE_OK - the DataWriterListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.23 set_qos

Scope
DDS::DataWriter

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const DataWriterQos& qos);

Description
This operation replaces the existing set of QosPolicy settings for a DataWriter.
235
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in const DataWriterQos& qos - new set of QosPolicy settings for the

DataWriter.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALLREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_IMMUTABLE_POLICY or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a DataWriter.
The parameter qos contains the struct with the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DataWriter, which can only be set before the
DataWriter i s e n a b l e d , t h e o p e r a t io n w i l l f a i l a n d a
RETCODE_IMMUTABLE_POLICY is returned. In other words, the application must
provide the presently set QosPolicy settings in case of the immutable QosPolicy
settings. Only the mutable QosPolicy settings can be changed. When qos contains
conflicting QosPolicy settings (not self-consistent), the operation will fail and a
RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new default DataWriterQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataWriterQos.

It contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataWriter.
236
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains an
inconsistent QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.4.2.24 unregister_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 unregister_instance
 (const <data>& instance_data,
 InstanceHandle_t handle);

3.4.2.25 unregister_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 unregister_instance_w_timestamp
 (const <data>& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

3.4.2.26 wait_for_acknowledgments

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 wait_for_acknowledgments
 (const Duration_t& max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.
237
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation blocks the calling thread until either all data written by the
DataWriter is acknowledged by the matched DataReaders, or until the duration
specified by max_wait parameter elapses, whichever happens first.

Parameters
in const Duration_t& max_wait - the maximum duration to block for the

wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operat ion is intended to be used only i f the DataWri ter has i ts
ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS. Otherwise
the operation will return immediately with RETCODE_OK.
It blocks the calling thread until either all data written by the DataWriter is
acknowledged by a l l matched DataReader en t i t ies tha t have the i r
ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS, or else the
duration specified by the max_wait parameter elapses, whichever happens first. A
return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.2.27 write (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.
238
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 write
 (const <data>& instance_data,
 InstanceHandle_t handle);

3.4.2.28 write_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 write_w_timestamp
 (const <data>& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

3.4.2.29 writedispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 writedispose
 (const <data>& instance_data,
 InstanceHandle_t handle);

3.4.2.30 writedispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.
239
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 writedispose_w_timestamp
 (const <data>& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

3.4.2.31 Class FooDataWriter
The pre-processor generates from IDL type descriptions the application
<type>DataWriter classes. For each application data type that is used as Topic
data type, a typed class <type>DataWriter is derived from the DataWriter
class. In this paragraph, the class FooDataWriter in the namespace SPACE
describes the operations of these derived <type>DataWriter classes as an
example for the fictional application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a ccpp_Space.h include file.
General note: The name ccpp_Space.h is derived from the IDL file Space.idl,
that defines SPACE::Foo, for all relevant SPACE::FooDataWriter operations.
A FooDataWriter is attached to exactly one Publisher which acts as a factory
for it. The FooDataWriter is bound to exactly one Topic that has been registered
to use a data type Foo. The Topic must exist prior to the FooDataWriter
creation.
The interface description of this class is as follows:
 class FooDataWriter

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// inherited from class DataWriter
//
// ReturnCode_t
// set_qos
// (const DataWriterQos& qos);

i

240
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

// ReturnCode_t
// get_qos
// (DataWriterQos& qos);

// ReturnCode_t
// set_listener
// (DataWriterListener_ptr a_listener,
// StatusMask mask);

// DataWriterListener_ptr
// get_listener
// (void);

// Topic_ptr
// get_topic
// (void);

// Publisher_ptr
// get_publisher
// (void);

// ReturnCode_t
// wait_for_acknowledgments
// (const Duration_t& max_wait);

// ReturnCode_t
// get_liveliness_lost_status
// (LivelinessLostStatus& status);

// ReturnCode_t
// get_offered_deadline_missed_status
// (OfferedDeadlineMissedStatus& status);

// ReturnCode_t
// get_offered_incompatible_qos_status
// (OfferedIncompatibleQosStatus& status);

// ReturnCode_t
// get_publication_matched_status
// (PublicationMatchedStatus& status);

// ReturnCode_t
// assert_liveliness
// (void);

// ReturnCode_t
// get_matched_subscriptions
// (InstanceHandleSeq& subscription_handles);

241
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

// ReturnCode_t
// get_matched_subscription_data
// (SubscriptionBuiltinTopicData& subscription_data,
// InstanceHandle_t subscription_handle);
//
// implemented API operations
//

InstanceHandle_t
 register_instance
 (const Foo& instance_data);
InstanceHandle_t
 register_instance_w_timestamp
 (const Foo& instance_data,
 const Time_t& time_stamp);
ReturnCode_t
 unregister_instance
 (const Foo& instance_data,
 InstanceHandle_t handle);
ReturnCode_t
 unregister_instance_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t handle,
 const Time_t& time_stamp);
ReturnCode_t
 write
 (const Foo& instance_data,
 InstanceHandle_t handle);
ReturnCode_t
 write_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t handle,
 const Time_t& time_stamp);
ReturnCode_t
 dispose
 (const Foo& instance_data,
 InstanceHandle_t instance_handle);
ReturnCode_t
 dispose_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t instance_handle,
 const Time_t& time_stamp);
ReturnCode_t
 writedispose
 (const Foo& instance_data,
 InstanceHandle_t instance_handle);
ReturnCode_t
 writedispose_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t instance_handle,
 const Time_t& time_stamp);
242
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

ReturnCode_t
 get_key_value
 (Foo& key_holder,
 InstanceHandle_t handle);
InstanceHandle_t
 lookup_instance
 (const Foo& instance_data);

};

The next paragraphs describe the usage of all FooDataWriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.2.32 assert_liveliness (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 assert_liveliness
 (void);

3.4.2.33 dispose

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 dispose
 (const Foo& instance_data,
 InstanceHandle_t instance_handle);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters
in const Foo& instance_data - the actual instance to be disposed of.
in InstanceHandle_t instance_handle - the handle to the instance to be

disposed of.
243
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected DataReader and, dependent on the QoSPolicy settings, also in
the Transient and Persistent stores, will be marked for deletion by setting their
InstanceStateKind to NOT_ALIVE_DISPOSED_INSTANCE_ STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DataReader will be
postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it.
 - A DataWriter can register an instance explicitly by using one of the special

operations register_instance or register_instance_w_timestamp.
 - A DataWriter can register an instance implicitly by using the special constant
HANDLE_NIL in any of the other DataWriter operations.

 - A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

 - A DataWriter will unregister all its contained instances implicitly when it is
deleted.

 - When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider all instances registered by that DataWriter as
being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
244
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 - An application can consume samples explicitly by invoking the take operation,
or one of its variants, on its DataReaders.

 - The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy has expired.

The DataReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay o f the
ReaderDataLifecycleQosPolicy has expired after the instance is considered
u n r e g i s t e r e d b y a l l c o n n e c t e d DataWriters (i . e . whe n i t ha s a
InstanceStateKind of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
ReaderDataLifecycleQosPolicy, on page 65.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy on the Topic must have elapsed after the
instance is considered unregistered by all connected DataWriters.

See also Section 3.1.3.4, DurabilityServiceQosPolicy, on page 48.

Instance Handle
The HANDLE_NIL handle value can be used for the parameter instance_handle.
This indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If instance_handle is any value other than HANDLE_NIL, it must correspond to
the value that was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.
The sample that is passed as instance_data is only used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders. Use the writedispose
operation if the sample itself should be delivered together with the dispose request.

Blocking
If the HistoryQosPolicy is set to KEEP_ALL_HISTORY_QOS, the dispose
operation on the DataWriter may block if the modification would cause data to be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, to be
245
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the dispose operation
may block (waiting for space to become available). If max_blocking_time
elapses before the DataWriter is able to store the modification without exceeding
the limits, the SPACE_FooDataWriter_dispose operation will fail and returns
RETCODE_TIMEOUT.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the dispose operation merely uses the sample to check for consistency
between its key values and the supplied instance_handle, only these keyfields
will be validated against the restrictions imposed by the IDL to C++ language
mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance data

must be disposed of
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

i

246
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the instance_handle has not been

registered with this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.34 dispose_w_timestamp

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 dispose_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t instance_handle,
 const Time_t& source_timestamp);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion and provides a value for the source_timestamp explicitly.

Parameters
in const Foo& instance_data - the actual instance to be disposed of.
in InstanceHandle_t instance_handle - the handle to the instance to be

disposed of.
in Time_t source_timestamp - source_timestamp is the timestamp which

is provided for the DataReader.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.
247
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation performs the same functions as dispose except that the application
provides the value for the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance data

must be disposed of
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the instance_handle has not been

registered with this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose_w_timestamp operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.35 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 enable
 (void);

3.4.2.36 get_key_value

Scope
SPACE::FooDataWriter
248
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 get_key_value
 (Foo& key_holder,
 InstanceHandle_t handle);

Description
This operation retrieves the key value of a specific instance.

Parameters
inout Foo& key_holder - a reference to the sample in which the key values are

stored.
in InstanceHandle_t handle - the handle to the instance from which to get

the key value.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation retrieves the key value of the instance referenced to by
instance_handle. When the operation is called with a HANDLE_NIL handle
va lue a s an instance_handle , t h e o p e ra t i o n w i l l r e t u r n
RETCODE_BAD_PARAMETER. The operation will only fill the fields that form the key
inside the key_holder instance. This means, the non-key fields are not applicable
and may contain garbage.
The operation must only be called on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the key_holder instance contains the key values of the instance;
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

249

API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - this instance is not registered.

3.4.2.37 get_listener (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
DataWriterListener_ptr
 get_listener
 (void);

3.4.2.38 get_liveliness_lost_status (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_liveliness_lost_status
 (LivelinessLostStatus& status);

3.4.2.39 get_matched_subscription_data (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_matched_subscription_data
 (SubscriptionBuiltinTopicData& subscription_data,
 InstanceHandle_t subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.40 get_matched_subscriptions (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_matched_subscriptions
 (InstanceHandleSeq& subscription_handles);
250
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.41 get_offered_deadline_missed_status (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatus& status);

3.4.2.42 get_offered_incompatible_qos_status (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_offered_incompatible_qos_status
 (OfferedIncompatibleQosStatus& status);

3.4.2.43 get_publication_matched_status (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_publication_matched_status
 (PublicationMatchedStatus& status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.44 get_publisher (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
Publisher_ptr
 get_publisher
 (void);
251
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.45 get_qos (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_qos
 (DataWriterQos& qos);

3.4.2.46 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusMask
 get_status_changes
 (void);

3.4.2.47 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.4.2.48 get_topic (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
Topic_ptr
 get_topic
 (void);

3.4.2.49 lookup_instance

Scope
SPACE::FooDataWriter
252
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
#include <ccpp_Space.h>
InstanceHandle_t
 lookup_instance
 (const Foo& instance_data);

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in const Foo& instance_data - a reference to the instance for which the

corresponding instance handle needs to be looked up.

Return Value
InstanceHandle_t - Result value is the instance handle which corresponds to the

instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter is only used for the purpose of
examining the fields that define the key. The instance handle can be used in any
write, dispose or unregister operations (or their time stamped variants) that
operate on a specific instance. Note that DataWriter instance handles are local,
and are not interchangeable with DataReader instance handles nor with instance
handles of an other DataWriter.
This operation does not register the instance in question. If the instance has not been
previously registered, if the DataWriter is already deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value HANDLE_NIL.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif
253
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the lookup_instance operation merely uses the sample to determine its
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to C++ language mapping:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a HANDLE_NIL. More specific information about the
context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

3.4.2.50 register_instance

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

InstanceHandle_t
 register_instance
 (const Foo& instance_data);

Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters
in const Foo& instance_data - the instance, which the application writes to

or disposes of.

Return Value
InstanceHandle_t - Result value is the handle to the instance, which may be

used for writing and disposing of. In case of an error, a HANDLE_NIL handle
value is returned.
254
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such as write, write_w_timestamp,
unregister_instance, unregister_instance_w_timestamp, dispose,
dispose_w_timestamp, writedispose and writedispose_w_timestamp.
When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive DataWriter operations. In case of an error, a HANDLE_NIL
handle value is returned.
The explicit use of this operation is optional as the application can directly call the
write , write_w_timestamp , unregister_instance,
unregister_instance_w_timestamp, dispose, dispose_w_timestamp,
writedispose and writedispose_w_timestamp operations and specify a
HANDLE_NIL handle value to indicate that the sample should be examined to
identify the instance.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
register_instance operation on the DataWriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the register_instance operation may block (waiting for space
to become available). If max_blocking_time elapses before the DataWriter is
ab l e t o s t o r e t he mod i f i c a t i on w i t h o u t e x c e e d i n g t h e l i m i t s , t h e
register_instance operation will fail and returns HANDLE_NIL.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif
255
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the register_instance operation merely uses the sample to determine its
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to C++ language mapping:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a HANDLE_NIL. More specific information about the
context of this error will be written to the error log. When validity checking is
disabled, any of these violations may result in undefined behaviour.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance.

3.4.2.51 register_instance_w_timestamp

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

InstanceHandle_t
 register_instance_w_timestamp
 (const Foo& instance_data,
 const Time_t& source_timestamp);

Description
This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides a value for the source_timestamp
explicitly.

Parameters
in Foo instance_data - the instance, which the application will write to or

dispose of.
in const Time_t& source_timestamp - the timestamp used.

i

256
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
InstanceHandle_t - Result value is the handle to the Instance, which must be

used for writing and disposing. In case of an error, a HANDLE_NIL handle value
is returned.

Detailed Description
This operation performs the same functions as register_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. The source_timestamp is ignored in that case.

3.4.2.52 set_listener (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 set_listener
 (DataWriterListener_ptr a_listener,
 StatusMask mask);

3.4.2.53 set_qos (inherited)
This operation is inherited and therefore not described here. See the class
DataWriter for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 set_qos
 (const DataWriterQos& qos);

3.4.2.54 unregister_instance

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>
257
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

ReturnCode_t
 unregister_instance
 (const Foo& instance_data,
 InstanceHandle_t handle);

Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters
in const Foo& instance_data - the instance to which the application was

writing or disposing.
in InstanceHandle_t handle - the handle to the instance, which has been used

for writing and disposing.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
action of register_instance or register_instance_w_timestamp. It
should only be called on an instance that is currently registered. This operation
should be called just once per instance, regardless of how many times
register_instance was called for that instance. This operation also indicates
that the Data Distribution Service can locally remove all information regarding that
instance. The application should not attempt to use the handle, previously
allocated to that instance, after calling this operation.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Effects
If, after unregistering, the application wants to modify (write or dispose) the
instance, it has to register the instance again, or it has to use the special
handle value HANDLE_NIL.
258
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

This operation does not indicate that the instance should be deleted (that is the
purpose of dispose). This operation just indicates that the DataWriter no longer
has “anything to say” about the instance. If there is no other DataWriter that
has registered the instance as well, then the InstanceStateKind in all connected
DataReaders will be changed to NOT_ALIVE_NO_WRITERS_ INSTANCE_STATE,
p r o v i d e d t h i s InstanceStateKind w a s n o t a l r e a dy s e t t o
NOT_ALIVE_DISPOSED_INSTANCE_STATE . I n t h e l a s t c a s e t h e
InstanceStateKind will not be effected by the unregister_instance call,
see also Figure 21:, State Chart of the instance_state for a Single Instance, on page
446.
This operation can affect the ownership of the data instance. If the
DataWriter was the exclusive owner of the instance, calling this operation will
release that ownership, meaning ownership may be transferred to another,
possibly lower strength, DataWriter.
The operation must be called only on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Instance Handle
The HANDLE_NIL handle value can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than HANDLE_NIL, then it must correspond to the
value returned by register_instance or register_instance_w_timestamp
when the instance (identified by its key) was registered. If there is no
correspondence, the result of the operation is unspecified.
The sample that is passed as instance_data is only used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
unregister_instance operation on the DataWriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the unregister_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DataWriter is able to store the modification without exceeding the limits, the
unregister_instance operation will fail and returns RETCODE_TIMEOUT.
259
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Since the unregister_instance operation merely uses the sample to check for
consistency between its key values and the supplied instance_handle, only
these keyfields will be validated against the restrictions imposed by the IDL to C++
language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance will not

be modified any more
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.

i

260
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.55 unregister_instance_w_timestamp

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 unregister_instance_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

Description
This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters
in Foo instance_data - the instance to which the application was writing or

disposing.
in InstanceHandle_t handle - the handle to the instance, which has been used

for writing and disposing.
in const Time_t& source_timestamp - the timestamp used.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as unregister_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.
261
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance will not

be modified any more
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance_w_timestamp operation, which could not be
resolved before max_blocking_time of the ReliabilityQosPolicy
elapsed.

3.4.2.56 write

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 write
 (const Foo& instance_data,
 InstanceHandle_t handle);

Description
This operation modifies the value of a data instance.

Parameters
in const Foo& instance_data - the data to be written.
in InstanceHandle_t handle - the handle to the instance as supplied by

register_instance.
262
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected DataReader objects.
T h i s t i m e s t a m p i s i m p o r t a n t f o r t h e i n t e r p re t a t i o n o f t h e
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.
Before writing data to an instance, the instance may be registered with the
register_instance or register_instance_w_timestamp operation. The
handle returned by one of the register_instance operations can be supplied to
the parameter handle of the write operation. However, it is also possible to
supply the special HANDLE_NIL handle value, which means, that the identity of the
instance is automatically deduced from the instance_data (identified by the
key).

Instance Handle
The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than HANDLE_NIL, it must correspond to the value
returned by register_instance or register_instance_w_timestamp when
the instance (identified by its key) was registered. Passing such a registered
handle helps the Data Distribution Service to process the sample more efficiently.
If there is no correspondence between handle and sample, the result of the operation
is unspecified.

Blocking
If the HistoryQosPolicy is set to KEEP_ALL_HISTORY_QOS, the write
operation on the DataWriter may block if the modification would cause data to be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, is
exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the write operation may
263
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

block (waiting for space to become available). If max_blocking_time elapses
before the DataWriter is able to store the modification without exceeding the
limits, the write operation will fail and returns RETCODE_TIMEOUT.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C++ language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
• the length of a bounded sequence may not exceed the limit specified in IDL
If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.
Be aware that it is not possible for the middleware to determine whether a union is
correctly initialized, since according to the IDL-C++ language mapping a union just
returns its current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code
When the operation returns:
• RETCODE_OK - the value of a data instance is modified
• RETCODE_ERROR - an internal error has occurred

i

264
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data
is not a valid sample.

• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.57 write_w_timestamp

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 write_w_timestamp
 (const Foo& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

Description
This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.

Parameters
in const Foo& instance_data - the data to be written.
in InstanceHandle_t handle - the handle to the instance as supplied by

register_instance.
in const Time_t& source_timestamp - the timestamp used.
265
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as write except that the application
provides the value for the parameter source_timestamp that is made available to
connected DataReader objects. This timestamp is important for the interpretation
of the DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the value of a data instance is modified
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write_w_timestamp operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.58 writedispose

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 writedispose

(const Foo& instance_data,
266
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 InstanceHandle_t handle);

Description
This operation modifies and disposes a data instance.

Parameters
in const Foo& instance_data - the data to be written and disposed.
in InstanceHandle_t handle - the handle to the instance as supplied by

register_instance.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected DataReader and, dependent on the QoSPolicy settings,
also in the Transient and Persistent stores, will be modified and marked for deletion
by se t t ing the i r InstanceStateKind to NOT_ALIVE_DISPOSED_
INSTANCE_STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DataReader will be
postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it.
 - A DataWriter can register an instance explicitly by using one of the special

operations register_instance or register_instance_w_timestamp.
 - A DataWriter can register an instance implicitly by using the special constant
HANDLE_NIL in any of the other DataWriter operations.
267
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 - A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

 - A DataWriter will unregister all its contained instances implicitly when it is
deleted.

 - When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider all instances registered by that DataWriter as
being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
 - An application can consume samples explicitly by invoking the take operation,

or one of its variants, on its DataReaders.
 - The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy has expired.

The DataReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay o f the
ReaderDataLifecycleQosPolicy has expired after the instance is considered
u n r e g i s t e r e d b y a l l c o n n e c t e d DataWriters (i . e . whe n i t ha s a
InstanceStateKind of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
ReaderDataLifecycleQosPolicy, on page 65.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy on the Topic must have elapsed after the
instance is considered unregistered by all connected DataWriters.

See also Section 3.1.3.4, DurabilityServiceQosPolicy, on page 48.

Instance Handle
The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
268
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

If handle is any value other than HANDLE_NIL, it must correspond to the value that
was re tu rned by e i the r the register_instance ope ra t ion o r the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.
The sample that is passed as instance_data will actually be delivered to the
connected DataReaders, but will immediately be marked for deletion.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
writedispose operation on the DataWriter may block if the modification
would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the SPACE_FooDataWriter_writedispose operation may
block (waiting for space to become available). If max_blocking_time elapses
before the DataWriter is able to store the modification without exceeding the
limits, the writedispose operation will fail and returns RETCODE_TIMEOUT.

Sample Validation
OpenSplice DDS offers the possibility to check the sample that is passed as
instance_data for validity. Because validity checking might reduce the overall
performance, it is by default disabled. This has been done by enclosing the validity
checking with conditional compiler directives like this:

#ifdef OSPL_BOUNDS_CHECK
 // check a specific bound.
#endif

By defining a macro called OSPL_OSPL_BOUNDS_CHECK, the validity checking will
be included. On most compilers this macro can be defined by passing an additional
command line parameter called -DOSPL_BOUNDS_CHECK.
Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to C++ language mapping, where:
• an enum may not exceed the value of its highest label
• a string (bounded or unbounded) may not be NULL. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
• the length of a bounded sequence may not exceed the limit specified in IDL

i

269
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

If any of these restrictions is violated when validity checking is enabled, the
operation will fail and return a RETCODE_BAD_PARAMETER. More specific
information about the context of this error will be written to the error log. When
validity checking is disabled, any of these violations may result in undefined
behaviour.
Be aware that it is not possible for the middleware to determine whether a union is
correctly initialized, since according to the IDL-C++ language mapping a union just
returns its current contents in the format of the requested branch without performing
any checks. It is therefore the responsibility of the application programmer to make
sure that the requested branch actually corresponds to the currently active branch.
Not doing so may result in undefined behaviour as well.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this SPACE_FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.59 writedispose_w_timestamp

Scope
SPACE::FooDataWriter

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 writedispose_w_timestamp
270
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

(const Foo& instance_data,
 InstanceHandle_t handle,
 const Time_t& source_timestamp);

Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides a value for the source_timestamp explicitly.

Parameters
in const Foo& instance_data - the data to be written and disposed.
in InstanceHandle_t handle - the handle to the instance as supplied by

register_instance.
in const Time_t& source_timestamp - the timestamp used.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as writedispose except that the
application provides the value for the source_timestamp that is made available
to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this SPACE_FooDataWriter.
271
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose_w_timestamp operation, which could not be resolved
before max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.3 PublisherListener Interface
Since a Publisher is an Entity, it has the ability to have a Listener associated
wi t h i t . I n t h i s c a s e , t he a s soc i a t ed Listener s h ou ld be o f t yp e
PublisherListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
PublisherListener class. All PublisherListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The PublisherListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The PublisherListener is related to changes in
communication status.
The interface description of this class is as follows:
 class PublisherListener {

//
// inherited from DataWriterListener
//
// void
// on_offered_deadline_missed
// (DataWriter_ptr writer,
// const OfferedDeadlineMissedStatus& status) = 0;

// void
// on_offered_incompatible_qos
// (DataWriter_ptr writer,
// const OfferedIncompatibleQosStatus& status) = 0;

// void
// on_liveliness_lost
// (DataWriter_ptr writer,
// const LivelinessLostStatus& status) = 0;

// void
// on_publication_matched
272
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

// (DataWriter_ptr writer,
// const PublicationMatchedStatus& status) = 0;
//
// implemented API operations
// <no operations>
//
};

The next paragraphs list all PublisherListener operations. Since these
operations are all inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.3.1 on_liveliness_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_lost
 (DataWriter_ptr writer,
 const LivelinessLostStatus& status) = 0;

3.4.3.2 on_offered_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_deadline_missed
 (DataWriter_ptr writer,
 const OfferedDeadlineMissedStatus& status) = 0;

3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_incompatible_qos
 (DataWriter_ptr writer,
 const OfferedIncompatibleQosStatus& status) = 0;
273
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.3.4 on_publication_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataWriterListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_publication_matched
 (DataWriter_ptr writer,
 const PublicationMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.4.4 DataWriterListener Interface
Since a DataWriter is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DataWriterListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DataWriterListener class. All DataWriterListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DataWriterListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The DataWriterListener is related to changes in
communication status.
The interface description of this class is as follows:
 class DataWriterListener

{
// abstract external operations

void
 on_offered_deadline_missed
 (DataWriter_ptr writer,

 const OfferedDeadlineMissedStatus& status) = 0;

void
 on_offered_incompatible_qos
 (DataWriter_ptr writer,

 const OfferedIncompatibleQosStatus& status) = 0;

void
274
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 on_liveliness_lost
 (DataWriter_ptr writer,

 const LivelinessLostStatus& status) = 0;

void
 on_publication_matched
 (DataWriter_ptr writer,

 const PublicationMatchedStatus& status) = 0;
// implemented API operations
// <no operations>

};

The next paragraphs describe the usage of all DataWriterListener operations.
These abstract operations are fully described because they must be implemented by
the application.

3.4.4.1 on_liveliness_lost (abstract)

Scope
DDS::DataWriterListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_lost
 (DataWriter_ptr writer,
 const LivelinessLostStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the LivelinessLostStatus changes.

Parameters
in DataWriter_ptr writer - contains a pointer to the DataWriter on which

the LivelinessLostStatus has changed (this is an input to the application).
in const LivelinessLostStatus& status - c o n t a i n s t h e

LivelinessLostStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
LivelinessLostStatus changes. The implementation may be left empty when
275
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

this functionality is not needed. This operation will only be called when the relevant
DataWriterListener is installed and enabled for the liveliness lost status. The
liveliness lost status will change when the liveliness that the DataWriter has
committed through its LivelinessQosPolicy was not respected. In other words,
the DataWriter failed to actively signal its liveliness within the offered liveliness
period. As a result, the DataReader objects will consider the DataWriter as no
longer “alive”.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
LivelinessLostStatus struct.

3.4.4.2 on_offered_deadline_missed (abstract)

Scope
DDS::DataWriterListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_deadline_missed
 (DataWriter_ptr writer,
 const OfferedDeadlineMissedStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the OfferedDeadlineMissedStatus changes.

Parameters
in DataWriter_ptr writer - contain a pointer to the DataWriter on which

the OfferedDeadlineMissedStatus has changed (this is an input to the
application).

in const OfferedDeadlineMissedStatus& status - contain the
OfferedDeadlineMissedStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OfferedDeadlineMissedStatus changes. The implementation may be left
276
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

empty when this functionality is not needed. This operation will only be called when
the relevant DataWriterListener is installed and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
deadline that the DataWriter has committed through its DeadlineQosPolicy
was not respected for a specific instance.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
OfferedDeadlineMissedStatus struct.

3.4.4.3 on_offered_incompatible_qos (abstract)

Scope
DDS::DataWriterListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_offered_incompatible_qos
 (DataWriter_ptr writer,
 const OfferedIncompatibleQosStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the OFFERED_INCOMPATIBLE_QOS_STATUS changes.

Parameters
in DataWriter_ptr writer - contain a pointer to the DataWriter on which

the OFFERED_INCOMPATIBLE_QOS_STATUS has changed (this is an input to
the application).

in const OfferedIncompatibleQosStatus& status - contain the
OfferedIncompatibleQosStatus struct (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the relevant DataWriterListener is instal led and enabled for the
277
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

OFFERED_INCOMPATIBLE_QOS_STATUS. The incompatible Qos status will
change when a DataReader object has been discovered by the DataWriter with
the same Topic and a requested DataReaderQos that was incompatible with the
one offered by the DataWriter.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
OfferedIncompatibleQosStatus struct.

3.4.4.4 on_publication_matched (abstract)

Scope
DDS::DataWriterListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_publication_matched
 (DataWriter_ptr writer,
 const PublicationMatchedStatus& status) = 0;

Description
This operation is not yet supported. It is scheduled for a future release.
278
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5 Subscription Module

Figure 19 DCPS Subscription Module’s Class Model
This module contains the following classes:
• Subscriber

• Subscription type specific classes
• DataSample

• SampleInfo (struct)
• SubscriberListener (interface)
• DataReaderListener (interface)
• ReadCondition

• QueryCondition.

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> lookup_instance()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
279
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader is generated (based on IDL) by calling the pre-processor.
For instance, for the fictional data type Foo (this also applies to other types)
“Subscription type specific classes” contains the following classes:
• DataReader (abstract)
• FooDataReader.
A Subscriber is an object responsible for receiving published data and making it
available (according to the SubscriberQos) to the application. It may receive and
dispatch Topic with data of different specified data types. To access the received
data, the application must use a typed DataReader attached to the Subscriber.
Thus, a subscription is defined by the association of a DataReader with a
Subscriber. This association expresses the intent of the application to subscribe to
the data described by the DataReader in the context provided by the Subscriber.

3.5.1 Class Subscriber
A Subscriber is the object responsible for the actual reception of the data
resulting from its subscriptions.
A Subscriber acts on behalf of one or more DataReader objects that are related
to it. When it receives data (from the other parts of the system), it indicates to the
application that data is available through its DataReaderListener and by
enabling related Conditions. The application can access the list of concerned
DataReader objects through the operation get_datareaders and then access the
data available through operations on the DataReader.
The interface description of this class is as follows:
 class Subscriber

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// implemented API operations
//

DataReader_ptr
280
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 create_datareader
 (TopicDescription_ptr a_topic,

 const DataReaderQos& qos,
 DataReaderListener_ptr a_listener,
 StatusMask mask);

ReturnCode_t
 delete_datareader
 (DataReader_ptr a_datareader);

ReturnCode_t
 delete_contained_entities
 (void);

DataReader_ptr
 lookup_datareader
 (const char* topic_name);

ReturnCode_t
 get_datareaders
 (DataReaderSeq& readers,

 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

ReturnCode_t
 notify_datareaders
 (void);

ReturnCode_t
 set_qos
 (const SubscriberQos& qos);

ReturnCode_t
 get_qos
 (SubscriberQos& qos);
ReturnCode_t
 set_listener
 (SubscriberListener_ptr a_listener,
 StatusMask mask);

SubscriberListener_ptr
 get_listener
 (void);

ReturnCode_t
 begin_access
 (void);

ReturnCode_t
281
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 end_access
 (void);

DomainParticipant_ptr
 get_participant
 (void);

ReturnCode_t
 set_default_datareader_qos
 (const DataReaderQos& qos);

ReturnCode_t
 get_default_datareader_qos
 (DataReaderQos& qos);

ReturnCode_t
 copy_from_topic_qos
 (DataReaderQos& a_datareader_qos,

 const TopicQos& a_topic_qos);
};

The next paragraphs describe the usage of all Subscriber operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.1.1 begin_access

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 begin_access
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.2 copy_from_topic_qos

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 copy_from_topic_qos
 (DataReaderQos& a_datareader_qos,
282
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 const TopicQos& a_topic_qos);

Description
This operation will copy the policies in a_topic_qos to the corresponding policies
in a_datareader_qos.

Parameters
inout DataReaderQos& a_datareader_qos - t he des t ina t ion

DataReaderQos struct to which the QosPolicy settings will be copied.
in const TopicQos& a_topic_qos - the source TopicQos, which will be

copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datareader_qos (replacing the values
in a_datareader_qos, if present).
This is a “convenience” operation, useful in combination with the operations
get_default_datawriter_qos and Topic::get_qos. The operation
copy_from_topic_qos can be used to merge the DataReader default
QosPolicy settings with the corresponding ones on the Topic. The resulting
DataReaderQos can then be used to create a new DataReader, or set its
DataReaderQos.
This operation does not check the resulting a_datareader_qos for self
consistency. This is because the “merged” a_datareader_qos may not be the
final one, as the application can still modify some QosPolicy settings prior to
applying the DataReaderQos to the DataReader.

Return Code
When the operation returns:
• RETCODE_OK - the QosPolicy settings have successfully been copied from the
TopicQos to the DataReaderQos

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

283

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.3 create_datareader

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
 create_datareader
 (TopicDescription_ptr a_topic,
 const DataReaderQos& qos,
 DataReaderListener_ptr a_listener,
 StatusMask mask);

Description
This operation creates a DataReader with the desired QosPolicy settings, for the
des i red TopicDescription and a t taches the op t iona l ly spec i f ied
DataWriterListener to it.

Parameters
in TopicDescription_ptr a_topic - a pointer to the TopicDescription

for which the DataReader is created. This may be a Topic, MultiTopic or
ContentFilteredTopic.

in const DataReaderQos& qos - the struct with the QosPolicy settings for
the new DataReader, when these QosPolicy settings are not self consistent,
no DataReader is created.

in DataReaderListener_ptr a_listener - a p o i n t e r t o t h e
DataReaderListener instance which will be attached to the new
DataReader. It is permitted to use NULL as the value of the listener: this
behaves as a DataWriterListener whose operations perform no action.

in StatusMask mask - a bit-mask in which each bit enables the invocation of
the DataReaderListener for a certain status.

Return Value
DataReader_ptr - a pointer to the newly created DataReader. In case of an

error, the NULL pointer is returned.

Detailed Description
This operation creates a DataReader with the desired QosPolicy settings, for the
des i red TopicDescription and a t taches the op t iona l ly spec i f ied
DataReaderListener to it. The TopicDescription may be a Topic,
284
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

MultiTopic or ContentFilteredTopic. The returned DataReader is attached
(and belongs) to the Subscriber. To delete the DataReader the operation
delete_datareader or delete_contained_entities must be used.

Application Data Type
The DataReader returned by this operation is an object of a derived class, specific
to the data type associa ted wi th the TopicDescription . For each
application-defined data type <type> there is a class <type>DataReader
generated by calling the pre-processor. This data type specific class extends
DataReader and contains the operations to read data of data type <type>.
Because the DataReader may read a Topic, ContentFilteredTopic or
MultiTopic, the DataReader is associated with the TopicDescription. The
DataWriter can only write a Topic, not a ContentFilteredTopic or
MultiTopic, because these two are constructed at the Subscriber side.

QosPolicy
The common application pattern to construct the QosPolicy settings for the
DataReader is to:
• Retrieve the QosPolicy settings on the associated TopicDescription by

means of the get_qos operation on the TopicDescription
• Retrieve the default DataReaderQos by means of the
get_default_datareader_qos operation on the Subscriber

• Combine those two QosPolicy settings and selectively modify policies as
desired (copy_from_topic_qos)

• Use the resulting QosPolicy settings to construct the DataReader.
• In case the specified QosPolicy settings are not self consistent, no DataReader

is created and the NULL pointer is returned.

Default QoS
The constant DATAREADER_QOS_DEFAULT can be used as parameter qos to create
a DataReader with the default DataReaderQos as set in the Subscriber. The
effect of using DATAREADER_QOS_DEFAULT is the same as calling the operation
get_default_datareader_qos and using the resulting DataReaderQos to
create the DataReader.
The special DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DataReader with a combination of the default DataReaderQos and the
TopicQos. The effect of using DATAREADER_QOS_USE_TOPIC_QOS is the same as
calling the operation get_default_datareader_qos and retrieving the
TopicQos (by means of the operation Topic::get_qos) and then combining
these two QosPolicy settings using the operation copy_from_topic_qos,
285
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

whereby any common policy that is set on the TopicQos “overrides” the
corresponding policy on the default DataReaderQos . The result ing
DataReaderQos is then applied to create the DataReader.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calls the get_<status_name>_status from inside the listener it will see the
status already reset.
The following statuses are applicable to the DataReaderListener:
• REQUESTED_DEADLINE_MISSED_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_CHANGED_STATUS

• SUBSCRIPTION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataReaderListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataReaderListener, the SubscriberListener of the containing
Subscriber is invoked (if attached and activated for the status that occurred). This
allows the application to set a default behaviour in the SubscriberListener of
the containing Subscriber and a DataReader specific behaviour when needed.
In case the communication status is not act ivated in the mask of the
SubscriberListener as well, the communication status will be propagated to the
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.
286
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.4 delete_contained_entities

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_contained_entities
 (void);

Description
This operation deletes all the DataReader objects that were created by means of
the create_datareader operation on the Subscriber.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DataReader objects that were created by means of
the create_datareader operation on the Subscriber. In other words, it deletes
all contained DataReader objects. Prior to deleting each DataReader, this
operation recursively calls the corresponding delete_contained_entities
operation on each DataReader. In other words, all DataReader objects in the
Subscriber are deleted, including the QueryCondition and ReadCondition
objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:
287
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_OK - the contained Entity objects are deleted and the application may
delete the Subscriber;

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.5.1.5 delete_datareader

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_datareader
 (DataReader_ptr a_datareader);

Description
This operation deletes a DataReader that belongs to the Subscriber.

Parameters
in DataReader_ptr a_datareader - a pointer to the DataReader, which is to

be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a DataReader that belongs to the Subscriber. When the
operation is called on a different Subscriber, as used when the DataReader was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataReader is not
allowed if there are any ReadCondition or QueryCondition objects that are
a t t a c h e d t o t h e DataReader. I n t h a t c a s e t h e o p e ra t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.
288
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - the DataReader is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_datareader is not a valid
DataReader_ptr

• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
Subscriber, as used when the DataReader was created, or the DataReader
contains one or more ReadCondition or QueryCondition objects.

3.5.1.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t

enable
 (void);

3.5.1.7 end_access

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 end_access
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.8 get_datareaders

Scope
DDS::Subscriber
289
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_datareaders
 (DataReaderSeq& readers,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.9 get_default_datareader_qos

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 get_default_datareader_qos
 (DataReaderQos& qos);

Description
This operation gets the default QosPolicy settings of the DataReader.

Parameters
inout DataReaderQos& qos - a reference to the DataReaderQos struct

(provided by the application) in which the default QosPolicy settings for the
DataReader are written.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation gets the default QosPolicy settings of the DataReader (that is the
DataReaderQos) which is used for newly created DataReader objects, in case
the constant DATAREADER_QOS_DEFAULT is used. The default DataReaderQos
is only used when the constant is supplied as parameter qos to specify the
DataReaderQos in the create_datareader operation. The application must
provide the DataReaderQos struct in which the QosPolicy settings can be stored
290
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

and pass the qos reference to the operation. The operation writes the default
QosPolicy settings to the struct referenced to by qos. Any settings in the struct are
overwritten.
The values retrieved by this operation match the values specified on the last
successful call to set_default_datareader_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2 on
page 37.

Return Code
When the operation returns:
• RETCODE_OK - the default DataReader QosPolicy settings of this
Subscriber have successfully been copied into the specified DataReaderQos
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.10 get_listener

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
SubscriberListener_ptr
 get_listener
 (void);

Description
This operation allows access to a SubscriberListener.

Parameters
<none>

Return Value
SubscriberListener_ptr - result is a pointer to the SubscriberListener

attached to the Subscriber.
291
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation allows access to a SubscriberListener attached to the
Subscriber. When no SubscriberListener was attached to the Subscriber,
the NULL pointer is returned.

3.5.1.11 get_participant

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
DomainParticipant_ptr
 get_participant
 (void);

Description
This operation returns the DomainParticipant associated with the Subscriber
or the NULL pointer.

Parameters
<none>

Return Value
DomainParticipant_ptr - a pointer to the DomainParticipant associated

with the Subscriber or the NULL pointer.

Detailed Description
This operation returns the DomainParticipant associated with the Subscriber.
Note that there is exactly one DomainParticipant associated with each
Subscriber. When the Subscriber was already deleted (there is no associated
DomainParticipant any more), the NULL pointer is returned.

3.5.1.12 get_qos

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (SubscriberQos& qos);
292
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation allows access to the existing set of QoS policies for a Subscriber.

Parameters
inout SubscriberQos& qos - a reference to the destination SubscriberQos

struct in which the QosPolicy settings will be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Subscriber
on which this operation is used. This SubscriberQos is stored at the location
pointed to by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Subscriber

has successfully been copied into the specified SubscriberQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.13 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
 (void);

3.5.1.14 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
293
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.5.1.15 lookup_datareader

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
 lookup_datareader
 (const char* topic_name);

Description
This operation returns a previously created DataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name.

Parameters
in const char* topic_name - the name of the Topic, which is attached to the

DataReader to look for.

Return Value
DataReader_ptr - Return value is a reference to the DataReader found. When

no such DataReader is found, the NULL pointer is returned.

Detailed Description
This operation returns a previously created DataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name. When
multiple DataReader objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.
This operation may be used on the built-in Subscriber, which returns the built-in
DataReader objects for the built-in Topics.

3.5.1.16 notify_datareaders

Scope
DDS::Subscriber
294
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 notify_datareaders
 (void);

Description
T hi s o pe ra t io n in vo ke s t he on_data_available op e r a t i on o n
DataReaderListener objects which are attached to the contained DataReader
entities having new, available data.

Parameters
<none>

Return Value
DDS_ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , DDS_RETCODE_ALREADY_DELETED o r
DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
This opera t ion invokes the on_data_available opera t ion on the
DataReaderListener objects attached to contained DataReader entities that
have received information, but which have not yet been processed by those
DataReaders.
The notify_datareaders operation ignores the bit mask value of individual
DataReaderListener objects, even when the DATA_AVAILABLE_STATUS bit
has not been set on a DataReader that has new, available data. The
on_data_available o p e r a t io n w i l l s t i l l b e i n v o k e d , w h e n t h e
DATA_AVAILABLE_STATUS bit has not been set on a DataReader, but will not
propagate to the DomainParticipantListener.
When the DataReader has attached a NULL listener, the event will be consumed
and will not propagate to the DomainParticipantListener. (Remember that a
NULL listener is regarded as a listener that handles all its events as a NOOP).

Return Code
When the operation returns:
• RETCODE_OK - all appropriate listeners have been invoked
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
295
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_OUT_OF_RESOURCES - there are insufficient Data Distribution Service
resources to complete this operation

3.5.1.17 set_default_datareader_qos

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_default_datareader_qos
 (const DataReaderQos& qos);

Description
This operation sets the default DataReaderQos of the DataReader.

Parameters
in const DataReaderQos& qos - the DataReaderQos struct, which contains

the new default QosPolicy settings for the newly created DataReaders.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DataReaderQos of the DataReader (that is the
struct with the QosPolicy settings). This QosPolicy is used for newly created
DataReader objects in case the constant DATAREADER_QOS_DEFAULT is used as
parameter qos to specify the DataReaderQos in the create_datareader
operation. This operation checks if the DataReaderQos is self consistent. If it is
not, the operation has no effect and returns RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by get_default_datareader_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default DataReaderQos is set
• RETCODE_ERROR - an internal error has occurred.
296
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataReaderQos.
It contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.5.1.18 set_listener

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (SubscriberListener_ptr a_listener,
 StatusMask mask);

Description
This operation attaches a SubscriberListener to the Subscriber.

Parameters
in SubscriberListener_ptr a_listener - a p o i n t e r t o t h e

SubscriberListener instance, which will be attached to the Subscriber.
in StatusMask mask - a bit mask in which each bit enables the invocation of the

SubscriberListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED o r RETCODE_
OUT_OF_RESOURCES.
297
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation attaches a SubscriberListener to the Subscriber. Only one
SubscriberListener can be a t t ached to each Subscriber. I f a
SubscriberListener was already attached, the operation will replace it with the
new one. When a_listener is the NULL pointer, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bit mask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated SubscriberListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the NULL listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the SubscriberListener:
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
• DATA_ON_READERS_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener of a contained DataReader, the DataReaderListener
on that contained DataReader is invoked instead of the SubscriberListener.
This means, that a status change on a contained DataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

1. Short for No-Operation, an instruction that does nothing.

298
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Subscriber s p e c i f i c b e h a v i o u r w he n n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_ AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• RETCODE_OK - the SubscriberListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.19 set_qos

Scope
DDS::Subscriber

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const SubscriberQos& qos);

Description
This operation replaces the existing set of QosPolicy settings for a Subscriber.
299
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
in const SubscriberQos& qos - new set of QosPolicy settings for the

Subscriber.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_IMMUTABLE_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Subscriber.
The parameter qos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled Subscriber, which can only be set before the Subscriber
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned.
In other words, the application must provide the presently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new SubscriberQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid SubscriberQos.

It contains a QosPolicy setting with an enum value that is outside its legal
boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
300
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Subscriber.

3.5.2 Subscription Type Specific Classes
“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader is generated (based on IDL) by calling the pre-processor. In
case of data type Foo (this also applies to other types); “Subscription type specific
classes” contains the following classes:
This paragraph describes the generic DataReader class and the derived application
type specific <type>DataReader classes which together implement the
application subscription interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataReader class from an IDL type
description. The FooDataReader class that would be generated by the
pre-processor for a fictional type Foo describes the <type>DataReader classes.

3.5.2.1 Class DataReader (abstract)
A DataReader allows the application:
• to declare data it wishes to receive (i.e., make a subscription)
• to access data received by the associated Subscriber.
A DataReader refers to exactly one TopicDescription (either a Topic, a
ContentFilteredTopic or a MultiTopic) that identifies the samples to be
read. The DataReader may give access to several instances of the data type, which
are distinguished from each other by their key.
DataReader is an abstract class. It is specialized for each particular application
data type. For a fictional application data type “Foo” (defined in the module SPACE)
the specialized class would be SPACE::FooDataReader.
The interface description of this class is as follows:
 class DataReader

{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
301
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// (void);
//
// abstract operations (implemented in the data type
// specific DataReader)
//
// ReturnCode_t
// read
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
// ReturnCode_t
// take
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
// ReturnCode_t
// read_w_condition
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// ReadCondition a_condition);
// ReturnCode_t
// take_w_condition
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// ReadCondition a_condition);
// ReturnCode_t
// read_next_sample
// (<data>& data_values,
// SampleInfo sample_info);
// ReturnCode_t
// take_next_sample
// (<data>& data_values,
// SampleInfo sample_info);
// ReturnCode_t
// read_instance
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
302
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// ReturnCode_t
// take_instance
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
// ReturnCode_t
// read_next_instance
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
// ReturnCode_t
// take_next_instance
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);
// ReturnCode_t
// read_next_instance_w_condition
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// ReadCondition a_condition);
// ReturnCode_t
// take_next_instance_w_condition
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq,
// Long max_samples,
// InstanceHandle_t a_handle,
// ReadCondition a_condition);
// ReturnCode_t
// return_loan
// (<data>Seq& data_values,
// SampleInfoSeq& info_seq);
// ReturnCode_t
// get_key_value
// (<data>& key_holder,
// InstanceHandle_t handle);
// InstanceHandle_t
303
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// lookup_instance
// (const <data>& instance_data);
//
// implemented API operations
//

ReadCondition_ptr
 create_readcondition
 (SampleStateMask sample_states,

 ViewStateMask view_states,
 InstanceStateMask instance_states);

QueryCondition_ptr
 create_querycondition
 (SampleStateMask sample_states,

 ViewStateMask view_states,
 InstanceStateMask instance_states,
 const char* query_expression,
 const StringSeq& query_parameters);

ReturnCode_t
 delete_readcondition
 (ReadCondition_ptr a_condition);

ReturnCode_t
 delete_contained_entities
 (void);

ReturnCode_t
 set_qos
 (const DataReaderQos& qos);

ReturnCode_t
 get_qos
 (DataReaderQos& qos);

ReturnCode_t
 set_listener
 (DataReaderListener_ptr a_listener,
 StatusMask mask);

DataReaderListener_ptr
 get_listener
 (void);

TopicDescription_ptr
 get_topicdescription
 (void);

Subscriber_ptr
 get_subscriber
304
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (void);

ReturnCode_t
 get_sample_rejected_status
 (SampleRejectedStatus& status);

ReturnCode_t
 get_liveliness_changed_status
 (LivelinessChangedStatus& status);

ReturnCode_t
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatus& status);

ReturnCode_t
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatus& status);

ReturnCode_t
 get_subscription_matched_status
 (SubscriptionMatchedStatus& status);

ReturnCode_t
 get_sample_lost_status
 (SampleLostStatus& status);

ReturnCode_t
 wait_for_historical_data
 (const Duration_t& max_wait);

ReturnCode_t
 get_matched_publications
 (InstanceHandleSeq& publication_handles);

ReturnCode_t
 get_matched_publication_data
 (PublicationBuiltinTopicData& publication_data,

 InstanceHandle_t publication_handle);
};

The next paragraphs describe the usage of all DataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses that contain the data type
specific implementation of these operations.
305
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.2 create_querycondition

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
QueryCondition_ptr
 create_querycondition
 (SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states,
 const char* query_expression,
 const StringSeq& query_parameters);

Description
This operation creates a new QueryCondition for the DataReader.

Parameters
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.
in const char* query_expression - the query string, which must be a subset

of the SQL query language.
in const StringSeq& query_parameters - a sequence of strings which are

the parameter values used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g.
if %1 and %8 are used as parameters in the query_expression, the
query_parameters should at least contain n+1 = 9 values).

Return Value
QueryCondition_ptr - Result value is a pointer to the QueryCondition. When

the operation fails, the NULL pointer is returned.
306
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation creates a new QueryCondition for the DataReader. The returned
QueryCondition is attached (and belongs) to the DataReader. When the
operation fails, the NULL pointer is returned. To delete the QueryCondition the
operation delete_readcondition or delete_contained_entities must be
used.

State Masks
The result of the QueryCondition also depends on the selection of samples
determined by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both
• view_states is the mask, which selects only those samples with the desired

view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both
• instance_states is the mask, which selects only those samples with the

desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these.

SQL Expression
The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must
be set in the sequence of strings defined by the parameter query_parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of values in query_parameters must be equal or greater than the highest
referenced %n token in the query_expression (e.g. if %1 and %8 are used as
parameters in the query_expression, the query_parameters should at least
contain n+1 = 9 values).

3.5.2.3 create_readcondition

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReadCondition_ptr
 create_readcondition
 (SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
307
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation creates a new ReadCondition for the DataReader.

Parameters
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.

Return Value
ReadCondition_ptr - Result value is a pointer to the ReadCondition. When

the operation fails, the NULL pointer is returned.

Detailed Description
This operation creates a new ReadCondition for the DataReader. The returned
ReadCondition is attached (and belongs) to the DataReader. When the
operation fails, the NULL pointer is returned. To delete the ReadCondition the
operation delete_readcondition or delete_contained_entities must be
used.

State Masks
The result of the ReadCondition depends on the selection of samples determined
by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both
• view_states is the mask, which selects only those samples with the desired

view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both
• instance_states is the mask, which selects only those samples with the

desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these.

3.5.2.4 delete_contained_entities

Scope
DDS::DataReader
308
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_contained_entities
 (void);

Description
This operation deletes all the Entity objects that were created by means of one of
the “create_” operations on the DataReader.

Parameters
<none>

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the Entity objects that were created by means of one of
the “create_” operations on the DataReader. In other words, it deletes all
QueryCondition and ReadCondition objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the DataReader
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.
309
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.5 delete_readcondition

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 delete_readcondition
 (ReadCondition_ptr a_condition);

Description
This operation deletes a ReadCondition or QueryCondition which is attached
to the DataReader.

Parameters
in ReadCondition_ptr a_condition - a pointer to the ReadCondition or

QueryCondition which is to be deleted.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation deletes a ReadCondition or QueryCondition which is attached
to the DataReader. Since a QueryCondition is a specialized ReadCondition,
the operation can also be used to delete a QueryCondition. A ReadCondition
or QueryCondition cannot be deleted when it is not attached to this DataReader.
When the operation is called on a ReadCondition or QueryCondition which
was no t a t t a ched t o t h i s DataReader , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the ReadCondition or QueryCondition is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
310
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DataReader, as used when the ReadCondition or QueryCondition was
created.

3.5.2.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
enable

 (void);

3.5.2.7 get_key_value (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 get_key_value
 (<data>& key_holder,
 InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.8 get_listener

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
DataReaderListener_ptr
 get_listener
 (void);

Description
This operation allows access to a DataReaderListener.
311
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
<none>

Return Value
datareaderlistener_ptr - result is a pointer to the DataReaderListener

attached to the DataReader.

Detailed Description
This operation allows access to a DataReaderListener attached to the
DataReader. When no DataReaderListener was attached to the DataReader,
the NULL pointer is returned.

3.5.2.9 get_liveliness_changed_status

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_liveliness_changed_status
 (LivelinessChangedStatus& status);

Description
This operation obtains the LivelinessChangedStatus struct of the
DataReader.

Parameters
inout LivelinessChangedStatus& status - the contents of the

LivelinessChangedStatus struct of the DataReader will be copied into
the location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This obtains returns the LivelinessChangedStatus struct of the DataReader.
This struct contains the information whether the liveliness of one or more
DataWriter objects that were writing instances read by the DataReader has
changed. In other words, some DataWriter have become “alive” or “not alive”.
312
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The LivelinessChangedStatus c an a l so be mon i to r ed u s ing a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessChangedStatus of this DataReader

has successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.10 get_matched_publication_data

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_matched_publication_data
 (PublicationBuiltinTopicData& publication_data,
 InstanceHandle_t publication_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.11 get_matched_publications

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_matched_publications
 (InstanceHandleSeq& publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.12 get_qos

Scope
DDS::DataReader
313
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_qos
 (DataReaderQos& qos);

Description
This operation allows access to the existing set of QoS policies for a DataReader.

Parameters
inout DataReaderQos& qos - a pointer to the destination DataReaderQos

struct in which the QosPolicy settings will be copied.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a DataReader
on which this operation is used. This DataReaderQos is stored at the location
pointed to by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoSPolicy values applied to this DataReader

has successfully been copied into the specified DataReaderQos parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.13 get_requested_deadline_missed_status

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatus& status);
314
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation obtains the RequestedDeadlineMissedStatus struct of the
DataReader.

Parameters
inout RequestedDeadlineMissedStatus& status - the contents of the

RequestedDeadlineMissedStatus struct of the DataReader will be
copied into the location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the RequestedDeadlineMissedStatus struct of the
DataReader. This struct contains the information whether the deadline that the
DataReader was expecting through its DeadlineQosPolicy was not respected
for a specific instance.
The RequestedDeadlineMissedStatus can also be monitored using a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current RequestedDeadlineMissedStatus of this
DataReader has successfully been copied into the specified status parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.14 get_requested_incompatible_qos_status

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatus& status);
315
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation obtains the RequestedIncompatibleQosStatus struct of the
DataReader.

Parameters
inout RequestedIncompatibleQosStatus& status - the contents of the

RequestedIncompatibleQosStatus struct of the DataReader will be
copied into the location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the RequestedIncompatibleQosStatus struct of the
DataReader. This struct contains the information whether a QosPolicy setting
was incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between the DataWriter and the
DataReader. If the QosPolicy settings between DataWriter and DataReader
are inconsistent, no communication between them is established. In addition the
DataWriter will be informed via a REQUESTED_INCOMPATIBLE_QOS status
c h a n g e a n d t h e DataReader w i l l b e i n f o r m e d v i a a n
OFFERED_INCOMPATIBLE_QOS status change.
The RequestedIncompatibleQosStatus can also be monitored using a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current RequestedIncompatibleQosStatus of this
DataReader has successfully been copied into the specified status parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.15 get_sample_lost_status

Scope
DDS::DataReader
316
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_sample_lost_status
 (SampleLostStatus& status);

Description
This operation obtains the SampleLostStatus struct of the DataReader.

Parameters
inout SampleLostStatus& status - the contents of the SampleLostStatus

struct of the DataReader will be copied into the location specified by status.
Note: This status is not yet implemented. It is scheduled for a future release. Until it
is implemented all returned attribute values will be initialized to 0.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED o r RETCODE_
OUT_OF_RESOURCES.

Detailed Description
This operation obtains the SampleLostStatus struct of the DataReader. This
struct contains information whether samples have been lost. This only applies when
the ReliabilityQosPolicy i s s e t t o RELIABLE . I f t h e
ReliabilityQosPolicy is set to BEST_EFFORT the Data Distribution Service
will not report the loss of samples.
The SampleLostStatus can also be monitored using a DataReaderListener
or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current SampleLostStatus of this DataReader has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
317
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.16 get_sample_rejected_status

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_sample_rejected_status
 (SampleRejectedStatus& status);

Detailed Description
This operation obtains the SampleRejectedStatus struct of the DataReader.

Parameters
inout SampleRejectedStatus& status - t he con ten t s o f t he

SampleRejectedStatus struct of the DataReader will be copied into the
location specified by status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation obtains the SampleRejectedStatus struct of the DataReader.
This struct contains the information whether a received sample has been rejected.
The SampleRejectedStatus c a n a l s o b e m o n i t o r e d u s i n g a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current SampleRejectedStatus of this DataReader has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
318
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.17 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusMask
 get_status_changes
 (void);

3.5.2.18 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.5.2.19 get_subscriber

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
Subscriber_ptr
 get_subscriber
 (void);

Description
This operation returns the Subscriber to which the DataReader belongs.

Parameters
<none>

Return Value
Subscriber_ptr - Return value is a pointer to the Subscriber to which the

DataReader belongs.
319
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation returns the Subscriber to which the DataReader belongs, thus
the Subscriber that has created the DataReader. If the DataReader is already
deleted, the NULL pointer is returned.

3.5.2.20 get_subscription_matched_status

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 get_subscription_matched_status
 (SubscriptionMatchedStatus& status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.21 get_topicdescription

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
TopicDescription_ptr
 get_topicdescription
 (void);

Description
This operation returns the TopicDescription which is associated with the
DataReader.

Parameters
<none>

Return Value
TopicDescription_ptr - R e t u r n v a l u e i s a p o i n t e r t o t h e

TopicDescription which is associated with the DataReader.

Detailed Description
This operation returns the TopicDescription which is associated with the
DataReader, thus the TopicDescription with which the DataReader is
created. If the DataReader is already deleted, the NULL pointer is returned.
320
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.22 lookup_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceHandle_t
 lookup_instance
 (const <data>& instance_data);

3.5.2.23 read (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.24 read_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read_instance
 (<data>& data_values,
 SampleInfoSeq& info_seq,
321
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.25 read_next_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read_next_instance
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.26 read_next_instance_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read_next_instance_w_condition
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition a_condition);
322
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.27 read_next_sample (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read_next_sample
 (<data>& data_value,
 SampleInfo sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.28 read_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 read_w_condition
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition a_condition);

3.5.2.29 return_loan (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 return_loan
 (<data>& data_values,
 SampleInfoSeq& info_seq);
323
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.30 set_listener

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_listener
 (DataReaderListener_ptr a_listener,
 StatusMask mask);

Description
This operation attaches a DataReaderListener to the DataReader.

Parameters
in DataReaderListener_ptr a_listener - a p o i n t e r t o t h e

DataReaderListener instance, which will be attached to the DataReader.
in StatusMask mask - a bit mask in which each bit enables the invocation of the

DataReaderListener for a certain status.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operation attaches a DataReaderListener to the DataReader. Only one
DataReaderListener can be a t t ached to each DataReader. I f a
DataReaderListener was already attached, the operation will replace it with the
new one. When a_listener is the NULL pointer, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bit mask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the

1. Short for No-Operation, an instruction that does nothing.

324
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the NULL listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the DataReaderListener:
• REQUESTED_DEADLINE_MISSED_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_CHANGED_STATUS

• SUBSCRIPTION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataReaderListener.

Status Propagation
In ca s e a commun ica t i on s t a t u s i s no t ac t i va t ed i n t he mask , t h e
SubscriberListener of the DataReaderListener is invoked (if attached and
activated for the status that occurred). This allows the application to set a default
behaviour in the SubscriberListener of the containing Subscriber and a
DataReader specific behaviour when needed. In case the communication status is
not act ivated in the mask of the SubscriberListener as well , the
communication status will be propagated to the DomainParticipantListener
of t he c on ta in i ng DomainParticipant . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
325
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_OK - the DataReaderListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.31 set_qos

Scope
DDS::DataReader

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_qos
 (const DataReaderQos& qos);

Description
This operation replaces the existing set of QosPolicy settings for a DataReader.

Parameters
in const DataReaderQos& qos - qos contains the new set of QosPolicy

settings for the DataReader.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_IMMUTABLE_POLICY or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a DataReader.
The parameter qos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled DataReader, which can only be set before the DataReader
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned.
In other words, the application must provide the presently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
326
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DataReaderQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataReaderQos.

It contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataReader

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.5.2.32 take (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states)
327
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.33 take_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take_instance
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.34 take_next_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take_next_instance
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.35 take_next_instance_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.
328
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take_next_instance_w_condition
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition a_condition);

3.5.2.36 take_next_sample (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take_next_sample
 (<data>& data_value,
 SampleInfo sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.37 take_w_condition (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataReader class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataReader class.

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 take_w_condition
 (<data>& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition a_condition);

3.5.2.38 wait_for_historical_data

Scope
DDS::DataReader
329
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>

ReturnCode_t
 wait_for_historical_data
 (const Duration_t& max_wait);

Description
This operation will block the application thread until all “historical” data is
received.

Parameters
in const Duration_t& max_wait - the maximum duration to block for the

wait_for_historical_data, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED or RETCODE_TIMEOUT.

Detailed Description
This operation behaves differently for DataReader objects which have a
non-VOLATILE_DURABILITY_QOS DurabilityQosPolicy and for
DataReader ob j ec t s wh ich have a VOLATILE_DURABILITY_QOS
DurabilityQosPolicy.
As soon as an application enables a non-VOLATILE_DURABILITY_QOS
DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the DataReader joined the domain, as well as any new
data written by the DataWriter objects. There are situations where the application
logic may require the application to wait until all “historical” data is received. This
is the purpose of the wait_for_historical_data operation.
As soon as an application enables a VOLATILE_DURABILITY_QOS DataReader it
will not start receiving “historical” data but only new data written by the
DataWriter objects. By calling wait_for_historical_data the DataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” data is received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.
330
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Thread Blocking
The operation wait_for_historical_data blocks the calling thread until either
all “historical” data is received, or the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of RETCODE_OK
indicates that all the “historical” data was received a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
received.

Return Code
When the operation returns:
• RETCODE_OK - the “historical” data is received
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DataReader is not enabled.
• RETCODE_TIMEOUT - not all data is received before max_wait elapsed.

3.5.2.39 Class FooDataReader
The pre-processor generates from IDL type descriptions the application
<type>DataReader classes. For each application data type that is used as Topic
data type, a typed class <type>DataReader is derived from the DataReader
class. In this paragraph, the class FooDataReader in the namespace SPACE
describes the operations of these derived <type>DataReader classes as an
example for the fictional application type Foo (defined in the module SPACE).
For instance, for an application, the definitions are located in the Space.idl file.
The pre-processor will generate a ccpp_Space.h include file.
General note: The name ccpp_Space.h is derived from the IDL file Space.idl,
that defines Foo, for all relevant FooDataWriter operations.

State Masks
A FooDataReader refers to exactly one TopicDescription (either a Topic, a
ContentFilteredTopic or a MultiTopic) that identifies the data to be read.
Therefore it refers to exactly one data type. The Topic must exist prior to the
FooDataReader creation. The FooDataReader may give access to several
instances of the data type, which are distinguished from each other by their key. The
FooDataReader is attached to exactly one Subscriber which acts as a factory
for it.
The interface description of this class is as follows:

i

331
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 class FooDataReader
{
//
// inherited from class Entity
//
// StatusCondition_ptr
// get_statuscondition
// (void);
// StatusMask
// get_status_changes
// (void);
// ReturnCode_t
// enable
// (void);
//
// inherited from class DataReader
//
// ReadCondition_ptr
// create_readcondition
// (SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states);

// QueryCondition_ptr
// create_querycondition
// (SampleStateMask sample_states,
// ViewStateMask view_states,
// InstanceStateMask instance_states,
// const char* query_expression,
// const StringSeq& query_parameters);

// ReturnCode_t
// delete_readcondition
// (ReadCondition_ptr a_condition);

// ReturnCode_t
// delete_contained_entities
// (void);

// ReturnCode_t
// set_qos
// (const DataReaderQos& qos);

// ReturnCode_t
// get_qos
// (DataReaderQos& qos);

// ReturnCode_t
// set_listener
// (DataReaderListener_ptr a_listener,
332
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// StatusMask mask);

// DataReaderListener_ptr
// get_listener
// (void);

// TopicDescription_ptr
// get_topicdescription
// (void);

// Subscriber_ptr
// get_subscriber
// (void);

// ReturnCode_t
// get_sample_rejected_status
// (SampleRejectedStatus& status);

// ReturnCode_t
// get_liveliness_changed_status
// (LivelinessChangedStatus& status);

// ReturnCode_t
// get_requested_deadline_missed_status
// (RequestedDeadlineMissedStatus& status);

// ReturnCode_t
// get_requested_incompatible_qos_status
// (RequestedIncompatibleQosStatus& status);

// ReturnCode_t
// get_subscription_matched_status
// (SubscriptionMatchedStatus& status);

// ReturnCode_t
// get_sample_lost_status
// (SampleLostStatus& status);

// ReturnCode_t
// wait_for_historical_data
// (const Duration_t& max_wait);

// ReturnCode_t
// get_matched_publications
// (InstanceHandleSeq& publication_handles);

// ReturnCode_t
// get_matched_publication_data
// (PublicationBuiltinTopicData& publication_data,
// InstanceHandle_t publication_handle);
333
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

//
// implemented API operations
//

ReturnCode_t
 read
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 take
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 read_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition_ptr a_condition);
ReturnCode_t
 take_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition_ptr a_condition);
ReturnCode_t
 data_value
 (Foo& received_data,
 SampleInfo sample_info);
ReturnCode_t
 take_next_sample
 (Foo& data_value,
 SampleInfo sample_info);
ReturnCode_t
 read_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 take_instance
334
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 read_next_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 take_next_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);
ReturnCode_t
 read_next_instance_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition_ptr a_condition);
ReturnCode_t
 take_next_instance_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition_ptr a_condition);
ReturnCode_t
 return_loan
 (FooSeq& data_values,
 SampleInfoSeq& info_seq);
ReturnCode_t
 get_key_value
 (Foo& key_holder,
 InstanceHandle_t handle);
InstanceHandle_t
 lookup_instance
 (const Foo& instance_data);
335
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

};

The next paragraphs describe the usage of all FooDataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.2.40 create_querycondition (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
QueryCondition_ptr
 create_querycondition
 (SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states,
 const char* query_expression,
 const StringSeq& query_parameters);

3.5.2.41 create_readcondition (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReadCondition_ptr
 create_readcondition
 (SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

3.5.2.42 delete_contained_entities (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 delete_contained_entities
 (void);
336
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.43 delete_readcondition (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 delete_readcondition
 (ReadCondition_ptr a_condition);

3.5.2.44 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 enable
 (void);

3.5.2.45 get_key_value

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 get_key_value
 (Foo& key_holder,
 InstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.46 get_listener (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
DataReaderListener_ptr
 get_listener
 (void);
337
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.47 get_liveliness_changed_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_liveliness_changed_status
 (LivelinessChangedStatus& status);

3.5.2.48 get_matched_publication_data (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_matched_publication_data
 (PublicationBuiltinTopicData& publication_data,
 InstanceHandle_t publication_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.49 get_matched_publications (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_matched_publications
 (InstanceHandleSeq& publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.50 get_qos (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_qos
 (DataReaderQos& qos);
338
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.51 get_requested_deadline_missed_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatus& status);

3.5.2.52 get_requested_incompatible_qos_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatus& status);

3.5.2.53 get_sample_lost_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_sample_lost_status
 (SampleLostStatus& status);

3.5.2.54 get_sample_rejected_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_sample_rejected_status
 (SampleRejectedStatus& status);

3.5.2.55 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
339
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_Space.h>
StatusMask
 get_status_changes
 (void);

3.5.2.56 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
#include <ccpp_Space.h>
StatusCondition_ptr
 get_statuscondition
 (void);

3.5.2.57 get_subscriber (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
Subscriber_ptr
 get_subscriber
 (void);

3.5.2.58 get_subscription_matched_status (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 get_subscription_matched_status
 (SubscriptionMatchedStatus& status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.59 get_topicdescription (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
TopicDescription_ptr
340
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 get_topicdescription
 (void);

3.5.2.60 lookup_instance

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>
InstanceHandle_t
 lookup_instance
 (const Foo& instance_data);

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in const Foo& instance_data - the instance for which the corresponding

instance handle needs to be looked up.

Return Value
InstanceHandle_t - Result value is the instance handle which corresponds to the

instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that DataReader instance handles are local, and are
not interchangeable with DataWriter instance handles nor with instance handles
of an other DataReader. If the DataReader is already deleted, the handle value
HANDLE_NIL is returned.

3.5.2.61 read

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read
 (FooSeq& data_values,
341
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples from the FooDataReader.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED, RETCODE_PRECONDITION_
NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader. The
data is returned by the parameters data_values and info_seq. The number of
samples that is returned is limited by the parameter max_samples. This operation
is part of the specialized class which is generated for the particular application data
type (in this case type Foo) that is being read. If the FooDataReader has no
samples that meet the constraints, the return value is RETCODE_NO_DATA.

State Masks
The read operation depends on a selection of the samples by using three masks:
342
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• sample_states is the mask, which selects only those samples with the desired
sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both

• view_states is the mask, which selects only those samples with the desired
view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both

• instance_states is the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these.

Destination Order
In any case, the relative order between the samples of one instance is consistent with
the DestinationOrderQosPolicy of the Subscriber.
• When the DestinationOrderQosPolicy kind is
BY_RECEPTION_timestamp_DESTINATIONORDER_QOS, the samples
belonging to the same instances will appear in the relative order in which they
were received (FIFO)

• When the DestinationOrderQosPolicy kind is
BY_SOURCE_timestamp_DESTINATIONORDER_QOS, the samples belonging to
the same instances will appear in the relative order implied by the
source_timestamp.

Data Sample
In addition to the sample sequence (data_values), the operation also returns a
sequence of SampleInfo structures with the parameter info_seq. The info_seq
structures and data_values also determine the behaviour of this operation.

Resource Control
The initial (input) properties of the data_values and info_seq sequences
determine the precise behaviour of the read operation. The sequences are modelled
as having three properties: the current-length (length), the maximum length
(maximum), and whether or not the sequence container owns the memory of the
elements within (release).
The initial (input) values of the length, maximum, and release properties for the
data_values and info_seq sequences govern the behaviour of the read
operation as specified by the following rules:
• The values of length, maximum, and release for the two sequences must be

identical. Otherwise read returns RETCODE_PRECONDITION_NOT_MET
• On successful output, the values of length, maximum, and release are the

same for both sequences
343
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• If the input maximum == 0, the received_data and info_seq sequences are
filled with elements that are “loaned” by the FooDataReader. On output,
release is FALSE, length is set to the number of values returned, and maximum
is set to a value verifying maximum >= length. In this case the application will
need to “return the loan” to the Data Distribution Service using the return_loan
operation

• If the input maximum>0 and the input release == FALSE, the read operation
will fail and returns RETCODE_PRECONDITION_NOT_MET. This avoids the
potential hard-to-detect memory leaks caused by an application forgetting to
“return the loan”

• If input maximum>0 and the input release==TRUE, the read operation will
copy the Foo samples and info_seq values into the elements already inside the
sequences. On output, release is TRUE, length is set to the number of values
copied, and maximum will remain unchanged. The application can control where
the copy is placed and the application does not need to “return the loan”. The
number of samples copied depends on the relative values of maximum and
max_samples:
 - If max_samples==LENGTH_UNLIMITED, at most maximum values are copied.

The use of this variant lets the application limit the number of samples returned
to what the sequence can accommodate

 - If max_samples<=maximum, at most max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate

 - If max_samples>maximum, the read operation will fail and returns
RETCODE_PRECONDITION_NOT_MET. This avoids the potential confusion
where the application expects to be able to access up to max_samples, but that
number can never be returned, even if they are available in the
FooDataReader, because the output sequence cannot accommodate them.

Buffer Loan
As described above, upon return the data_values and info_seq sequences may
contain elements “loaned” from the Data Distribution Service. If this is the case, the
application will need to use the return_loan operation to return the “loan” once it
is no longer using the data in the sequence. Upon return from return_loan, the
sequence has maximum==0 and release==FALSE.
The application can determine whether it is necessary to “return the loan” or not,
based on the state of the sequences, when the read operation was called, or by
accessing the “release” property. However, in many cases it may be simpler to
always call return_loan, as this operation is harmless (i.e. leaves all elements
unchanged) if the sequence does not have a loan.
344
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

To avoid potential memory leaks, it is not allowed to change the length of the
data_values and info_seq structures for which release==FALSE .
Furthermore, deleting a sequence for which release==FALSE is considered to be
an error except when the sequence is empty.

Data Sequence
On output, the sequence of data values and the sequence of SampleInfo structures
are of the same length and are in an one-to-one correspondence. Each SampleInfo
structures provides information, such as the source_timestamp , the
sample_state, view_state, and instance_state, etc., about the matching
sample.
Some elements in the returned sequence may not have valid data: the valid_data
field in the SampleInfo indicates whether the corresponding data value contains
any meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the SampleInfo that
communicates a change in the instance_state of an instance for which there is
no ‘real’ sample available.
For example, when an application always ‘takes’ all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the DataReader will insert a dummy sample into the
data_values sequence to accompany the SampleInfo element in the info_seq
sequence that communicates the disposal of the instance.
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it also sets the
view_state of the instance to NOT_NEW_VIEW_STATE. It does not affect the
instance_state of the instance.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical

345

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - the maximum>0 and the release==FALSE.
• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.62 read_instance

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in InstanceHandle_t a_handle - the single instance, the samples belong to.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.
346
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is identical to read except for that all samples
returned belong to the single specified instance whose handle is a_handle. Upon
successful return, the data collection will contain samples all belonging to the same
instance. The data is returned by the parameters data_values and info_seq. The
corresponding SampleInfo.instance_handle in info_seq will have the value
of a_handle. The DataReader will check that each sample belongs to the
specified instance (indicated by a_handle) otherwise it will not place the sample in
the returned collection.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED.
 - one or more values of length, maximum, and release for the two sequences

are not identical.
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.63 read_next_instance

Scope
SPACE::FooDataReader
347
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read_next_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in InstanceHandle_t a_handle - the current single instance, the returned

samples belong to the next single instance.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.
348
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is similar to read_instance (all samples
returned belong to a single instance) except that the actual instance is not directly
specified. Rather the samples will all belong to the ‘next’ instance with
instance_handle ‘greater’ (according to some internal-defined order) than
a_handle, that has available samples. The data is returned by the parameters
data_values and info_seq . T h e c o r r e s p o n d i n g
SampleInfo.instance_handle in info_seq will has the value of the next
instance with respect to a_handle.

Instance Order
The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘as if ’ each instance handle was represented as a unique integer.
The behaviour of read_next_instance is ‘as if ’ the DataReader invoked
read_instance passing the smallest instance_handle among all the ones that:
• are greater than a_handle
• have available samples (i.e. samples that meet the constraints imposed by the

specified states).
• The special value HANDLE_NIL is guaranteed to be ‘less than’ any valid
instance_handle. So the use of the parameter value
a_handle==HANDLE_NIL will return the samples for the instance which has the
smallest instance_handle among all the instances that contains available
samples.

Typical Use
The opera t ion read_next_instance i s in tended to be used in an
appl icat ion-dr iven i tera t ion where the appl icat ion s tar ts by pass ing
a_handle==HANDLE_NIL, examines the samples returned, and then uses the
instance_handle returned in the SampleInfo as the value of a_handle
argument to the next call to read_next_instance. The iteration continues until
read_next_instance returns the return value RETCODE_NO_DATA.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
349
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_BAD_PARAMETER - the parameter a_handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.64 read_next_instance_w_condition

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read_next_instance_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition_ptr a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
350
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in InstanceHandle_t a_handle - the current single instance, the returned
samples belong to the next single instance.

in ReadCondition_ptr a_condition - a pointer to a ReadCondition or
QueryCondition which filters the data before it is returned by the read
operation.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition.
The behaviour is identical to read_next_instance except for that the samples
are filtered by a ReadCondition or QueryCondition. When using a
ReadCondition, the result is the same as the read_next_instance operation
with the same state parameters filled in as for the create_readcondition. In this
way, the application can avoid repeating the same parameters, specified when
creating the ReadCondition. When using a QueryCondition, a content based
filtering can be done. When either using a ReadCondition or QueryCondition,
the condition must be created by this FooDataReader. Otherwise the operation
will fail and returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr or a_handle is not a valid handle.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical

351

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - the maximum>0 and the release==FALSE.
• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.65 read_next_sample

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read_next_sample
 (Foo& data_value,
 SampleInfo sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.66 read_w_condition

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 read_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition_ptr a_condition);

Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
352
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in ReadCondition_ptr a_condition - a pointer to a ReadCondition or
QueryCondition which filters the data before it is returned by the read
operation.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition. The condition reference from both
create_readcondition or create_querycondition may be used. The
behaviour is identical to read except for that the samples are filtered by a
ReadCondition or QueryCondition. When using a ReadCondition, the result
is the same as the read operation with the same state parameters filled in as for the
create_readcondition. In this way, the application can avoid repeating the
same parameters, specified when creating the ReadCondition. When using a
QueryCondition, a content based filtering can be done. When either using a
ReadCondition or QueryCondition, the condition must be created by this
FooDataReader. O t h e r w i s e t h e o p e r a t i o n w i l l f a i l a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the ReadCondition or QueryCondition is not attached to this
FooDataReader

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
353
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - one or more values of length, maximum, and release for the two sequences
are not identical

 - the maximum>0 and the release==FALSE.
• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.67 return_loan

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 return_loan
 (FooSeq& data_values,
 SampleInfoSeq& info_seq);

Description
This operation indicates to the DataReader that the application is done accessing
the sequence of data_values and info_seq.

Parameters
inout FooSeq& data_values - the sample data sequence which was loaned

from the DataReader.
inout SampleInfoSeq& info_seq - the SampleInfo structure sequence

which was loaned from the DataReader.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED or RETCODE_PRECONDITION_
NOT_MET.

Detailed Description
This operation indicates to the DataReader that the application is done accessing
the sequence of data_values and info_seq obtained by some earlier invocation
of the operation read or take (or any of the similar operations) on the
DataReader.
354
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The data_values and info_seq must belong to a single related pair that is, they
should correspond to a pair returned from a single call to the operation read or
take. The data_values and info_seq must also have been obtained from the
same DataReader to which they are returned. If either of these conditions is not
met the operation will fail and returns RETCODE_PRECONDITION_NOT_MET.

Buffer Loan
The operation return_loan allows implementations of the read and take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.
It is not necessary for an application to return the loans immediately after calling the
operation read or take. However, as these buffers correspond to internal resources
inside the DataReader, the application should not retain them indefinitely.

Calling return_loan
The use of the return_loan operation is only necessary if the call to the operation
read or take “loaned” buffers to the application. This only occurs if the
data_values and info_seq sequences had maximum=0 at the time the operation
read or take was called. The application may also examine the ‘release’
property of the collection to determine where there is an outstanding loan. However,
calling the operation return_loan on a pair of sequences that does not have a loan
is safe and has no side effects.
If the pair of sequences had a loan, upon return from the operation return_loan
the pair of sequences has maximum=0.

Return Code
When the operation returns:
• RETCODE_OK - the DataReader is informed that the sequences will not be used

any more
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the data_values and info_seq do not belong to a single related pair
355
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - the data_values and info_seq were not obtained from this
FooDataReader.

3.5.2.68 set_listener (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 set_listener
 (DataReaderListener_ptr a_listener,
 StatusMask mask);

3.5.2.69 set_qos (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>
ReturnCode_t
 set_qos
 (const DataReaderQos& qos);

3.5.2.70 take

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the data from the FooDataReader.
356
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES, RETCODE_NOT_ENABLED, RETCODE_PRECONDITION_
NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the data from the FooDataReader, so it can not be read or taken
again. The behaviour is identical to read except for that the samples are removed
from the FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED

357

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - one or more values of length, maximum, and release for the two sequences
are not identical

 - the maximum>0 and the release==FALSE.
• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.71 take_instance

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take_instance
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in InstanceHandle_t a_handle - the single instance, the samples belong to.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only

those samples with the desired instance states.
358
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader, so
it can not be read or taken again. The behaviour is identical to read_instance
except for that the samples are removed from the FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.72 take_next_instance

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take_next_instance
 (FooSeq& data_values,
359
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 SampleStateMask sample_states,
 ViewStateMask view_states,
 InstanceStateMask instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in InstanceHandle_t a_handle - the current single instance, the returned

samples belong to the next single instance.
in SampleStateMask sample_states - a mask, which selects only those

samples with the desired sample states.
in ViewStateMask view_states - a mask, which selects only those samples

with the desired view states.
in InstanceStateMask instance_states - a mask, which selects only those

samples with the desired instance states.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader, so
i t c a n n o t b e r e a d o r t a k e n a ga i n . Th e b e h a v i o u r i s i d e n t i c a l t o
read_next_instance except for that the samples are removed from the
FooDataReader.
360
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.73 take_next_instance_w_condition

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take_next_instance_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 InstanceHandle_t a_handle,
 ReadCondition_ptr a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FooDataReader.
361
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in InstanceHandle_t a_handle - the current single instance, the returned

samples belong to the next single instance.
in ReadCondition_ptr a_condition - a pointer to a ReadCondition or

QueryCondition which filters the data before it is returned
by the read operation.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FooDataReader, so it can not be read
o r t ake n aga in . Th e b eh av io u r i s i de n t i c a l t o
read_next_instance_w_condition except for that the samples are removed
from the FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr or a_handle is not a valid handle

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
362
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:

 - the ReadCondition or QueryCondition is not attached to this
FooDataReader.

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.74 take_next_sample

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take_next_sample
 (Foo& data_value,
 SampleInfo sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.75 take_w_condition

Scope
SPACE::FooDataReader

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 take_w_condition
 (FooSeq& data_values,
 SampleInfoSeq& info_seq,
 Long max_samples,
 ReadCondition_ptr a_condition);

Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition and by doing so, removes the data
from the FooDataReader.
363
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
inout FooSeq& data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeq& info_seq - the returned SampleInfo structure
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in long max_samples - the maximum number of samples that is returned.
in ReadCondition_ptr a_condition - a pointer to a ReadCondition or

QueryCondition which filters the data before it is returned by the read
operation.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition and by doing so, removes the data
from the FooDataReader, so it can not be read or taken again. The behaviour is
identical to read_w_condition except for that the samples are removed from the
FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true:
364
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 - the ReadCondition or QueryCondition is not attached to this
FooDataReader

 - the max_samples>maximum and max_samples is not LENGTH_UNLIMITED
 - one or more values of length, maximum, and release for the two sequences

are not identical
 - the maximum>0 and the release==FALSE.

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.76 wait_for_historical_data (inherited)
This operation is inherited and therefore not described here. See the class
DataReader for further explanation.

Synopsis
#include <ccpp_Space.h>

ReturnCode_t
 wait_for_historical_data
 (const Duration_t& max_wait);

3.5.3 Class DataSample
A DataSample represents an atom of data information (i.e. one value for an
instance) as returned by the DataReader’s read/take operations. It consists of
two parts: A SampleInfo and the Data itself. The Data part is the data as
produced by a Publisher. The SampleInfo part contains additional information
related to the data provided by the Data Distribution Service.

3.5.4 Struct SampleInfo
The struct SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.
The interface description of this struct is as follows:

struct SampleInfo
{

SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
Long disposed_generation_count;
Long no_writers_generation_count;
Long sample_rank;
Long generation_rank;
Long absolute_generation_rank;
Boolean valid_data;
365
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

};

The next paragraph describes the usage of the SampleInfo struct.

3.5.4.1 SampleInfo

Scope
DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct SampleInfo
 {
 SampleStateKind sample_state;
 ViewStateKind view_state;
 InstanceStateKind instance_state;
 Time_t source_timestamp;
 InstanceHandle_t instance_handle;
 BuiltinTopicKey_t publication_handle;
 Long disposed_generation_count;
 Long no_writers_generation_count;
 Long sample_rank;
 Long generation_rank;
 Long absolute_generation_rank;
 Boolean valid_data;
 };

Description
The struct SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.

Attributes
SampleStateKind sample_state - whether or not the corresponding data

sample has already been read.
ViewStateKind view_state - whether the DataReader has already seen

samples of the most-current generation of the related instance.
InstanceStateKind instance_state - whether the instance is alive, has no

writers or is disposed of.
Time_t source_timestamp - the time provided by the DataWriter when the

sample was written.
InstanceHandle_t instance_handle - the handle that identifies locally the

corresponding instance.
366
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

InstanceHandle_t publication_handle - the handle that identifies locally
the DataWriter t h a t m o d i f i e d t h e i n s t a n c e . I n f a c t i t i s t h e
instance_handle of the builtin DCPSPublication sample that describes
this DataWriter. It can be used as a parameter to the DataReader operation
get_matched_publication_data to obtain this builtin DCPSPublication
sample.

Long disposed_generation_count - the number of times the instance has
become alive after it was disposed of explicitly by a DataWriter.

Long no_writers_generation_count - the number of times the instance has
become alive after it was disposed of because there were no DataWriter
objects.

Long sample_rank - the number of samples related to the same instance that are
found in the collection returned by a read or take operation.

Long generation_rank - the generation difference between the time the sample
was received and the time the most recent sample in the collection was received.

Long absolute_generation_rank - the generation difference between the time
the sample was received and the time the most recent sample was received.

Boolean valid_data - whether the DataSample contains any meaningful data. If
not, the sample is only used to communicate a change in the instance_state
of the instance.

Detailed Description
The struct SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.

Generations
A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==ALIVE_INSTANCE_STATE) at the time the sample was
received’. Note that the generation counters are initialized to zero when a
DataReader first detects a never-seen-before instance.
Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.
After a DataWriter disposes an instance, the disposed_generation_count
for all DataReaders that already knew that instance will be incremented the next
time the instance is written again.
367
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

If the DataReader detects that there are no live DataWriter entities, the
instance_state o f t he sample_info w i l l c h a n g e f r o m
ALIVE_INSTANCE_STATE to NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. The
next time the instance is written, no_writers_generation_count will be
incremented.

Sample Information
SampleInfo is the additional information that accompanies the data in each sample
that is read or taken. It contains the following information:
• sample_state (READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE)

indicates whether or not the corresponding data sample has already been read
• view_state (NEW_VIEW_STATE, or NOT_NEW_VIEW_STATE) indicates

whether the DataReader has already seen samples of the most-current
generation of the related instance

• instance_state (ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, or NOT_ALIVE_NO_WRITERS_INSTANCE_STATE) indicates
whether the instance is alive, has no writers or if it has been disposed of:
 - ALIVE_INSTANCE_STATE if this instance is currently in existence
 - NOT_ALIVE_DISPOSED_INSTANCE_STATE if this instance was disposed of by

a DataWriter
 - NOT_ALIVE_NO_WRITERS_INSTANCE_STATE none of the DataWriter

objects currently “alive” (according to the LivelinessQosPolicy) are
writing the instance.

• source_timestamp indicates the time provided by the DataWriter when the
sample was written

• instance_handle indicates locally the corresponding instance
• publication_handle indicates system wide the publisher of the sample, the

local publication handle can be found with the DataReader operation
lookup_instance for the publication_handle

• disposed_generation_count indicates the number of times the instance has
become alive after it was disposed of explicitly by a DataWriter, at the time the
sample was received

• no_writers_generation_count indicates the number of times the instance
has become alive after its instance_state has been
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, at the time the sample was
received

• sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by a read or take operation
368
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received

• absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not be in the
returned collection), related to the same instance, was received.

• valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the SampleInfo that
communicates a change in the instance_state of an instance for which there is
no ‘real’ sample available.

3.5.5 SubscriberListener Interface
Since a Subscriber is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
SubscriberListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
SubscriberListener class. All SubscriberListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The SubscriberListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The SubscriberListener is related to changes in
communication status.
The interface description of this class is as follows:
 class SubscriberListener

{
//
// inherited from class DataReaderListener
//
// void
// on_requested_deadline_missed
// (DataReader_ptr reader,
// const RequestedDeadlineMissedStatus& status) = 0;

// void
369
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// on_requested_incompatible_qos
// (DataReader_ptr reader,
// const RequestedIncompatibleQosStatus& status) = 0;

// void
// on_sample_rejected
// (DataReader_ptr reader,
// const SampleRejectedStatus& status) = 0;

// void
// on_liveliness_changed
// (DataReader_ptr reader,
// const LivelinessChangedStatus& status) = 0;

// void
// on_data_available
// (DataReader_ptr reader) = 0;

// void
// on_subscription_matched
// (DataReader_ptr reader,
// const SubscriptionMatchedStatus& status) = 0;

// void
// on_sample_lost
// (DataReader_ptr reader,
// const SampleLostStatus& status) = 0;
//
// abstract external operations
//

void
 on_data_on_readers
 (Subscriber_ptr subs) = 0;

//
// implemented API operations
// <no operations>
//
};

The next paragraphs list all SubscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

3.5.5.1 on_data_available (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.
370
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_data_available
 (DataReader_ptr reader) = 0;

3.5.5.2 on_data_on_readers (abstract)

Scope
DDS::SubscriberListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_data_on_readers
 (Subscriber_ptr subs) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
in Subscriber_ptr subs - contain a pointer to the Subscriber for which data

is available (this is an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this Subscriber. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
SubscriberListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
DATA_ON_READERS_STATUS.
The Data Distribution Service will provide a reference to the Subscriber in the
parameter subs for use by the application.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
l o o k f o r a n a t t a c h e d a n d a c t i v a t e d SubscriberListener o r
DomainParticipantListener (i n t h a t o rd e r) fo r t h e
371
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener , SubscriberListener o r
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).
Note that if on_data_on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the callback function on_data_available of DataReaderListener objects
that have data by means of the notify_datareaders operation.

3.5.5.3 on_liveliness_changed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_changed
 (DataReader_ptr reader,
 const LivelinessChangedStatus& status) = 0;

3.5.5.4 on_requested_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_deadline_missed
 (DataReader_ptr reader,
 const RequestedDeadlineMissedStatus& status) = 0;

3.5.5.5 on_requested_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_incompatible_qos
 (DataReader_ptr reader,
 const RequestedIncompatibleQosStatus& status) = 0;
372
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.5.6 on_sample_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_lost
 (DataReader_ptr reader,
 const SampleLostStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.5.7 on_sample_rejected (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_rejected
 (DataReader_ptr reader,
 const SampleRejectedStatus& status) = 0;

3.5.5.8 on_subscription_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the class
DataReaderListener for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_subscription_matched
 (DataReader_ptr reader,
 const SubscriptionMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.6 DataReaderListener Interface
Since a DataReader is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DataReaderListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DataReaderListener class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.
373
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DataReaderListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The DataReaderListener is related to changes in
communication status.
The interface description of this class is as follows:
 class DataReaderListener

{
//
// abstract external operations
//

void
 on_requested_deadline_missed
 (DataReader_ptr reader,

 const RequestedDeadlineMissedStatus& status) = 0;
void
 on_requested_incompatible_qos
 (DataReader_ptr reader,

 const RequestedIncompatibleQosStatus& status) = 0;

void
 on_sample_rejected
 (DataReader_ptr reader,

 const SampleRejectedStatus& status) = 0;

void
 on_liveliness_changed
 (DataReader_ptr reader,

 const LivelinessChangedStatus& status) = 0;

void
 on_data_available
 (DataReader_ptr reader) = 0;

void
 on_subscription_matched
 (DataReader_ptr reader,

 const SubscriptionMatchedStatus& status) = 0;

void
 on_sample_lost
 (DataReader_ptr reader,

 const SampleLostStatus& status) = 0;
//
374
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// implemented API operations
// <no operations>
//
};

The next paragraphs describe the usage of all DataReaderListener operations.
These abstract operations are fully described because they must be implemented by
the application.

3.5.6.1 on_data_available (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_data_available
 (DataReader_ptr reader) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
in DataReader_ptr reader - contain a pointer to the DataReader for which

data is available (this is an input to the application provided by the Data
Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this DataReader. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
DATA_AVAILABLE_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader for use by the application.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
l o o k f o r a n a t t a c h e d a n d a c t i v a t e d SubscriberListener o r
375
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DomainParticipantListener (i n t h a t o r d e r) fo r t h e
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).
Note that if on_data_on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the DataReader objects that have data by means of the notify_datareaders
operation.

3.5.6.2 on_liveliness_changed (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_liveliness_changed
 (DataReader_ptr reader,
 const LivelinessChangedStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more DataWriter objects that
were writing instances read through this DataReader has changed.

Parameters
in DataReader_ptr reader - contain a pointer to the DataReader for which

the liveliness of one or more DataWriter objects has changed (this is an input
to the application provided by the Data Distribution Service).

in const LivelinessChangedStatus& status - con ta in the
LivelinessChangedStatus struct (this is an input to the application
provided by the Data Distribution Service).

Return Value
<none>
376
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more DataWriter objects that were writing instances read through this
DataReader has changed. In other words, some DataWriter have become
“alive” or “not alive”. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
LIVELINESS_CHANGED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the LivelinessChangedStatus struct for use by the
application.

3.5.6.3 on_requested_deadline_missed (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_deadline_missed
 (DataReader_ptr reader,
 const RequestedDeadlineMissedStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the DataReader was expecting
through its DeadlineQosPolicy was not respected.

Parameters
in DataReader_ptr reader - contain a pointer to the DataReader for which

the deadline was missed (this is an input to the application provided by the Data
Distribution Service).

in const RequestedDeadlineMissedStatus& status - contain the
RequestedDeadlineMissedStatus struct (this is an input to the application
provided by the Data Distribution Service).

Return Value
<none>
377
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the DataReader was expecting through its DeadlineQosPolicy was not
respected for a specific instance. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
REQUESTED_DEADLINE_MISSED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the RequestedDeadlineMissedStatus struct in the
parameter status for use by the application.

3.5.6.4 on_requested_incompatible_qos (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_requested_incompatible_qos
 (DataReader_ptr reader,
 const RequestedIncompatibleQosStatus& status) = 0;

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters
in DataReader_ptr reader - a pointer to the DataReader provided by the

Data Distribution Service.
in const RequestedIncompatibleQosStatus& status - the

RequestedIncompatibleQosStatus struct provided by the Data
Distribution Service.

Return Value
<none>
378
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be
left empty when this functionality is not needed. This operation will only be called
when the relevant DataReaderListener is installed and enabled for the
REQUESTED_INCOMPATIBLE_QOS_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the RequestedIncompatibleQosStatus struct in the
parameter status, for use by the application.
The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
REQUESTED_INCOMPATIBLE_QOS_STATUS in the mask in the call to
DataReader::set_listener. When the DataReaderListener on the
DataReader is not enabled for the REQUESTED_INCOMPATIBLE_QOS_STATUS,
the status change will propagate to the SubscriberListener of the Subscriber
(i f e n a b l e d) o r t o t h e DomainParticipantListener o f t h e
DomainParticipant (if enabled).

3.5.6.5 on_sample_lost (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_lost
 (DataReader_ptr reader,
 const SampleLostStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.6.6 on_sample_rejected (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_sample_rejected
 (DataReader_ptr reader,
 const SampleRejectedStatus& status) = 0;
379
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters
in DataReader_ptr reader - contain a pointer to the DataReader for which a

sample has been rejected (this is an input to the application provided by the Data
Distribution Service).

in const SampleRejectedStatus& status - c o n t a i n t h e
SampleRejectedStatus struct (this is an input to the application provided by
the Data Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
SAMPLE_REJECTED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the SampleRejectedStatus struct in the parameter
status for use by the application.

3.5.6.7 on_subscription_matched (abstract)

Scope
DDS::DataReaderListener

Synopsis
#include <ccpp_dds_dcps.h>
void
 on_subscription_matched
 (DataReader_ptr reader,
 const SubscriptionMatchedStatus& status) = 0;

Note: This operation is not yet supported. It is scheduled for a future release.
380
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.7 Class ReadCondition
The DataReader objec ts can crea te a se t of ReadCondition (and
StatusCondition) objects which provide support (in conjunction with WaitSet
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., state-based rather than event-based).
ReadCondition objects allow an DataReader to specify the data samples it is
interested in (by specifying the desired sample-states, view-states, and
ins tance-s ta tes) ; see the parameter def in i t ions for DataReader's
create_readcondition operation. This allows the Data Distribution Service to
trigger the condition only when suitable information is available. ReadCondition
objects are to be used in conjunction with a WaitSet . More than one
ReadCondition may be attached to the same DataReader.
The interface description of this class is as follows:
 class ReadCondition

{
//
// inherited from Condition
//
// Boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

SampleStateMask
 get_sample_state_mask
 (void);

ViewStateMask
 get_view_state_mask
 (void);

InstanceStateMask
 get_instance_state_mask
 (void);

DataReader_ptr
 get_datareader
 (void);

};

The next paragraphs describe the usage of all ReadCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
381
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.7.1 get_datareader

Scope
DDS::ReadCondition

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
 get_datareader
 (void);

Description
This operation returns the DataReader associated with the ReadCondition.

Parameters
<none>

Return Value
DataReader_ptr - Result value is a pointer to the DataReader.

Detailed Description
This operation returns the DataReader associated with the ReadCondition. Note
that there is exactly one DataReader associated with each ReadCondition (i.e.
the DataReader that created the ReadCondition object).

3.5.7.2 get_instance_state_mask

Scope
DDS::ReadCondition

Synopsis
#include <ccpp_dds_dcps.h>
InstanceStateMask
 get_instance_state_mask
 (void);

Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>
382
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
InstanceStateMask - Result value are the instance_states specified when

the ReadCondition was created.

Detailed Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the ReadCondition.
The instance_states returned are the instance_states specified when the
ReadCondition was c r ea t ed . instance_states c an b e
ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a combination of these.

3.5.7.3 get_sample_state_mask

Scope
DDS::ReadCondition

Synopsis
#include <ccpp_dds_dcps.h>
SampleStateMask
 get_sample_state_mask
 (void);

Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>

Return Value
SampleStateMask - Result value are the sample_states specified when the

ReadCondition was created.

Detailed Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the ReadCondition.
The sample_states returned are the sample_states specified when the
ReadCondition was created. sample_states can be READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE or both.
383
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.7.4 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 get_trigger_value
 (void);

3.5.7.5 get_view_state_mask

Scope
DDS::ReadCondition

Synopsis
#include <ccpp_dds_dcps.h>
ViewStateMask
 get_view_state_mask
 (void);

Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>

Return Value
ViewStateMask - Result value are the view_states specified when the

ReadCondition was created.

Detailed Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the ReadCondition.
The view_states returned are the view_states specified when the
ReadCondition was created. view_states can be NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE or both.
384
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.8 Class QueryCondition
QueryCondition objects are specialized ReadCondition objects that allow the
application to specify a filter on the locally available data. The DataReader objects
accept a set of QueryCondition objects for the DataReader and provide support
(in conjunction with WaitSet objects) for an alternative communication style
between the Data Distribution Service and the application (i.e., state-based rather
than event-based).

Query Function
QueryCondition objects allow an application to specify the data samples it is
interested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for DataReader's
read/take operations. This allows the Data Distribution Service to trigger the
condition only when suitable information is available. QueryCondition objects
are to be used in conjunction with a WaitSet. More than one QueryCondition
may be attached to the same DataReader.
The query (query_expression) is similar to an SQL WHERE clause and can be
parameterized by arguments that are dynamically changeable with the
set_query_parameters operation.
The interface description of this class is as follows:
 class QueryCondition

{
//
// inherited from ReadCondition
//
// SampleStateMask
// get_sample_state_mask
// (void);

// ViewStateMask
// get_view_state_mask
// (void);

// InstanceStateMask
// get_instance_state_mask
// (void);

// DataReader_ptr
// get_datareader
// (void);
// Boolean
// get_trigger_value
// (void);
//
// implemented API operations
385
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

//
char*
 get_query_expression
 (void);

ReturnCode_t
 get_query_parameters
 (StringSeq& query_parameters);

ReturnCode_t
 set_query_parameters
 (const StringSeq& query_parameters);

};

The next paragraphs describe the usage of all QueryCondition operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.8.1 get_datareader (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
DataReader_ptr
 get_datareader
 (void);

3.5.8.2 get_instance_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
InstanceStateMask
 get_instance_state_mask
 (void);

3.5.8.3 get_query_parameters

Scope
DDS::QueryCondition

Synopsis
#include <ccpp_dds_dcps.h>
386
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

ReturnCode_t
 get_query_parameters
 (StringSeq& query_parameters);

Description
This operat ion obtains the query_parameters associated with the
QueryCondition.

Parameters
inout StringSeq& query_parameters - a reference to a sequence of strings

that will be used to store the parameters used in the SQL expression.

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR , RETCODE_ALREADY_DELETED or RETCODE_OUT_
OF_RESOURCES.

Detailed Description
This operat ion obtains the query_parameters associated with the
QueryCondition. That is, the parameters specified on the last successful call to
set_query_arguments or, if set_query_arguments was never called, the
arguments specified when the QueryCondition were created.
The resulting handle contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parameters in
the result sequence will exactly match the number of %n tokens in the query
expression associated with the QueryCondition.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of query parameters applied to this
QueryCondition has successfully been copied into the specified
query_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the QueryCondition has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.8.4 get_query_expression

Scope
DDS::QueryCondition
387
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
#include <ccpp_dds_dcps.h>
char*
 get_query_expression
 (void);

Description
This operation returns the query expression associated with the QueryCondition.

Parameters
<none>

Return Value
char* - Result value is a reference to the query expression associated with the

QueryCondition.

Detailed Description
This operation returns the query expression associated with the QueryCondition.
That is, the expression specified when the QueryCondition was created. The
operation will return NULL when there was an internal error or when the
QueryCondition was already deleted. If there were no parameters, an empty
sequence is returned.

3.5.8.5 get_sample_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
SampleStateMask
 get_sample_state_mask
 (void);

3.5.8.6 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
Boolean
 get_trigger_value
 (void);
388
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.8.7 get_view_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
#include <ccpp_dds_dcps.h>
ViewStateMask
 get_view_state_mask
 (void);

3.5.8.8 set_query_parameters

Scope
DDS::QueryCondition

Synopsis
#include <ccpp_dds_dcps.h>
ReturnCode_t
 set_query_arguments
 (const StringSeq& parameters);

Description
This operation changes the query parameters associated with the QueryCondition.

Parameters
in const StringSeq& query_parameters - a sequence of strings which are

the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value
ReturnCode_t - Possible return codes of the operation are: RETCODE_OK,

RETCODE_ERROR, RETCODE_BAD_PARAMETER, RETCODE_ALREADY_
DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
Thi s ope ra t i on changes t he que ry pa ramete r s a s soc i a t ed w i th t he
QueryCondition. The parameter query_parameters is a sequence of strings
which are the parameter values used in the SQL query string (i.e., the “%n” tokens
in the expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g. if %1
and %8 a r e u s e d a s p a r a m e t e r i n t h e query_expression , t h e
query_parameters should at least contain n+1 = 9 values).
389
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - the query parameters associated with the QueryCondition are

changed.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in query_parameters

does not match the number of “%n” tokens in the expression for this
QueryCondition or one of the parameters is an illegal parameter.

• RETCODE_ALREADY_DELETED - the QueryCondition has already been
deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
390
API Reference

�������	

APPENDICES

Appendix

A Quality Of Service
Each Entity is accompanied by an <Entity>Qos structure that implements the
basic mechanism for an application to specify Quality of Service attributes. This
structure consists of Entity specific QosPolicy attributes. QosPolicy attributes
are structured types where each type specifies the information that controls an
Entity related (configurable) attribute of the Data Distribution Service. A
QosPolicy attribute struct is identified as <name>QosPolicy.

Affected Entities
Each Entity can be configured with a set of QosPolicy settings. However, any
Entity cannot support any QosPolicy. For instance, a DomainParticipant
supports different QosPolicy settings than a Topic or a Publisher. The set of
QosPolicy settings is implemented as a struct of QosPolicy structs, identified as
<Entity>Qos. Each <Entity>Qos struct only contains those QosPolicy structs
relevant to the specific Entity. The <Entity>Qos struct serves as the parameter
to operations which require a Qos. <Entity>Qos struct is the API implementation
of the QoS. Depending on the specific <Entity>Qos, it controls the behaviour of a
Topic , DataWriter , DataReader , Publisher , Subscriber ,
DomainParticipant or DomainParticipantFactory1.

Basic Usage
The basic way to modify or set the <Entity>Qos is by using an get_qos
operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an set_qos operation to set all QosPolicy settings on this Entity (that is
the <Entity>Qos). An example of these operations for the DataWriterQos are
get_default_datawriter_qos and set_default_datawriter_qos, which
take the DataWriterQos as a parameter.
The interface description of this struct is as follows:

// struct <name>QosPolicy
// see appendix
//

1. Note that the DomainParticipantFactory is a special kind of entity: it does not
inherit from Entity, nor does it have a Listener or StatusCondition, but its
behaviour can be controlled by its own set of QosPolicies.
393
C++ Reference Guide�������	

 Appendices
//
// struct <Entity>Qos
//

 struct DomainParticipantFactoryQos
 { EntityFactoryQosPolicy entity_factory; };

struct DomainParticipantQos
 { UserDataQosPolicy user_data;
 EntityFactoryQosPolicy entity_factory;
 SchedulingQosPolicy watchdog_scheduling;
 SchedulingQosPolicy listener_scheduling; };
struct TopicQos
 { TopicDataQosPolicy topic_data;
 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 OwnershipQosPolicy ownership; };
struct DataWriterQos
 { DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 OwnershipStrengthQosPolicy ownership_strength;
 WriterDataLifecycleQosPolicy writer_data_lifecycle;};
struct PublisherQos
 { PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory; };
struct DataReaderQos
 { DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
394
C++ Reference Guide �������	

Appendices
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 TimeBasedFilterQosPolicy time_based_filter;
 ReaderDataLifecycleQosPolicy reader_data_lifecycle;};
struct SubscriberQos
 { PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory; };

//
// define <Entity>_QOS_DEFAULT
//

#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

//
// implemented API operations
// <no operations>
//

The next paragraphs describe the usage of each <Entity>Qos struct.

DataReaderQos
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct DataReaderQos

struct DataReaderQos
 { DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 UserDataQosPolicy user_data;
395
C++ Reference Guide�������	

 Appendices
 OwnershipQosPolicy ownership;
 TimeBasedFilterQosPolicy time_based_filter;
 ReaderDataLifecycleQosPolicy reader_data_lifecycle;};

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DataReader.

Attributes
DurabilityQosPolicy durability - whether the data should be

stored for late joining - deadline - the period within which a new
sample is expected.

LatencyBudgetQosPolicy latency_budget - used by the Data Distribution
Service for optimization.

LivelinessQosPolicy liveliness - the way the liveliness of the
DataReader is asserted to the Data Distribution Service.

ReliabilityQosPolicy reliability - the reliability of the data distribution.
DestinationOrderQosPolicy destination_order - the order in which the

DataReader timely orders the data.
HistoryQosPolicy history - how samples should be stored.
ResourceLimitsQosPolicy resource_limits - the maximum amount of

resources to be used.
UserDataQosPolicy user_data - used to attach additional information to the

DataReader.
OwnershipQosPolicy ownership - whether a DataWriter exclusively owns an

instance.
TimeBasedFilterQosPolicy time_based_filter - the maximum data rate

at which the DataReader will receive changes.
ReaderDataLifecycleQosPolicy reader_data_lifecycle - the minimum

time after which a data instance is disposed of when the instance_state has
become ei ther NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Detailed Description
A QosPolicy can be set when the DataReader i s created with the
create_datareader operation (or modified with the set_qos operation). Both
operations take the DataReaderQos struct as a parameter. There may be cases
396
C++ Reference Guide �������	

Appendices
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DataReader creation time or prior to calling the enable
operation on the DataReader.
The initial value of the default DataReaderQos in the Subscriber are given in
the following table:

DataWriterQos
Scope

DDS

Table 15 QosPolicy Values

QosPolicy Field Value
durability kind VOLATILE_DURABILITY_QOS

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

user_data value.length 0

ownership kind SHARED_OWNERSHIP_QOS

time_based_filter minimum_separation 0

reader_data_lifecycle autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE
397
C++ Reference Guide�������	

 Appendices
Synopsis
#include <ccpp_dds_dcps.h>
struct DataWriterQos

 { DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipQosPolicy ownership;
 OwnershipStrengthQosPolicy ownership_strength;
 WriterDataLifecycleQosPolicy writer_data_lifecycle;};

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DataWriter.

Attributes
DurabilityQosPolicy durability - whether the data should be stored for late

joining readers.
DeadlineQosPolicydeadline - the period within which a new sample is

written.
LatencyBudgetQosPolicy latency_budget - used by the Data Distribution

Service for optimization.
LivelinessQosPolicy liveliness - the way the liveliness of the

DataWriter is asserted to the Data Distribution Service.
ReliabilityQosPolicy reliability - the reliability of the data distribution.
DestinationOrderQosPolicydestination_order - the order in which the

DataReader timely orders the data.
HistoryQosPolicy history - how samples should be stored.
ResourceLimitsQosPolicy resource_limits - the maximum amount of

resources to be used.
TransportPriorityQosPolicy transport_priority - a priority hint for the

underlying transport layer.
LifespanQosPolicylifespan - the maximum duration of validity of the data

written by the DataWriter.
398
C++ Reference Guide �������	

Appendices
UserDataQosPolicyuser_data - used to attach additional information to the
DataWriter.

OwnershipQosPolicy ownership - whether a DataWriter exclusively owns an
instance.

OwnershipStrengthQosPolicy ownership_strength - the strength to
determine the ownership.

WriterDataLifecycleQosPolicy writer_data_lifecycle - whether
unregistered instances are disposed of automatically or not.

Detailed Description
A QosPolicy can be set when the DataWriter i s created with the
create_datawriter operation (or modified with the set_qos operation). Both
operations take the DataWriterQos struct as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DataWriter creation time or prior to calling the enable
operation on the DataWriter.
The initial value of the default DataWriterQos in the Publisher are given in the
following table:

Table 16 DATAWRITER_QOS_DEFAULT

QosPolicy Field Value
durability kind VOLATILE_DURABILITY_QOS

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED
399
C++ Reference Guide�������	

 Appendices
DomainParticipantFactoryQos
Synopsis
#include <ccpp_dds_dcps.h>
struct DomainParticipantFactoryQos

 { EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DomainParticipantFactory.

Attributes
EntityFactoryQosPolicy entity_factory - whether a just created

DomainParticipant should be enabled.

Detailed Description
The QosPolicy c a n n o t b e s e t a t c r e a t i o n t i m e , s i n c e t h e
DomainParticipantFactory is a pre-existing object that can only be obtained
with the DomainParticipantFactory::get_instance operation or its alias
TheParticipantFactory. Therefore its QosPolicy is initialized to a default
value according to the following table:

After creation the QosPolicy can be modified with the set_qos operation on the
DomainParticipantFactory, w h i c h t a k e s t h e
DomainParticipantFactoryQos struct as a parameter.

transport_priority value 0

lifespan duration DURATION_INFINITE

user_data value.length 0

ownership kind SHARED_OWNERSHIP_QOS

ownership_strength value 0

writer_data_lifecycle autodispose_
unregistered_instances

TRUE

Table 16 DATAWRITER_QOS_DEFAULT (Continued)

QosPolicy Field Value

Table 17 Default values for DomainParticipantFactoryQos

QosPolicy Attribute Value
entity_factory autoenable_created_entities TRUE
400
C++ Reference Guide �������	

Appendices
DomainParticipantQos
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>

 struct DomainParticipantQos
 { UserDataQosPolicy user_data;
 EntityFactoryQosPolicy entity_factory;
 SchedulingQosPolicy watchdog_scheduling;
 SchedulingQosPolicy listener_scheduling; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a DomainParticipant.

Attributes
UserDataQosPolicy user_data - used to attach additional information to the

DomainParticipant.
EntityFactoryQosPolicy entity_factory - whether a just created Entity

should be enabled.
SchedulingQosPolicy watchdog_scheduling - the scheduling parameters

used to create the watchdog thread.
SchedulingQosPolicy listener_scheduling - the scheduling parameters

used to create the listener thread.

Detailed Description
A DomainParticipant will spawn different threads for different purposes:
• A listener thread is spawned to perform the callbacks to all Listener objects

attached to the various Entities contained in the DomainParticipant. The
scheduling parameters for this thread can be specified in the
listener_scheduling field of the DomainParticipantQos.

• A watchdog thread is spawned to report the the Liveliness of all Entities
contained in the DomainParticipant whose LivelinessQosPolicyKind in
their LivelinessQosPolicy is set to AUTOMATIC_LIVELINESS_QOS. The
scheduling parameters for this thread can be specified in the
watchdog_scheduling field of the DomainParticipantQos.

A QosPolicy can be set when the DomainParticipant is created with the
create_participant operation (or modified with the set_qos operation). Both
operations take the DomainParticipantQos struct as a parameter. There may be
401
C++ Reference Guide�������	

 Appendices
cases where several policies are in conflict. Consistency checking is performed each
time the policies are modified when they are being created and, in case they are
already enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DomainParticipant creation time or prior to calling the enable
operation on the DomainParticipant.
T h e i n i t i a l v a l u e o f t h e d e f a u l t DomainParticipantQos i n t h e
DomainParticipantFactory are given in the following table:

PublisherQos
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct PublisherQos

 { PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a Publisher.

Table 18 PARTICIPANT_QOS_DEFAULT

QosPolicy Field Value
user_data value.length 0

entity_factory autoenable_created_entities True

watchdog_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0

listener_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0
402
C++ Reference Guide �������	

Appendices
Attributes
PresentationQosPolicy presentation - the dependency of changes to

data-instances.
PartitionQosPolicy partition - the partitions in which the Publisher is

active.
GroupDataQosPolicy group_data - used to attach additional information to

the Publisher.
EntityFactoryQosPolicy entity_factory - whether a just created

DataWriter should be enabled.

Detailed Description
A QosPolicy can be se t when the Publisher i s c rea ted wi th the
create_publisher operation (or modified with the set_qos operation). Both
operations take the PublisherQos struct as a parameter. There may be cases where
several policies are in conflict. Consistency checking is performed each time the
policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Publisher creation time or prior to calling the enable operation
on the Publisher.
The initial value of the default PublisherQos in the DomainParticipant are
given in the following table:

SubscriberQos
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>

Table 19 PUBLISHER_QOS_DEFAULT

QosPolicy Field Value
presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE

partition name.length 0

group_data value.length 0

entity_factory autoenable_created_entities TRUE
403
C++ Reference Guide�������	

 Appendices
struct SubscriberQos
 { PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a Subscriber.

Attributes
PresentationQosPolicy presentation - the dependency of changes to

data-instances.
PartitionQosPolicy partition - the partitions in which the Subscriber is

active.
GroupDataQosPolicy group_data - used to attach additional information to

the Subscriber.
EntityFactoryQosPolicy entity_factory - whether a just created

DataReader should be enabled.

Detailed Description
A QosPolicy can be set when the Subscriber i s created with the
create_subscriber operation (or modified with the set_qos operation). Both
operations take the SubscriberQos struct as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Subscriber creation time or prior to calling the enable
operation on the Subscriber.
The initial value of the default SubscriberQos in the DomainParticipant are
given in the following table:

Table 20 SUBSCRIBER_QOS_DEFAULT

QosPolicy Field Value
presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access FALSE

ordered_access FALSE
404
C++ Reference Guide �������	

Appendices
TopicQos
Scope

DDS

Synopsis
#include <ccpp_dds_dcps.h>
struct TopicQos

 { TopicDataQosPolicy topic_data;
 DurabilityQosPolicy durability;
 DurabilityServiceQosPolicy durability_service;

 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 OwnershipQosPolicy ownership; };

Description
This struct provides the basic mechanism for an application to specify Quality of
Service attributes for a Topic.

Attributes
TopicDataQosPolicy topic_data - used to attach additional information to

the Topic.
DurabilityQosPolicy durability - whether the data should be stored for late

joining readers.
DurabilityServiceQosPolicy durability_service - the behaviour of the

“transinet/persistent service” of the Data Distribution System regarding
Transient and Persistent Topic instances.

partition name.length 0

group_data value.length 0

entity_factory autoenable_
created_entities

TRUE

Table 20 SUBSCRIBER_QOS_DEFAULT

QosPolicy Field Value
405
C++ Reference Guide�������	

 Appendices
DeadlineQosPolicy deadline - the period within which a new sample is
expected or written.

LatencyBudgetQosPolicy latency_budget - used by the Data Distribution
Service for optimization.

LivelinessQosPolicy liveliness - the way the liveliness of the Topic is
asserted to the Data Distribution Service.

ReliabilityQosPolicy reliability - the reliability of the data distribution.
DestinationOrderQosPolicy destination_order - the order in which the

DataReader timely orders the data.
HistoryQosPolicy history - how samples should be stored.
ResourceLimitsQosPolicy resource_limits - the maximum amount of

resources to be used.
TransportPriorityQosPolicy transport_priority - a priority hint for the

underlying transport layer.
LifespanQosPolicy lifespan - the maximum duration of validity of the data

written by a DataWriter.
OwnershipQosPolicy ownership - whether a DataWriter exclusively owns

an instance.

Detailed Description
A QosPolicy can be set when the Topic is created with the create_topic
operation (or modified with the set_qos operation). Both operations take the
TopicQos struct as a parameter. There may be cases where several policies are in
conflict. Consistency checking is performed each time the policies are modified
when they are being created and, in case they are already enabled, via the set_qos
operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Topic creation time or prior to calling the enable operation on
the Topic.
The initial value of the default TopicQos in the DomainParticipant are given in
the following table:

Table 21 TOPIC_QOS_DEFAULT

QosPolicy Field Value
topic_data value.length 0

durability kind VOLATILE_DURABILITY_QOS
406
C++ Reference Guide �������	

Appendices
durability_service service_cleanup_delay 0

history_kind KEEP_LAST_HISTORY_QOS

history_depth 1

max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

transport_priority value 0

lifespan duration DURATION_INFINITE

ownership kind SHARED_OWNERSHIP_QOS

Table 21 TOPIC_QOS_DEFAULT (Continued)

QosPolicy Field Value
407
C++ Reference Guide�������	

 Appendices
408
C++ Reference Guide �������	

Appendix

B API Constants and Types
These constants and types are taken from the dds_dcps.h include file.
/* ---
 * Duration and Time
 * --*/
 struct Duration_t
 {
 Long sec;
 ULong nanosec;
 };

 const Long DURATION_INFINITE_SEC = (Long)2147483647;
 const ULong DURATION_INFINITE_NSEC = (ULong)2147483647UL;
 const Long DURATION_ZERO_SEC = (Long)0;
 const ULong DURATION_ZERO_NSEC = (ULong)0UL;

 const ::DDS::Duration_t DURATION_INFINITE =
 { DURATION_INFINITE_SEC, DURATION_INFINITE_NSEC };
 const ::DDS::Duration_t DURATION_ZERO =
 {0L,0U};

 struct Time_t
 {
 Long sec;
 ULong nanosec;
 };

/* ---
 * Pre-defined values
 * --- */
 const LongLong HANDLE_NIL = (LongLong)0x0;
 const Long LENGTH_UNLIMITED = (Long)-1;
 const Long TIMESTAMP_INVALID_SEC = (Long)-1;
 const ULong TIMESTAMP_INVALID_NSEC = (ULong)4294967295UL;

/*
--
 * Return Codes
 *
--
*/
 const Long RETCODE_OK = (Long)0;
409
C++ Reference Guide�������	

 Appendices
 const Long RETCODE_ERROR = (Long)1;
 const Long RETCODE_UNSUPPORTED = (Long)2;
 const Long RETCODE_BAD_PARAMETER = (Long)3;
 const Long RETCODE_PRECONDITION_NOT_MET = (Long)4;
 const Long RETCODE_OUT_OF_RESOURCES = (Long)5;
 const Long RETCODE_NOT_ENABLED = (Long)6;
 const Long RETCODE_IMMUTABLE_POLICY = (Long)7;
 const Long RETCODE_INCONSISTENT_POLICY = (Long)8;
 const Long RETCODE_ALREADY_DELETED = (Long)9;
 const Long RETCODE_TIMEOUT = (Long)10;
 const Long RETCODE_NO_DATA = (Long)11;
 const Long RETCODE_ILLEGAL_OPERATION = (Long)12;

/*
--
 * Status to support listeners and conditions
 *
--
*/
 const ULong INCONSISTENT_TOPIC_STATUS = (ULong)1UL;
 const ULong OFFERED_DEADLINE_MISSED_STATUS = (ULong)2UL;
 const ULong REQUESTED_DEADLINE_MISSED_STATUS = (ULong)4UL;
 const ULong OFFERED_INCOMPATIBLE_QOS_STATUS = (ULong)32UL;
 const ULong REQUESTED_INCOMPATIBLE_QOS_STATUS = (ULong)64UL;
 const ULong SAMPLE_LOST_STATUS = (ULong)128UL;
 const ULong SAMPLE_REJECTED_STATUS = (ULong)256UL;
 const ULong DATA_ON_READERS_STATUS = (ULong)512UL;
 const ULong DATA_AVAILABLE_STATUS = (ULong)1024UL;
 const ULong LIVELINESS_LOST_STATUS = (ULong)2048UL;
 const ULong LIVELINESS_CHANGED_STATUS = (ULong)4096UL;
 const ULong PUBLICATION_MATCHED_STATUS = (ULong)8192UL;
 const ULong SUBSCRIPTION_MATCHED_STATUS = (ULong)16384UL;

/* -- * States
 * -- */
/*
 * Sample states to support reads
 */
 const ULong READ_SAMPLE_STATE = (ULong)1UL;
 const ULong NOT_READ_SAMPLE_STATE = (ULong)2UL;

/*
 * This is a bit mask SampleStateKind
 */
 const ULong ANY_SAMPLE_STATE = (ULong)65535UL;

/*
410
C++ Reference Guide �������	

Appendices
 * View states to support reads
 */
 const ULong NEW_VIEW_STATE = (ULong)1UL;
 const ULong NOT_NEW_VIEW_STATE = (ULong)2UL;

/*
 * This is a bit mask ViewStateKind
 */
 const ULong ANY_SAMPLE_STATE = (ULong)65535UL;

/*
 * Instance states to support reads
 */
 const ULong ALIVE_INSTANCE_STATE = (ULong)1UL;
 const ULong NOT_ALIVE_DISPOSED_INSTANCE_STATE = (ULong)2UL;
 const ULong NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = (ULong)4UL;

/*
 * This is a bit mask InstanceStateKind
 */
 const ULong ANY_INSTANCE_STATE = (ULong)65535UL;
 const ULong NOT_ALIVE_INSTANCE_STATE = (ULong)6UL;

/* ---
 * Participant Factory define
 * --- */
 #define TheParticipantFactory

(::DDS::DomainParticipantFactory::get_instance())

/* ---
 * Qos defines
 * -- */
#define TheParticipantFactory

(::DDS::DomainParticipantFactory::get_instance())
#define PARTICIPANT_QOS_DEFAULT

(*::DDS::DomainParticipantFactory::participant_qos_default())
#define TOPIC_QOS_DEFAULT

(*::DDS::DomainParticipantFactory::topic_qos_default())
#define PUBLISHER_QOS_DEFAULT

(*::DDS::DomainParticipantFactory::publisher_qos_default())
#define SUBSCRIBER_QOS_DEFAULT

(*::DDS::DomainParticipantFactory::subscriber_qos_default())
#define DATAREADER_QOS_DEFAULT

(*::DDS::DomainParticipantFactory::datareader_qos_default())
#define DATAREADER_QOS_USE_TOPIC_QOS
 (*::DDS::DomainParticipantFactory::datareader_qos_use_topic_qos())
#define DATAWRITER_QOS_DEFAULT
411
C++ Reference Guide�������	

 Appendices
(*::DDS::DomainParticipantFactory::datawriter_qos_default())
#define DATAWRITER_QOS_USE_TOPIC_QOS
 (*::DDS::DomainParticipantFactory::datawriter_qos_use_topic_qos())

/* ---
 * QosPolicy
 * --- */
 const String USERDATA_QOS_POLICY_NAME =

(String)"UserData";
 const String DURABILITY_QOS_POLICY_NAME =

(String)"Durability";
 const String PRESENTATION_QOS_POLICY_NAME =

(String)"Presentation";
 const String DEADLINE_QOS_POLICY_NAME =

(String)"Deadline";
 const String LATENCYBUDGET_QOS_POLICY_NAME =
 (String)"LatencyBudget";
 const String OWNERSHIP_QOS_POLICY_NAME =

(String)"Ownership";
 const String OWNERSHIPSTRENGTH_QOS_POLICY_NAME =
 (String)"OwnershipStrength";
 const String LIVELINESS_QOS_POLICY_NAME =

(String)"Liveliness";
 const String TIMEBASEDFILTER_QOS_POLICY_NAME =
 String)"TimeBasedFilter";
 const String PARTITION_QOS_POLICY_NAME =

(String)"Partition";
 const String RELIABILITY_QOS_POLICY_NAME =

(String)"Reliability";
 const String DESTINATIONORDER_QOS_POLICY_NAME =
 (String)"DestinationOrder";
 const String HISTORY_QOS_POLICY_NAME =

(String)"History";
 const String RESOURCELIMITS_QOS_POLICY_NAME =
 (String)"ResourceLimits";
 const String ENTITYFACTORY_QOS_POLICY_NAME =
 (String)"EntityFactory";
 const String WRITERDATALIFECYCLE_QOS_POLICY_NAME =
 (String)"WriterDataLifecycle";
 const String READERDATALIFECYCLE_QOS_POLICY_NAME =
 (String)"ReaderDataLifecycle";
 const String TOPICDATA_QOS_POLICY_NAME =

(String)"TopicData";
 const String GROUPDATA_QOS_POLICY_NAME =

(String)"GroupData";
 const String TRANSPORTPRIORITY_QOS_POLICY_NAME =
 (String)"TransportPriority";
 const String LIFESPAN_QOS_POLICY_NAME =

(String)"Lifespan";
412
C++ Reference Guide �������	

Appendices
 const String DURABILITYSERVICE_QOS_POLICY_NAME =
 (String)"DurabilityService";

 const Long INVALID_QOS_POLICY_ID = (Long)0;
 const Long USERDATA_QOS_POLICY_ID = (Long)1;
 const Long DURABILITY_QOS_POLICY_ID = (Long)2;
 const Long PRESENTATION_QOS_POLICY_ID = (Long)3;
 const Long DEADLINE_QOS_POLICY_ID = (Long)4;
 const Long LATENCYBUDGET_QOS_POLICY_ID = (Long)5;
 const Long OWNERSHIP_QOS_POLICY_ID = (Long)6;
 const Long OWNERSHIPSTRENGTH_QOS_POLICY_ID = (Long)7;
 const Long LIVELINESS_QOS_POLICY_ID = (Long)8;
 const Long TIMEBASEDFILTER_QOS_POLICY_ID = (Long)9;
 const Long PARTITION_QOS_POLICY_ID = (Long)10;
 const Long RELIABILITY_QOS_POLICY_ID = (Long)11;
 const Long DESTINATIONORDER_QOS_POLICY_ID = (Long)12;
 const Long HISTORY_QOS_POLICY_ID = (Long)13;
 const Long RESOURCELIMITS_QOS_POLICY_ID = (Long)14;
 const Long ENTITYFACTORY_QOS_POLICY_ID = (Long)15;
 const Long WRITERDATALIFECYCLE_QOS_POLICY_ID = (Long)16;
 const Long READERDATALIFECYCLE_QOS_POLICY_ID = (Long)17;
 const Long TOPICDATA_QOS_POLICY_ID = (Long)18;
 const Long GROUPDATA_QOS_POLICY_ID = (Long)19;
 const Long TRANSPORTPRIORITY_QOS_POLICY_ID = (Long)20;
 const Long LIFESPAN_QOS_POLICY_ID = (Long)21;
 const Long DURABILITYSERVICE_QOS_POLICY_ID = (Long)22;
413
C++ Reference Guide�������	

 Appendices
414
C++ Reference Guide �������	

Appendix

C Platform Specific Model IDL
Interface

The IDL code in the next paragraphs are taken from the OMG C++ Language
Mapping Specification.

dds_dcps.idl
#define DOMAINID_TYPE_NATIVE string
#define HANDLE_TYPE_NATIVE long long
#define HANDLE_NIL_NATIVE 0
#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long
#define TheParticipantFactory
#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS
module DDS {
 typedef DOMAINID_TYPE_NATIVE DomainId_t;
 typedef HANDLE_TYPE_NATIVE InstanceHandle_t;
 typedef BUILTIN_TOPIC_KEY_TYPE_NATIVE BuiltinTopicKey_t[3];
 typedef sequence<InstanceHandle_t> InstanceHandleSeq;
 typedef long ReturnCode_t;
 typedef long QosPolicyId_t;
 typedef sequence<string> StringSeq;
 struct Duration_t {

long sec;
unsigned long nanosec;

 };
 struct Time_t {

long sec;
unsigned long nanosec;

 };
 //
 // Pre-defined values
 //
 const InstanceHandle_t HANDLE_NIL = HANDLE_NIL_NATIVE;
 const long LENGTH_UNLIMITED = -1;
 const long DURATION_INFINITE_SEC = 0x7fffffff;
415
C++ Reference Guide�������	

 Appendices
 const unsigned long DURATION_INFINITE_NSEC= 0x7fffffff;
 const long DURATION_ZERO_SEC= 0;
 const unsigned long DURATION_ZERO_NSEC= 0;
 const long TIMESTAMP_INVALID_SEC= -1;
 const unsigned long TIMESTAMP_INVALID_NSEC= 0xffffffff;
 //
 // Return codes
 //
 const ReturnCode_t RETCODE_OK = 0;
 const ReturnCode_t RETCODE_ERROR = 1;
 const ReturnCode_t RETCODE_UNSUPPORTED = 2;
 const ReturnCode_t RETCODE_BAD_PARAMETER = 3;
 const ReturnCode_t RETCODE_PRECONDITION_NOT_MET = 4;
 const ReturnCode_t RETCODE_OUT_OF_RESOURCES = 5;
 const ReturnCode_t RETCODE_NOT_ENABLED = 6;
 const ReturnCode_t RETCODE_IMMUTABLE_POLICY = 7;
 const ReturnCode_t RETCODE_INCONSISTENT_POLICY = 8;
 const ReturnCode_t RETCODE_ALREADY_DELETED = 9;
 const ReturnCode_t RETCODE_TIMEOUT = 10;
 const ReturnCode_t RETCODE_NO_DATA = 11;
 const ReturnCode_t RETCODE_ILLEGAL_OPERATION = 12;

 //
 // Status to support listeners and conditions
 //
 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask; // bit-mask StatusKind
 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;
 struct InconsistentTopicStatus {

long total_count;
long total_count_change;

 };
 struct SampleLostStatus {

long total_count;
long total_count_change;

 };
 enum SampleRejectedStatusKind {

NOT_REJECTED,
416
C++ Reference Guide �������	

Appendices
REJECTED_BY_INSTANCE_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

 };
 struct SampleRejectedStatus {

long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

 };
 struct LivelinessLostStatus {

long total_count;
long total_count_change;

 };
 struct LivelinessChangedStatus {

long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;

 };
 struct OfferedDeadlineMissedStatus {

long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };
 struct RequestedDeadlineMissedStatus {

long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };
 struct QosPolicyCount {

QosPolicyId_t policy_id;
long count;

 };
 typedef sequence<QosPolicyCount> QosPolicyCountSeq;
 struct OfferedIncompatibleQosStatus {

long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };
 struct RequestedIncompatibleQosStatus {

long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };
 struct PublicationMatchedStatus {

long total_count;
417
C++ Reference Guide�������	

 Appendices
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;

 };
 struct SubscriptionMatchedStatus {

long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;

 };
 //
 // Listeners
 //
 interface Listener;
 interface Entity;
 interface TopicDescription;
 interface Topic;
 interface ContentFilteredTopic;
 interface MultiTopic;
 interface DataWriter;
 interface DataReader;
 interface Subscriber;
 interface Publisher;
 typedef sequence<Topic> TopicSeq;
 typedef sequence<DataReader> DataReaderSeq;
 interface Listener {
 };
 interface TopicListener : Listener {

void
on_inconsistent_topic(
 in Topic the_topic,
 in InconsistentTopicStatus status);

 };
 interface DataWriterListener : Listener {

void
on_offered_deadline_missed(
 in DataWriter writer,
 in OfferedDeadlineMissedStatus status);

void
on_offered_incompatible_qos(
 in DataWriter writer,
 in OfferedIncompatibleQosStatus status);

void
on_liveliness_lost(
 in DataWriter writer,
 in LivelinessLostStatus status);

void
on_publication_matched(
418
C++ Reference Guide �������	

Appendices
 in DataWriter writer,
 in PublicationMatchedStatus status);

 };
 interface PublisherListener : DataWriterListener {
 };
 interface DataReaderListener : Listener {

void
on_requested_deadline_missed(
 in DataReader reader,
 in RequestedDeadlineMissedStatus status);

void
on_requested_incompatible_qos(
 in DataReader reader,
 in RequestedIncompatibleQosStatus status);

void
on_sample_rejected(
 in DataReader reader,
 in SampleRejectedStatus status);

void
on_liveliness_changed(
 in DataReader reader,
 in LivelinessChangedStatus status);

void
on_data_available(
 in DataReader reader);

void
on_subscription_matched(
 in DataReader reader,
 in SubscriptionMatchedStatus status);

void
on_sample_lost(
 in DataReader reader,
 in SampleLostStatus status);

 };
 interface SubscriberListener : DataReaderListener {

void
on_data_on_readers(
 in Subscriber subs);

 };
 interface DomainParticipantListener : TopicListener,

 PublisherListener,
 SubscriberListener {

 };
 //
 // Conditions
 //
 interface Condition {

boolean
get_trigger_value();

 };
419
C++ Reference Guide�������	

 Appendices
 typedef sequence<Condition> ConditionSeq;
 interface WaitSet {

ReturnCode_t
wait(
 inout ConditionSeq active_conditions,
 in Duration_t timeout);
ReturnCode_t
attach_condition(
 in Condition cond);
ReturnCode_t
detach_condition(
 in Condition cond);
ReturnCode_t
get_conditions(
 inout ConditionSeq attached_conditions);

 };
 interface GuardCondition : Condition {

ReturnCode_t
set_trigger_value(
 in boolean value);

 };
 interface StatusCondition : Condition {

StatusMask
get_enabled_statuses();
ReturnCode_t
set_enabled_statuses(
 in StatusMask mask);
Entity
get_entity();

 };
 // Sample states to support reads
 typedef unsigned long SampleStateKind;
 typedef sequence <SampleStateKind> SampleStateSeq;
 const SampleStateKind READ_SAMPLE_STATE = 0x0001 << 0;
 const SampleStateKind NOT_READ_SAMPLE_STATE = 0x0001 << 1;
 // This is a bit-mask SampleStateKind
 typedef unsigned long SampleStateMask;
 const SampleStateMask ANY_SAMPLE_STATE = 0xffff;
 // View states to support reads
 typedef unsigned long ViewStateKind;
 typedef sequence<ViewStateKind> ViewStateSeq;
 const ViewStateKind NEW_VIEW_STATE = 0x0001 << 0;
 const ViewStateKind NOT_NEW_VIEW_STATE = 0x0001 << 1;
 // This is a bit-mask ViewStateKind
 typedef unsigned long ViewStateMask;
 const ViewStateMask ANY_VIEW_STATE = 0xffff;
 // Instance states to support reads
 typedef unsigned long InstanceStateKind;
 typedef sequence<InstanceStateKind> InstanceStateSeq;
 const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001 << 0;
420
C++ Reference Guide �������	

Appendices
 const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE = 0x0001
 << 1;

 const InstanceStateKind NOT_ALIVE_NO_WRITERS_INSTANCE_STATE =
 0x0001 << 2;

 // This is a bit-mask InstanceStateKind
 typedef unsigned long InstanceStateMask;
 const InstanceStateMask ANY_INSTANCE_STATE = 0xffff;
 const InstanceStateMask NOT_ALIVE_INSTANCE_STATE = 0x006;
 interface ReadCondition : Condition {

SampleStateMask
get_sample_state_mask();
ViewStateMask
get_view_state_mask();
InstanceStateMask
get_instance_state_mask();
DataReader
get_datareader();

 };
 interface QueryCondition : ReadCondition {

string
get_query_expression();
ReturnCode_t
get_query_parameters(
 inout StringSeq query_parameters);
ReturnCode_t
set_query_parameters(
 in StringSeq query_parameters);

 };
 //
 // Qos
 //
 const string USERDATA_QOS_POLICY_NAME = "UserData";
 const string DURABILITY_QOS_POLICY_NAME = "Durability";
 const string PRESENTATION_QOS_POLICY_NAME = "Presentation";
 const string DEADLINE_QOS_POLICY_NAME = "Deadline";
 const string LATENCYBUDGET_QOS_POLICY_NAME = "LatencyBudget";
 const string OWNERSHIP_QOS_POLICY_NAME = "Ownership";
 const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME=

 "OwnershipStrength";
 const string LIVELINESS_QOS_POLICY_NAME = "Liveliness";
 const string TIMEBASEDFILTER_QOS_POLICY_NAME= "TimeBasedFilter";
 const string PARTITION_QOS_POLICY_NAME = "Partition";
 const string RELIABILITY_QOS_POLICY_NAME = "Reliability";
 const string DESTINATIONORDER_QOS_POLICY_NAME =

 "DestinationOrder";
 const string HISTORY_QOS_POLICY_NAME = "History";
 const string RESOURCELIMITS_QOS_POLICY_NAME= "ResourceLimits";
 const string ENTITYFACTORY_QOS_POLICY_NAME = "EntityFactory";
 const string WRITERDATALIFECYCLE_QOS_POLICY_NAM=

 "WriterDataLifecycle";
421
C++ Reference Guide�������	

 Appendices
 const string READERDATALIFECYCLE_QOS_POLICY_NAM=
 "ReaderDataLifecycle";

 const string TOPICDATA_QOS_POLICY_NAME = "TopicData";
 const string GROUPDATA_QOS_POLICY_NAME = "GroupData";
 const string TRANSPORTPRIORITY_QOS_POLICY_NAME=

 "TransportPriority";
 const string LIFESPAN_QOS_POLICY_NAME = "Lifespan";
 const string DURABILITYSERVICE_QOS_POLICY_NAME=

 "DurabilityService";
 const QosPolicyId_t INVALID_QOS_POLICY_ID = 0;
 const QosPolicyId_t USERDATA_QOS_POLICY_ID = 1;
 const QosPolicyId_t DURABILITY_QOS_POLICY_ID = 2;
 const QosPolicyId_t PRESENTATION_QOS_POLICY_ID = 3;
 const QosPolicyId_t DEADLINE_QOS_POLICY_ID = 4;
 const QosPolicyId_t LATENCYBUDGET_QOS_POLICY_ID = 5;
 const QosPolicyId_t OWNERSHIP_QOS_POLICY_ID = 6;
 const QosPolicyId_t OWNERSHIPSTRENGTH_QOS_POLICY_ID = 7;
 const QosPolicyId_t LIVELINESS_QOS_POLICY_ID = 8;
 const QosPolicyId_t TIMEBASEDFILTER_QOS_POLICY_ID = 9;
 const QosPolicyId_t PARTITION_QOS_POLICY_ID = 10;
 const QosPolicyId_t RELIABILITY_QOS_POLICY_ID = 11;
 const QosPolicyId_t DESTINATIONORDER_QOS_POLICY_ID = 12;
 const QosPolicyId_t HISTORY_QOS_POLICY_ID = 13;
 const QosPolicyId_t RESOURCELIMITS_QOS_POLICY_ID = 14;
 const QosPolicyId_t ENTITYFACTORY_QOS_POLICY_ID = 15;
 const QosPolicyId_t WRITERDATALIFECYCLE_QOS_POLICY_ID= 16;
 const QosPolicyId_t READERDATALIFECYCLE_QOS_POLICY_ID= 17;
 const QosPolicyId_t TOPICDATA_QOS_POLICY_ID = 18;
 const QosPolicyId_t GROUPDATA_QOS_POLICY_ID = 19;
 const QosPolicyId_t TRANSPORTPRIORITY_QOS_POLICY_ID = 20;
 const QosPolicyId_t LIFESPAN_QOS_POLICY_ID = 21;
 const QosPolicyId_t DURABILITYSERVICE_QOS_POLICY_ID = 22;
 struct UserDataQosPolicy {

sequence<octet> value;
 };
 struct TopicDataQosPolicy {

sequence<octet> value;
 };
 struct GroupDataQosPolicy {

sequence<octet> value;
 };
 struct TransportPriorityQosPolicy {

long value;
 };
 struct LifespanQosPolicy {

Duration_t duration;
 };
 enum DurabilityQosPolicyKind {

VOLATILE_DURABILITY_QOS,
TRANSIENT_LOCAL_DURABILITY_QOS,
422
C++ Reference Guide �������	

Appendices
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS

 };
 struct DurabilityQosPolicy {

DurabilityQosPolicyKind kind;
 };
 enum PresentationQosPolicyAccessScopeKind {

INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

 };
 struct PresentationQosPolicy {

PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

 };
 struct DeadlineQosPolicy {

Duration_t period;
 };
 struct LatencyBudgetQosPolicy {

Duration_t duration;
 };
 enum OwnershipQosPolicyKind {

SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

 };
 struct OwnershipQosPolicy {

OwnershipQosPolicyKind kind;
 };
 struct OwnershipStrengthQosPolicy {

long value;
 };
 enum LivelinessQosPolicyKind {

AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

 };
 struct LivelinessQosPolicy {

LivelinessQosPolicyKind kind;
Duration_t lease_duration;

 };
 struct TimeBasedFilterQosPolicy {

Duration_t minimum_separation;
 };
 struct PartitionQosPolicy {

StringSeq name;
 };
 enum ReliabilityQosPolicyKind {

BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS
423
C++ Reference Guide�������	

 Appendices
 };
 struct ReliabilityQosPolicy {

ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

 };
 enum DestinationOrderQosPolicyKind {

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

 };
 struct DestinationOrderQosPolicy {

DestinationOrderQosPolicyKind kind;
 };
 enum HistoryQosPolicyKind {

KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

 };
 struct HistoryQosPolicy {

HistoryQosPolicyKind kind;
long depth;

 };
 struct ResourceLimitsQosPolicy {

long max_samples;
long max_instances;
long max_samples_per_instance;

 };
 struct EntityFactoryQosPolicy {

boolean autoenable_created_entities;
 };
 struct WriterDataLifecycleQosPolicy {

boolean autodispose_unregistered_instances;
 };
 struct ReaderDataLifecycleQosPolicy {

Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;

 };
 struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };
 struct DomainParticipantFactoryQos {
 EntityFactoryQosPolicy entity_factory;
 };
 struct DomainParticipantQos {

UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_factory;

 };
424
C++ Reference Guide �������	

Appendices
 struct TopicQos {
TopicDataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

 };
 struct DataWriterQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDataLifecycleQosPolicy writer_data_lifecycle;

 };
 struct PublisherQos {

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };
 struct DataReaderQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;
ReaderDataLifecycleQosPolicy reader_data_lifecycle;
425
C++ Reference Guide�������	

 Appendices
 };
 struct SubscriberQos {

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };
 //
 struct ParticipantBuiltinTopicData {

BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

 };
 struct TopicBuiltinTopicData {

BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

 };
 struct PublicationBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };
 struct SubscriptionBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
426
C++ Reference Guide �������	

Appendices
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };
 //
 interface Entity {
 // ReturnCode_t
 // set_qos(
 // in EntityQos qos);
 //
 // ReturnCode_t
 // get_qos(
 // inout EntityQos qos);
 //
 // ReturnCode_t
 // set_listener(
 // in Listener l,
 // in StatusMask mask);
 //
 // Listener
 // get_listener();

ReturnCode_t
enable();
StatusCondition
get_statuscondition();
StatusMask
get_status_changes();

 };
 //
 interface DomainParticipant : Entity {
 // Factory interfaces

Publisher
create_publisher(
 in PublisherQos qos,
 in PublisherListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_publisher(
 in Publisher p);
427
C++ Reference Guide�������	

 Appendices
Subscriber
create_subscriber(
 in SubscriberQos qos,
 in SubscriberListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_subscriber(
 in Subscriber s);
Subscriber
get_builtin_subscriber();
Topic
create_topic(
 in string topic_name,
 in string type_name,
 in TopicQos qos,
 in TopicListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_topic(
 in Topic a_topic);
Topic
find_topic(
 in string topic_name,
 in Duration_t timeout);
TopicDescription
lookup_topicdescription(
 in string name);
ContentFilteredTopic
create_contentfilteredtopic(
 in string name,
 in Topic related_topic,
 in string filter_expression,
 in StringSeq expression_parameters);
ReturnCode_t
delete_contentfilteredtopic(
 in ContentFilteredTopic a_contentfilteredtopic);
MultiTopic
create_multitopic(
 in string name,
 in string type_name,
 in string subscription_expression,
 in StringSeq expression_parameters);
ReturnCode_t
delete_multitopic(
 in MultiTopic a_multitopic);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in DomainParticipantQos qos);
428
C++ Reference Guide �������	

Appendices
ReturnCode_t
get_qos(
 inout DomainParticipantQos qos);
ReturnCode_t
set_listener(
 in DomainParticipantListener a_listener,
 in StatusMask mask);
DomainParticipantListener
get_listener();
ReturnCode_t
ignore_participant(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_topic(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_publication(
 in InstanceHandle_t handle);
ReturnCode_t
ignore_subscription(
 in InstanceHandle_t handle);
DomainId_t
get_domain_id();
ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_qos(
 in PublisherQos qos);
ReturnCode_t
get_default_publisher_qos(
 inout PublisherQos qos);
ReturnCode_t
set_default_subscriber_qos(
 in SubscriberQos qos);
ReturnCode_t
get_default_subscriber_qos(
 inout SubscriberQos qos);
ReturnCode_t
set_default_topic_qos(
 in TopicQos qos);
ReturnCode_t
get_default_topic_qos(
 inout TopicQos qos);

 boolean
contains_entity(
 in InstanceHandle_t a_handle);
ReturnCode_t
get_current_time(
 inout Time_t current_time);

 };
429
C++ Reference Guide�������	

 Appendices
 interface DomainParticipantFactory {
 //
 // DomainParticipantFactory
 // get_instance();
 //

DomainParticipant
create_participant(
 in DomainId_t domainId,
 in DomainParticipantQos qos,
 in DomainParticipantListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_participant(
 in DomainParticipant a_participant);
DomainParticipant
lookup_participant(
 in DomainId_t domainId);
ReturnCode_t
set_default_participant_qos(
 in DomainParticipantQos qos);
ReturnCode_t
get_default_participant_qos(
 inout DomainParticipantQos qos);

ReturnCode_t
set_qos(
 in DomainParticipantFactoryQos qos);
ReturnCode_t
get_qos(
 inout DomainParticipantFactoryQos qos);

 };
 interface TypeSupport {
 // ReturnCode_t
 // register_type(
 // in DomainParticipant domain,
 // in string type_name);
 //
 // string
 // get_type_name();
 };
 //
 interface TopicDescription {

string
get_type_name();

string
get_name();

DomainParticipant
get_participant();

 };
 interface Topic : Entity, TopicDescription {
430
C++ Reference Guide �������	

Appendices
ReturnCode_t
set_qos(
 in TopicQos qos);
ReturnCode_t

get_qos(
 inout TopicQos qos);
ReturnCode_t

set_listener(
 in TopicListener a_listener,
 in StatusMask mask);
TopicListener_ptr
get_listener();
// Access the status
ReturnCode_t
get_inconsistent_topic_status(
 inout InconsistentTopicStatus a_status);

 };
 interface ContentFilteredTopic : TopicDescription {

string
get_filter_expression();
ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);
ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);
Topic
get_related_topic();

 };
 interface MultiTopic : TopicDescription {

string
get_subscription_expression();
ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);
ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);

 };
 //
 interface Publisher : Entity {

DataWriter
create_datawriter(
 in Topic a_topic,
 in DataWriterQos qos,
 in DataWriterListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_datawriter(
 in DataWriter a_datawriter);
431
C++ Reference Guide�������	

 Appendices
DataWriter
lookup_datawriter(
 in string topic_name);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in PublisherQos qos);
ReturnCode_t
get_qos(
 inout PublisherQos qos);
ReturnCode_t
set_listener(
 in PublisherListener a_listener,
 in StatusMask mask);
PublisherListener
get_listener();
ReturnCode_t
suspend_publications();
ReturnCode_t
resume_publications();
ReturnCode_t
begin_coherent_changes();
ReturnCode_t
end_coherent_changes();
ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);
DomainParticipant
get_participant();
ReturnCode_t
set_default_datawriter_qos(
 in DataWriterQos qos);
ReturnCode_t
get_default_datawriter_qos(
 inout DataWriterQos qos);
ReturnCode_t
copy_from_topic_qos(
 inout DataWriterQos a_datawriter_qos,
 in TopicQos a_topic_qos);

 };
 interface DataWriter : Entity {
 // InstanceHandle_t
 // register_instance(
 // in Data instance_data);
 //
 // InstanceHandle_t
 // register_instance_w_timestamp(
 // in Data instance_data,
 // in Time_t source_timestamp);
432
C++ Reference Guide �������	

Appendices
 //
 // ReturnCode_t
 // unregister_instance(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // unregister_instance_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // write(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // write_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // dispose(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle);
 //
 // ReturnCode_t
 // dispose_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 //
 // InstanceHandle_t lookup_instance(
 // in Data instance_data);

ReturnCode_t
set_qos(
 in DataWriterQos qos);
ReturnCode_t
get_qos(
 inout DataWriterQos qos);
ReturnCode_t
set_listener(
 in DataWriterListener a_listener,
433
C++ Reference Guide�������	

 Appendices
 in StatusMask mask);
DataWriterListener
get_listener();
Topic
get_topic();
Publisher
get_publisher();
ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);
// Access the status
ReturnCode_t
get_liveliness_lost_status(
 inout LivelinessLostStatus status);
ReturnCode_t
get_offered_deadline_missed_status(
 inout OfferedDeadlineMissedStatus status);
ReturnCode_t
get_offered_incompatible_qos_status(
 inout OfferedIncompatibleQosStatus status);
ReturnCode_t
get_publication_matched_status(
 inout PublicationMatchedStatus status);
ReturnCode_t

assert_liveliness();
ReturnCode_t

get_matched_subscriptions(
 inout InstanceHandleSeq subscription_handles);
ReturnCode_t

get_matched_subscription_data(
 inout SubscriptionBuiltinTopicData subscription_data,
 in InstanceHandle_t subscription_handle);

 };
 //
 interface Subscriber : Entity {

DataReader
create_datareader(
 in TopicDescription a_topic,
 in DataReaderQos qos,
 in DataReaderListener a_listener,
 in StatusMask mask);
ReturnCode_t
delete_datareader(
 in DataReader a_datareader);
ReturnCode_t
delete_contained_entities();
DataReader
lookup_datareader(
 in string topic_name);
ReturnCode_t
434
C++ Reference Guide �������	

Appendices
get_datareaders(
 inout DataReaderSeq readers,
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);
ReturnCode_t
notify_datareaders();
ReturnCode_t

set_qos(
 in SubscriberQos qos);
ReturnCode_t

get_qos(
 inout SubscriberQos qos);
ReturnCode_t
set_listener(
 in SubscriberListener a_listener,
 in StatusMask mask);
SubscriberListener
get_listener();
ReturnCode_t
begin_access();
ReturnCode_t
end_access();
DomainParticipant
get_participant();
ReturnCode_t
set_default_datareader_qos(
 in DataReaderQos qos);
ReturnCode_t
get_default_datareader_qos(
 inout DataReaderQos qos);
ReturnCode_t
copy_from_topic_qos(
 inout DataReaderQos a_datareader_qos,
 in TopicQos a_topic_qos);

 };
 interface DataReader : Entity {
 // ReturnCode_t
 // read(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
435
C++ Reference Guide�������	

 Appendices
 // in Long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // read_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // take_next_sample(
 // inout Data data_values,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // read_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
436
C++ Reference Guide �������	

Appendices
 // read_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in Long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // return_loan(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq);
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 //
 // InstanceHandle_t
 // lookup_instance(
 // in Data instance);

ReadCondition
create_readcondition(
437
C++ Reference Guide�������	

 Appendices
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);
QueryCondition
create_querycondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states,
 in string query_expression,
 in StringSeq query_parameters);
ReturnCode_t
delete_readcondition(
 in ReadCondition a_condition);
ReturnCode_t
delete_contained_entities();
ReturnCode_t
set_qos(
 in DataReaderQos qos);
ReturnCode_t
get_qos(
 inout DataReaderQos qos);
ReturnCode_t
set_listener(
 in DataReaderListener a_listener,
 in StatusMask mask);
DataReaderListener
get_listener();
TopicDescription
get_topicdescription();
Subscriber
get_subscriber();
ReturnCode_t
get_sample_rejected_status(
 inout SampleRejectedStatus status);
ReturnCode_t
get_liveliness_changed_status(
 inout LivelinessChangedStatus status);
ReturnCode_t
get_requested_deadline_missed_status(
 inout RequestedDeadlineMissedStatus status);
ReturnCode_t
get_requested_incompatible_qos_status(
 inout RequestedIncompatibleQosStatus status);
ReturnCode_t
get_subscription_matched_status(
 inout SubscriptionMatchedStatus status);
ReturnCode_t
get_sample_lost_status(
 inout SampleLostStatus status);
ReturnCode_t
438
C++ Reference Guide �������	

Appendices
wait_for_historical_data(
 in Duration_t max_wait);
ReturnCode_t
get_matched_publications(
 inout InstanceHandleSeq publication_handles);
ReturnCode_t
get_matched_publication_data(
 inout PublicationBuiltinTopicData publication_data,
 in InstanceHandle_t publication_handle);

 };
 struct SampleInfo {

SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;

 };
 typedef sequence<SampleInfo> SampleInfoSeq;
};
Foo.idl
 // Implied IDL for type "Foo"
 // Example user defined structure
 struct Foo {

long dummy;
 };
 typedef sequence<Foo> FooSeq;
 #include "dds_dcps.idl"
 interface FooTypeSupport : DDS::TypeSupport {

DDS::ReturnCode_t
register_type(
 in DDS::DomainParticipant participant,
 in string type_name);
string
get_type_name();

 };
 interface FooDataWriter : DDS::DataWriter {

DDS::InstanceHandle_t
register_instance(
 in Foo instance_data);
DDS::InstanceHandle_t
register_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
439
C++ Reference Guide�������	

 Appendices
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
unregister_instance(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);
DDS::ReturnCode_t
unregister_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
write(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);
DDS::ReturnCode_t
write_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
dispose(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle);
DDS::ReturnCode_t
dispose_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle,
 in DDS::Time_t source_timestamp);
DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);
DDS::InstanceHandle_t
lookup_instance(
 in Foo instance_data);

 };
 interface FooDataReader : DDS::DataReader {

DDS::ReturnCode_t
read(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
take(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
440
C++ Reference Guide �������	

Appendices
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
take_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
read_next_sample(
 inout Foo data_values,
 inout DDS::SampleInfo sample_info);
DDS::ReturnCode_t
take_next_sample(
 inout Foo data_values,
 inout DDS::SampleInfo sample_info);
DDS::ReturnCode_t
read_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
take_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
441
C++ Reference Guide�������	

 Appendices
DDS::ReturnCode_t
take_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
DDS::ReturnCode_t
read_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
take_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in Long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);
DDS::ReturnCode_t
return_loan(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq);
DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);
DDS::InstanceHandle_t
lookup_instance(
 in Foo instance);

 };
442
C++ Reference Guide �������	

Appendix

D SampleStates, ViewStates and
InstanceStates

Data is made available to the application by the following operations on
DataReader objects: read and take operations. The general semantics of the
read operations is that the application only gets access to the matching data; the
data remain available in the Data Distribution Services and can be read again. The
semantics of the take operations is that the data is not available in the Data
Distribution Service; that data will no longer be accessible to the DataReader.
Consequently, it is possible for a DataReader to access the same sample multiple
times but only if all previous accesses were read operations.
Each of these operations returns an ordered collection of Data values and
associated SampleInfo objects. Each data value represents an atom of data
information (i.e., a value for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the HistoryQosPolicy allow for
it.

SampleInfo Class
SampleInfo is the information that accompanies each sample that is ‘read’ or
‘taken’. It contains, among others, the following information:
• The sample_state (READ_SAMPLE_STATE or NOT_READ_SAMPZWLE_STATE)
• The view_state (NEW_VIEW_STATE or NOT_NEW_VIEW_STATE)
• The instance_state (ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE or
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE).

sample_state
For each sample, the Data Distribution Service internally maintains a
sample_state specific to each DataReader. The sample_state can either be
READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE.
READ_SAMPLE_STATE indicates that the DataReader has already accessed that
sample by means of read. Had the sample been accessed by take it would no
longer be available to the DataReader;
443
C++ Reference Guide�������	

 Appendices
• NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that
sample before.

Figure 20: Single Sample sample_state State Chart

State Per Sample
The sample_state available in the SampleInfo reflect the sample_state of
each sample. The sample_state can be different for all samples in the returned
collection that refer to the same instance.

instance_state
For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state can be:
• ALIVE_INSTANCE_STATE, which indicates that

 - samples have been received for the instance

new sample received

take /

read

read

READ_SAMPLE_STATE

take /

(first time seen)

NOT_READ_SAMPLE_STATE

sample is “overwritten”

sample is “overwritten”
444
C++ Reference Guide �������	

Appendices
 - there are live DataWriter objects writing the instance
 - the instance has not been explicitly disposed of (or else samples have been

received after it was disposed of)
• NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was disposed

of by a DataWriter, either explicitly by means of the dispose operation or
implicitly in case the autodispose_unregistered_instances field of the
WriterDataLyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, WriterDataLifecycleQosPolicy) and no new
samples for that instance have been written afterwards.

• NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has been
declared as not-alive by the DataReader because it detected that there are no live
DataWriter objects writing that instance.

OwnershipQosPolicy
The precise events that cause the instance_state to change depends on the
setting of the OwnershipQosPolicy:
• If OwnershipQosPolicy is set to EXCLUSIVE_OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE only if
the DataWriter that “owns” the instance explicitly disposes of it. The
instance_state becomes ALIVE_INSTANCE_STATE again only if the
DataWriter that owns the instance writes it;

• If OwnershipQosPolicy is set to SHARED_OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE if any
DataWriter explicitly disposes of the instance. The instance_state becomes
ALIVE_INSTANCE_STATE as soon as any DataWriter writes the instance again.
445
C++ Reference Guide�������	

 Appendices
Figure 21: State Chart of the instance_state for a Single Instance

Snapshot
The instance_state available in the SampleInfo is a snapshot of the
instance_state of the instance at the time the collection was obtained (i.e. at the
time read or take was called). The instance_state is therefore the same for all
samples in the returned collection that refer to the same instance.

view_state
For each instance (identified by the key), the Data Distribution Service internally
maintains a view_state relative to each DataReader. The view_state can
either be NEW_VIEW_STATE or NOT_NEW_VIEW_STATE.

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE

ALIVE_INSTANCE_STATE

NOT_ALIVE_DISPOSED_INSTANCE_STATE

sample received

sample for 'never seen'

no "live"instance disposed

sample received/

[no samples in the DataReader [no samples in

"live" DataWriter detected/

DataWritersof by DataWriter

the DataReader] && no "live" DataWriters]

instance received/
446
C++ Reference Guide �������	

Appendices
NEW_VIEW_STATE indicates that either this is the first time that the DataReader
has ever accessed samples of that instance, or else that the DataReader has
accessed previous samples of the instance, but the instance has since been reborn
(i.e. becomes not-alive and then alive again);
• NOT_NEW_VIEW_STATE indicates that the DataReader has already accessed

samples of the same instance and that the instance has not been reborn since.

Figure 22: Single Instance view_state State Chart

Snapshot
The view_state available in the SampleInfo is a snapshot of view_state of
the instance relative to the DataReader used to access the samples at the time the
collection was obtained (i.e. at the time read or take was called). The
view_state is therefore the same for all samples in the returned collection that
refer to the same instance.

sample for 'never seen'
instance received/

NEW_VIEW_STATE

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]

sample received

read/take

read/take

NOT_NEW_VIEW_STATE
447
C++ Reference Guide�������	

 Appendices
State Masks
State Definitions
All states are available as a constant. These convenience constants can be used to
create a bit mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.
The sample state definitions indicates whether or not the matching data sample has
already been read:
• READ_SAMPLE_STATE: sample has already been read;
• NOT_READ_SAMPLE_STATE: sample has not been read.
The view state definitions indicates whether the DataReader has already seen
samples for the most-current generation of the related instance:
• NEW_VIEW_STATE: all samples of this instance are new;
• NOT_NEW_VIEW_STATE: some or all samples of this instance are not new.
The instance state definitions indicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:
• ALIVE_INSTANCE_STATE: this instance is currently in existence;
• NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of by a
DataWriter;

• NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been disposed
of by the DataReader because none of the DataWriter objects currently
“alive” (according to the LivelinessQosPolicy) are writing the instance.

Pre-defined Bit Mask Definitions
For convenience, some pre-defined bit masks are available as a constant definition.
These bit mask constants can be used where a state bit mask is required. They can
also be used for testing whether certain bits are set.
The sample state bit mask definition selects both sample states
• ANY_SAMPLE_STATE: either the sample has already been read or not read
The view state bit mask definition selects both view states
• ANY_VIEW_STATE: either the sample has already been seen or not seen
The instance state bit mask definitions selects a combination of instance states
• NOT_ALIVE_INSTANCE_STATE: this instance was disposed of by a DataWriter

or the DataReader
• ANY_INSTANCE_STATE: this Instance is either in existence or not in existence
448
C++ Reference Guide �������	

Appendices
Operations Concerning States
The application accesses data by means of the operations read or take on the
DataReader. These operations return an ordered collection of DataSamples
consisting of a SampleInfo part and a Data part. The way the Data Distribution
Service builds this collection (i.e., the data-samples that are parts of the list as well
as their order) depends on QosPolicy settings set on the DataReader and the
Subscriber, as well as the source timestamp of the samples and the parameters
passed to the read/take operations, namely:
• the desired sample states (in other words, READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE, or ANY_SAMPLE_STATE)

• the desired view states (in other words, NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE, or ANY_VIEW_STATE)

• the desired instance states
ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
NOT_ALIVE_INSTANCE_STATE, or ANY_INSTANCE_STATE).

The read and take operations are non-blocking and just deliver what is currently
available that matches the specified states.
On output, the collection of Data values and the collection of SampleInfo
structures are of the same length and are in a one-to-one correspondence. Each
SampleInfo provides information, such as the source_timestamp, the
sample_state, view_state, and instance_state, etc., about the matching
sample.
Some elements in the returned collection may not have valid data. If the
instance_state in the SampleInfo is
NOT_ALIVE_DISPOSED_INSTANCE_STATE or
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
ins tance in the co l lec t ion , tha t i s , the one whose SampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limits imposed by the ResourceLimitsQosPolicy.

read
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state of the instance.
449
C++ Reference Guide�������	

 Appendices
take
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.

read_w_condition
In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling read and passing as
sample_states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

take_w_condition
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.
In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling take and passing as
sample_states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

read_next_sample
The read_next_sample operation is semantically equivalent to the read
o p e r a t i o n w h e r e t h e i n p u t Data se quence ha s max_len=1 , t h e
sample_states=NOT_READ_SAMPLE_STATE,
the view_states=ANY_VIEW_STATE,
and the instance_states=ANY_INSTANCE_STATE.

take_next_sample
The take_next_sample operation is semantically equivalent to the take
ope ra t i on whe re t he i npu t s equenc e ha s max_len=1 , t h e
sample_states=NOT_READ_SAMPLE_STATE,
the view_states=ANY_VIEW_STATE,
and the instance_states=ANY_INSTANCE_STATE.
450
C++ Reference Guide �������	

Appendices
read_instance
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state of the instance.

take_instance
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.
451
C++ Reference Guide�������	

 Appendices
452
C++ Reference Guide �������	

Appendix

E Class Inheritance
This appendix gives an overview of the inheritance relations of the DCPS classes.

Figure 23 DCPS Inheritance

FooDataReader
(from Topic-Definition Module)

FooDataWriter
(from Topic-Definition Module)

FooTypeSupport
(from Topic-Definition Module)

TopicListener

<<Interface>>

TypeSupport
(from Topic-Definition Module)

<<Interface>>

TopicDescription
(from Topic-Definition Module)

DataReaderListener
(from Subscription Module)

<<Interface>> QueryCondition
(from Subscription Module)

SampleInfo
(from Subscription Module)

SubscriberListener
(from Subscription Module)

<<Interface>>

DataWriterListener
(from Publication Module)

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>>

GuardCondition
(from Infrastructure Module)

Listener
(from Infrastructure Module)

<<Interface>>

Status
(from Infrastructure Module)

DataWriter
(from Publication Module)

Entity
(from Infrastructure Module)

DataReader
(from Subscription Module)

StatusCondition
(from Infrastructure Module)

Condition
(from Infrastructure Module)

ReadCondition
(from Subscription Module)

WaitSet
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

Topic
(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

DomainParticipantFactory
(from Domain Module)

DomainParticipantListener
(from Domain Module)

DomainParticipant
(from Domain Module)
453
C++ Reference Guide�������	

 Appendices
454
C++ Reference Guide �������	

Appendix

F Listeners, Conditions and
Waitsets

Listeners and Conditions (Conditions in conjunction with WaitSets) are
two mechanisms that allow the application to be made aware of changes in the
communication status. Listeners provide an event-based mechanism for the Data
Distribution Service to asynchronously alert the application of the occurrence of
relevant status changes. Conditions in conjunction with WaitSets provide a
state-based mechanism for the Data Distribution Service to synchronously
communicate the relevant status changes to the application.
Both mechanisms are based on the communication statuses associated with an
Entity object. Not all statuses are applicable to all Entity objects. Which status is
applicable to which Entity object is listed in the next table.:

Table 22 Communication States

Entity Status Name Description
Topic INCONSISTENT_TOPIC_STATUS Another Topic exists with the same name but with

different characteristics.
Subscriber DATA_ON_READERS_STATUS New information is available.
DataReader SAMPLE_REJECTED_STATUS A (received) sample has been rejected.

LIVELINESS_CHANGED_STATUS The liveliness of one or more DataWriter
objects, that were writing instances read through
the DataReader objects has changed. Some
DataWriter object have become “alive” or “not
alive”.

REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DataReader was expecting
through its DeadlineQosPolicy was not
respected for a specific instance.

REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with what is
offered.

DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS The DataReader has found a DataWriter that

matches the Topic and has compatible QoS.
455
C++ Reference Guide�������	

 Appendices
The statuses may be classified in:
• read communication statuses: i.e., those that are related to arrival of data, namely
DATA_ON_READERS and DATA_AVAILABLE;

• plain communication statuses: i.e., all the others.
For each plain communication status, there is a corresponding status struct. The
in fo rma t ion f rom th i s s t ruc t can be r e t r i eved wi th t he ope ra t i ons
get_<status_name>_status. For example, to get the INCONSISTENT_TOPIC
status (which information is stored in the InconsistentTopicStatus struct), the
application must call the operation get_inconsistent_topic_status. A plain
communication status can only be read from the Entity on which it is applicable.
For the read communication statuses there is no struct available to the application.

Communication Status Event
Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operat ion to read the StatusChangedFlag) . The
StatusChangedFlag is only conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener will only be activated when the StatusChangedFlag changes from
FALSE to TRUE (provided the Listener is attached and enabled for this particular
status). The conditions which cause the StatusChangedFlag to change is slightly
different for the plain communication status and the read communication status.

DataWriter LIVELINESS_LOST_STATUS The l ive l iness tha t the DataWriter has
committed through its LivelinessQosPolicy
was not respected; thus DataReader objects will
consider the DataWriter as no longer “active”.

OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DataWriter has committed
through its DeadlineQosPolicy was not
respected for a specific instance.

OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with what
was requested.

PUBLICATION_MATCH_STATUS The DataWriter has found DataReader that
matches the Topic and has compatible QoS.

Table 22 Communication States (Continued)

Entity Status Name Description
456
C++ Reference Guide �������	

Appendices
For the plain communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE whenever the plain communication status changes and it is
reset to FALSE each time the application accesses the plain communication status
via the proper get_<status_name>_status operation on the Entity.
The communication status is also reset to FALSE whenever the associated
Listener operation is called as the Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
c a l l i n g t h e l i s t e n e r m e a n s t h a t i f t h e a p p l i c a t i o n c a l l s t h e
get_<status_name>_status from inside the listener it will see the status
already reset.
An exception to this rule is when the associated Listener is the 'nil' listener, i.e. a
listener with value NULL. Such a listener is treated as a NOOP1 for all statuses
activated in its bit mask and the act of calling this 'nil' listener does not reset the
corresponding communication statuses.

Figure 24: Plain Communication Status State Chart

For example, the value of the StatusChangedFlag associated with the
RequestedDeadlineMissedStatus will become TRUE each time a new deadline
p a s s e s (w h i c h i n c r e a s e s t h e t o t a l _ c o u n t f i e l d w i t h i n
RequestedDeadlineMissedStatus). The value changes to FALSE when the
a p p l i c a t i o n a c c e s s e s t h e s t a t u s v i a t h e c o r r e s p o n d i n g
get_requested_deadline_missed_status operation on the proper Entity,
or when the on_requested_deadline_missed operation on the Listener
attached to this Entity or one its containing entities is invoked.

1. Short for No-Operation, an instruction that does nothing.

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

CurrentStatus != SavedStatus
get_<status_name>_status
OR invocation of

event which can cause
the activation of a Listener

corresponging Listenercorres
operation
457
C++ Reference Guide�������	

 Appendices
For the read communication status, the StatusChangedFlag flag is initially set to
FALSE. It becomes TRUE when data arrives, or when the InstanceState of a
contained instance changes. This can be caused by either:
• The arrival of the notification that an instance has been disposed by:

 - the DataWriter that owns it if its OwnershipQosPolicyKind =
EXCLUSIVE_OWNERSHIP_QOS

 - or by any DataWriter if its OwnershipQosPolicyKind =
SHARED_OWNERSHIP_QOS.

• The loss of liveliness of the DataWriter of an instance for which there is no
other DataWriter.

• The arrival of the notification that an instance has been unregistered by the only
DataWriter that is known to be writing the instance.

Figure 25: Read Communication Status DataReader Statecraft

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

Data arrives OR
on_data_available OR
read/take or any of its
variants

event which can cause
the activation of a Listener

 change in InstanceState of a contained instance
458
C++ Reference Guide �������	

Appendices
Figure 26: Subscriber Statecraft for a Read Communication Status

• The status flag of the DATA_ON_READERS_STATUS becomes FALSE when any of
the following events occurs:
 - The corresponding listener operation (on_data_on_readers) is called on the

corresponding Subscriber.
 - The on_data_available listener operation is called on any DataReader

belonging to the Subscriber.
 - The read or take operation (or any of its variants) is called on any
DataReader belonging to the Subscriber.

Listeners
The Listeners provide for an event-based mechanism to asynchronous inform the
application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the Listener is activated, it will call the
corresponding on_<status_name> operation of that Listener. Each
on_<status_name> operation available in the Listener of an Entity is also
available in the Listener of the factory of the Entity.
For both the read communication statuses and the plain communication statuses a
Listener is only activated when a Listener is attached to this particular Entity
and enabled for this particular status. Statuses are enabled according the to the
StatusKindMask parameter that was passed at creation time of the Entity, or
that was passed to the set_listener operation.

StatusChangedFlag = TRUE

StatusChangedFlag = FALSE

Data arrives OR change in InstanceState
on_data_on_readers OR
on_data_available OR
read/take or any of its

event which can cause
the activation of a Listener

 of any contained DataReader
variants
459
C++ Reference Guide�������	

 Appendices
When an event occurs for a particular Entity and for a particular status, but the
applicable Listener is not activated for this status, the status is propagated up to
the factory of this Entity. For this factory, the same propagation rules apply. When
even the DomainParticipantListener is not attached or enabled for this status,
the application will not be notified about this event. This means, that a status change
on a contained Entity only invokes the Listener of its factory if the Listener
of the contained Entity itself does not handle the trigger event generated by the
status change.

Figure 27: DCPS Listeners

The event propagation is also applicable to the read communication statuses.
However, since the event here is the arrival of data, both the DATA_ON_READERS
and DATA_AVAILABLE status are TRUE. The Data Distribution Service will first
attempt to handle the DATA_ON_READERS status and try to activate the
SubscriberListener. When this Listener is not activated for this status the
event will propagate to the DomainParticipantListener. Only when the
DATA_ON_READERS status can not be handled, the Data Distribution Service will

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener
460
C++ Reference Guide �������	

Appendices
attempt to handle the DATA_AVAILABLE status and try to activate the
DataReaderListener. In case this Listener is not activated for this status the
event will follow the propagation rules as described above.

Conditions and Waitsets
The Conditions in conjunction with WaitSets provide for a state-based
mechanism to synchronously inform the application of status changes. A
Condition c an be e i t he r a ReadCondition , QueryCondition ,
StatusCondition or GuardCondition. To create a Condition one of the
following operations can be used:
• ReadCondition created by create_readcondition
• QueryCondition created by create_querycondition
• StatusCondition retrieved by get_statuscondition on an Entity
• GuardCondition created by the C++ operation new
Note that the QueryCondition is a specialized ReadCondition . The
GuardCondition is a different kind of Condition since it is not controlled by a
status but directly by the application (when a GuardCondition is initially created,
the trigger_value is FALSE). The StatusCondition is present by default with
each Entity, therefore, it does not have to be created.

Figure 28: DCPS WaitSets

A WaitSet may have one or several Conditions attached to it. An application
thread may block execution (blocking may be limited by a timeout) by waiting on a
WaitSet until the trigger_value of one or more of the Conditions become
TRUE. When a Condition, whose trigger_value evaluates to TRUE, is attached
to a WaitSet that is currently being waited on (using the wait operation), the
WaitSet will unblock immediately.
This (state-based) mechanism is generally used as follows:
• The application creates a WaitSet.
• The application indicates which relevant information it wants to be notified of, by

creating or retrieving Condition objects (StatusCondition,
ReadCondition, QueryCondition or GuardCondition) and attach them to a
WaitSet.

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
461
C++ Reference Guide�������	

 Appendices
• It then waits on that WaitSet (using WaitSet::wait) until the
trigger_value of one or several Condition objects (in the WaitSet) become
TRUE.

• When the thread is unblocked, the application uses the result of the wait (i.e., the
list of Condition objects with trigger_value==TRUE) to actually get the
information:
 - if the condition is a StatusCondition and the status changes refer to a plain

communication status, by calling get_status_changes and then
get_<communication_status> on the relevant Entity

 - if the condition is a StatusCondition and the status changes refer to the read
communication status:
DATA_ON_READERS , by cal l ing get_status_changes and then
get_datareaders on the relevant Subscriber and then read/take on the
returned DataReader objects
DATA_AVAILABLE, by calling get_status_changes and then read/take on
the relevant DataReader

 - if it is a ReadCondition or a QueryCondition, by calling directly
read_w_condition/take_w_condition on the DataReader with the
Condition as a parameter
462
C++ Reference Guide �������	

Appendices
Figure 29 DCPS Conditions

No extra information is passed from the Data Distribution Service to the application
when a wait returns only the list of triggered Condition objects. Therefore, it is
the application responsibility to investigate which Condition objects have
triggered the WaitSet.

Blocking Behaviour
The result of a wait operation depends on the state of the WaitSet, which in turn
depends on whether at least one attached Condition has a trigger_value of
TRUE. If the wait operation is called on WaitSet with state BLOCKED it will
block the calling thread. If wait is called on a WaitSet with state UNBLOCKED it
will return immediately. In addition, when the WaitSet transitions from state
BLOCKED to state UNBLOCKED it wakes up the thread (if any) that had called
wait on it. Note that there can only be one thread waiting on a single WaitSet.

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
463
C++ Reference Guide�������	

 Appendices
Figure 30: Blocking Behaviour of a Waitset State Chart

StatusCondition Trigger State
The trigger_value of a StatusCondition is the boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
T h a t i s , trigger_value==FALSE o n l y i f a l l t h e v a lu e s o f t h e
StatusChangedFlags are FALSE.
The sensitivity of the StatusCondition to a particular communication status is
controlled by the bit mask of enabled_statuses set on the Condition by means
of the set_enabled_statuses operation.

ReadCondition and QueryCondition Trigger State
Similar to the StatusCondition, a ReadCondition also has a trigger_value
that determines whether the attached WaitSet is BLOCKED or UNBLOCKED.
However, unlike the StatusCondition , the trigger_value of the
ReadCondition is tied to the presence of at least one sample managed by the Data
Distribution Service with SampleState, ViewState, and InstanceState
matching those of the ReadCondition. Additionally, for the QueryCondition,
the data associated with the sample, must be such that the query_expression
evaluates to TRUE.
The fact that the trigger_value of a ReadCondition is dependent on the presence
of samples on the associated DataReader implies that a single take operation can
potentially change the trigger_value of several ReadCondition or
QueryCondition objects. For example, if all samples are taken, any
ReadCondition or QueryCondition objects associated with the DataReader
that had their trigger_value==TRUE before will see the trigger_value
change to FALSE. Note that this does not guarantee that WaitSet objects, that had

UNBLOCKED

BLOCKED

[at least one attached condition has
trigger_value == TRUE]

[all attached conditions have
trigger_value == FALSE]

WaitSet::wait
Block calling thread

WaitSet::wait
Do not block. Return immediately

Wakeup waiting threads
464
C++ Reference Guide �������	

Appendices
those Condition objects separately attached to, will not be woken up. Once we
have trigger_value==TRUE on a Condition it may wake up the WaitSet it
was attached to, the condition transitions to trigger_value==FALSE does not
'un-wake up' the WaitSet as 'un-wakening' is not possible. The consequence is that
an application blocked on a WaitSet may return from the wait with a list of
Condition objects some of which are no longer “active”. This is unavoidable if
multiple threads are concurrently waiting on separate WaitSet objects and taking
data associated with the same DataReader Entity. In other words, a wait may
r e t u r n w i t h a l i s t o f Condition o b j e c t s w h i c h a l l h a v e a
trigger_value==FALSE. This only means, that at some point one or more of the
Condition objects have had a trigger_value==TRUE but no longer do.

GuardCondition Trigger State
The trigger_value of a GuardCondition is completely controlled by the
application via the operation set_trigger_value. This Condition can be used
to implement an application defined wake-up of the blocked thread.
465
C++ Reference Guide�������	

 Appendices
466
C++ Reference Guide �������	

Appendix

G Topic Definitions
The Data Distribution Service distributes its data in structured data types, called
topics. The first step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

Topic Definition Example
All data distributed using the Data Distribution Service has to be defined as a topic.
A topic is a structured data type, like a C++-struct with several members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

};
#pragma keylist Foo
};

This is the definition of a topic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent C++-struct which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL pre-processor: idlpp -l c++ -S
<idl_filename>.idl, a tool which translates the IDL topic definition into an
equivalent C++-definition. The -l c++ option indicates that the C++ code has to be
generated (in accordance with the OMG C++ Language Mapping Specification.
The -S option indicates that this C-code should be StandAlone C++ code, in other
words, it must not have any dependency on external ORB libraries. (It is also
possible to use libraries from an existing ORB, so that your DDS application can
also manage information coming from an external ORB. In that case you should use
the CORBA-cohabitation mode, replacing the -S flag with a -C flag.). In this
example, the pre-processor will generate the classes FooTypeSupport,
FooDataWriter and FooDataReader which contain the type specific operations.
467
C++ Reference Guide�������	

 Appendices
Complex Topics
The Foo topic is relatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. It is important to know that the pre-processor
accepts all IDL constructs but only the subset is being processed.
Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. a struct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs.

IDL Pre-processor
This section contains the specification of the subset of OMG IDL that can be used to
define the topics.

IDL-to-Host Language Mapping
The Data Distribution Service IDL pre-processor translates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of a module defining several structs and typedefs.

Data Distribution Service IDL Keywords
The identifiers listed in this appendix are reserved for use as keywords in IDL and
may not be used otherwise, unless escaped with a leading underscore.

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE
468
C++ Reference Guide �������	

Appendices
Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords are illegal. For example, boolean is a valid keyword; Boolean and
BOOLEAN are illegal identifiers.

Data Distribution Service IDL Pragma Keylist
To define a topic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. When the <pragmakeylist> has no <field_id>,
the topic is available but no key is set. To define the keylist the definition, written in
BNF-notation, is as follows:

<pragmakeylist>::= “#pragma keylist” <type_id> <field_id>*
<type_id>::= <struct_type_identifier>

 | <union_type_identifier>
<field_id>::= <member_declarator>

 | <element_spec_declarator>

In case of a struct, <type_id> is a <struct_type_identifier>. In case of
a un io n , <type_id> i s a <union_type_identifier> . Th e
<struct_type_identifier> is the identifier used in the struct declaration.
The <union_type_identifier> is the identifier used in the union
declaration. The <field_id> is the identifier of a field in the struct or union
iden t i f i ed by <type_id> . In case o f a s t ruc t , <field_id> i s a
<member_declarator> which is one of the declarators used in the struct
m em be r. I n c a se o f a un ion , <field_id> i s a
<element_spec_declarator> which is one of the declarators used in the
element specification in a case of the union.
For example, for the Foo example the next pragma must be used to have the
pre-processor generate the typed classes (FooTypeSupport, FooDataWriter and
FooDataReader).

#pragma keylist Foo userID index

Note that in this example the userID and the index are used as a key.

Data Distribution Service IDL subset in BNF-notation
Only a subset is used by the pre-processor. A description of the Data Distribution
Service IDL subset, written in BNF-notation, is as shown below.
<definition>::= <type_dcl> “;”

 | <const_dcl> “;”
 | <module> “;”

<module>::= “module” <identifier> “{“ <definition>+ “}”
<scoped_name>::= <identifier>

 | “::” <identifier>
 | <scoped_name> “::” <identifier>
469
C++ Reference Guide�������	

 Appendices
<const_dcl>::= “const” <const_type>
 <identifier> “=” <const_exp>

<const_type>::= <integer_type>
 | <char_type>
 | <boolean_type>
 | <floating_pt_type>
 | <string_type>
 | <scoped_name>
 | <octet_type>

<const_exp>::= <or_expr>
<or_expr>::= <xor_expr>

 | <or_expr> “|” <xor_expr>
<xor_expr>::= <and_expr>

 | <xor_expr> “^” <and_expr>
<and_expr>::= <shift_expr>

 | <and_expr> “&” <shift_expr>
<shift_expr>::= <add_expr>

 | <shift_expr> “>>” <add_expr>
 | <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
 | <add_expr> “+” <mult_expr>
 | <add_expr> “-” <mult_expr>

<mult_expr>::= <unary_expr>
 | <mult_expr> “*” <unary_expr>
 | <mult_expr> “/” <unary_expr>
 | <mult_expr> “%” <unary_expr>

<unary_expr>::= <unary_operator> <primary_expr>
 | <primary_expr>

<unary_operator>::= “-”
 | “+”
 | “~”

<primary_expr>::= <scoped_name>
 | <literal>
 | “(” <const_exp> “)”

<literal>::= <integer_literal>
 | <string_literal>
 | <character_literal>
 | <floating_pt_literal>
 | <boolean_literal>

<boolean_literal>::= “TRUE”
 | “FALSE”

<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

 | <struct_type>
 | <union_type>
 | <enum_type>

<type_declarator>::= <type_spec> <declarators>
<type_spec>::= <simple_type_spec>

 | <constr_type_spec>
<simple_type_spec>::= <base_type_spec>
470
C++ Reference Guide �������	

Appendices
 | <template_type_spec>
 | <scoped_name>

<base_type_spec>::= <floating_pt_type>
 | <integer_type>
 | <char_type>
 | <boolean_type>
 | <octet_type>

<template_type_spec>::= <sequence_type>
 | <string_type>

<constr_type_spec>::= <struct_type>
 | <union_type>
 | <enum_type>

<declarators>::= <declarator> { “,” <declarator> }*
<declarator>::= <simple_declarator>

 | <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating_pt_type>::= “float”

 | “double”
<integer_type>::= <signed_int>

 | <unsigned_int>
<signed_int>::= <signed_short_int>

 | <signed_long_int>
 | <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

 | <unsigned_long_int>
 | <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long”
<char_type>::= “char”
<boolean_type>::= “boolean”
<octet_type>::= “octet”
<struct_type>::= “struct” <identifier> “{” <member_list> }”
<member_list>::= <member>+
<member>::= <type_spec> <declarators> “;”
<union_type>::= “union” <identifier> “switch”

 “(” <switch_type_spec> “)”
 “{” <switch_body> “}”

<switch_type_spec>::= <integer_type>
 | <char_type>
 | <boolean_type>
 | <enum_type>
 | <scoped_name>

<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec> “;”
<case_label>::= “case” <const_exp> “:”
471
C++ Reference Guide�������	

 Appendices
 | “default” “:”
<element_spec>::= <type_spec> <declarator>
<enum_type>::= “enum” <identifier>

 “{” <enumerator> { “,” <enumerator> }* “}”
<enumerator>::= <identifier>
<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

 <positive_int_const> “>”
 | “sequence” “<” <simple_type_spec> “>”

<string_type>::= “string” “<” <positive_int_const> “>”
 | “string”

<array_declarator>::= <identifier> <fixed_array_size>+
<fixed_array_size>::= “[” <positive_int_const> “]”
472
C++ Reference Guide �������	

Appendix

H DCPS Queries and Filters
A subset of SQL syntax is used in several parts of OpenSplice:
• the filter_expression in the ContentFilteredTopic
• the topic_expression in the MultiTopic
• the query_expression in the QueryReadCondition
Those expressions may use a subset of SQL, extended with the possibility to use
program variables in the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:
• the NonTerminals are typeset in italics
• the ‘Terminals’ are quoted and typeset in a fixed width font
• the TOKENS are typeset in small caps
• the notation (element // ‘,’) represents a non-empty comma-separated list of

elements

SQL Grammar in BNF
Expression::= FilterExpression

 | TopicExpression
 | QueryExpression

FilterExpression::= Condition

TopicExpression::= SelectFrom {Where } ‘;’

QueryExpression::= {Condition}

SelectFrom::= ‘SELECT’ Aggregation ‘FROM’ Selection

Aggregation::= ‘*’
 | (SubjectFieldSpec // ‘,’)

SubjectFieldSpec::= FIELDNAME
 | FIELDNAME ‘AS’ FIELDNAME
 | FIELDNAME FIELDNAME

Selection::= TOPICNAME
 | TOPICTNAME NaturalJoin JoinItem

JoinItem::= TOPICNAME
473
C++ Reference Guide�������	

 Appendices
 | TOPICNAME NaturalJoin JoinItem
 | ‘(’ TOPICNAME NaturalJoin JoinItem ‘)’

NaturalJoin::= ‘INNER NATURAL JOIN’
 | ‘NATURAL JOIN’
 | ‘NATURAL INNER JOIN’

Where::= ‘WHERE’ Condition

Condition::= Predicate
 | Condition ‘AND’ Condition
 | Condition ‘OR’ Condition
 | ‘NOT’ Condition
 | ‘(’ Condition ‘)’

Predicate::= ComparisonPredicate
 | BetweenPredicate

ComparisonPredicate::= FIELDNAME RelOp Parameter
 | Parameter RelOp FIELDNAME

BetweenPredicate::= FIELDNAME ‘BETWEEN’ Range
 | FIELDNAME ‘NOT BETWEEN’ Range

RelOp::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’ | like

Range::= Parameter ‘AND’ Parameter

Parameter::= INTEGERVALUE
 | FLOATVALUE
 | STRING
 | ENUMERATEDVALUE
 | PARAMETER

INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are all
aliases, in the sense that they have the same semantics. The aliases are all supported
because they all are part of the SQL standard.

SQL Token Expression
The syntax and meaning of the tokens used in the SQL grammar is described as
follows:
• FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot
‘.’ is used to navigate through nested structures. The number of dots that may
be used in a fieldname is unlimited. The field-name can refer to fields at any depth
in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the
fieldnames that appear on the C mapping of the structure.

i

474
C++ Reference Guide �������	

Appendices
• TOPICNAME - A topic name is an identifier for a topic, and is defined as any series
of characters ‘a’, ..., ‘z’, ‘A’, ..., ‘Z’, ‘0’, ..., ‘9’, ‘-’, ‘_’ but may not
start with a digit.

• INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus
sign, representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

• FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign
and optionally including a floating point (‘.’). A power-of-ten expression may
be post-fixed, which has the syntax en, where n is a number, optionally preceded
by a plus or minus sign.

• STRING - Any series of characters encapsulated in single quotes, except a
new-line character or a right quote. A string starts with a left or right quote, but
ends with a right quote.

• ENUMERATEDVALUE - An enumerated value is a reference to a value declared
within an enumeration. The name of the value must correspond to the names
specified in the IDL definition of the enumeration, and must be encapsulated in
single quotes. An enum value starts with a left or right quote, but ends with a right
quote.

• PARAMETER - A parameter is of the form %n, where n represents a natural number
(zero included) smaller than 100. It refers to the n + 1th argument in the given
context.

Note: when RelOp is ‘like’, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is ‘?’, any zero
or more characters is ‘*’.

SQL Examples
Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, x, y, z”, and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.
Example of a topic_expression:

“SELECT flight_name, x, y, z AS height FROM ‘Location’
NATURAL JOIN ‘FlightPlan’ WHERE height < 1000 AND x <23”

Example of a query_expression or a filter_expression:
“height < 1000 AND x <23”
475
C++ Reference Guide�������	

 Appendices
476
C++ Reference Guide �������	

BIBLIOGRAPHY

Bibl iography
[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object

Management Group
[2] OMG C++ Language Mapping Specification formal/99-07-35, Object Management Group

(OMG)
[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,

formal/02-06-01, Object Management Group
479
C++ Reference Guide�������	

Bibliography
480
C++ Reference Guide �������	

GLOSSARY

Glossary
Acronyms
Acronym Meaning
CORBA Common Object Request Broker Architecture
DCPS Data Centric Publish/Subscribe
DDS Data Distribution Service
DLRL Data Local Reconstruction Layer
IDL Interface Definition Language

OMG Object Management Group
ORB Object Request Broker
QoS Quality of Service
SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
483
C++ Reference Guide�������	

Glossary
484
C++ Reference Guide �������	

INDEX

Index

A
Affected Entities .393
API Constants and Types 407
Application Responsibility 459
assert_liveliness . 110, 223

assert_liveliness (inherited) 243
Assignment. 10
attach_condition . 92

B
Basic Usage . 393
begin_access . 282
begin_coherent_changes. 198

Bibliography. 479
Blocking Behavior of a Waitset State Chart . . 464
Blocking Behaviour . 463

C
C++ Reference Guide Document Structure 3
Class Condition . 97
Class ContentFilteredTopic 179
Class DataReader (abstract) 301
Class DataSample. 365
Class DataWriter (abstract) 220
Class DomainEntity (abstract) 33
Class DomainParticipant 106
Class DomainParticipantFactory 150
Class Entity (abstract). 26
Class FooDataReader . 331
Class FooDataWriter . 240
Class FooTypeSupport 192
Class GuardCondition . 98
Class MultiTopic . 184
Class Publisher . 196
Class QueryCondition 385
Class ReadCondition . 381
Class StatusCondition. 100
Class Subscriber .280
Class Topic . 171

Class TopicDescription (abstract) 168
Class TypeSupport (abstract) 191
Class WaitSet . 91
Communication States 455
Communication Status Event 456
Complex Topics . 468
Conditions and Waitsets. 461
contains_entity . 111
copy_from_topic_qos. 200, 282
create_contentfilteredtopic 112
create_datareader . 284
create_datawriter . 201
create_multitopic . 113
create_participant . 151
create_publisher . 115
create_querycondition 306
create_querycondition (inherited) 336
create_readcondition . 307
create_readcondition (inherited) 336
create_subscriber . 117
create_topic . 119

D
Data Distribution Service IDL Keywords 468
Data Distribution Service IDL Pragma Keylist 469
Data Distribution Service IDL subset in

BNF-notation . 469
Data Type “Foo” Typed Classes for Pre-processor

Generation. 20
487
C++ Reference Guide�������	

 Index
Data Type “Foo” Typed Classes Pre-processor
Generation . 168

DataReader . 458
DataReaderListener Interface 373
DataReaderQos . 395
DATAWRITER_QOS_DEFAULT 399
DataWriterListener Interface. 274
DataWriterQos . 397
DCPS Conditions 97, 463
DCPS Domain Module’s Class Model . . . 18, 106
DCPS Infrastructure Module’s Class Model 16, 26
DCPS Inheritance . 453
DCPS Listeners . 75, 460
DCPS Module Composition 15
DCPS Publication Module’s Class Model 21, 195
DCPS Status Values . 77
DCPS Subscription Module’s Class Model22, 279
DCPS Topic-Definition Module’s Class Model 19,

 . 167
DCPS WaitSets . 91, 461
dds_dcps.idl. 415
DeadlineQosPolicy 41, 42
delete_contained_entities 122, 204, 287, 308

delete_contained_entities (inherited) 336
delete_contentfilteredtopic 123
delete_datareader . 288
delete_datawriter . 205
delete_multitopic. 125
delete_participant . 154
delete_publisher . 126
delete_readcondition . 310
delete_readcondition (inherited) 337
delete_subscriber. 127
delete_topic . 128
DestinationOrderQosPolicy 43
detach_condition . 93
dispose. 243
dispose (abstract). 224
dispose_w_timestamp 247
dispose_w_timestamp (abstract) 224
Document Structure . 3
Domain Module . 17, 106
DomainParticipantListener interface 161
DomainParticipantQos 401
DurabilityQosPolicy . 45
DurabilityServiceQosPolicy 48

E
enable . 27
enable (inherited). . . 130, 172, 206, 225, 248, 289,

311, . 337

end_access. 289
end_coherent_changes 206
EntityFactoryQosPolicy 50

F
find_topic . 130 Functionality . 15

G
get_builtin_subscriber 131
get_conditions . 94
get_current_time . 132
get_datareader . 382
get_datareader (inherited) 386
get_datareaders . 289
get_default_datareader_qos. 290
get_default_datawriter_qos 207
get_default_participant_qos 155

get_default_publisher_qos 133
get_default_subscriber_qos. 134
get_default_topic_qos 136
get_discovered_participant_data. 137
get_discovered_participants 137
get_discovered_topic_data 138
get_discovered_topics. 137
get_domain_id. 138
get_enabled_statuses. 102
488
C++ Reference Guide

�������	

 Index
get_entity . 103
get_expression_parameters. 180, 185
get_filter_expression . 181
get_inconsistent_topic_status 172
get_instance . 156
get_instance_handle . 29
get_instance_state_mask 382
get_instance_state_mask (inherited) 386
get_key_value. 248, 337
get_key_value (abstract). 225, 311
get_listener 139, 173, 208, 225, 291, 311
get_listener (abstract) . 30
get_listener (inherited) 250, 337
get_liveliness_changed_status 312
get_liveliness_changed_status (inherited) 338
get_liveliness_lost_status 226
get_liveliness_lost_status (inherited) 250
get_matched_publication_data 313
get_matched_publication_data (inherited) 338
get_matched_publications 313
get_matched_publications (inherited) 338
get_matched_subscription_data 227
get_matched_subscription_data (inherited) . . . 250
get_matched_subscriptions. 227
get_matched_subscriptions (inherited). 250
get_name. 169
get_name (inherited). 174, 182, 186
get_offered_deadline_missed_status 227
get_offered_deadline_missed_status (inherited) . .

251
get_offered_incompatible_qos_status 228
get_offered_incompatible_qos_status (inherited) .

251
get_participant 169, 209, 292
get_participant (inherited) 174, 182, 187
get_publication_match_status 230
get_publication_match_status (inherited) 251
get_publisher . 230
get_publisher (inherited) 251
get_qos 139, 174, 209, 230, 292, 313
get_qos (abstract) . 30

get_qos (inherited) 252, 338
get_query_arguments . 386
get_query_expression. 387
get_related_topic . 182
get_requested_deadline_missed_status 314
get_requested_deadline_missed_status (inherited)

339
get_requested_incompatible_qos_status 315
get_requested_incompatible_qos_status

(inherited) . 339
get_sample_lost_status. 316
get_sample_lost_status (inherited). 339
get_sample_rejected_status 318
get_sample_rejected_status (inherited) 339
get_sample_state_mask 383
get_sample_state_mask (inherited) 388
get_status_changes . 30
get_status_changes (inherited) 140, 175, 210, 231,

252, . 293, 319, 339
get_statuscondition. 32
get_statuscondition (inherited) 140, 175, 211, 232,

252, . 293, 319, 340
get_subscriber. 319
get_subscriber (inherited). 340
get_subscription_expression 187
get_subscription_match_status. 320
get_subscription_match_status (inherited). . . . 340
get_topic . 232
get_topic (inherited) . 252
get_topicdescription . 320
get_topicdescription (inherited) 340
get_trigger_value . 98
get_trigger_value (inherited) . . . 99, 103, 384, 388
get_type_name . 170, 193
get_type_name (abstract) 192
get_type_name (inherited) 176, 183, 188
get_view_state_mask . 384
get_view_state_mask (inherited) 389
GroupDataQosPolicy . 51
GuardCondition Trigger State 465

H
HistoryQosPolicy . 52
489
C++ Reference Guide�������	

 Index
I
IDL Pre-processor . 468
IDL-to-Host Language Mapping. 468
ignore_participant . 141
ignore_publication. 141
ignore_subscription . 141

ignore_topic . 142
InconsistentTopicStatus 79
Infrastructure Module 16, 26
Inheritance of Abstract Operations 13
instance_state . 444

L
LatencyBudgetQosPolicy 54
LifespanQosPolicy . 56
Listener Interface. 74
Listeners . 459
Listeners interfaces . 12
LivelinessChangedStatus 79
LivelinessLostStatus . 81

LivelinessQosPolicy 57, 58
lookup_datareader. 294
lookup_datawriter . 211
lookup_instance . 341
lookup_instance (abstract) 321
lookup_participant . 158
lookup_topicdescription 142

M
Memory Management . 9

N
notify_datareaders . 294

O
OfferedDeadlineMissedStatus. 82
OfferedIncompatibleQosStatus 83
on_data_available (abstract) 375
on_data_available (inherited, abstract) . . 163, 370
on_data_on_readers (abstract). 371
on_data_on_readers (inherited, abstract) 163
on_inconsistent_topic (abstract) 190
on_inconsistent_topic (inherited, abstract) . . . 164
on_liveliness_changed (abstract) 376
on_liveliness_changed (inherited, abstract) . . 164,

372
on_liveliness_lost (abstract) 275
on_liveliness_lost (inherited, abstract) . . 164, 273
on_offered_deadline_missed (abstract). 276
on_offered_deadline_missed (inherited, abstract)

164, . 273
on_offered_incompatible_qos (abstract). 277

on_offered_incompatible_qos (inherited, abstract)
165, . 273

on_publication_match (abstract). 278
on_publication_match (inherited, abstract). . . 165,

274
on_requested_deadline_missed (abstract). . . . 377
on_requested_deadline_missed (inherited,

abstract) . 372
on_requested_incompatible_qos (abstract). . . 378
on_requested_incompatible_qos (inherited,

abstract) . 165, 372
on_sample_lost (abstract) 379
on_sample_lost (inherited, abstract) 166, 373
on_sample_rejected (abstract). 379
on_sample_rejected (inherited, abstract) 166, 373
on_subscription_match (abstract) 380
on_subscription_match (inherited, abstract) . . 166,
490
C++ Reference Guide

�������	

 Index
373
Operations. 4
Operations Concerning States 449

OwnershipQosPolicy 59, 445
OwnershipStrengthQosPolicy 61

P
PARTICIPANT_QOS_DEFAULT 400, 402
PartitionQosPolicy . 62
Plain Communication Status State Chart 457
Pointer Types . 9
Pre-defined Bit Mask Definitions. 448
PresentationQosPolicy . 63

Publication Module 20, 195
Publication Type Specific Classes 219
PublicationMatchStatus 85
PUBLISHER_QOS_DEFAULT 403
PublisherListener Interface 272
PublisherQos . 402

Q
QosPolicy Basics . 39
QosPolicy Default Attributes 37

QosPolicy Settings . 34

R
read . 341, 449
read (abstract) . 321
read_instance . 346, 451
read_instance (abstract) 321
read_next_instance . 347
read_next_instance (abstract) 322
read_next_instance_w_condition 350
read_next_instance_w_condition (abstract) . . . 322
read_next_sample 352, 450
read_next_sample (abstract) 323
read_w_condition 352, 450
read_w_condition (abstract) 323
ReadCondition and QueryCondition Trigger State

464
ReaderDataLifecycleQosPolicy 65
Reference Count .9
Reference Types .9
register_instance .254

register_instance (abstract). 233
register_instance_w_timestamp 256
register_instance_w_timestamp (abstract) 233
register_type . 194
register_type (abstract) 192
ReliabilityQosPolicy . 66
Requested Offered DestinationOrderQosPolicy 44,

. 60
Requested Offered DurabilityQosPolicy 46
Requested Offered PresentationQosPolicy 64
Requested Offered ReliabilityQosPolicy 67
RequestedDeadlineMissedStatus 86
RequestedIncompatibleQosStatus 87
ResourceLimitsQosPolicy 68
resume_publications. 211
Return Codes . 7
return_loan . 354
return_loan (abstract) . 323

S
sample_state . 443
SampleInfo . 366
SampleInfo Class . 443
SampleLostStatus . 89

SampleRejectedStatus . 89
set_default_datareader_qos 296
set_default_datawriter_qos. 212
set_default_participant_qos 159
491
C++ Reference Guide�������	

 Index
set_default_publisher_qos. 143
set_default_subscriber_qos 144
set_default_topic_qos 145
set_enabled_statuses . 104
set_expression_parameters 183, 188
set_listener. 147, 176, 214, 233, 297, 324
set_listener (abstract). 32
set_listener (inherited). 257, 356
set_qos. 149, 177, 216, 235, 299, 326
set_qos (abstract). 33
set_qos (inherited) 257, 356
set_query_arguments. 389
set_trigger_value . 99
Signal Handling. 8
Single Instance instance_state State Chart . . . 446
Single Instance view_state State Chart 447
Single Sample sample_state State Chart 444
Snapshot . 446, 447
SQL Examples. 475
SQL Grammar in BNF 473
SQL Token Expression 474

State Definitions . 448
State Masks . 448
State Per Sample . 444
Status DataReader Statecraft for a Read

Communication . 458
Status Description Per Entity 75
Status Per Entity . 100
StatusCondition Trigger State. 464
Struct QosPolicy . 33
Struct SampleInfo . 365
Struct Status . 75
Subscriber . 459
Subscriber Statecraft for a Read Communication

Status . 459
SUBSCRIBER_QOS_DEFAULT 404
SubscriberListener Interface 369
SubscriberQos . 403
Subscription Module 21, 279
Subscription Type Specific Classes 301
SubscriptionMatchStatus 91
suspend_publications 217

T
take . 356, 450
take (abstract) . 327
take_instance . 358, 451
take_instance (abstract) 328
take_next_instance . 359
take_next_instance (abstract) 328
take_next_instance_w_condition 361
take_next_instance_w_condition (abstract) . . 328
take_next_sample 363, 450
take_next_sample (abstract) 329
take_w_condition 363, 450

take_w_condition (abstract) 329
Thread Safety . 8
TimeBasedFilterQosPolicy 70
Topic Definition Example. 467
TOPIC_QOS_DEFAULT. 406
TopicDataQosPolicy . 71
Topic-Definition Module 18, 167
Topic-Definition Type Specific Classes 191
TopicListener interface 189
TopicQos. 405
TransportPriorityQosPolicy 71

U
unregister_instance . 257
unregister_instance (abstract) 237
unregister_instance_w_timestamp 261

unregister_instance_w_timestamp (abstract) . 237
UserDataQosPolicy. 72

V
Var Reference Types . 10 view_state . 446
492
C++ Reference Guide

�������	

 Index
W
wait . 95
wait_for_historical_data 329
wait_for_historical_data (inherited) 365
write . 262

write (abstract) . 238
write_w_timestamp . 265
write_w_timestamp (abstract) 239
WriterDataLifecycleQosPolicy 73
493
C++ Reference Guide�������	

 Index
494
C++ Reference Guide

�������	

	C++ Reference Guide
	Table of Contents
	Preface
	About the C++ Reference Guide
	Contacts

	Introduction
	About the C++ Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 Thread Safety
	1.2 Signal Handling
	1.3 Memory Management
	1.3.1 Reference Count
	1.3.2 Reference Types
	1.3.2.1 Pointer Types
	1.3.2.2 Var Reference Types
	1.3.2.3 Assignment

	1.4 Listener Interfaces
	1.5 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Class Entity (abstract)
	3.1.1.1 enable
	3.1.1.2 get_instance_handle
	3.1.1.3 get_listener (abstract)
	3.1.1.4 get_qos (abstract)
	3.1.1.5 get_status_changes
	3.1.1.6 get_statuscondition
	3.1.1.7 set_listener (abstract)
	3.1.1.8 set_qos (abstract)

	3.1.2 Class DomainEntity (abstract)
	3.1.3 Struct QosPolicy
	3.1.3.1 DeadlineQosPolicy
	3.1.3.2 DestinationOrderQosPolicy
	3.1.3.3 DurabilityQosPolicy
	3.1.3.4 DurabilityServiceQosPolicy
	3.1.3.5 EntityFactoryQosPolicy
	3.1.3.6 GroupDataQosPolicy
	3.1.3.7 HistoryQosPolicy
	3.1.3.8 LatencyBudgetQosPolicy
	3.1.3.9 LifespanQosPolicy
	3.1.3.10 LivelinessQosPolicy
	3.1.3.11 OwnershipQosPolicy
	3.1.3.12 OwnershipStrengthQosPolicy
	3.1.3.13 PartitionQosPolicy
	3.1.3.14 PresentationQosPolicy
	3.1.3.15 ReaderDataLifecycleQosPolicy
	3.1.3.16 ReliabilityQosPolicy
	3.1.3.17 ResourceLimitsQosPolicy
	3.1.3.18 SchedulingQosPolicy
	3.1.3.19 TimeBasedFilterQosPolicy
	3.1.3.20 TopicDataQosPolicy
	3.1.3.21 TransportPriorityQosPolicy
	3.1.3.22 UserDataQosPolicy
	3.1.3.23 WriterDataLifecycleQosPolicy

	3.1.4 Listener Interface
	3.1.5 Struct Status
	3.1.5.1 InconsistentTopicStatus
	3.1.5.2 LivelinessChangedStatus
	3.1.5.3 LivelinessLostStatus
	3.1.5.4 OfferedDeadlineMissedStatus
	3.1.5.5 OfferedIncompatibleQosStatus
	3.1.5.6 PublicationMatchedStatus
	3.1.5.7 RequestedDeadlineMissedStatus
	3.1.5.8 RequestedIncompatibleQosStatus
	3.1.5.9 SampleLostStatus
	3.1.5.10 SampleRejectedStatus
	3.1.5.11 SubscriptionMatchedStatus

	3.1.6 Class WaitSet
	3.1.6.1 attach_condition
	3.1.6.2 detach_condition
	3.1.6.3 get_conditions
	3.1.6.4 wait

	3.1.7 Class Condition
	3.1.7.1 get_trigger_value

	3.1.8 Class GuardCondition
	3.1.8.1 get_trigger_value (inherited)
	3.1.8.2 set_trigger_value

	3.1.9 Class StatusCondition
	3.1.9.1 get_enabled_statuses
	3.1.9.2 get_entity
	3.1.9.3 get_trigger_value (inherited)
	3.1.9.4 set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DomainParticipant
	3.2.1.1 assert_liveliness
	3.2.1.2 contains_entity
	3.2.1.3 create_contentfilteredtopic
	3.2.1.4 create_multitopic
	3.2.1.5 create_publisher
	3.2.1.6 create_subscriber
	3.2.1.7 create_topic
	3.2.1.8 delete_contained_entities
	3.2.1.9 delete_contentfilteredtopic
	3.2.1.10 delete_multitopic
	3.2.1.11 delete_publisher
	3.2.1.12 delete_subscriber
	3.2.1.13 delete_topic
	3.2.1.14 enable (inherited)
	3.2.1.15 find_topic
	3.2.1.16 get_builtin_subscriber
	3.2.1.17 get_current_time
	3.2.1.18 get_default_publisher_qos
	3.2.1.19 get_default_subscriber_qos
	3.2.1.20 get_default_topic_qos
	3.2.1.21 get_discovered_participants
	3.2.1.22 get_discovered_participant_data
	3.2.1.23 get_discovered_topics
	3.2.1.24 get_discovered_topic_data
	3.2.1.25 get_domain_id
	3.2.1.26 get_listener
	3.2.1.27 get_qos
	3.2.1.28 get_status_changes (inherited)
	3.2.1.29 get_statuscondition (inherited)
	3.2.1.30 ignore_participant
	3.2.1.31 ignore_publication
	3.2.1.32 ignore_subscription
	3.2.1.33 ignore_topic
	3.2.1.34 lookup_topicdescription
	3.2.1.35 set_default_publisher_qos
	3.2.1.36 set_default_subscriber_qos
	3.2.1.37 set_default_topic_qos
	3.2.1.38 set_listener
	3.2.1.39 set_qos

	3.2.2 Class DomainParticipantFactory
	3.2.2.1 create_participant
	3.2.2.2 delete_participant
	3.2.2.3 get_default_participant_qos
	3.2.2.4 get_instance
	3.2.2.5 get_qos
	3.2.2.6 lookup_participant
	3.2.2.7 set_default_participant_qos
	3.2.2.8 set_qos

	3.2.3 DomainParticipantListener interface
	3.2.3.1 on_data_available (inherited, abstract)
	3.2.3.2 on_data_on_readers (inherited, abstract)
	3.2.3.3 on_inconsistent_topic (inherited, abstract)
	3.2.3.4 on_liveliness_changed (inherited, abstract)
	3.2.3.5 on_liveliness_lost (inherited, abstract)
	3.2.3.6 on_offered_deadline_missed (inherited, abstract)
	3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
	3.2.3.8 on_publication_matched (inherited, abstract)
	3.2.3.9 on_requested_deadline_missed (inherited, abstract)
	3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
	3.2.3.11 on_sample_lost (inherited, abstract)
	3.2.3.12 on_sample_rejected (inherited, abstract)
	3.2.3.13 on_subscription_matched (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Class TopicDescription (abstract)
	3.3.1.1 get_name
	3.3.1.2 get_participant
	3.3.1.3 get_type_name

	3.3.2 Class Topic
	3.3.2.1 enable (inherited)
	3.3.2.2 get_inconsistent_topic_status
	3.3.2.3 get_listener
	3.3.2.4 get_name (inherited)
	3.3.2.5 get_participant (inherited)
	3.3.2.6 get_qos
	3.3.2.7 get_status_changes (inherited)
	3.3.2.8 get_statuscondition (inherited)
	3.3.2.9 get_type_name (inherited)
	3.3.2.10 set_listener
	3.3.2.11 set_qos

	3.3.3 Class ContentFilteredTopic
	3.3.3.1 get_expression_parameters
	3.3.3.2 get_filter_expression
	3.3.3.3 get_name (inherited)
	3.3.3.4 get_participant (inherited)
	3.3.3.5 get_related_topic
	3.3.3.6 get_type_name (inherited)
	3.3.3.7 set_expression_parameters

	3.3.4 Class MultiTopic
	3.3.4.1 get_expression_parameters
	3.3.4.2 get_name (inherited)
	3.3.4.3 get_participant (inherited)
	3.3.4.4 get_subscription_expression
	3.3.4.5 get_type_name (inherited)
	3.3.4.6 set_expression_parameters

	3.3.5 TopicListener interface
	3.3.5.1 on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition Type Specific Classes
	3.3.6.1 Class TypeSupport (abstract)
	3.3.6.2 get_type_name (abstract)
	3.3.6.3 register_type (abstract)
	3.3.6.4 Class FooTypeSupport
	3.3.6.5 get_type_name
	3.3.6.6 register_type

	3.4 Publication Module
	3.4.1 Class Publisher
	3.4.1.1 begin_coherent_changes
	3.4.1.2 copy_from_topic_qos
	3.4.1.3 create_datawriter
	3.4.1.4 delete_contained_entities
	3.4.1.5 delete_datawriter
	3.4.1.6 enable (inherited)
	3.4.1.7 end_coherent_changes
	3.4.1.8 get_default_datawriter_qos
	3.4.1.9 get_listener
	3.4.1.10 get_participant
	3.4.1.11 get_qos
	3.4.1.12 get_status_changes (inherited)
	3.4.1.13 get_statuscondition (inherited)
	3.4.1.14 lookup_datawriter
	3.4.1.15 resume_publications
	3.4.1.16 set_default_datawriter_qos
	3.4.1.17 set_listener
	3.4.1.18 set_qos
	3.4.1.19 suspend_publications
	3.4.1.20 wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Class DataWriter (abstract)
	3.4.2.2 assert_liveliness
	3.4.2.3 dispose (abstract)
	3.4.2.4 dispose_w_timestamp (abstract)
	3.4.2.5 enable (inherited)
	3.4.2.6 get_key_value (abstract)
	3.4.2.7 get_listener
	3.4.2.8 get_liveliness_lost_status
	3.4.2.9 get_matched_subscription_data
	3.4.2.10 get_matched_subscriptions
	3.4.2.11 get_offered_deadline_missed_status
	3.4.2.12 get_offered_incompatible_qos_status
	3.4.2.13 get_publication_matched_status
	3.4.2.14 get_publisher
	3.4.2.15 get_qos
	3.4.2.16 get_status_changes (inherited)
	3.4.2.17 get_statuscondition (inherited)
	3.4.2.18 get_topic
	3.4.2.19 lookup_instance (abstract)
	3.4.2.20 register_instance (abstract)
	3.4.2.21 register_instance_w_timestamp (abstract)
	3.4.2.22 set_listener
	3.4.2.23 set_qos
	3.4.2.24 unregister_instance (abstract)
	3.4.2.25 unregister_instance_w_timestamp (abstract)
	3.4.2.26 wait_for_acknowledgments
	3.4.2.27 write (abstract)
	3.4.2.28 write_w_timestamp (abstract)
	3.4.2.29 writedispose (abstract)
	3.4.2.30 writedispose_w_timestamp (abstract)
	3.4.2.31 Class FooDataWriter
	3.4.2.32 assert_liveliness (inherited)
	3.4.2.33 dispose
	3.4.2.34 dispose_w_timestamp
	3.4.2.35 enable (inherited)
	3.4.2.36 get_key_value
	3.4.2.37 get_listener (inherited)
	3.4.2.38 get_liveliness_lost_status (inherited)
	3.4.2.39 get_matched_subscription_data (inherited)
	3.4.2.40 get_matched_subscriptions (inherited)
	3.4.2.41 get_offered_deadline_missed_status (inherited)
	3.4.2.42 get_offered_incompatible_qos_status (inherited)
	3.4.2.43 get_publication_matched_status (inherited)
	3.4.2.44 get_publisher (inherited)
	3.4.2.45 get_qos (inherited)
	3.4.2.46 get_status_changes (inherited)
	3.4.2.47 get_statuscondition (inherited)
	3.4.2.48 get_topic (inherited)
	3.4.2.49 lookup_instance
	3.4.2.50 register_instance
	3.4.2.51 register_instance_w_timestamp
	3.4.2.52 set_listener (inherited)
	3.4.2.53 set_qos (inherited)
	3.4.2.54 unregister_instance
	3.4.2.55 unregister_instance_w_timestamp
	3.4.2.56 write
	3.4.2.57 write_w_timestamp
	3.4.2.58 writedispose
	3.4.2.59 writedispose_w_timestamp

	3.4.3 PublisherListener Interface
	3.4.3.1 on_liveliness_lost (inherited, abstract)
	3.4.3.2 on_offered_deadline_missed (inherited, abstract)
	3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
	3.4.3.4 on_publication_matched (inherited, abstract)

	3.4.4 DataWriterListener Interface
	3.4.4.1 on_liveliness_lost (abstract)
	3.4.4.2 on_offered_deadline_missed (abstract)
	3.4.4.3 on_offered_incompatible_qos (abstract)
	3.4.4.4 on_publication_matched (abstract)

	3.5 Subscription Module
	3.5.1 Class Subscriber
	3.5.1.1 begin_access
	3.5.1.2 copy_from_topic_qos
	3.5.1.3 create_datareader
	3.5.1.4 delete_contained_entities
	3.5.1.5 delete_datareader
	3.5.1.6 enable (inherited)
	3.5.1.7 end_access
	3.5.1.8 get_datareaders
	3.5.1.9 get_default_datareader_qos
	3.5.1.10 get_listener
	3.5.1.11 get_participant
	3.5.1.12 get_qos
	3.5.1.13 get_status_changes (inherited)
	3.5.1.14 get_statuscondition (inherited)
	3.5.1.15 lookup_datareader
	3.5.1.16 notify_datareaders
	3.5.1.17 set_default_datareader_qos
	3.5.1.18 set_listener
	3.5.1.19 set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Class DataReader (abstract)
	3.5.2.2 create_querycondition
	3.5.2.3 create_readcondition
	3.5.2.4 delete_contained_entities
	3.5.2.5 delete_readcondition
	3.5.2.6 enable (inherited)
	3.5.2.7 get_key_value (abstract)
	3.5.2.8 get_listener
	3.5.2.9 get_liveliness_changed_status
	3.5.2.10 get_matched_publication_data
	3.5.2.11 get_matched_publications
	3.5.2.12 get_qos
	3.5.2.13 get_requested_deadline_missed_status
	3.5.2.14 get_requested_incompatible_qos_status
	3.5.2.15 get_sample_lost_status
	3.5.2.16 get_sample_rejected_status
	3.5.2.17 get_status_changes (inherited)
	3.5.2.18 get_statuscondition (inherited)
	3.5.2.19 get_subscriber
	3.5.2.20 get_subscription_matched_status
	3.5.2.21 get_topicdescription
	3.5.2.22 lookup_instance (abstract)
	3.5.2.23 read (abstract)
	3.5.2.24 read_instance (abstract)
	3.5.2.25 read_next_instance (abstract)
	3.5.2.26 read_next_instance_w_condition (abstract)
	3.5.2.27 read_next_sample (abstract)
	3.5.2.28 read_w_condition (abstract)
	3.5.2.29 return_loan (abstract)
	3.5.2.30 set_listener
	3.5.2.31 set_qos
	3.5.2.32 take (abstract)
	3.5.2.33 take_instance (abstract)
	3.5.2.34 take_next_instance (abstract)
	3.5.2.35 take_next_instance_w_condition (abstract)
	3.5.2.36 take_next_sample (abstract)
	3.5.2.37 take_w_condition (abstract)
	3.5.2.38 wait_for_historical_data
	3.5.2.39 Class FooDataReader
	3.5.2.40 create_querycondition (inherited)
	3.5.2.41 create_readcondition (inherited)
	3.5.2.42 delete_contained_entities (inherited)
	3.5.2.43 delete_readcondition (inherited)
	3.5.2.44 enable (inherited)
	3.5.2.45 get_key_value
	3.5.2.46 get_listener (inherited)
	3.5.2.47 get_liveliness_changed_status (inherited)
	3.5.2.48 get_matched_publication_data (inherited)
	3.5.2.49 get_matched_publications (inherited)
	3.5.2.50 get_qos (inherited)
	3.5.2.51 get_requested_deadline_missed_status (inherited)
	3.5.2.52 get_requested_incompatible_qos_status (inherited)
	3.5.2.53 get_sample_lost_status (inherited)
	3.5.2.54 get_sample_rejected_status (inherited)
	3.5.2.55 get_status_changes (inherited)
	3.5.2.56 get_statuscondition (inherited)
	3.5.2.57 get_subscriber (inherited)
	3.5.2.58 get_subscription_matched_status (inherited)
	3.5.2.59 get_topicdescription (inherited)
	3.5.2.60 lookup_instance
	3.5.2.61 read
	3.5.2.62 read_instance
	3.5.2.63 read_next_instance
	3.5.2.64 read_next_instance_w_condition
	3.5.2.65 read_next_sample
	3.5.2.66 read_w_condition
	3.5.2.67 return_loan
	3.5.2.68 set_listener (inherited)
	3.5.2.69 set_qos (inherited)
	3.5.2.70 take
	3.5.2.71 take_instance
	3.5.2.72 take_next_instance
	3.5.2.73 take_next_instance_w_condition
	3.5.2.74 take_next_sample
	3.5.2.75 take_w_condition
	3.5.2.76 wait_for_historical_data (inherited)

	3.5.3 Class DataSample
	3.5.4 Struct SampleInfo
	3.5.4.1 SampleInfo

	3.5.5 SubscriberListener Interface
	3.5.5.1 on_data_available (inherited, abstract)
	3.5.5.2 on_data_on_readers (abstract)
	3.5.5.3 on_liveliness_changed (inherited, abstract)
	3.5.5.4 on_requested_deadline_missed (inherited, abstract)
	3.5.5.5 on_requested_incompatible_qos (inherited, abstract)
	3.5.5.6 on_sample_lost (inherited, abstract)
	3.5.5.7 on_sample_rejected (inherited, abstract)
	3.5.5.8 on_subscription_matched (inherited, abstract)

	3.5.6 DataReaderListener Interface
	3.5.6.1 on_data_available (abstract)
	3.5.6.2 on_liveliness_changed (abstract)
	3.5.6.3 on_requested_deadline_missed (abstract)
	3.5.6.4 on_requested_incompatible_qos (abstract)
	3.5.6.5 on_sample_lost (abstract)
	3.5.6.6 on_sample_rejected (abstract)
	3.5.6.7 on_subscription_matched (abstract)

	3.5.7 Class ReadCondition
	3.5.7.1 get_datareader
	3.5.7.2 get_instance_state_mask
	3.5.7.3 get_sample_state_mask
	3.5.7.4 get_trigger_value (inherited)
	3.5.7.5 get_view_state_mask

	3.5.8 Class QueryCondition
	3.5.8.1 get_datareader (inherited)
	3.5.8.2 get_instance_state_mask (inherited)
	3.5.8.3 get_query_parameters
	3.5.8.4 get_query_expression
	3.5.8.5 get_sample_state_mask (inherited)
	3.5.8.6 get_trigger_value (inherited)
	3.5.8.7 get_view_state_mask (inherited)
	3.5.8.8 set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DataReaderQos
	DataWriterQos
	DomainParticipantFactoryQos
	DomainParticipantQos
	PublisherQos
	SubscriberQos
	TopicQos

	B API Constants and Types
	C Platform Specific Model IDL Interface
	dds_dcps.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State Per Sample

	instance_state
	OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	read_w_condition
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Class Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	StatusCondition Trigger State
	ReadCondition and QueryCondition Trigger State
	GuardCondition Trigger State

	G Topic Definitions
	Topic Definition Example
	Complex Topics
	IDL Pre-processor
	IDL-to-Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL subset in BNF-notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

