OpenSplice DDS

Version 4.x

Java Reference Guide

v PRISMTECH

OpenSplice DDS

JAVA REFERENCE GUIDE

& PRISMTECH

Part Number: OS-JREFG Doc Issue 22, 8 September 2009

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

ii
& PRISMTECH Java Reference Guide

CONTENTS

Table of Contents

Preface

I ntroduction

List of Figures XVii
About theJava ReferenceGuide e XiX
CONtACES . . o XXi

About the Java Reference Guide 3
Document SIrUCTUr e ..o e e 3
e aliONS . .ot e 4
API Reference
Chapter 1 DCPSAPI General Description 7
1.1 IDL MappingtoJava.ottt e e 8
1.1.1 IDL-Constant Mappingo o ettt e 8
1.1.2 IDL-Sequence Mapping. . ..o vv vttt 9
1.2 Thread Safety e e e e e 9
13 Signal Handling. e 10
1.4 Memory Managementottt 11
15 Parameter Passingooii i e 11
1.6 Casting of ODJeCES. oot 13
17 Listenersinterfaceso 14
1.8 Inheritance of Abstract Operations, 15
Chapter 2 DCPSModules 17
21 Functionality 17
2.2 InfrastructureModule. 18
23 Domain Module. 19
2.4 Topic-DefinitionModule 20
25 Publication Module. 21
2.6 Subscription Module 22
Chapter 3 DCPS Classes and Operations 25
3.1 InfrastructureModule. 26
311 Interface ENtityt 26
SLL L enable . .. 27
3112 get instance handle. i 29
3.1.1.3 get listener (@bstract) it 30
& PRISMTECH v

Java Reference Guide

Table of Contents

vi
Java Reference Guide

get qos(abstract)o 30
get status Changes.o e e 30
get statuscondition. e 32
set_listener (abstract) 32
Set oS (ADSIract) . ..o v 33
ClassDomainEntity.out e 33
ClassQOSPOlICY . . . oot 33
DeadlineQosPoliCyot e 42
DestinationOrderQosPolicy v 44
DurabilityQosPoliCyo 46
DurabilityServiceQosPoliCyo 49
EntityFactoryQosPoliCyo 52
GroupDataQosPoliCyot e 53
HistoryQosPolicy e 53
LatencyBudgetQosPolicy 56
LifespanQosPolicy 57
LivelinessQOSPOlICY oot 58
OwnershipQosPolicy 60
OwnershipStrengthQosPolicy ... 63
PartitionQosPoliCy i 64
PresentationQosPolicy 65
ReaderDatal ifecycleQosPolicy i 67
ReliabilityQosPolicy. 69
ResourceLimitsQosPolicy i i 70
SchedulingQosPolicy 72
TimeBasedFilterQosPolicy. 74
TopicDataQosPoliCy. . ..o 74
TransportPriorityQosPolicy 75
UserDataQosPolicyo 76
WriterDataLifecycleQosPolicy ..., 76
Listener Interface.t 77
ClasS StaUS . . . oot 79
InconsistentTOpICStatUS oot 83
LivelinessChangedStatus oo 84
LivelinessLostStatus.ot 85
OfferedDeadlineMissedStatuso 86
OfferedincompatibleQosStatus 87
PublicationMatchedStatus i 90
RequestedDeadlineMissedStatuso oo 90
RequestedincompatibleQosStatus 91
SampleLoStStatUS oo 93
SampleRgectedStatus 94
& PRISMTECH

Table of Contents

& PRISMTECH

SubscriptionMatchedStatusco i 95
ClassWaitSel. oo 96
attach condition 97
detach condition. i 98
get_CoNditioNS.ot 99
WAt . L 100
Class Conditiont 101
get trigger value 102
ClassGuardConditiont 103
get_trigger_value(inherited) 104
Set_trigger value. 104
Class StatusConditiont e e 105
get_ enabled StatUSES. . .. oo oot e 106
get entity e 108
get trigger value(inherited) L 108
set enabled StatUSES. 109
Domain Module. e 111
ClassDomainParticipantt 111
assert liVEliNESSo 115
contains entityo e 116
create_contentfilteredtopic. 117
create multitopiCo 118
create publisher 120
create subscriber 122
CrEate tOPIC. . . vttt e 124
delete contained entities. i 127
delete_contentfilteredtopic. 128
delete MUItItopICot 130
delete publisher 131
delete subscriber 132
delete topIC.o e 133
enable(inherited) 134
fIND_tOPIC . ..o e 135
get_builtin_subscriber. 136
get_current_time. 137
get_default_publisher qos.......... .o 138
get_default_subscriber qos 139
get default topic goS.t 140
get_discovered participantS. 142
get_discovered participant data 142
get_discovered tOPICS. . ..o v vt 142
get_discovered topic data. i 142

VII

Java Reference Guide

Table of Contents

viii

Java Reference Guide

get domain id 143
get listener e 143
OBl QOS . . ottt 144
get_status changes (inherited) L. 145
get_statuscondition (inherited) 145
ignore_PartiCipant.uu it 145
ignore publication e 146
ignore SUDSCIIPLioNottt 146
IgNOrE tOPIC . ..ttt e e 146
lookup_topicdescription. 147
set_default_publisher qosc i 147
set_default_subscriber qos. 149
set_default topic goOS. i 150
Set ligtener ... e 151
SEL OS .ttt e e 153
Class DomainParticipantFactory i 154
create PartiCipantot 155
delete participant 158
get_default participant qoS.c.ciiiiii i 159
gl INStANCEo e 160
07 S 00 161
lookup_participant i e 162
set_default_participant_goSc.ccoiiii i 163
SEL OS . v it e 164
DomainParticipantListener Interface. 165
on_data available (inherited, abstract). 167
on_data_on_readers (inherited, abstract) 167
on_inconsistent_topic (inherited, abstract). 168
on_liveliness_changed (inherited, abstract) 168
on_liveliness lost (inherited, abstract). 168
on_offered_deadline_missed (inherited, abstract) 168
on_offered_incompatible gos (inherited, abstract) 169
on_publication_matched (inherited, abstract) 169
on_requested_deadline_missed (inherited, abstract) 169
on_requested_incompatible_qos (inherited, abstract) 169
on_sample_lost (inherited, abstract). 170
on_sample_rejected (inherited, abstract) 170
on_subscription_match (inherited, abstract). 170
Topic-DefinitionModule 171
Interface TopicDesCriptionot 172
OEL NMAIME. . . .ot 173
get partiCipant e 173
& PRISMTECH

Table of Contents

OEl TYPE NAIME . .o e 174
Interface TOPIC.t e e e e 175
enable(inherited) i 176
get_inconsistent_topic Status. 176
Oet lIStONEr .« o 177
get_ name(inherited). 178
get_participant (inherited) 178
OBl 0SS . .ttt e e 178
get_status changes(inherited) 179
get_statuscondition (inherited) L 179
get_type name (inherited) 179
SEt liSteNer .. 180

S OS . t i e 181
Interface ContentFilteredTopicoi it 183
gel_expression parameters. 184
get_filter_expression. 185
get_ name(inherited). 186
get_participant (inherited) 186
get related topIC.ot e 186
get type name(inherited) 187
SEt_expression_pParameterS.o 187
Interface MUItITOPIC oot e 188
get_expression_ParametersS. e 189
get name(inherited). 190
get_participant (inherited) 191
get_subscription_ expression. 191
get_type name(inherited) 192
SEt_expression_ParameterS. 192
TopicListenerinterface 193
on_inconsistent_topic (abstract) o i 194
Topic-Definition type specificinterfaces 195
Interface TYPeSUPPOItot e e 195
gel_type Nameo 196
FegiSt e Y P . . o 196
Class FOOTYPESUPPOIT v v et ettt e e e e e e 196
OEl TYPE NAIME . . e 197
1= 0 1S = 177 1= 198
Publication Module. 200
Interface Publisher. 201
begin_coherent_changes. 203
COPY_from_tOPIC_0OS. . . . vt ittt e 204
create datawriter. o 205
IX

& PRISMTECH Java Reference Guide

Table of Contents

X
Java Reference Guide

delete contained entities........... i i 208
delete datawriter e 209
enable(inherited) 210
end_coherent_ChangesSottt 210
get_default_datawriter oS i 211
Oet ISteNer . . . 212
get participant 213
OBl QOS . .ottt 214
get status changes(inherited) L 214
get_statuscondition (inherited) L, 215
looOKUp_datawriter. 215
resume _publiCations.t 216
set_default_datawriter gos............cc i 217
Set ligtener ... 218
SEL OS .ttt e e 220
suspend_publications 221
wait_for_acknowledgments.............. 222
Publication Type SpecificClasses. . ..ot 224
Interface DataWriter. e 224
assert livelinesso e 227
dispose (abstract) 228
dispose w_timestamp (abstract). 229
enable (inherited) o 229
get key value(abstract). 229
get liStener ... 229
get liveliness lost Status.o oo 230
get_matched subscription data. 231
get_matched _subscriptions. i 231
get_offered_deadline missed status 232
get_offered_incompatible qos status, 233
get_publication matched status. 234
get publisher 234
(07 S 00 235
get_status changes (inherited) L. 235
get_statuscondition (inherited) 236
0L LOPIC. .ottt 236
lookup_instance (abstract)c it 237
register_instance (abstract). i i 237
register_instance w_timestamp (abstract) 237
Set liStEner ... 237
SE g0S . . 239
unregister_instance (abstract). i 241
& PRISMTECH

Table of Contents

& PRISMTECH

unregister_instance w_timestamp (abstract) 241
wait for_acknowledgments 241
write(abstract) 242
write w_timestamp (abstract) 243
writedispose (abstract) 243
writedispose w_timestamp (abstract) ... 243
Interface FooDataWriter.o 244
assert liveliness(inherited) 247
AiSPOSE . .o e 247
dispose w_timestamp. 250
enable(inherited) 252
get_ Key value. 252
get_listener (inherited) 253
get_liveliness lost_status(inherited) 253
get_matched subscription data(inherited) 254
get_matched _subscriptions (inherited)., 254
get_offered_deadline_missed_status (inherited) 254
get_offered_incompatible_qos status (inherited) 254
get_publication_matched status (inherited)...................... 255
get_publisher (inherited). 255
get_gos(inherited) 255
get_status changes (inherited) L 255
get_statuscondition (inherited) 255
get topic(inherited) 256
[0OKUP INStaNCeo 256
register iNStanCe. e 257
register_instance w _timestamp 259
set_listener (inherited) 260
set_gos(inherited) 260
UNregister iNStanCe.ot 260
unregister_instance w_timestamp o i 263
W L e 265
write W_timestamp. 267
WHEEdISPOSE . . . oot 268
writedispose W_timestamp. 272
PublisherListenerinterface 273
on_liveliness lost (inherited, abstract) 274
on_offered_deadline_missed (inherited, abstract) 275
on_offered_incompatible_qos (inherited, abstract) 275
on_publication_matched (inherited, abstract) 275
DataWriterListener interface. o i 275
on_liveliness 10Stot 277
Xl

Java Reference Guide

Table of Contents

Xii
Java Reference Guide

on_offered deadline missed 278
on_offered incompatible gos oL, 279
on_publication matched., 280
Subscription Module 280
Interface Subscriber. 281
DEgIiN_ ACCESS. . . . 283
copy_from topic goOS.ovii 284
create datareader e 285
delete contained entities. i 288
delete datareader i e 289
enable (inherited) 290
N0 BCCESS . . ottt 290
get datareaders.o e 291
get default datareader QOSo i 291
get listener e 292
get_participant 293
OB 00S . o it 293
get_status changes (inherited) L 294
get_statuscondition (inherited) oL 295
lookup datareader i 295
notify datareaders i 296
set_default_datareader oS 297
Set liSteNer ..o 298
SEL OS i it e e e 300
Subscription Type SpecificClasses. oo 302
InterfaceDataReader 302
create_querycondition 306
create readcondition. e 308
delete contained entities. i 309
delete readcondition. 310
enable (inherited) 312
get key value(abstract). 312
get listener 312
get_liveliness changed Status 313
get_matched publication data. 314
get_ matched publications i 314
0 T o (01 314
get requested deadline missed status L 315
get_requested incompatible gos status L. 316
get sample lost status.o 317
get_sample rejected Status 319
get_status changes (inherited) L 319
& PRISMTECH

Table of Contents

& PRISMTECH

get_statuscondition (inherited) o 320
get_subscriber. 320
get_subscription_matched status. 321
get_topicdescription 321
lookup_instance (abstract) i 321
read (8DStract)o 322
read instance(@bstract)c.. i 322
read_next instance(abstract) i i 322
read_next_instance w_condition (abstract) 323
read next_sample (abstract). 323
read w_condition (abstract) 323
return_loan (abstract) 324
St LISt ENEr .. e 324
S OS .t e e e 326
take(abstract) e 328
take instance(abstract) 328
take next_instance(abstract) i 328
take next_instance w_condition (abstract) 329
take next sample(abstract)c i i 329
take w_condition(abstract) o 329
wait_for_historical data............. i 330
Interface FooDataReader 331
create_querycondition (inherited). L, 336
create_readcondition (inherited). ol 336
delete contained entities(inherited) 336
delete readcondition (inherited). oo 337
enable (inherited) 337
get_ key value. 337
get_listener (inherited)o 337
get_liveliness changed_status (inherited) 338
get_matched publication data(inherited) 338
get_matched publications (inherited) 338
get_gos(inherited) 338
get_requested deadline_missed_status (inherited) 339
get_requested_incompatible_qos_status (inherited). 339
get_ sample lost_status (inherited) L. 339
get_sample rejected_status (inherited) 339
get_status changes(inherited) L, 339
get_statuscondition (inherited) L. 340
get_subscriber (inherited) 340
get_subscription_match_status (inherited) 340
get_topicdescription (inherited) 340

X

Java Reference Guide

Table of Contents

Xiv
Java Reference Guide

[0OKUD INStaNCe oo e 341
1= [341
read INStanCet e 345
read next iNStanCe. e 347
read next_instance w_condition.............. 349
read next_sample. e 351
read w_condition. 351
return oan e 353
set listener (inherited) 355
set_qos(inherited) 355
A . o 355
take INStaNCe o 357
take Next iNStanCe.t 359
take next_instance w_condition.............. 360
take next sample. e 362
take w condition e 362
wait_for_historical_data(inherited) 364
ClassDataSample e e 364
ClassSamplelnfo. e 364
Samplelnfo. e 364
SubscriberListener Interface 368
on_data available (inherited) 369
on data on readers ... 369
on_liveliness changed (inherited) 371
on_requested _deadline missed (inherited) 371
on_requested_incompatible gos (inherited). 371
on_sample lost (inherited) 371
on_sample_regjected (inherited) L. 372
on_subscription_matched (inherited,) 372
DataReaderListener interface 372
on data available. 373
on liveliness changed i 375
on_requested deadline missed 376
on_requested_incompatible qos i 377
on_sample l0St.o 378
on_sample rejected 378
on_subscription_matched (abstract). 379
Interface ReadCondition i 379
get datareader. 380
get_instance state mask 381
get sample state Maskt 381
get_trigger value(inherited) 382
& PRISMTECH

Table of Contents

& PRISMTECH

get view state mask ...
Interface QueryCondition
get_datareader (inherited).
get_instance_state mask (inherited).
get_query parameters.
get_query expreSSioNvvvene i
get_sample_state mask (inherited)
get_trigger value(inherited)
get view_state mask (inherited)
Set_query parameters.

Quality Of Service

Affected Entities
BasicUsage.
DataReaderQoSot
DataWriterQoS.o e
DomainParticipantFactoryQos
DomainParticipantQoS.oi i
PublisherQos
SubscriberQoSs
TOPICQOS . .« v ottt

API Constantsand Types

Durationand Time. it
Status to Support Listenersand Conditions.
BES . . ot
QOSPOlICY. ..o

Platform Specific Model IDL Interface

dds depsidl
Fooudl ..

SampleStates, ViewStates and I nstanceStates

SamplelnfoClass.
sample state. e
instance state. e

XV
Java Reference Guide

Table of Contents

Interface Inheritance 461
Listeners, Conditions and Waitsets 463
Communication StatusEvent 465
LIS NS, . 468
Conditionsand Waitsetst 470
StatusCondition Trigger State.ot 472
ReadCondition and QueryCondition Trigger State. 473
GuardCondition Trigger State.o ittt e e 473
Topic Definitions 475
Topic Definition Example. e 475
COMPIEX TOPICS. .« v v ettt et e e e e e e 476
I L PrePrOCESSO . . v vt vttt e et e e 476
DCPS Queriesand Filters 4381
SQL Grammar inBNF 481
SQL TOKEN EXPreSSiON oottt et e e e e e 482
SQL EXamples. . ..o 483
Bibliography 487
Glossary 491
I ndex 495
! & PRISMTECH

Java Reference Guide

List of Figures

&4 PRISMTECH

Figure1l Java Reference Guide Document Structure 3
Figure2 DCPSModule Compositionouuiiiinineinnnn. 17
Figure3 DCPSInfrastructureModule'sClassModel 18
Figure4 DCPSDomain Module'sClassModel 19
Figure5 DCPS Topic-Definition ModulesClassModel 20
Figure6 Typed Classesfor Data Type“Fo0” Pre-processor Generation ...21
Figure7 DCPSPublication ModuleClassModel 22
Figure8 DCPS Subscription Module'sClassModel 23
Figure9 DCPSInfrastructureModule'sClassModel 26
Figure10 QosPolicy SEttingscoviii i e e 34
Figurell DCPS LISteners . ..ot e e e e e e e e 78
Figurel2 DCPSStatusValuesttt 81
Figurel3 DCPSWaitSetso oot e 96
Figure14 DCPSConditionsttt 102
Figure15 DCPSDomain Module'sClassModel 111
Figure 16 DCPS Topic-Definition Module'sClassModel 171
Figure 17 Pre-processor Generation of the Typed Classes
for Data Type“Foo", 172
Figure 18 DCPS Publication Module'sClassModel 200
Figure19 DCPS Subscription Module sClassModel 280
Figure 20: sample statefor a Single SampleStateChart 452
Figure21: StateChart of theinstance statefor aSinglelnstance 454
Figure22: view_statefor a SingleInstance StateChart 455
Figure23 DCPSInheritance 461
Figure 24: Plain Communication StatusStateChart 466
Figure 25: Read Communication Status DataReader Statecraft 467
Figure 26: Subscriber Statecraft for a Read Communication Status. 467
Figure27: DCPSLiSteners .. .oii i e e 469
Figure28: DCPSWaitSets e e 470
Figure29 DCPSConditionsot 471
Figure 30: Blocking Behaviour of a Waitset StateChart 472
XVii

Java Reference Guide

List of Figures

wviii k4 PRISMTECH
Java Reference Guide

Preface

About the Java Reference Guide

The Java Reference Guide provides details of the OpenSplice DDS (Subscription
Paradigm for the Logical | nterconnection of Concurrent Engines) Application
Programming Interfaces for the Java language.

Thisreference guide is based on the OMG'’s Data Distribution Service Specification
and Java Language Mapping Specification.

The Java Reference Guide focuses on the Data Centric Publish Subscribe (DCPS)
layer and does not cover the DLRL layer. The purpose of the DCPS is the
distribution of data (publish/subscribe). The structure of the DCPSis divided into
five modules. Each module consists of several classes, which in turn generally
contain several operations.

Intended Audience

The Java Reference Guide is intended to be used by Java programmers who are
using OpenSplice DDS to develop applications.

Organisation

& PRISMTECH

The Java Reference Guide is organised into the following topics.
The Introduction describes the detail s of the document structure.

Chapter 1, DCPS API General Description, is a general description of the DCPS
APl and its error codes.

Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.

Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.

The following appendices are included, as well a Bibliography containing
references material and Glossary:

Appendix A, Quality Of Service
Appendix B, API Constants and Types
Appendix C, Platform Specific Model IDL Interface
Appendix D, SampleSates, ViewSates and InstanceSates
Appendix E, Interface Inheritance
Appendix F, Listeners, Conditions and Waitsets
Appendix G, Topic Definitions
Appendix H, DCPS Queries and Filters
Xix
Java Reference Guide

Preface

XX

Conventions

i

C++

Java

The conventions listed below are used to guide and assist the reader in
understanding the Java Reference Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000, XP) only.
Information appliesto Unix based systems (e.g. Solaris) only.
C language specific

C++ language specific

Javalanguage specific

Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xxi, are as hypertext links: click on the reference to go to the item.

% Commands or input which the user enters on the
command line of their computer terminal

Courier fontsindicate programming code and file names.
Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set i1d field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from a menu.

Sep 1: Oneof several steps required to complete a task.

& PRISMTECH

Java Reference Guide

Preface

Contacts

PrismTech can be reached at the following contact points for information and
technical support.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited

6 Lincoln Knoll Lane PrismTech House

Suite 100 5th Avenue Business Park
Burlington, MA Gateshead

01803 NE11 ONG

USA UK

Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //Amww.prismtech.com

Genera Enquiries: info@prismtech.com

XXi

& PRISMTECH Java Reference Guide

http://www.prismtech.com
mailto: info@prismtech.com

Preface

XXii

Java Reference Guide &4 PRISMTECH

INTRODUCTION

About the Java Reference Guide

Document Structure

&4 PRISMTECH

The Java Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.

Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, asindicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific Model IDL Interface.

* In the classes as described in the PIM, which are implemented as a class in the
PSM, the operations are described in detail.

In the classes as described in the PIM, which are implemented as a struct in the
PSM, the struct contents are described in detail .

The order of the modules and classes is conform the PIM part.
The order of the operations or struct contents is alphabetical.
 Each description of aclass or struct starts with the API description header file.

DDS-DCPS
detailed description

Modules . ..

Structs . .. Classes . ..

Operations . . .

Figure 1 Java Reference Guide Document Sructure

3
Java Reference Guide

Introduction

Operations

Operations are described in detail in the class they are implemented in. This means
inherited operations, only refer to the operation in the class they are inherited from.
Abstract operations only refer to the type specific implementations in their
respective derived class. An exception is made for the abstract operations
(implemented as an interface), which must be implemented in the application.
Abstract interfaces are described in detail in this manual. In the API description
header file, the inherited and abstract operations are commented out since they are
not implemented in this class.

4
Java Reference Guide

& PRISMTECH

AP| REFERENCE

CHAPTER

& PRISMTECH

1 DCPS API General Description

The structure of the DCPSis divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain

several operations.

Some of these operations have an operation return code of type int, which possible
value is defined in the next table. See Section 1.1, IDL Mapping to Java, on page 8

for an explanation of IDL constants.

Table 1 Return Codes

Return Code

Description

RETCODE_OK

Successful return

RETCODE_ERROR

Generic, unspecified error

RETCODE_BAD_PARAMETER

Illegal parameter value

RETCODE_UNSUPPORTED

Unsupported operation or QosPolicy setting.
Can only be returned by operations that are
optional or operations that uses an optional
<Entity>QoS asaparameter

RETCODE_ALREADY_DELETED

The object target of this operation has already been
deleted

RETCODE_OUT_OF_RESOURCES

Serviceran out of the resources needed to complete
the operation

RETCODE_NOT_ENABLED

Operation invoked on an Entity that is not yet
enabled

RETCODE_IMMUTABLE_POLICY

Application attempted to modify an immutable
QosPolicy

RETCODE_INCONSISTENT_POLICY

Application specified a set of policies that are not
consistent with each other

RETCODE_PRECONDITION_NOT_MET

A pre-condition for the operation was not met

7
API Reference

1 DCPS API General Description 1.1 IDL MappingtoJava

Table 1 Return Codes

Return Code Description
RETCODE_TIMEOUT The operation timed out
RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate

object or at an inappropriate time (as determined by
QosPaliciesthat control the behaviour of the object
in question). There is no precondition that could be
changed to make the operation succeed.

In Java, this code can never be returned!

RETCODE_NO_DATA Indicates a situation where the operation did not
return any data

Return Codes are located in the package pps. The operation return codes
RETCODE_OK, RETCODE_ERROR, RETCODE_BAD_PARAMETER,
RETCODE_UNSUPPORTED and RETCODE_ALREADY_DELETED are default for
operations that return an operation return code and are therefore not explicitly
mentioned in the DDS specification. However, in this manual they are mentioned
along with each operation.

Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return RETCODE_UNSUPPORTED
when called from the application. All constants and types are listed in Appendix B,
API Constants and Types.

The return code RETCODE_TLLEGAL_OPERATION Can never be returned in Java: it
indicates that you try to invoke an operation on the wrong class, which in alanguage
like Java, that natively supports Object Orientation by supporting the concept of
classes with internal operations, is never possible.

IDL Mappingto Java

IDL-Constant M apping

8
API Reference

Constants, declared outside the scope of a IDL interface, are mapped to a public
interface with the same name as the constant and containing a field, named value,
that holds the constant’s value. For example the IDL constant:

module DDS {
const ReturnCode_t RETCODE_OK = 0;
}

is mapped to the following interface class:
Package DDS;

& PRISMTECH

1 DCPS API General Description 1.2 Thread Safety

public interface RETCODE_OK {
public static final int value = (int) (0);

}
The value of the constant can be retrieved with:
RETCODE_OK.value
A few examples of the usage of constants:
* use the or operation to compose a value:

condition.set_enabled_statuses (
INCONSISTENT_TOPIC_STATUS.value |
SAMPLE_REJECTED_STATUS.value) ;

* use the anD operation to check avalue:

if ((status & INCONSISTENT TOPIC_STATUS.value)
INCONSISTENT TOPIC_STATUS.value) {
error = true;

}

I DL -Sequence M apping

An IDL sequence is mapped to a Java array with the same name. The holder class,
see section 1.5 on page 11, for the sequence is generated too. For example the IDL
sequence:

typedef sequence<long> Data
is mapped to the following holder class:

public final class DataHolder
{
public int[] value =
public DataHolder () {
public DataHolder (int][
{

null;
}
] initialvalue)
value = initialValue;

}
}

The array can be initiated using the constructor:

int[] data = new int[10];
DataHolder dataHolder = new DataHolder (data) ;

To reference to an element of the array use for example:
int x = dataHolder.valuel[2];
The length of the array isfound using:

int length = dataHolder.value.length;

Thread Safety
All operations are thread safe.

9
&4 PRISMTECH AP| Reference

1 DCPS API General Description 1.3 Signa Handling

Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources

10
API Reference

are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.

If the application needs to set signal handlers for its own use, two situations can
occur. In thefirst case the application setsasigna handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it’'s own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In
the second case the Data Distribution Service has already set a signal handler for a
specific signal and the application program redefines the signal handling by setting
itsown handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed as last) or to call the exit function itself when
the cached signal is meant to terminate the application process.

The Data Distribution Service service will conditionally set the signal handlers
when creating the DomainParticipantFactory, which is the first call to
DDS.DomainParticipantFactory.get_instance () for Java

The Data Distribution Service only sets signal handlers for signals that have the
default behavior of terminating the process without dumping a core.

The Java Virtual Machine uses its own signal handlersinternally. Which signals are
caught by it, depends on the platform it is running on. The Splice-DDS signal
handlers conflict with the ones used internally by the Java Virtual Machine. To
avoid this problem the signal-chaining facility of the virtual machine must be used.
The signal-chaining facility isinstalled by loading the shared library 1ibjsig. so
before 1ibc, 1ibthead and/or 1ibpthread. The l1ibjsig.so library is
provided with the Java virtual machine. This library ensures that calls such as
signal (), sigset () and sigaction () areintercepted so that they do not
actually replace the Java virtual machine signal handlers. Instead, signal handlers of
the application are “chained” behind the handlers of the Javavirtual machine. When
any of these signals are raised and found not to be targeted at the Java virtual
machine, the signals invoke the signal handlers installed by the application. When
just the Data Distribution System is used without any application signal handlers, no
action needs to be taken.

Thelibrary 1ibjsig. so can be loaded before the Java application by using the
LD_PRELOAD environment variable, for example:

LD_PRELOAD = <libjvm directory>/libjsig.so
export LD_PRELOAD

& PRISMTECH

1 DCPS API General Description 1.4 Memory Management

Memory M anagement

When objects are being created, they will occupy memory resources. Release of the
memory resources isthe responsibility of the Java garbage collector. The memory of
an object isreleased, after all references to this object have run out of scope or have
explicitly been removed (set tonull).

Parameter Passing

&4 PRISMTECH

Support for passing out and inout parameter in a function call requires the use of
additional “holder” classes. These classes are available for all of the data typesin
the DDS package and are generated for all user defined IDL types, except those
defined by typedefs. For user defined IDL types, the holder class name is
constructed by appending “Holder” to the mapped Java name of the type, i.e.
FooHolder for user defined type Foo.

Each holder class has a default constructor and has a public instance member,
named value, which isthe typed value. The default constructor setsthe value field to
null for object references.

The Holder classfor the type DataReaderSeq is shown below:

public final class DataReaderSegHolder
{
public DDS.DataReader value[] = null;
public DataReaderSegHolder ()
{
}
}

Example of usage of the DataReaderSeqHolder class:

DDS.DataReader reader;
DDS.DataReaderSegHolder readersholder = new
DDS.DataReaderSegHolder;
// Get data readers objects
subscriber.get_datareaders (readersholder, DDS.ANY_STATE.value,
DDS.ANY_VIEW.value,
DDS.ANY_INSTANCE_STATE.value) ;
// Get first data reader object from the sequence
if (readersholder.value[0] != null)
reader = readersholder.valuel[0];

In this example a holder is declared for the type DataReaderSeq. After the call to the
function subscriber.get_datareaders, the readersholder contains a reference to an

array of DataReader objects. A reader isretrieved in the last line of the example
code.

11
API Reference

1 DCPS API General Description

1.5 Parameter Passing

The Holder classes defined in DCPS are listed in Table 2;
Table 2 DCPS Holder Classes

BuiltinTopicKey_ tHolder

PresentationQosPolicyAccessScopeKindHolder

ConditionHolder

PresentationQosPolicyHolder

ConditionSegHolder

PublicationBuiltinTopicDataHolder

ContentFilteredTopicHolder

PublicationMatchStatusHolder

DataReaderHolder

PublisherHolder

DataReaderListenerHolder

PublisherlListenerHolder

DataReaderQosHolder

PublisherQosHolder

DataReaderSegHolder

QosPolicyCountHolder

DataWriterHolder

QosPolicyCountSegHolder

DataWriterListenerHolder

QueryConditionHolder

DataWriterQosHolder

ReadConditionHolder

DeadlineQosPolicyHolder

ReaderDatalLifecycleQosPolicyHolder

DestinationOrderQosPolicyHolder

ReliabilityQosPolicyHolder

DestinationOrderQosPolicyKindHolder

ReliabilityQosPolicyKindHolder

DomainParticipantFactoryHolder

RequestedDeadlineMissedStatusHolder

DomainParticipantHolder

RequestedIncompatibleQosStatusHolder

DomainParticipantListenerHolder

ResourceLimitsQosPolicyHolder

DomainParticipantQosHolder

SampleInfoHolder

DurabilityQosPolicyHolder

SampleInfoSeqgHolder

DurabilityQosPolicyKindHolder

SampleLostStatusHolder

Duration_tHolder

SampleRejectedStatusHolder

EntityFactoryQosPolicyHolder

SampleRejectedStatusKindHolder

EntityHolder

SampleStateSegHolder

GroupDataQosPolicyHolder

StatusConditionHolder

GuardConditionHolder

StringSegHolder

HistoryQosPolicyHolder

SubscriberHolder

HistoryQosPolicyKindHolder

SubscriberListenerHolder

InconsistentTopicStatusHolder

SubscriberQosHolder

InstanceHandleSegHolder

SubscriptionBuiltinTopicDataHolder

InstanceStateSegHolder

SubscriptionMatchStatusHolder

LatencyBudgetQosPolicyHolder

Time_tHolder

LifespanQosPolicyHolder

TimeBasedFilterQosPolicyHolder

ListenerHolder

TopicBuiltinTopicDataHolder

LivelinessChangedStatusHolder

TopicDataQosPolicyHolder

12
API Reference

& PRISMTECH

1 DCPS API General Description

1.6 Casting of Objects

Table 2 DCPSHolder Classes (Continued)

LivelinessLostStatusHolder

TopicDescriptionHolder

LivelinessQosPolicyHolder

TopicHolder

LivelinessQosPolicyKindHolder

TopicListenerHolder

MultiTopicHolder

TopicQosHolder

OfferedDeadlineMissedStatusHolder

TopicSegHolder

OfferedIncompatibleQosStatusHolder

TransportPriorityQosPolicyHolder

OwnershipQosPolicyHolder

TypeSupportHolder

OwnershipQosPolicyKindHolder

UserDataQosPolicyHolder

OwnershipStrengthQosPolicyHolder

ViewStateSegHolder

ParticipantBuiltinTopicDataHolder

WaitSetHolder

PartitionQosPolicyHolder

WriterDataLifecycleQosPolicyHolder

1.6 Cadting of Objects

Instances of classes can also be cast to instances of other classes, with one
restriction: the class of the object you’ re casting and the class you're casting it to
must be related by inheritance. So a class can be cast to a subclass, not to any

random class.

For any user defined interface a Helper class is generated with the method narrow()
to cast to the derived class type. The following Java code is generated:

abstract public class <typename> Helper {
public static <typename> narrow(java.lang.Object obj);

}

The static method narrow(), defined in the Helper class, is a method to cast a
superclass object to the <typename> object.

For the user defined structure Foo, the following Helper classes are generated:

» FooDataWriterHel per
» FooDataReaderHelper
» FooTypeSupportHel per

The example below demonstrates the casting of an DataReader type to a
FooDataReader type by calling the function narrow:

// Create the DomainParticipant participant first

// The participant creates a new subscriber
DDS.Subscriber subscriber =

participant.create_subscriber (subgos, sublistener);
// The subscriber creates a new FooDataReader

&4 PRISMTECH

13
API Reference

1 DCPS API General Description 1.7 Listenersinterfaces

DS.DataReader reader = subscriber.create_datareader (topic,
drgos, drlistener);

// The DataReader is cast to a FooDataReader,

// using the static method narrow() in the Helper class

FooDataReader foo_reader =
FooDataReaderHelper.narrow (reader) ;

Lisenersinterfaces

14
API Reference

TheListener providesageneric mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous status
change events, such as a missed deadline, violation of a QosPolicy Setting, etc.
The Listener isrelated to changes in communication status.

The Listener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. A user defined class for these operations must be provided by the
application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class, it is up to the application
whether an operation is empty or contains some functionality.

Each DCPS Entity supportsits own specialized kind of L.i stener. Therefore, the
following Listeners are available:

e DomainParticipantListener

e TopicListener

e PublisherListener

e DataWriterListener

e SubscriberListener

» DataReaderListener

Example

For example, since aDataReader iSan Entity, it has the ability to have a
Listener associated with it. In this case, the associated Listener must be of
type DataReaderListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application (for instance
My_DataReaderListener) which must extend from the
DataReaderListener Class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

As an example, one of the operations in the DataReaderListener isthe
on_liveliness_changed. This operation (implemented by the application) will
be called by the Data Distribution Service when the liveliness of the associated
DataWriter has changed. In other words, it serves as a callback function to the

& PRISMTECH

1 DCPS API General Description 1.8 Inheritance of Abstract Operations

event of achangein liveliness. The parameters of the operation are supplied by the
Data Distribution Service. In this example, the reference to the DataReader and
the status of the liveliness are provided.

| nheritance of Abstract Operations

&4 PRISMTECH

This manual is based on:
¢ PIM part of the DDS-DCPS specification (to describe the modules);
* PSM part of the DDS-DCPS specification (to describe the classes and operations).

At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM (see Appendix C, Platform Specific Model IDL Interface) defines
the interface for an application to interact with the Data Distribution Service. The
DCPS API for the Java programming language conforms to the OMG Java
Language Mapping Specification (Javato IDL).

Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective

derived class (e.g. get_gos and set_gos). These operations are commented out in
the IDL PSM.

15
API Reference

1 DCPS API General Description 1.8 Inheritance of Abstract Operations

16

API Reference & PRISMTECH

CHAPTER

DCPS Modules

DCPSis divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.

Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces
and operations are described in the next chapter.

Domain Module

L/ N
Subscription
Module

1

Publication
Module

|
|
|
}
N -
[Topic-Definition
Module

v
Infrastructure
Module

Figure 2 DCPS M odule Composition

Functionality

& PRISMTECH

The modules have the following function in the Data Distribution Service:

Infrastructure Module - Defines the abstract classes and interfaces, which are
refined by the other modules. It also provides the support for the interaction
between the application and the Data Distribution Service (event-based and
state-based);

17
API Reference

2 DCPS Modules

2.2 InfrastructureModule

Domain Module - Contains the bomainParticipant class, which isthe entry
point of the application and bomainParticipantListener interface;

Topic-Definition Module - Contains the Topic, ContentFilteredTopic and
MultiTopic classes. It aso contains the TopicListener interface and all
support to define Topic objects and assign QosPolicy settingsto them;

Publication Module - Contains the Publisher and Datawriter classes. It also
containsthe publisherlListener and DataWriterListener interfaces;

Subscription Module - Contains the subscriber, DataReader,
ReadCondition and QueryCondition classes. It also contains the
SubscriberListener and DataReaderListener interfaces.

I nfrastructure M odule

18
API Reference

This modul e defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by Listeners, the
state-based interaction is supported by waitSets and Conditions.

QosPolicy qos Entity listener <<In_terface>>
name : string Listener
enable() * 0.1
<<abstract>> get_listener()
<<abstract>> get_qos() WaitSet

get_status_changes()
get_statuscondition()

1 |<<abstract>> set_listener()
<<abstract>> set_qos()

status
—— attach_condition()
L detach_condition()
get_conditions()

wait()

Condition ReadCondition

(from Subscription Module)

|

QueryCondition
(from Subscription Module)

get_trigger_value()

X

GuardCondition

statuscondition

DomainParticipant 1
(from Domain Module)

'\[DomainEntity ‘
I |

1]

StatusCondition

@
@

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Figure3 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
* Entity (abstract)
* DomainEntity (abstract)
* QosPolicy (abstract, class)

set_trigger_value()

* Listener (interface)

& PRISMTECH

2 DCPS Modules

e WaitSet
e Condition
e GuardCondition

e StatusCondition

2.3 Domain Module

This module contains the class DomainParticipant, which acts as an entry point
of the Data Distribution Service and acts as a factory for many of the classes. The
DomainParticipant also actsasacontainer for the other objects that make up the
Data Distribution Service. It isolates applications within the same Domain from
other applicationsin adifferent Domain on the same set of computers. A Domain is
a “virtual network” and applications with the same domainId are isolated from
applications with a different domain1d. In thisway, several independent distributed
applications can coexist in the same physical network without interfering, or even
being aware of each other.

<<Interface>>
SubscriberListener

(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Status (abstract, class)

Entity

(from Infrastructure Module)

]

<<create>>

2.3 DomainModule

l

Publisher

(from Publication Module)

<<create>>

Subscriber
(from Subscription Module)

<<Interface>>
TopicListener

DomainParticipant

on_inconsistent_topic()

DomainParticipantListener

<<implicit>>

0.1

QosPolicy

<<implicit>> gos

*

S5 default_publisher_qgos

(from Infrastructure Module)

* default_topic_gos
*

default_participant_qgos

default_subscriber_gos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_gos()
get_instance()
lookup_participant()
set_default_participant_qos()

<<create>>

&4 PRISMTECH

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gos()
get_default_subscriber_gos()
get_default_topic_qos()
get_domain_id()
get_listener()

get_gos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gos()
set_default_subscriber_qos()
set_default_topic_gos()
set_listener()

set_qos()

/

/

DomainEntity
(from Infrastructure Module)

1

e

<<create>> Topic

(from Topic-Definition Module)

<<implicit>>

TopicDescription
(from Topic-Definition Module)

a

£

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

<<create>>

<<create>>

Figure4 DCPSDomain Module's Class M odel
This module contains the following classes:

e DomainParticipant

19
API Reference

2 DCPS Modules 2.4 Topic-Definition Module

e DomainParticipantFactory

* DomainParticipantListener (interface)

2.4 Topic-Definition Module

This module contains the Topic, ContentFilteredTopic and MultiTopic
classes. It also contains the TopicListener interface and all support to define
Topic objects and assign QosPolicy settingsto them.

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
DomainParticipant TopicDescription

DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
get_expression_parameters()
- . get_subscription_expression()
Topic set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() 1
get_qos()
set_listener() <T<Intesrface>t>
set_qos() ypesuppor
1 get_type_name()
register_type()
* 0.1 *
QosPolicy <<Interface>> StatusCondition * * WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) [| (from Infrastructure Module)

on_inconsistent_topic()
Figure5 DCPS Topic-Definition Module's Class M odel

This module contains the following classes:

* TopicDescription (abstract)

» Topic

e ContentFilteredTopic

e MultiTopic

* TopicListener (interface)

* Topic-Definition type specific classes

“Topic-Definition type specific classes’ contains the generic class and the generated

data type specific classes. In case of datatype Foo (this also applies to other types);
“Topic-Definition type specific classes’ contains the following classes:

* TypeSupport (abstract)

20
API Reference

& PRISMTECH

2 DCPS Modules

e FooTypeSupport

<<Interface>>
TypeSupport

DataWriter
(from Publication Module)

get_type_name()
register_type()

7

FooTypeSupport

2.5 PublicationModule

DataReader
(from Subscription Module)

FooDataWriter

FooDataReader

get_type_name()
register_type()

dispose()
dispose_w_timestamp()
get_key_value()

register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

get_key_value()

read()

read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()

return_loan()

take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Figure6 Typed Classesfor Data Type“ Foo” Pre-processor Generation

Publication Module

This module supports writing of the data, it contains the publisher and
DataWriter classes. It also contains the publisherListener and
DataWriterListener interfaces. Furthermore, it contains all support needed for

publication.

&4 PRISMTECH

21
API Reference

2 DCPS Modules

<<create>>

2.6 Subscription Module

DataWriter

assert_liveliness()

<<abstract>> dispose()

<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_gos_status()
get_publication_match_status()
get_publisher()

get qos()

get_topic()

<<abstract>> register()

<<abstract>> register_w_timestamp()
set_listener()

set_qgos()

<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()

<<abstract>> write_w_timestamp()

——=>1 (from Infrastructure Module)
*

QosPolicy <<implicit>>

Publisher

qos

<<implicit>>

default_datawriter_qos

(from Topic-Definition Module)

Topic

<<implicit>>
1T

0.1

<<implicit>>

0.1

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<create>> /

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()

get qos()
lookup_datawriter()
resume_publications()

1 |set_default_datawriter_qos()
set_listener()

set_gos()
suspend_publications()

/

<<implicit>>

0.1 <<implicit>>
StatusCondition
(from Infrastructure Module)
WaitSet
(from Infrastructure Module)

DomainParticipant
(from Domain Module)

1

<<Interface>>
PublisherListener

Figure 7 DCPS Publication Module Class M odel
This module contains the following classes:

e Publisher

* Publication type specific classes

* PublisherListener (interface)

* DataWriterListener (interface)

“Publication type specific classes” contains the generic class and the generated data
type specific classes. In case of datatype Foo (this also applies to other types);
“Publication type specific classes’ contains the following classes:

* DataWriter (abstract)

e FooDataWriter

2.6 Subscription Module

This module supports access to the data, it contains the subscriber,
DataReader, ReadCondition and QueryCondition classes. It also contains
the subscriberListener and DataReaderListener interfaces. Furthermore,
it contains all support needed for subscription.

22
API Reference

& PRISMTECH

2 DCPS Modules

2.6 Subscription Module

Sampleinfo
DataSample sample_state
i:‘ view_state Dorﬁa\\wParl\;\\Jarj{
instance. state (from Domain Module)
* 1 |source_timestamp
instance_handle
disposed_generation_count <<create>>
DataReader no_writers_generation_count imolici

sample_rank QosPolicy <<implicit>> Subscriber
create_querycondition() generation_rank - - qos
create_readcondition() absolute_generation_rank name : string . begin_access()
delete_contained_entities() copy_from_topic_gos()
delete_readcondition() . I A create_datareader()
<<abstract>> get_key_value() delete_contained_entities()
et_listener L delete_datareader!
get:I|veI|neé)s_changed_status() <<implicit>> default_datareader_dosenq_access() 0
get_matched_publication_data() get_datareaders()
get_matched_publications() get_default_datareader_gos()
get_qos() TopicDescription Topic getilisleneﬁ) -
get_requested_deadline_missed_status() (from Topic-Definition Module) ——— (from Topic-Definition Module) get_participant()
get_requested_incompatible_gos_status() get_gos()
get_sample_lost_status() N lookup_datareader()
get_samplg_rejected_status() . 1 | 1 notify_datareaders()
GELBRTDA) st <cimpiios | 3e Gt dtareaderos0
get_topicdescription() set_qos()
<<abstract>> lookup_instance() 0.. 0.1
<<abstract>> read()
<<abstract>> read_instance() WaitSet StatusCondition
<<abstract>> read_next_instance() (from Infrastructure (from Infrastructure Modle)
<<abstract>> read_next_instance_w_condition() - 1 <<implicit>>
<<abstract>> read_next_sample() * *
<<abstract>> read_w_condition() <<create>> o 0.1
<<abstract>> return_loan() * <<implicit>> -
set_llsteSer() N <<Interface>>
set_qos| ReadCondition o iberLi
<<abstract>> take() QueryCondition SubscriberListener
<<abstract>> take_instance()
<<abstract>> take_next_instance() gg:_ﬁ]f;&;ﬁ::esr&e mask() get_query_arguments() on_data_on_readers()
<<abstract>> take_next_instance_w_condition() gel_sam le_state_mask() get_query_expression()
<<abstract>> take_next_sample() gefwewpsfate mask() set_query_arguments()
<<abstract>> take_w_condition() get) = =

<<create>>

*
0.1

<<Interface>>
DataReaderListener

<<create>>

on_data_available()
on_liveliness_changed()

on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

Figure8 DCPS Subscription Modul€e's Class M odel
This module contains the following classes:

» Subscriber

DataSample

Subscription type specific classes

SampleInfo (class)

SubscriberListener (interface)
* DataReaderListener (interface)

e ReadCondition

e QueryCondition

23

&4 PRISMTECH AP| Reference

2 DCPS Modules 2.6 Subscription Module

“Subscription type specific classes’ contains the generic class and the generated
datatype specific classes. In case of datatype Foo (this also applies to other types);
“ Subscription type specific classes’ contains the following classes:

* DataReader (abstract)

« FooDataReader

24

API Reference & PRISMTECH

CHAPTER

& PRISMTECH

DCPS Classes and Operations

This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.

The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.

Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.

The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.

25
API Reference

3 DCPS Classes and Operations

3.1 Infrastructure M odule

3.1 InfrastructureModule

QosPolicy qos Entity listener | <<Interface>>
name : string Listener
enable() 0.1
<<abstract>> get_listener()
<<abstract>> get_qos() N
status get_status_changes() WaitSet
get_statuscondition() -
e I <<abstract>> set_listener() attach_condition()
<<abstract>> set_qos() detach_condition()
get_conditions()
wait()
*
Condition ReadCondition
1 (from Subscription Module)
get_trigger_value()
statuscondition
DomainParticipant 1 . —‘7
(from Domain Module) | o \[DomainEntity StatusCondition —
@ T 1 GuardCondition QueryCondition
| get_enabled_statuses() (from Subscription Module)
¢ _statu: K
get_entity() set_trigger_value()

set_enabled_statuses()

Figure9 DCPSInfrastructure Module’'s Class M odel
This module contains the following classes:
* Entity (interface)
* DomainEntity (abstract)
* QosPolicy (abstract, class)
* Listener (interface)
* Status (abstract, class)
» WaitSet
e Condition
e GuardCondition

e StatusCondition

3.1.1 Interface Entity

Entity is the interface for all the DCPS objects. It acts as a generic interface for
Entity Objects.

The interface description is as follows:

public interface Entity
{

//

// abstract operations
// DomainParticipant,
// Publisher,
//

(implemented in class
Topic,
DataWriter, Subscriber and DataReader)

26

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

// public int

// set_gos
// (EntityQos gos);
// public int
// get_gos
// (EntityQosHolder gos) ;
// public int
// set_listener
// (Listener a_listener,
// int mask) ;
// public Listener
// get_listener
// (void) ;
//
// implemented API operations
//
public int
enable
(void) ;

public StatusCondition
get_statuscondition
(void) ;
public int
get_status_changes
(void) ;
public long
get_instance_handle
(void) ;

}s
The following paragraphs list all Entity operations. The abstract operations are
listed but not fully described because they are not implemented in this specific class.

The full description of these operationsis given in the subclasses, which contain the
type specific implementation of these operations.

enable

Scope

DDS.Entity
Synopsis

import DDS.*;

public int

enable
(void) ;
27
&4 PRISMTECH

API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

28
API Reference

Description

This operation enables the Entity on which it is being called when the Entity
was created with the EntityFactoryQosPolicy Setto false.

Parameters
<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK,
RETCODE_ERROR, RETCODE_ALREADY_DELETED, RETCODE_OUT_
OF_RESOURCES Of RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation enables the Entity. Created Entity objects can start in either an
enabled or disabled state. This is controlled by the value of the
EntityFactoryQosPolicy on the corresponding factory for the Entity.
Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet
activated, so it is still possible to change there immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.

Creating disabled entities can make sense when the creator of the Entity does not
yet know which QoS settings to apply, thus allowing another piece of code to set the
QoS later on. Thisisfor example the case in the DLRL, where the 0bjectHomes
create all underlying DCPS entities but do not know which QoS settings to apply.
The user can then apply the required QoS settings afterwards.

The default setting of EntityFactoryQosPolicy issuch that, by default, entities
are created in an enabled state so that it is not necessary to explicitly call enable on
newly created entities.

The enable operation isidempotent. Calling enable on an already enabled
Entity returns RETCODE_OK and has no effect.

If an Entity has not yet been enabled, the only operations that can be invoked on it
are: the onesto set, get or copy the gosPolicy settings, the onesthat set (or get) the
listener, the ones that get the statusCondition, the get_status_changes
operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or lookup® other Entities. Other operations will
return the error RETCODE_NOT_ENABLED.

Entities created from afactory that is disabled, are created disabled regardless of
the setting of the EntityFactoryQosPolicy.

1. Thisincludes the lookup_topicdescription, but not the find_topic.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Cadlling enable 0n an Entity whose factory is not enabled will fail and return
RETCODE_PRECONDITION_NOT_MET.

If the EntityFactoryQosPolicy hasautoenable created_entities Setto
true, the enable operation on the factory will automatically enable all Entities
created from the factory.

The Listeners associated with an Entity are not called until the Entity is
enabled. conditions associated with an Ent ity that is not enabled are "inactive”,
that is, havea trigger_value whichis false.

Return Code

When the operation returns:

* RETCODE_OK - the application enabled the Ent ity (or it was already enabled)

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - thefactory of the Entity isnot enabled.

get_instance_handle

&4 PRISMTECH

Scope
DDS.Entity
Synopsis
import DDS.*;
public long

get_instance_handle
(void) ;

Description

This operation returns the instance_handle of the builtin topic sample that
represents the specified Entity.

Parameters

<none>

Return Value

long - Result value isthe instance_handle of the builtin topic sample that
represents the state of thisentity.

29
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description

The relevant state of some Ent ity objects are distributed using so-called builtin
topics. Each builtin topic sample represents the state of a specific Entity and hasa
unigue instance_handle. This operation returns the instance_handle of the
builtin topic sample that represents the specified Entity.

Some Entities (i.e. Publisher and Subscriber) do not have a corresponding
builtin topic sample, but they still have an instance_handle that uniquely
identifiesthe Entity.

The instance_handles Obtained this way can also be used to check whether a
specific Entity islocated in a specific bomainParticipant. (See section
3.2.1.2, contains_entity, on page 116.)

get_listener (abstract)

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
import DDS.*;
public Listener
get_listener
(void) ;

get_qos (abstract)

This abstract operation is defined as a generic operation to access an object with the
QosPolicy settings. Each subclass derived from this class, bomainpParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader Will provide a
class specific implementation of this abstract operation.

Synopsis
import DDS.*;
public int
get_qgos
(EntityQosHolder gos) ;

get_status changes

30
API Reference

Scope

DDS.Entity

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

Description

This operation returns a mask with the communication statuses in the Ent ity that
are “triggered”.

Parameters
<none>

Return Value
int - abit mask in which each bit shows which value has changed.

Detailed Description

This operation returns a mask with the communication statuses in the Entity that
are “triggered”. That is the set of communication statuses whose value have
changed since the last time the application called this operation. This operation
shows whether a change has occurred even when the status seems unchanged
because the status changed back to the original status.

When the Entity is first created or if the Entity is not enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.

Theresult valueis abit mask in which each bit shows which value has changed. The
relevant bits represent one of the following statuses:

« INCONSISTENT_TOPIC_STATUS

+ OFFERED_DEADLINE_MISSED_STATUS

« REQUESTED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

+ SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

« DATA_ON_READERS_STATUS

« DATA_AVAILABLE_STATUS

+ LIVELINESS_LOST_STATUS

« LIVELINESS_CHANGED_STATUS

+ PUBLICATION_MATCHED_STATUS

31
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

« SUBSCRIPTION_MATCHED_STATUS
Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the resulting status mask. Not all statuses are relevant to
al Entity objects. See the respective Listener interfaces for each Entity for
more information

get_statuscondition

Scope

DDS.Entity

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;
Description
This operation allows access to the statusCondition associated with the
Entity.

Parameters
<none>

Return Value
StatusCondition - Result valueisthe statusCondition of the Entity.

Detailed Description

Each Entity hasa statusCondition associated with it. This operation allows
access to the statusCondition associated with the Entity. The returned
condition can then be added to awaitsSet so that the application can wait for
specific status changes that affect the Entity.

set_listener (abstract)

32
API Reference

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
import DDS.*;
public int
set_listener

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

(Listener a_listener,
int mask) ;

set_qos (abstract)

This abstract operation is defined as a generic operation to modify an object with the
QosPolicy settings. Each subclass derived from this class, bomainParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader Will provide a
class specific implementation of this abstract operation.

Synopsis
import DDS.*;
public int
set_gos
(EntityQos gos) ;

Class DomainEntity

This classisthe abstract base class for the all entities except bomainParticipant.
The main purpose is to express that bomainParticipant isa special kind of
Entity, which acts as a container of all other Entity objects, but cannot contain
another bomainParticipant withinitself. Therefore, this classis not part of the
IDL interfacein the DCPS PSM description.

The class DomainEntity does not contain any operations.

Class QosPalicy

Each Entity provides an <Entity>Qos class that implements the basic
mechanism for an application to specify Quality of Service attributes. This class
consists of Entity specific QosPolicy attributes. QospPolicy attributes are class
types where each type specifies the information that controls an Entity related
(configurable) property of the Data Distribution Service.

All gospPolicies applicable to an Entity are aggregated in a corresponding
<Entity>Qos, Whichisacompound classthat is set atomically so that it represents
acoherent set of QosPolicy attributes.

Compound classes are used whenever multiple attributes must be set coherently to
define a consistent attribute for agosPolicy.

33

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

A full description of any <Entity>Qos isgivenin Appendix A, Quality Of Service.
The complete list of individual QosPolicy Settings and their meaning is described
in this paragraph.

QosPolicy
name : string
HistoryQosPolicy UserDataQosPolicy PartitionQosPolicy
kind : HistoryQosPolicyKind value [*] : octet — namel[*] : string [—
depth : long

ReliabilityQosPolicy

TopicDataQosPolic! - — —
e p Q Y kind : ReliabilityQosPolicyKind
value [*] : octet max_blocking_time : Duration_t

LifespanQosPolicy
—duration : Duration_t

OwnershipQosPolicy GroupDataQosPolicy LivelinessQosPolicy

—1kind : OwnershipQosPolicyKind value [*] : octet — kind : LivelinessQosPolicyKind
lease_duration : Duration_t

OwnershipStrengthQosPolicy LatencyBudgetQosPolicy

value : long duration : Duration_t — . DL!TIablhtyQOS.POh.Cy
kind : DurabilityQosPolicyKind —
WriterDataLifecycleQosPolicy DeadlineQosPolicy
—autodispose_unregistered_instances : boolean period : Duration_t ResourceLimitsQosPolicy
max_samples : long
max_instances : long —
/[\ max_samples_per_instance : long

ReaderDataLifecycleQosPolicy

TimeBasedFilterQosPolicy
minimum_separation : Duration_t —

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

DestinationOrderQosPolicy
kind : DestinationOrderQosPolicyKind ——

EntityFactoryQosPolicy
PresentationQosPolicy autoenable_created_entities : boolean ——
access_scope : PresentationQosPolicyAccessScopeKind TransportPriorityQosPolicy
L—coherent_access : boolean value : long]

ordered_access : boolean

DurabilityServiceQosPolicy
service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long
max_samples : long
max_instances : long
max_samples_per_instance : long

Figure 10 QosPoalicy Settings
Requested/Offered

In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy onthe offering side. For example, if aDataReader requeststo receive
data reliably while the corresponding patawriter defines a best-effort
QosPolicy, communication will not happen as requested. This means, the

34

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

specification for gosPolicy follows the Requested/Offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. In this pattern:

* the requesting side can specify a“requested” attribute for a particular gospPolicy
« the offering side specifies an “offered” attribute for that gosPolicy

The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPolicy Settings are compatible, communication is established. If
the two QosPolicy Settings are not compatible, the Data Distribution Service will
not establish communication between the two Ent ity objects and notify this fact
by means of the OFFERED_INCOMPATIBLE_QOS Status on the offering side and the
REQUESTED_INCOMPATIBLE_QOS Status on the requesting side. The application
can detect thisfact by meansof aListener Or Condition.

The interface description of the QosPolicy classesis as follows:

// class <Entity>Qos

//

package DDS;

//

// class <name>QosPolicy
//
public final class UserDataQosPolicy
{ public byte valuell; };

public final class TopicDataQosPolicy
{ public byte valuell; };

public final class GroupDataQosPolicy
{ public byte valuel]; };

public final class TransportPriorityQosPolicy
{ public int value; };

public final class LifespanQosPolicy
{ public Duration_t duration; };

public class DurabilityQosPolicyKind
{ public static final DurabilityQosPolicyKind
VOLATILE_DURABILITY QOS;
public static final DurabilityQosPolicyKind
TRANSTENT_LOCAL_DURABILITY_QOS;
public static final DurabilityQosPolicyKind
TRANSTIENT_DURABILITY_ QOS;
public static final DurabilityQosPolicyKind
PERSISTENT DURABILITY QOS; };

35
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

public final class DurabilityQosPolicy
{ public DurabilityQosPolicyKind kind; };

public class PresentationQosPolicyAccessScopeKind
{ public static final PresentationQosPolicyAccessScopeKind
INSTANCE_PRESENTATION_QOS;
public static final PresentationQosPolicyAccessScopeKind
TOPIC_PRESENTATION_QOS;
public static final PresentationQosPolicyAccessScopeKind
GROUP_PRESENTATION_QOS; };

public final class PresentationQosPolicy

{ public PresentationQosPolicyAccessScopeKind access_scope;
public boolean coherent_access;
public boolean ordered_access; };

public final class DeadlineQosPolicy
{ public Duration_t period; };

public final class LatencyBudgetQosPolicy
{ public Duration_t duration; };

public class OwnershipQosPolicyKind

{ public static final OwnershipQosPolicyKind
SHARED_OWNERSHIP_QOS;

public static final OwnershipQosPolicyKind
EXCLUSIVE_OWNERSHIP_QOS; };

public final class OwnershipQosPolicy
{ public OwnershipQosPolicyKind kind; };

public final class OwnershipStrengthQosPolicy
{ public int value; };

public class LivelinessQosPolicyKind

{ public static final LivelinessQosPolicyKind
AUTOMATIC_LIVELINESS_QOS;

public static final LivelinessQosPolicyKind
MANUAL_BY_PARTICIPANT_ LIVELINESS_QOS;

public static final LivelinessQosPolicyKind
MANUAL_BY_ TOPIC_LIVELINESS_QOS;};

public final class LivelinessQosPolicy
{ public LivelinessQosPolicyKind kind;
public Duration_t lease_duration; };

public final class TimeBasedFilterQosPolicy

{ public Duration_t minimum_separation; };

36
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

public final class PartitionQosPolicy
{ public String namel]; };

public class ReliabilityQosPolicyKind

{ public static final ReliabilityQosPolicyKind
BEST EFFORT_RELIABILITY QOS;

public static final ReliabilityQosPolicyKind
RELIABLE_RELIABILITY_QOS; };

public final class ReliabilityQosPolicy
{ public ReliabilityQosPolicyKind kind;
public Duration_t max_blocking_time; };

public class DestinationOrderQosPolicyKind

{ public static final DestinationOrderQosPolicyKind
BY_RECEPTION_TIMESTAMP_ DESTINATIONORDER_QOS;

public static final DestinationOrderQosPolicyKind
BY_SOURCE_TIMESTAMP DESTINATIONORDER_QOS; };

public final class DestinationOrderQosPolicy
{ public DestinationOrderQosPolicyKind kind; };

public class HistoryQosPolicyKind
{ public static final HistoryQosPolicyKind KEEP_LAST HISTORY_QOS;
public static final
HistoryQosPolicyKind KEEP_ALL_HISTORY_QOS; };

public final class HistoryQosPolicy
{ public HistoryQosPolicyKind kind;
public int depth; };

public final class ResourceLimitsQosPolicy
{ public int max_samples;

public int max_instances;

public int max_samples_per_instance; };

public final class EntityFactoryQosPolicy
{ public boolean autoenable_created_entities; };

public final class WriterDataLifecycleQosPolicy
{ public boolean autodispose_unregistered_instances; };

public final class ReaderDatalLifecycleQosPolicy
{ public Duration_t autopurge_nowriter_samples_delay;
public Duration_t autopurge_disposed_samples_delay; };

public final class DurabilityServiceQosPolicy

{ public Duration_t service_cleanup_delay;
public HistoryQosPolicyKind history_kind;
public int history depth;

37

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

public int max_samples;
public int max_instances;
public int max_samples_per_instance; };

public class SchedulingClassQosPolicyKind
{ public static final SchedulingClassQosPolicyKind
SCHEDULE_DEFAULT;
public static final SchedulingClassQosPolicyKind
SCHEDULE_TIMESHARING;
public static final SchedulingClassQosPolicyKind
SCHEDULE_REALTIME; };

public class SchedulingClassQosPolicy
{ public SchedulingClassQosPolicyKind kind; };

public class SchedulingPriorityQosPolicyKind
{ public static final SchedulingPriorityQosPolicyKind
PRIORITY_RELATIVE;
public static final SchedulingPriorityQosPolicyKind
PRIORITY_ABSOLUTE; };

public class SchedulingPriorityQosPolicy
{ public SchedulingPriorityQosPolicyKind kind; };

public class SchedulingQosPolicy

{ public SchedulingClassQosPolicy scheduling class;
public SchedulingPriorityQosPolicy scheduling priority_kind;
public int scheduling_ priority; };

Default Attributes
The default value of each osPolicy attribute are listed in the next table:

Table 3 QosPolicy Default Attributes

QosPolicy Attribute Value
user_data value.length 0
topic_data value.length 0
group_data value.length 0
transport_priority value 0
lifespan duration DURATION_INFINITE
durability kind VOLATILE_DURABILITY_QOS
presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access false
ordered_access false
deadline period DURATION_INFINITE

38

API Reference & PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 3 QosPolicy Default Attributes (Continued)

QosPalicy Attribute Value
latency_budget duration 0
ownership_strength value 0
ownership kind SHARED_OWNERSHIP_QOS
liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration

DURATION_INFINITE

time_based_filter minimum_separation 0
partition name.length 0
reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

entity_factory autoenable_created_entiti |true
es
writer_data_lifecycle |autodispose_ true

unregistered_instances

reader_data_lifecycle

autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE

durability_service

history kind

KEEP_LAST

history_depth

1

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

service_cleanup_delay

0

watchdog_scheduling,

listener_scheduling

scheduling class.kind

SCHEDULE_DEFAULT

scheduling priority kind.
kind

PRIORITY_RELATIVE

scheduling priority

&4 PRISMTECH

39
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

40
API Reference

RxO

The gosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxQO”
(Requested/Offered) property. The “RxQ” property of each osPolicy islistedin
Table 4, QosPalicy Basics, on page 41.

* A “RxO” setting of “Yes” indicates that the gosPolicy can be set a both ends
(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined

* A "RxO” setting of “No” indicates that the QosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible

* A “RxO” setting of “Not applicable” indicates that the QosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply

Changeable

The “changeable” property determines whether the QosPolicy can be changed
after the Entity is enabled. In other words, a QosPolicy with “changeable”
setting of “No” is considered “immutable” and can only be specified either at
Entity creation time or prior to calling the enable operation on the Entity.

When the application tries to change a gosPolicy with “changeable” setting of
“No”, the Data Distribution Service will notify this by returning a
RETCODE_IMMUTABLE_POLICY.

The basic way to modify or set the <Entity>Qos iShy using aget_gos and
set_gos operation to get all QosPolicy settings from this Entity (that isthe
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an user operation to set all QosPolicy Settings on this Entity (that isthe
<Entity>Qos). An example of these operationsfor the batawriter are get_qgos
and set_gos, which take the <Entity>Qos as a parameter.

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

The “Rx0O” setting and the “changeable” setting of each gosPolicy arelisted in

the next table:
Table 4 QosPolicy Basics
QosPalicy Concerns Entity RxO Changeable
After
Enabling
user_data DomainParticipant No Yes
DataReader
DataWriter
topic_data Topic No Yes
group_data Publisher No Yes
Subscriber
transport_priority Topic Not applicable Yes
DataWriter
lifespan Topic Not applicable | Yes
DataWriter
durability Topic Yes No
DataReader
DataWriter
presentation Publisher Yes No
Subscriber
deadline Topic Yes Yes
DataReader
DataWriter
latency budget Topic Yes Yes
DataReader
DataWriter
ownership Topic Yes No
DataReader
DataWriter
ownership_strength DataWriter Not applicable | Yes
liveliness Topic Yes No
DataReader
DataWriter
time_based_filter DataReader Not applicable | Yes
partition Publisher No Yes
Subscriber
41
&4 PRISMTECH

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 4 QosPolicy Basics (Continued)

QosPolicy Concerns Entity RxO Changeable
After
Enabling
reliability Topic Yes No
DataReader
DataWriter
destination_order Topic Yes No
DataReader
DataWriter
history Topic No No
DataReader
DataWriter
resource_limits Topic No No
DataReader
DataWriter
entity_factory DomainParticipantFactory |NO Yes
DomainParticipant
Publisher
Subscriber
writer_data_lifecycle |DataWriter Not applicable | Yes
reader_data_lifecycle |DataReader Not applicable | Yes
durability service Topic No No
scheduling DomainParticipant Not applicable | No

The following paragraphs describe each <name>QosPolicy class.

3.1.3.1 DeadlineQosPalicy

42
API Reference

Scope

DDS

Synopsis

import DDS.*;

public final class DeadlineQosPolicy

{ public Duration_t period; }

Description

This QosPolicy defines the period within which a new sample is expected by the
DDS_DataReader O to be written by the batawriter.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Attributes

Duration_t period - specifiesthe period within which anew sampleis expected
or to be written.

Detailed Description

This QosPolicy will set the period within which a DatarReader expects a new
sample or, in case of abatawriter, the period in which it expects applicationsto
write the sample. The default value of the period iS DURATION_INFINITE,
indicating that there is no deadline. The QosPolicy may be used to monitor the
real-time behaviour, a1.i stener Or aStatusCondition may be used to catch the
event that is generated when adeadline is missed.

DeadlineQosPolicy isinstance oriented (i.e. the period is monitored for each
individual instance).

The exact consequences of a missed deadline depend on the Entity in which it
occured, and the ownershipQosPolicy vaue of that Entity:

*In case a DataWriter misses an instance deadline (regardless of its
OwnershipQosPolicy Setting), an offered_deadline_missed_status iS
raised, which can be detected by either a Listener Or a StatusCondition.
There are no further consequences.

*In cae a DataReader misses an instance deadline, a
requested_deadline_missed_status iS raised, which can be detected by
either aListener Or asStatusCondition. In casethe ownershipQosPolicy
is set to sHARED, there are no further consequences. In case the
OwnershipQosPolicy IS Set to EXCLUSTVE, the ownership of that instance on
that particular DataReader is transferred to the next available highest strength
DataWriter, but thiswill have no impact on the instance_state whatsoever.
So even when a deadline is missed for an instance that has no other
(lower-strength) DataWriters to transfer ownership to, the instance_state
remains unchanged. See also Section 3.1.3.11, OwnershipQosPolicy.

This QosPolicy isapplicable to a DataReader, aDataWriter and a Topic.
After enabling of the concerning Entity, thisQosPolicy may be changed by
using the set_qos operation.

43
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 5 DeadlineQosPoalicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gosPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DataReader. AS a consequence,
aDataWriter that has an incompatible gos with respect to what a bataReader
specifies, is not allowed to send its data to that specific bataReader. A
DataReader that has an incompatible gos with respect to what a batawriter
specifies, does not get any data from that particular Datawriter.

Changing an existing deadline period using the set_qgos operation on either the
DataWriter Of DataReader may have consequences for the connectivity between
readers and writers, depending on their rx0 values. (See also in Section 3.1.3, Class
QosPalicy, the paragraph entitled Requested/Offered.) Consider a writer with
deadline period pw and a reader with deadline period pr, where pw <= Pr. In this
case a connection between that reader and that writer is established. Now suppose
Pw IS changed so that pw > Pr, then the existing connection between reader and
writer will be lost, and the reader will behave as if the writer unregistered all its
instances, transferring the ownership of these instances when appropriate. See also
Section 3.1.3.11, OwnershipQosPalicy.

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way, the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DatawWriter are consistent.

DestinationOr der QosPolicy
Scope

DDS

44

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Synopsis
import DDS.*
public class DestinationOrderQosPolicyKind
{ public static final DestinationOrderQosPolicyKind
BY_RECEPTION_TIMESTAMP_ DESTINATIONORDER_QOS;
public static final DestinationOrderQosPolicyKind
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS;
}
public class DestinationOrderQosPolicy
{ public DestinationOrderQosPolicyKind kind; }

Description
This QosPolicy controlsthe order in which the DataReader stores the data.

Attributes

DestinationOrderQosPolicyKind kind - controlsthe order in which the
DataReader Storesthe data.

Detailed Description

This QosPolicy controls the order in which the batarReader stores the data. The
order of storage is controlled by the timestamp. However a choice can be made to
use the timestamp of the patareader (time of reception) or the timestamp of the
DataWriter (Sourcetimestamp).

ThisQosPolicy isapplicableto abatawriter, DataReader and a Topic. After
enabling of the concerning entity, this gosPo1licy cannot be changed any more.
Attribute

The QosPolicy iscontrolled by the attribute kind which may be:

e BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

e BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

When set to BY_RECEPTION_TIMESTAMP DESTINATIONORDER_QOS, the order is
based on the timestamp, at the moment the sample was received by the
DataReader.

When set to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, which was set by the batawriter. This means that the
system needs some time synchronisation.

45
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 6 Requested/Offered DestinationOr der QosPolicy

Requested BY_RECEPTION_TIMESTAMP | BY_SOURCE_TIMESTAMP
m
BY_RECEPTION_TIMESTAMP compatible INcompatible
BY_SOURCE_TIMESTAMP compatible compatible

Whether communication is established, it is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DataReader. AS a consequence,
aDataWriter that has an incompatible QoS with respect to what a DataReader
specified, is not allowed to send its datato that specific bataReader. A
DataReader that has an incompatible QoS with respect to what a Dataliriter
specified, does not get any data from that particular batawriter.

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way, the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and Datawriter are consistent.

Dur abilityQosPalicy

46
API Reference

Scope

DDS

Synopsis

import DDS.*;

public class DurabilityQosPolicyKind

{

public static final DurabilityQosPolicyKind
VOLATILE_DURABILITY_ QOS;

public static final DurabilityQosPolicyKind
TRANSIENT_ LOCAL_DURABILITY_QOS;

public static final DurabilityQosPolicyKind
TRANSTIENT DURABILITY_ QOS;

public static final DurabilityQosPolicyKind
PERSISTENT_DURABILITY_QOS;

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

}
public class DurabilityQosPolicy

{
public DurabilityQosPolicyKind kind;

}

Description
This QosPolicy controls whether the data should be stored for late joining readers.

Attributes

DurabilityQosPolicyKind kind - specifies the type of durability from
VOLATILE_DURABILITY_ QOS (shortlife) to PERSISTENT DURABILITY_QOS
(long life).

Detailed Description

The decoupling between DataReader and Datawriter oOffered by the Data
Distribution Service allows an application to write data even if there are no current
readers on the network. Moreover, a bataReader that joins the network after some
data has been written could potentially be interested in accessing the most current
values of the data as well as some history. This QosPolicy controls whether the
Data Distribution Service will actually make data available to late-joining
DataReaders.

ThisQosPolicy isapplicable to aDataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute kind which may be:

* VOLATILE DURABILITY_QO0S - the samples are not available to late-joining
DataReaders. In other words, only pataReaders, which were present at the
time of the writing and have subscribed to this Topic, will receive the sample.
When a bataReader subscribes afterwards (late-joining), it will only be able to
read the next written sample. This setting is typically used for data, which is
updated quickly

* TRANSIENT LOCAL_DURABILITY_QOS - the functionality behind this setting is
not yet implemented. It is scheduled for a future release

* TRANSIENT DURABILITY QOS - Some samples are available to late-joining
DataReaders (stored in memory). This means that the late-joining
DataReaders are able to read these previously written samples. The
DataReader does not necessarily have to exist at the time of writing. Not all
samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the Datawriter and will

47
API Reference

3 DCPS Classes and Operations

48
API Reference

3.1 InfrastructureModule

outlive the patawriter. This may be used to implement reallocation of
applications because the data is saved in the Data Distribution Service (not in the
DataWriter). This setting is typically used for state related information of an
application. In this case also the DurabilityServiceQosPolicy Settings are
relevant for the behaviour of the Data Distribution Service

* PERSISTENT DURABILITY_QOS - the datais stored in permanent storage (e.g.
hard disk). This means that the samples are also available after a system restart.
The samples not only outlives the Datawriters, but even the Data Distribution
Service and the system. This setting istypically used for attributes and settings for
an application or the system. In this <case dso the
DurabilityServiceQosPolicy Settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification

OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TINCOMPATIBLE_QOS status on the requesting side is raised.

Table 7 Requested/Offered Dur abilityQosPalicy

Requested | VOLATILE TRANSIENT PERSISTENT
M
VOLATILE compatible INcompatible INcompatible
TRANSTIENT compatible compatible incompatible
PERSISTENT compatible compatible compatible

This means that the Request/Offering mechanism is applicable between:

* the patawriter and the pataReader. If the QosPolicy settings between

DataWriter and DataReader are inconsistent, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_TNCOMPATIBLE_QOS status change;

* the Datawriter and the Data Distribution Service (as a built-in DataReader).

If the QosPolicy settings between pDatawriter and the Data Distribution
Service are inconsistent, no communication between them is established. In that
case data published by the patawriter will not be maintained by the service and
as a consequence will not be available for late joining DataReaders. The
QosPolicy of the Data Distribution Service in the role of DataReader is
specified by the Topic QosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

« the Data Distribution Service (asabuilt-in Datawriter) and the DataReader. If
the QosPolicy settings between the Data Distribution Service and the
DataReader areinconsistent, no communication between them is established. In
that case the Data Distribution Service will not publish historical data to late
joining pataReaders. The QosPolicy of the Data Distribution Service in the
role of patawriter isspecified by the Topic QosPolicy

Cleanup
The DurabilityQosPolicy kind Sefting TRANSIENT_DURABILITY_QOS and
PERSISTENT_DURABILITY_QOS determine that the

DurabilityServiceQosPolicy applies for the Topic. It controls amongst
others at which time the durability service is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:

e the instance has been explicitly disposed of (instance_state
NOT_ALIVE_DISPOSED_INSTANCE_STATE)

« and the system detects that there are no more “live’ patawriter objectswriting
the instance, that is, al DatawWriter either unregister instance the
instance (Call unregister_instance operation) or losetheir liveliness

e and atime interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met

The use of the bpDurabilityServiceQosPolicy attribute
service_cleanup_delay iS apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DataWriter are consistent.

Dur abilityServiceQosPolicy
Scope

DDS

49

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

50
API Reference

Synopsis

import DDS.*;

public final class DurabilityServiceQosPolicy
{

public Duration_t service_cleanup_delay;
public HistoryQosPolicyKind history_kind;
public int history depth;

public int max_samples;

public int max_instances;

public int max_samples_per_instance; };

Description

This gosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data.

Attributes

Duration_t service_cleanup_delay - specifies how long the durability
service must wait beforeit is allowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

HistoryQosPolicyKind history_kind - specifiesthe type of history, which
may be KEEP_LAST_HISTORY_QOS Of KEEP_ALL_HISTORY_QOS, the
durability service must apply for the transient or persistent topic data-instances.

int history_depth - specifies the number of samples of each instance of data
(identified by its key) that is managed by the durability service for the transient
or persistent topic data-instances. If history_kind iS
KEEP_LAST_HISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_ instance for thisQospPolicy to be consistent.

int max_samples - specifiesthe maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

int max_instances - Specifies the maximum number of instances the durability
service - manage for the transient or persistent topic data-instances.

int max_samples_per_ instance - Specifies the maximum number of samples
of any single instance the durability service will manage for the transient or
persistent topic data-instances. If history_kind isKEEP_LAST_HISTORY_QOS,
max_samples_per_instance must be greater than or equal to
history_ depth for thisQosPolicy to be consistent.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Detailed Description

ThisgosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limitsit must apply.

Cleanup

The setting of the burabilityServiceQosPolicy only applies when kind of
the burabilityQosPolicy iS either TRANSIENT_DURABILITY_QOS Of
PERSISTENT_DURABILITY_QOS. The service_cleanup_delay Setting
controls at which time the durability service” is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:

e the instance has been explicitly disposed of (instance_state
NOT_ALIVE_DISPOSED_INSTANCE_STATE)

* and the system detects that there are no more “live” Datawriter objectswriting
the instance, that is, all Datawriter either unregister_ instance the
instance (call unregister_instance operation) or losetheir 1iveliness

« and atimeinterval longer than service_cleanup_delay haselapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the attribute service_cleanup_delay IS apparent in the situation
where an application disposes of an instance and it crashes before having a
chance to complete additional tasks related to the disposition. Upon re-start the
application may ask for initial datato regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks

History

Theattributeshistory kind andhistory_depth apply to the history settings of
the Durability Service's internal batawriter and DataReader managing the
topic. The HistoryQosPolicy behaviour, as described in Section 3.1.3.7,
HistoryQaosPolicy, on page 53 appliesto these attributes.

Resource Limits

The attributes max_samples, max_instances and max_samples_
per_instance apply to the resource limits of the Durability Service's internal
DataWriter and DataReader managing the topic. The
ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(ResourceL imitsQosPoalicy) applies to these attributes.

51
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos

This QosPolicy can be set on a Topic only. After enabling of the concerning
Topic, thisQosPolicy can not be changed any more.

EntityFactoryQosPolicy

52
API Reference

Scope

DDS

Synopsis
import DDS.*;
public final class EntityFactoryQosPolicy
{ public boolean autoenable_created_entities; };

Description

This QosPolicy controls the behaviour of the Entity as afactory for other
entities.

Attributes

boolean autoenable created_entities - Specifies whether the entity acting
as a factory automatically enables the instances it creates. If
autoenable created_entities is true the factory will automatically enable each
created Entity, otherwiseit will not.

Detailed Description

This QosPolicy controls the behaviour of the Entity as afactory for other
entities. It concerns only bomainParticipantFactory (as factory for
DomainParticipant), DomainParticipant (asafactory for publisher,
Subscriber, and Topic), Publisher (as factory for batawriter), and
Subscriber (asfactory for DataReader).

This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.

The setting of autoenable_created_entities t0 true indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time anew Entity iscreated. Therefore, the Entity returned by
create_<entity> Will already be enabled. A setting of £alse indicates that the
Entity Will not be automatically enabled: the application will need to enable it
explicitly by means of the enable operation. See paragraph 3.1.1.1 (enable) for a
detailed description about the differences between enabled and disabled entities.

The default setting of autoenable_created_entities iStrue meaningthat by
default it is not necessary to explicitly call enable on newly created entities.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

GroupDataQosPoalicy

Scope

DDS

Synopsis
import DDS.*;
public final class GroupDataQosPolicy
{ public byte valuel]; }

Description

This gosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopics.

Attributes

byte value[] - asequence of bytes that holds the application group data. By
default, the sequence has length O.

Detailed Description

This gosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopic. An application that discovers a new Entity of the listed kind, can
use this information to add additional functionality. The GroupbDataQosPolicy iS
changeable and updates of the BuiltinTopic instance must be expected. Note that the
Data Distribution Service is not aware of the real structure of the group data (the
Data Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

HistoryQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis

import DDS.*;

public class HistoryQosPolicyKind

{

public static final HistoryQosPolicyKind
KEEP_LAST_HISTORY_QOS;

public static final HistoryQosPolicyKind
KEEP_ALL_HISTORY_QOS;

}

public final class HistoryQosPolicy

53
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

54
API Reference

{
public HistoryQosPolicyKind kind;
public int depth;

}

Description

This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes

HistoryQosPolicyKind kind - specifies the type of history, which may be
KEEP_LAST_HISTORY_QOS Of KEEP_ALL_HISTORY_QOS.

int depth - specifiesthe number of samples of each instance of data (identified by
its key) managed by thisEntity.

Detailed Description

ThisQosPolicy controls whether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver all samples, or do something in between.
In other words, how the patawriter Or DataReader should store samples.
Normally, only the most recent sample is available but some history can be stored.

DataWriter

On the publishing side this QosPolicy controls the samples that should be
maintained by the batawriter on behalf of existing batarReader objects. The
behaviour with respect to a DataReader objects discovered after a sampleis
written is controlled by the DurabilityQosPolicy.

DataReader

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service.

This QosPolicy isapplicable to a bataReader, Datawriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute kind which can be:

* KEEP_LAST_HISTORY_QOS - the Data Distribution Service will only attempt to
keep the latest values of the instance and discard the older ones. The attribute
“depth” determines how many samplesin history will be stored. In other words,
only the most recent samples in history are stored. On the publishing side, the
Data Distribution Service will only keep the most recent “depth” samples of each
instance of data (identified by its key) managed by the patawriter. On the

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

subscribing side, the pDataReader will only keep the most recent “depth”
samples received for each instance (identified by its key) until the application
“takes’ them viathe bataReader. take operation.

KEEP_LAST HISTORY_QOS - isthe default kind. The default value of depth is
1, indicating that only the most recent value should be delivered. If adepth other
than 1 is specified, it should be compatible with the settings of the
ResourcelimitsQosPolicy max_samples_per_instance. For these two
QosPolicy sSettings to be compatible, they must verify that depth <=
max_samples_per_ instance, Otherwise a RETCODE_INCONSISTENT
POLICY isgenerated on relevant operations

KEEP_ALL_HISTORY_QOS - al samples are stored, provided, the resources are
available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data
(identified by itskey) managed by the Datawriter until they can be delivered to

al subscribers.

On the subscribing side, the Data Distribution Service will attempt to keep all
samples of each instance of data (identified by its key) managed by the
DataReader. These samples are kept until the application “takes’ them from the
Data Distribution Service via the bataReader. take operation. The setting of
depth has no effect. Itsimplied value iS LENGTH_UNLIMITED. Theresourcesthat
the Data Distribution Service can use to keep this history are limited by the
settings of the ResourcelLimitsQosPolicy. If the limit is reached, the
behaviour of the Data Distribution Service will depend on the
ReliabilityQosPolicy.

If theReliabilityQosPolicy IS BEST_EFFORT_RELIABILITY_QOS, the old
values are discarded. If ReliabilityQosPolicy is
RELIABLE_RELIABILITY_QOS, the Data Distribution Service will block the
DataWriter until it can deliver the necessary old valuesto all subscribers

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service. On the publishing side
this QosPolicy controls the samples that should be maintained by the
DataWriter on behalf of DataReader objects. The behaviour with respect to a
DataReader objects discovered after a sample is written is controlled by the
DurabilityQosPolicy. In more detail, this gosPolicy specifies the behaviour
of the Data Distribution Service in case the value of a sample changes (one or more
times) before it can be successfully communicated to one or more Subscribers.

55
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Reguested/Offered

The setting of the gosPolicy offered isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side or
REQUESTED_TINCOMPATTIBLE_QOS status on the requesting side will not be raised.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and Datawriter are consistent.

L atencyBudgetQosPolicy

56
API Reference

Scope

DDS

Synopsis
import DDS.*;
public final class LatencyBudgetQosPolicy
{

public Duration_t duration;

}

Description

Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the datais delivered at the DataReader and the
application is notified of thisfact.

Attributes

Duration_t duration - Specifiesthe maximum acceptable additional delay from
the time the data is written until the data is delivered.

Detailed Description

This QosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DataReader and the application is notified of this fact. This QosPolicy provides
a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimize its internal operation. The default value of the
duration iszero, indicating that the delay should be minimized.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

This QosPolicy isapplicableto a bataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy may be changed by using the
set_gos operation.

Requested/Offered

ThisgosPolicy isconsidered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TNCOMPATIBLE_QOS status on the requesting side is raised.

Table 8 LatencyBudgetQosPolicy

Duration Compatibility

offered duration < requested duration |compatible

offered duration = requested duration |compatible

offered duration > requested duration |INcompatible

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.

Changing an existing latency budget using the set_gos operation on either the
DataWriter OF DataReader may have consequences for the connectivity between
readers and writers, depending on their rxo values. (See also in Section 3.1.3, Class
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
budget Bw and a reader with budget Br, where Bw <= Br. In this case a connection
between that reader and that writer is established. Now suppose Bw is changed so
that Bw > Br, then the existing connection between reader and writer will be lost,
and the reader will behave asif the writer unregistered all its instances, transferring
the ownership of these instances when appropriate. See also Section 3.1.3.11,
Owner shipQosPalicy.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the QospPolicy for
the Topic, DataReader and DataWriter are consistent.

LifespanQosPolicy
Scope

DDS

57

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class LifespanQosPolicy

{

public Duration_t duration;

}

Description

This gosPolicy specifies the duration of the validity of the data written by the
DataWriter.

Attributes
Duration_t duration - Specifiesthelengthin time of the validity of the data.

Detailed Description

This QosPolicy specifies the duration of the validity of the data written by the
DataWriter. When this time has expired, the data will be removed or if it has not
been delivered yet, it will not be delivered at all. In other words, the duration is
the time in which the data is still valid. This means that during this period a
DataReader Can accessthe dataor if the data has not been delivered yet, it still will
be delivered. The default value of the duration iS DURATION_INFINITE,
indicating that the data does not expire.

ThisQospPolicy isapplicableto anatawriter and aTopic. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_gos
operation.

Reguested/Offered

The setting of this QosPolicy isonly applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
will not be rejected on account of this gosPolicy. The notification
OFFERED_TINCOMPATIBLE_QOS status on the offering side will not be raised.

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and Datawriter are consistent.

LivelinessQosPolicy
Scope

DDS

58

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Synopsis
import DDS.*;
public class LivelinessQosPolicyKind
{
public static final LivelinessQosPolicyKind
AUTOMATIC_LIVELINESS_QOS;
public static final LivelinessQosPolicyKind
MANUAL_BY_ PARTICIPANT_LIVELINESS_QOS;
public static final LivelinessQosPolicyKind
MANUAL_BY_TOPIC_LIVELINESS_QOS;
}
public final class LivelinessQosPolicy
{ public LivelinessQosPolicyKind kind;
public Duration_t lease_duration;}

Description
ThisQosPolicy controlsthe way the liveliness of an Entity isbeing determined.

Attributes

LivelinessQosPolicyKind kind - the way the liveliness of an Entity is
determined.

Duration_t lease_duration - the duration of the interval within which the
liveliness must be determined.

Detailed Description

This gosPolicy controls the way the liveliness of an Entity is being determined.
The liveliness must be reported periodically beforethe 1ease_duration expires.

ThisQosPolicy isapplicable to a DataReader, aDataWriter and a Topic.
After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Attributes
The QosPolicy iscontrolled by the attribute kind which can be:

s AUTOMATIC LIVELINESS Q0S - the Data Distribution Service will take care of
reporting the Liveliness automatically with a rate determined by the
lease_duration.

* MANUAI_BY_PARTICIPANT_ LIVELINESS_QOS - the application must take care
of reporting the liveliness before the 1ease_duration expires. If an Entity
reports its liveliness, al Entities within the same DomainParticipant that
havetheir liveliness kind set to MANUAL_BY_PARTICIPANT LIVELINESS_QOS,

59

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

can be considered alive by the Data Distribution Service. Liveliness can reported
explicitty by caling the operation assert_liveliness on the
DomainParticipant or implicitly by writing some data.

* MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the 1ease_duration expires. This can explicitly
be done by calling the operation assert_liveliness On the Datawriter Or
implicitly by writing some data.

The lease_duration specifies the duration of the interval within which the
liveliness should be reported.
Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TINCOMPATIBLE_QOS status on the requesting side is raised.

Table 9 LivelinessQosPoalicy

\gsgted AUTOMATIC | MANUAL BY_ PARTICIPANT | MANUAL BY TOPIC
Offer

AUTOMATIC COMPATIBLE |INCOMPATIBLE INCOMPATIBLE
MANUAL_BY_PARTICIPANT COMPATIBLE |COMPATIBLE INCOMPATIBLE
MANUAL_BY_TOPIC COMPATIBLE | COMPATIBLE COMPATIBLE

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. In other words, the communication between any patawriter and
DataReader depends on what is expected by the DataReader. AS a consequence,
aDataWriter that has an incompatible gos with respect to what a bataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible gos with respect to what a batawriter
specified does not get any data from that particular batawriter.

TopicQos

This QosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospolicy for
the Topic, DataReader and Datawriter are consistent.

Owner shipQosPoalicy

API Reference

Scope

DDS

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Synopsis
import DDS.*;
public class OwnershipQosPolicyKind

{
public static final OwnershipQosPolicyKind SHARED_OWNERSHIP_QOS;
public static final OwnershipQosPolicyKind
EXCLUSIVE_OWNERSHIP_QOS;
}

public final class OwnershipQosPolicy
{ public OwnershipQosPolicyKind kind; }

Description
ThisQosPolicy specifieswhether abpatawriter exclusively owns an instance.

Attributes

OwnershipQosPolicyKind kind - specifieswhether anatawriter exclusively
owns an instance.

Detailed Description

This QosPolicy specifies whether a Datawriter exclusively may own an
instance. In other words, whether multiple batawriter objects can write the same
instance at the same time. The pataReader objects will only read the
modifications on an instance from the batawriter owning the instance.

Exclusive ownership is on an instance-by-instance basis. That is, a Subscriber
can receive values written by alower strength patawriter aslong asthey affect
instances whose values have not been written or registered by a higher-strength
DataWriter.

ThisQosPolicy isapplicable to a DataReader, aDataWriter and a Topic.

After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Attribute
The QosPolicy iscontrolled by the attribute kind which can be:

* SHARED OWNERSHIP_Qo0sS (default) - the same instance can be written by
multiple patawriter objects. All updates will be made available to the
DataReader objects. In other words it does not have a specific owner

* EXCLUSIVE_OWNERSHIP_QOS - the instance will only be accepted from one
DataWriter which is the only one whose modifications will be visible to the
DataReader Objects.

61
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

62
API Reference

Reguested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 10 Requested/Offered Owner shipQosPolicy

\lgggted SHARED EXCLUSIVE
Offer

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gospPolicy of the Datawriter and
DataReader. The value of the owNERSHIP kind offered must exactly match the
one requested or else they are considered incompatible. As a consequence, a
DataWriter that has an incompatible gos with respect to what a bataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible Qos with respect to what a Datawriter
specified does not get any data from that particular patawriter.

Exclusive Owner ship

The Datawriter with the highest ownershipStrengthQosPolicy value and
being alive (depending onthe LivelinessQosPolicy) and which has not violated
its DeadlineQosPolicy contract with respect to the instance, will be considered
the owner of the instance. Consequently, the ownership can change as a result of:

*a DatawWriter in the system with a higher vaue of the
OwnershipStrengthQosPolicy modifiesthe instance

» achange in the ownershipStrengthQosPolicy value (becomes less) of the
DataWriter owning theinstance

* a change in the liveliness (becomes not alive) of the batawriter owning the
instance

* a deadline with respect to the instance that is missed by the patawriter that
owns the instance

Timeline

Each pataReader may detect the change of ownership at a different time. In other
words, at a particular point in time, the bataReader objects do not have a
consistent picture of who owns each instance for that Topic. Outside this grey area
in time all pataReader objects will consider the same patawriter to be the
owner.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

If multiple Datawriter objects with the same ownershipStrengthQosPolicy
modify the same instance, all bataReader objects will make the same choice of the
particular batawriter that isthe owner. The bataReader isaso notified of this
via a status change that is accessible by means of the Listener Or Condition
mechanisms.

Ownership of an Instance

DataWriter objects are not aware whether they own a particular instance. Thereis
no error or notification given to abatawriter that modifies an instance it does not
currently own.

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this gos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the Qospolicy for
the Topic, DataReader and DataWriter are consistent.

Owner shipStrengthQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
import DDS.*;
public final class OwnershipStrengthQosPolicy
{ public int value; }

Description

This QosPolicy specifies the value of the ownership strength of a patawriter
used to determine the ownership of an instance.

Attributes
int value - specifiesthe ownership strength of the Datawriter.

Detailed Description

This QosPolicy specifies the value of the ownership strength of a patawriter
used to determine the ownership of an instance. This ownership is used to arbitrate
among multiple patawriter objectsthat attempt to modify the sameinstance. This
QosPolicy only applies if the OwnershipQosPolicy iS of kind
EXCLUSIVE_OWNERSHIP_Q0S. For more information, see
OwnershipQosPolicy.

63
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

This gosPolicy is applicable to a batawriter only. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_gos
operation. When changed, the ownership of the instances may change with it.

PartitionQosPolicy

64
API Reference

Scope

DDS

Synopsis
import DDS.*;
public final class PartitionQosPolicy

{

public String namel];

}

Description

This QosPolicy specifiesthe logical partitions in which the subscribers
and publishers are active.

Attributes
String name[] - the array of strings, which specifiesthepartitions.

Detailed Description

This QosPolicy specifiesthelogical partitions inside the domain in which the
Subscribers and Publishers are active. This QosPolicy is particularly used
to create a separate subspace, like a real domain versus a simulation domain. A
Publisher and/or Ssubscriber can participate in more than one partition.
Each string in the sequence of strings name defines apartition name. A
partition namemay contain wildcards. Sharing apartition meansthat at least
one of the partition names in the sequence matches. When none of the
partition names match, it isnot considered an “incompatible” QoS and does not
trigger any listeners Of conditions. It only means, no communication is
established. The default value of the attribute is an empty (zero-sized) sequence.
Thisistreated as a specia value that matches the “ partition”.

ThisQosPolicy isapplicableto apPublisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy may be changed by using the set_gos
operation. When changed, it modifies the association of bataReader and
DataWriter objects. It may establish new associations or break existing
associations. By default, Datawriter and DataReader Objects belonging to a
Publisher Or Subscriber that do not specify a partitionQosPolicy, Will
participate in the default partition. In this case the partition name is““.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Requested/Offered

The offered setting of this gosPo1licy isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QospPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side or
REQUESTED_TNCOMPATIBLE_QOS status on the requesting side will not be raised

PresentationQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
import DDS.*;
public class PresentationQosPolicyAccessScopeKind

{

public static final PresentationQosPolicyAccessScopeKind
INSTANCE_PRESENTATION_QOS;

public static final PresentationQosPolicyAccessScopeKind
TOPIC_PRESENTATION_QOS;

public static final PresentationQosPolicyAccessScopeKind
GROUP_PRESENTATION_QOS;

}

public final class PresentationQosPolicy

{ public PresentationQosPolicyAccessScopeKind access_scope;
public boolean coherent_access;
public boolean ordered_access; }

Note: ThisQosPolicy isnot yet implemented. It is scheduled for afuture release.

Description

This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes

PresentationQosPolicyAccessScopeKind access_scope-theSﬂnmes

controlled by this policy.

boolean coherent_access - functionality behind this setting is not yet
implemented. It is scheduled for a future release specifies whether the access
should be coherent or not.

boolean ordered_access - functionality behind this setting is not yet

implemented. It is scheduled for a future release specifies whether the access
should be ordered or not.

65
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

66
API Reference

Detailed Description

This gosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
Entity objects for which the order and coherency of changes can be preserved.

ThisQosPolicy isapplicableto apPublisher and Subscriber. After enabling of
the concerning Entity, thisQosPolicy cannot be changed any more.

Attributes

The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only INSTANCE_PRESENTATION_QOS
(the lowest level) is implemented, coherent access and ordered access are not
applicable.

The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. Thisis the case even if the same application thread
makes the changes using the same patawriter. This is the default
access__scope.

The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. The booleans are;

* coherent_access, the functionality behind this setting is not yet implemented.
It is scheduled for afuture release

* ordered_access, Specifies support for ordered access to the samples received at
the subscription end. That is, the ability of the subscriber to see changesin the
same order as they occurred at the publishing end. The default setting of

ordered_access iSfalse.

* The access_scope controls the maximum extent for which order is preserved
by the Data Distribution Service:

- INSTANCE_PRESENTATION_QOS - (the lowest level), changes to each instance
are considered un-ordered relative to changes to any other instance. That means
that changes (creations, deletions, modifications) made to two instances are not
necessarily seen in the order they occur, the ordering applies to each instance
separately. This is the case even if the same application thread makes the
changes using the same Datawriter. Thisisthe default access_scope

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

- TOPIC_PRESENTATION_QOS - the functionality behind this setting is not yet
implemented. It is scheduled for afuture release

- GROUP_PRESENTATION_QOS - the functionality behind this setting is not yet
implemented. It is scheduled for afuture release.

The attribute access_scope Will set the scope for both coherent_access and
ordered_access, they can not be set separately.

Note that this gosPolicy controls the ordering at which related changes are made
available to the subscriber. In other words the subscriber can access the
changes in the proper order. However, it does not necessarily imply that the
Subscriber Will indeed access the changes in the correct order. For that to occur,
the application at the subscriber end must use the proper logic in reading the
DataReader.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TNCOMPATIBLE_QOS status on the requesting side is raised.

Table 11 Requested/Offered PresentationQosPolicy

Requested INSTANCE Topic Group
%\a\
instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Only the default settings for this policy are currently supported. Deviations from
this default will not be taken into account by the Publisher and/or Subscriber.

Reader Datal ifecycleQosPolicy

Scope
DDS

Synopsis

import DDS.*;

public final class ReaderDataLifecycleQosPolicy

{

public Duration_t autopurge_nowriter_samples_delay;
public Duration_t autopurge_disposed_samples_delay;

}

&4 PRISMTECH

67
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

68
API Reference

Description

This gosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
becomes either NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes

Duration_t autopurge nowriter samples_delay - Specifiesthe duration
for which the patareader will maintain information regarding a data instance
for which the instance_state becomes
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration value
isDURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Duration_t autopurge_disposed_samples_delay - Specifiesthe duration
for which the pataReader will maintain information regarding a data instance
for which the instance_state becomes
NOT_ALIVE DISPOSED_INSTANCE_STATE. By default the duration valueis
DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Detailed Description

This QosPolicy specifies the maximum duration for which the batareader will
maintain information regarding a data instance for which the instance_state
becomes either NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
NOT_ALIVE_DISPOSED_INSTANCE_STATE. The DataReader manages resources
for instances and samples of those instances. The amount of resources managed
depends on other QosPolicies like the HistoryQosPolicy and the
ResourcelLimitsQosPolicy. The DataReader can only release resources for
data instances for which all samples have been taken and the instance_state has
become NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or
NOT_ALIVE_DISPOSED_INSTANCE_STATE. If an application does not take the
samples belonging to a data instance with such an instance_state, the
DataReader Will never be able to release the maintained resources. By means of
this QosPolicy the application can instruct the batakReader to release all
resources related to the concerning data instance after a specified duration.

This QospPolicy is applicable to a DatarReader only. After enabling of the
concerning DataReader, this QosPolicy can be changed using the set_gos
operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

ReliabilityQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis

import DDS.*;

public class ReliabilityQosPolicyKind

{

public static final ReliabilityQosPolicyKind
BEST EFFORT RELIABILITY QOS;

public static final ReliabilityQosPolicyKind
RELTABLE_RELIABILITY_ QOS;

}
public final class ReliabilityQosPolicy

{
public ReliabilityQosPolicyKind kind;
public Duration_t max_blocking_time;

}

Description

This QosPolicy controls the level of reliability of the data distribution offered or
requested by the batawriters and DataReaders.

Attributes

ReliabilityQosPolicyKind kind - Specifiesthe type of reliability which may
be BEST EFFORT_RELTIABILITY_QOS O RELIABLE_RELTIABILITY_QOS.

Duration_t max_blocking time - Specifiesthe maximum timethe write
operation may block when the Datawriter does not have space to store the
value written.

Detailed Description

This gosPolicy controlsthe level of reliability of the data distribution requested
by apataReader or offered by aDatawriter. In other words, it controls whether
datais allowed to get lost in transmission or not.

This gosPolicy isapplicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, thisQosPolicy cannot be changed any more.

Attributes

* RELIABLE_RELIABILITY_QOS - the Data Distribution Service will attempt to
deliver al samples in the patawriters history; arrival-checks are performed
and data may get re-transmitted in case of lost data. In the steady-state (no
modifications communicated via the batawriter) the Data Distribution Service

69
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

guarantees that all samples in the patawriter history will eventualy be
delivered to the al DataReader objects. Outside the steady-state the
HistoryQosPolicy and ResourceLimitsQosPolicy determine how
samples become part of the history and whether samples can be discarded fromit.
In this case also themax_blocking time must be set

* BEST_EFFORT_RELTABILITY_QOS - the Data Distribution Service will only
attempt to deliver the data; no arrival-checks are being performed and any lost
data is not re-transmitted (non-reliable). Presumably new values for the samples
are generated often enough by the application so that it is not necessary to resent
or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
HistoryQosPolicy and ResourcelLimitsQosPolicy. In case the
HistoryQosPolicy kind iS Set t0 KEEP_ALL_HISTORY_QOS, thewrite
operation on the Datawriter may block if the modification would cause one of the
limits, specified in the ResourceLimitsQosPolicy, to be exceeded. Under these
circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configuresthe maximum duration the write operation
may block.

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_INCOMPATIBLE_QOS Status on the requesting side is raised.

Table 12 Requested/Offered ReliabilityQosPolicy

\lgggted BEST EFFORT RELIABLE
Offer

BEST_EFFORT compatible INcompatible
RELIABLE compatible compatible

TopicQos

This gosPolicy can be set on a Topic. The Datawriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospPolicy for
the Topic, DataReader and DataWriter are consistent.

Resour ceL imitsQosPolicy
Scope

DDS

70

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Synopsis
import DDS.*;
public final class ResourceLimitsQosPolicy
{
public int max_samples;
public int max_instances;
public int max_samples_per_instance;

}

Description

ThisQosPolicy will specify the maximum amount of resources, which can be used
by apatawWriter Or DataReader.

Note: This gosPolicy isnot yet fully implemented. Missing features are
scheduled for a future release.

Attributes

int max_samples - the maximum number of data samples for al instances for
any singlebatawWriter (Or DataReader). By default, LENGTH_UNLIMITED.

int max_instances - the maximum number of instances for any single
DataWriter (OF DataReader). By default, LENGTH_UNLIMITED. Any other
value than LENGTH_UNLIMITED Will currently be ignored.

int max_samples_per_instance - the maximum number of samples of any
single instance for any single batawriter (Or bataReader). By default,
LENGTH_UNLIMITED.

Detailed Description

This gosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy Settings.

ThisQosPolicy isapplicable to a DataReader, aDataWriter and aTopic.
After enabling of the concerning Entity, thisQosPolicy cannot be changed any
more.

Requested/Offered

The value of the gosPolicy offered isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QospPolicy. The notification
OFFERED_INCOMPATIBLE_QOS status on the offering side or
REQUESTED_ INCOMPATIBLE_QOS status on the requesting side will not be raised.

71
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Resource Limits

If the Datawriter oObjects are publishing samples faster than they are taken by the
DataReader Objects, the Data Distribution Service will eventually hit against some
of the gosPolicy-imposed resource limits. Note that this may occur when just a
single bataReader cannot keep up with its corresponding batawriter.

In case the HistoryQosPolicy iISKEEP_LAST_ HISTORY_QOS, the setting of
ResourcelLimitsQosPolicy max_samples _per_ instance must be
compatible with the HistoryQosPolicy depth. For these two QosPolicy
settings to be compatible, they must verify that depth <=
max_samples_per_instance.

TopicQos

This gosPolicy can be set on a Topic. The DatawWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_gos and then
set_gos. That way the application can relatively easily ensure the gospPolicy for
the Topic, DataReader and DataWriter are consistent.

SchedulingQosPoalicy

72
API Reference

Scope

DDS

Synopsis
import DDS.*;
public class SchedulingClassQosPolicyKind
{
public static final SchedulingClassQosPolicyKind
SCHEDULE_DEFAULT;
public static final SchedulingClassQosPolicyKind
SCHEDULE_TIMESHARING;
public static final SchedulingClassQosPolicyKind
SCHEDULE_REALTIME;
}
public class SchedulingClassQosPolicy
{
public SchedulingClassQosPolicyKind kind;
}
public class SchedulingPriorityQosPolicyKind
{
public static final SchedulingPriorityQosPolicyKind
PRIORITY_RELATIVE;
public static final SchedulingPriorityQosPolicyKind
PRIORITY_ABSOLUTE;
}
public class SchedulingPriorityQosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

{
public SchedulingPriorityQosPolicyKind kind;

}
public class SchedulingQosPolicy

{
public SchedulingClassQosPolicy scheduling class;
public SchedulingPriorityQosPolicy scheduling priority kind;
public int scheduling priority;

}

Description

This QosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the DomainParticipant.

Note that some scheduling parameters may not be supported by the underlying
Operating System, or that you may need special privileges to select particular
settings.

Attributes

SchedulingClassQosPolicyKind scheduling_class.kind - specifiesthe
scheduling class used by the Operating System, which may be
SCHEDULE_DEFAULT, SCHEDULE_TIMESHARING Of SCHEDULE_REALTIME.
Threads can only be spawned within the scheduling classes that are supported
by the underlying Operating System.

SchedulingPriorityQosPolicyKind scheduling priority kind.kind
- specifies the priority type, which may be either PRIORITY_RELATIVE Of
PRIORITY_ ABSOLUTE.

int scheduling priority - specm% the priority that will be aSSIgned to threads
spawned by the bomainParticipant. Threads can only be spawned with
priorities that are supported by the underlying Operating System.

Detailed Description

This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the bomainParticipant. Note that some scheduling parameters may
not be supported by the underlying Operating System, or that you may need specia
privileges to select particular settings. Refer to the documentation of your OS for
more details on this subject.

Although the behaviour of the scheduling_class is highly dependent on the
underlying OS, in general it can be said that when running in a Timesharing class
your thread will have to yield execution to other threads of equal priority regularly.
In a Realtime class your thread normally runs until completion, and can only be
pre-empted by higher priority threads. Often the highest range of priorities is not
accessible through a Timesharing Class.

73
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

The scheduling_priority_kind determines whether the specified
scheduling_priority should beinterpreted as an absolute priority, or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the bomainParticipant.

TimeBasedFilter QosPolicy

Scope

DDS

Synopsis
import DDS. *;
public final class TimeBasedFilterQosPolicy
{
public Duration_t minimum_separation;

}
Note: ThisQospPolicy isnot yet implemented. It is scheduled for afuture release.

TopicDataQosPolicy

74
API Reference

Scope

DDS

Synopsis
import DDS.*;
public final class TopicDataQosPolicy

{
public byte valuel];

}

Description

This gosPolicy alows the application to attach additional information to a Topic

Entity. Thisinformation is distributed with the BuiltinTopics.

Attributes

byte value[] - asequence of bytes that holds the application topic data. By
default, the sequence has length 0.

Detailed Description

ThisQosPolicy alowsthe application to attach additional information to a Topic
Entity. Thisinformation is distributed with the Bui1ltinTopic. An application that
discovers a new Topic entity, can use this information to add additional
functionality. The TopicbataQosPolicy is changeable and updates of the
BuiltinTopic instance must be expected. Note that the Data Distribution Service

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

is not aware of the real structure of the topic data (the Data Distribution System
handles it as an opaque type) and that the application is responsible for correct
mapping on structural types for the specific platform.

TransportPriorityQosPolicy

&4 PRISMTECH

Scope

DDS

Synopsis
import DDS.*;
public final class TransportPriorityQosPolicy

{

public int value;

}

Description

ThisQosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by the Datawriter.

Attributes

int value - Specifiesthe priority with which the Data Distribution System can
handle the data produced by the Datawriter.

Detailed Description

ThisQosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by abatawriter. ThiSQosPolicy iSconsidered to bea
hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
type is supported. By default the transport priority is set to 0.

The TransportPriorityQosPolicy is applicable to both Topic and
DataWriter entities. After enabling of the concerning Entities, this
QosPolicy may bechanged by using the set_gos operation.

TopicQos

Note that changing this gosPo1licy for the Topic does not influence the behaviour
of the Data Distribution System for existing batawriter entities because this
QosPolicy isonly used by the operation copy_from_topic_gos and when
specifying DATAWRITER_QOS_USE_TOPIC_QOS when creating the batawriter.

75
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

User DataQosPolicy

Scope

DDS

Synopsis
import DDS.*;
public final class UserDataQosPolicy

{
public byte valuel];

}

Description
This gosPolicy allows the application to attach additional information to a

DomainParticipant, DataReader Of DataWriter entity. Thisinformationis
distributed with the Builtin Topics.

Attributes

byte value[] - asequence of bytes that holds the application user data. By
default, the sequence has length O.

Detailed Description

This QosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader Of DataWriter entity. Thisinformationis
distributed with the Builtin Topics. An application that discovers a new Entity of
the listed kind, can use this information to add additional functionality. The
UserDataQosPolicy ischangeable and updates of the Builtin Topic instance must
be expected. Note that the Data Distribution Service is not aware of the real
structure of the user data (the Data Distribution System handles it as an opagque
type) and that the application is responsible for correct mapping on structural types
for the specific platform.

Writer Datal ifecycleQosPolicy

76
API Reference

Scope

DDS

Synopsis
import DDS.*;
public final class WriterDataLifecycleQosPolicy

{
public boolean autodispose_unregistered_instances;

}

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Note: The functionality behind this gospPolicy is not yet fully implemented.
Missing features are scheduled for a future release.

Description

This gosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the Datawriter.

Attributes

boolean autodispose_unregistered_instances - specifies whether the
Data Distribution Service should automatically dispose instances that are
unregistered by thispatawriter.

Detailed Description

This QosPolicy controls the behaviour of the patawriter with regards to the
lifecycle of the data-instances it manages, that is, the data instances that have been
registered either explicitly using one of the register operations or implicitly by
directly writing the data using the special HANDLE_NTIL parameter. (See also Section
3.4.2.50, register_instance, on page 257).

The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the Datawriter:

e If the bpatawriter unregisters the instance explicitly using either
unregister_instance Of unregister_instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

* If the Datawriter unregistersitsinstancesimplicitly becauseit is deleted or if a
DataReader detects a loss of liveliness of a connected patawriter, then the
autodispose_unregistered_instances flag determines whether the
concerned instances are automatically disposed (true) or not (false).

The default value for the autodispose_unregistered_instances flagis
true. FOr TRANSTIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when aloss of
itsliveliness is detected.

Lisgener Interface

&4 PRISMTECH

This interface is the abstract base interface for all Listener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of a QosPolicy setting, etc. Each DCPS Entity
supports its own specialized kind of Listener. Listeners are related to changes

77
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

in communication status. For each Entity type, one specific Listener isderived
from thisinterface. In the following modules, the following Listeners are derived
from thisinterface:

e DomainParticipantListener

e TopicListener

e PublisherListener

e DataWriterListener

e SubscriberListener

« DataReaderListener

The Entity type specific Listener interfaces are part of the application which
must implement the interface operations. A user defined class for these operations
must be provided by the application which must extend from the specific Listener
class. All Listener operations must be implemented in the user defined class, it isup
to the application whether an operation is empty or contains some functionality.

<<Interface>>
Listener
(from Infrastructure Module)

78
API Reference

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
PublisherListener

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

DomainParticipantListener

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure1l DCPSListeners
The base class Listener does not contain any operations.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

3.1.5 ClassSatus

Each concrete Entity classhasaset of status attributes and for each attribute the
Entity class provides an operation to read the value. Changesto status attributes
will affect associated statusCondition and (invoked and associated) Listener
objects.

The communi cation statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Table 13 Satus Description Per Entity

Entity Status Name M eaning
Topic INCONSISTENT_TOPIC_STATUS |Another Topic exists with the same name but
with different characteristics.
Subscriber |DATA_ON_READERS_STATUS New information is available.
DataReader |SAMPLE_REJECTED_STATUS A (received) sample has been rejected.
LIVELINESS_CHANGED_STATUS |The liveliness of one or more DataWriter
objects that were writing instances read through
the DataReader has changed. Some
DataWriter have become “alive” or “not
aive’.
REQUESTED_ The deadline that the DataReader was
DEADLINE_MISSED_STATUS expecting through its DeadlineQosPolicy
was hot respected for a specific instance.
REQUESTED_ A QosPolicy setting was incompatible with
INCOMPATIBLE_QOS_STATUS what is offered.
DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS |The DataReader hasfound aDataWriter
that matches the Topic and has compatible
QoS.
79
&4 PRISMTECH

API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 13 Satus Description Per Entity (Continued)

Entity Satus Name Meaning
DataWriter |LIVELINESS_LOST_STATUS The liveliness that the DataWriter has
committed through its

LivelinessQosPolicy was hot respected;
thus DataReader objects will consider the
DataWriter asnolonger “alive’.

OFFERED_ The deadline that the DataWwriter has

DEADLINE_MISSED_STATUS committed through its DeadlineQosPolicy
was not respected for a specific instance.

OFFERED_ A QosPolicy setting was incompatible with

INCOMPATIBLE_QOS_STATUS what was requested.

PUBLICATION_MATCH_STATUS The DataWriter hasfound DataReader
that matches the Topic and has compatible
QoS.

80
API Reference

A sStatus attribute can be retrieved with the operation
get_<status_name>_status. For example, to get the
InconsistentTopicStatus value, the application must call the operation
get_inconsistent_topic_status.

Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. Thisflag indicates whether that particular communication
status has changed. The statusChangedFlag isonly conceptual, therefore, it is
not important whether this flag actually exists.

For the plain communication status, the StatusChangedFlag isinitialy set to
false. It becomes t rue whenever the plain communication status changesand it
isreset to false each time the application accesses the plain communication
Status viathe proper get_<status_name>_status operation on the Entity.

A flag set means that a change has occurred since the last time the application has
read its value.

& PRISMTECH

3 DCPS Classes and Operations

total_count : long

SampleLostStatus

total_count_change : long

. . " N total_count
InconsistentTopicStatus OfferedDeadlineMissedStatus total_count_change
total_count : long total_count : long last_policy_id
total_count_change : long total_count_change : long policies [*]
last_instance_handle : InstanceHandle_t

SampleRejectedStatus

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

total_count : long

total_count_change : long

last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

3.1 InfrastructureModule

LivelinessLostStatus

total_count

total_count_change

RequestedincompatibeQosStatus

OfferedincompatibleQosStatus

total_count

total_count_change

last_policy_id
policies [*]

PublicationMatchStatus
total_count : long
total_count_change : long
last_subscription_handle : InstanceHandle_t

SubscriptionMatchStatus
total_count : long
total_count_change : long | — L___|policy_id
last_publication_handle : InstanceHandle_t count

QosPolicyCount

Figure 12 DCPS Satus Values

Each status attribute is implemented as a class without any operations. The
interface description of these classis as follows:

// public class <name>Status

//
public final class InconsistentTopicStatus
{
public int total_count;
public int total_count_change;
Y
public final class SampleLostStatus
{
public int total_count;
public int total_count_change;
Y
public final class SampleRejectedStatusKind
{

public static final SampleRejectedStatusKind
NOT_REJECTED;

public static final SampleRejectedStatusKind
REJECTED_BY_ INSTANCES_LIMIT;

public static final SampleRejectedStatusKind
REJECTED_BY_ SAMPLES_LIMIT;

public static final SampleRejectedStatusKind
REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT;

81

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

82
API Reference

Y
public final class SampleRejectedStatus
{
public int total_count;
public int total_count_change;
public SampleRejectedStatusKind last_reason;
public long last_instance_handle;
Y
public final class LivelinessLostStatus
{
public int total_count;
public int total_count_change;
Y
public final class LivelinessChangedStatus
{
public int alive_count;
public int not_alive_count;
public int alive_count_change;
public int not_alive_count_change;
public long last_publication_handle;};
public final class OfferedDeadlineMissedStatus
{
public int total_count;
public int total_count_change;
public long last_instance_handle;
Y
public final class RequestedDeadlineMissedStatus
{
public int total_count;
public int total_count_change;
public long last_instance_handle;
Y
public final class OfferedIncompatibleQosStatus
{
public int total_count;
public int total_count_change;
public int last_policy_id;
public QosPolicyCount policies|[];
Y
public final class RequestedIncompatibleQosStatus
{
public int total_count;
public int total_count_change;
public int last_policy_id;
public QosPolicyCount policies|[];
Y
public final class PublicationMatchedStatus
{

public int total_count;

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

public int total_count_change;

public int current_count;

public int current_count_change;

public long last_subscription_handle;
Y
public final class SubscriptionMatchedStatus
{

public int total_count;

public int total_count_change;

public int current_count;

public int current_count_change;

public long last_publication_handle;
Y

//

// 1implemented API operations
// <no operations>

//

The following paragraphs describe the usage of each <name>status struct.

I nconsistentTopicStatus

&4 PRISMTECH

Scope

DDS.Topic

Synopsis
import DDS.*;
public final class InconsistentTopicStatus

{

public int total_count;

public int total_count_change;
Y

Description
This class contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

Attributes

int total count - thetotal detected cumulative count of Topic creations,
whose name matches the Topic to which this status is attached and whose
characteristics are inconsistent.

int total_ count_change - thechangein total_count sincethe last time the
Listener was caled or the status was read.

83
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description

This class contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

The attribute total_count holds the total detected cumulative count of Topic
creations, whose name matches the Topic to which this status is attached and
whose characteristics are inconsistent .

The attribute total_ count_ change holdsthe incrementa number of inconsistent
Topics, sincethelast timethe Listener wascaled or the status wasread.

LivelinessChangedSatus

84
API Reference

Scope

DDS.Topic

Synopsis
import DDS.*;
public final class LivelinessChangedStatus
{
public int alive_count;
public int not_alive_count;
public int alive_count_change;
public int not_alive_count_change;
public long last_publication_handle;
}i

Description

This class contains the statistics about whether the liveliness of one or more
connected Dataliriter objects has changed.

Attributes

int alive_count - thetotal count of currently alive batawriter objects that
write the topic read by the DatarReader to which this status is attached.

int not_alive_count - thetotal count of currently not alive batawriter
objects that wrote the topic read by the batarReader to which this status is
attached.

int alive_count_change - thechangein alive_count since the last time the
Listener was called or the Status was read.

int not_alive_count_change - the changein not_alive_count sincethe
last timethe Listener was caled or the status was read.

long last_publication_handle - handle to the last Datawriter whose
change in liveliness caused this status to change.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This class contains the statistics about whether the liveliness of one or more
connected patawriter oObjects that were writing instances read through the
DataReader has changed. In other words, some batawriter have become
“aive’ or “not alive”.

The attribute alive_count holds the total number of currently alive batawriter
objects that write the topic read by the batareader to which this status is
attached. This count increases when a newly matched patawriter assertsits
liveliness for the first time or when apatawriter previously considered to be not
alive reasserts its liveliness. The count decreases when a batawriter considered
alive fails to assert its liveliness and becomes not alive, whether because it was
deleted normally or for some other reason.

The attribute not_alive_count holds the total count of currently not alive
DataWriters that wrote the topic read by the DataReader to which this status
is attached, and that are no longer asserting their liveliness. This count increases
when abpatawriter considered alive fails to assert its liveliness and becomes not
alive for some reason other than the normal deletion of that batawriter. It
decreases when a previously not alive batawriter either reassertsits liveliness or
is deleted normally.

The attribute alive_count_change holdsthe changein alive_count sincethe
last timethe Listener wascaled or the status was read.

The attribute not_alive_count_change holds the change in
not_alive_ count sincethelast timethe Listener was caled or the status
was read.

The attribute 1ast_publication_handle contains the instance handle to the
PublicationBuiltinTopicData instance that represents the last datawriter
whose change in liveliness caused this status to change. Be aware that this handle
belongs to another datareader, the
PublicationBuiltinTopicDataDataReader in the builtin-subscriber, and has
no meaning in the context of the datareader from which the
& LivelinessChangedStatus was obtained. If the builtin-subscriber has not
explicitly been obtained using get_builtin_subscriber on the
DomainParticipant, then there is no
PublicationBuiltinTopicDataDataReader as well, in which case the
last_publication_handle will be set to HANDLE NIL.

LivelinessL ostSatus
Scope

DDS.Topic

85

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class LivelinessLostStatus
{
public int total_count;
public int total_count_change;
};

Description

This class contains the statistics about whether the liveliness of the batawriter to
which this status is attached has been committed through its
LivelinessQosPolicy.

Attributes

int total_count - thetotal cumulative count of timesthe Datawriter towhich
this status is attached failed to actively signa its liveliness within the offered
liveliness period.

int total_count_change - thechangein total_count sincethe last timethe
Listener wascalled or the status wasread.

Detailed Description

This class contains the statistics about whether the liveliness of the batawriter to
which this status is attached has been committed through its
LivelinessQosPolicy. In other words, whether the batawriter failed to
actively signal its liveliness within the offered liveliness period. In such a case, the
connected DataReader oObjects will consider the Datawriter asno longer
“aive’.

The attribute total_count holds the total cumulative number of times that the
previoudly-alive Datawriter became not alive dueto afailureto actively signal its
liveliness within its offered liveliness period. This count does not change when an
already not alive patawriter simply remains not alive for another liveliness
period.

The attribute total_count_change holds the changein total_count since the
|ast timethe Listener was cdled or the Status was read.

OfferedDeadlineM issedSatus

86
API Reference

Scope

DDS.Topic

Synopsis

import DDS.*;

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

public final class OfferedDeadlineMissedStatus
{

public int total_count;

public int total_count_change;

public long last_instance_handle;

Y

Description

This class contains the statistics about whether the deadline that the batawriter to
which this status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.

Attributes

int total_count - thetotal cumulative count of timesthe Datawriter to which
this status is attached failed to write within its offered deadline.

int total_count_change - the changein total_count since the last time the
Listener wascalled or the status wasread.

long last_instance_handle - the handle to the last instance in the
DataWriter to which this status is attached, for which an offered deadline
was missed.

Detailed Description

This class contains the stati stics about whether the deadline that the Datawriter to
which this status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.

The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the Datawriter to which this status is attached
failed to provide data. Missed deadlines accumulate; that is, each deadline period
the total_count will beincremented by one.

The attribute total_count_change holdsthe changein total_count since the
last timethe Listener was called or the status was read.

The attribute 1ast_instance handle holds the handle to the last instance in the
DataWriter to which this status is attached, for which an offered deadline was
missed.

OfferedlncompatibleQosStatus

&4 PRISMTECH

Scope

DDS.Topic

87
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

88
API Reference

Synopsis
import DDS.*;
public final class OfferedIncompatibleQosStatus
{

public int total_count;

public int total_count_change;

public int last_policy_id;

public QosPolicyCount policies|[];
Y

Description

This class contains the statistics about whether an offered QospPolicy setting was
incompatible with the requested QosPolicy Setting.

Attributes

int total_count - the total cumulative count of DataReader oObjects
discovered by the Datawriter with the same Topic and Partition and with
arequested bataReaderQos that was incompatible with the one offered by the
DataWriter.

int total_count_change - the changein total_count since the last time the
Listener wascalled or the status was read.

int last_policy_id-theidof oneof the QosPolicy settingsthat wasfound to
be incompatible with what was offered, the last time an incompatibility was
detected.

QosPolicyCount policies[] - alist containing for each gosPolicy thetotal
number of times that the concerned pDatawriter discovered a DataReader
for the same Topic and arequested bataReaderQos that isincompatible with
the one offered by the batawriter.

Detailed Description

This class contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested gosPolicy setting.

The Request/Offering mechanism is applicable between:

* the patawriter and the pataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_TNCOMPATIBLE_QOS status change.

* the patawWriter and the Durability Service (as a built-in bataReader). If the
QosPolicy settings between patawriter and the Durability Service are
inconsistent, no communication between them is established. In that case data

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

published by the patawriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy oOf the Durability Service in the role of bataReader is specified by
the DurabilityServiceQosPolicy inthe Topic.

« the Durability Service (as a built-in patawriter) and the DataReader. If the
QosPolicy Settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining bDataReaders.
The gosPolicy of the Durability Servicein therole of batawriter is specified
by the DurabilityServiceQosPolicy intheTopic.

The attribute total_count holds the total cumulative count of bataReader
objects discovered by the batawriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the batawriter.

The attribute total_count_change holdsthe changein total_count since the
last timethe Listener was called or the status was read.

The attribute 1ast_policy_id holdstheid of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last time an
incompatibility was detected.

The attribute policies holds alist containing for each QosPo1icy the total
number of times that the concerned patawriter discovered an incompatible
DataReader for the same Topic. Each element in the list represents a counter for a
different gosPolicy, identified by acorresponding unigue index number. A named
list of all index numbers is expressed as a set of constantsin the API. See Table 13
for an overview of all these constants.

Table 14 Overview of All Named QosPolicy | ndexes

Index name Index Value
INVALID_ _QOS_POLICY_ID
USERDATA_QOS_POLICY_ID
DURABILITY_ QOS_POLICY_ID

PRESENTATION_QOS_POLICY_ID
DEADLINE_QOS_POLICY_ID
LATENCYBUDGET_QOS_POLICY_ID

OWNERSHIP_QOS_POLICY_ID
OWNERSHIPSTRENGTH_QOS_POLICY_ID

LIVELINESS_QOS_POLICY_ID

O| 0| || Ul x| W NM| | O

TIMEBASEDFILTER_QOS_POLICY_ID

89
API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 14 Overview of All Named QaosPolicy | ndexes (Continued)

Index name Index Value
PARTITION_QOS_POLICY_ID 10
RELIABILITY_QOS_POLICY_ID 11
DESTINATIONORDER_QOS_POLICY_ ID 12
HISTORY_QOS_POLICY_ ID 13
RESOURCELIMITS_QOS_POLICY_ID 14
ENTITYFACTORY_QOS_POLICY_ ID 15
WRITERDATALIFECYCLE_QOS_POLICY_ID 16
READERDATALIFECYCLE_QOS_POLICY_ID 17
TOPICDATA_QOS_POLICY_ ID 18
GROUPDATA_QOS_POLICY_ID 19
TRANSPORTPRIORITY_QOS_POLICY_ID 20
LIFESPAN_QOS_POLICY_ ID 21
DURABILITYSERVICE_QOS_POLICY ID 22

3.1.5.6 PublicationM atchedStatus

Scope

DDS.Topic

Synopsis

import DDS.*;

public final class PublicationMatchedStatus

{

public int total_count;

public int total_count_change;

public int current_count;

public int current_count_change;
public long last_subscription_handle;

} .

Note: The functionality behind the PublicationMatchedStatus IS not yet
implemented. It is scheduled for afuture release.

3.1.5.7 RequestedDeadlineMissedSatus

Scope

DDS.Topic

90
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Synopsis
import DDS.*;
public final class RequestedDeadlineMissedStatus
{

public int total_count;
public int total_count_change;
public long last_instance_handle;

Y

Description

This class contains the statistics about whether the deadline that the batarReader to
which this status is attached was expecting through its beadlineQosPolicy
was not respected for a specific instance.

Attributes

int total_count - thetotal cumulative count of the missed deadlines detected
for any instance read by the DatarReader to which this status is attached.

int total_count_change - thechangein total_count since the last time the
Listener wascaled or the status was read.

long last_instance_handle - the handle to the last instance in the
DataReader towhichthis status is attached for which a missed deadline was
detected.

Detailed Description

This class the statistics about whether the deadline that the DataReader to which
this status is attached was expecting through its beadlineQosPolicy Was not
respected for a specific instance. Missed deadlines accumulate, that is, each
deadline period the total_count will beincremented by one for each instance for
which data was not received.

The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the bataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the status was read.

The attribute last_instance_handle holds the handle to the last instance in the
DataReader for which a missed deadline was detected.

Requestedl ncompatibleQosStatus
Scope

DDS.Topic

91

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

92
API Reference

Synopsis
import DDS.*;
public final class RequestedIncompatibleQosStatus
{

public int total_count;

public int total_count_change;

public int last_policy_id;

public QosPolicyCount policies|];
Y

Description

This class contains the statistics about whether a requested gospPolicy setting was
incompatible with the offered gosPolicy Setting.

Attributes

int total_count - the total cumulative count of batawriter Objects,
discovered by the pataReader to which this status is attached, with the
same Topic and an offered batawriterQos that was incompatible with the
one requested by the DataReader.

int total_count_change - the changein total_count since the last time the
Listener wascalled or the status was read.

int last_policy_id - the <name>_0Q0s_proLICcY_1ID of one of the
QosPolicies that was found to be incompatible with what was requested, the
last time an incompatibility was detected.

QosPolicyCount policies[] -alist containing (for each QospPolicy) thetotal
number of times that the concerned DataReader discovered a DataWriter
with the same Topic and an offered batawriterQos that isincompatible with
the one requested by the Datareader.

Detailed Description

This class contains the statistics about whether a requested QosPolicy Setting was
incompatible with the offered gosPolicy setting.

The Request/Offering mechanism is applicable between:

* the patawriter and the pataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the patawriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_TNCOMPATIBLE_QOS status change.

* the patawWriter and the Durability Service (as a built-in bataReader). If the
QosPolicy settings between patawriter and the Durability Service are
inconsistent, no communication between them is established. In that case data

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

published by the patawriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy oOf the Durability Service in the role of bataReader is specified by
the DurabilityServiceQosPolicy inthe Topic.

« the Durability Service (as a built-in patawriter) and the DataReader. If the
QosPolicy Settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining bDataReaders.
The gosPolicy of the Durability Servicein therole of batawriter is specified
by the DurabilityServiceQosPolicy intheTopic.

The attribute total_count holds the total cumulative count of batawriter
objects discovered by the batarReader with the same Topic and an offered
DataWriterQos that was incompatible with the one requested by the
DataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener was called or the status was read.

The attribute 1ast_policy_id holdsthe <name>_Qo0s_proLIcY_ID of one of the
QosPolicies that was found to be incompatible with what was requested, the last
time an incompatibility was detected.

The attribute policies holds alist containing for each QosPo1licy the total
number of times that the concerned patarReader discovered an incompatible
Datawriter for the same Topic. Each element in the list represents a counter for a
different gosPolicy, identified by acorresponding unigue index number. A named
list of al index numbersis expressed as a set of constantsin the API. See Table 14,
Overview of All Named QosPolicy Indexes, on page 89 for an overview of al these
constants.

Samplel ostStatus

&4 PRISMTECH

Scope

DDS.Topic

Synopsis
import DDS.*;
public final class SampleLostStatus
{
public int total_count;
public int total_count_change;

Y

93
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This class contains the statistics about whether a sample has been lost (never
received).

Attributes

int total_count - the total cumulative count of all samples lost across all
instances of data published under the Topic.

int total_count_change - thechangein total_count sincethelast timethe
Listener was caled or the status was read.

Detailed Description

This class contains the statistics about whether a sample has been lost (never
received). The statusisindependent of the differencesin instances, in other words, it
includes all sampleslost across all instances of data published under the Topic.

total_count holds the total cumulative count of all samples lost across all
instances of data published under the Topic.

total_count_change holdsthe changein total_count since the last time the
Listener wascalled or the status wasread.

SampleRg ectedSatus
Scope

DDS.Topic

Synopsis
import DDS.*;
public final class SampleRejectedStatusKind
{
public static final SampleRejectedStatusKind
NOT_REJECTED;
public static final SampleRejectedStatusKind
REJECTED_BY_ INSTANCES_LIMIT;
public static final SampleRejectedStatusKind
REJECTED_BY_SAMPLES_LIMIT;
public static final SampleRejectedStatusKind
REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT;
}
public final class SampleRejectedStatus
{
public int total_count;
public int total_count_change;
public SampleRejectedStatusKind last_reason;
public long last_instance_handle;

94
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Description
This class contains the statistics about samples that have been rejected.

Attributes

int total_count - the total cumulative count of samples rejected by the
DataReader to which thispps_status is attached.

int total_count_change - the changein total_count since the last time the
Listener wascalled or the DDS_status was read.

SampleRejectedStatusKind last_reason - the reason for rejecting the last
sample.

long last_instance_handle - the handle to the instance which would have
been updated by the last sample that was rejected.

Detailed Description
This class contains the statistics about whether a received sample has been rejected.

The attribute total_count holdsthe total cumulative count of samples rejected by
the DataReader to which thisDDS_Status is attached.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascalled or the DDS_Status was read.

The attribute 1ast_reason holds the reason for rejecting the last sample. The
attribute can have the following values:

* NOT_REJECTED - no Sample has been rejected yet.

* REJECTED_BY_INSTANCES_LIMIT - the sample was rejected because it would
exceed the maximum number of instances st by @ the
ResourceLimitsQosPolicy.

* REJECTED_BY SAMPLES LIMIT - the sample was rejected because it would
exceed the maximum number of samples set by the ResourcelLimits
QosPolicy.

* REJECTED_BY SAMPLES PER INSTANCE_LIMIT - the sample was rejected
because it would exceed the maximum number of samples per instance set by the
ResourceLimitsQosPolicy.

The attribute 1ast_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

SubscriptionM atchedStatus
Scope

DDS.Topic

95

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class SubscriptionMatchedStatus
{
public int total_count;
public int total_count_change;
public int current_count;
public int current_count_change;
public long last_publication_handle;
}i
Note: The functionality behind the subscriptionMatchedStatus IS not yet
implemented. It is scheduled for afuture release.

ClassWaitSet

A waitset object allows an application to wait until one or more of the attached
Condition objects evaluatesto true or until the timeout expires.

Thewaitset has no factory and must be created by the application. It is directly
created as an object by using waitSet constructors.

WaitSet
Condition —
attach_condition()
. detach_condition()
get_trigger_value() * * get_conditions()

wait()

Figure 13 DCPS WaitSets
The interface description of this classis asfollows:

public class WaitSet
{
//
// implemented API operations
//
public int
_wait
(ConditionSegHolder active_conditions,
Duration_t timeout) ;
public int
attach_condition
(Condition cond) ;
public int
detach_condition
(Condition cond) ;
public int
get_conditions
(ConditionSegHolder attached_conditions) ;

96
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

The following paragraphs describe the usage of all WaitSet operations.

attach_condition

&4 PRISMTECH

Scope

DDS.WaitSet

Synopsis
import DDS.*;
public int
attach_condition
(Condition cond) ;

Description
This operation attachesacondition tothewaitset.

Parameters
in Condition cond - areferencetoacondition.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation attachesacondition tothewaitSet. The parameter cond must be
either a ReadCondition, QueryCondition, StatusCondition Of
GuardCondition. To get this parameter see:

* ReadCondition created by create_readcondition

* QueryCondition created by create_querycondition

* StatusCondition retrieved by get_statuscondition OnanEntity

* GuardCondition created by the Java operation new.

When aGuardcondition isinitidly created, the trigger_valueiSfalse.
When a condition, whose trigger_ value evaluatesto true, is attached to a
wWaitsSet that iscurrently being waited on (using thewait operation), thewaitset
will unblock immediately.

Return Code

When the operation returns:

* RETCODE_OK - the Condition isattached to thewaitset

e RETCODE_ERROR - an internal error has occurred

97
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

* RETCODE_BAD_PARAMETER - the parameter cond is not a valid condition
reference.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

detach_condition

98
API Reference

Scope
DDS.WaitSet
Synopsis
import DDS.*;
public int

detach_condition
(Condition cond) ;

Description
This operation detaches a Condition fromthewaitset.

Parameters
in Condition cond-areferencetoacondition inthewaitset.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_RESOURCES Of
RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation detaches a condition from the waitset. If the condition was
not attached to this waitset, the operation returns
RETCODE_PRECONDITION_NOT MET.

Return Code

When the operation returns:

* RETCODE_OK - the condition isdetached from thewaitset.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter cond is not a valid condition
reference.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* RETCODE_PRECONDITION_NOT_MET - the Ccondition was not aftached to this
WaitSet.

get_conditions

&4 PRISMTECH

Scope

DDS.WaitSet

Synopsis
import DDS.*;
public int
get_conditions
(ConditionSegHolder attached_conditions) ;

Description
This operation retrieves the list of attached conditions.

Parameters

inout ConditionSeqgHolder attached_conditions - a Holder to a
sequence which is used to pass the list of attached conditions.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR Of
RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation retrieves the list of attached conditions in the waitset. The
parameter attached_conditions iSsaHolder to a sequence which afterwards
will refer to the sequence of attached conditions. The array inside the
attached_conditions Holder may be pre-allocated by the application and can
be re-used in a subsequent invocation of the get_conditions operation. If the
pre-allocated array is not big enough to hold the the number of attached
Conditions, the sequence will automatically be (re-)allocated to fit the required
size. The resulting sequence will either be an empty sequence, meaning there were
no conditions attached, or will contain alist of Readcondition,
QueryCondition, StatusCondition and GuardCondition. These conditions
previously have been attached by attach_condition and were created by there
respective create operation:

* ReadCondition created by create_readcondition
* QueryCondition created by create_querycondition
* StatusCondition retrieved by get_statuscondition OnanEntity

99
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

wait

100
API Reference

* GuardCondition created by the Java operation new.

Return Code

When the operation returns:

* RETCODE_OK - thelist of attached conditionsis returned
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Scope

DDS.WaitSet

Synopsis
import DDS.*;
public int
_wait
(ConditionSegHolder active_conditions,
Duration_t timeout) ;

Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to thewaitset.

Parameters

inout ConditionSegHolder active_conditions - parameter
active_conditions isaHolder to asequence, which is used to pass the list
of all the attached conditionsthat have a trigger_value Of true.

in Duration_t timeout - the maximum duration to block for the wait, after
which the application thread is unblocked. The special constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_OUT_OF_RESOURCES, RETCODE_TIMEOUT Of RETCODE_
PRECONDITION_NOT_MET.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluateto true that is attached to thewaitset. If al of the
conditions attached to the waitset have atrigger_value Of false, thewait
operation will block the calling thread. The result of the operation is the
continuation of the application thread after which the result is left in
active_conditions. ThisisaHolder for a sequence, which will contain the list
of all the attached conditions that have a trigger_value Of true. The array
insidethe active_conditions Holder may be pre-allocated by the application
and can be re-used in a subsequent invocation of the _wait operation. If the
pre-allocated array is not big enough to hold the the number of triggered
Conditions, the sequence will automatically be (re-)allocated to fit the required
Size. The parameter t imeout specifies the maximum duration for thewai t to block
the calling application thread (when none of the attached conditions have a
trigger value of true). Inthat case the return value is RETCODE_TIMEOUT and the
active_conditions sequenceisleft empty. Sinceitisnot alowed for more than
one application thread to be waiting on the same waitSet, the operation returns
immediately with the value RETCODE_PRECONDITION NOT_MET Whenthe wait
operation is invoked on awaitset which already has an application thread
blocking onit.

Return Code

When the operation returns:

* RETCODE_OK - @t |least one of the attached conditions hasatrigger_ value
of true.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming true.

* RETCODE_PRECONDITION_NOT_MET - the waitSet aready has an application
thread blocking on it.

Class Condition

&4 PRISMTECH

This classisthe base class for all the conditions that may be attached to awaitset.
This base class is specialized in three classes by the Data Distribution Service:
GuardCondition, StatusCondition and ReadCondition (also thereisa
QueryCondition whichis aspecialized ReadCondition).

101
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each condition hasatrigger_value that can be true oOr false and is set by

the Data Distribution Service (except a GuardCondition) depending on the
evaluation of the condition.

Condition

get_trigger_value()

StatusCondition GuardCondition
get_enabled_statuses() set_trigger_value()
ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
get_datareader() statuscondition
get:instance_state_mask() 0.1
get_sample_state_mask() .
get_view_state_mask() entity
1
/ QueryCondition Entity

<<create>> ‘ enable()
getﬁqueryiargumeljts() <<abstract>> get_listener()
L get_query_expression() <<abstract>> get_qos()
set_query_arguments() get_status_changes()
/,\ get_statuscondition()

1

DataReader <<abstract>> set_listener() -
;@nﬂ»ﬂ <<abstract>> set_qos() DataWriter
Subscriber % " Publisher
— DomainEntity
Topic

Figure 14 DCPS Conditions
Theinterface description is as follows:

public interface Condition

{

//

// implemented API operations
//

public boolean
get_trigger_value
(void) ;
}i

The next paragraph describes the usage of the condition operation.
get_trigger _value
Scope

DDS.Condition

102
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Synopsis
import DDS.*;
public boolean
get_trigger_value
(void) ;

Description
This operation returnsthe trigger_value Of the condition.

Parameters
<none>

Return Value

boolean - isthe trigger value.

Detailed Description

A Condition hasatrigger_value that can be true or false andis set by the
Data Distribution Service (except a GuardCondition). This operation returns the
trigger_value oOf the Condition.

Class GuardCondition

&4 PRISMTECH

A GuardCondition object isaspecific Condition whose trigger_value is
completely under the control of the application. The Guardcondition hasno
factory and must be created by the application. The GuardCondition isdirectly
created as an object by using the GuardCondition constructor. When a
GuardCondition isinitidly created, the trigger_value iS false. The purpose
of the GuardCondition iSto provide the means for an application to manually
wake up awaitset. Thisis accomplished by attaching the Guardcondition to
the waitset and setting the trigger_value by means of the
set_trigger_value operation.

The interface description of thisclassis asfollows:

public interface GuardCondition

{

//

// extends interface Condition
//

// public boolean

// get_trigger_value

// (void) ;

//

// implemented API operations
//

public int

103
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

set_trigger_value
(boolean value) ;
}:
The following paragraphs describe the usage of all Guardcondition operations.
The inherited operation is listed but not fully described since it is not implemented
in this class. The full description of this operation is given in the class from which it
isinherited. Thisis described in their respective paragraph.

get_trigger_value (inherited)

This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
get_trigger_value
(void) ;

set_trigger _value

104
API Reference

Scope
DDS.GuardCondition
Synopsis
import DDS.*;
public int

set_trigger_value
(boolean value) ;

Description
This operation setsthe trigger_value Of the GuardCondition.

Parameters
in boolean value - theboolean value to which the Guardcondition is set.

Return Value

int - Possible return codes of the operation are: RETCODE_OK Of
RETCODE_ERROR.

Detailed Description

A GuardCondition object is aspecific Condition which trigger_value is
completely under the control of the application. This operation must be used by the
application to manually wake-up a waitSet. This operation sets the

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

trigger_value Of the Guardcondition to the parameter value. The
GuardCondition isdirectly created using the GuardCcondition constructor.
When aGuardcondition isinitidly created, thetrigger_valueis false.

Return Code

When the operation returns:

* RETCODE_OK - the specified trigger_value has successfully been applied.

* RETCODE_ERROR - an internal error has occurred.

3.1.9 ClassSatusCondition

&4 PRISMTECH

Entity objectsthat have status attributes also have a statusCondition, accessis
provided to the application by the get_statuscondition operation.

The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Table 15 Satus per Entity

Entity Satus Name
Topic INCONSISTENT_TOPIC_STATUS
Subscriber DATA_ON_READERS_STATUS
DataReader SAMPLE_REJECTED_STATUS

LIVELINESS_CHANGED_STATUS

REQUESTED_DEADLINE_MISSED_STATUS
REQUESTED_INCOMPATIBLE_QOS_STATUS
DATA_AVAILABLE_STATUS

SAMPLE_LOST_STATUS

SUBSCRIPTION_MATCH_STATUS

DataWriter LIVELINESS_LOST_STATUS

OFFERED_DEADLINE_MISSED_STATUS

OFFERED_INCOMPATIBLE_QOS_STATUS

PUBLICATION_MATCH_STATUS

The trigger_value Of the StatusCondition depends on the communication
statuses of that Entity (e.g., missed deadline) and also depends on the value of the
StatusCondition attribute mask (enabled_statuses mask). A
StatusCondition can be attached to awaitset in order to allow an application
to suspend until the trigger_value hasbecome true.

105
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

The trigger_value Of aStatusCondition Will be true if one of the enabled
StatusChangedFlags iSSet. That is, trigger_value==false only if al the
values of the statusChangedFlags are false.

The sensitivity of the statusCondition to aparticular communication status is
controlled by the list of enabled_statuses Set on the condition by means of the
set_enabled_statuses operation.

When the enabled_statuses are not changed by the set_enabled_statuses
operation, all statuses are enabled by default.

The interface description of this classis as follows:

public interface StatusCondition

{

//

// extends interface Condition

//

// boolean

// get_trigger_value

// (void) ;

//

// implemented API operations

//

public int
get_enabled_statuses

(void) ;

public int
set_enabled_statuses
(int mask) ;

public Entity

get_entity

(void) ;

}s
The following paragraphs describe the usage of all statusCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

get_enabled_statuses

106
API Reference

Scope
DDS.StatusCondition
Synopsis

import DDS.*;
public int

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

get_enabled_statuses
(void) ;

Description

This operation returns the list of enabled communication statuses of the
StatusCondition.

Parameters
<none>

Return Value

int - Result isabit mask in which each bit shows which status is taken into account
for the statusCondition.

Detailed Description

The trigger_value Of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled statuses onthe StatusCondition

This operation returns the list of communication statuses that are taken into account
to determine the trigger_value Of the statusCondition. This operation
returns the statuses that were explicitly set on the last call to
set_enabled statuses O, if set_enabled statuses was never caled, the
default list.

The result value is a bit mask in which each bit shows which status is taken into
account for the statusCondition. The relevant bits represents one of the
following statuses:

« INCONSISTENT_TOPIC_STATUS

« OFFERED_DEADLINE_MISSED_STATUS

« REQUESTED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

« SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

« DATA_ON_READERS_STATUS

« DATA_AVAILABLE_STATUS

« LIVELINESS_LOST_STATUS

« LIVELINESS_CHANGED_STATUS

« PUBLICATION_MATCHED_STATUS

« SUBSCRIPTION_MATCHED_STATUS

107
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type int.

Not all statuses are relevant to al Entity objects. See the respective Listener
objects for each Entity for more information.

get_entity
Scope

DDS.StatusCondition

Synopsis
import DDS.*;
public Entity
get_entity
(void) ;

Description

This operation returns the Ent ity associated with the statuscondition or the
null reference.

Parameters
<none>

Return Value

Entity - Result value is a reference to the Entity associated with the
StatusCondition or thenull reference.

Detailed Description

This operation returns the Ent ity associated with the statusCondition. Note
that there is exactly one Entity associated with each statusCondition. When
the Entity was already deleted (there is no associated Entity any more), the
null referenceisreturned.

get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
get_trigger_value
(void) ;

108
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

set_enabled statuses

&4 PRISMTECH

Scope

DDS.StatusCondition

Synopsis
import DDS.*;
public int
set_enabled_statuses
(int mask) ;

Description

This operation sets the list of communication statuses that are taken into account to
determinethe trigger_value of the statusCondition.

Parameters

in int mask - abit mask in which each bit sets the status which is taken into
account for the statusCondition.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR Of
RETCODE_ALREADY_DELETED.

Detailed Description

The trigger_value Of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled statuses onthe StatusCondition.

This operation sets the list of communication statuses that are taken into account to
determine the trigger_value Of the StatusCondition. This operation may
changethe trigger_value Of the StatusCondition.

WaitSet objects behaviour depend on the changes of the trigger_value of their
attached conditions. Therefore, any waitSet to which the statusCondition
is attached is potentially affected by this operation.

If this function is not invoked, the default list of enabled _statuses includes al
the statuses.

The parameter mask isabit mask in which each bit shows which statusis taken into
account for the statusCondition. The relevant bits represents one of the
following statuses:

« INCONSISTENT_TOPIC_STATUS

« OFFERED_DEADLINE_MISSED_STATUS

109
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

110
API Reference

e REQUESTED_DEADLINE_MISSED_STATUS
e OFFERED_INCOMPATIBLE_QOS_STATUS
e REQUESTED_INCOMPATIBLE_QOS_STATUS
e SAMPLE_LOST_STATUS

e SAMPLE_REJECTED_STATUS

e DATA_ON_READERS_STATUS

e DATA_AVAILABLE_STATUS

e LTVELINESS_LOST_STATUS

e LTVELINESS_CHANGED_STATUS

e PUBLICATION_MATCHED_STATUS

e SUBSCRIPTION_MATCHED_STATUS

Each status hit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type int. The constants are implemented as
an interface.

Not all statuses are relevant to al Entity objects. See the respective Listener
objects for each Ent ity for more information.

Return Code

When the operation returns:

* RETCODE_OK - the list of communication statusesis set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the StatusCondition has already been
deleted.

& PRISMTECH

3 DCPS Classes and Operations

3.2 Domain Module

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Entity

from Infrastructure Module)

|

3.2 DomainModule

<<Interface>>
TopicListener

DomainParticipant

on_inconsistent_topic()

DomainParticipantListener

<<implicit>>

0.1

<<implicit>> qos

*

QosPolicy

(from Infrastructure Module)

x
default_publisher_gos

default_participant_qos

* default_topic_gos
*

default_subscriber_gos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qgos()
get_instance()

lookup_participant()
set_default_participant_gos()

<<create>>

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gos()
get_default_subscriber_gos()
get_default_topic_gos()
get_domain_id()
get_listener()

get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gos()
set_default_subscriber_gos()
set_default_topic_qos()
set_listener()

set_qos()

<<create>>
<<create>> Publisher Subscriber
from Publication Module) (from Subscription Module)
/
/
N
DomainEntity
ﬁ (from Infrastructure Module)
*
1
<<create>> Topic

(from Topic-Definition Module)

<<implicit>>

TopicDescription
(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

(from Topic-Definition Module)

MultiTopic

<<create>>

<<create>>

Figure 15 DCPS Domain Module's Class M odel
This module contains the following classes:

« DomainParticipant

e DomainParticipantFactory

* DomainParticipantListener (interface)

3.2.1 ClassDomainParticipant

All the DCPS Ent1ity objects are attached to a DomainParticipant.

A DomainParticipant represents the local membership of the application in a
Domain.
A Domain isadistributed concept that links al the applications that must be able to
communicate with each other. It represents a communication plane: only the
Publishers andthe subscribers attached to the same bomain can interact.

&4 PRISMTECH

This class implements severa functions:
* It actsasacontainer for al other Entity objects

o |t

acts as a factory

for

the Publisher,

ContentFilteredTopic and MultiTopic objects

* It provides access to the built-in Topic objects

Subscriber,

Topic,

111
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* It provides information about Topic objects

* It isolates applications within the same Domain (sharing the same domainId)
from other applications in a different bomain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other

* It provides administration services in the pomain, offering operations, which
alow the application to ignore localy any information about a given
Participant, Publication, Subscription Of Topic

The interface description of this classis asfollows:

public interface DomainParticipant

{

//

// extends interface Entity

//

// public StatusCondition

// get_statuscondition

// (void) ;

// public int

// get_status_changes

// (void) ;

// public int

// enable

// (void) ;

//

// implemented API operations

//

public Publisher
create_publisher
(PublisherQos gos,
PublisherListener a_listener,
int mask) ;
public int
delete_publisher

(Publisher p);
public Subscriber
create_subscriber
(SubscriberQos gos,
SubscriberListener a_listener,
int mask) ;
public int
delete_subscriber
(Subscriber s);
public Subscriber
get_builtin_subscriber
(void) ;
public Topic
create_topic
112

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

(String topic_name,
String type_name,
TopicQos gos,
TopicListener a_listener,
int mask) ;
public int
delete_topic
(Topic a_topic);
public Topic
find_topic
(String topic_name,
Duration_t timeout) ;
public TopicDescription
lookup_topicdescription
(String name) ;
public ContentFilteredTopic
create_contentfilteredtopic
(String name,
Topic related_topic,
String filter_expression,
String[] expression_parameters) ;
public int
delete_contentfilteredtopic
(ContentFilteredTopic a_contentfilteredtopic);
public MultiTopic
create_multitopic
(String name,
String type_name,
String subscription_expression,
String[] expression_parameters) ;
public int
delete_multitopic
(MultiTopic a_multitopic);
public int
delete_contained_entities
(void) ;
public int
set_gos
(DomainParticipantQos gos) ;
public int
get_qgos
(DomainParticipantQosHolder gos) ;
public int
set_listener
(DomainParticipantListener a_listener,
int mask) ;
public DomainParticipantListener
get_listener
(void) ;
public int

113
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

ignore_participant
(long handle) ;
public int
ignore_topic
(long handle) ;
public int
ignore_publication
(long handle) ;
public int
ignore_subscription
(long handle) ;
public String
get_domain_id
(void) ;
public int
get_discovered_participants
(InstanceHandleSegHolder participant_handles) ;
public int
get_discovered_participant_data
(long ParticipantBuiltinTopicDataHolder participant_data,
handle) ;
public int
get_discovered_topics
(InstanceHandleSegHolder topic_handles);
public int
get_discovered_topic_data
(long TopicBuiltinTopicDataHolder topic_data,
handle) ;
public int
assert_liveliness
(void) ;
public int
set_default_publisher_gos
(PublisherQos gos) ;
public int
get_default_publisher_ gos
(PublisherQosHolder gos) ;
public int
set_default_subscriber_gos
(SubscriberQos gos) ;
public int
get_default_subscriber_gos
(SubscriberQosHolder gos);
public int
set_default_topic_gos
(TopicQos gos) ;
public int
get_default_topic_gos
(TopicQosHolder gos);
public boolean

114

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

contains_entity
(long a_handle) ;
public int
get_current_time
(Time_tHolder current_time) ;
}s
The following paragraphs describe the usage of all bomainParticipant
operations. The inherited operations are listed but not fully described because they
are not implemented in this class. The full description of these operationsisgivenin
the classes from which they are inherited.

assert_liveliness

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
assert_liveliness
(void) ;

Description
This operation asserts the liveliness for the bomainParticipant.

Parameters
<none>

Return Value

int - Possiblereturn codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the DomainParticipant.
This way, the Data Distribution Service isinformed that the DomainParticipant
is still alive. This operation only needs to be used when the DomainParticipant
contains DataWriters wWith the LivelinessQosPolicy Set to
MANUAL_BY_PARTICIPANT_LIVELINESS_QO0S, and it will only affect the
liveliness of those DataWriters.

Writing dataviathe write operation of aDatawriter will assert the liveliness on
the Datawriter itself and its DomainParticipant. Therefore,
assert_liveliness isonly needed when not writing regularly.

115
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy.

Return Code

When the operation returns:

* RETCODE_OK - theliveliness of thiSDomainParticipant has successfully been
asserted.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_ DELETED - the DomainParticipant has aready been
deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ ENABLED - the DomainParticipant iSnhot enabled.
contains_entity
Scope

DDS.DomainParticipant
Synopsis

import DDS.*;

public boolean

contains_entity
(long a_handle) ;

Description

This operation checks whether or not the given Entity represented by a_handle
iscreated by the DomainParticipant or any of its contained entities.
Parameters

in long a_handle - an Entity inthe Data Distribution System.

Return Value

boolean - true if a_handle represents an Entity that is created by the
DomainParticipant Or any of itscontained Entities. Otherwise the return
valueis false.

116

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant itself (TopicDescription, Publisher
or Subscriber) or created by any of its contained entities (DataReader,
ReadCondition, QueryCondition, DataWriter, €tC.).

Return value is true if a_handle represents an Entity that is created by the
DomainParticipant Or any of its contained Entities. Otherwise the return
valueis false.

create contentfilteredtopic

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis

import DDS.*;
public ContentFilteredTopic
create_contentfilteredtopic
(String name,
Topic related_topic,
String filter_expression,
String[] expression_parameters) ;

Description

This operation creates a ContentFilteredTopic fOr aDomainParticipant in
order to allow pataReaders to subscribe to a subset of the topic content.

Parameters

in

in

in

in

String name - the name of the contentFilteredTopic.

Topic related_topic - thereference to the base topic on which thefiltering
will be applied. Therefore, afiltered topic is based on an existing Topic.

String filter_expression - the SQL expression (subset of SQL), which
defines the filtering.

String[] expression_parameters - the handle to a sequence of strings
with the parameter value used in the SQL expression (i.e., the number of %n
tokens in the expression). The number of valuesin expression_parameters
must be equal or greater than the highest referenced %n token in the
filter_expression (e.g.if $1 and %8 are used as parameter in the
filter expression, theexpression parameters should at least contain
n+l = 9 vaues).

117
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

ContentFilteredTopic - Return value is the reference to the newly created
ContentFilteredTopic. Incase of an error, anull referenceis returned.

Detailed Description

This operation creates a ContentFilteredTopic for aDomainParticipant in
order to allow pataReaders to subscribe to a subset of the topic content. The base
topic, which is being filtered is defined by the parameter related_topic. The
resulting ContentFilteredTopic only relatesto the samples published under the
related_topic, which have been filtered according to their content. The resulting
ContentFilteredTopic only exists a the batarReader Side and will never be
published. The samples of the related_topic arefiltered according to the SQL
expression (which is a subset of SQL) as defined in the parameter
filter_expression (See Appendix H, DCPSQueries and Filters).

The filter_expression may also contain parameters, which appear as %n
tokensin the expression which must be set by the sequence of strings defined by the
parameter expression_parameters. The number of values in
expression_parameters Mmust be equal or greater than the highest referenced
%n tokeninthe filter_expression (eg.if $1 and $8 are used as parameter in
the filter expression, the expression_parameters should at least contain
n+l = 9 vaues).

The filter_expression isastring that specifies the criteriato select the data
samples of interest. In other words, it identifies the selection of data from the
associated Topics. It isan SQL expression where the wHERE clause gives the
content filter.

create_multitopic

118
API Reference

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public MultiTopic
create_multitopic
(String name,

String type_name,
String subscription_expression,
String[] expression_parameters) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Description

This operation createsaMultiTopic for aDomainParticipant inorder to alow
DataReaders t0 subscribe to afiltered/re-arranged combination and/or subset of
the content of several topics.

Parameters
in String name - the name of the multi topic.

in String type_name - the name of the type of the MultiTopic. This
type_name Must have been registered using register_type prior to caling
this operation.

in String subscription_expression - the SQL expression (subset of SQL),
which defines the selection, filtering, combining and re-arranging of the sample
data.

in String[] expression_parameters - the handle to a sequence of strings
with the parameter value used in the SQL expression (i.e., the number of %n
tokensin the expression). The number of valuesin expression_parameters
must be equal or greater than the highest referenced %n token in the
subscription_expression (e.g.if $1 and ¢8 are used as parameter in the
subscription_expression, the expression_parameters should at least
containn+1 = 9 vaues).

Return Value

MultiTopic - Return value is the reference to the newly created MultiTopic. In
case of an error, anull referenceis returned.

Detailed Description

This operation creates amultiple topic for aDomainParticipant inorder to alow
DataReaders to subscribe to afiltered/re-arranged combination and/or subset of
the content of several topics.

BeforetheMultiTopic can be created, the type_name of the MultiTopic must
have been registered prior to calling this operation. Registering is done, using the
register_type operation from TypeSupport. Thelist of topics and the logic,
which defines the selection, filtering, combining and re-arranging of the sample
data, is defined by the SQL expression (subset of SQL) defined in

subscription_expression.

The subscription_expression may also contain parameters, which appear as
%n tokens in the expression. These parameters are defined in
expression_parameters. The number of valuesin expression_parameters must
be equal or greater than the highest referenced %n token in the

119
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

subscription_expression (e.g.if $1 and ¢8 are used as parameter in the
subscription_ expression, the expression parameters should at |east
contain n+1 = 9 values).

The subscription_expression iSastring that specifies the criteriato select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It isan SQL expression where the SELECT
clause provides the fields to be kept, the FrRoM part provides the names of the
Topics that are searched for those fields, and the wHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.

The pataReader, Which is associated with amMultiTopic only accesses
information which exist locally in the DataReader, based on the Topics used in
the subscription expression. The actual MultiTopic will never be
produced, only the individual Topics.

create publisher

120
API Reference

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public Publisher
create_publisher
(PublisherQos gos,
PublisherListener a_listener,
int mask) ;

Description

This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener toit.

Parameters

in PublisherQos gos - acollection of QosPolicy settings for the new
Publisher. In case these settings are not self consistent, N0 Publisher iS
created.

in PublisherListener a_listener - a reference to the
PublisherListener instance which will be attached to the new publisher.
It is permitted to use nul1l as the value of the listener: this behaves as a
PublisherListener Whose operations perform no action.

in int mask - abit-mask in which each bit enables the invocation of the
PublisherListener for acertain status.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Return Value

publisher - Return value is a reference to the newly created publisher. In case
of an error, thenul1l referenceisreturned.

Detailed Description

This operation creates a Publisher with the desired gosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it. When the
PublisherListener iSnot applicable, the null reference must be supplied
instead. To delete the publisher the operation delete_publisher Or
delete_contained_entities must be used.

In case the specified QosPolicy settings are not consistent, N0 Publisher iS
created and the nul1 referenceis returned.

Default QoS

The constant PUBLISHER_QOS_DEFAULT Can be used as parameter gos to create a
Publisher with the default PublisherQos as set in the DomainParticipant.
The effect of using PUBLISHER_QOS_DEFAULT iSthe same as calling the operation
get_default_publisher_gos and using the resulting publisherQos to create
the Publisher.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
aready reset.

The following statuses are applicable to the PublisherListener:

« OFFERED_DEADLINE_MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
« LIVELINESS_LOST_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select all statuses applicableto the PublisherListener.

121
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener Of acontained DatawWriter, the DataWwriterListener
on that contained batawriter isinvoked instead of the PublisherListener.
This means that a status change on a contained Datawriter only invokes the
PublisherListener if the contained patawriter itself does not handle the
trigger event generated by the status change.

In case a communication status is not activated in the mask of the
PublisherListener, the DomainParticipantListener oOf the containing
DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Publisher specific behaviour when needed. In case the
DomainParticipantListener isaso not attached or the communication status
is not activated in itsmask, the application is not notified of the change.

create subscriber

122
API Reference

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public Subscriber
create_subscriber
(SubscriberQos gos,
SubscriberListener a_listener,
int mask) ;

Description

This operation creates a Subscriber with the desired QospPolicy settings and if
applicable, attaches the optionally specified subscriberListener toit.

Parameters

in SubscriberQos gos - acollection of gosPolicy settings for the new
Subscriber. In case these settings are not self consistent, N0 Ssubscriber IS
created.

in SubscriberListener a_listener - a reference to the
SubscriberListener instance which will be attached to the new
Subscriber. It is permitted to use null as the value of the listener: this
behaves as a subscriberListener Whose operations perform no action.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

in int mask - abit-mask in which each bit enables the invocation of the
SubscriberListener for acertan status.

Return Value

Subscriber - Return value is a reference to the newly created subscriber. In
case of an error, thenul1 referenceis returned.

Detailed Description

This operation creates a subscriber With the desired QosPolicy settings and if
applicable, attaches the optionally specified subscriberListener toit. When the
SubscriberListener isnot applicable, the nul1 reference must be supplied
instead. To delete the subscriber the operation delete_subscriber Or
delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, N0 Subscriber IS
created and the nul1 referenceis returned.

Default QoS

The constant SUBSCRIBER_QOS_DEFAULT Can be used as parameter gos to create
a Subscriber with the default subscriberQos as set in the
Domainparticipant. The effect of using SUBSCRIBER_QOS_DEFAULT is the
same as calling the operation get_default_subscriber_gos and using the
resulting subscriberQos to create the subscriber.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated subscriberListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

The following statuses are applicable to the subscriberListener:

« REQUESTED_DEADLINE_MISSED_STATUS (propagated)
« REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
« SAMPLE_LOST_STATUS (propagated)
« SAMPLE_REJECTED_STATUS (propagated)
« DATA_AVAILABLE_STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
+ SUBSCRIPTION_MATCHED_STATUS (propagated).

123
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

e DATA_ON_READERS_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the subscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener Of acontained DataReader, the DataReaderListener
on that contained DataReader isinvoked instead of the subscriberListener.
This means that a status change on a contained pataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

In case a communication status is not activated in the mask of the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant isinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Subscriber specific behaviour when needed. In case the
DomainParticipantListener iSaso not attached or the communication status
is not activated in itsmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will ook in an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

create _topic

124
API Reference

Scope
DDS.DomainParticipant
Synopsis

import DDS.*
public Topic

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

create_topic
(String topic_name,
String type_name,
TopicQos gos,
TopicListener a_listener,
int mask) ;

Description

This operation creates a reference to anew or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener toit.

Parameters

in String topic_name - the name of the Topic to be created. A new Topic
will only be created, when no Topic, with the same name, is found within the
DomainParticipant.

in String type_name - alocal alias of the data type, which must have been
registered before creating the Topic.

in TopicQos gos - acollection of QosPolicy settings for the new Topic. In
case these settings are not self consistent, no Topic is created.

in TopicListener a_listener - areferenceto the TopicListener instance
which will be attached to the new Topic. It is permitted to use null asthe
value of the listener: this behaves as a TopicListener whose operations
perform no action.

in int mask - abit-mask in which each bit enables the invocation of the
TopicListener for acertain status.

Return Value

Topic - Return value is a reference to the new or existing Topic. In case of an
error, thenull referenceisreturned.

Detailed Description

This operation creates areference to anew or existing Topic under the given name,
for a specific type, with the desired gospPolicy settings and if applicable, attaches
the optionally specified TopicListener toit. When the TopicListener isnot
applicable, the nul1 reference must be supplied instead. In case the specified
QosPolicy Settings are not consistent, no Topic iscreated and thenu11 reference
is returned. To delete the Topic the operation delete_topic Or
delete_contained_entities must be used.

125
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

126
API Reference

Default QoS

The constant ToOPTC_QOS_DEFAULT can be used as parameter gos to create a
Topic With the default TopicQos as set in the DomainParticipant. The effect
of using TOPIC_QOS_DEFAULT is the same as calling the operation
get_default_topic_gos and using the resulting TopicQos to create the Topic.

The Topic is bound to the type type_name. Prior to creating the Topic, the
type_name must have been registered with the Data Distribution Service.
Registering the type_name is done using the data type specific register_type
operation.

Existing Topic Name

Before creating a new Topic, this operation performs a
lookup_topicdescription for the specified topic_name. When a Topic is
found with the same name in the current domain, the QoS and type_name of the
found Topic are matched against the parameters gos and type_name. When they
arethe same, no Topic is created but anew proxy of the existing Topi c isreturned.
When they are not exactly the same, no Topic is created and thenul1 referenceis
returned.

When a Topic isobtained multiple times, it must also be deleted that same number
of timesusing delete_topic or caling delete_contained_entities onceto
delete all the proxies.

Local Proxy

Since aTopic isagloba concept in the system, access is provided through alocal
proxy. In other words, the reference returned is actually not areferenceto a Topic
but to alocally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
create, a new proxy is created. Therefore the Topic must be deleted the same
number of times, as the Topic was created with the same topic_name per
Domain. In other words, each reference (local proxy) must be deleted separately.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated TopicListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

The following statuses are applicable to the TopicListener:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* INCONSISTENT_TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaATUS can be used
to select al statuses applicable to the TopicListener.

Satus Propagation

In case acommunication status is not activated in themask of the TopicListener,
the DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe bomainParticipantListener of the
containing bomainParticipant and a Topic specific behaviour when needed. In
case the pomainParticipantListener IS also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

delete _contained_entities

&4 PRISMTECH

Scope
DDS.DomainParticipant
Synopsis
import DDS.*;
public int

delete_contained_entities
(void) ;

Description

This operation deletes all the Entity objects that were created on the
DomainParticipant.

Parameters

<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the Entity objects that were created on the
DomainParticipant. In other words, it deletes all Publisher, Subscriber,
Topic, ContentFilteredTopic andMultiTopic objects. Prior to deleting each

127
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

contained Entity, this operation regressively calls the corresponding
delete_contained_entities operation on each eEntity (if applicable). In
other words, all Entity objectsinthe publisher and Subscriber are deleted,
including the Datawriter and DataReader. AlSO the QueryCondition and
ReadCondition objects contained by the batarReader are deleted.

Topic

Since aTopic isaglobal concept in the system, access is provided through alocal
proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic Or find_topic operation. When a reference to the same Topic
was created multiple times (either by create_topic or find_topic), al
references (local proxies) are deleted. With the last proxy, the Topic itself isalso
removed from the system.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if acontained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
deletethe DomainParticipant.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_PRECONDITION NOT MET - one or more of the contained entities are
in a state where they cannot be del eted.

delete_contentfilteredtopic

128
API Reference

Scope

DDS.DomainParticipant

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Synopsis
import DDS.*;
public int
delete_contentfilteredtopic
(ContentFilteredTopic a_contentfilteredtopic);

Description
This operation deletesaContentFilteredTopic.

Parameters

in ContentFilteredTopic a_contentfilteredtopic - areferenceto the
ContentFilteredTopic, whichisto be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES Or RETCODE_PRECONDITION_NOT_ MET.

Detailed Description
This operation deletesacontentFilteredTopic.

The deletion of acontentFilteredTopic isnot alowed if there are any existing
DataReader Objects that are using the ContentFilteredTopic. If the
delete_contentfilteredtopic operation is called on a
ContentFilteredTopic With existing DataReader objects attached to it will
return PRECONDITION_NOT_MET.

The delete_contentfilteredtopic operation must be called on the same
DomainParticipant oObject used to create the ContentFilteredTopic. If
delete_contentfilteredtopic iscalled on adifferent DomainParticipant
the operation will have no effect and it will return PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the ContentFilteredTopic isdeleted
* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD PARAMETER - the parameter a_contentfilteredtopic iSnot
avaid contentFilteredTopic reference.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

129
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_PRECONDITION_NOT _MET - the operation is caled on a different
DomainParticipant, asused whenthe contentFilteredTopic Was created,
or the contentFilteredTopic is being used by one or more DataReader
objects.

delete_multitopic

130
API Reference

Scope

DDS.DomainParticipant
Synopsis

import DDS. *;

public int

delete_multitopic
(MultiTopic a_multitopic);

Note: This operation is not yet implemented. It is scheduled for afuture release.
Description
This operation deletesaMul tiTopic.

Parameters

in MultiTopic a_multitopic -areferencetotheMultiTopic, whichistobe
deleted.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES O RETCODE_PRECONDITION_ NOT_MET.

Detailed Description
This operation deletesaMultiTopic.

The deletion of aMultiTopic isnot alowed if there are any existing bataReader
objects that are using the MultiTopic. If the delete_multitopic operationis
called on aMultiTopic with existing DataReader objects attached to it will
return RETCODE_PRECONDITION_NOT_MET.

The delete_multitopic operation must be called on the same
DomainParticipant object used to create the MultiTopic. If
delete_multitopic iscaled on adifferent bomainParticipant the operation
will have no effect and it will return RETCODE_ PRECONDITION_NOT MET.

Return Code

When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_OK - theMultiTopic isdeleted

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_multitopic is not a valid
MultiTopic reference.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT _OF _RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the operation is caled on a different
DomainParticipant, as used when the MultiTopic was created, or the
MultiTopic isbeing used by one or more bataReader objects.

delete publisher

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
delete_publisher
(Publisher p);

Description
This operation deletes a publisher.

Parameters
in Publisher p - areferencetothe publisher, which isto be deleted.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_ DELETED,
RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_ NOT_MET.

Detailed Description

This operation deletes a Publisher. A Publisher cannot be deleted when it has
any attached patawriter objects. When the operation is called on a publisher
with DataWriter objects, the operation returns
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, as used when the publisher was created, the operation
has no effect and returns RETCODE_ PRECONDITION_NOT_MET.

131
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Code

When the operation returns:

* RETCODE_OK - the Publisher isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter p is not a vaid publisher
reference.

* RETCODE_ALREADY_ DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the publisher was created, or the
Publisher cOntains one or More DatawWriter objects.

delete subscriber

132
API Reference

Scope
DDS.DomainParticipant
Synopsis
import DDS.*
public int

delete_subscriber
(Subscriber s);

Description
This operation deletes a subscriber.

Parameters
in Subscriber s - areferenceto the subscriber, whichisto be deleted.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_ NOT_ MET.

Detailed Description

This operation deletes a subscriber. A Subscriber cannot be deleted when it
has any attached patarReader objects. When the operation is called on a
Subscriber With DataReader oObjects, the operation returns

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, asused when the subscriber was created, the operation
has no effect and returns RETCODE_ PRECONDITION NOT_ MET.

Return Code

When the operation returns:

* RETCODE_OK - the subscriber isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter s is not a valid Subscriber
reference.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - the operation is called on a different
DomainParticipant, as used when the Subscriber was created, or the
Subscriber cONtainNs one or more bataReader Objects.

delete topic

&4 PRISMTECH

Scope
DDS.DomainParticipant
Synopsis
import DDS.*;
public int

delete_topic
(Topic a_topic);

Description
This operation deletesaTopic.

Parameters
in Topic a_topic - areferenceto the Topic, whichisto be deleted.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_ DELETED,
RETCODE_OUT_OF_RESOURCES Of RETCODE_PRECONDITION_ NOT_MET.

133
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation deletes a Topic. A Topic cannot be deleted when there are any
DataReader, DataWriter, ContentFilteredTopic Of MultiTopic Objects,
which are using the Topic. When the operation is called on aTopic referenced by
any of these objects, the operation returns RETCODE_PRECONDITION_NOT_MET.
When the operation is called on a different DomainParticipant, asused when
the Topic was created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET.

Local Proxy

Since aTopic isaglobal concept in the system, access is provided through alocal
proxy. In other words, the referenceis actually not areferenceto aTopic but to the
local proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic OF find_topic operation. This operation will delete the local
proxy. When a reference to the same Topic was created multiple times (either by
create_topic Or find_topic), each reference (local proxy) must be deleted
separately. When this proxy isthe last proxy for this Topic, the Topic itself isalso
removed from the system. As mentioned, a proxy may only be deleted when there
are no other entities attached to it. However, it is possible to delete a proxy while
there are entities attached to a different proxy.

Return Code

When the operation returns:

* RETCODE_OK - the Topic isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_topic is not a valid Topic
reference.

* RETCODE_ALREADY_ DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, asused whenthe Topic was created, or the Topic isstill
referenced by other objects.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

134

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
import DDS.*;
public int
enable
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

find_topic

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public Topic
find_topic
(String topic_name,
Duration_t timeout) ;

Description

This operation gives access to an existing (or ready to exist) enabled Topic, based
onits topic_name.

Parameters

in String topic_name - the name of the Topic that the application wants
access to.

in Duration_t timeout -the maximum duration to block for the find_topic,
after which the application thread is unblocked. The special constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value
Topic - areference to the Topic found.

Detailed Description

This operation gives access to an existing Topic, based on itS topic_name. The
operation takes as arguments the topic_name Of the Topic and a timeout.

If aTopic of the same topic_name aready exists, it gives access to this Topic.
Otherwise it waits (blocks the caller) until another mechanism creates it. This other
mechanism can be another thread, a configuration tool, or some other Data
Distribution Service utility. If after the specified t imeout the Topic can still not be
found, the caler gets unblocked and the nul1 referenceis returned.

135
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

A Topic obtained by means of find_topic, must also be deleted by means of
delete_topic S0 that the local resources can be released. If aTopic is obtained
multiple times it must also be deleted that same number of times using
delete_topic oOr calling delete_contained_entities onceto delete al the
proxies.

A Topic that is obtained by means of find_topic in a specific
DomainParticipant can only be used to create pataReaders and
DataWriters inthat DomainParticipant if its corresponding TypeSupport
has been registered to that same DomainParticipant.

Local Proxy

Since aTopic isaglobal concept in the system, access is provided through alocal
proxy. In other words, the reference returned is actually not areference to a Topic
but to alocally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
time this operation is called, a new proxy is created. Therefore the Topic must be
deleted the same number of times, as the Topic was created with the same
topic_name per Domain. In other words, each reference (local proxy) must be
deleted separately.

get_builtin_subscriber

136
API Reference

Scope
DDS.DomainParticipant
Synopsis
import DDS. *;
public Subscriber

get_builtin_subscriber
(void) ;

Description

This operation returns the built-in subscriber associated with the
DomainParticipant.

Parameters
<none>

Return Value

Subscriber - Result valueis a reference to the built-in subscriber associated
with the DomainParticipant.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation returns the built-in subscriber associated with the
DomainParticipant. Each DomainParticipant contains several built-in
Topic objects. The built-in subscriber contains the corresponding DataReader
objects to access them. All these DataReader objects belong to a single built-in
Subscriber. Note that there is exactly one built-in subscriber associated with
each DomainParticipant.

get_current_time

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_current_time
(Time_tHolder current_time) ;

Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well asreceived datain current_time.

Parameters

inout Time_ tHolder current_time - thevalue of the current time asused by
the Data Distribution System. The input value of current_time isignored.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES O RETCODE_NOT_ENABLED.

Detailed Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received datain current_time.
Theinput value of current_time isignored by the operation.

Return Code

When the operation returns:

* RETCODE_OK - the value of the current timeisreturned in current_time.

e RETCODE_ERROR - an internal error has occurred.

137
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_BAD_PARAMETER - the parameter current_time iS not a valid
reference.

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_NOT_ ENABLED - the DomainParticipant iSnot enabled.

get_default_publisher _qos

138
API Reference

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_default_publisher_ gos
(PublisherQosHolder gos) ;

Description

This operation gets an object with the default Publisher QosPolicy Settings of
the DomainParticipant.

Parameters

inout PublisherQosHolder gos - a reference to the destination
PublisherQosHolder object in which the default QosPolicy settingsfor the
Publisher arewritten.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets an object of the class publisherQos with the default
Publisher QosPolicy settings of the DomainParticipant (that isthe
PublisherQos) which isused for newly created publisher Objects, in case the
constant PUBLISHER_QOS_DEFAULT is used. The default PublisherQos isonly
used when the constant is supplied as parameter gos to specify the PublisherQos
inthe create_publisher operation. The application must provide the
PublisherQos object in which the gosPolicy Settings can be stored and pass the

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

qgos reference to the operation. The operation writes the default gospPolicy
settings to the object referenced to by gos. Any settings in the object are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_publisher_gos, of, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2,
DCPSHolder Classes, on page 12.

Return Code

When the operation returns:

* RETCODE_OK - the default Publisher QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
PublisherQosHolder parameter.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_default_subscriber _gos

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_default_subscriber_gos
(SubscriberQosHolder gos) ;

Description

This operation gets an object with the default subscriber QosPolicy Settings of
the DomainParticipant.

Parameters

inout SubscriberQosHolder gos - areference to the destination
SubscriberQosHolder oObject in which the default gosPolicy settings for
the subscriber are written.

139
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets an object of the class subscriberQos with the default
Subscriber QosPolicy settings of the DomainParticipant (that is the
SubscriberQos) which is used for newly created subscriber objects, in case
the constant SUBSCRIBER_Q0OS_DEFAULT IS used. The default subscriberQos is
only used when the constant is supplied as parameter gos to specify the
SubscriberQos in the create_subscriber operation. The application must
provide the QoS abject in which the policy can be stored and pass the gos reference
to the operation. The operation writes the default gosPolicy to the object
referenced to by gos. Any settingsin the object are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_subscriber gos, of, if the call was never made,
the default values as specified for each QosPolicy as defined in Table 2, DCPS
Holder Classes, on page 12.

Return Code

When the operation returns:

* RETCODE_OK - the default sSubscriber QosPolicy Settings of this
DomainParticipant have successfully been copied into the specified
SubscriberQosHolder parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_default_topic_qos
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_default_topic_gos
(TopicQosHolder gos) ;

140

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Description

This operation gets an object with the default Topic QosPolicy Settings of the
DomainParticipant.

Parameters

inout TopicQosHolder gos - areference to the destination TopicQosHolder
object in which the default QosPolicy settings for the Topic are written.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets an object of the class TopicQos with the default Topic
QosPolicy settings of the bomainParticipant (that isthe TopicQos) whichis
used for newly created Topic objects, in case the constant TOPIC_QOS_DEFAULT
is used. The default TopicQos isonly used when the constant is supplied as
parameter gos to specify the TopicQos inthe create_topic operation. The
application must provide an object of the TopicQos class in which the policy can
be stored and pass the gos reference to the operation. The operation writes the
default gosPolicy settings to the object referenced to by gos. Any settingsin the
object are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_topic_gos, or, if the call was never made, the
default values as specified for each gosPolicy asdefined in Table 2, DCPSHolder
Classes, on page 12.

Return Code

When the operation returns:

* RETCODE_OK - the default Topic QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
TopicQosHolder parameter.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

141
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_discovered_participants
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_discovered_participants
(InstanceHandleSegHolder participant_handles) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_discovered participant_data
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
get_discovered_participant_data
(long ParticipantBuiltinTopicDataHolder participant_data,
handle) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_discovered_topics
Scope
DDS.DomainParticipant
Synopsis
import DDS.*;
public int

get_discovered_topics
(InstanceHandleSegHolder topic_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
get_discovered_topic_data
Scope

DDS.DomainParticipant

Synopsis

import DDS.*;

142

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

public int
get_discovered_topic_data
(long TopicBuiltinTopicDataHolder topic_data,
handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_domain_id

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public String
get_domain_id
(void) ;

Description

This operation returns the bomainId of the Domain to which this
DomainParticipant is attached.

Parameters

<none>

Return Value
String - resultisthe bomainId.

Detailed Description

This operation returns the bomainId of the Domain to which this
DomainParticipant isattached. A bomainId consists of astring that represents
a URI to the location of the configuration file (e.qg.
“file:///projects/DDS/ospl.xml”). Thisfile specifiesall configuration
details of the Domain to which it refers.

A DomainId may contain the null reference: in that case the location of the
configuration file is extracted from the environment variable called ospL_URT.

get_listener

&4 PRISMTECH

Scope
DDS.DomainParticipant
Synopsis
import DDS.*;

143
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

public DomainParticipantListener
get_listener
(void) ;

Description
This operation allows accessto aDomainParticipantListener.

Parameters
<none>

Return Value

DomainParticipantListener - result is a reference to the
DomainParticipantListener attached tothe bomainParticipant.

Detailed Description

This operation allows access to aDomainParticipantListener attached to the
DomainParticipant. Whenno bomainParticipantListener wasattached to
the DomainParticipant, thenull referenceis returned.

get_qos

144
API Reference

Scope
DDS.DomainParticipant
Synopsis
import DDS. *;
public int

get_gos
(DomainParticipantQosHolder gos) ;

Description

This operation allows access to the existing set of QoS policies for a

DomainParticipant.

Parameters

inout DomainParticipantQosHolder gos - areference to the destination
DomainParticipantQosHolder object in which the gosPolicy settings
will be copied.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Code
When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this
DomainParticipant has successfully been copied into the specified
DomainParticipantQosHolder parameter.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted.

* RETCODE_OUT_OF _RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DomainParticipant on which this operation is used. This
DomainparticipantQos is stored at the location referenced by the gos
parameter.

get_status changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

ignore_participant
Scope

DDS.DomainParticipant

145

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
import DDS.*
public int
ignore_participant
(long handle) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

ignore_publication
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
ignore_publication
(long handle) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

ignore_subscription
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
ignore_subscription
(long handle) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

ignore_topic
Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
ignore_topic
(long handle) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

146

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

lookup_topicdescription

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public TopicDescription
lookup_topicdescription
(String name) ;

Description

This operation gives access to alocally-created TopicDescription, with a
matching name.

Parameters
in String name - the name of the TopicbDescription to look for.

Return Value

TopicDescription - Return valueis areference to the Topicbescription
found. When no such Topicbhescription isfound, the null referenceis
returned.

Detailed Description

The operation lookup_topicdescription gives access to alocally-created
TopicDescription, based on its name. The operation takes as argument the name
of the Topicbhescription.

If one or more local TopicDescription proxies (see also Section 3.2.1.15,
find_topic, on page 135) of the same name already exist, a reference to one of the
aready existing local proxiesisreturned: 1ookup_topicdescription Will never
create anew local proxy. That means that the proxy that is returned does not need to
be deleted separately from its original. When no local proxy exists, it returns the
null reference. The operation never blocks.

The operation lookup_topicdescription may be used to locate any
locally-created Topic, ContentFilteredTopic, and MultiTopic object.

set_default_publisher_gos

&4 PRISMTECH

Scope

DDS.DomainParticipant

147
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

148
API Reference

Synopsis
import DDS.*;
public int
set_default_publisher_ gos
(PublisherQos gos) ;

Description
This operation sets the default PublisherQos oOf the DomainParticipant.

Parameters

in PublisherQos gos - acollection of QosPolicy Settings, which contains the
new default QgosPolicy settings for the newly created Publishers.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED OF RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation sets the default PublisherQos Of the DomainParticipant (that
is the compound class with the QosPolicy settings) which is used for newly
created Publisher Objects, in case the constant PUBLISHER_QOS_DEFAULT iS
used. The default PublisherQos is only used when the constant is supplied as
parameter gos to specify the publisherQos inthe create_publisher
operation. The publisherQos isaways self consistent, because its policies do not
depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT POLICY. The values set by this operation are returned
by get_default_publisher_gos.

Return Code

When the operation returns:

* RETCODE_OK - the new default PublisherQos isset

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid PublisherQos.

e RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

set_default_subscriber _gos

&4 PRISMTECH

Scope
DDS.DomainParticipant
Synopsis
import DDS.*;
public int

set_default_subscriber_gos
(SubscriberQos gos) ;

Description
This operation sets the default subscriberQos of the bomainParticipant.

Parameters

in SubscriberQos gos - acollection of QosPolicy settings, which contains
the new default QosPolicy settings for the newly created subscribers.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED OF RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation sets the default SubscriberQos Of the DomainParticipant (that
is the compound class with the QosPolicy settings) which is used for newly
created subscriber Objects, in case the constant SUBSCRIBER_QOS_DEFAULT iS
used. The default subscriberQos isonly used when the constant is supplied as
parameter gos to specify the subscriberQos in the create_subscriber
operation. The subscriberQos is aways self consistent, because its policies do
not depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT POLICY. The values set by this operation are returned
by get_default_subscriber_gos.

Return Code

When the operation returns:

e RETCODE_OK - the new default subscriberQos is set

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid PublisherQos.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

149
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_default_topic_gos

150
API Reference

Scope
DDS.DomainParticipant
Synopsis
import DDS.*;
public int

set_default_topic_gos
(TopicQos gos) ;

Description
This operation sets the default TopicQos of the DomainParticipant.

Parameters

in TopicQos gqos - acollection of QosPolicy settings, which contains the new
default QosPolicy settings for the newly created Topics.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation sets the default TopicQos of the DomainParticipant (that isthe
compound class with the QosPolicy settings) which is used for newly created
Topic objects, in case the constant TopIC_Q0S_DEFAULT is used. The default
TopicQos isonly used when the constant is supplied as parameter gos to specify
the TopicQos inthe create_topic operation. This operation checks if the
TopicQos IS self consistent. If it is not, the operation has no effect and returns
RETCODE_INCONSISTENT POLICY. The values set by this operation are returned
by get_default_topic_qgos.

Return Code
When the operation returns:
* RETCODE_OK - the new default TopicQos is set

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos is not a valid TopicQos. It
contains aQosPolicy Setting with an invalid buration_t vaue.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the DomainParticipant has aready been
deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

set_listener

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
set_listener
(DomainParticipantListener a_listener,
int mask) ;

Description

This operation attaches a bomainParticipantListener to the
DomainParticipant.

Parameters

in DomainParticipantListener a_listener - areference to the
DomainParticipantListener instance, which will be attached to the
DomainParticipant.

in int mask - abit mask in which each bit enables the invocation of the
DomainParticipantListener for acertain status.
Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

151
API Reference

3 DCPS Classes and Operations

152
API Reference

3.2 DomainModule

Detailed Description

This operation attaches a bomainParticipantListener to the
DomainParticipant. Only one DomainParticipantListener can be
attached to each DomainParticipant. If aDomainParticipantListener Was
already attached, the operation will replace it with the new one. Whena_1listener
isthe null reference, it represents a listener that is treated as a NOOP* for all
statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated
DomainParticipantListener operation isinvoked and the communication
statusisreset to false, asthelistener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application callsthe get _<status_name>_status from inside the listener it
will seethe status already reset. An exception to thisruleisthenul1l listener, which
does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the DomainParticipantListener:

+ INCONSISTENT TOPIC_STATUS (propagated)
« OFFERED_DEADLINE_MISSED_STATUS (propagated)
« REQUESTED_DEADLINE MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
+ REQUESTED_INCOMPATIBLE_ QOS_STATUS (propagated)
e SAMPLE_LOST_STATUS (propagated)
+ SAMPLE _REJECTED_STATUS (propagated)
« DATA_ON_READERS_STATUS (propagated)
e DATA_AVAILABLE_STATUS (propagated)
« LIVELINESS_LOST_STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
o PUBLICATION_MATCHED_STATUS (propagated)
+ SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create atailored mask. The special constant ANY_sTATUS can be used
to select all statuses applicable to the bomainParticipantListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication status is also activated onthe Listener of
a contained entity, the Listener on that contained entity isinvoked instead of the
DomainParticipantListener. This means that a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.

The statuses DATA_ON_READERS_STATUS and DATA_AVATILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can hot be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_AVATLABLE_STATUS (in that order).

Return Code

When the operation returns:

* RETCODE_OK - the DomainParticipantListener is atached
e RETCODE_ERROR - an internal error has occurred

* RETCODE_ALREADY DELETED - the DomainParticipant has already been
deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Set_qos

&4 PRISMTECH

Scope

DDS.DomainParticipant

Synopsis
import DDS.*;
public int
set_gos
(DomainParticipantQos gos) ;

153
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Description

This operation replaces the existing set of gospPolicy settings for a
DomainParticipant.

Parameters

in DomainParticipantQos gos - the new set of QosPolicy settings for the
DomainParticipant.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a
DomainParticipant. The parameter gos contains the object with the
QosPolicy settings which is checked for self-consistency.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DomainParticipantQos IS Set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

Class DomainParticipantFactory

154
API Reference

The purpose of this class is to allow the creation and destruction of
DomainParticipant Objects. DomainParticipantFactory itself has no
factory. It is a pre-existing singleton object that can be accessed by means of the
get_instance operation onthe bomainParticipantFactory object.

The pre-defined value TheParticipantFactory can aso be used as an dias for
the singleton factory returned by the operation get_instance.

The interface description of this classis asfollows:

public class DomainParticipantFactory

{

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

/7

// implemented API operations

//

Y

public static DomainParticipantFactory
get_instance
(void) ;
public DomainParticipant
create_participant
(String domainId,
DomainParticipantQos gos,
DomainParticipantListener a_listener,
int mask) ;
public int
delete_participant
(DomainParticipant a_participant) ;
public DomainParticipant
lookup_participant
(String domainId) ;
public int
set_default_participant_gos
(DomainParticipantQos gos) ;
public int
get_default_participant_gos
(DomainParticipantQosHolder gos) ;
public int
set_gos
(DomainParticipantFactoryQos gos) ;
public int
get_gos
(DomainParticipantFactoryQosHolder gos) ;

The following paragraphs describe the usage of al DomainParticipantFactory
operations.

3.2.2.1 create participant

Scope

DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public DomainParticipant

&4 PRISMTECH

create_participant

(String domainId,
DomainParticipantQos gos,
DomainParticipantListener a_listener,
int mask) ;

155
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

156
API Reference

Description

This operation creates a new DomainParticipant which will join the domain
identified by domain1d, with the desired bomainParticipantQos and attaches
the optionally specified DomainParticipantListener toit.

Parameters

in String domainId - the ID of the pomain to which the
DomainParticipant isjoined. This should be a URI to the location of the
configuration file that identifies the configuration details of the Domain.

in DomainParticipantQos gos - aDomainParticipantQos for the new
DomainParticipant. When this set of QosPolicy settingsisinconsistent,
No DomainParticipant iScreated.

in DomainParticipantListener a_listener - areference to the
DomainParticipantListener instance which will be attached to the new
DomainParticipant. It ispermitted to use null asthe value of the listener:
this behaves as a DomainParticipantListener whose operations perform
no action.

in int mask - abit-mask in which each bit enables the invocation of the
DomainParticipantListener for acertain status.

Return Value

DomainParticipant - Return value is a reference to the newly created
DomainParticipant. In caseof an error, thenull referenceis returned.

Detailed Description

This operation creates a new DomainParticipant, with the desired
DomainParticipantQos and attaches the optionally specified
DomainParticipantListener t0it. The DomainParticipant signifies that
the calling application intends to join the bomain identified by the domainzd
argument.

If the specified gosPolicy settings are not consistent, the operation will fail; no
DomainParticipant is created and the operation returns the nul1 reference. To
delete the DomainParticipant the operation delete_participant must be
used.

Identifying the Domain

The bomainParticipant will attach to the bomain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
the location of the configuration file (e.g.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the bomain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.

A null reference may be assigned to the bomainId: in that case the location of the
configuration fileis extracted from the environment variable called ospz,_urzt. This
variable will be initialized when you source the release. com Script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice
product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.

It is recommended to use this osp1._URT variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

Default QoS

The constant PARTICIPANT_QOS_DEFAULT can be used as parameter gos to create
aDomainParticipant with the default DomainParticipantQos as set in the
DomainParticipantfactory. The effect of using
PARTICIPANT_QOS_DEFAULT iS the same as calling the operation
get_default_participant_gos and using the resulting
DomainParticipantQos to createthe DomainParticipant.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated
DomainParticipantListener operation isinvoked and the communication
statusisreset to false, asthelistener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application callsthe get_<status_name>_status from inside the listener it
will see the status already reset.

The following statuses are applicable to the bomainParticipantListener:

+ INCONSISTENT_TOPIC_STATUS (propagated)
« OFFERED_DEADLINE_MISSED_STATUS (propagated)
« REQUESTED_DEADLINE_MISSED_STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
+ REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
¢ SAMPLE_LOST_STATUS (propagated)
+ SAMPLE_REJECTED_STATUS (propagated)
« DATA_ON_READERS_STATUS (propagated)

157
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

o DATA_AVAILABLE_STATUS (propagated)
e LIVELINESS_LOST_STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated)
e SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create atailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the DomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication statusis also activated onthe Listener of
acontained entity, the Listener on that contained entity is invoked instead of the
DomainParticipantListener. This means that a status change on a contained
entity only invokes the bomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will ook in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_AVATLABLE_STATUS (in that order).

delete participant

158
API Reference

Scope
DDS.DomainParticipantFactory
Synopsis
import DDS.*;
public int

delete_participant
(DomainParticipant a_participant) ;

Description
This operation deletes a DomainParticipant.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

in DomainParticipant a_participant - areference to the
DomainParticipant, whichisto be deleted.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_RESOURCES Of RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a bomainParticipant. A DomainParticipant cannot
be deleted when it has any attached Ent ity objects. When the operation is called
On abDomainParticipant With existing Entity objects, the operation returns
RETCODE_PRECONDITION_NOT_ MET.

Return Code

When the operation returns;

* RETCODE_OK - the DomainParticipant isdeeted
* RETCODE_ERROR - aninternal error has occurred.

* RETCODE,_BAD_PARAMETER - the parameter a_participant is not a valid
DomainParticipant reference.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT_ MET - the DomainParticipant contains one
Or more Entity objects.

get_default_participant_gos

&4 PRISMTECH

Scope

DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
get_default_participant_gos
(DomainParticipantQosHolder gos) ;

Description

This operation gets the default bomainParticipantQos of the
DomainParticipantFactory.

159
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

inout DomainParticipantQosHolder gos - areference to the destination
DomainParticipantQosHolder oObject in which the default
DomainParticipantQos for the DomainParticipantFactory iSwritten.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR
Or RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets the default bomainParticipantQos of the
DomainParticipantFactory (that isthe object with the gosPolicy settings)
which is used for newly created bomainParticipant objects, in case the constant
PARTICIPANT_ QOS_DEFAULT isused. The default DomainParticipantQos is
only used when the constant is supplied as parameter gos to specify the
DomainParticipantQos inthe create_participant operation. The
application must provide an object of the bomainParticipantQos classin which
the QosPolicy Settings can be stored and provide a reference to the object. The
operation writes the default gosPolicy settingsto the object referenced to by gos.
Any settings in the object are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_participant_gos, or, if the call was never
made, the default QosPolicy values as defined in Table 2, DCPS Holder Classes,
on page 12.

Return Code

When the operation returns:

* RETCODE_OK - the default bomainParticipant QosPolicy Settings of this
DomainParticipantFactory have successfully been copied into the specified
DomainParticipantQosHolder parameter.

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_instance

160
API Reference

Scope
DDS.DomainParticipantFactory
Synopsis
import DDS.*;

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

public static DomainParticipantFactory
get_instance
(void) ;
Description
This operation returns the bomainParticipantFactory singleton.

Parameters
<none>

Return Value

DomainParticipantFactory - return value is a reference to the
DomainParticipantFactory.

Detailed Description

This operation returnsthe DomainParticipantFactory singleton. The operation
isidempotent, that is, it can be called multiple times without side-effects and it
returns the same bomainParticipantFactory instance.

The operation is static and must be called upon its class
(DomainParticipantFactory.get_instance).

The pre-defined value TheParticipantFactory can also be used as an dias for
the singleton factory returned by the operation get_instance.

get_qgos

&4 PRISMTECH

Scope

DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
get_gos
(DomainParticipantFactoryQosHolder gos);

Description

This operation allows access to the existing set of QoS policies for a
DomainParticipantFactory.

Parameters

inout DomainParticipantFactoryQosHolder qos - areference to the
destination DomainparticipantFactoryQosHolder object in which the
QosPolicy settingswill be copied.

161
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR
Or RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DomainParticipantFactory on which this operation is used. This
DomainparticipantFactoryQos iSstored at the location pointed to by the gos
parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy vaues applied to this
DomainParticipantFactory has successfully been copied into the specified
DomainParticipantFactoryQosHolder parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

lookup_participant

162
API Reference

Scope
DDS.DomainParticipantFactory
Synopsis
import DDS.*;
public DomainParticipant

lookup_participant
(String domainId) ;

Description

This operation retrieves a previously created bomainParticipant belonging to
the specified domainId.

Parameters

in String domainId - theID of the bomain for which a joining
DomainParticipant should beretrieved. This should be aURI to thelocation
of the configuration file that identifies the configuration details of the Domain.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

DomainParticipant - Return valueis areference to the DomainParticipant
retrieved. When no such bomainParticipant isfound, thenull referenceis
returned.

Detailed Description

This operation retrieves a previously created bomainParticipant belonging to
the specified domain1d. If no such bomainParticipant exists, the operation will
return null.

The domainId used to search for a specific DomainParticipant must be
identical to the domainId that was used to create that specific
DomainParticipant: anull reference will not be resolved on thislevel. That
means that a DomainParticipant that was created using adomainId settonull
will not be found if you try to look it up using a hard-coded URI that has the same
contents as the environment variable 0Sp1L,_URT.

If multiple bomainParticipant entities belonging to the specified domainId
exigt, then the operation will return one of them. It is not specified which one.

set_default_participant_gos

&4 PRISMTECH

Scope

DDS.DomainParticipantFactory

Synopsis
import DDS.*;
int
set_default_participant_gos
(DomainParticipantQos gos) ;

Description

This operation sets the default bomainParticipantQos of the
DomainParticipantFactory.

Parameters

in DomainParticipantQos gos -an object of the DomainParticipantQos
class, which contains the new default bomainParticipantQos for the newly
created DomainParticipants.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR
Of RETCODE_OUT_OF_RESOURCES.

163
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation sets the default bomainParticipantQos of the
DomainParticipantFactory (that isthe object with the QosPolicy settings)
which is used for newly created bomainParticipant objects, in case the constant
PARTICIPANT_ QOS_DEFAULT isused. The default DomainParticipantQos is
only used when the constant is supplied as parameter gos to specify the
DomainParticipantQos inthe create_participant operation. The
DomainParticipantQos isaways self consistent, because its policies do not
depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY.

The values set by this operation are returned by
get_default_participant_gos.

Return Code

When the operation returns:

e RETCODE_OK - the new default DomainParticipantQos iS Set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

Set_qos

164
API Reference

Scope
DDS.DomainParticipantFactory
Synopsis
import DDS. *;
public int

set_gos
(DomainParticipantFactoryQos gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DomainParticipantFactory.

Parameters

in DomainParticipantFactoryQos gos - must contain the new set of
QosPolicy settingsfor the DomainParticipantFactory.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR
Or RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a
DomainParticipantFactory. The parameter gos must contain the object with
the QosPolicy Settings.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DomainParticipantFactoryQos iS Set.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DomainParticipantListener Interface

&4 PRISMTECH

Since abomainParticipant iSan Entity, it hasthe ability to have aListener
associated with it. In this case, the associated Listener should be of type
DomainParticipantListener. Thisinterface must be implemented by the
application. A user defined class must be provided by the application which must
extend from the DomainParticipantListener class. All
DomainParticipantListener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The bomainParticipantListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
aQosPolicy setting, etc. The bomainParticipantListener is related to
changesin communication status statusConditions.

The interface description of this classis asfollows:
public interface DomainParticipantListener

{

165
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

166
API Reference

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//

//
//
//
//

extends interface TopicListener

void
on_inconsistent_topic
(Topic the_topic,
InconsistentTopicStatus status);

extends interface PublisherListener

void
on_offered_deadline_missed
(DataWriter writer,
OfferedDeadlineMissedStatus status) ;
void
on_offered_incompatible_gos
(DataWriter writer,
OfferedIncompatibleQosStatus status) ;
void
on_liveliness_lost
(DataWriter writer,
LivelinessLostStatus status);
void
on_publication_matched
(DataWriter writer,
PublicationMatchedStatus status) ;
extends interface SubscriberListener

void
on_data_on_readers
(Subscriber subs) ;
void
on_requested_deadline_missed
(DataReader reader,
RequestedDeadlineMissedStatus status) ;
void
on_requested_incompatible_gos
(DataReader reader,
RequestedIncompatibleQosStatus status) ;
void
on_sample_rejected
(DataReader reader,
SampleRejectedStatus status) ;

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

// wvoid

// on_liveliness_changed

// (DataReader reader,

// LivelinessChangedStatus status);
// void

// on_data_available

// (DataReader reader) ;

// void

// on_subscription_matched

// (DataReader reader,

// SubscriptionMatchedStatus status) ;
// wvoid

// on_sample_lost

// (DataReader reader,

// SampleLostStatus status) ;

//

// implemented API operations

// <no operations>

//

}s
The following paragraphs list all bomainParticipantListener Operations.
Since these operations are all inherited, they are listed but not fully described
because they are not implemented in this class. The full description of these
operationsis given in the classes from which they are inherited.

on_data available (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_data_available
(DataReader reader) ;

on_data on_readers (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
SubscriberListener for further explanation.

Synopsis
import DDS.*;
void
on_data_on_readers

167

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

(Subscriber subs);

on_inconsistent_topic (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
TopicListener for further explanation.

Synopsis
import DDS.*;
void
on_inconsistent_topic
(Topic the_topic,
InconsistentTopicStatus status) ;

on_liveliness_changed (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_liveliness_changed
(DataReader reader,
LivelinessChangedStatus status) ;

on_liveliness lost (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
on_liveliness_lost
(DataWriter writer,
LivelinessLostStatus status);

on_offered_deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
on_offered_deadline_missed
(DataWriter writer,
OfferedDeadlineMissedStatus status) ;

168

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

on_offered_incompatible _qgos (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
on_offered_incompatible_gos
(DataWriter writer,
OfferedIncompatibleQosStatus status) ;

on_publication_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
on_publication_matched
(DataWriter writer,
PublicationMatchedStatus status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_requested deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_requested_deadline_missed
(DataReader reader,
RequestedDeadlineMissedStatus status) ;

on_requested_incompatible qos (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_requested_incompatible_gos
(DataReader reader,
RequestedIncompatibleQosStatus status);

169

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

on_sample lost (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_sample_lost
(DataReader reader,
SamplelLostStatusé& status) ;
Note: Thisoperation is not yet supported. It is scheduled for a future release.

on_sample_lost (inherited)

This operation is inherited and therefore not explained here. See the class
DataReaderListener for further explanation.

Synopsis

import DDS.*;

on_sample rejected (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_sample_rejected
(DataReader reader,
SampleRejectedStatus status);

on_subscription_match (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
on_subscription_matched
(DataReader reader,
SubscriptionMatchedStatus status);

Note: This operation is not yet supported, but is scheduled for a future release.

170

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

3.3 Topic-Definition Module

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
TopicDescription

DomainParticipant
DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
1
get_expression_parameters()
- N get_subscription_expression()
Topic set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() L
get_gos()
set_listener() <T<In;esrLace0>n>
set_qos() ypesupp
1 get_type_name()
register_type()
* 0.1 *
QosPolicy <<Interface>> StatusCondition * * WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) e = (from Infrastructure Module)

on_inconsistent_topic()
Figure 16 DCPS Topic-Definition Module's Class M odel
This module contains the following classes:

e TopicDescription (abstract)

e« Topic

e ContentFilteredTopic

e MultiTopic

* TopicListener (interface)
 Topic-Definition type specific classes

“Topic-Definition type specific classes’ contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>TypeSupport iSgenerated (based on IDL) by calling the pre-processor

171

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

<<Interface>> DataWriter DataReader
TypeSupport (from Publication Module) (from Subscription Module)

get_type_name()
register_type()

7

FooTypeSupport FooDataWriter FooDataReader
get_type_name() dispose() get_key_value()
register_type() dispose_w_timestamp() read()

get_key_value() read_instance()
register() read_next_instance()
register_w_timestamp() read_next_instance_w_condition()
unregister() read_next_sample()
unregister_w_timestamp() read_w_condition()
write() return_loan()
write_w_timestamp() take()

take_instance()

take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Foo

Figure 17 Pre-processor Generation of the Typed Classes for Data Type “ Foo”

For instance, for the fictional data type Foo (this also applies to other types);
“Topic-Definition type specific classes’ contains the following classes:

* TypeSupport (abstract)

¢ FooTypeSupport

Topic objects conceptually fit between publications and subscriptions. Publications
must be known in such away that subscriptions can refer to them unambiguously. A
Topic ismeant to fulfil that purpose: it associates a name (uniquein the Domain), a
datatype, and TopicQos related to the dataitself.

I nterface TopicDescription
Thisistheinterface for Topic, ContentFilteredTopic and MultiTopic.

The TopicDescription atribute type_name defines an unique data type that is
made available to the Data Distribution Service via the TypeSupport.
TopicDescription hasaso aname that allowsit to be retrieved locally.

The interface description is as follows:

public interface TopicDescription
{
//
// implemented API operations
//

public String

get_type_name
(void) ;

172

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

public String
get_name
(void) ;
public DomainParticipant
get_participant
(void) ;
Y

The following paragraphs describe the usage of all TopicDescription
operations.
get_name

Scope
DDS.TopicDescription
Synopsis
import DDS.*;
public String

get_name
(void) ;

Description
This operation returns the name used to create the Topicbescription.

Parameters
<none>

Return Value
String - return value is the name of the Topicbescription.

Detailed Description
This operation returns the name used to create the Topicbescription.

get_participant
Scope

DDS.TopicDescription

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;

173

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description

This operation returns the bomainParticipant associated with the
TopicDescription Or thenull reference.

Parameters
<none>

Return Value

DomainParticipant - areferenceto the bomainParticipant associated with
the Topicbhescription or thenull reference.

Detailed Description

This operation returns the bomainParticipant associated with the
TopicDescription. Note that there is exactly one bomainParticipant
associated with each TopicbDescription. When the Topicbescription was
already deleted (there is no associated DomainParticipant any more), thenull
referenceis returned.

get_type name

174
API Reference

Scope
DDS.TopicDescription
Synopsis
import DDS.*;
public String

get_type_name
(void) ;

Description
This operation returns the registered name of the data type associated with the

TopicDescription.

Parameters
<none>

Return Value
String - return value is the name of the data type of the Topicbescription.

Detailed Description

This operation returns the registered name of the data type associated with the
TopicDescription.

& PRISMTECH

3 DCPS Classes and Operations

I nterface Topic
Topic isthe most basic description of the data to be published and subscribed.

&4 PRISMTECH

3.3 Topic-DefinitionModule

A Topic isidentified by its name, which must be unigue in the whole bomain. In
addition (by virtue of extending Topicbhescription) it fully identifies the type of
data that can be communicated when publishing or subscribing to the Topic.

Topic isthe only TopicbDescription that can be used for publications and
therefore a specialized Datawriter isassociated to the Topic.

The interface description is as follows:

public interface Topic

{

/7
/7
/7
!/
//
/7
/7
/7
/7
!/
//
/7
/7
/7
/7
//
//
/7

/7
/7
//

/7
/7
/7
/7
//
//

extends interface Entity

public StatusCondition
get_statuscondition
(void) ;
public int
get_status_changes
(void) ;
public int
enable
(void) ;

extends interface TopicDescription

public String
get_type_name
(void) ;

public String
get_name
(void) ;

public DomainParticipant
get_participant
(void) ;

implemented API operations

public int
set_qgos
(TopicQos gos);
public int
get_gos
(TopicQosHolder gos) ;
public int

175
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

set_listener
(TopicListener a_listener,
int mask) ;
public TopicListener
get_listener
(void) ;
public int
get_inconsistent_topic_status
(InconsistentTopicStatusHolder status);
}i
The following paragraphs describe the usage of al Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. Thefull description of these operationsis given in the classes from which they
are inherited.

enable (inherited)

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
enable
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_inconsistent_topic_status
Scope

DDS.Topic

Synopsis
import DDS.*;
public int
get_inconsistent_topic_status
(InconsistentTopicStatusHolder status);

Description
This operation obtainsthe ITnconsistentTopicStatus of the Topic.

Parameters

inout InconsistentTopicStatusHolder status - the contents of the
InconsistentTopicStatus object of the Topic will be copied into the
InconsistentTopicStatusHolder Specified by status.

176

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the ITnconsistentTopicStatus Of the Topic. The
InconsistentTopicStatus can also be monitored using a TopicListener Of
by using the associated statusCondition.

Return Code

When the operation returns:

e RETCODE_OK - the current InconsistentTopicStatus oOf this Topic has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY DELETED - the Topic has aready been deleted.
* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
get_listener
Scope

DDS.Topic
Synopsis
import DDS.*;
public TopicListener

get_listener
(void) ;

Description
This operation allows accessto aTopicListener.

Parameters
<none>

Return Value

TopicListener - result is areference to the TopicListener attached to the
Topic.

177

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description

This operation allows accessto a TopicListener attached to the Topic. When no
TopicListener was attached to the Topic, thenull referenceis returned.

get_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
get_name
(void) ;

get_participant (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;

get_qos
Scope

DDS.Topic
Synopsis

import DDS.*;

public int

get_gos
(TopicQosHolder gos) ;

Description
This operation allows access to the existing set of QoS policiesfor aTopic.

Parameters

inout TopicQosHolder gos - areferenceto the destination TopicQosHolder
object in which the gosPolicy settingswill be copied.

178

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of aTopic onwhich
this operation is used. This TopicQos is stored at the location referenced by the
gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this Topic has
successfully been copied into the specified TopicQosHolder parameter.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY DELETED - the Topic has aready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

get_type _name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

179

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Synopsis
import DDS.*;
public String
get_type_name
(void) ;

set_listener

180
API Reference

Scope

DDS.Topic

Synopsis
import DDS.*;
public int
set_listener
(TopicListener a_listener,
int mask) ;

Description
This operation attaches a TopiclListener tothe Topic.

Parameters

in TopicListener a_listener - areferencetothe TopicListener instance,
which will be attached to the Topic.

in int mask - abit mask in which each bit enables the invocation of the
TopicListener for acertain status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation attaches a TopicListener to the Topic. Only one
TopicListener can be attached to each Topic. If aTopicListener wasaready
attached, the operation will replace it with the new one. When a_1listener isthe
null reference, it represents a listener that is treated as a NOOP! for all statuses
activated in the bitmask.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Communication Satus

For each communication status, the statusChangedFlag flag isinitialy set to
false. It becomes true whenever that plain communication status changes. For
each plain communication status activated in the mask, the associated
TopicListener operation isinvoked and the communication status is reset to
false, asthe listener implicitly accesses the status which is passed as a parameter
to that operation. The status is reset prior to calling the listener, so if the application
calsthe get_<status_name> frominside the listener it will seethe status already
reset. An exception to thisrule isthe nul1 listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the TopicListener:
* INCONSISTENT_TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaTUS can be used
to select all statuses applicable to the TopicListener.

Satus Propagation

In case acommunication status is not activated in themask of the TopicListener,
the DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe DomainParticipantListener Of the
containing bomainParticipant and a Topic specific behaviour when needed. In
case the pomainParticipantListener IS also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code

When the operation returns:

* RETCODE_OK - the TopicListener is attached

e RETCODE_ERROR - aninterna error has occurred

* RETCODE_ALREADY_DELETED - the Topic hasalready been deleted.

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_qos

&4 PRISMTECH

Scope

DDS.Topic

181
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

182
API Reference

Synopsis
import DDS.*;
public int
set_gos
(TopicQos gos) ;

Description

This operation replaces the existing set of QosPolicy settingsfor aTopic.

Parameters
in TopicQos gos - containsthe new set of QosPolicy settingsfor the Topic.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_IMMUTABLE_POLICY OF RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy Settingsfor a Topic. The
parameter gos contains the object with the QosPolicy settings which is checked
for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled Topic, which can only be set before the Topic
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY isreturned.
In other words, the application must provide the currently set gosPolicy Settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qgos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and aRETCODE_INCONSISTENT_POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

e RETCODE_OK - the new TopicQos is set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos is not a valid TopicQos. It
contains aQosPolicy Setting with aninvalid buration_t value.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the Topic hasalready been deleted
* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable

QosPolicy setting with a different value than set during enabling of the Topic.

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting

QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

I nterface ContentFilteredTopic

&4 PRISMTECH

ContentFilteredTopic isaspeciaization of Topicbhescription that alows
for content based subscriptions.

ContentFilteredTopic describes a more sophisticated subscription that

indicates the subscriber does not necessarily want to see all values of each
instance published under the Topic. Rather, it only wants to see the values whose

contents satisfy certain criteria. Therefore this interface must be used to request
content-based subscriptions.

The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.

The interface description is as follows:

public interface ContentFilteredTopic

{

//

// extends interface TopicDescription
//

// public String

// get_type_name

// (void) ;

// public String
// get_name
// (void) ;

// public DomainParticipant

// get_participant

// (void) ;

//

// implemented API operations
//

public String
get_filter_expression
183
APl Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

(void) ;

public int
get_expression_parameters
(StringSegHolder expression_parameters) ;

public int
set_expression_parameters
(StringSeq expression_parameters) ;

public Topic
get_related_topic
(void) ;

}s
The following paragraphs describe the usage of all contentFilteredTopic
operations.
get_expression_parameters
Scope

DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public int
get_expression_parameters
(StringSegHolder expression_parameters) ;

Description

This operation obtains the expression parameters associated with the
ContentFilteredTopic.

Parameters

inout StringSeqHolder expression_parameters - areferenceto the
destination stringSegHolder object in which the the parameters used in the
SQL expression will be copied.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

184

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Detailed Description

This operation obtains the expression parameters associated with the
ContentFilteredTopic. That is, the parameters specified on the last successful
call to set_expression parameters, Or if set_expression parameters
was never called, the parameters specified when the ContentFilteredTopic was
created.

The resulting reference holds a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the contentFilteredTopic.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of expression parameters applied to this
ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the ContentFilteredTopic has aready
been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_filter_expression

&4 PRISMTECH

Scope
DDS.ContentFilteredTopic
Synopsis
import DDS.*;
public String

get_filter_expression
(void) ;

Description

This operation returns the filter_expression associated with the
ContentFilteredTopic.

Parameters

<none>

185
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
String - result is ahandle to a string which holds the SQL filter expression.

Detailed Description

This operation returns the filter_expression associated with the
ContentFilteredTopic. That is, the expression specified when the
ContentFilteredTopic Was created.

The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
get_name
(void) ;

get_participant (inherited)

This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;

get_related_topic
Scope

DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public Topic
get_related_topic
(void) ;

Description

This operation returns the Topi c associated with the ContentFilteredTopic.

186
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Parameters
<none>

Return Value
Topic - result is areference to the base topic on which the filtering will be applied.

Detailed Description

This operation returns the Topic associated with the ContentFilteredTopic.
That is, the Topic specified when the contentFilteredTopic was created. This
Topic isthe base topic on which the filtering will be applied.

get_type name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
get_type_name
(void) ;

set_expression_parameters
Scope

DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public int
set_expression_parameters
(String[] expression_parameters) ;

Description

This operation changes the expression parameters associated with the
ContentFilteredTopic.

Parameters

in String[] expression_parameters - areferenceto a sequence of strings
with the parameters used in the SQL expression (i.e., the number of %n tokens
in the expression). The number of valuesin expression_parameters must
be equal or greater than the highest referenced %n token in the
subscription_expression.

187
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED Of
RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
ContentFilteredTopic. The parameter expression_parameters isahandle
to a sequence of strings with the parameters used in the SQL expression. The
number of valuesin expression_parameters must be equal or greater than the
highest referenced %n token inthe filter_expression (e.g.if $1 and 8 are
used as parameter inthe filter_expression, theexpression_parameters
should at least containn+1 = 9 values). Thisisthefilter expression specified when
the contentFilteredTopic Was created.

Return Code

When the operation returns:

* RETCODE_OK - the new expression parameters are set
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this ContentFilteredTopic Or one of the parameters is an
illegal parameter

* RETCODE_ALREADY DELETED - the ContentFilteredTopic has aready
been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

Interface MultiTopic

188
API Reference

MultiTopic isaspecialization of Topicbescription that allows subscriptions
to combine, filter and/or rearrange data coming from several Topics.

MultiTopic alows amore sophisticated subscription that can select and combine
data received from multiple Topics into a single data type (specified by the
inherited type_name). The data will then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL based expression
with parameters to adapt the filter clause.

The interface description is as follows:

public interface MultiTopic

{

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

/7
//
//
/7
/7
/7

/7
/7
/7

/7
/7
/7
!/
//
/7

Y

extends interface TopicDescription

public String
get_type_name
(void) ;

public String
get_name
(void) ;

public DomainParticipant
get_participant
(void) ;

implemented API operations

public String
get_subscription_expression
(void) ;

public int
get_expression_parameters
(StringSeqgHolder expression_parameters) ;

public int
set_expression_parameters
(String[] expression_parameters) ;

The following paragraphs describe the usage of all MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

Note: MmultiTopic operations have not been yet been implemented. Multitopic
functionality is scheduled for afuture release.

get_expression_parameters

&4 PRISMTECH

Scope

DDS.MultiTopic

Synopsis
import DDS.*;
public int

get_expression_parameters
(StringSegHolder expression_parameters) ;

189
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description
This operation obtains the expression parameters associated with the MmultiTopic.

Parameters

inout StringSegHolder expression_parameters - areference to the
destination stringSegHolder object in which the the parameters used in the
SQL expression will be copied.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the expression parameters associated with the MultiTopic.
That is, the parameters specified on the last successful call to
set_expression_parameters, Or if set_expression_parameters wWas
never called, the parameters specified when the Mu1tiTopic was created.

The resulting reference holds a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parametersin the result sequence will exactly match the number of %n tokensin the
filter expression associated with the MultiTopic.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of expression parameters applied to this
MultiTopic has successfully been copied into the specified
expression_parameters parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED-theMultiTopic hasaready been deleted.

e RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_name (inherited)

This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;

190

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

public String
get_name
(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.
get_participant (inherited)

This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_subscription_expression
Scope

DDS.MultiTopic

Synopsis
import DDS.*;
public String
get_subscription_expression
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.
Description

This operation returns the subscription expression associated with theMul tiTopic.

Parameters
<none>

Return Value
String - result is ahandle to a string which holds the SQL subscription expression.

Detailed Description
This operation returns the subscription expression associated with theMul tiTopic.
That is, the expression specified when the MultiTopic was created.

The subscription expression result is a string that specifies the criteriato select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It isan SQL expression where the SELECT

191
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

clause provides the fields to be kept, the FrRoM part provides the names of the
Topics that are searched for those fields, and the wHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN Operation must be the same.

get_type name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
get_type_name
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Set_expression_parameters
Scope

DDS.MultiTopic

Synopsis
import DDS.*;
public int
set_expression_parameters
(String[] expression_parameters) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description
This operation changes the expression parameters associated with the Mmul tiTopic.

Parameters

in String[] expression_parameters - the handle to a sequence of strings
with the parameters used in the SQL expression.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED Of
RETCODE_OUT_OF_RESOURCES.

192
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Detailed Description

This operation changes the expression parameters associated with theMultiTopic.
The parameter expression_parameters isahandleto a sequence of strings with
the parameters used in the SQL expression. The number of parameters in
expression_parameters must exactly match the number of %n tokensin the
subscription expression associated with the MultiTopic. Thisis the subscription
expression specified when the Mul tiTopic was created.

Return Code
When the operation returns:
* RETCODE,_OK - the new expression parameters are set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for thisMultiTopic or one of the parametersis an illegal parameter.

* RETCODE_ALREADY_DELETED - theMultiTopic hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

TopicListener interface

&4 PRISMTECH

Since aTopic isan Entity, it hasthe ability to have a1.i stener associated with
it. In this case, the associated 1.i stener should be of type TopicListener. This
interface must be implemented by the application. A user defined class must be
provided by the application which must extend to the TopicListener interface.
All TopicListener operations must be implemented in the user defined class, it
is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The TopicListener provides a generic mechanism (actually a callback function)
for the Data Distribution Service to notify the application of relevant asynchronous
status change events, such as an inconsistent Topic. The TopicListener is
related to changes in communication status.

The interface description is as follows:

public interface TopicListener

{
//
// abstract external operations

//
193
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

public void
on_inconsistent_topic
(Topic the_topic,
InconsistentTopicStatus status);

//

// implemented API operations
// <no operations>

//

}:
The next paragraph describes the usage of the TopicListener operation. This
abstract operation is fully described since it must be implemented by the
application.

on_inconsistent_topic (abstract)
Scope

DDS.TopicListener

Synopsis
import DDS.*;
public void
on_inconsistent_topic
(Topic the_topic,
InconsistentTopicStatus status) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the InconsistentTopicStatus changes.

Parameters

in Topic the_ topic - contain areference to the Topic on which the conflict
occurred (thisis an input to the application).

in InconsistentTopicStatus status - contain the
InconsistentTopicStatus object (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
InconsistentTopicStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the

194
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

relevant TopicListener IS installed and enabled for the
InconsistentTopicStatus. The InconsistentTopicStatus Will change
when another Topic exists with the same topic_name but different
characteristics.

The Data Distribution Service will call the TopicListener operation with a
parameter the_topic, which will contain areference to the Topic on which the
conflict occurred and a parameter status, which will contain the object of the class
InconsistentTopicStatus.

Topic-Definition type specific interfaces

This paragraph describes the generic TypesSupport interfaces and the derived
application type specific <type>TypeSupport classes which together implement
the application Topi c interface. For each application type, used as Topic datatype,
the pre-processor generates a <type>DataReader interface from an IDL type
description. The FooTypesupport interface that would be generated by the
pre-processor for a fictional type Foo describes the <type>TypeSupport
interfaces.

I nter face TypeSupport

&4 PRISMTECH

The Topic, MultiTopic Of ContentFilteredTopic iSbound to a data type
described by the type name argument. Prior to creating a Topic, MultiTopic Or
ContentFilteredTopic, the data type must have been registered with the Data
Distribution Service. This is done using the data type specific register_type
operation on a extended interface of the TypeSupport interface. A extended
interface is generated for each data type used by the application, by calling the
pre-processor.

The interface description is as follows:

public interface TypeSupport
{

//

// operations

//

// public int

// register_type

// (Domainparticipant domain,
// String type_name) ;
//

// public String
// get_type_name

// (void) ;

//

// implemented API operations
// <no operations>

195
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

//

}:
The next paragraph list the TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation is given in the FooTypeSupport class (for the data
type example Foo), which contains the data type specific implementation of this
operation.

get_type name

This operation is defined as a generic operation, which is implemented by the
<type>TypeSupport class. For further explanation see the description for the
fictional datatype Foo inherited from the TypeSupport class.

Synopsis
import DDS.*;
public String
get_type_name
(void) ;

register_type

This operation is defined as a generic operation, which is implemented by the
<type>TypeSupport class. For further explanation see the description for the
fictional datatype Foo inherited from the TypeSupport class.

Synopsis
import DDS.*;
public int
register_type
(Domainparticipant domain,
String type_name) ;

Class FooTypeSupport

196
API Reference

The pre-processor generates from IDL type descriptions the application
<type>TypeSupport classes. For each application datatype that isused as Topic
data type, atyped class <type>TypeSupport Which implements the
TypeSupport interface. In this paragraph, the class FooTypeSupport describes
the operations of these <type>TypeSupport interfaces as an example for the
fictional application type Foo (defined in the module SPACE).

The Topic, MultiTopic Of ContentFilteredTopic iSbound to a datatype
described by the type_name argument. Prior to creating a Topic, MultiTopic Or
ContentFilteredTopic, the datatype must have been registered with the Data

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Distribution Service. This is done using the data type specific register_type
operation on the <type>TypeSupport class for each data type. A classis
generated for each data type used by the application, by calling the pre-processor.

The interface description of this classis asfollows:

public class FooTypeSupport
{
//
// implemented API operations
//
public int
register_type
(DomainParticipant domain,
String type_name) ;
public String
get_type_name
(void) ;

}i
The next paragraph describes the usage of the FooTypeSupport operation.

get_type_name
Scope

SPACE.FooTypeSupport
Synopsis

import DDS.*;

public String

get_type_name
(void) ;

Description

This operation returns the default name of the data type associated with the
FooTypeSupport.

Parameters

<none>

Return Value
String - return value is the name of the datatype of the FooTypeSupport.

197

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description

This operation returns the default name of the data type associated with the
FooTypeSupport. The default name is derived from the type name as specified in
the IDL definition. It is composed of the scope names and the type name, each
separated by “: :”, in order of lower scope level to deeper scope level followed by
the type name.

register_type

198
API Reference

Scope

SPACE.FooTypeSupport
Synopsis

import DDS. *;

public int

register_type
(DomainParticipant domain,
String type_name) ;

Description
This operation registers a new data type nameto abomainParticipant.

Parameters

in Domainparticipant domain - areferenceto abomainParticipant
object to which the new datatypeis registered.

in String type_name - alocal aias of the new datatype to be registered.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_RESOURCES Of
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation registers a new data type name to a DomainParticipant. This
operation informs the Data Distribution Service, in order to allow it to manage the
new registered data type. This operation also informs the Data Distribution Service
about the key definition, which allows the Data Distribution Service to distinguish
different instances of the same datatype.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

&4 PRISMTECH

Precondition

A type_name cannot be registered with two different <type>TypeSupport
classes (this means of a different data type) with the same bomainParticipant.
When the operation is called on the same DomainParticipant with the same
type_name for a different <type>TypeSupport class, the operation returns
RETCODE_PRECONDITION_NOT_ MET. However, it is possible to register the same
<type>TypeSupport classes with the same bomainParticipant and the same
or different type_name multiple times. All registrations return RETCODE_OK, but
any subsequent registrations with the same type_name are ignored.

Return Code

When the operation returns:

* RETCODE_OK - the FooTypeSupport class is registered with the new data type
name to the DomainParticipant oOr the FooTypeSupport class was already
registered.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the domain parameter is anull reference or the
parameter type_name has zero length.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - thiS type name is already registered
with thisDomainParticipant for adifferent <type>TypeSupport class.

199
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

3.4 Publication Module

200
API Reference

<<create>>
’77777777777777777777‘\
v 1 |
DataWriter
- QosPolicy <<implicit>> Publisher
assert_liveliness() > (from Infrastructure Module)
<<abstract>> dispose() * qos
<<abstract>> dispose_w_timestamp() * begin_coherent_changes()
<<abstract>> get_key_value() <<implicit>> . * copy_from_topic_gos()
get_listener() create_datawriter()
get_liveliness_lost_status() delete_contained_entities()
get_matched_subscription_data() default_datawriter_qos delete_datawriter()
get_matched_subscriptions() end_coherent_changes()
get_offered_deadline_missed_status() get_default_datawriter_qos()
get_offered_incompatible_qos_status() Topic get_listep;r()
get_publication_match_status() from Topic-Definition Module) get_participant()
get_publisher() get_qos()
get_qos() * 1 lookup_datawriter()
get_topic() resume_publications()
<<abstract>> register() 1 |set_default_datawriter_gos()
<<abstract>> register_w_timestamp() 0.1 T set_listener()
set_listener() - <<implicit>> | set_qos()
set_qos() <<implicit>> suspend_publications()
<<abstract>> unregister() \—% StatusCondition
<<abstract>> unregister_w._timestamp() 1 (from Infrastructure Module)
<<abstract>> write() 0.1 Vil
<<abstract>> write_w_timestamp() /
<<create>> /
<<implicit>>
<<implicit>> WaitSet DomainParticipant
(from Infrastructure Module) (from Domain Module)
0..1
<<Interface>> 1

DataWriterListener
<<Interface>>

PublisherListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

Figure 18 DCPS Publication M odul€e's Class M odel
This module contains the following classes:
e« Publisher
Publication type specific classes

* PublisherListener (interface)
* DataWriterListener (interface)

The paragraph “Publication type specific classes’” contains the interface and the
generated data type specific classes. For each data type, a data type specific class
<type>DataWriter isgenerated (based on IDL) by calling the pre-processor.

For instance, for the fictional data type Foo (this also applies to other types);
“Publication type specific classes’ contains the following classes:

* DataWriter (abstract)

e FooDataWriter

A publisher isan object responsible for data distribution. It may publish data of
different data types. A DataWriter acts as atyped accessor to a Publisher. The
DataWriter isthe object the application must use to communicate the existence

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

and value of data-objects of a given data type to a publisher. When data-object
values have been communicated to the publisher through the appropriate
DataWriter, itisthe Publisher’s responsibility to perform the distribution. The
Publisher will do this according to its own PublisherQos, and the
DataWriterQos attached to the corresponding patawriter. A publicationis
defined by the association of a batawriter to a Publisher. This association
expresses the intent of the application to publish the data described by the
DataWriter inthe context provided by the publisher.

I nterface Publisher

&4 PRISMTECH

The publisher actson behalf of one or more patawriter objects that belong to
it. When it is informed of a change to the data associated with one of its
DataWriter oObjects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the publisherQos
and the patawriterQos

The interface description of this classis asfollows:

public interface Publisher

{

//

// extends interface Entity
//

// public StatusCondition
// get_statuscondition
// (void) ;

// public int

// get_status_changes

// (void) ;

// public int

// enable

// (void) ;

//

// implemented API operations
//

public DataWriter
create_datawriter
(Topic a_topic,
DataWriterQos gos,
DataWriterListener a_listener,
int mask) ;

public int
delete_datawriter
(DataWriter a_datawriter) ;

public DataWriter
lookup_datawriter

201
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

(String topic_name) ;
public int
delete_contained_entities
(void) ;

public int
set_gos
(PublisherQos gos) ;
public int
get_gos
(PublisherQosHolder gos) ;
public int
set_listener
(PublisherListener a_listener,
int mask) ;
public PublisherListener
get_listener
(void) ;
public int
suspend_publications
(void) ;

public int
resume_publications
(void) ;

public int
begin_coherent_changes
(void) ;

public int
end_coherent_changes
(void) ;

public int
wait_for_acknowledgments
(Duration_t max_wait);

public DomainParticipant
get_participant
(void) ;

public int
set_default_datawriter_gos
(DataWriterQos gos) ;

public int
get_default_datawriter_gos
(DataWriterQosHolder gos);

202

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

public int
copy_from_topic_gos
(DataWriterQosHolder a_datawriter_gos,
TopicQos a_topic_gos) ;
Y

The following paragraphs describe the usage of all Ppublisher operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
interfaces from which they are inherited.

begin_coherent_changes

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis
import DDS.*;
public int
begin_coherent_changes
(void) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using batawWriter objects attached to this publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_UNSUPPORTED.

Detailed Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using DatawWriter Objects attached to this publisher. The
‘coherent set’ will be completed by amatching call t0 end_coherent_changes.

A ‘coherent set’ is aset of modifications that must be propagated in such away that
they areinterpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.

203
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the publisher or one of its connected
Subscribers may change, alate-joining DataReader may appear on the
network, or a communication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave asiif it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with the last
call to end_coherent_changes.

The support for ‘ coherent changes’ enables a publishing application to change the
value of several data-instances that could belong to the same or different topics and
have those changes be seen ‘atomically’ by the readers. Thisisuseful in cases where
the values are inter-related (for example, if there are two data-instances representing
the ‘atitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

copy_from_topic_qos

204
API Reference

Scope
DDS. Publisher
Synopsis
import DDS.*;
public int
copy_from_topic_gos

(DataWriterQosHolder a_datawriter_gos,
TopicQos a_topic_gos) ;

Description

This operation will copy policiesin a_topic_gos to the corresponding policiesin
a_datawriter_gos.

Parameters

inout DataWriterQosHolder a_datawriter_gos - the destination
DataWriterQos Object to which the QosPolicy settings should be copied.

in TopicQos a_topic_gos - the source TopicQos object, which should be
copied.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation will copy the QosPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datawriter_gos (replacing the values
ina_datawriter_gos, if present). This will only apply to the common
QosPolicy Settingsin each <Entity>Qos.

Thisis a“convenience” operation, useful in combination with the operations
get_default_datawriter_gos and Topic.get_gos. The operation
copy_from_topic_gos can be used to merge the batawriter default
QosPolicy settings with the corresponding ones on the TopicQos. The resulting
DataWriterQos can then be used to create a new bDatawWriter, or set its
DataWriterQos.

This operation does not check the resulting a_datawriter_gos for consistency.
Thisisbecause the “merged” a_datawriter_gos may not be the final one, asthe
application can still modify some gosPolicy settings prior to applying the
DataWriterQos tothe DatawWriter.

Return Code

When the operation returns:

* RETCODE_OK - the QosPolicy Settings are copied from the Topic to the
DataWriter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY DELETED - the Publisher hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

create datawriter

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis
import DDS.*;
public DataWriter
create_datawriter
(Topic a_topic,
DataWriterQos gos,
DataWriterListener a_listener,

205
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

206
API Reference

int mask) ;

Description

This operation creates a bataWriter with the desired batawriterQos, for the
desired Topic and attaches the optionally specified DatawriterListener toit.

Parameters

in Topic a_topic - areference to the topic for which the batawriter is
created.

in DataWriterQos gos -theDatawWriterQos for the new bDatawriter. In
case these settings are not self consistent, no batawriter iscreated.

in DataWriterListener a_Jlistener - a reference to the
DataWriterListener instance which will be attached to the new
DataWriter It is permitted to use null asthe value of the listener: this
behaves asapatawriterListener Whose operations perform no action.

in int mask - abit-mask in which each bit enables the invocation of the
DataWriterListener for acertain status.

Return Value

Datalriter - Return value is a reference to the newly created patawriter. In
case of an error, thenull referenceis returned.

Detailed Description

This operation creates a bataWriter with the desired batawriterQos, for the
desired Topic and attaches the optionally specified DatawriterListener tO it.
The returned Datawriter is attached (and belongs) to the publisher on which
this operation is being called. To delete the patawriter the operation
delete_datawriter Or delete_contained_entities must be used.

Application Data Type

The patawriter returned by this operation is an object of a derived class, specific
to the data type associated with the Topic. For each application-defined data type
<type> there is a class <type>DataWriter generated by calling the
pre-processor. This data type specific class extends batawriter and contains the
operations to write data of datatype <type>.

QosPoalicy
The possible application pattern to construct the batawriterQos for the
DataWriter iSto:

* Retrieve the QosPolicy settings on the associated Topic by means of the
get_gos operation on the Topic

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

e Retrieve the default DatawriterQos by means of the
get_default_datawriter_gos operation onthe publisher

e Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

» Usetheresulting DatawriterQos to construct the DatawWriter

In case the specified gosPolicy Settings are not consistent, N0 batawWriter is
created and thenul1l referenceis returned.

Default QoS

The constant DATAWRTTER_QOS_DEFAULT Can be used as parameter gos to create
aDataWriter with the default DataWwriterQos as set in the Publisher. The
effect of using DATAWRITER_QOS_DEFAULT iS the same as calling the operation
get_default_datawriter_gos and using the resulting batawriterQos to
createthe Datavriter.

The special DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DataWriter with a combination of the default patawriterQos and the
TopicQos. Theeffect of using DATAWRITER_QOS_USE_TOPIC_QOS iSthe same as
calling the operation get_default_datawriter_gos and retrieving the
TopicQos (by means of the operation Topic.get_gos) and then combining these
two QosPolicy Settings using the operation copy_from_topic_gos, whereby
any common policy that is set on the TopicQos “overrides’ the corresponding
policy on the default batawriterQos. The resulting batawriterQos isthen
applied to create the Datawriter.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DatawriterListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
aready reset.

The following statuses are applicable to the batawriterListener:
« OFFERED_DEADLINE_MISSED_STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« LIVELINESS_LOST_STATUS

+ PUBLICATION_MATCHED_STATUS.

207
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant aNY_sTATUS can be used
to select all statuses applicable to the batawriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DataWriterListener, the PublisherListener Of the containing publisher
isinvoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour in the PublisherListener of the containing
pPublisher and aDataWriter Specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
well, the communication status will be propagated to the
DomainParticipantListener Of the containing DomainParticipant. In case
the DomainParticipantListener IS aso not attached or the communication
status is not activated in itsmask, the application is not notified of the change.

delete_contained_entities

208
API Reference

Scope
DDS.Publisher
Synopsis
import DDS.*;
public int

delete_contained_entities
(void) ;

Description

This operation deletes all the Datawriter objects that were created by means of
one of the create_datawriter operationson the publisher.

Parameters

<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation deletes all the batawriter objects that were created by means of
one of the create_datawriter operations on the publisher. In other words, it
deletes all contained Datawriter objects.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

A

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* RETCODE,_OK - the contained Ent 1ty objects are deleted and the application may
delete the publisher

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - one or more of the contained entities are
in a state where they cannot be deleted.

delete datawriter

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis
import DDS.*;
public int
delete_datawriter
(DataWriter a_datawriter);

Description
This operation deletes abatawriter that belongsto the publisher.

Parameters

in DataWriter a_datawriter - areferencetothebatawriter, whichisto be
deleted.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES OF RETCODE_PRECONDITION_NOT_MET.

209
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation deletes a batawriter that belongs to the publisher. When the
operation is called on adifferent Publisher, as used when the batawriter was
created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET. The deletion of the Datawriter will
automatically unregister all instances. Depending on the settings of
WriterDatalLifecycleQosPolicy, the deletion of the batawriter may aso
dispose of al instances.

Return Code

When the operation returns:

* RETCODE_OK - the DatawWriter isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_datawriter is not a valid
DataWriter reference.

* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT _MET - the operation is caled on a different
publisher, asused when the Datawriter was created.

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS. *;
public int
enable
(void) ;

end_coherent_changes

210
API Reference

Scope

DDS.Publisher

Synopsis
import DDS. *;
public int
end_coherent_changes
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
begin_coherent_changes.

Parameters

<none>

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
Publisher_begin_coherent_changes. If there is no matching call to
Publisher_begin_coherent_changes, the operation will return the error
PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

get_default_datawriter _qos

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis
import DDS.*;
public int
get_default_datawriter_gos
(DataWriterQosHolder gos) ;

Description
This operation gets the default DatawriterQos of the Publisher.

Parameters

inout DataWriterQosHolder gos - areference to the destination
DataWriterQosHolder object in which the default batawriterQos for the
Publisher iswritten.

211
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets the default DatawriterQos Of the Publisher (that isthe
object with the gosPo1licy settings) which is used for newly created patawriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos iSonly used when the constant is supplied as parameter gos to
specify the batawriterQos inthe create_datawriter operation. The
application must provide the DatawriterQos object in which the QosPolicy
settings can be stored and pass the qgos reference to the operation. The operation
writes the default DatawriterQos to the object referenced to by gos. Any settings
in the object are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to set_default_datawriter gos, of, if the call was never made,
the default values as specified for each QosPolicy Setting.

Return Code

When the operation returns:

* RETCODE_OK - the default Datawriter QosPolicy Settings of this Publisher
have successfully been copied into the specified DatawWriterQosHolder
parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

get_listener

212
API Reference

Scope
DDS.Publisher
Synopsis
import DDS. *;
public PublisherListener

get_listener
(void) ;

Description
This operation allows accessto a PublisherListener.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Parameters
<none>

Return Value

publisherListener - result isareferenceto the PublisherListener atached
tothe Publisher.

Detailed Description

This operation allows access to a PublisherListener attached to the
Publisher. When no publisherListener was attached to the Publisher, the
null referenceisreturned.

get_participant

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;

Description

This operation returns the DomainParticipant associated with the publisher
or thenull reference.

Parameters
<none>

Return Value

DomainParticipant - areferenceto the bomainParticipant associated with
the Publisher or thenull reference.

Detailed Description

This operation returns the DomainParticipant associated with the publisher.
Note that there is exactly one bomainParticipant associated with each
Publisher. When the Publisher was already deleted (there is no associated
DomainParticipant any more), thenull referenceisreturned.

213
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

get_qos

Scope
DDS.Publisher
Synopsis
import DDS.*;
public int

get_qgos
(PublisherQosHolder gos);

Description
This operation allows access to the existing set of QoS policiesfor arPublisher.

Parameters

inout PublisherQosHolder gos - the destination publisherQosHolder
object in which the gosPolicy settingswill be copied.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a Publisher oOn

which this operation isused. This PublisherQos isstored in the gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this Publisher
has successfully been copied into the specified PublisherQosHolder
parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Publisher hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

get_status _changes (inherited)

214
API Reference

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

lookup_datawriter
Scope

DDS.Publisher
Synopsis

import DDS.*;

public DataWriter

lookup_datawriter
(String topic_name) ;

Description

This operation returns a previously created patawriter belonging to the

Publisher Which isattached to a Topic with the matching topic_name.

Parameters

in String topic_name - the name of the Topic, which is attached to the
DataWriter tolook for.

Return Value

Datawriter - Return value is areference to the batawriter found. When no
such DataWriter isfound, thenull referenceis returned.

215

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation returns a previously created patawriter belonging to the
Publisher which is attached to a Topic with the matching topic_name. When
multiple patawriter objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

resume_publications

216
API Reference

Scope
DDS.Publisher
Synopsis
import DDS. *;
public int

resume_publications
(void) ;

Description
This operation resumes a previously suspended publication.

Parameters
<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_NOT_ENABLED Of RETCODE_ PRECONDITION_NOT MET.

Detailed Description

If the Publisher is suspended, this operation will resume the publication of all
DataWriter Objects contained by this publisher. All data held in the history
buffer of the patawriter'sis actively published to the consumers. When the
operation returns all patawriter's have resumed the publication of suspended
updates.

Return Code

When the operation returns:

* RETCODE_OK - the Publisher has been suspended.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the Ppublisher isnot enabled.
* RETCODE_PRECONDITION_NOT_MET - the Publisher isnot suspended.

set_default_datawriter _qos

&4 PRISMTECH

Scope
DDS.Publisher
Synopsis
import DDS.*;
public int

set_default_datawriter_gos
(DataWriterQos gos) ;

Description
This operation sets the default DatawriterQos of the Publisher.

Parameters

in DataWriterQos gos - aninstance of the DatawWriterQos class, which
contains the new default patawriterQos for the newly created

DataWriters.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation sets the default batawriterQos of the Publisher (that isthe
compound class with the gosPolicy settings) which is used for newly created
DataWriter Objects, in case the constant DATAWRITER_QOS_DEFAULT iS used.
The default patawriterQos isonly used when the constant is supplied as
parameter gos to specify the DatawriterQos inthe create_datawriter
operation. The set_default_datawriter_gos operation checks if the
DataWriterQos IS self consistent. If it is not, the operation has no effect and
returns RETCODE_ INCONSTISTENT_POLICY.

The values set by this operation are returned by get_default_datawriter_gos.

217
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Code

When the operation returns:

* RETCODE_OK - the new default DatawriterQos is set
* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid batawriterQos.
It contains aQosPolicy setting with aninvalid buration_t value.

* RETCODE_ALREADY_DELETED - the Publisher hasalready been deleted

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

set_listener
Scope

DDS.Publisher

Synopsis
import DDS.*;
public int
set_listener
(PublisherListener a_listener,
int mask) ;

Description
This operation attaches a PublisherListener tothe Publisher.

Parameters

in PublisherListener a_ listener - a reference to the
PublisherListener instance, which will be attached to the Publisher.

in int mask - abit mask in which each bit enables the invocation of the
PublisherListener for acertain status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

218

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Detailed Description

This operation attaches a PublisherListener to the Publisher. Only one
PublisherListener can be attached to each pPublisher. If a
PublisherListener Was already attached, the operation will replace it with the
new one. When a_listener isthenul1 reference, it represents a listener that is
treated as aNOOP! for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
already reset. An exception to thisruleisthenul1 listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the PublisherListener:

« OFFERED_DEADLINE_MISSED_ STATUS (propagated)
« OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
« LIVELINESS_LOST_STATUS (propagated)
« PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicableto the PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener Of acontained Datawriter, the DataWwriterListener
on that contained patawriter iSinvoked instead of the PublisherListener.
This means, that a status change on a contained patawriter only invokes the
PublisherListener if the contained bDatawriter itself does not handle the
trigger event generated by the status change.

In case a status is not activated in the mask of the PublisherListener, the
DomainParticipantListener Of the containing bomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour inthe DomainParticipantListener Of the

1. Short for No-Operation, an instruction that peforms nothing at all.

219
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

containing bomainParticipant and a Publisher specific behaviour when
needed. In case the DomainParticipantListener IS aso not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

Return Code

* RETCODE_OK - the publisherListener is attached.

* RETCODE_FERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the Publisher hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

set_qos

220
API Reference

Scope
DDS. Publisher
Synopsis
import DDS.*;
public int

set_gos
(PublisherQos gos) ;

Description

This operation replaces the existing set of QosPolicy settingsfor aPublisher.

Parameters
in PublisherQos gos - the new set of QosPolicy settingsfor the Publisher.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a Publisher.
The parameter gos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change aQosPolicy
setting for an enabled publisher, which can only be set before the publisher is
enabled, the operation will fail and aRETCODE_TMMUTABLE_POLTICY isreturned. In
other words, the application must provide the currently set QosPolicy Settingsin

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

case of the immutable gosPolicy settings. Only the mutable QosPolicy Settings
can be changed. When gos contains conflicting gosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:

RETCODE_OK - thenew PublisherQos iS Set.
RETCODE_ERROR - an internal error has occurred.
RETCODE_BAD_PARAMETER - the parameter gos isnot avalid PublisherQos.

RETCODE_UNSUPPORTED - one or more of the selected QosPolicy vaues are
currently not supported by OpenSplice.

RETCODE_ALREADY DELETED - the Publisher has already been deleted.
RETCODE,_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Publisher.

suspend_publications

&4 PRISMTECH

Scope

DDS.Publisher

Synopsis

import DDS.*;
public int
suspend_publications

(void) ;
Description
This operation will suspend the dissemination of the publications by all contained
DataWriter Objects.
Parameters

<none>

221
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_NOT_ENABLED.

Detailed Description

This operation suspends the publication of all batawriter objects contained by
this Publisher. The data written or disposed by a batawriter isstored in the
history buffer of the batawriter and therefore, depending on its QoS settings, the
following operations may block (see the operation descriptions for more
information):

* DataWriter.dispose

e DataWriter.dispose_w_timestamp

* DataWriter.write

* DataWriter.write_w_timestamp

* DataWriter.writedispose

e DataWriter.writedispose_w_timestamp

* DataWriter.unregister_instance

* DataWriter.unregister_instance_w_timestamp

Subsequent calls to this operation have no effect. When the publisher is deleted
before resume_publication iscaled, al suspended updates are discarded.
Return Code

When the operation returns:

* RETCODE_OK - the Publisher has been suspended

* RETCODE_ERROR - an internal error has occurred

* RETCODE_ALREADY_DELETED - the Publisher has aready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e RETCODE_NOT ENABLED - the Publisher isnot enabled.

wait_for_acknowledgments

222
API Reference

Scope

DDS.Publisher

Synopsis

import DDS.*;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

public int
wait_for_acknowledgments
(Duration_t max_wait) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

Description

This operation blocks the calling thread until either all data written by the contained
DataWriters IS acknowledged by the matched pataReaders, or until the
duration specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in Duration_t max_wait - the maximum duration to block for the
wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
int - Possiblereturn codes of the operation are: RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if one or more of the contained
DataWriters has itS ReliabilityQosPolicyKind set to
RELIABLE_RELIABILITY_QO0S. Otherwise the operation will return immediately
with RETCODE_OK.

It blocks the calling thread until either all data written by the contained reliable
DataWriters iSacknowledged by all matched DataRrReader entities that have
their ReliabilityQosPolicyKind Set t0 RELIABLE_RELIABILITY_QOS, Of
else the duration specified by themax_wait parameter elapses, whichever happens
first. A return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

223
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Publication Type Specific Classes

This paragraph describes the generic batawriter classand the derived application
type specific <type>DataWriter classes which together implement the
application publication interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataWriter classfrom an IDL type
description. The FooDatawWriter class that would be generated by the
pre-processor for afictional type Foo describesthe <type>Datawriter classes.

I nterface DataWr iter

224
API Reference

DataWriter allows the application to set the value of the sample to be published
under agiven Topic.

A DataWriter isattached to exactly one publisher which acts asafactory for it.

A patawriter isbound to exactly one Topic and therefore to exactly one data
type. The Topic must exist prior to the batawriter's creation.

DataWriter isaninterface. It must be extended for each particular application data
type. For afictional application data type Foo (defined in the module spaCE) the
extended interface would be SPACE . FooDatawriter.

The interface description is as follows:

public interface DataWriter

{

//

// extends interface Entity
//

// public StatusCondition
// get_statuscondition
// (void) ;

// public int

// get_status_changes
// (void) ;

// public int

// enable

// (void) ;

//

// abstract operations (implemented in the data type specific
// DataWriter)

//

// public long

// register_instance

// (<data> instance_data) ;

//

// public long

// register_instance_w_timestamp
// (<data> instance_data,

// Time_t source_timestamp) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
!/
/7
/7
/7
/7
//
//
/7
/7
/7
/7
/7

public int
unregister_instance
(<data> instance_data,
long handle) ;

public int
unregister_instance_w_timestamp
(<data> instance_data,
long handle,
Time_t source_timestamp) ;

public int
write
(<data> instance_data,
long handle) ;

public int
write_w_timestamp
(<data> instance_data,
long handle,
Time_t source_timestamp) ;

public int
dispose
(<data> instance_data,
long instance_handle) ;

public int
dispose_w_timestamp
(<data> instance_data,
long instance_handle,
Time_t source_timestamp) ;

public int
writedispose
(<data> instance_data,
long instance_handle) ;

public int
writedispose_w_timestamp
(<data> instance_data,
long instance_handle,
Time_t source_timestamp) ;

public int
get_key_value
(<data>Holder key_holder,
long handle) ;

225
API Reference

3 DCPS Classes and Operations

226
API Reference

//
//
//
//
//
//

public long
lookup_instance
(<data> instance_data) ;

implemented API operations

public int
set_gos
(DataWriterQos& gos) ;

public int
get_gos
(DataWriterQosHolder gos);

public int
set_listener
(DataWriterListener a_listener,
int mask) ;

public DataWriterListener
get_listener
(void) ;

public Topic
get_topic
(void) ;

public Publisher
get_publisher
(void) ;

public int
wait_for_acknowledgments
(Duration_t max_wait) ;

public int
get_liveliness_lost_status
(LivelinessLostStatusHolder status) ;

public int
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatusHolder status);

public int
get_offered_incompatible_gos_status
(PublicationMatchedStatusHolder status);

public int
get_publication_matched_status
(PublicationMatchedStatusHolder status);

3.4 PublicationModule

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

public int
assert_liveliness
(void) ;

public int
get_matched_subscriptions
(InstanceHandleSegHolder subscription_handles) ;

public int
get_matched_subscription_data
(SubscriptionBuiltinTopicDataHolder subscription_data,
long subscription_handle) ;
};

The following paragraphs describe the usage of all patawriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data
type specific implementation of these operations.

assert_liveliness
Scope

DDS.DataWriter
Synopsis

import DDS.*;

public int

assert_liveliness
(void) ;

Description
This operation asserts the liveliness for the batawriter.

Parameters
<none>

Return Value

int - Possiblereturn codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_NOT_ENABLED.

227

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation will manually assert the liveliness for the Datawriter. This way,
the Data Distribution Service is informed that the corresponding batawriter is
still aive. This operation is used in combination with the LivelinessQosPolicy
set to MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS, See Section 3.1.3.10,
LivelinessQosPalicy, on page 58 for moreinformation on LivelinessQosPolicy.

Writing data viathe write operation of abDatawriter will assert the liveliness on
the Datawriter itself and its containing DomainParticipant. Therefore,
assert_liveliness isonly needed when not writing regularly.

The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy. Asserting the livelinessfor thispatawriter can aso be
achieved by asserting the livelinessto the bomainParticipant.

Return Code

When the operation returns:

* RETCODE_OK - theliveliness of this Datawriter has successfully been asserted.
* RETCODE_FERROR - an internal error has occurred.

* RETCODE_ALREADY_DELETED - the Datawriter has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ ENABLED - the Datawriter iSnot enabled.

dispose (abstract)

228
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public int
dispose
(<data> instance_data,
long instance_handle) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

dispose_ w_timestamp (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public int
dispose_w_timestamp
(<data> instance_data,
long instance_handle,
Time_t source_timestamp) ;

enable (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
enable
(void) ;

get_key value (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawriter class.

Synopsis
import DDS.*;
public int
get_key value
(<data>Holder key_ holder,
long handle) ;

get_listener
Scope

DDS.DataWriter

229
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
import DDS.*;
public DataWriterListener
get_listener
(void) ;

Description
This operation allows accessto aDatawWriterListener.

Parameters
<none>

Return Value

DataWriterListener - result is areference to the DataWriterListener
attached tothe batawriter.

Detailed Description

This operation allows access to abatawWriterListener attached to the
DataWriter. When no DatawWriterListener was attached to the Datawriter,
thenull referenceis returned.

get_liveliness lost_status

230
API Reference

Scope
DDS.DataWriter
Synopsis
import DDS.*;
public int

get_liveliness_lost_status
(LivelinessLostStatusHolder status);

Description
This operation obtainsarLivelinessLostStatus object of theDatawriter.

Parameters

inout LivelinessLostStatusHolder status - the contents of the
LivelinessLostStatus object of the batawriter will be copied into the
LivelinessLostStatusHolder specified by status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation obtainsthe LivelinessLostStatus oObject of the batawriter.
This object contains the information whether the liveliness (that the Datawriter
has committed through its LivelinessQosPolicy) was respected.

This means, that the status represents whether the Datawriter failed to actively
signal its liveliness within the offered liveliness period. If the liveliness is lost, the
DataReader Objectswill consider the Datawriter asno longer “alive”.

The LivelinessLostStatus can also be monitored using a
DataWriterListener Or by using the associated StatusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current LivelinessLostStatus Of thisS Datawriter has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_matched_subscription_data
Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_matched_subscription_data
(SubscriptionBuiltinTopicDataHolder subscription_data,
long subscription_handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_matched_subscriptions
Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_matched_subscriptions
(InstanceHandleSegHolder subscription_handles) ;

231
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_offered_deadline_missed_status

232
API Reference

Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatusHolder status);

Description
This operation obtains the 0f feredDeadlineMissedStatus object of the
DataWriter.
Parameters

inout OfferedDeadlineMissedStatusHolder status - the contents of the
Of feredDeadlineMissedStatus object of the Datawriter will be copied
into the 0f feredbeadlineMissedStatusHolder Specified by status.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the 0f feredbeadlineMissedStatus oObject of the
DataWriter. This object contains the information whether the deadline (that the
DataWriter has committed through itS DeadlineQosPolicy) was respected for
each instance.

The offeredDeadlineMissedStatus can also be monitored using a
DataWriterListener Of by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current LivelinessLostStatus Of this Datawriter has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Datawriter hasaready been deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_offered_incompatible _qos status

&4 PRISMTECH

Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_offered_incompatible_gos_status
(OfferedIncompatibleQosStatusHolder status) ;

Description
This operation obtainsthe of feredIncompatibleQosStatus oObject.

Parameters

inout OfferedIncompatibleQosStatusHolder status - the contents of
the Of feredIncompatibleQosStatus object of the Datawriter will be
copied into the 0f feredIncompatibleQosStatusHolder specified by
status.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the of feredIncompatibleQosStatus object of the
DataWriter. Thisobject contains the information whether a gosPolicy Setting
was incompatible with the requested gosPo1licy Setting.

This means, that the status represents whether a bataReader object has been
discovered by the patawriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the batawriter.

The offeredIncompatibleQosStatus can also be monitored using a
DataWriterListener Or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current OfferedIncompatibleQosStatus Of this
DataWriter hassuccessfully been copied into the specified status parameter.

233
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Datawriter has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

get_publication_matched_status
Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_publication_match_status
(PublicationMatchedStatusHolder status);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_publisher
Scope

DDS.DataWriter
Synopsis

import DDS.*;

public Publisher

get_publisher
(void) ;

Description
This operation returns the publisher to which the Datawriter belongs.

Parameters
<none>

Return Value

publisher - Return value is a reference to the publisher object to which the
DataWriter belongs.

Detailed Description

This operation returns the publisher to which the Datawriter belongs, thus the
Publisher that has created the batawriter. If the Datawriter is aready
deleted, thenu11 referenceis returned.

234
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

get_qgos

Scope

DDS.DataWriter

Synopsis
import DDS.*;
public int
get_gos
(DataWriterQosHolder gos) ;

Description

This operation allows access to the existing list of gosPolicy settings for a

DataWriter.

Parameters

inout DataWriterQosHolder gos -the destination PublisherQosHolder
object in which the gosPolicy settingswill be copied.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing list of gosPolicy settings of a
DataWriter onwhichthisoperationisused. ThispatawriterQos isstored at the
location referenced by the gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QosPolicy valuesappliedto thispatawriter
has successfully been copied into the specified DatawriterQosHolder
parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Datawriter hasaready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

235
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

get_topic
Scope

DDS.DataWriter
Synopsis

import DDS. *;

public Topic

get_topic
(void) ;

Description
This operation returns the Topic object which is associated with the batawriter.

Parameters
<none>

Return Value

Topic - Return value is a reference to the Topic which is associated with the
DataWriter.

Detailed Description

This operation returns the Topic which is associated with the patawriter, thus
the Topic with which the Datawriter iscreated. If the Datawriter isaready
deleted, thenull referenceis returned.

236

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

lookup_instance (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public long
lookup_instance
(<data> instance_data) ;

register_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public long
register_instance
(<data> instance_data) ;

register_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be

used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public long
register_instance_w_timestamp
(<data> instance_data,
Time_t source_timestamp) ;

set_listener
Scope
DDS.DataWriter

237
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

238
API Reference

Synopsis
import DDS.*;
public int
set_listener
(DataWriterListener a_listener,
int mask) ;

Description
This operation attachesaDatawWriterListener tothe Datawriter.

Parameters

in DataWriterListener a_Jlistener - a reference to the
DataWriterListener instance, which will be attached to the batawriter.

in int mask - abit mask in which each bit enables the invocation of the
DataWriterListener for acertain status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation attaches a bataWriterListener to the batawriter. Only one
DataWriterListener can be attached to each patawriter. If a
DataWriterListener wWas aready attached, the operation will replace it with the
new one. When a_listener isthenul1 reference, it represents a listener that is
treated as a NOOP! for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DatawriterListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
already reset. An exception to thisruleisthenul1 listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the DatawriterListener:
« OFFERED_DEADLINE_MISSED_STATUS

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

e OFFERED_INCOMPATIBLE_QOS_STATUS
e LTVELINESS_LOST_STATUS
e PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_sTaTUS can be used
to select al statuses applicable to the batawriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DataWriterListener, the PublisherListener Of the containing Publisher
isinvoked (if attached and activated for the status that occurred). This allows the
application to set adefault behaviour in the PublisherListener of the containing
Publisher and abDatawWriter specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
well, the communication status will be propagated to the
DomainParticipantListener Of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
statusis not activated in itsmask, the application is not notified of the change.

Return Code

When the operation returns:

* RETCODE_OK - the DataWriterListener isattached

e RETCODE_ERROR - aninterna error has occurred

* RETCODE_ALREADY_DELETED - the Datawriter hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_qos

&4 PRISMTECH

Scope
DDS.DataWriter
Synopsis
import DDS.*;
public int

set_qgos
(DataWriterQos gos) ;

Description
This operation replaces the existing set of QosPolicy settingsfor aDatawriter.

239
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

240
API Reference

Parameters

in DataWriterQos gos - the new set of gosPolicy settings for the
DataWriter.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALLREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_IMMUTABLE_POLICY OF RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settingsfor abatavriter.
The parameter gos contains the object with the gosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled patawriter, which can only be set before the
DataWriter iS enabled, the operation will fail and a
RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application must
provide the presently set gosPolicy settingsin case of the immutable gospPolicy
settings. Only the mutable gosPo1licy settings can be changed. When gos contains
conflicting QosPolicy setting (not self-consistent), the operation will fail and a
RETCODE_TNCONSTSTENT_POLICY iS returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new default DatawriterQos is set

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid DatawriterQos.
It contains aQosPolicy setting with aninvalid buration_t value.

e RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - theDatawriter hasalready been deleted

* RETCODE_IMMUTABLE_POLICY - the parameter gqos contains an immutable
QosPolicy Setting with a different value than set during enabling of the
DataWriter.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_INCONSISTENT POLICY - the parameter gos contains an

inconsistent QosPolicy sSettings, e.g. a history depth that is higher than the
specified resource limits.

unregister _instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public int
unregister_instance
(<data> instance_data,
long handle) ;

unregister _instance w_timestamp (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public int
unregister_instance_w_timestamp
(<data> instance_data,
long handle,
Time_t source_timestamp) ;

wait_for_acknowledgments

Synopsis
import DDS.*;
public int
wait_for_acknowledgments
(Duration_t max_wait) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

241
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Description

This operation blocks the calling thread until either all data written by the
DataWriter iSacknowledged by the matched patarReaders, or until the duration
specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in Duration_t max_wait - the maximum duration to block for the
wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value

ReturnCode_t - Possible return codes of the operation are:
RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if the DataWriter has its
ReliabilityQosPolicyKind Sett0 RELIABLE_RELIABILITY_QOS. Otherwise
the operation will return immediately with RETCODE_OK.

It blocks the calling thread until either all data written by the patawriter is
acknowledged by all matched patarReader entities that have their
ReliabilityQosPolicyKind Set t0O RELIABLE_RELIABILITY_QOS, oOr €lsethe
duration specified by the max_wait parameter elapses, whichever happensfirst. A
return value of RETCODE_0K indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code

When the operation returns:

* RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled
for afuture release.

write (abstract)

242
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawriter class.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
import DDS.*;
public int
write
(<data> instance_data,
long handle) ;

write w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawWriter class.

Synopsis
import DDS.*;
public int
write_w_timestamp
(<data> instance_data,
int handle,
Time_t source_timestamp) ;

writedispose (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Dataliriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional datatype Foo
derived FooDatawriter class.

Synopsis
import DDS.*;
public int
writedispose
(<data> instance_data,
long handle) ;

writedispose w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <type>Datawriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDatawriter class.

243
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
import DDS.*;
public int
writedispose
(<data> instance_data,
long handle,
Time_t source_timestamp) ;

I nterface FooDataWriter

244
API Reference

The pre-processor generates from IDL type descriptions the application
<type>DataWriter interfaces. For each application data type that is used as
Topic datatype, atyped interface <type>DatawWriter is extending the
DataWriter interface. In this paragraph, the interface Foobatawriter in the
package sPACE describes the operations of these extending <type>Datawriter
interface as an example for the fictional application type Foo (defined in the
module SPACE).

A FooDataWriter IS altached to exactly one publisher which acts as a factory
for it. The FooDatawriter iSbound to exactly one Topic that has been registered
to use a data type Foo. The Topic must exist prior to the FooDatawWriter
creation.

The interface description is as follows:

public interface FooDataWriter

{

//

// extends interface Entity
//

// public StatusCondition

// get_statuscondition

// (void) ;

// public int

// get_status_changes

// (void) ;

// public int

// enable

// (void) ;

//

// inherited from class DataWriter
//

// public int

// set_gos

// (DataWriterQos gos) ;

// public int
// get_gos
// (DataWriterQosHolder gos) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

//
//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
/7
/7

/7
/7
/7

!/
/7
/7

/7
//
/7

/7
/7
/7
/7

public int
set_listener
(DataWriterListener a_listener,
int mask) ;

public DataWriterListener
get_listener
(void) ;

public Topic
get_topic
(void) ;

public Publisher
get_publisher
(void) ;

public int
wait_for_acknowledgments
(Duration_t max_wait) ;

public int
get_liveliness_lost_status
(LivelinessLostStatusHolder status) ;

public int
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatusHolder status) ;

public int
get_offered_incompatible_gos_status
(OfferedIncompatibleQosStatusHolder status);

public int
get_publication_matched_status
(PublicationMatchedStatusHolder status) ;

public int
assert_liveliness
(void) ;

public int
get_matched_subscriptions
(InstanceHandleSegHolder subscription_handles) ;

public int
get_matched_subscription_data
(SubscriptionBuiltinTopicDataHolder subscription_data,
long subscription_handle) ;

245
API Reference

3 DCPS Classes and Operations

//

// implemented API operations

//

246
API Reference

public long
register_instance
(Foo instance_data) ;
public long
register_instance_w_timestamp
(Foo instance_data,
Time_t source_timestamp) ;
public int
unregister_instance
(Foo instance_data,
long handle) ;
public int

unregister_instance_w_timestamp

(Foo instance_data,
long handle,
Time_t source_timestamp) ;
public int
write
(Foo instance_data,
long handle) ;
public int
write_w_timestamp
(Foo instance_data,
long handle,
Time_t source_timestamp) ;
public int
dispose
(Foo instance_data,
long instance_handle) ;
public int
dispose_w_timestamp
(Foo instance_data,
long instance_handle,
Time_t source_timestamp) ;
public int
writedispose
(Foo instance_data,
long instance_handle) ;
public int
writedispose_w_timestamp
(Foo instance_data,
long instance_handle,
Time_t source_timestamp) ;
public int
get_key_value
(FooHolder key holder,
long handle) ;

3.4 PublicationModule

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

public long
lookup_instance
(Foo instance_data) ;

};
The following paragraphs describe the usage of all Foobatawriter operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
assert_liveliness (inherited)

This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
public int
assert_liveliness
(void) ;

dispose
Scope
SPACE.FooDataWriter
Synopsis
public int
dispose

(Foo instance_data,
long instance_handle) ;

Description

This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters
in Foo instance_data - the actua instance to be disposed of.
in long instance_handle - the handle to the instance to be disposed of.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

247
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

248
API Reference

Detailed Description

This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected bataReader and, dependent on the QosPolicy settings, dsoin
the Transient and Persistent stores, will be marked for deletion by setting their
InstanceStateKind O NOT_ALIVE_DISPOSED_INSTANCE_ STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the patawriter itself and on
the containing bomainParticipant.

Effects on DataReaders

Actual deletion of the instance administration in a connected pataReader will be
postponed until the following conditions have been met:

* the instance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it.

- A Datawriter can register an instance explicitly by using one of the special
operati ONSregister_instance Of register_instance_w_timestamp.

- A Datawriter can register an instance implicitly by using the special constant
HANDLE_NTIL in any of the other batawriter operations.

- A Datawriter can unregister an instance explicitly by using one of the special
operati ons unregister_instance or unregister_instance_
w_timestamp.

- A patawriter will unregister all its contained instances implicitly when it is
deleted.

-When a pDataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider al instances registered by that batawriter as
being implicitly unregistered.

« and the application must have consumed al samples belonging to the instance,
either implicitly or explicitly.

- An application can consume samples explicitly by invoking the take operation,
or one of itsvariants, on itSbataReaders.

- The pataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy hasexpired.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

The pataReader may also remove instances that haven't been disposed first: this
happens when the autopurge_nowriter_samples_delay Of the
ReaderDataLifecycleQosPolicy has expired after the instance is considered
unregistered by all connected DatawWriters (i.e. when it has a
InstanceStateKind Of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
Reader Datal ifecycleQosPolicy, on page 67.

Effects on Transient/Per sistent Sores

Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:

« theinstance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it. (See above.)

 and the period of time specified by the service_cleanup_delay attribute in
the burabilityServiceQosPolicy 0Onthe Topic must have elapsed after the
instance is considered unregistered by all connected batawriters.

See also Section 3.1.3.4, DurabilityServiceQosPalicy, on page 49.

Instance Handle

The HANDLE_NIL constant can be used for the parameter instance_handle.
This indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If instance_handle isany value other than HANDLE_NTL, it must correspond to
the value that was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.

The samplethat is passed as instance_data isonly used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected bataReaders. Use the writedispose
operation if the sample itself should be delivered together with the dispose request.

Blocking

If the HistoryQosPolicy iSs Set t0 KEEP_ALL_HISTORY_QOS, the dispose
operation on the patawriter may block if the modification would cause datato be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, to be
exceeded. Under these circumstances, the max_blocking time attribute of the
ReliabilityQosPolicy configuresthe maximum time the di spose operation
may block (waiting for space to become available). If max_blocking time

249
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

elapses before the batawriter is able to store the modification without exceeding
the limits, the SPACE_FooDataWriter_dispose operation will fail and returns
RETCODE_TIMEOUT.

Sample Validation

Since the sample that is passed as instance_data iS merely used to check for
consistency between its key values and the supplied instance_handle, only
these keyfields will be validated against the restrictions imposed by the IDL to Java
language mapping, where:

* astring (bounded or unbounded) may not be nul1. (Use “~ for an empty string
instead)

* the length of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log

Return Code
When the operation returns:

e RETCODE_OK - the Data Distribution Service is informed that the instance data
must be disposed of

* RETCODE_ERROR - an internal error has occurred

* RETCODE BAD PARAMETER - instance handle is not a valid handle or
instance_data isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawriter hasalready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION NOT MET - the instance_handle has not been
registered with this FooDatalriter.

e RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

dispose w_timestamp

250
API Reference

Scope

SPACE.FooDataWriter

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Synopsis
import DDS.*;
public int
dispose_w_timestamp
(Foo instance_data,
long instance_handle,
Time_t source_timestamp) ;

Description

This operation requests the Data Distribution Service to mark the instance for
deletion and provides avaue for the source_timestamp explicitly.

Parameters
in Foo instance_data - the actual instance to be disposed of.
in long instance_handle - the handleto the instance to be disposed of.

in Time_t source_timestamp - the timestamp which is provided for the
DataReader.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_ DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as dispose except that the application
provides the value for the source_timestamp that is made available to connected
DataReader Objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Return Code

When the operation returns:

* RETCODE_OK - the Data Distribution Service is informed that the instance data
must be disposed of

* RETCODE_ERROR - an internal error has occurred

e RETCODE_BAD PARAMETER - instance_handle is not a valid handle or
instance_data ishot avalid sasmple.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

251
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_NOT_ENABLED - the FooDataWriter iSnot enabled.

e RETCODE_PRECONDITION NOT MET - the instance_handle has not been
registered with this Foobatawriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose_w_timestamp Operation, which could not be resolved before
max_blocking_time(ﬁtheReliabilityQosPolicyfdapgii

enable (inherited)

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
int
enable
(void) ;

get_key value
Scope

SPACE.FooDataWriter
Synopsis
int
get_key_value

(FooHolder key_holder,
long handle) ;

Description
This operation retrieves the key value of a specific instance.

Parameters

inout FooHolder key_holder - areference to the samplein which the key
values are stored.

in long handle - the handle to the instance from which to get the key value.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED Ofr
RETCODE_PRECONDITION_NOT_MET.

252

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation retrieves the key value of the instance referenced to by
instance_handle. When the operation is called with an HANDLE_NIL
constant aS an instance_handle, the operation will return
RETCODE_BAD_PARAMETER. The operation will only fill the fields that form the key
inside the key_holder instance. This means, the non-key fields are not applicable
and may contain garbage.

The operation must only be called on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the key_holder instance contains the key values of the instance;
e RETCODE_ERROR - aninterna error has occurred

e RETCODE_BAD_PARAMETER - handle isnot avalid handle

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDatawriter iSnot enabled.
* RETCODE_PRECONDITION_NOT MET - thisinstance is not registered.

get_listener (inherited)

This operation is inherited and therefore not described here. See the interface
Datawriter for further explanation.

Synopsis
import DDS.*;
public DataWriterListener
get_listener
(void) ;

get_liveliness lost_status (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
get_liveliness_lost_status
(LivelinessLostStatusHolder status) ;

253
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

get_matched_subscription_data (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
get_matched_subscription_data
(SubscriptionBuiltinTopicData subscription_data,
long subscription_handle) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

get_matched_subscriptions (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
get_matched_subscriptions
(InstanceHandleSegHolder subscription_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_offered_deadline_missed_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
get_offered_deadline_missed_status
(OfferedDeadlineMissedStatusHolder status);

get_offered_incompatible _qos status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS. *;
public int
get_offered_incompatible_gos_status
(OfferedIncompatibleQosStatusHolder status);

254

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

get_publication_matched_status (inherited)

This operation is inherited and therefore not described here. See the interface
Datawriter for further explanation.

Synopsis
import DDS.*;
public int
get_publication_matched_status
(PublicationMatchedStatusHolder status);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_publisher (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public Publisher
get_publisher
(void) ;

get_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
get_gos
(DataWriterQosHolder gos) ;

get_status changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

255

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis

import DDS.*;
public StatusCondition
get_statuscondition

(void) ;

get_topic (inherited)

This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis

import DDS.*;
public Topic
get_topic
(void) ;

lookup_instance

256
API Reference

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public long
lookup_instance
(Foo instance_data) ;

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in Foo instance_data - areferenceto the instance for which the corresponding
instance handle needs to be looked up.

Return Value

long - Result value is the instance handle which corresponds to the
instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter isonly used for the purpose of
examining the fields that define the key. The instance handle can be used in any

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

write, dispose OF unregister operations (or their timestamped variants) that
operate on a specific instance. Note that batawriter instance handles are local,
and are not interchangeable with batareader instance handles nor with instance
handles of an other patawriter.

This operation does not register the instance in question. If the instance has not been
previously registered, if the Datawriter is already deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value HANDLE_NTL.

Sample Validation

Since the sample that is passed as instance_data is merely used to determine the
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to Java language mapping,
where:

* astring (bounded or unbounded) may not be nu11. (Use »~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated, the operation will fail and return a
HANDLE_NIL. More specific information about the context of this error will be
written to the error log.

register _instance

&4 PRISMTECH

Scope
SPACE.FooDataWriter
Synopsis
long

register_instance
(Foo instance_data) ;

Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters

in Foo instance_data - theinstance, which the application writes to or
disposes of.

257
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

258
API Reference

Return Value

Iong - Result value is the handle to the Instance, which may be used for writing and
disposing of. In case of an error, aHANDLE_NIL constant iSrefurned.

Detailed Description

This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such aswrite, write_w_timestamp,
unregister_instance, unregister_instance_w_timestamp, dispose,
dispose_w_timestamp, writedispose and writedispose_w_timestamp.
When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive DatawWriter operations. In case of an error, a HANDLE_NTIL
isreturned.

The explicit use of this operation is optiona as the application can directly call the
write, write_w_timestamp, unregister_instance,

unregister_instance_w_timestamp, dispose, dispose_w_timestamp,
writedispose and writedispose_w_timestamp operations and specify a
HANDLE_NIL Vaue toindicate that the sample should be examined to identify the
instance.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader Objects. This timestamp isimportant for the interpretation of the
DestinationOrderQosPolicy.

Blocking

If the HistoryQosPolicy iS set to KEEP_ALL_HISTORY_QOS, the
register_instance operation on the patawriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the register_instance operation may block (waiting for space
to become available). If max_blocking_time €lapses beforethe batavriter is
able to store the modification without exceeding the limits, the
register_instance operation will fail and returnSs HANDLE_NTL.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Sample Validation

Since the samplethat is passed as instance_data is merely used to determine the
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to Java language mapping,
where:

 astring (bounded or unbounded) may not be nu11. (Use “~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated, the operation will fail and return a

HANDLE_NIL. More specific information about the context of this error will be
written to the error log.

Multiple Calls

If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance.

register _instance w_timestamp

&4 PRISMTECH

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public long
register_instance_w_timestamp
(Foo instance_data,
Time_t source_timestamp) ;

Description

This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides avalue for the source_timestamp
explicitly.

Parameters

in Foo instance_data - theinstance, which the application will write to or
dispose of.

in Time_t source_timestamp - thetimestamp used.

259
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

Iong - Result value is the handle to the Tnstance, which must be used for writing
and disposing. In case of an error, aHANDLE_NTIL referenceis returned.

Detailed Description

This operation performs the same functions as register_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Multiple Calls

If this operationis called for an already registered instance, it just returns the already
allocated instance handle. The source_timestamp isignored in that case.

set_listener (inherited)

This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
set_listener
(DataWriterListener a_listener,
int mask) ;

set_qos (inherited)

This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
set_qgos
(DataWriterQos gos) ;

unregister _instance

260
API Reference

Scope

SPACE.FooDataWriter

Synopsis
import DDS. *;
public int

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

unregister_instance
(Foo instance_data,
long handle) ;

Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters

in Foo instance_data - theinstance to which the application was writing or
disposing.

in long handle - the handleto the Instance, which has been used for writing
and disposing.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
action of register instance Of register instance w_timestamp. It
should only be called on an instance that is currently registered. This operation
should be called just once per instance, regardless of how many times
register_instance was called for that instance. This operation aso indicates
that the Data Distribution Service can locally remove all information regarding that
instance. The application should not attempt to use the handle, previously
alocated to that instance, after calling this operation.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader Objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Effects

If, after unregistering, the application wants to modify (write or dispose) the
instance, it hasto register the instance again, or it has to use the special
constant HANDLE_NTIL.

261
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

262
API Reference

This operation does not indicate that the instance should be deleted (that is the
purpose of dispose). This operation just indicates that the batawriter no longer
has “anything to say” about the instance. If thereis no other bDatawWriter that
has registered the instance as well, then the TnstanceStatekind in all connected
DataReaders Will be changed toNOT_ALIVE_NO_WRITERS_ INSTANCE_STATE,
provided this InstanceStatekKind was not already set to
NOT_ALIVE_DISPOSED_INSTANCE_STATE. In the last case the
InstanceStateKind Will not be effected by the unregister_instance call,
see also Figure 21, Sate Chart of the instance_state for a Sngle Instance, on page
454,

This operation can affect the ownership of the data instance. If the
DataWriter wasthe exclusive owner of the instance, caling this operation will
release that ownership, meaning ownership may be transferred to another,
possibly lower strength, Datawriter.

The operation must be called only on registered instances. Otherwise the operation
returns the error RETCODE_ PRECONDITION_NOT_MET.

Instance Handle

The special constant HANDLE_NTIL can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle isany value other than the special constant HANDLE_NTIL, then it must
correspond to the value returned by register_instance Of
register_instance_w_timestamp Whenthe instance (identified by its key)
was registered. If there is no correspondence , the result of the operation is
unspecified.

The samplethat is passed as instance_data isonly used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders.

Blocking

If the HistoryQosPolicy iS set to KEEP_ALL_HISTORY_QOS, the
unregister_instance operation on the patawriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the unregister_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DataWriter is able to store the modification without exceeding the limits, the
unregister_instance operation will fail and returns RETCODE_TIMEOUT.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Sample Validation

Since the sample that is passed as instance_data is merely used to check for

consistency between its key values and the supplied instance_handle, only

these keyfields will be validated against the restrictions imposed by the IDL to Java

language mapping, where:

 astring (bounded or unbounded) may not be nu11. (Use “~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.

Return Code

When the operation returns:

* RETCODE_OK - the Data Distribution Serviceisinformed that the instance will not
be modified any more

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE BAD PARAMETER - handle isnot avalid handle or instance data
isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawWriter hasalready been deleted
* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
thisFooDatawriter.

unregister_instance w_timestamp

&4 PRISMTECH

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
unregister_instance_w_timestamp
(Foo instance_data,
long handle,
Time_t source_timestamp) ;

263
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

264
API Reference

Description

This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters

in Foo instance_data - theinstance to which the application was writing or
disposing.

in long handle - the handle to the Instance, which has been used for writing
and disposing.

in Time_t source_timestamp - the timestamp used.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performsthe same functions asunregister_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationorderQosPolicy.

Return Code

When the operation returns:

e RETCODE_OK - the Data Distribution Serviceisinformed that the instance will not
be modified any more

e RETCODE_ERROR - an internal error has occurred.

* RETCODE BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY DELETED - the FooDatawriter hasalready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
thisFooDatawriter.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance_w_timestamp operation, which could not be
resolved before max_blocking time Of the ReliabilityQosPolicy
elapsed.

write

&4 PRISMTECH

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
write
(Foo instance_data,
long handle) ;

Description
This operation modifies the value of a data instance.

Parameters
in Foo instance_data - the datato be written.

in long handle - the handle to the instance as supplied by
register_instance.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_TIMEOUT.

Detailed Description

This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected DataReader objects.
This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As a side effect, this operation asserts liveliness on the Datawriter itself and on
the containing DomainParticipant.

265
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

266
API Reference

Before writing data to an instance, the instance may be registered with the
register_instance Of register_instance_w_timestamp operation. The
handle returned by one of the register_instance operations can be supplied to
the parameter handle of the write operation. However, it is also possible to
supply the special constant HANDLE_NTL, which means, that the identity of the
instance isautomatically deduced from the instance_data (identified by the
key).

Instance Handle

The special constant HANDLE_NTIL can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

If handle is any value other than the special constant HANDLE_NTIL, it must
correspond to the value returned by register_instance Of
register_instance_w_timestamp Whenthe instance (identified by its key)
was registered. Passing such a registered handle helps the Data Distribution
Service to process the sample more efficiently. If there is no correspondence
between handle and sample, the result of the operation is unspecified.

Blocking

If the HistoryQosPolicy iSSet to KEEP_ALL_HISTORY_QOS, thewrite
operation on the patawriter may block if the modification would cause data to be
lost because one of the limits, specified in the ResourcelLimitsQosPolicy, iS
exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configuresthe maximum timethewrite operation may
block (waiting for space to become available). If max_blocking_time elapses
before the patawriter is able to store the modification without exceeding the
limits, thewrite operation will fail and returns RETCODE_TIMEOUT.

Sample Validation

Before the sample is accepted by the DataWriter, it will be validated against the
restrictions imposed by the IDL to Java language mapping, where:

* astring (bounded or unbounded) may not be nul1. (Use »~ for an empty string
instead)

» the length of abounded string may not exceed the limit specified in IDL
* the length of a bounded sequence may not exceed the limit specified in IDL
* the length of an array must exactly match the size specified in IDL

If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Code

When the operation returns:
* RETCODE_OK - the value of adatainstance is modified
* RETCODE_ERROR - aninternal error has occurred

* RETCODE _BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_ MET - the handle has not been registered with
thisFooDatawriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

write w_timestamp

&4 PRISMTECH

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
write_w_timestamp
(Foo instance_data,
long handle,
Time_t source_timestamp) ;

Description

This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.

Parameters
in Foo instance_ data - the datato be written.
in long handle - the handle to the instance as supplied by

register_instance.
in Time_t source_timestamp - thetimestamp used.

267
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation performs the same functions as write except that the application
provides the value for the parameter source_timestamp that is made available to
DataReader Objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Return Code
When the operation returns:

* RETCODE_OK - the value of adatainstanceis modified
* RETCODE_ERROR - an internal error has occurred

e RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDatawWriter hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT MET - the handle has not been registered with
thisFooDataWriter.

e RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write_w_timestamp operation, which could not be resolved before
max_blocking_time Of theReliabilityQosPolicy elapsed.

writedispose

268
API Reference

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
writedispose
(Foo instance_data,

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

long handle) ;

Description
This operation modifies and disposes a data instance.

Parameters
in Foo instance_data - the datato be written and disposed.

in long handle - the handle to the instance as supplied by
register_instance.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

Detailed Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected DataReader and, dependent on the QospPolicy Settings,
aso in the Transient and Persistent stores, will be modified and marked for deletion
by setting their InstanceStateKind t0O NOT_ALIVE_DISPOSED_
INSTANCE_STATE.

When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

As aside effect, this operation asserts liveliness on the patawriter itself and on
the containing bomainParticipant.

Effects on DataReaders

Actual deletion of the instance administration in a connected bataReader Will be
postponed until the following conditions have been met:

* theinstance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it.

- A DatawWriter can register an instance explicitly by using one of the special
operaIions register_instance Of register_instance_w_timestamp.

- A Dataliriter can register an instance implicitly by using the special constant
HANDLE_NTIL in any of the other batawriter operations.

269

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

270
API Reference

- A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

- A patawriter Will unregister al its contained instances implicitly when it is
deleted.

-When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider al instances registered by that Datawriter as
being implicitly unregistered.

« and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.

- An application can consume samples explicitly by invoking the take operation,
or one of itsvariants, on itSbataReaders.

-The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy hasexpired.

The DatarReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay of the
ReaderDatalLifecycleQosPolicy has expired after the instance is considered
unregistered by all connected patawriters (i.e. when it has a
InstanceStateKind Of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
Reader Datal ifecycleQosPolicy, on page 67.

Effects on Transient/Persistent Sores

Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:

» the instance must be unregistered (either implicitly or explicitly) by al connected
DataWriters that have previously registered it. (See above.)

« and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy onthe Topic must have elapsed after the
instance is considered unregistered by all connected batawriters.

See also Section 3.1.3.4, DurabilityServiceQaosPolicy, on page 49.

Instance Handle

The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

If handle isany value other than HANDLE_NTL, it must correspond to the value that
was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.

The sample that is passed as instance_data Will actually be delivered to the
connected DataReaders, but will immediately be marked for deletion.

Blocking

If the HistoryQosPolicy iS Set to KEEP_ALL_HISTORY_QOS, the
writedispose operation on the patawriter may block if the modification
would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configuresthe
maximum time the SPACE_FooDataWriter_writedispose operation may
block (waiting for space to become available). If max_blocking_ time elapses
before the Datawriter is able to store the modification without exceeding the
limits, the writedispose operation will fail and returns RETCODE_TIMEOUT.

Sample Validation

Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to Javalanguage mapping, where:

« astring (bounded or unbounded) may not be nul1l. (Use “~ for an empty string
instead)

« thelength of abounded string may not exceed the limit specified in IDL

« the length of a bounded sequence may not exceed the limit specified in IDL

* thelength of an array must exactly match the size specified in IDL

If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.

Return Code

When the operation returns:

* RETCODE_OK - the Data Distribution Service has modified the instance and
marked it for deletion.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasalready been deleted.

271
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with
this SPACE_FooDataWriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose operation, which could not be resolved before
max_blocking_time(ﬁtheReliabilityQosPolicyfdapgii

writedispose w_timestamp

272
API Reference

Scope

SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
writedispose_w_timestamp
(Foo instance_data,
long handle,
Time_t source_timestamp) ;

Description

This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides avalue for the source_timestamp explicitly.
Parameters

in Foo instance_data - the datato be written and disposed.

in long handle - the handle to the instance as supplied by
register_instance.

in Time_t source_timestamp - the timestamp used.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_TIMEOUT.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation performs the same functions as writedispose except that the
application provides the value for the source_timestamp that is made available
to connected pataReader oObjects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Return Code
When the operation returns:

* RETCODE_OK - the Data Distribution Service has modified the instance and
marked it for deletion.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD PARAMETER - handle isnot avalid handle or instance_data
isnot avalid sample.

* RETCODE_ALREADY_DELETED - the FooDataWriter hasaready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataWriter iSnot enabled.

* RETCODE_PRECONDITION_NOT MET - the handle has not been registered with
this SPACE_FooDataWriter.

* RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose_w_timestamp operation, which could not be resolved
beforemax_blocking_time Of theReliabilityQosPolicy elapsed.

PublisherListener interface

&4 PRISMTECH

Sinceapublisher iSan Entity, it hasthe ability to have a1.i stener associated
with it. In this case, the associated Listener should be of type
PublisherListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
PublisherListener class. All publisherListener oOperations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

273
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

The publisherListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The publisherListener isrelated to changesin
communication status.

The interface description is as follows:

public interface PublisherListener {

//

// extends interface DataWriterListener

//

// public void

// on_offered_deadline_missed

// (DataWriter writer,

// OfferedDeadlineMissedStatus status);

// public void

// on_offered_incompatible_gos
// (DataWriter writer,
// OfferedIncompatibleQosStatus status) ;

// public void

// on_liveliness_lost
// (DataWriter writer,
// LivelinessLostStatus status);

// public void

// on_publication_matched

// (DataWriter writer,

// PublicationMatchedStatus status) ;
//

// implemented API operations

// <no operations>

//

}i
The following paragraphs list all PublisherListener operations. Since these
operations are al inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

on_liveliness lost (inherited, abstract)

274
API Reference

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

on_liveliness_lost
(DataWriter writer,
LivelinessLostStatus status);

on_offered_deadline_missed (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
on_offered _deadline_missed
(DataWriter writer,
OfferedDeadlineMissedStatus status) ;

on_offered_incompatible _qos (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
on_offered_incompatible_gos
(DataWriter writer,
OfferedIncompatibleQosStatus status);

on_publication_matched (inherited, abstract)

This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
on_publication_matched
(DataWriter writer,
PublicationMatchedStatus status) ;
Note: Thisoperation is not yet supported. It is scheduled for a future release.

DataWriterLisener interface

Since abatawWriter iSan Entity, it has the ability to have aListener
associated with it. In this case, the associated Listener should be of type
DataWriterListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must implement the

275
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

276
API Reference

DataWriterListener interface. All batawriterListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DatawriterListener provides ageneric mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The bataWriterListener is related to changesin
communication status.

The interface description is as follows:

public interface DataWriterListener
{
//
// operations
//
public void
on_offered_deadline_missed
(DataWriter writer,
Of feredDeadlineMissedStatus status) ;

public void
on_offered_incompatible_gos
(DataWriter writer,
OfferedIncompatibleQosStatus status) ;

public void
on_liveliness_lost
(DataWriter writer,
LivelinessLostStatus status);

public void
on_publication_matched
(DataWriter writer,
PublicationMatchedStatus status) ;

//

// implemented API operations
// <no operations>

//

};
The patawriterListener abstract operations are fully described because they
must be implemented by the application.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

on_liveliness |ost

&4 PRISMTECH

Scope

DDS.DataWriterListener

Synopsis
import DDS.*;
public void
on_liveliness_lost
(DataWriter writer,
LivelinessLostStatus status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Servicewhenthe LivelinessLostStatus changes.

Parameters

in DataWriter writer - containsareferenceto the patawriter on which the
LivelinessLostStatus haschanged (thisisan input to the application).

in LivelinessLostStatus status - containthe LivelinessLostStatus
object (thisis an input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
LivelinessLostStatus changes. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DatalWiriterListener isinstalled and enabled for the liveliness lost status. The
liveliness lost status will change when the liveliness that the Datawriter has
committed through its LivelinessQosPolicy Was not respected. In other words,
the patawriter failed to actively signa its liveliness within the offered liveliness
period. As aresult, the DataReader objects will consider the Datawriter asno
longer “aive’.

The Data Distribution Service will call theDatawriterListener operation with a
parameter writer, which will contain areference to the Datawriter onwhichthe
conflict occurred and a parameter status, which will contain the
LivelinessLostStatus Object.

277
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

on_offered_deadline_missed

278
API Reference

Scope

DDS.DataWriterListener

Synopsis
import DDS.*;
public void
on_offered_deadline_missed
(DataWriter writer,
OfferedDeadlineMissedStatus& status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the 0f feredbeadlineMissedStatus changes.

Parameters

in DataWriter writer - contain areference to the batawriter on which the
Of feredDeadlineMissedStatus has changed (thisis an input to the
application).

in OfferedDeadlineMissedStatus status - contain the
Of feredDeadlineMissedStatus oObject (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OfferedDeadlineMissedStatus changes. The implementation may be left
empty when thisfunctionality is not needed. This operation will only be called when
the relevant DatawriterListener iSinstalled and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
deadline that the pDatawriter has committed through its DeadlineQosPolicy
was not respected for a specific instance.

The Data Distribution Service will call thepatawriterListener operation witha
parameter writer, which will contain areference to the batawriter onwhich the
conflict occurred and a parameter status, which will contain the
Of feredDeadlineMissedStatus oObject.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

on_offered_incompatible gos

&4 PRISMTECH

Scope

DDS.DataWriterListener

Synopsis
import DDS.*;
public void
on_offered_incompatible_gos
(DataWriter writer,
OfferedIncompatibleQosStatus status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the OFFERED_INCOMPATIBLE_QOS_STATUS changes.

Parameters

in DataWriter writer - contain areferenceto the batawriter on which the
OFFERED_INCOMPATIBLE_QOS_STATUS has changed (thisis an input to the
application).

in OfferedIncompatibleQosStatus status - contain the
OfferedIncompatibleQosStatus 0Object (thisis an input to the
application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the relevant patawriterListener is installed and enabled for the
OFFERED_INCOMPATIBLE_QOS_STATUS. The incompatible gos status will
change when a Datareader object has been discovered by the Datawriter with
the same Topic and arequested DataReaderQos that was incompatible with the
one offered by the batawriter.

The Data Distribution Service will call theDatawriterListener operation with a
parameter writer, which will contain areference to the batawriter onwhichthe
conflict occurred and a parameter status, which will contain the
OfferedIncompatibleQosStatus Object.

279
API Reference

3 DCPS Classes and Operations

3.4.4.4 on_publication_matched

Scope

DDS.DataWriterListener

Synopsis

import DDS.*;
public void
on_publication_matched

(DataWriter writer,
PublicationMatchedStatus status);

3.5 Subscription Module

Note: Thisoperation is not yet supported. It is scheduled for a future release.
3.5 Subscription Module

D

——

*

Samplelnfo

sample_state

view_state

instance_state

1 source_timestamp
instance_handle
disposed_generation_count

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()

<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()

get_qgos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()

<<abstract>> read()

<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()

set_listener()

set_qos()

<<abstract>> take()

<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

<<implicit>>

implicit>>

QosPolicy
name : string

i
* * N

‘ default_datareader_qos

qos

TopicDescription

Topic

(from Topic-Definition Module) }7 (from Topic-Definition Module)
N
*
* 1 ! 1
<<implicit>> <<implicit>> <<implicit>>
0. 0.1
WaitSet StatusCondition
from Infrastructure Module) (from Infrastructure Module) /
1 . . /
<<create>> * o
* <<implicit>>

Lo

<<Interface>>
DataReaderListener

ReadCondition

QueryCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

get_query_arguments()
get_query_expression()
set_query_arguments()

<<create>> 7

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

DomainParticipant
(from Domain Module)

<<create>>

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()

get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()

set_qgos()

<<implicit>>

0.1

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure 19 DCPS Subscription Module's Class M odel

280
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

This module contains the following classes:
» Subscriber

* Subscription type specific classes

e DataSample

e SampleInfo (class)

* SubscriberListener (interface)

* DataReaderListener (interface)

¢ ReadCondition

e QueryCondition

“Subscription type specific classes’ contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader isgenerated (based on IDL) by calling the pre-processor.

For instance, for the fictional data type Foo (this also applies to other types);
“ Subscription type specific classes’ contains the following classes:

* DataReader (abstract)

« FooDataReader

A subscriber isan object responsible for receiving published data and making it
available (according to the subscriberQos) to the application. It may receive and
dispatch Topic with data of different specified data types. To access the received
data, the application must use atyped DataReader attached to the subscriber.
Thus, a subscription is defined by the association of a DataReader with a
Subscriber. Thisassociation expresses the intent of the application to subscribe to
the data described by the batarReader inthe context provided by the subscriber.

I nter face Subscriber

&4 PRISMTECH

A subscriber is the object responsible for the actual reception of the data
resulting from its subscriptions.

A subscriber acts on behalf of one or more DataReader oObjects that are related
to it. When it receives data (from the other parts of the system), it indicates to the
application that data is available through its DataReaderListener and by
enabling related conditions. The application can access the list of concerned
DataReader Objectsthrough the operation get_datareaders and then accessthe
data available through operations on the bataReader.

The interface description of thisclassis asfollows:

public interface Subscriber
{
//
// extends interface Entity
//
281
API Reference

3 DCPS Classes and Operations

282
API Reference

//
//
//
//
//
//
//
//
//
//
//
//

public StatusCondition
get_statuscondition
(void) ;
public int
get_status_changes
(void) ;
public int
enable
(void) ;

implemented API operations

public DataReader
create_datareader
(TopicDescription a_topic,
DataReaderQos gos,
DataReaderListener a_listener,
int mask) ;

public int
delete_datareader
(DataReader a_datareader) ;

public int
delete_contained_entities
(void) ;

public DataReader
lookup_datareader
(String topic_name) ;

public int
get_datareaders
(DataReaderSegHolder readers,
int sample_states,
int view_states,
int instance_states);

public int
notify datareaders
(void) ;

public int
set_gos
(SubscriberQos gos) ;

public int

get_gos
(SubscriberQosHolder gos);

public int

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

set_listener
(SubscriberlListener a_listener,
int mask) ;

public SubscriberListener
get_listener
(void) ;

public int
begin_access
(void) ;

public int
end_access
(void) ;

public DomainParticipant
get_participant
(void) ;

public int
set_default_datareader_gos
(DataReaderQos gos) ;

public int
get_default_datareader_gos
(DataReaderQosHolder gos) ;

public int
copy_from_topic_gos
(DataReaderQosHolder a_datareader_gos,
TopicQos a_topic_gos) ;
};

The following paragraphs describe how all of the subscriber operations are used.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operationsis given in the
classes from which they are inherited.

3.5.1.1 begin_access
Scope

DDS.Subscriber

Synopsis
import DDS.*;
public int
begin_access
(void) ;
283

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

copy_from_topic_qgos

284
API Reference

Scope

DDS. Subscriber

Synopsis
import DDS.*;
public int
copy_from_topic_gos
(DataReaderQosHolder a_datareader_gos,
TopicQos a_topic_gos) ;

Description

This operation will copy the policiesin a_topic_gos to the corresponding policies
ina_datareader_gos.

Parameters

inout DataReaderQosHolder a_datareader_ gos - the destination
DataReaderQos Object to which the QosPolicy settings will be copied.

in TopicQos a_topic_gos - the source TopicQos, which will be copied.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation will copy the gospPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datareader_gos (replacing the values
ina_datareader_gos, if present).

Thisis a“convenience” operation, useful in combination with the operations
get_default_datawriter_gos and Topic.get_gos. The operation
copy_from_topic_gos can be used to merge the bDataReader default
QosPolicy settings with the corresponding ones on the Topic. The resulting
DataReaderQos can then be used to create a new DataReader, Or Set its
DataReaderQos.

This operation does not check the resulting a_datareader_gos for self
consistency. This is because the “merged” a_datareader_gos may not be the
final one, as the application can still modify some gosPolicy settings prior to
applying the bataReaderQos tothe DataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

* RETCODE_OK - the QosPolicy settings have successfully been copied from the
TopicQos tothe DataReaderQos

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_ALREADY DELETED - the Subscriber hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

create datareader

&4 PRISMTECH

Scope

DDS.Subscriber

Synopsis

import DDS.*;

public DataReader

create_datareader
(TopicDescription a_topic,
DataReaderQos gos,
DataReaderListener a_listener,
int mask) ;

Description

This operation creates a bataReader With the desired QosPolicy settings, for the
desired TopicbDescription and attaches the optionally specified
DataWriterListener toOit.

Parameters

in

in

in

in

TopicDescription a_topic - areferenceto the TopicbDescription for
which the DataReader is created. This may be a Topic, MultiTopic oOr
ContentFilteredTopic.

DataReaderQos gos - the object with the QosPolicy settings for the new
DataReader, When these gosPolicy settings are not self consistent, no
DataReader iS created.

DataReaderListener a_listener - a reference to the
DataReaderListener instance which will be attached to the new
DataReader It ispermitted to use null as the value of the listener: this
behaves asapataviriterListener Whose operations perform no action.

int mask - abit-mask in which each bit enables the invocation of the
DataReaderListener for acertain status.

285
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

286
API Reference

Return Value

DataReader - Return value is a reference to the newly created pataReader. In
case of an error, thenull referenceisreturned.

Detailed Description

This operation creates a bataReader With the desired QosPolicy settings, for the
desired TopicDescription and attaches the optionally specified
DataReaderListener tOit. The TopicDescription may be a Topic,
MultiTopic OF ContentFilteredTopic. Thereturned bataReader iS attached
(and belongs) to the subscriber. To delete the DataReader the operation
delete_datareader Of delete_contained_entities must be used.

Application Data Type

The pataReader returned by this operation is an object of a derived class, specific
to the data type associated with the Topicbescription. For each
application-defined data type <type> there is aclass <type>DataReader
generated by calling the pre-processor. This data type specific class extends
DataReader and contains the operations to read data of datatype <type>.

Because the pataReader may read a Topic, ContentFilteredTopic Of
MultiTopic, the DataReader is associated with the TopicDescription. The
DataWriter can only write a Topic, NOt a ContentFilteredTopic Of
MultiTopic, because these two are constructed at the subscriber side.

QosPalicy

The common application pattern to construct the Qospolicy settings for the
DataReader iStO:

* Retrieve the QosPolicy settings on the associated TopicDescription by
means of the get_gos operation on the Topicbescription

» Retriecve the default DataReaderQos by means of the
get_default_datareader_gos operation on the subscriber

» Combine those two QosPolicy settings and selectively modify policies as
desired (copy_from_topic_gos)

» Usetheresulting gosPolicy Settingsto construct the DataReader

* In case the specified QosPolicy Settings are not self consistent, N0 bataReader
is created and thenul1 referenceis returned

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Default QoS

The constant DATAREADER_QOS_DEFAULT Can be used as parameter gos to create
aDataReader With the default DatarReaderQos as set in the Subscriber. The
effect of using DATAREADER_QOS_DEFAULT IS the same as calling the operation
get_default_datareader_gos and using the resulting DataReaderQos to
create the DataReader.

The special DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DataReader with a combination of the default batarReaderQos and the
TopicQos. The effect of using DATAREADER_QOS_USE_TOPIC_QOS iSthe sameas
calling the operation get_default_datareader_gos and retrieving the
TopicQos (by means of the operation Topic.get_gos) and then combining these
two QosPolicy Settings using the operation copy_from_topic_gos, whereby
any common policy that is set on the TopicQos “overrides’ the corresponding
policy on the default DataReaderQos. The resulting bataReaderQos isthen
applied to create the DataReader.

Communication Satus

For each communication status, the statusChangedrlag flag isinitialy set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
aready reset.

The following statuses are applicable to the DataReaderListener:

« REQUESTED_DEADLINE_MISSED_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

+ SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

« DATA_AVAILABLE_STATUS

« LIVELINESS_CHANGED_STATUS

* SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR

operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the DataReaderListener.

287
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Satus Propagation

In case a communication status is not activated in the mask of the
DataReaderListener, the subscriberListener of the containing
Subscriber isinvoked (if attached and activated for the status that occurred). This
allows the application to set a default behaviour in the subscriberListener of
the containing Subscriber and aDataReader specific behaviour when needed.
In case the communication status is not activated in the mask of the
SubscriberListener aswell, the communication status will be propagated to the
DomainParticipantListener Of the containing DomainParticipant. In case
the DomainParticipantListener IS aso not attached or the communication
status is not activated in itsmask, the application is not notified of the change.

delete_contained_entities

288
API Reference

Scope
DDS.Subscriber
Synopsis
import DDS.*;
public int

delete_contained_entities
(void) ;

Description

This operation deletes all the DataReader objects that were created by means of
the create_datareader operation on the subscriber.

Parameters
<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation deletes all the batarReader objects that were created by means of
the create_datareader operation on the subscriber. In other words, it deletes
all contained pataReader oObjects. Prior to deleting each patarReader, this
operation recursively calls the corresponding delete_contained_entities

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

operation on each DataReader. In other words, all bataReader objectsin the
Subscriber are deleted, including the QueryCondition and ReadCondition
objects contained by the bataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if acontained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_Jloan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
delete the subscriber;

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the Subscriber hasalready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE _PRECONDITION NOT MET - one or more of the contained entities are
in a state where they cannot be deleted.

delete datareader

&4 PRISMTECH

Scope
DDS. Subscriber
Synopsis
import DDS.*;
public int

delete_datareader
(DataReader a_datareader) ;

Description
This operation deletes a DataReader that belongs to the subscriber.

Parameters

in DataReader a_datareader - areferencetothe bataReader, whichisto be
deleted.

289
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES OFf RETCODE_PRECONDITION_NOT_ MET.

Detailed Description

This operation deletes a bataReader that belongs to the subscriber. When the
operation is caled on adifferent subscriber, as used when the bataReader was
created, the operation has no effect and returns
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataReader iS not
alowed if there are any ReadCondition OfF QueryCondition Objectsthat are
attached to the patarReader. In that case the operation returns
RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - the DataReader iSdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter a_datareader is not a vaid
DataReader_ptr

* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT _MET - the operation is caled on a different
Subscriber, as used when the DataReader was created, or the DataReader
contains one or more ReadCondition OF QueryCondition Objects.

enable (inherited)

This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
import DDS.*;
public int
enable
(void) ;

end_access

290
API Reference

Scope
DDS. Subscriber

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
end_access
(void) ;
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_datareaders
Scope

DDS.Subscriber

Synopsis
import DDS.*;
public int
get_datareaders
(DataReaderSegHolder readers,
int sample_states,
int view_states,
int instance_states);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_default_datareader _qos
Scope

DDS. Subscriber
Synopsis

import DDS.*;

public void

get_default_datareader_gos
(DataReaderQosHolder gos) ;

Description
This operation gets the default QosPolicy Settings of the Datareader.

Parameters

inout DataReaderQosHolder gos - areference to the destination
DataReaderQosHolder object in which the default bataReaderQos for the
Subscriber iswritten..

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

291

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation gets the default gosPolicy settings of the DatarReader (that isthe
DataReaderQos) Which is used for newly created DataReader oObjects, in case
the constant DATAREADER_QOS_ DEFAULT iS used. The default DataReaderQos
is only used when the constant is supplied as parameter gos to specify the
DataReaderQos inthe create_datareader operation. The application must
provide the DataReaderQos abject in which the QosPolicy settings can be stored
and pass the gos reference to the operation. The operation writes the default
QosPolicy Settings to the object referenced to by gos. Any settings in the object
are overwritten.

The values retrieved by this operation match the values specified on the last
successful call to set_default_datareader gos, of, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 3,
QosPolicy Default Attributes, on page 38.

Return Code
When the operation returns:

* RETCODE_OK - the default DataReader QosPolicy Settings of this
Subscriber have successfully been copied into the specified
DataReaderQosHolder parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Subscriber has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_listener

292
API Reference

Scope
DDS. Subscriber
Synopsis
import DDS.*;
public SubscriberListener

get_listener
(void) ;

Description
This operation allows accessto a SubscriberListener.

Parameters
<none>

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

SubscriberListener - result is areference to the SsubscriberListener
attached to the subscriber.

Detailed Description

This operation allows access to a SsubscriberListener attached to the
Subscriber. When no SubscriberListener Was attached to the subscriber,
thenull referenceis returned.

get_participant

Scope

DDS. Subscriber

Synopsis
import DDS.*;
public DomainParticipant
get_participant
(void) ;

Description

This operation returns the DomainParticipant associated with the subscriber
or thenul1 pointer.

Parameters
<none>

Return Value

DomainParticipant - areference to the DomainParticipant associated with
the subscriber or thenull pointer.

Detailed Description

This operation returns the bomainParticipant associated with the subscriber.
Note that there is exactly one bomainParticipant associated with each
Subscriber. When the subscriber was already deleted (there is no associated
DomainParticipant any more), thenull pointer isreturned.

get_qos

&4 PRISMTECH

Scope

DDS.Subscriber

293
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
get_gos
(SubscriberQosHolder gos) ;

Description
This operation allows access to the existing set of QoS policiesfor a subscriber.

Parameters

inout SubscriberQosHolder gos - the destination subscriberQosHolder
object in which the gosPolicy settingswill be copied.

Return Value

int - Possiblereturn codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a Ssubscriber
on which this operation is used. This subscriberQos is stored at the location
referenced by the gos parameter.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of QoS policy values applied to this subscriber
has successfully been copied into the specified SubscriberQosHolder
parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status changes (inherited)

294
API Reference

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS. *;
public int
get_status_changes
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

lookup_datareader

&4 PRISMTECH

Scope

DDS. Subscriber

Synopsis
import DDS.*;
public DataReader
lookup_datareader
(String topic_name) ;

Description

This operation returns a previously created patarReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name.

Parameters

in String topic_name - the name of the Topic, which is attached to the
DataReader to look for.

Return Value

DataReader - Return value is areference to the batarReader found. When no
such pataReader isfound, thenull referenceisreturned.

Detailed Description

This operation returns a previously created pataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name. When
multiple bataReader objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

This operation may be used on the built-in subscriber, which returns the built-in
DataReader Objectsfor the built-in Topics.

295
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

notify_datareaders

296
API Reference

Scope

DDS.Subscriber

Synopsis
import DDS.*;
public int
notify datareaders
(void) ;

Description

This operation invokes the on_data_available operation on
DataReaderListener oObjects which are attached to contained bataReader
entities and which have new, available data.

Parameters
<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
DDS_RETCODE_ALREADY_ DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation invokes the on_data_available operation for
DataReaderListener Objectsthat are attached to contained DataReader entities
which have received information that has not yet been processed by those
DataReaders.

Thenotify_datareaders operation ignores the bit mask value of the individual
DataReaderListener Objects, even when the DATA_AVAILABLE_STATUS bit
has not been set on a bataReader that has new data available. The
on_data_available operation will still be invoked, when the
DATA_AVAILABLE_STATUS bit has not been set, but will not propagate to the
DomainParticipantListener.

When the bataReader has attached aNULL listener, the event will be consumed
and will not propagate to the DomainParticipantListener. (Remember that a
NULL listener isregarded as alistener that handles all its events as a NOOP).

Return Code

When the operation returns:

* RETCODE_OK - al appropriate listeners have been invoked.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the Ssubscriber hasalready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_default_datareader _qos

&4 PRISMTECH

Scope
DDS. Subscriber
Synopsis
import DDS.*;
public int

set_default_datareader_gos
(DataReaderQos gos) ;

Description
This operation sets the default DataReaderQos oOf the DataReader.

Parameters

in DataReaderQos gos - the DataReaderQos object, which contains the new
default gosPolicy settingsfor the newly created bataReaders.

Return Value
int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation sets the default DatarReaderQos of the DataReader (that is the
struct with the QosPolicy settings). This QosPolicy isused for newly created
DataReader Objectsin case the constant DATAREADER_QOS_DEFAULT is used as
parameter gos to specify the DataReaderQos in the create_datareader
operation. This operation checks if the bataReaderQos is self consistent. If it is
not, the operation has no effect and returns RETCODE_ INCONSISTENT_POLICY.

The values set by this operation are returned by get_default_datareader_gos.

Return Code
When the operation returns:
* RETCODE_OK - the new default DataReaderQos is set

297
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid DataReaderQos.
It contains a QosPolicy Setting with an invalid buration_t value or an enum
value that is outside its legal boundaries.

* RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting
QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

set_listener
Scope

DDS.Subscriber

Synopsis
import DDS.*;
public int
set_listener
(SubscriberListener a_listener,
int mask) ;

Description
This operation attaches a SubscriberListener tothe Subscriber.

Parameters

in SubscriberListener a_listener - a reference to the
SubscriberListener instance, which will be attached to the subscriber.

in int mask - abit mask in which each bit enables the invocation of the
SubscriberListener for acertain status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

298

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Detailed Description

This operation attaches a subscriberListener to the subscriber. Only one
SubscriberListener can be attached to each subscriber. If a
SubscriberListener was aready attached, the operation will replace it with the
new one. When a_listener isthenul1 reference, it represents a listener that is
treated as aNOOP! for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in themask, the associated subscriberListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_ status from inside the listener it will see the status
already reset. An exception to thisruleisthenul1 listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the SsubscriberListener:

« REQUESTED_DEADLINE MISSED_STATUS (propagated)
« REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
« SAMPLE_LOST_STATUS (propagated)
« SAMPLE_REJECTED_STATUS (propagated)
« DATA_AVAILABLE_STATUS (propagated)
« LIVELINESS_CHANGED_STATUS (propagated)
+ SUBSCRIPTION_ MATCHED_ STATUS (propagated).

« DATA_ON_READERS_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the subscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener Of acontained DataReader, the DataReaderListener
on that contained DataReader isinvoked instead of the subscriberListener.
This means, that a status change on a contained pataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

1. Short for No-Operation, an instruction that peforms nothing at all.

299
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

In case a communication status is not activated in the mask of the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener Of the containing bomainParticipant and a
Subscriber specific behaviour when needed. In case the
DomainParticipantListener iSaso not attached or the communication status
isnot activated in itsmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will ook in an attached and activated
DataReaderListener, SubscriberListener Or DomainParticipant
Listener for the DATA_AVATLABLE_STATUS (in that order).

Return Code

When the operation returns:

e RETCODE_OK - the subscriberListener iSattached

* RETCODE_ERROR - an interna error has occurred

* RETCODE_ALREADY_DELETED - the Subscriber hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

set_qos

300
API Reference

Scope
DDS. Subscriber
Synopsis
import DDS.*;
public int

set_gos
(SubscriberQos gos) ;

Description
This operation replaces the existing set of QosPolicy Settingsfor a subscriber.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Parameters

in SubscriberQos gos - the new set of gosPolicy settings for the
Subscriber.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED,

RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Or
RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of gosPolicy settingsfor a subscriber.
The parameter gos contains the object with the gosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled subscriber, which can only be set before the
Subscriber is enabled, the operation will fail and a
RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application must
provide the presently set gosPolicy settingsin case of the immutable QosPolicy
settings. Only the mutable gosPo1licy settings can be changed. When gos contains
conflicting QosPolicy settings (not self-consistent), the operation will fail and a
RETCODE_TINCONSTSTENT_POLICY iS returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new SubscriberQos is Set

* RETCODE_ERROR - aninterna error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid subscriberQos.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY DELETED - the Subscriber hasaready been deleted

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Subscriber.

301
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Subscription Type Specific Classes

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader is generated (based on IDL) by calling the pre-processor. In
case of data type Foo (this also applies to other types); “ Subscription type specific
classes’ contains the following classes:

This paragraph describes the generic bataReader class and the derived application
type specific <type>DataReader classes which together implement the
application subscription interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataReader Classfrom an IDL type
description. The FoobataReader class that would be generated by the
pre-processor for afictional type Foo describesthe <type>DataReader class.

I nterface DataReader

302
API Reference

A DataReader allows the application:
* to declare data it wishesto receive (i.e., make a subscription);
* to access data received by the associated subscriber.

* A DataReader refers to exactly one TopicbDescription (either a Topic, a
ContentFilteredTopic OF a MultiTopic) that identifies the samples to be
read. The DataReader may give access to several instances of the data type,
which are distinguished from each other by their key.

DataReader iSan interface. It is specialized for each particular application data
type. For afictional application datatype “Foo” (defined in the module spACE) the
specialized class would be SPACE. FooDataReader.

The interface description is as follows:

public interface DataReader

{

//

// extends interface class Entity
//

// public StatusCondition
// get_statuscondition
// (void) ;

// public int

// get_status_changes
// (void) ;

// public int

// enable

// (void) ;

//

// operations (implemented in the data type specific DataReader)
//

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
//
/7
/7
/7
/7
//
!/
/7
/7
/7
/7
//
//
/7
/7
/7
/7
/7

public int
read
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);
public int
take
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);
public int
read_w_condition
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;
public int
take_w_condition
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;
public int
read_next_sample
(<type>Holder data_value,
SampleInfoHolder sample_info) ;
public int
take_next_sample
(<type>Holder data_value,
SampleInfoHolder sample_info);
public int
read_instance
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
take_instance
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq
int max_samples,

303
API Reference

3 DCPS Classes and Operations

304
API Reference

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
read_next_instance
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
take_next_instance
(<type>SegHolder data_values,
SampleInfoSegHolder info_seqg
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
read_next_instance_w_condition
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
ReadCondition a_condition) ;
public int
take_next_instance_w_condition
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
ReadCondition a_condition) ;
public int
return_loan
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq) ;
public int
get_key_value
(<type>SegHolder key_holder,
long handle) ;
public long
lookup_instance
(<type> instance_data) ;

implemented API operations

3.5 Subscription Module

& PRISMTECH

3 DCPS Classes and Operations

public ReadCondition
create_readcondition
(int sample_states,
int view_states,
int instance_states);

public QueryCondition
create_querycondition
(int sample_states,
int view_states,
int instance_states,
String query_expression,
String[] query_parameters) ;

public int
delete_readcondition
(ReadCondition a_condition) ;

public int
delete_contained_entities
(void) ;

public int
set_qgos
(DataReaderQos gos) ;

public int
get_gos
(DataReaderQosHolder gos) ;

public int
set_listener
(DataReaderListener a_listener,
int mask) ;

public DataReaderListener
get_listener
(void) ;

public TopicDescription
get_topicdescription
(void) ;

public Subscriber
get_subscriber
(void) ;

public int
get_sample_rejected_status
(SampleRejectedStatusHolder status) ;

&4 PRISMTECH

3.5 Subscription Module

305
API Reference

3 DCPS Classes and Operations

Y

public int
get_liveliness_changed_status
(LivelinessChangedStatusHolder status);

public int
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatusHolder status) ;

public int
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatusHolder status)

public int
get_subscription_matched_status
(SubscriptionMatchedStatusHolder status);

public int
get_sample_lost_status
(SampleLostStatusHolder status);

public int
wait_for_historical_data
(Duration_t max_wait) ;

public int
get_matched_publications
(InstanceHandleSegHolder publication_handles)

public int
get_matched_publication_data

3.5 Subscription Module

7

7

(PublicationBuiltinTopicDataHolder publication_data,

long publication_handle) ;

The following paragraphs describe the usage of al patarReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operationsis located in the subclasses that contain the data type
specific implementation of these operations.

create_querycondition

306
API Reference

Scope

DDS.DataReader

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Synopsis

import DDS.*;
public QueryCondition
create_querycondition
(int sample_states,
int view_states,
int instance_states,
String query_expression,
String[] query_parameters) ;

Description
This operation creates anew QueryCondition for the DataReader.

Parameters

in

in

in

in

in

int sample_states - a mask, which selects only those samples with the
desired sample states.

int view_states - amask, which selects only those sampleswith the desired
view states.

int instance_states - amask, which selects only those samples with the
desired instance states.

String query_expression - the query string, which must be a subset of the
SQL query language.

String[] query_ parameters - asequence of strings which are the
parameter values used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced $n token in the query_expression (e.g. if $1
and %8 are used as parameter in the query_expression, the
query_parameters should at least containn+1 = 9 values).

Return Value
QueryCondition - Result valueis areferenceto the guerycondition. When the

operation fails, thenu11 referenceis returned.

Detailed Description

This operation creates anew QueryCondition for the batareader. The returned
QueryCondition is attached (and belongs) to the batarReader. When the
operation fails, thenu11 reference is returned. To delete the QueryCondition the
operation delete_readcondition Of delete_contained_entities Must be
used.

307
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Sate Masks

The result of the QueryCondition also depends on the selection of samples
determined by three masks.

* sample_states iSthe mask, which selects only those samples with the desired

sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Or both

* view_states IS the mask, which selects only those samples with the desired

view statesSNEW_VIEW_STATE, NOT NEW_VIEW_STATE or both

* instance_states iS the mask, which selects only those samples with the

desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE STATE, NOT ALIVE NO WRITERS INSTANCE STATE Or a
combination of these.

SQL Expression
The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must

be set in the sequence of strings defined by the parameter query_parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of valuesin query_parameters must be equal or greater than the highest
referenced %n token in the query_expression (e.g.if $1 and %8 are used as
parameter in the query_expression, the query_parameters should at |east

containn+1 = 9 values).

create readcondition

308
API Reference

Scope

DDS.DataReader

Synopsis
import DDS.*;
public ReadCondition
create_readcondition
(int sample_states,
int view_states,
int instance_states);

Description

This operation creates a new ReadCondition for the DataReader.

Parameters

in int sample_states - a mask, which selects only those samples with the
desired sample states.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

in int view_states - amask, which selectsonly those sampleswith the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

ReadCondition - Result valueis a reference to the ReadCondition. When the
operation fails, thenu11 referenceis returned.

Detailed Description

This operation creates a new ReadCondition for the DatarReader. The returned
ReadCondition is attached (and belongs) to the bpatarReader. When the
operation fails, the nu11 reference is returned. To delete the ReadCondition the
operation delete_readcondition Of delete_contained_entities must be
used.

Sate Masks

The result of the Readcondition depends on the selection of samples determined
by three masks:

* sample_states isthe mask, which selects only those samples with the desired
sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Of both

* view_states is the mask, which selects only those samples with the desired
view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both

* instance_states iSthe mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of a
combination of these.

delete_contained_entities

&4 PRISMTECH

Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
delete_contained_entities
(void) ;

309
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation deletes all the Ent ity objects that were created by means of one of
the“create_” operations on the bataReader.

Parameters

<none>

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES Of
RETCODE_PRECONDITION_NOT MET.

Detailed Description

This operation deletes all the Entity objects that were created by means of one of
the “create_” operations on the bataReader. In other words, it deletes all
QueryCondition and ReadCondition objects contained by the batarReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* RETCODE_OK - the contained Ent ity objects are deleted and the application may
deletethe DataReader

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader hasaready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_PRECONDITION NOT MET - one or more of the contained entities are
in a state where they cannot be del eted.

delete readcondition

310
API Reference

Scope

DDS.DataReader

Synopsis

import DDS.*;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

public int
delete_readcondition
(ReadCondition a_condition) ;

Description

This operation deletes a ReadCondition OF QueryCondition which is attached
to the DataReader.

Parameters

in ReadCondition a_condition - areference to the ReadCondition Or
QueryCondition Which isto be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES OF RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a ReadCondition OF QueryCondition which is attached
to the ataReader. Since aQueryCondition isaspecidized ReadCondition,
the operation can also be used to delete a QueryCondition. A ReadCondition
or QueryCondition cannot be deleted when it is not attached to thispataReader.
When the operation is called on a ReadCondition OfF QueryCondition Which
was not attached to this pataReader, the operation returns
RETCODE_PRECONDITION_NOT MET.

Return Code
When the operation returns:
* RETCODE_OK - the ReadCondition Or QueryCondition isdeleted

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_ PARAMETER - the parameter a_condition iS not a valid
ReadCondition_ptr

* RETCODE_ALREADY_DELETED - the DataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_PRECONDITION_NOT MET - the operation is called on a different
DataReader, as used when the ReadCondition Or QueryCondition was
created.

311
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

enable (inherited)
This operation is inherited and therefore not described here. See the classEntity
for further explanation.

Synopsis
import DDS.*;
public int
enable
(void) ;

get_key value (abstract)

This operation is defined as a generic operation, which is implemented by the
<type>DataReader class. Therefore, to use this operation, the data type specific
implementation of this operation in its respective derived class must be used. For
further explanation see the description for the fictional data type Foo derived
FooDataReader class.

Synopsis
import DDS.*;
public int
get_key value
(<type>Holder key holder,
long handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
get_listener
Scope
DDS.DataReader
Synopsis
import DDS. *;
public DataReaderListener

get_listener
(void) ;

Description

This operation allows accessto abataReaderListener.

Parameters
<none>

312
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

DataReaderListener - result is areference to the bataReaderListener
attached to the DataReader.

Detailed Description

This operation allows access to a DataReaderListener attached to the
DataReader. When no bataReaderListener Was attached to the DatarReader,
thenull referenceis returned.

get_liveliness changed_status

&4 PRISMTECH

Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
get_liveliness_changed_status
(LivelinessChangedStatusHolder status);

Description

This operation obtains the LivelinessChangedStatus object of the
DataReader.

Parameters

inout LivelinessChangedStatusHolder status - the contents of the
LivelinessChangedStatus oObject of the Datareader will be copied into
the LivelinessChangedStatusHolder specified by status.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the LivelinessChangedStatus 0bject of the
DataReader. This object contains the information whether the liveliness of one or
more batawriter objectsthat were writing instances read by the DatarReader has
changed. In other words, some patawriter have become“alive’ or “not alive”.

The LivelinessChangedStatus can also be monitored using a
DataReaderListener Or by using the associated statusCondition.

313
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

e RETCODE_OK - the current LivelinessChangedStatus Of this DataReader
has successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY_ DELETED - the DataReader has aready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_matched_publication_data

Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
get_matched_publication_data
(PublicationBuiltinTopicDataHolder publication_data,
long publication_handle) ;
Note: This operation is not yet implemented. It is scheduled for afuture release.

get_matched publications

Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
get_matched_publications
(InstanceHandleSegHolder publication_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_qos

314
API Reference

Scope
DDS.DataReader
Synopsis
import DDS.*;

public int
get_qgos

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

(DataReaderQosHolder gos) ;

Description
This operation allows access to the existing set of QoS policiesfor abataReader.

Parameters

inout DataReaderQosHolder gos -the destination DataReaderQosHolder
object in which the gosPolicy settings will be copied.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of aDataReader
on which this operation is used. This bataReaderQos is stored at the location
referenced by the gos parameter.

Return Code
When the operation returns:

* RETCODE_OK - the existing set of Qospolicy valuesapplied to thisbataReader
has successfully been copied into the specified DataReaderQosHolder
parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY DELETED - the DataReader has aready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_requested_deadline_missed_status
Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatusHolder status);

315

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation obtains the RequestedbeadlineMissedStatus object of the
DataReader.

Parameters

inout RequestedDeadlineMissedStatusHolder status - the contents of
the RequestedbDeadlineMissedStatus object of the batarReader will be
copied into the RequestedbeadlineMissedStatusHolder Specified by
status.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the RequestedbeadlineMissedStatus object of the
DataReader. This object contains the information whether the deadline that the
DataReader Was expecting through its DeadlineQosPolicy was hot respected
for a specific instance.

The RequestedDeadlineMissedStatus can also be monitored using a
DataReaderListener Of by using the associated statusCondition.

Return Code

When the operation returns:

e RETCODE_OK - the current RequestedDeadlineMissedStatus Of this
DataReader has successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_requested_incompatible_qos status

316
API Reference

Scope

DDS.DataReader

Synopsis
import DDS. *;
public int
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatusHolder status) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation obtains the RequestedIncompatibleQosStatus object of the
DataReader.

Parameters

inout RequestedIncompatibleQosStatusHolder status - the contents of
the RequestedIncompatibleQosStatus object of the bataReader will be
copied into the RequestedIncompatibleQosStatusHolder Specified by
status.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the RequestedIncompatibleQosStatus object of the
DataReader. This object contains the information whether a QospPolicy Setting
was incompatible with the offered QosPolicy setting.

The Request/Offering mechanism is applicable between the batawriter and the
DataReader. If the QosPolicy Settings between Datawriter and DataReader
are inconsistent, no communication between them is established. In addition the
Datawriter will be informed via a REQUESTED_INCOMPATIBLE_QOS Status
change and the DpataReader will be informed via an
OFFERED_INCOMPATIBLE_QOS Status change.

The RequestedIncompatibleQosStatus can also be monitored using a
DataReaderListener Or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current RequestedIncompatibleQosStatus Of this
DataReader has successfully been copied into the specified status parameter.

* RETCODE_ERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_sample lost_status

&4 PRISMTECH

Scope
DDS.DataReader

317
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

318
API Reference

Synopsis
import DDS.*;
public int
get_sample_lost_status
(SampleLostStatusHolder status);

Description
This operation obtainsthe sampleLostStatus object of the bataReader.

Parameters

inout SampleLostStatusHolder status - the contents of the
SampleLostStatus oObject of the DataReader will be copied into the
SampleLostStatusHolder Specified by status.

Note Thisstatusisnot yet implemented. It is scheduled for afuture release. Until it
isimplemented all returned attribute values will be initialized to 0.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the sampleLostStatus object of the DataReader. This
object contains information whether samples have been lost. This only applieswhen
the ReliabilityQosPolicy IS set to RELIABLE. If the
ReliabilityQosPolicy iSSet to BEST EFFORT the Data Distribution Service
will not report the loss of samples.

The sampleLostStatus can also be monitored using a bataReaderListener
or by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current sampleLostStatus Of this DataReader has
successfully been copied into the specified status parameter.

* RETCODE_FERROR - an internal error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_sample rejected_status

Scope
DDS.DataReader
Synopsis
import DDS.*;
public int

get_sample_rejected_status
(SampleRejectedStatusHolder status);

Detailed Description
This operation obtainsthe sampleRejectedStatus object of the DataReader.

Parameters

inout SampleRejectedStatusHolder status - the contents of the
SampleRejectedStatus oObject of the batareader will be copied into the
SampleRejectedStatusHolder specified by status.

Return Value

int - Possiblereturn codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_ DELETED Orf RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the sampleRejectedStatus object of the batarReader.
This object contains the information whether a received sample has been rejected.

The sampleRejectedStatus can also be monitored using a
DataReaderListener OF by using the associated statusCondition.

Return Code

When the operation returns:

* RETCODE_OK - the current SampleRejectedStatus Of this DataReader has
successfully been copied into the specified status parameter.

* RETCODE_ERROR - aninterna error has occurred.
* RETCODE_ALREADY_DELETED - the DataReader has aready been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

get_status _changes (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

319
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
get_status_changes
(void) ;

get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

get_subscriber
Scope

DDS.DataReader
Synopsis

import DDS. *;

public Subscriber

get_subscriber
(void) ;

Description
This operation returns the subscriber to which the batareader belongs.

Parameters
<none>

Return Value

Subscriber - Return value is areference to the subscriber object to which the
DataReader belongs.

Detailed Description

This operation returns the subscriber to which the batarReader belongs, thus
the subscriber that has created the DataReader. If the DataReader is aready
deleted, thenul1l referenceisreturned.

320

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_subscription_matched_status
Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
get_subscription_match_status
(SubscriptionMatchedStatusHolder status);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
get_topicdescription
Scope

DDS.DataReader

Synopsis
import DDS.*;
public TopicDescription
get_topicdescription
(void) ;

Description

This operation returns the Topicbescription which is associated with the
DataReader.

Parameters
<none>

Return Value

TopicDescription - Return value is areference to the TopicbDescription
object which is associated with the DataReader.

Detailed Description

This operation returns the Topicbescription which is associated with the
DataReader, thus the TopicDescription with which the DataReader is
created. If the DataReader isaready deleted, thenull referenceis returned.

lookup_instance (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FooDataReader.

321

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public long
lookup_instance
(<type> instance_data) ;

read (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobDataReader

Synopsis
import DDS.*;
public int
read
(<type>SeqgHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);

read_instance (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobDataReader

Synopsis
import DDS.*;
public int
read_instance
(<type>SegHolder data_values,

SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

read_next_instance (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobataReader.

322
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
read_next_instance
(<type>SegHolder data_values,

SampleInfoSegHolder info_seqg
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

read_next_instance_w_condition (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
read_next_instance_w_condition
(<type>SegHolder data_values,

SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
ReadCondition a_condition) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

read_next_sample (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FoobataReader.

Synopsis
import DDS.*;
public int
read_next_sample
(<type>Holder data_value,
SampleInfoHolder sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future rel ease.

read_w_condition (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FooDataReader.

323
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
read_w_condition
(<type>SeqgHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;

return_loan (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobataReader.

Synopsis
import DDS.*;
public int
return_loan
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq) ;

set_listener

324
API Reference

Scope
DDS.DataReader
Synopsis
import DDS.*;
public int
set_listener

(DataReaderListener a_listener,
int mask) ;

Description
This operation attaches aDataReaderListener tOthe DataReader.

Parameters

in DataReaderListener a_Jlistener - a reference to the
DataReaderListener instance, which will be attached to the bataReader.

in int mask - abit mask in which each bit enables the invocation of the
DataReaderListener for acertain status.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DataReaderListener t0 the DataReader. Only one
DataReaderListener can be attached to each pataReader. If a
DataReaderListener Was aready attached, the operation will replace it with the
new one. When a_listener isthenull reference, it represents alistener that is
treated as a NOOP for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedFlag flag isinitialy set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication statusisreset to false, asthe listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to thisruleisthenul1 listener, which does not reset the
communication statuses for which it isinvoked.

The following statuses are applicable to the DataReaderListener:

« REQUESTED_DEADLINE_MISSED_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

+ SAMPLE_LOST_STATUS

« SAMPLE_REJECTED_STATUS

« DATA_AVAILABLE_STATUS

« LIVELINESS_CHANGED_STATUS

* SUBSCRIPTION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR

operation to create a tailored mask. The special constant ANY_sTATUS can be used
to select al statuses applicable to the DataReaderListener.

Satus Propagation

In case a communication status is not activated in the mask, the
SubscriberListener Of the DataReaderListener isinvoked (if attached and
activated for the status that occurred). This allows the application to set a default
behaviour in the subscriberListener of the containing Ssubscriber and a

1. Short for No-Operation, an instruction that peforms nothing at all.

325
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DataReader specific behaviour when needed. In case the communication status is
not activated in the mask of the subscriberListener as well, the
communication status will be propagated to the DomainParticipantListener
of the containing DomainParticipant. In case the
DomainParticipantListener isaso not attached or the communication status
is not activated in itSmask, the application is not notified of the change.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with aget_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
Distribution Service will first look in an attached and activated
SubscriberListener Of DomainParticipantListener (inthat order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener Of DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code

When the operation returns:

* RETCODE_OK - the DataReaderListener is attached

* RETCODE_FERROR - an interna error has occurred

* RETCODE_ALREADY DELETED - the DataReader hasaready been deleted.

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

set_qos

326
API Reference

Scope
DDS.DataReader
Synopsis
import DDS.*;
public int

set_gos
(DataReaderQos gos) ;

Description
This operation replaces the existing set of gosPolicy settingsfor abataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Parameters

in DataReaderQos gos - the new set of gosPolicy settings for the
DataReader.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_IMMUTABLE_POLICY
Or RETCODE_INCONSISTENT_POLICY.

Detailed Description

This operation replaces the existing set of gosPolicy settings for aDataReader.
The parameter gos contains the gosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled DataReader, which can only be set before the batarReader
is enabled, the operation will fail and aRETCODE_IMMUTABLE_POLICY iSreturned.
In other words, the application must provide the presently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable gosPolicy
settings can be changed. When gos contains conflicting gosPolicy setting (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT POLICY iS
returned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code

When the operation returns:

* RETCODE_OK - the new DataReaderQos is Set

* RETCODE_ERROR - aninterna error has occurred.

* RETCODE_BAD_PARAMETER - the parameter gos isnot avalid DataReaderQos.
It contains aQosPolicy setting with aninvalid buration_t value.

* RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values are
currently not supported by OpenSplice.

* RETCODE_ALREADY_DELETED - the DataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataReader

327
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_INCONSISTENT_POLICY - the parameter gos contains conflicting

QosPolicy Settings, e.g. ahistory depth that is higher than the specified resource
limits.

take (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FoobataReader.

Synopsis
import DDS.*;
public int
take
(<type>SegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);

take instance (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FoobDataReader.

Synopsis
import DDS.*;
public int
take_instance
(<type>SeqgHolder data_values,

SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

take next_instance (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type rFoo
interface FoobataReader.

Synopsis
import DDS. *;
public int

328
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

take_next_instance
(<type>SegHolder data_values,

SampleInfoSegHolder info_seq
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

take next_instance w_condition (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobataReader.

Synopsis
import DDS.*;
public int
take_next_instance_w_condition
(<type>SegHolder data_values,

SampleInfoSegHolder info_seqg
int max_samples,
long a_handle,
ReadCondition a_condition) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

take next_sample (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FoobataReader.

Synopsis
import DDS.*;
public int
take_next_sample
(<type>Holder data_value,
SampleInfoHolder sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

take w_condition (abstract)

To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional datatype Foo
interface FoobataReader.

Synopsis
import DDS.*;

329
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

public int
take_w_condition
(<type>SegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;

wait_for_historical_data

330
API Reference

Scope

DDS.DataReader

Synopsis
import DDS.*;
public int
wait_for_historical_data
(Duration_t max_wait);

Description

This operation will block the application thread until all “historical” datais
received.

Parameters

in Duration_t max_wait - the maximum duration to block for the
wait_for_historical_data, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED, RETCODE_OUT_OF_RESOURCES,
RETCODE_NOT_ENABLED Of RETCODE_TIMEOUT.

Detailed Description

This operation behaves differently for batareader objects which have a
NON-VOLATILE_DURABILITY_QOS DurabilityQosPolicy and for
DataReader Objects which have a VOLATILE _DURABILITY_QOS
DurabilityQosPolicy.

As soon as an application enables a non-voLATILE_DURABILITY_QOS
DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the DatarReader joined the domain, as well as any new

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

datawritten by the Datawriter objects. There are situations where the application
logic may require the application to wait until all “historical” datais received. This
isthe purpose of thewait_for_historical_data operation.

As soon as an application enables a VOLATILE_DURABILITY_QOS DataReader it
will not start receiving “historical” data but only new data written by the
DataWriter objects. By calingwait_for_historical_data theDataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” datais received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.

Thread Blocking

The operationwait_for_historical_data blocksthe calling thread until either
all “historical” datais received, or the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of RETCODE_OK
indicates that all the “historical” data was received; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
received.

Return Code

When the operation returns:

* RETCODE_OK - the“historical” datais received

e RETCODE_ERROR - an interna error has occurred.

* RETCODE_ALREADY DELETED - the DataReader hasaready been deleted

* RETCODE_OUT _OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the DataReader iSnot enabled.
* RETCODE_TIMEOUT - not al dataisreceived beforemax_wait elapsed.

I nterface FooDataReader

&4 PRISMTECH

The pre-processor generates from IDL type descriptions the application
<type>DataReader interfaces. For each application data type that is used as
Topic datatype, atyped interface <type>DataReader extends the DataReader
interface. In this paragraph, the interface FoobataReader in the package spACE
describes the operations of these extending <type>DataReader interfaces as an
examplefor the fictional application type Foo (defined in the module SPACE).

331
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

332
API Reference

Sate Masks

A FooDataReader refersto exactly one Topicbescription (either aTopic, a
ContentFilteredTopic OF aMultiTopic) that identifies the datato be read.
Therefore it refers to exactly one data type. The Topic must exist prior to the
FooDataReader creation. The FooDataReader may give access to several
instances of the data type, which are distinguished from each other by their key. The
FooDataReader is attached to exactly one subscriber which acts as a factory
for it.

Theinterface description is as follows:

public interface FooDataReader

{

//

// extends interface Entity

//

// public StatusCondition

// get_statuscondition

// (void) ;

// public int

// get_status_changes

// (void) ;

// public int

// enable

// (void) ;

//

// extended to interface DataReader
//

// public ReadCondition

// create_readcondition

// (int sample_states,
// int view_states,

// int instance_states);

// public QueryCondition

// create_qguerycondition

// (int sample_states,

// int view_states,

// int instance_states,

// String query_expression,

// String[] query_parameters) ;

// public int
// delete_readcondition
// (ReadCondition a_condition) ;

// public int
// delete_contained_entities

// (void) ;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

//
//
/7

/7
/7
//

/7
/7
/7
/7

//
/7
/7

/7
//
//

/7
/7
/7

//
/7
/7

/7
//
//

/7
/7
/7

!/
/7
/7

/7
//
/7

/7
/7
/7

public int
set_qgos
(DataReaderQos gos) ;

public int
get_gos
(DataReaderQosHolder gos) ;

public int
set_listener
(DataReaderListener a_listener,
int mask);

public DataReaderListener
get_listener
(void) ;

public TopicDescription
get_topicdescription
(void) ;

public Subscriber
get_subscriber
(void) ;

public int
get_sample_rejected_status
(SampleRejectedStatusHolder status) ;

public int
get_liveliness_changed_status
(LivelinessChangedStatusHolder status);

public int
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatusHolder status);

public int
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatusHolder status) ;

public int
get_subscription_matched_status
(SubscriptionMatchedStatusHolder status);

public int
get_sample_lost_status
(SamplelostStatusHolder status) ;

3.5 Subscription Module

333
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

334
API Reference

//
//
//

//
//
//

//
//
//
//
//
//
//

public int
wait_for historical_data
(Duration_t max_wait) ;

public int
get_matched_publications
(InstanceHandleSegHolder publication_handles) ;

public int
get_matched_publication_data
(PublicationBuiltinTopicDataHolder publication_data,
long publication_handle) ;

implemented API operations

public int
read
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);
public int
take
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);
public int
read_w_condition
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;
public int
take_w_condition
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;
public int
read_next_sample
(FooHolder data_value,
SampleInfoHolder sample_info);
public int
take_next_sample
(FooHolder data_value,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

SampleInfoHolder sample_info);
public int
read_instance
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
take_instance
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
read_next_instance
(FooSegHolder data_values,
SampleInfoSegHolder sample_info,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
take_next_instance
(FooSegHolder data_values,
SampleInfoSegHolder sample_info,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);
public int
read_next_instance_w_condition
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
ReadCondition a_condition) ;
public int
take_next_instance_w_condition
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,

335
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

ReadCondition a_condition) ;
public int
return_loan
(FooSegHolder data_values,
SampleInfoSegHolder info_seq) ;
public int
get_key_value
(FooHolder key_holder
long handle) ;
long
lookup_instance
(Foo instance_data) ;
Y

The following paragraphs describe the usage of all FooDataReader operations.
The inherited operations are listed but not fully described because they are not

implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

create_querycondition (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
QueryCondition
create_qgquerycondition
(int sample_states,

int view_states,
int instance_states,
String query_expression,
String[] query_parameters) ;

create readcondition (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
ReadCondition
create_readcondition
(int sample_states,
int view_states,
int instance_states);

delete _contained_entities (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

336
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
int

delete_contained_entities
(void) ;

delete readcondition (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
delete_readcondition
(ReadCondition a_condition) ;

enable (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
public int
enable
(void) ;

get_key value
Scope

SPACE.FooDataReader

Synopsis
public int
get_key value
(FooHolder key holder,
long handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

get_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public DataReaderListener
get_listener

337

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

(void) ;

get_liveliness_changed_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_liveliness_changed_status
(LivelinessChangedStatusHolder status);

get_matched_publication_data (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_matched_publication_data
(PublicationBuiltinTopicDataHolder publication_data,
long publication_handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_matched publications (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_matched_publications
(InstanceHandleSegHolder publication_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public void
get_gos
(DataReaderQosHolder gos) ;

338

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_requested_deadline missed_status (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_requested_deadline_missed_status
(RequestedDeadlineMissedStatusHolder status);

get_requested_incompatible _qos status (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_requested_incompatible_gos_status
(RequestedIncompatibleQosStatusHolder status) ;

get_sample lost_status (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_sample_lost_status
(SampleLostStatusHolder status);

get_sample rejected_status (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_sample_rejected_status
(SampleRejectedStatusHolder status) ;

get_status _changes (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

339
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
public int
get_status_changes
(void) ;

get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
get_statuscondition
(void) ;

get_subscriber (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public Subscriber
get_subscriber
(void) ;

get_subscription_match_status (inherited)

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
get_subscription_matched_status
(SubscriptionMatchedStatusHolder status);

Note: This operation is not yet implemented. It is scheduled for afuture release.

get_topicdescription (inherited)

340
API Reference

This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public TopicDescription
get_topicdescription

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

(void) ;
lookup_instance
Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public long
lookup_instance
(Foo instance_data) ;

Description

This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters

in Foo instance_data - the instance for which the corresponding instance
handle needs to be looked up.

Return Value

long - Result value is the instance handle which corresponds to the
instance_data.

Detailed Description

This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that bataReader instance handles are local, and are
not interchangeable with patawriter instance handles nor with instance handles
of an other bataReader. If the DataReader isaready deleted, the handle value
HANDLE_NIL isreturned.

read
Scope
SPACE.FooDataReader
Synopsis
import DDS.*;
public int
read
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
341
&4 PRISMTECH

API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

342
API Reference

int max_samples,

int sample_states,
int view_states,

int instance_states);

Description
This operation reads a sequence of Foo samples from the FooDataReader.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSegHolder info_seq - thereturned sampleInfo object
seguence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat isreturned.

in int sample_states - a mask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selectsonly those samples with the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader. The
datais returned by the parameters data_values and info_seq. The number of
samplesthat isreturned islimited by the parameter max_samples. Thisoperation
is part of the specialized interface which is generated for the particular application
data type (in this case type Foo) that is being read. If the FooDataReader has no
samples that meet the constraints, the return value iS RETCODE_NO_DATA.

Sate Masks
The read operation depends on a selection of the samples by using three masks:

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

* sample_states isthe mask, which selects only those samples with the desired
sample statesREAD_SAMPLE_STATE, NOT_READ_SAMPLE_STATE Or both

* view_states is the mask, which selects only those samples with the desired
view StaleSNEW_VIEW_STATE, NOT_NEW_VIEW_STATE oOr both

e instance_states iS the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of a
combination of these

Destination Order

In any case, the relative order between the samples of one instance is consistent with
the DestinationOrderQosPolicy Of the Subscriber.

When the DestinationOrderQosPolicy kind is
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the samples belonging
to the same instances will appear in the relative order in which they were received
(FIFO);

When the DestinationOrderQosPolicy kind is
BY_SOURCE_TIMESTAMP_ DESTINATIONORDER_QOS, the samples belonging to
the same instances will appear in the relative order implied by the
source_timestamp.

Data Sample

In addition to the sample sequence (data_values parameter), the operation also
returns a sequence of sampleInfo objects with the parameter info_seqg. The
info_seq Objects and data_values also determine the behaviour of this
operation.

Resource Control

The initial length of the data_values and info_seqg Sequences
(received_data.value.length and info_seqg.value.length) determine
the precise behaviour of the read operation. The behaviour of the read operation is
as specified by the following rules:

» On successful output, the sequence holders contain arrays whose 1ength is equal
to the number of returned samples. These arrays may be different from the ones
originally passed in the sequence holders.

« If the Holder objects have value == null, or if their value fields point to
arrays that have length == 0, the received_data and info_seq Sequence
are filled with elements that are “loaned” by the FooDatareader. On output, the

343
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

344
API Reference

sequence holders contain arrays whose 1ength is egqual to the number of returned
samples. In this case the application will need to “return the loan” to the Data
Distribution Service using the return_1loan operation.

* |f the Holder objects have value fields that point to arraysthat have 1ength > 0,
the read operation will copy the Foo samples and info_seqg vaues into the
elements aready allocated inside the sequences (effectively overwriting the
current state of these elements). On output the sequence holders contain arrays
whose 1ength is equal to the number of returned samples. The application can
pre-allocate the elements of the array and does not need to “return the loan”. The
number of samples copied depends on the relative values of length and
max_samples:

- If max_samples == LENGTH_UNLIMITED, a most length values are copied.
The use of this variant lets the application limit the number of samples returned
to what the sequence can accommodate;

- If max_samples <= length, a MOst max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate;

-If max_samples > length the read operation will fail and returns
RETCODE_PRECONDITION_NOT_MET. This avoids the potential confusion
where the application expects to be able to access up to max_samples, but that
number can never be returned, even if they are avalable in the
FooDataReader, because the output sequence can not accommodate them.

Buffer Loan

As described above, upon return the data_values and info_seq Sequences may
contain elements “loaned” from the Data Distribution Service. If thisisthe case, the
application will need to use the return_1oan operation to return the “loan” once it
is no longer using the data in the sequence. Upon return from return_1loan, the
Holder objects have their value settonull.

The application must remember if it is necessary to “return the loan” or not.
However, in many cases it may be simpler to always call return_loan, asthis
operation is harmless if the sequence does not hold a loan.

Data uence

On output, the sequence of data values and the sequence of sampleInfo objectsare
of the same length and are in an one-to-one correspondence. Each sampleInfo
object providesinformation, such asthe source_timestamp, the sample_state,
view_state, and instance_state, €tC., about the matching sample.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Some elements in the returned sequence may not have valid dataithe valid_data
field in the sampleInfo indicates whether the corresponding data value contains
any meaningful data. If not, the datavalue isjust a‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the sampleInfo that
communicates a change in the instance_state of an instance for which thereis
no ‘real’ sample available.

For example, when an application always ‘takes’ all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the batarReader will insert a dummy sample into the
data_values sequence to accompany the sampleInfo elementinthe info_seq
sequence that communicates the disposal of the instance.

The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If the
sample belongs to the most recent generation of the instance, it also sets the
view_state Of the instance to NOT_NEW_VIEW_STATE. It does not affect the
instance_state Of theinstance.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

* RETCODE_ERROR - aninterna error has occurred.

* RETCODE_BAD PARAMETER - one or more of the received_data and
info_seq parametersisan invalid reference.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader IS not enabled.

* RETCODE_PRECONDITION_NOT _MET - the max_samples > length and
max_samples iS NOt LENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.

read_instance

&4 PRISMTECH

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
read_instance
(FooSegHolder data_values,

345
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

346
API Reference

SampleInfoSegHolder info_seq,
int max_samples,

long a_handle,

int sample_states,

int view_states,

int instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_segq - thereturned sampleInfo object
seguence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.
in long a_handle - the single instance, the samples belong to.

in int sample_states - amask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selectsonly those sampleswith the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour isidentical to read except for that all samples
returned belong to the single specified instance whose handle is a_handile. Upon
successful return, the data collection will contain samples all belonging to the same
instance. The datais returned by the parameters data_values and info_seq. The
corresponding SampleInfo.instance_handle in info_seqg Will have the value

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

of a_handle. The DataReader will check that each sample belongs to the
specified instance (indicated by a_hand1e) otherwiseit will not place the samplein
the returned collection.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - one or more of the received_data and
info_seq parametersisan invalid reference or a_handle isnot avalid handle.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader iS not enabled.

* RETCODE_PRECONDITION NOT MET - the max_samples > length and
max_samplesiSﬂOtLENGTH_UNLIMITED

e RETCODE_NO_DATA - N0 samples that meet the constraints are available.

read_next_instance

&4 PRISMTECH

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
read_next_instance
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.

347
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

348
API Reference

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqgHolder info_segq - thereturned sampleInfo object
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in long a_handle - the current single instance, the returned samples belong to
the next single instance.

in int sample_states - amask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selects only those samples with the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is similar to read _instance (all samples
returned belong to a single instance) except that the actual instance is not directly
specified. Rather the samples will all belong to the ‘next’ instance with
instance_handle ‘greater’ (according to some internal-defined order) than
a_handle, that has available samples. The data is returned by the parameters
data_values and info_seq. The corresponding
SampleInfo.instance_handle in info_seqg Will has the value of the next
instance with respect to a_handle.

Instance Order

The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘asif’ each instance handle was represented as a unique integer.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

The behaviour of read_next_instance is‘asif’ the pataReader invoked
read_instance passing the smallest instance_handle among al the ones that:

e aregreater than a_handle

 have available samples (i.e. samples that meet the constraints imposed by the
specified states)

The special value HANDLE_NTL is guaranteed to be ‘less than’ any valid
instance_handle. So the use of the parameter value
a_handle==HANDLE_NIL.value Will return the ssmples for the instance which
has the smallest instance_handle among all the instances that contains available
samples.

Typical Use

The operation read_next_instance is intended to be used in an
application-driven iteration where the application starts by passing
a_handle==HANDLE_NTIL.value, examines the samples returned, and then uses
the instance_handle returned in the sampleInfo asthe value of a_handle
argument to the next call to read_next_instance. Theiteration continues until
read_next_instance returnsthe return value RETCODE_NO_DATA.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

e RETCODE_ERROR - an interna error has occurred.

* RETCODE_BAD_PARAMETER - one or more of the received_data and
info_seq parametersisan invalid reference or a_handle isnot avalid handle.

* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader IS not enabled.

* RETCODE_PRECONDITION_NOT _MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.
read_next_instance_w_condition

Scope

SPACE.FooDataReader

349

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

350
API Reference

Synopsis
import DDS.*;
public int
read_next_instance_w_condition
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqgHolder info_segq - thereturned sampleInfo object
seguence. info_seq isaso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in long a_handle - the current single instance, the returned samples belong to
the next single instance.

in ReadCondition a_condition - areferenceto areadCondition object or
QueryCondition object which filters the data before it is returned by the read
operation.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition.
The behaviour isidentical t0 FoobataReader_read_next_instance except for
that the samples arefiltered by arReadCondition OF QueryCondition. When
using a ReadCondition, the result is the same as the
FooDataReader_read_next_instance operation with the same state

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

parameters filled in as for the create_readcondition. In this way, the
application can avoid repeating the same parameters, specified when creating the
ReadCondition. When using a QueryCondition, acontent based filtering can
be done. When either using arReadcondition Of QueryCondi tion, the condition
must be created by this FoobDataReader. Otherwise the operation will fail and
returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:

RETCODE,_OK - a sequence of data valuesis available
RETCODE._ERROR - an interna error has occurred.

RETCODE_BAD_PARAMETER - One or more of the received_data, info_seq
and a_condition parametersisaninvalid referenceor a_handle isnot avalid
handle.

RETCODE_ALREADY_DELETED - the FooDataReader has aready been deleted

RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

RETCODE_NOT _ENABLED - the FooDataReader iSnot enabled.

RETCODE_PRECONDITION_NOT MET - the max_samples > length and
max_samplesiSﬂOtLENGTH_UNLIMITED

RETCODE_NO_DATA - n0 samples that meet the constraints are available.

read_next_sample

Scope

SPACE.FooDataReader

Synopsis

import DDS.*;
public int
read_next_sample
(FooHolder data_value,
SampleInfoHolder sample_info);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

read_w_condition

Scope

&4 PRISMTECH

SPACE.FooDataReader

351
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

352
API Reference

Synopsis
import DDS.*;
public int
read_w_condition
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples from the FoobataReader, filtered
by areadCondition Or QueryCondition.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSegHolder info_seq - thereturned sampleInfo object
sequence. info_seq isalso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in ReadCondition a_ condition - areferenceto aReadCondition Or
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_ MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition Or QueryCondition. The condition reference from both
create_readcondition Of create_querycondition may be used. The
behaviour is identical to read except for that the samples are filtered by a
ReadCondition OF QueryCondition. When using aReadCondition, the result
is the same as the read operation with the same state parameters filled in as for the
create_readcondition. In thisway, the application can avoid repeating the
same parameters, specified when creating the ReadCondition. When using a
QueryCondition, acontent based filtering can be done. When either using a

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

ReadCondition OF QueryCondition, the condition must be created by this
FooDataReader. Otherwise the operation will fail and returns
RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* RETCODE_OK - asequence of datavaluesis available

* RETCODE_ERROR - an internal error has occurred.

* RETCODE _BAD PARAMETER - one or more of the received _data, info_seq
and a_condition parametersisan invalid reference.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader iS not enabled.

* RETCODE_PRECONDITION NOT MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

e RETCODE_NO_DATA - N0 samples that meet the constraints are available.

return_loan

&4 PRISMTECH

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
return_loan
(FooSegHolder data_values,
SampleInfoSegHolder info_seq) ;

Description

This operation indicates to the Datareader that the application is done accessing
the sequence of data_values and info_seq.

Parameters

inout FooSegHolder data_values - the sample data sequence which was
loaned from the DataReader.

inout SampleInfoSegHolder info_seq - the SampleInfo Object sequence
which was loaned from the bataReader.

353
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

354
API Reference

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,

RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED Ofr
RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation indicates to the bataReader that the application is done accessing
the sequence of data_values and info_seq obtained by some earlier invocation
of the operation read or take (or any of the similar operations) on the
DataReader.

Thedata_values and info_seqg must belong to asingle related pair; that is, they
should correspond to a pair returned from a single call to the operation read or
take. The data_values and info_seqg must also have been obtained from the
same DataReader to which they are returned. If either of these conditions is not
met the operation will fail and returns RETCODE_ PRECONDITION_NOT_MET.

Buffer Loan

The operation return_loan alows implementations of the read and take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “ zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.

It is not necessary for an application to return the loans immediately after calling the
operation read or take. However, asthese buffers correspond to internal resources
inside the Datareader, the application should not retain them indefinitely.

Calling return_loan

The use of the return_1oan operation isonly necessary if the call to the operation
read Or take “loaned” buffers to the application. This only occurs if the
data_values and info_seq Sequences had 1length=0 at the time the operation
read Or take was called. The application must remember if it is necessary to
“return the loan” or not. However, calling the operation return_1loan on a pair of
seguences that does not have aloan is safe and has no side effects.

If the pair of sequences had a loan, upon return from the operation return_loan
their Holder objects will have their value settonull.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_OK - the DataReader isinformed that the sequences will not be used
any more

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD PARAMETER - either or both of received_data or info_seqis
an invalid reference

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
* RETCODE_PRECONDITION_NOT MET - oneof thefollowingistrue
-thereceived_data and info_seq does not belong to asingle related pair

-the received data and info _seq was not obtained from this
FooDataReader

set_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
set_listener
(DataReaderListener a_listener,
int mask);

set_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
set_qgos
(DataReaderQos gos) ;

take
Scope

SPACE.FooDataReader

355

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

356
API Reference

Synopsis
import DDS.*;
public int
take
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
int sample_states,
int view_states,
int instance_states);

Description

This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the datafrom the FoobataReader.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSegHolder info_seq - thereturned sampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in int sample_states - a mask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selectsonly those samples with the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the data from the FoobDataReader, SO it can not be read or taken
again. The behaviour isidentical to read except for that the samples are removed
from the FooDataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE_BAD_PARAMETER - €ither or both of received_data Or info_seqis
an invalid reference

* RETCODE_ALREADY DELETED - the FooDataReader has aready been deleted

* RETCODE_OUT OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader iS not enabled.

* RETCODE_PRECONDITION NOT MET - the max_samples > length and
max_samplesiSﬂOtLENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.

take instance

&4 PRISMTECH

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
take_instance
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.
Parameters

inout FooSegHolder data_values - thereturned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

357
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

358
API Reference

inout SampleInfoSegHolder info_seq - thereturned sampleInfo object
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.
in long a_handle - the singleinstance, the samples belong to.

in int sample_states - a mask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selectsonly those samples with the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FoobataReader, SO
it can not be read or taken again. The behaviour isidentical to read_instance
except for that the samples are removed from the FooDataReader.

Return Code

When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

e RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - €ither or both of received_data Or info_seqis
aninvalid reference or a_handle isnot avalid handle.

* RETCODE_ALREADY DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT ENABLED - the FooDataReader iSnot enabled.

* RETCODE_PRECONDITION NOT MET - the max_samples > length and
max_samplesiSﬂOtLENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

take next_instance

&4 PRISMTECH

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
take_next_instance
(FooSegHolder data_values,

SampleInfoSegHolder sample_info,
int max_samples,
long a_handle,
int sample_states,
int view_states,
int instance_states);

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters

inout FooSegHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSegHolder info_seq - thereturned sampleInfo object
sequence. info_seq isalso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in long a_handle - the current single instance, the returned samples belong to
the next single instance.

in int sample_states - amask, which selects only those samples with the
desired sample states.

in int view_states - amask, which selectsonly those sampleswith the desired
view states.

in int instance_states - amask, which selects only those samples with the
desired instance states.

359
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT_MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FoobataReader, SO
it can not be read or taken again. The behaviour is identical to
read_next_instance except for that the samples are removed from the
FooDataReader

Return Code

When the operation returns:

* RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD PARAMETER - €ither or both of received_data Or info_seqiS
aninvalid reference or a_handle isnot avaid handle.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.

e RETCODE_PRECONDITION NOT MET - theé max_samples > length and
max_samples is not LENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.

take next_instance w_condition

360
API Reference

Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
take_next_instance_w_condition
(FooSegHolder data_values,
SampleInfoSegHolder info_seq,
int max_samples,

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

long a_handle,
ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the datafrom the FooDataReader.

Parameters

inout FooSeqgHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - thereturned sampleInfo object
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in long a_handle - the current single instance, the returned samples belong to
the next single instance.

in ReadCondition a_condition - areferenceto a ReadCondition oOr
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FooDataReader, S0 it can not be read
or taken again. The behaviour is identical to
read_next_instance_w_condition except for that the samples areremoved
from the FoobataReader.

Return Code

When the operation returns:

* RETCODE_OK - a Sequence of data values is available and removed from the
FooDataReader.

* RETCODE_ERROR - aninternal error has occurred.

361
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_BAD PARAMETER - one or more of the received_data, info_seq
and a_condition parametersisaninvalid referenceor a_handle isnot avalid
handle.

* RETCODE_ALREADY_DELETED - the FooDataReader hasaready been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.

e RETCODE_PRECONDITION NOT MET - theé max_samples > length and
max_samplesiSﬂOtLENGTH_UNLIMITED

* RETCODE_NO_DATA - no samples that meet the constraints are available.

take next_sample
Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
take_next_sample
(FooHolder data_value,
SampleInfoHolder sample_info);

Note: This operation is not yet implemented. It is scheduled for afuture release.

take w_condition
Scope

SPACE.FooDataReader

Synopsis
import DDS.*;
public int
take_w_condition
(FooSegHolder data_values,

SampleInfoSegHolder info_seq,
int max_samples,
ReadCondition a_condition) ;

Description

This operation reads a sequence of Foo samples from the FooDataReader, filtered
by arReadCondition Or QueryCondition and by doing so, removes the data
from the FoobataReader.

362

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Parameters

inout FooSeqgHolder data_values - the returned sample data sequence.
data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - thereturned sampleInfo object
sequence. info_seq is aso used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samplesthat is returned.

in ReadCondition a_condition - areferenceto a ReadCondition oOr
QueryCondition which filters the data before it is returned by the read
operation.

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED,
RETCODE_OUT_OF_RESOURCES, RETCODE_NOT_ENABLED,
RETCODE_PRECONDITION_NOT MET Of RETCODE_NO_DATA.

Detailed Description

This operation reads a sequence of Foo samples from the FooDataReader, filtered
by aReadCondition Or QueryCondition and by doing so, removes the data
from the FoobataReader, SO it can not be read or taken again. The behaviour is
identical to read_w_condition except for that the samples are removed from the
FooDataReader.

Return Code

When the operation returns:

* RETCODE_OK - a Sequence of data values is available and removed from the
FooDataReader.

* RETCODE_ERROR - aninternal error has occurred.

* RETCODE _BAD PARAMETER - one or more of the received _data, info_seq
and a_condition parametersisan invalid reference.

* RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* RETCODE_NOT_ENABLED - the FooDataReader iS not enabled.

* RETCODE_PRECONDITION NOT MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED.

363
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* RETCODE_NO_DATA - N0 samples that meet the constraints are available.

wait_for_historical_data (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
wait_for_historical_data
(Duration_t max_wait) ;

Class DataSample

A DataSample represents an atom of data information (i.e. one value for an
instance) as returned by the DataReader’s read/take operations. It consists of
two parts: A sampleInfo and the Data itself. The Data part is the data as
produced by a publisher. The sampleInfo part contains additional information
related to the data provided by the Data Distribution Service.

Class Samplel nfo

The class sampleInfo represents the additional information that accompanies the
datain each samplethat is read or taken.

The interface description of this classis as follows:

public class SampleInfo

{
public int sample_state;
public int view_state;
public int instance_state;
public Time_t source_timestamp;
public long instance_handle;
public BuiltinTopicKey_ t publication_handle;
public int disposed_generation_count;
public int no_writers_generation_count;
public int sample_rank;
public int generation_rank;
public int absolute_generation_rank;
public boolean valid_data;

}:
The next paragraph describes the usage of the sampleInfo struct.

Samplelnfo
Scope
DDS

364

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

Synopsis
import DDS.*;
public class SampleInfo
{

public int sample_state;
public int view_state;
public int instance_state;
public Time_t source_timestamp;
public long instance_handle;
public BuiltinTopicKey_ t publication_handle;
public int disposed_generation_count;
public int no_writers_generation_count;
public int sample_rank;
public int generation_rank;
public int absolute_generation_rank;
public boolean valid_data;

I

Description

The class sampleInfo represents the additional information that accompanies the
datain each sample that is read or taken.

Attributes

int sample_state - Whether or not the corresponding data sample has already
been read.

int view_state - Whether the DatarReader has already seen samples of the
most-current generation of the related instance.

int instance_state - Whether theinstance isalive, has no writers or is disposed
of.

Time_t source_timestamp - the time provided by the patawriter when the
sample was written.

long instance_handle - the handle that identifies locally the corresponding
instance.

long publication_handle - the handle that identifies locally the batawriter
that modified the instance. In fact it isthe instance_handle of the built-in
DCPSPublication samplethat describesthispatawriter. It canbeused asa
parameter to the bataReader operation get_matched_publication_data
to obtain this built-in bcPsPublication Sample.

int disposed_generation_ count - the number of times the instance has
become alive after it was disposed of explicitly by abpatawriter.

365
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

366
API Reference

int no_writers_generation_count - the number of times the instance has
become alive after it was disposed of because there were no DatawWriter
objects.

int sample_rank - the number of samples related to the same instance that are
found in the collection returned by a read or take operation.

int generation_rank - the generation difference between the time the sample
was received and the time the most recent sample in the collection was received.

int absolute generation_rank - the generation difference between the time
the sample was received and the time the most recent sample was received.

boolean valid_data - whether the DataSample contains any meaningful data. If
not, the sampleis only used to communicate achangeinthe instance_state
of theinstance.

Detailed Description

The class sampleInfo represents the additional information that accompanies the
datain each samplethat is read or taken.

Generations

A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==ALIVE_INSTANCE_STATE) at the time the sample was
received’. Note that the generation counters are initialized to zero when a
DataReader first detects a never-seen-before instance.

Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.

After abatawriter disposes an instance, the disposed_generation_count
for al DataReaders that already knew that instance will be incremented the next
time the instance is written again.

If the DataReader detects that there are no live patawriter entities, the
instance_state Of the sample_info will change from
ALIVE_INSTANCE_STATE {0 NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. The
next time the instance is written, no_writers_generation_count Will be
incremented.

Sample Information

SampleInfo istheadditional information that accompanies the datain each sample
that is‘read’ or ‘taken’. It contains the following information:

* sample_state (READ_SAMPLE_STATE Of NOT_READ_SAMPLE_STATE)
indicates whether or not the corresponding data sample has already been read.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

&4 PRISMTECH

view_state (NEW_VIEW_STATE Of NOT NEW_VIEW_ STATE) indicates whether
the pataReader has aready seen samples of the most-current generation of the
related instance.

instance_state (ALIVE_INSTANCE STATE, NOT_ALIVE DISPOSED
INSTANCE_STATE, Of NOT_ALIVE_NO_WRITERS_INSTANCE_STATE) indicates
whether the instance is aive, has no writers or if it has been disposed of:

- ALTVE_INSTANCE_STATE if thisinstanceis currently in existence.

- NOT_ALIVE_DISPOSED_INSTANCE_STATE if thisinstance was disposed of by
aDataWriter.

- NOT_ALIVE_NO_WRITERS_INSTANCE_STATE hone of the DataWriter
objects currently “aive’ (according to the LivelinessQosPolicy) are
writing the instance.

source_timestamp indicates the time provided by the pDatawriter when the
sample was written.

instance_handle indicates|ocally the corresponding instance.

publication_handle indicates system wide the publisher of the sample, the
local publication handle can be found with the DataReader operation
lookup_instance forthepublication_handle.

disposed_generation_count indicates the number of times the instance has
become alive after it was disposed of explicitly by aDatawriter, at the time the
sample was received.

no_writers_generation_count indicates the number of times the instance
has become aive after its instance_state has been
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, a the time the sample was
received.

sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by aread or take operation.

generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received.

absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not bein the
returned collection), related to the same instance, was received.

367
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

* valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the sampleInfo that
communicatesachangeinthe instance_state of aninstance for which thereis
no ‘real’ sample available.

SubscriberLisener Interface

368
API Reference

Since a subscriber iSan Entity, it has the ability to have aListener
associated with it. In this case, the associated Listener should be of type
SubscriberListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must implement the
SubscriberListener interface.

All subscriberListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

The subscriberListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy Setting, etc. The subscriberListener isrelated to changesin
communication status.

The interface description is as follows:

public interface SubscriberListener

{

//

// extends interface DataReaderListener

//

// public void

// on_requested_deadline_missed

// (DataReader reader,

// RequestedDeadlineMissedStatus status) ;

// public void

// on_requested_incompatible_gos
// (DataReader reader,
// RequestedIncompatibleQosStatus status) ;

// public void

// on_sample_rejected
// (DataReader reader,
// SampleRejectedStatus status);

// public void
// on_liveliness_changed

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

// (DataReader reader,
// LivelinessChangedStatus& status) ;

// public void
// on_data_available

// (DataReader reader);

// public void

// on_subscription_matched
// (DataReader reader,
// SubscriptionMatchedStatus status);

// public void

// on_sample_lost

// (DataReader reader,

// SampleLostStatus status) ;
//

// external operations

//

public void
on_data_on_readers
(Subscriber subs) ;

//

// implemented API operations
// <no operations>

//

}s
The following paragraphs list all subscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. Thefull description of these operationsis given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

on_data available (inherited)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_data_available
(DataReader reader) ;

on_data on_readers

&4 PRISMTECH

Scope
DDS.SubscriberListener

369
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

370
API Reference

Synopsis
import DDS.*;
public void
on_data_on_readers
(Subscriber subs) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

in Subscriber subs - contain areferenceto the subscriber for which datais
available (thisis an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new datais
available for this subscriber. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
SubscriberListener IS installed and enabled for the
DATA_ON_READERS_STATUS.

The Data Distribution Service will provide areference to the subscriber in the
parameter subs for use by the application.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
look for an attached and activated SubscriberListener Ofr
DomainParticipantListener (in that order) for the
DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_ STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

Note that if on_data on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the callback function on_data_available Of DataReaderListener oObjects
that have data by means of thenotify_datareaders operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

on_liveliness_changed (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_liveliness_changed
(DataReader reader,
LivelinessChangedStatus status) ;

on_requested_deadline_missed (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_requested_deadline_missed
(DataReader reader,
RequestedDeadlineMissedStatus status) ;

on_requested_incompatible_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void]
on_requested_incompatible_gos
(DataReader reader,
RequestedIncompatibleQosStatus status) ;

on_sample |ost (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_sample_lost
(DataReader reader,
SampleLostStatus status) ;
Note: Thisoperation is not yet supported. It is scheduled for a future release.

371

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

on_sample reected (inherited)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_sample_rejected
(DataReader reader,
SampleRejectedStatus status);

on_subscription_matched (inherited,)

This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
on_subscription_matched
(DataReader reader,
SubscriptionMatchedStatus status) ;

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DataReader Listener interface

372
API Reference

Since abataReader iSan Entity, it has the ability to have aListener
associated with it. In this case, the associated Listener should be of type
DataReaderListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must implement the
DataReaderListener interface. All bataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DataReaderListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The bataReaderListener is related to changesin
communication status.

The interface description of this classis asfollows:

public interface DataReaderListener

{

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

//
// external operations
//
public void
on_requested_deadline_missed
(DataReader reader,
RequestedDeadlineMissedStatus status) ;
public void
on_requested_incompatible_gos
(DataReader reader,
RequestedIncompatibleQosStatus status);

public void
on_sample_rejected
(DataReader reader,
SampleRejectedStatus status);

public void
on_liveliness_changed
(DataReader reader,
LivelinessChangedStatus status) ;

public void
on_data_available
(DataReader reader) ;

public public void
on_subscription_matched
(DataReader reader,
SubscriptionMatchedStatus status);

public void
on_sample_lost
(DataReader reader,
SampleLostStatus status) ;

//

// implemented API operations
// <no operations>

//

}i

The following paragraphs describe the usage of all bataReaderListener
operations. These abstract operations are fully described because they must be
implemented by the application.

3.5.6.1 on_data_available
Scope
DDS.DataReaderListener

373

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

374
API Reference

Synopsis
import DDS.*;
public void
on_data_available
(DataReader reader) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when new datais available.

Parameters

in DataReader reader - contain areferenceto the batarReader for which data
isavailable (thisis an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new datais
available for this DatarReader. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
DATA_AVAILABLE_ STATUS.

The Data Distribution Service will provide areference to the patareader in the
parameter reader for use by the application.

The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
look for an attached and activated SubscriberListener Of
DomainParticipantListener (in that order) for the
DATA_ON_READERS_ STATUS. In case the DATA_ON_READERS_ STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener, SubscriberListener or
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

Note that if on_data on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the DataReader objects that have data by means of thenotify datareaders
operation.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

on_liveliness_changed

&4 PRISMTECH

Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_liveliness_changed
(DataReader reader,
LivelinessChangedStatus status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more patawriter objects that
were writing instances read through this DatarReader has changed.

Parameters

in DataReader reader - contain areferencetothe bataReader for which the
liveliness of one or more Datawriter objects has changed (thisis an input to
the application provided by the Data Distribution Service).

in LivelinessChangedStatus status - contain the
LivelinessChangedStatus oObject (thisis an input to the application
provided by the Data Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more bataWriter objects that were writing instances read through this
DataReader has changed. In other words, some batawriter have become
“alive” or “not alive”. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
LIVELINESS_CHANGED_STATUS.

The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the LivelinessChangedStatus object for use by the
application.

375
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

on_requested _deadline missed

376
API Reference

Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_requested_deadline_missed
(DataReader reader,
RequestedDeadlineMissedStatus status) ;

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the patarReader was expecting
through its beadlineQosPolicy was not respected.

Parameters

in DataReader reader - contain areference to the batareader for which the
deadline was missed (this is an input to the application provided by the Data
Distribution Service).

in RequestedDeadlineMissedStatus status - contain the
RequestedDeadlineMissedStatus oObject (thisis an input to the
application provided by the Data Distribution Service).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the bataReader was expecting through its DeadlineQosPolicy was not
respected for a specific instance. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
REQUESTED_DEADLINE_MISSED_STATUS.

The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the RequestedDeadlineMissedStatus Object in the
parameter status for use by the application.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

on_requested_incompatible gos

&4 PRISMTECH

Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_requested_incompatible_gos
(DataReader reader,
RequestedIncompatibleQosStatus status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters

in DataReader reader - areferenceto the patarReader provided by the Data
Distribution Service.

in RequestedIncompatibleQosStatus status - the
RequestedIncompatibleQosStatus oObject provided by the Data
Distribution Service.

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be
left empty when this functionality is not needed. This operation will only be called
when the relevant bataReaderListener iSinstalled and enabled for the
REQUESTED_INCOMPATIBLE_QOS_STATUS.

The Data Distribution Service will provide a reference to the patareader in the
parameter reader and the RequestedIncompatibleQosStatus Object in the
parameter status, for use by the application.

The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
REQUESTED_INCOMPATIBLE_QOS_STATUS in the mask in the call to
DataReader.set_listener. When the DataReaderListener on the

377
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

DataReader iSnot enabled for the REQUESTED_INCOMPATIBLE_QOS_STATUS,
the status change will propagate to the subscriberListener oOf the Subscriber
(if enabled) or to the DomainParticipantListener Of the
DomainParticipant (if enabled).

on_sample |ost
Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_sample_lost
(DataReader reader,
SampleLostStatus status) ;
Note: This operation is not yet supported. It is scheduled for a future release.

on_sample regected
Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_sample_rejected
(DataReader reader,
SampleRejectedStatus status);

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters

in DataReader reader - contain areference to the bataReader for which a
sample has been rejected (thisis an input to the application provided by the Data
Distribution Service).

in SampleRejectedStatus status - contain the SsampleRejectedStatus
object (thisis an input to the application provided by the Data Distribution
Service).

Return Value

<none>

378
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener IS installed and enabled for the
SAMPLE_REJECTED_STATUS.

The Data Distribution Service will provide a reference to the patareader in the
parameter reader and the sampleRejectedStatus object in the parameter
status for use by the application.

on_subscription_matched (abstract)

Scope

DDS.DataReaderListener

Synopsis
import DDS.*;
public void
on_subscription_matched
(DataReader reader,
SubscriptionMatchedStatus status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

I nter face ReadCondition

&4 PRISMTECH

The pataReader Objects can create a set of ReadCcondition (and
StatusCondition) objects which provide support (in conjunction with waitset
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., state-based rather than event-based).

ReadCondition objects allow an DataReader to specify the data samplesit is
interested in (by specifying the desired sample-states, view-states, and
instance-states); see the parameter definitions for bataReader's
create_readcondition operation. This allows the Data Distribution Service to
trigger the condition only when suitable information is available. ReadCcondition
objects are to be used in conjunction with awaitset. More than one
ReadCondition may be attached to the same DataRreader.

The interface description of this classis asfollows:

public interface ReadCondition

{

//

// extends to interface Condition
//

379
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

//
//
//
//
//
//

Y

boolean
get_trigger_value
(void) ;

implemented API operations

int
get_sample_state_mask
(void) ;

int
get_view_state_mask
(void) ;

int
get_instance_state_mask
(void) ;

DataReader
get_datareader
(void) ;

The following paragraphs describe the usage of all ReadCcondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

get_datareader

380
API Reference

Scope

DDS.ReadCondition

Synopsis
import DDS.*;
public DataReader

get_datareader

(void) ;

Description
This operation returns the DataReader associated with the ReadCondition.

Parameters

<none>

Return Value
DataReader - Result value is areference to the DataReader.

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation returns the Dat arReader associated with the Readcondition. Note
that there is exactly one DataReader associated with each ReadCondition (i.e.
the DataReader that created the ReadCondi tion object).

get_instance state mask
Scope

DDS.ReadCondition
Synopsis

import DDS.*;

public int

get_instance_state_mask
(void) ;

Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger_value of theReadCondition.

Parameters
<none>

Return Value

int - Result value are the instance_states specified when the
ReadCondition was created.

Detailed Description

This operation returns the set of instance_states that are taken into account to
determinethe trigger_value of the ReadCondition.

The instance_states returned are the instance_states specified when the
ReadCondition was created. instance_states can be
ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Or acombination of these.

get_sample_state mask
Scope
DDS.ReadCondition
Synopsis
import DDS.*;

381

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

public int
get_sample_state_mask
(void) ;
Description

This operation returns the set of sample_states that are taken into account to
determinethe trigger_value of theReadCondition.

Parameters
<none>

Return Value

SampleStateMask - Result value are the sample_states specified when the
ReadCondition Was created.

Detailed Description

This operation returns the set of sample_states that are taken into account to
determinethe trigger_value of theReadCcondition.

The sample_states returned are the sample_states specified when the
ReadCondition was created. sample_states can be READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE or both.

get_trigger_value (inherited)

This operation is inherited and therefore not described here. See the interface
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
get_trigger_value
(void) ;

get_view_state mask

382
API Reference

Scope

DDS.ReadCondition

Synopsis
import DDS.*;
public int
get_view_state_mask
(void) ;

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Description

This operation returns the set of view_states that are taken into account to
determinethe trigger value Of the ReadCondition.

Parameters

<none>

Return Value

ViewStateMask - Result value are the view_states specified when the
ReadCondition was created.

Detailed Description

This operation returns the set of view_states that are taken into account to
determinethe trigger_value of the ReadCcondition.

The view_states returned are the view_states specified when the
ReadCondition was created. view_states can be NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE or both.

I nterface QueryCondition

&4 PRISMTECH

QueryCondition objects are specialized ReadCondition objects that allow the
application to specify afilter on thelocally available data. The Datareader objects
accept a set of QueryCondition objectsfor the Datareader and provide support
(in conjunction with waitset objects) for an alternative communication style
between the Data Distribution Service and the application (i.e., state-based rather
than event-based).

Query Function

QueryCondition objects allow an application to specify the data samplesit is
interested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for bataReader's
read/take operations. This allows the Data Distribution Service to trigger the
condition only when suitable information is available. QueryCondition objects
are to be used in conjunction with awaitset. More than one QueryCondition
may be attached to the same DataReader.

The query (query_expression) issimilar to an SQL WHERE clause and can be
parameterised by arguments that are dynamically changeable with the
set_query_parameters operaIi on.

The interface description is as follows:

public interface QueryCondition
{
//
383
APl Reference

3 DCPS Classes and Operations

//
//
//
//
//

//
//
//

//
//
//

//
//
//
//
//
//
//
//
//

Y

extends interface ReadCondition

public int
get_sample_state_mask
(void) ;

public int
get_view_state_mask
(void) ;

public int
get_instance_state_mask
(void) ;

public DataReader
get_datareader
(void) ;
public boolean
get_trigger_value
(void) ;

implemented API operations
public String
get_guery_expression

(void) ;

public int
get_query_parameters

(StringSegHolder query_parameters) ;

public int
set_query_parameters

(String[] query_parameters) ;

3.5 Subscription Module

The following paragraphs describe the usage of all QueryCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.8.1 get_datareader (inherited)
This operation is inherited and therefore not described here. See the interface

ReadCondition for further explanation.

Synopsis
import DDS.*;
public DataReader

384
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

get_datareader
(void) ;

get_instance_state_mask (inherited)

This operation is inherited and therefore not described here. See the interface

ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
get_instance_state_mask
(void) ;

get_query parameters

&4 PRISMTECH

Scope

DDS.QueryCondition

Synopsis
import DDS.*;
public int
get_query_ parameters
(StringSegHolder query_parameters) ;

Description

This operation obtains the query_parameters associated with the
QueryCondition.

Parameters

inout StringSeqHolder query parameters - areference to the destination
StringSegHolder oObject in which the the parameters used in the SQL
expression will be copied.

Return Value

int - Possible return codes of the operation are; RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_ DELETED Of RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation obtains the query_parameters associated with the
QueryCondition. That is, the parameters specified on the last successful call to
set_query_arguments O, if set_query_arguments was never called, the
arguments specified when the QueryCondi tion were created.

385
API Reference

3 DCPS Classes and Operations 3.5 Subscription Module

The resulting Holder contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokensin the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the query
expression associated with the QueryCondition.

Return Code

When the operation returns:

* RETCODE_OK - the existing set of query parameters applied to this
QueryCondition has successfully been copied into the specified
query_parameters parameter.

* RETCODE_ERROR - aninternal error has occurred.
* RETCODE_ALREADY_DELETED - the QueryCondition hasaready been deleted.
* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.
get_query_expression
Scope

DDS.QueryCondition
Synopsis

import DDS.*;

public String

get_query_expression
(void) ;

Description
This operation returns the query expression associated with the QueryCondition.

Parameters
<none>

Return Value

String - Result value is areference to the query expression associated with the
QueryCondition.

386

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description

This operation returns the query expression associated with the QueryCondition.
That is, the expression specified when the QueryCondition was created. The
operation will return nu11 when there was an internal error or when the
QueryCondition was already deleted. If there were no parameters, an empty
sequenceis returned.

get_sample_state mask (inherited)
This operation is inherited and therefore not described here. See the interface
ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
get_sample_state_mask
(void) ;

get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
import DDS.*;
public boolean
get_trigger_value
(void) ;

get_view_state mask (inherited)

This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
get_view_state_mask
(void) ;

set_query_parameters
Scope

DDS.QueryCondition

Synopsis
import DDS.*;

387
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.5 Subscription Module

388
API Reference

public int
set_query_arguments
(String[] parameters) ;

Description
This operation changes the query parameters associated with the QueryCondition.

Parameters

in String[] query_parameters - asequence of strings which are the
parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value

int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_BAD_PARAMETER, RETCODE_ALREADY_DELETED Of
RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the query parameters associated with the
QueryCondition. The parameter query_parameters iS a sequence of strings
which are the parameters used in the SQL query string (i.e., the “%n” tokensin the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g. if $1 and
%8 are used as parameter in the query_expression, the query_parameters
should at least containn+1 = 9 values).

Return Code
When the operation returns:

* RETCODE_OK - the query parameters associated with the QueryCondition are
changed.

* RETCODE_ERROR - an internal error has occurred.

* RETCODE_BAD_PARAMETER - the number of parametersin query_parameters
does not match the number of “%n” tokens in the expression for this
QueryCondition or one of the parametersis an illegal parameter.

* RETCODE_ALREADY_DELETED - the QueryCondition has aready been
deleted.

* RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

APPENDICES

Appendix

Quality Of Service

Each Entity isaccompanied by an <Entity>Qos classthat implementsthe basic
mechanism for an application to specify Quality of Service attributes. This class
consists of Entity specific QosPolicy attributes. QosPolicy attributes are
classes where each class specifies the information that controls an Entity related
(configurable) attribute of the Data Distribution Service. A QosPolicy attribute
classisidentified as <name>QosPolicy.

Affected Entities

Each Entity can be configured with a set of QosPolicy settings. However, any
Entity cannot support any QosPolicy. For instance, a bomainParticipant
supports different QosPolicy settings than a Topic or a Publisher. The set of
QosPolicy Settingsisimplemented as a class of QosPolicy classes, identified as
<Entity>Qos. Each <Entity>Qos class only contains those QosPolicy classes
relevant to the specific Entity. The <Entity>Qos class serves as the parameter to
operations which require a Qos. <Entity>Qos classisthe APl implementation of
the QoS. Depending on the specific <Entity>Qos, it controls the behaviour of a
Topic, DataWriter, DataReader, Publisher, Subscriber,

DomainParticipant Of DomainParticipantFactoryl.

Basic Usage

& PRISMTECH

The basic way to modify or set the <Entity>Qos iS by using an get_gos
operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an set_gos operation to set all QosPolicy settingson thisEntity (that is
the <Entity>Qos). An example of these operations for the batawriterQos are
get_default datawriter gos and set_default_ datawriter gos, which
takethe DatawWriterQos asaparameter.

The interface description of this classis as shown below.

//public class <name>QosPolicy
// see appendix
//

1. Note that the bomainParticipantFactory iS a specia kind of entity: it does not
inherit from Entity, nor does it have a Listener Or StatusCondition, but its
behaviour can be controlled by its own set of QosPolicies.

391
Java Reference Guide

Appendices

//

//public class <Entity>Qos

//

public class DomainParticipantFactoryQos

{
public
Y

EntityFactoryQosPolicy entity factory;

public class DomainParticipantQos

{
public
public
public
public
}i

UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity factory;
SchedulingQosPolicy watchdog_scheduling;
SchedulingQosPolicy listener_scheduling;

public class TopicQos

{
public

public
public
public
public
public
public
public
public
public
public
public
public

}i

TopicDataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

OwnershipQosPolicy ownership;

public class DataWriterQos

{
public
public
public
public
public
public
public
public
public
public
public
public
public
public

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDataLifecycleQosPolicy

writer_data_lifecycle;

392
Java Reference Guide

& PRISMTECH

Appendices

Y

public class PublisherQos
{
public PresentationQosPolicy presentation;
public PartitionQosPolicy partition;
public GroupDataQosPolicy group_data;
public EntityFactoryQosPolicy entity_factory; };

public class DataReaderQos
{
public DurabilityQosPolicy durability;
public DeadlineQosPolicy deadline;
public LatencyBudgetQosPolicy latency_budget;
public LivelinessQosPolicy liveliness;
public ReliabilityQosPolicy reliability;
public DestinationOrderQosPolicy destination_order;
public HistoryQosPolicy history;
public ResourceLimitsQosPolicy resource_limits;
public UserDataQosPolicy user_data;
public OwnershipQosPolicy ownership;
public TimeBasedFilterQosPolicy time_based_filter;
public ReaderDatalLifecycleQosPolicy
reader_data_lifecycle;
Y

public class SubscriberQos

{
public PresentationQosPolicy presentation;
public PartitionQosPolicy partition;
public GroupDataQosPolicy group_data;
public EntityFactoryQosPolicy entity_factory; };
//
// implemented API operations
// <no operations>

The following paragraphs describe the usage of each <Entity>Qos class.

DataReader Qos
Scope

DDS

Synopsis
import DDS.*;
public class DataReaderQos

{
public DurabilityQosPolicy durability;
public DeadlineQosPolicy deadline;

393

& PRISMTECH Java Reference Guide

Appendices

394

public LatencyBudgetQosPolicy latency_budget;
public LivelinessQosPolicy liveliness;
public ReliabilityQosPolicy reliability;
public DestinationOrderQosPolicy destination_order;
public HistoryQosPolicy history;
public ResourceLimitsQosPolicy resource_limits;
public UserDataQosPolicy user_data;
public OwnershipQosPolicy ownership;
public TimeBasedFilterQosPolicy time_based_filter;
public ReaderDataLifecycleQosPolicy
reader_data_lifecycle;
Y

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for anatareader.

Attributes

public DurabilityQosPolicy durability - whether the data should be
stored for late joining readers.

public DeadlineQosPolicy deadline - the period within which a new
sample is expected.

public LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

public LivelinessQosPolicy liveliness - theway the liveliness of the
DataReader IS asserted to the Data Distribution Service.

public ReliabilityQosPolicy reliability - thereliability of the data
distribution.

public DestinationOrderQosPolicy destination_order -theorderin
which the bataReader timely orders the data.

public HistoryQosPolicy history - how samplesshould be stored.

public ResourceLimitsQosPolicy resource limits -the maximum
amount of resources to be used.

public UserDataQosPolicy user_data - used to attach additional
information to the DataReader.

public OwnershipQosPolicy ownership - whether abDataWriter
exclusively owns an instance.

public TimeBasedFilterQosPolicy time based filter -themaximum
datarate at which the DatarReader will receive changes.

& PRISMTECH

Java Reference Guide

Appendices

public ReaderDataLifecycleQosPolicy reader data_lifecycle -the
minimum time after which a data instance is disposed of when the
instance_state hasbecome NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
or NOT_ALTIVE_DISPOSED_INSTANCE_STATE

Detailed Description

A QosPolicy can be set when the bataReader is created with the
create_datareader operation (or modified with the set_qgos operation). Both
operations take the DataReaderQos object as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at bataReader creation time or prior to calling the enable
operation on the DataReader.

See Section 3.1.3, Class QosPoalicy, on page 33 for alist of all <name>QosPolicy
settings, their meaning, characteristics, possible values and applicability to
DataReaderS.

Theinitial value of the default bataReaderQos inthe subscriber are givenin
the following table:

Table 16 DATAREADER_QOS DEFAULT

QosPoalicy Attribute Value

durability kind VOLATILE_DURABILITY_QOS
service_cleanup_delay 0

deadline period DURATION_INFINITY

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS
lease_duration DURATION_INFINITY

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

& PRISMTECH

395

Java Reference Guide

Appendices

Table 16 DATAREADER_QOS DEFAULT (Continued)

QosPalicy

Attribute Value

user_data

value.length 0

lifecycle

nowriter_samples_delay

ownership kind SHARED_OWNERSHIP_QOS
time_based_filter minimum_separation 0
reader_data_ autopurge_ DURATION_INFINITE

autopurge_ DURATION_INFINITE
disposed_samples_delay

DataWriter Qos

Scope

DDS

Synopsis

import DDS.*;

396
Java Reference Guide

public class DataReaderQos

{

public
public
public
public
public
public
public
public
public
public
public
public
public
public

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_ budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDatalLifecycleQosPolicy

writer_data_lifecycle;

Y

& PRISMTECH

Appendices

& PRISMTECH

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for abatawriter.

Attributes

public DurabilityQosPolicy durability - whether the data should be
stored for late joining readers.

public DeadlineQosPolicy deadline - the period within which a new
sampleiswritten.

public LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

public LivelinessQosPolicy liveliness - theway the liveliness of the
DataWriter isasserted to the Data Distribution Service.

public ReliabilityQosPolicy reliability - thereliability of the data
distribution.

public DestinationOrderQosPolicy destination_order - theorderin
which the bataReader timely orders the data.

public HistoryQosPolicy history - how samples should be stored.

public ResourceLimitsQosPolicy resource_limits -the maximum
amount of resources to be used.

public TransportPriorityQosPolicy transport_priority - apriority
hint for the underlying transport layer.

public LifespanQosPolicy 1ifespan -the maximum duration of validity of
the data written by the batawriter.

public UserDataQosPolicy user_data - used to attach additional
information to the Datawriter.

public OwnershipQosPolicy ownership - whether a batawriter
exclusively owns an instance.

public OwnershipStrengthQosPolicy ownership_strength - the
strength to determine the ownership.

public WriterDataLifecycleQosPolicy writer_data_lifecycle -
whether unregistered instances are disposed of automatically or not

Detailed Description

A QosPolicy can be set when the patawWriter is created with the
create_datawriter operation (or modified with the set_qgos operation). Both
operations take the batawriterQos object as a parameter. There may be cases

397
Java Reference Guide

Appendices

where several policies arein conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_qgos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at batawWriter creation time or prior to calling the enable
operation on the Datawriter.

Theinitial value of the default DatawriterQos inthe Publisher aregivenin the

following table:

Table 17 DATAWRITER_QOS DEFAULT

QosPolicy Attribute Value

durability kind VOLATILE_DURABILITY_QOS
service_cleanup_delay 0

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS
lease_duration DURATION_INFINITY

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking time

100 ms

destination_order kind BY_ RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

transport_priority

value

0

lifespan

duration

DURATION_INFINITE

user_data

value.length

0

ownership kind SHARED_OWNERSHIP_QOS
ownership_strength value 0
writer_data_lifecycle |autodispose_ true

unregistered_instances

DomainPar ticipantFactoryQos

Scope

DDS

398
Java Reference Guide

& PRISMTECH

Appendices

Synopsis

import DDS.*;

public class DomainParticipantFactoryQos

{ public EntityFactoryQosPolicy entity_factory; };

Description

This class provides the basic mechanism for an application to specify Quality of

Service attributes for aDomainParticipantFactory.

Attributes

EntityFactoryQosPolicy entity_factory - whether ajust created
DomainParticipant should be enabled.

Detailed Description

The QospPolicy cannot be set at creation time, since the
DomainParticipantFactory iSapre-existing object that can only be obtained
with the bomainParticipantFactory.get_instance operation or its alias
TheParticipantFactory. Thereforeits QosPolicy isinitialized to a default
value according to the following table:

Table 18 Default Valuesfor DomainParticipantFactoryQos
QosPalicy Attribute Value

entity_factory autoenable_ created_entities TRUE

After creation the gosPolicy can be modified with the set_gos operation on the
DomainParticipantFactory, which takes the
DomainParticipantFactoryQos Classasaparameter.

DomainParticipantQos

& PRISMTECH

Scope

DDS

Synopsis

import DDS.*;

public class DomainParticipantQos

{ public UserDataQosPolicy user_data;
public EntityFactoryQosPolicy entity factory;
public SchedulingQosPolicy watchdog_scheduling;
public SchedulingQosPolicy listener_scheduling; };

399
Java Reference Guide

Appendices

400

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for aDomainParticipant.

Attributes

public UserDataQosPolicy user_data - used to attach additional
information to the bomainParticipant.

public EntityFactoryQosPolicy entity_factory - whether ajust created
Entity should be enabled.

SchedulingQosPolicy watchdog_scheduling - the scheduling parameters
used to create the watchdog thread.

SchedulingQosPolicy listener_scheduling - the scheduling parameters
used to create the listener thread.

Detailed Description
A DomainParticipant Will spawn different threads for different purposes.

» A listener thread is spawned to perform the callbacks to all Listener objects
attached to the various Entities contained in the DomainParticipant. The
scheduling parameters for this thread can be specified in the
listener_scheduling field of the DomainParticipantQos.

» A watchdog thread is spawned to report the the Liveliness of all Entities
contained in the DomainParticipant Whose LivelinessQosPolicyKind in
their LivelinessQosPolicy IS Set t0 AUTOMATIC_LIVELINESS_QOS. The
scheduling parameters for this thread can be specified in the
watchdog_scheduling field of the DomainParticipantQos.

A QosPolicy can be set when the bomainParticipant is created with the
create_participant operation (or modified with the set_gos operation). Both
operations take the bomainParticipantQos Object as a parameter. There may be
cases Where several policies are in conflict. Consistency checking is performed each
time the policies are modified when they are being created and, in case they are
aready enabled, viathe set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DomainParticipant creation timeor prior to calling the enable
operation on the DomainParticipant.

& PRISMTECH

Java Reference Guide

Appendices

The initial value of the default DomainParticipantQos in the
DomainParticipantFactory aregiven inthefollowing table:

Table 19 PARTICIPANT_QOS DEFAULT

QosPoalicy Attribute Value

user_data value.length 0

entity_factory autoenable_created_entities true

watchdog_scheduling scheduling_class.kind SCHEDULE_DEFAULT
scheduling priority_kind.kind PRIORITY RELATIVE
scheduling_priority 0

listener_scheduling scheduling_class.kind SCHEDULE_DEFAULT
scheduling_priority_kind.kind PRIORITY_RELATIVE
scheduling priority 0

Publisher Qos
Scope

DDS

Synopsis

import DDS.*;
public class PublisherQos
{
public PresentationQosPolicy presentation;
public PartitionQosPolicy partition;
public GroupDataQosPolicy group_data;
public EntityFactoryQosPolicy entity_factory; };

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for aPublisher.

Attributes

public PresentationQosPolicy presentation - the dependency of
changes to data-instances.

public PartitionQosPolicy partition - the partitionsin which the
Publisher iSactive.

public GroupDataQosPolicy group_data - used to attach additional
information to the Publisher.

401

& PRISMTECH Java Reference Guide

Appendices

public EntityFactoryQosPolicy entity. factory - whether ajust created
DataWriter should be enabled

Detailed Description

A QosPolicy can be set when the publisher is created with the
create_publisher operation (or modified with the set_qgos operation). Both
operations take the publisherQos object as a parameter. There may be cases
where severa policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_qgos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Publisher creation time or prior to calling the enable operation
onthe publisher.

The initial value of the default PublisherQos in the DomainParticipant are
given in the following table:

Table20 PUBLISHER_QOS DEFAULT

402

QosPoalicy Attribute Value
presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access false
ordered_access false
partition name.length 0
group_data value.length 0
entity_factory |autoenable_created_entities true
Subscriber Qos
Scope
DDS
Synopsis

import DDS.*;
public class SubscriberQos
{
public PresentationQosPolicy presentation;
public PartitionQosPolicy partition;
public GroupDataQosPolicy group_data;
public EntityFactoryQosPolicy entity factory; };

& PRISMTECH

Java Reference Guide

Appendices

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for a subscriber.

Attributes

public PresentationQosPolicy presentation - the dependency of
changes to data-instances.

public PartitionQosPolicy partition - the partitionsin which the
Subscriber isactive.

public GroupDataQosPolicy group_data - used to attach additional
information to the subscriber.

public EntityFactoryQosPolicy entity_factory - whether ajust created
DataReader should be enabled

Detailed Description

A QosPolicy can be set when the subscriber is created with the
create_subscriber operation (or modified with the set_gos operation). Both
operations take the subscriberQos object as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, viathe set_gos operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at subscriber creation time or prior to calling the enable
operation on the subscriber.

The initial value of the default SsubscriberQos inthe DomainParticipant are
given in the following table:

Table 21 SUBSCRIBER_QOS DEFAULT

QosPoalicy Attribute Value
presentation access_scope INSTANCE_PRESENTATION_QOS
coherent_access fase
ordered access false
partition name.length 0
group_data value.length 0
entity_factory autoenable created entities | true

& PRISMTECH

403
Java Reference Guide

Appendices

TopicQos

404

Scope

DDS

Synopss

import DDS.*;

public class TopicQos

{

public TopicDataQosPolicy topic_data;
public DurabilityQosPolicy durability;
public DurabilityServiceQosPolicy durability_ service;
public DeadlineQosPolicy deadline;
public LatencyBudgetQosPolicy latency_budget;
public LivelinessQosPolicy liveliness;
public ReliabilityQosPolicy reliability;
public DestinationOrderQosPolicy destination_order;
public HistoryQosPolicy history;
public ResourcelLimitsQosPolicy resource_limits;
public TransportPriorityQosPolicy transport_priority;
public LifespanQosPolicy lifespan;
public OwnershipQosPolicy ownership; };

Description

This class provides the basic mechanism for an application to specify Quality of
Service attributes for a Topic.

Attributes

public TopicDataQosPolicy topic_data - used to attach additional
information to the Topic.

public DurabilityQosPolicy durability - whether the data should be
stored for late joining readers.

public DurabilityServiceQosPolicy durability service - the
behaviour of the “transient/persistent service” of the Data Distribution System
regarding Transient and Persistent Topi ¢ instances.

public DeadlineQosPolicy deadline - the period within which a new
sampleis expected or written.

public LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

public LivelinessQosPolicy liveliness - theway the liveliness of the
Topic isasserted to the Data Distribution Service.

& PRISMTECH

Java Reference Guide

Appendices

public ReliabilityQosPolicy reliability -thereliability of the data
distribution.

public DestinationOrderQosPolicy destination_order - theorderin
which the bataReader timely orders the data.

public HistoryQosPolicy history - how samples should be stored.

public ResourceLimitsQosPolicy resource_limits - the maximum
amount of resources to be used.

public TransportPriorityQosPolicy transport_priority-a priority
hint for the underlying transport layer.

public LifespanQosPolicy 1ifespan -the maximum duration of validity of
the datawritten by apatawriter.

public OwnershipQosPolicy ownership - whether abatawriter
exclusively owns an instance

Detailed Description

A QosPolicy can be set when the Topic is created with the create_topic
operation (or modified with the set_gos operation). Both operations take the
TopicQos Object as a parameter. There may be cases where several policies arein
conflict. Consistency checking is performed each time the policies are modified
when they are being created and, in case they are already enabled, viathe set_qgos
operation.

Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Topic creation time or prior to calling the enable operation on
the Topic.

Theinitial value of the default TopicQos inthe DomainParticipant aregivenin
the following table:

Table22 TOPIC_QOS DEFAULT

QosPolicy Attribute Value
topic_data value.length 0
durability kind VOLATILE_DURABILITY_QOS
service_cleanup_delay 0
405
& PRISMTECH

Java Reference Guide

Appendices

Table 22 TOPIC_QOS DEFAULT (Continued)

QosPalicy

Attribute

Value

durability_service

service_cleanup_delay

0

history kind

KEEP_LAST_HISTORY_QOS

history_ depth

1

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS
lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_ time

100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS
history kind KEEP_LAST HISTORY_QOS
depth 1

resource_limits

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_per_instance

LENGTH_UNLIMITED

transport_priority |value 0

lifespan duration DURATION_INFINITE

ownership kind SHARED_OWNERSHIP_QOS
406

Java Reference Guide

& PRISMTECH

Appendix

API Constants and Types

Duration and Time

& PRISMTECH

package DDS;
public final class Duration_t

{

public int sec = (int)O0;

public int nanosec = (int)O0;

public Duration_t ()
{
}

public Duration_t (int _sec,

{
sec = _secC;
nanosec = _nanosec;
}

} // class Duration_t

public interface DURATION_INFINITE_SEC

{

public static final int value

}

public interface DURATION_INFINITE_NSEC

{

public static final int value

}

public interface DURATION_ZERO_SEC

{

public static final int value

}

public interface DURATION_ZERO_NSEC

{

public static final int value

}

public final class Time_t

{

public int sec = (int)O0;
public int nanosec = (int)O0;
public Time_t ()
{
}
public Time_t (int _sec, int _nanosec)
{
sec = _sec;

int _nanosec)

(int) (Ox7ff£f£££ff);

(int) (OxX7E£E£££££L) ;

(int) (0L) ;

407
Java Reference Guide

Appendices

408

nanosec = _nanosec;

}

} // class Time_t

Pre-defined Values

public interface HANDLE_NIL
{

public static final long value = (long) (0L) ;

}
public interface LENGTH_UNLIMITED

{

public static final int value = (int) ((int)-1);

}
public interface TIMESTAMP_INVALID_SEC
{

public static final int value = (int) ((int)-1);

}
public interface TIMESTAMP_INVALID_NSEC

{

public static final int value = (int) (OxffffffffL);

)
Return Codes

public interface RETCODE_OK
{
public static final int value = (int) (0);
}
public interface RETCODE_ERROR
{
public static final int value = (int) (1);
}
public interface RETCODE_UNSUPPORTED
{
public static final int value = (int) (2);
}
public interface RETCODE_BAD_PARAMETER
{
public static final int value = (int) (3);

}

public interface RETCODE_PRECONDITION_NOT_MET

{

public static final int value = (int) (4);
}
public interface RETCODE_OUT_OF_RESOURCES

{

public static final int value = (int) (5);

}
public interface RETCODE_NOT_ENABLED

{

Java Reference Guide

& PRISMTECH

Appendices

public static final int value = (int) (6);
}
public interface RETCODE_IMMUTABLE_POLICY
{

public static final int value = (int) (7);
}
public interface RETCODE_INCONSISTENT POLICY
{

public static final int value = (int) (8);
}
public interface RETCODE_ALREADY_DELETED
{

public static final int value = (int) (9);
}
public interface RETCODE_TIMEOUT
{

public static final int value = (int) (10);
}
public interface RETCODE_NO_DATA
{

public static final int value = (int) (11);
}
public interface RETCODE_ILLEGAL_OPERATION
{

public static final int value = (int) (12);

}

Satusto Support Listenersand Conditions

public interface INCONSISTENT_TOPIC_STATUS

{ public static final int value = (int) ((int) (0x0001L << 0L));
gublic interface OFFERED_DEADLINE_MISSED_STATUS

{ public static final int value = (int) ((int) (0x0001L << 1L));
;ublic interface REQUESTED_DEADLINE_MISSED_STATUS

{ public static final int value = (int) ((int) (0x0001L << 2L));
;ublic interface OFFERED_INCOMPATIBLE_QOS_STATUS

{ public static final int value = (int) ((int) (0x0001L << 5L));
I})ublic interface REQUESTED_INCOMPATIBLE_QOS_STATUS

{ public static final int value = (int) ((int) (0x0001L << 6L));

}
public interface SAMPLE_LOST STATUS

409

& PRISMTECH Java Reference Guide

Appendices

public static final int value = (int) ((int) (0x0001L << 7L));
;ublic interface SAMPLE_REJECTED_STATUS
{ public static final int value = (int) ((int) (0x0001L << 8L));
;ublic interface DATA_ON_READERS_STATUS
{ public static final int value = (int) ((int) (0x0001L << 9L));
;ublic interface DATA_AVAILABLE_STATUS
{ public static final int value = (int) ((int) (0x0001L << 10L));
;ublic interface LIVELINESS_LOST_STATUS
{ public static final int value = (int) ((int) (0x0001L << 11L));
;ublic interface LIVELINESS_CHANGED_STATUS
{ public static final int value = (int) ((int) (0x0001L << 12L));
;ublic interface PUBLICATION_MATCH_STATUS
{ public static final int value = (int) ((int) (0x0001L << 13L));
;ublic interface SUBSCRIPTION_MATCH_STATUS
{ public static final int value = (int) ((int) (0x0001L << 14L));

Sates
Sample Satesto Support Reads
public interface READ_SAMPLE_STATE
{
public static final int value = (int) ((int) (0x0001L << OL));
}
public interface NOT_READ_SAMPLE_STATE
{
public static final int value = (int) ((int) (0x0001L << 1L));
}
// This is a bit mask SampleStateKind
public interface ANY_ SAMPLE_STATE
{
public static final int value = (int) (OxffffL);
}
410

Java Reference Guide & PRISMTECH

Appendices

QosPalicy

& PRISMTECH

View Satesto Support Reads

public interface NEW_VIEW_STATE

{ public static final int value = (int) ((int) (0x0001L << OL));
;ublic interface NOT _NEW_VIEW_STATE

{ public static final int value = (int) ((int) (0x0001L << 1L));
i/ This is a bit mask ViewStateKind

public interface ANY_VIEW_ STATE

{ public static final int value = (int) (Oxf£fffL);

}

I nstance Satesto Support Reads

public interface ALIVE_INSTANCE_STATE

{ public static final int value = (int) ((int) (0x0001L << O0L));
;ublic interface NOT_ALIVE_DISPOSED_INSTANCE_STATE

{ public static final int value = (int) ((int) (0x0001L << 1L));
I})ublic interface NOT_ALIVE_NO_WRITERS_INSTANCE_STATE

{ public static final int value = (int) ((int) (0x0001L << 2L));
i/ This is a bit mask InstanceStateKind

public interface ANY_INSTANCE_STATE

{ public static final int value = (int) (OxffffL);

;ublic interface NOT_ALIVE_INSTANCE_STATE

{ public static final int value = (int) (0x006L) ;

Names

public interface USERDATA_QOS_POLICY_NAME
{
public static final String value = "UserData";
}
public interface DURABILITY_ QOS_POLICY_NAME
{
public static final String value = "Durability";

411
Java Reference Guide

Appendices

412

}
public interface PRESENTATION_QOS_POLICY_NAME
{
public static final String value = "Presentation";
}
public interface DEADLINE_QOS_POLICY_ NAME
{
public static final String value = "Deadline";
}
public interface LATENCYBUDGET_QOS_POLICY_NAME
{
public static final String value = "LatencyBudget";
}
public interface OWNERSHIP_QOS_POLICY_NAME
{
public static final String value = "Ownership";
}
public interface OWNERSHIPSTRENGTH_QOS_POLICY_ NAME
{

public static final String value = "OwnershipStrength";

}
public interface LIVELINESS_QOS_POLICY_NAME
{
public static final String value = "Liveliness";
}
public interface TIMEBASEDFILTER_QOS_POLICY_ NAME
{
public static final String value = "TimeBasedFilter";
}
public interface PARTITION_QOS_POLICY_ NAME
{
public static final String value = "Partition";
}
public interface RELIABILITY_ QOS_POLICY_NAME
{
public static final String value = "Reliability";
}
public interface DESTINATIONORDER_QOS_POLICY_ NAME
{

public static final String value = "DestinationOrder";

}
public interface HISTORY_QOS_POLICY_ NAME

{

public static final String value = "History";
}
public interface RESOURCELIMITS_QOS_POLICY_ NAME
{
public static final String value = "ResourceLimits";
}
public interface ENTITYFACTORY_ QOS_POLICY_ NAME

Java Reference Guide

& PRISMTECH

Appendices

& PRISMTECH

public static final String value = "EntityFactory";
}
public interface WRITERDATALIFECYCLE_QOS_POLICY_NAME
{
public static final String value =
"WriterDataLifecycle";
}
public interface READERDATALIFECYCLE_QOS_POLICY_NAME
{
public static final String value = "ReaderDatalLifecycle";
}
public interface TOPICDATA_QOS_POLICY_NAME
{
public static final String value = "TopicData";
}
public interface GROUPDATA_QOS_POLICY_ NAME
{
public static final String value = "GroupData";
}
public interface TRANSPORTPRIORITY_ QOS_POLICY NAME
{
public static final String value = "TransportPriority";
}
public interface LIFESPAN_QOS_POLICY_NAME
{
public static final String value = "Lifespan";
}
public interface DURABILITYSERVICE_QOS_POLICY_ NAME
{

public static final String value = "DurabilityService";
}
| dentifications
public interface INVALID_QOS_POLICY_ID
{
public static final int value = (int) (0);

}
public interface USERDATA_QOS_POLICY_ID
{
public static final int value = (int) (1);
}
public interface DURABILITY_QOS_POLICY_ID
{

public static final int value = (int) (2);
}
public interface PRESENTATION_QOS_POLICY_ID

{

public static final int value = (int) (3);

413
Java Reference Guide

Appendices

}
public interface DEADLINE_QOS_POLICY_ID
{

public static final int value = (int) (4);
}
public interface LATENCYBUDGET_QOS_POLICY_ID
{

public static final int value = (int) (5);
}
public interface OWNERSHIP_QOS_POLICY_ID
{

public static final int value = (int) (6);
}
public interface OWNERSHIPSTRENGTH_QOS_POLICY_ID
{

public static final int value = (int) (7);
}
public interface LIVELINESS_QOS_POLICY_ID
{

public static final int value = (int) (8);
}
public interface TIMEBASEDFILTER_QOS_POLICY_ID
{

public static final int value = (int) (9);
}
public interface PARTITION_QOS_POLICY_ID
{

public static final int value = (int) (10);
}
public interface RELIABILITY_QOS_POLICY_ID
{

public static final int value = (int) (11);
}
public interface DESTINATIONORDER_QOS_POLICY_ID
{

public static final int value = (int) (12);
}
public interface HISTORY_QOS_POLICY_ID
{

public static final int value = (int) (13);
}
public interface RESOURCELIMITS_QOS_POLICY_ID
{

public static final int value = (int) (14);
}
public interface ENTITYFACTORY_QOS_POLICY_ID
{

public static final int value = (int) (15);
}
public interface WRITERDATALIFECYCLE_ QOS_POLICY_ID

414

Java Reference Guide & PRISMTECH

Appendices

public static final int value = (int) (16);
}
public interface READERDATALIFECYCLE_QOS_POLICY_ID
{
public static final int value = (int) (17);
}
public interface TOPICDATA_QOS_POLICY_ID
{
public static final int value = (int) (18);
}
public interface GROUPDATA_QOS_POLICY_ID
{
public static final int value = (int) (19);
}
public interface TRANSPORTPRIORITY_QOS_POLICY_ID
{
public static final int value = (int) (20);
}
public interface LIFESPAN_QOS_POLICY_ID
{
public static final int value = (int) (21);
}
public interface DURABILITYSERVICE_QOS_POLICY_ID
{

public static final int value = (int) (22);

415

& PRISMTECH Java Reference Guide

Appendices

416

Java Reference Guide & PRISMTECH

Appendix

Platform Soecific Model 1DL
Interface

dds dcps.idl

#define DOMAINID_TYPE_NATIVE string
#define HANDLE_TYPE_NATIVE long long
#define HANDLE_NIL_NATIVE 0

#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long
#define TheParticipantFactory
#define PARTICIPANT QOS_DEFAULT
#define TOPIC_QOS_DEFAULT

#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

module DDS {
typedef DOMAINID_TYPE NATIVE DomainId_t;
typedef HANDLE_TYPE_NATIVE InstanceHandle_t;
typedef BUILTIN_TOPIC_KEY TYPE_NATIVE
BuiltinTopicKey_ t[31];
typedef sequence<InstanceHandle_t> InstanceHandleSeq;
typedef long ReturnCode_t;
typedef long QosPolicyId_ t;
typedef sequence<string> StringSeq;
struct Duration_t {
long sec;
unsigned long nanosec;
Y
struct Time_t {
long sec;
unsigned long nanosec;

}i
Pre-defined Values

const InstanceHandle_t HANDLE_NIL= HANDLE_NIL_NATIVE;
const long LENGTH_UNLIMITED= -1;

const long DURATION_INFINITE_SEC= Ox7fffffff;

const unsigned long DURATION_INFINITE_NSEC= Ox7fffffff;

417

& PRISMTECH Java Reference Guide

Appendices

const
const
const
const

const
const
const
const
const
const
const
const
const
const
const
const
const

long DURATION_ZERO_SEC= O0;

unsigned long DURATION_ZERO_NSEC= 0;
long TIMESTAMP_INVALID_SEC= -1;
unsigned long TIMESTAMP_INVALID_NSEC= Oxffffffff;

Return Codes

ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode__
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_
ReturnCode_

t RETCODE_OK

t RETCODE_ERROR

t RETCODE_UNSUPPORTED

t RETCODE_BAD PARAMETER

t RETCODE_PRECONDITION_ NOT_MET
t RETCODE_OUT_OF_RESOURCES

t RETCODE_NOT_ ENABLED

t RETCODE_IMMUTABLE_POLICY

t RETCODE_INCONSISTENT POLICY
t RETCODE_ALREADY DELETED

t RETCODE_TIMEOUT

t RETCODE_NO_DATA

t RETCODE_ILLEGAL_OPERATION

Satusto Support Listenersand Conditions

typedef unsigned long StatusKind;
typedef unsigned long StatusMask;
mask StatusKind

418
Java Reference Guide

// bit
const
const
const
const
const
const
const
const
const
const
const
const
const

StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind
StatusKind

INCONSISTENT TOPIC_STATUS
OFFERED_DEADLINE_MISSED_STATUS
REQUESTED_DEADLINE_MISSED_STATUS
OFFERED_INCOMPATIBLE_QOS_STATUS

REQUESTED_INCOMPATIBLE_ QOS_STATUS=

SAMPLE_LOST_STATUS
SAMPLE_REJECTED_STATUS
DATA_ON_READERS_STATUS
DATA_AVAILABLE_STATUS
LIVELINESS_LOST_STATUS
LIVELINESS_CHANGED_STATUS
PUBLICATION_MATCHED_STATUS
SUBSCRIPTION_MATCHED_STATUS

struct InconsistentTopicStatus {
long total_count;
long total_count_change;

I

struct SampleLostStatus ({
long total_count;
long total_count_change;

I

enum SampleRejectedStatusKind {

P PP WoJo Uk wNE o
N = O ~e ~e ~e o omeome o~

0x0001
0x0001
0x0001
0x0001

0x0001 <<

0x0001
0x0001
0x0001
0x0001
0x0001
0x0001
0x0001
0x0001

<<
<<
<<
<<
<<
<<
<<
<<

& PRISMTECH

Appendices

& PRISMTECH

NOT_REJECTED,

REJECTED_BY_INSTANCES_LIMIT,

REJECTED_BY_SAMPLES_LIMIT,

REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
Y

struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;
}i

struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;
Y

struct LivelinessChangedStatus {
long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

Y

struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

Y

struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

Y

struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

Y

typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
419
Java Reference Guide

Appendices

QosPolicyId_t last_policy id;
QosPolicyCountSeq policies;

I

struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies;

I

struct PublicationMatchedStatus ({
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;

struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;
Y

Liseners

interface Listener;

interface Entity;

interface TopicDescription;
interface Topic;

interface ContentFilteredTopic;
interface MultiTopic;

interface DataWriter;

interface DataReader;

interface Subscriber;

interface Publisher;

typedef sequence<Topic> TopicSeq;

typedef sequence<DataReader> DataReaderSedq;
interface Listener {

I

interface TopicListener : Listener {
void
on_inconsistent_topic(

in Topic the_topic,

in InconsistentTopicStatus status);
I

420

Java Reference Guide & PRISMTECH

Appendices

interface DataWriterListener : Listener {

void
on_offered_deadline_missed(
in DataWriter writer,
in OfferedDeadlineMissedStatus status) ;

void
on_offered_incompatible_gos (
in DataWriter writer,
in OfferedIncompatibleQosStatus status);

void
on_liveliness_lost (
in DataWriter writer,
in LivelinessLostStatus status);

void
on_publication_matched (

in DataWriter writer,

in PublicationMatchedStatus status) ;
Y

interface PublisherlListener : DataWriterListener {
Y

interface DataReaderListener : Listener {

void
on_requested_deadline_missed(
in DataReader reader,
in RequestedDeadlineMissedStatus status);

void
on_requested_incompatible_gos (
in DataReader reader,
in RequestedIncompatibleQosStatus status);

void
on_sample_rejected(
in DataReader reader,
in SampleRejectedStatus status);

void
on_liveliness_changed (
in DataReader reader,
in LivelinessChangedStatus status) ;

421

& PRISMTECH Java Reference Guide

Appendices

void
on_data_available(
in DataReader reader) ;

void
on_subscription_matched (
in DataReader reader,
in SubscriptionMatchedStatus status);

void
on_sample_lost(

in DataReader reader,

in SampleLostStatus status) ;
}i

interface SubscriberListener : DataReaderListener {

void
on_data_on_readers (
in Subscriber subs) ;

I

interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener ({

Yi

Conditions

422
Java Reference Guide

interface Condition {

boolean
get_trigger_value();
Y

typedef sequence<Condition> ConditionSeq;
interface WaitSet {

ReturnCode_t

wait (
inout ConditionSeq active_conditions,
in Duration_t timeout) ;

ReturnCode_t
attach_condition (
in Condition cond) ;

ReturnCode_t
detach_condition (
in Condition cond) ;

& PRISMTECH

Appendices

& PRISMTECH

ReturnCode_t
get_conditions (

inout ConditionSeqg attached_conditions) ;
Y

interface GuardCondition : Condition {

ReturnCode_t
set_trigger_value (

in boolean wvalue) ;
Y

interface StatusCondition : Condition {

StatusMask
get_enabled_statuses() ;

ReturnCode_t
set_enabled_statuses(

in StatusMask mask) ;
Entity
get_entity();
Y

// Sample states to support reads

typedef unsigned long SampleStateKind;

typedef sequence <SampleStateKind> SampleStateSeq;

const SampleStateKind READ_SAMPLE_STATE= 0x0001 << 0;
const SampleStateKind NOT_READ_SAMPLE_STATE= 0x0001 << 1;

// This is a bit mask SampleStateKind
typedef unsigned long SampleStateMask;
const SampleStateMask ANY_ SAMPLE_STATE= Oxffff;

// View states to support reads

typedef unsigned long ViewStateKind;

typedef sequence<ViewStateKind> ViewStateSeq;

const ViewStateKind NEW_VIEW_STATE= 0x0001 << 0;
const ViewStateKind NOT_NEW_VIEW_STATE= 0x0001 << 1;

// This is a bit mask ViewStateKind
typedef unsigned long ViewStateMask;
const ViewStateMask ANY_ VIEW_STATE= Oxffff;

// Instance states to support reads

typedef unsigned long InstanceStateKind;

typedef sequence<InstanceStateKind> InstanceStateSeq;

const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001
<< 0;

423
Java Reference Guide

Appendices

const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE

= 0x0001 << 1;
const InstanceStateKind
‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = 0x0001 << 2;

// This is a bit mask InstanceStateKind
typedef unsigned long InstanceStateMask;
const InstanceStateMask ANY_INSTANCE_STATE= Oxffff;

const InstanceStateMask NOT_ALIVE_INSTANCE_STATE= 0x006;

interface ReadCondition : Condition {

SampleStateMask
get_sample_state_mask() ;

ViewStateMask

get_view_state_mask();

InstanceStateMask
get_instance_state_mask() ;

DataReader
get_datareader () ;
}i

interface QueryCondition : ReadCondition {
string
get_query_expression() ;

ReturnCode_t
get_query_parameters (
inout StringSeqg query_ parameters) ;

ReturnCode_t
set_query_parameters (

in StringSeq query_parameters) ;
Y

QoS

424
Java Reference Guide

const string USERDATA_QOS_POLICY_ NAME= "UserData";

const string DURABILITY_QOS_POLICY_NAME= "Durability";

const string PRESENTATION_QOS_POLICY_NAME =
"Presentation";

const string DEADLINE_QOS_POLICY_NAME= "Deadline";

const string LATENCYBUDGET_QOS_POLICY_NAME =
"LatencyBudget";

const string OWNERSHIP_QOS_POLICY_NAME= "Ownership";

const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME=
"OwnershipStrength";

const string LIVELINESS_QOS_POLICY NAME= "Liveliness";

& PRISMTECH

Appendices

& PRISMTECH

const string TIMEBASEDFILTER_QOS_POLICY_NAME=
"TimeBasedFilter";

const string PARTITION_QOS_POLICY_ NAME=
const string RELIABILITY_QOS_POLICY_NAME=

const string DESTINATIONORDER_QOS_POLICY_NAME=
"DestinationOrder";

const string HISTORY_QOS_POLICY_NAME=

"History";

const string RESOURCELIMITS_QOS_POLICY_NAME=
"ResourceLimits";
const string ENTITYFACTORY_QOS_POLICY_NAME=

\

"EntityFactory";

const string WRITERDATALIFECYCLE_QOS_POLICY_ NAME=
"WriterDataLifecycle";

const string READERDATALIFECYCLE_QOS_POLICY_NAME=
"ReaderDatalLifecycle";

const string TOPICDATA_QOS_POLICY_NAME=
const string GROUPDATA_QOS_POLICY_ NAME=

const string TRANSPORTPRIORITY_QOS_POLICY_NAME=
"TransportPriority";

const string LIFESPAN_QOS_POLICY_ NAME=

"Lifespan";

const string DURABILITYSERVICE_QOS_POLICY_ NAME=
"DurabilityService";

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

struct

Y

QosPolicyId_ t
QosPolicyId t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_t
QosPolicyId t
QosPolicyId t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_t
QosPolicyId t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_t
QosPolicyId t
QosPolicyId t
QosPolicyId_ t
QosPolicyId_ t
QosPolicyId_ t

INVALID_QOS_POLICY ID
USERDATA_QOS_POLICY_ID
DURABILITY QOS_POLICY_ ID
PRESENTATION_QOS_POLICY_ID
DEADLINE_QOS_POLICY_ID
LATENCYBUDGET_QOS_ POLICY_ID
OWNERSHIP_QOS_POLICY ID
OWNERSHIPSTRENGTH_QOS_POLICY_ ID
LIVELINESS_QOS_POLICY_ ID
TIMEBASEDFILTER_QOS_POLICY_ID
PARTITION_QOS_POLICY ID
RELIABILITY_QOS_POLICY_ID
DESTINATIONORDER_QOS_POLICY ID
HISTORY_ QOS_POLICY ID
RESOURCELIMITS_QOS_POLICY_ ID
ENTITYFACTORY_QOS_POLICY_ ID

WRITERDATALIFECYCLE_QOS_POLICY_ID=
READERDATALIFECYCLE_QOS_POLICY_ ID=

TOPICDATA_QOS_POLICY ID
GROUPDATA_QOS_POLICY ID
TRANSPORTPRIORITY_ QOS_POLICY_ ID
LIFESPAN_QOS_POLICY_ID
DURABILITYSERVICE_QOS_POLICY_ ID

UserDataQosPolicy {
sequence<octet> value;

"Partition";
"Reliability";

"TopicData";
"GroupData";

P RPRPRPRPREPR OIS WDNDRO
Ui W N B O S o~ o~e e ~e S

16;
17;
18;
19;
20;
21;
22;

425

Java Reference Guide

Appendices

struct TopicDataQosPolicy {
sequence<octet> value;

I

struct GroupDataQosPolicy {
sequence<octet> value;
Y

struct TransportPriorityQosPolicy {
long value;
Y

struct LifespanQosPolicy {
Duration_t duration;

I

enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_ QOS,
TRANSTIENT_ LOCAL_DURABILITY_ QOS,
TRANSIENT DURABILITY QOS,
PERSISTENT_DURABILITY_QOS
}i

struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;
I

enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_ PRESENTATION_QOS
I

struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;
I

struct DeadlineQosPolicy {
Duration_t period;
Y

struct LatencyBudgetQosPolicy {
Duration_t duration;

I

enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

426

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

Y

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

Y

struct OwnershipStrengthQosPolicy {
long value;

Y

enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_ PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

Y

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

Y

struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

Y

struct PartitionQosPolicy {
StringSeq name;
Y

enum ReliabilityQosPolicyKind {
BEST EFFORT_RELIABILITY_QOS,
RELTABLE_RELIABILITY_ QOS

}:

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max _blocking_ time;
Y

enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Y

struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;
Y

enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,

427
Java Reference Guide

Appendices

KEEP_ALL_HISTORY_QOS
I

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

Y

struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples_per_instance;
Y

struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;
Y

struct WriterDatalLifecycleQosPolicy {
boolean autodispose_unregistered_instances;

I

struct ReaderDatalLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;
I

struct DurabilityServiceQosPolicy {
Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
long history_depth;
long max_samples;
long max_instances;
long max_samples_per_instance;

Y

struct DomainParticipantFactoryQos {
EntityFactoryQosPolicy entity_factory;
Yi

struct DomainParticipantQos {
UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_ factory;
I

struct TopicQos {
TopicDataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability service;
DeadlineQosPolicy deadline;

428

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

Y

LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

struct DataWriterQos {

Y

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;

UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDatalLifecycleQosPolicy writer_data_lifecycle;

struct PublisherQos {

i

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_ factory;

struct DataReaderQos {

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;
ReaderDatalLifecycleQosPolicy reader_data_lifecycle;

429
Java Reference Guide

Appendices

430
Java Reference Guide

struct SubscriberQos {

Y

/7

PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_ factory;

struct ParticipantBuiltinTopicData {

Y

BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

struct TopicBuiltinTopicData {

Y

BuiltinTopicKey_t key;

string name;

string type_name;

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourcelLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

struct PublicationBuiltinTopicData {

BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;

string type_name;

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

& PRISMTECH

Appendices

& PRISMTECH

struct SubscriptionBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_ t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

Y

/e

interface Entity {

// ReturnCode_t

// set_qgos/(

// in EntityQos gos);
//

// ReturnCode_t

// get_gos(

// inout EntityQos gos) ;
//

// ReturnCode_t

// set_listener (

// in Listener 1,
// in StatusMask mask) ;
//

// Listener

// get_listener();
ReturnCode_t

enable () ;
StatusCondition
get_statuscondition() ;
StatusMask
get_status_changes () ;
Y

/e

interface DomainParticipant : Entity {

// Factory interfaces
Publisher
create_publisher (

431
Java Reference Guide

Appendices

in PublisherQos gos,
in PublisherlListener a_listener,
in StatusMask mask) ;

ReturnCode_t
delete_publisher (
in Publisher p);

Subscriber

create_subscriber (
in SubscriberQos gos,
in SubscriberListener a_listener,
in StatusMask mask) ;

ReturnCode_t
delete_subscriber (
in Subscriber s);

Subscriber
get_builtin_subscriber () ;

Topic
create_topic(
in string topic_name,
in string type_name,
in TopicQos dgos,
in TopicListener a_listener,
in StatusMask mask) ;

ReturnCode_t
delete_topic(
in Topic a_topic);

Topic

find_topic(
in string topic_name,
in Duration_t timeout) ;

TopicDescription
lookup_topicdescription (
in string name) ;

ContentFilteredTopic
create_contentfilteredtopic (

in string name,

in Topic related_topic,

in string filter expression,

in StringSeq expression_parameters) ;

ReturnCode_t

432

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

delete_contentfilteredtopic (

in ContentFilteredTopic a_contentfilteredtopic);

MultiTopic
create_multitopic(
in string name,
in string type_name,
in string subscription_expression,
in StringSeqg expression_parameters) ;

ReturnCode_t
delete_multitopic(
in MultiTopic a_multitopic) ;

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_gos (
in DomainParticipantQos gos) ;

ReturnCode_t
get_gos (
inout DomainParticipantQos gos) ;

ReturnCode_t
set_listener (
in DomainParticipantListener a_listener,
in StatusMask mask) ;
DomainParticipantListener
get_listener();

ReturnCode_t
ignore_participant (
in InstanceHandle_t handle) ;

ReturnCode_t
ignore_topic(
in InstanceHandle_t handle) ;

ReturnCode_t
ignore_publication (
in InstanceHandle_t handle) ;

ReturnCode_t
ignore_subscription (
in InstanceHandle_t handle) ;

DomainId_t
get_domain_id() ;

433
Java Reference Guide

Appendices

ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_gos(
in PublisherQos gos) ;

ReturnCode_t
get_default_publisher_gos (
inout PublisherQos gos);

ReturnCode_t
set_default_subscriber_gos (
in SubscriberQos gos) ;

ReturnCode_t
get_default_subscriber_gos (
inout SubscriberQos gos) ;

ReturnCode_t
set_default_topic_gos (
in TopicQos gos) ;

ReturnCode_t
get_default_topic_gos (
inout TopicQos gos) ;

boolean
contains_entity(
in InstanceHandle_t a_handle) ;

ReturnCode_t
get_current_time (
inout Time_t current_time);

interface DomainParticipantFactory {
//

// DomainParticipantFactory

// get_instance();

//

DomainParticipant
create_participant (
in DomainId_t domainId,
in DomainParticipantQos gos,
in DomainParticipantListener a_listener,
in StatusMask mask) ;

ReturnCode_t

434

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

delete_participant (
in DomainParticipant a_participant) ;

DomainParticipant
lookup_participant (
in DomainId_t domainId) ;

ReturnCode_t
set_default_participant_gos (
in DomainParticipantQos gos) ;

ReturnCode_t
get_default_participant_gos (
inout DomainParticipantQos gos) ;

ReturnCode_t
set_gos (
in DomainParticipantFactoryQos dgos) ;

ReturnCode_t
get_gos (

inout DomainParticipantFactoryQos gos) ;

Y

interface TypeSupport {
// ReturnCode_t
// register_type (

// in DomainParticipant domain,
// in string type_name) ;

//

// string

// get_type_name() ;
I

A e

interface TopicDescription {
string

get_type_name () ;

string

get_name () ;
DomainParticipant

get_participant () ;
Y

interface Topic : Entity, TopicDescription {

ReturnCode_t
set_gos (
in TopicQos gos);

435
Java Reference Guide

Appendices

ReturnCode_t
get_gos (
inout TopicQos gos) ;

ReturnCode_t

set_listener (
in TopicListener a_listener,
in StatusMask mask) ;

TopicListener_ptr
get_listener();

// Access the status
ReturnCode_t
get_inconsistent_topic_status (
inout InconsistentTopicStatus a_status);
Y

interface ContentFilteredTopic : TopicDescription {
string
get_filter_expression();

ReturnCode_t
get_expression_parameters (
inout StringSeq expression_parameters) ;

ReturnCode_t
set_expression_parameters (
in StringSeq expression_parameters) ;

Topic
get_related_topic();
}i

interface MultiTopic : TopicDescription {
stringget_subscription_expression() ;

ReturnCode_t
get_expression_parameters (
inout StringSeq expression_parameters) ;

ReturnCode_t
set_expression_parameters (
in StringSeq expression_parameters) ;

I

[e e
interface Publisher : Entity {

436

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

DataWriter
create_datawriter (
in Topic a_topic,
in DataWriterQos gos,
in DataWriterListener a_listener,
in StatusMask mask) ;

ReturnCode_t
delete_datawriter (
in DataWriter a_datawriter) ;

DataWriter
lookup_datawriter (
in string topic_name) ;

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_qgos (
in PublisherQos gos) ;

ReturnCode_t
get_gos (
inout PublisherQos gos) ;

ReturnCode_t

set_listener(
in PublisherListener a_listener,
in StatusKindMask mask) ;

PublisherListener
get_listener();

ReturnCode_t
suspend_publications() ;

ReturnCode_t
resume_publications() ;

ReturnCode_t
begin_coherent_changes () ;

ReturnCode_t
end_coherent_changes() ;

ReturnCode_t
wait_for_acknowledgments (
in Duration_t max_wait) ;

437
Java Reference Guide

Appendices

DomainParticipant
get_participant () ;

ReturnCode_t
set_default_datawriter_gos(
in DataWriterQos gos) ;

ReturnCode_t
get_default_datawriter_gos (
inout DataWriterQos gos) ;

ReturnCode_t

copy_from_topic_gos (
inout DataWriterQos a_datawriter_gos,
in TopicQos a_topic_gos) ;

I

interface DataWriter : Entity {

// InstanceHandle_t

// register_instance(

// in Data instance_data);

//

// InstanceHandle_t

// register_instance_w_timestamp (

// in Data instance_data,
// in Time_t source_timestamp) ;
//

// ReturnCode_t
// unregister_instance(

// in Data instance_data,
// in InstanceHandle_t handle) ;
//

// ReturnCode_t
// unregister_instance_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t handle,
// in Time_t source_timestamp) ;
//

// ReturnCode_t
// write(

// in Data instance_data,
// in InstanceHandle_t handle);
//

// ReturnCode_t
// write_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t handle,
// in Time_t source_timestamp) ;
//

// ReturnCode_t

438

Java Reference Guide & PRISMTECH

Appendices

// dispose(

// in Data instance_data,
// in InstanceHandle_t instance_handle) ;
//

// ReturnCode_t
// dispose_w_timestamp (

// in Data instance_data,

// in InstanceHandle_t instance_handle,
// in Time_t source_timestamp) ;

//

// ReturnCode_t
// get_key_value (

// inout Data key_holder,
// in InstanceHandle_t handle) ;
//

// InstanceHandle_t
// lookup_instance (
// in Data instance);

ReturnCode_t
set_gos (
in DataWriterQos gos) ;

ReturnCode_t
get_gos (
inout DataWriterQos gos) ;

ReturnCode_t

set_listener (
in DataWriterListener a_listener,
in StatusMask mask) ;

DataWriterListener
get_listener();

Topic
get_topic();

Publisher
get_publisher () ;

ReturnCode_t
wait_for_acknowledgments (
in Duration_t max_wait) ;

// Access the status

ReturnCode_t
get_liveliness_lost_status(
inout LivelinessLostStatus status) ;
439

& PRISMTECH Java Reference Guide

Appendices

ReturnCode_t
get_offered _deadline_missed_status (
inout OfferedDeadlineMissedStatus status);

ReturnCode_t
get_offered_incompatible_gos_status (
inout OfferedIncompatibleQosStatus status);

ReturnCode_t
get_publication_matched_status (
inout PublicationMatchedStatus status) ;

ReturnCode_t
assert_liveliness();

ReturnCode_t
get_matched_subscriptions (
inout InstanceHandleSeq subscription_handles) ;

ReturnCode_t

get_matched_subscription_data(
inout SubscriptionBuiltinTopicData subscription_data,
in InstanceHandle_t subscription_handle) ;

Y

interface Subscriber : Entity {

DataReader
create_datareader (
in TopicDescription a_topic,
in DataReaderQos gos,
in DataReaderListener a_listener,
in StatusMask mask) ;

ReturnCode_t
delete_datareader (
in DataReader a_datareader) ;

ReturnCode_t
delete_contained_entities();

DataReader
lookup_datareader (
in string topic_name) ;

ReturnCode_t
get_datareaders (
440

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

inout DataReaderSeq readers,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t
notify datareaders();

ReturnCode_t
set_gos (

in SubscriberQos gos) ;

ReturnCode_t
get_gos (

inout SubscriberQos gos) ;

ReturnCode_t
set_listener (

in SubscriberListener a_listener,
in StatusMask mask) ;

SubscriberListener
get_listener () ;

ReturnCode_t
begin_access() ;

ReturnCode_t
end_access () ;

DomainParticipant
get_participant () ;

ReturnCode_t
set_default_datareader_gos (

in DataReaderQos gos) ;

ReturnCode_t
get_default_datareader_gos (

inout DataReaderQos gos) ;

ReturnCode_t
copy_from_topic_gos (

i

inout DataReaderQos a_datareader_gos,
in TopicQos a_topic_gos);

interface DataReader : Entity {

//
//

ReturnCode_t
read (

441
Java Reference Guide

Appendices

442
Java Reference Guide

/!
//
//
//
//
//
/!
/7
//
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/!
//
//
//
//
//
/!
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/!
//

inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t

take (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

ReturnCode_t

read_w_condition (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in ReadCondition a_condition) ;

ReturnCode_t

take_w_condition (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in ReadCondition a_condition) ;

ReturnCode_t
read_next_sample (
inout Data data_value,
inout SampleInfo sample_info) ;

ReturnCode_t
take_next_sample (
inout Data data_value,
inout SampleInfo sample_info);

ReturnCode_t

read_instance (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,

in SampleStateMask sample_states,

in ViewStateMask view_states,

in InstanceStateMask instance_states);

& PRISMTECH

Appendices

& PRISMTECH

//
//
//
!/
/7
//
//
//
//
!/
/7
/7
//
//
//
//
//
//
//
//
//
!/
/7
//
//
//
//
!/
//
/7
//
//
//
/7
//
/7
//
//
//
//
/7
//
//
//
//
//
//
/7
//
//

ReturnCode_t
take_instance (
inout DataSeqg data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t
read_next_instance(
inout DataSeqg data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t
take_next_instance(
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

ReturnCode_t
read_next_instance_w_condition (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in ReadCondition a_condition)

ReturnCode_t
take_next_instance_w_condition (
inout DataSeq data_values,
inout SampleInfoSeq info_seq,
in long max_samples,
in InstanceHandle_t a_handle,
in ReadCondition a_condition) ;

ReturnCode_t
return_loan (
inout DataSeqg data_values,
inout SampleInfoSeq info_seq) ;
443
Java Reference Guide

Appendices

444
Java Reference Guide

//
// ReturnCode_t
// get_key_value(

// inout Data key_holder,
// in InstanceHandle_t handle);
ReadCondition

create_readcondition (
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states);

QueryCondition
create_querycondition (
in SampleStateMask sample_states,
in ViewStateMask view_states,
in InstanceStateMask instance_states,
in string query_ expression,
in StringSeq query_ parameters) ;

ReturnCode_t
delete_readcondition (
in ReadCondition a_condition) ;

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_gos (
in DataReaderQos gos) ;

ReturnCode_t
get_gos (
inout DataReaderQos gos) ;

ReturnCode_t

set_listener (
in DataReaderListener a_listener,
in StatusMask mask) ;

DataReaderListener
get_listener() ;

TopicDescription
get_topicdescription() ;

Subscriber
get_subscriber () ;

ReturnCode_t

& PRISMTECH

Appendices

& PRISMTECH

get_sample_rejected_status (
inout SampleRejectedStatus status);

ReturnCode_t
get_liveliness_changed_status (
inout LivelinessChangedStatus status);

ReturnCode_t
get_requested_deadline_missed_status (
inout RequestedDeadlineMissedStatus status);

ReturnCode_t
get_requested_incompatible_gos_status (
inout RequestedIncompatibleQosStatus status);

ReturnCode_t
get_subscription_matched_status(
inout SubscriptionMatchedStatus status);

ReturnCode_t
get_sample_lost_status(
inout SampleLostStatus status);

ReturnCode_t
wait_for_historical_data(
in Duration_t max_wait);

ReturnCode_t
get_matched_publications(
inout InstanceHandleSeq publication_handles) ;

ReturnCode_t

get_matched_publication_data(
inout PublicationBuiltinTopicData publication_data,
in InstanceHandle_t publication_handle) ;

Y

struct SampleInfo {
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_ t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;

445
Java Reference Guide

Appendices

Y
typedef sequence<SampleInfo> SampleInfoSeq;

Foo.idl

// Implied IDL for type "Foo"
// Example user defined structure

struct Foo {
long dummy;
Y

typedef sequence<Foo> FooSeq;
#include "dds_dcps.idl"

interface FooTypeSupport : DDS::TypeSupport {
DDS: :ReturnCode_t
register_type (
in DDS: :DomainParticipant participant,
in string type_name) ;

string
get_type_name () ;
Y

interface FooDataWriter : DDS::DataWriter {
DDS: : InstanceHandle_t
register_instance (

in Foo instance_data) ;

DDS: : InstanceHandle_t
register_instance_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
unregister_instance (

in Foo instance_data,

in DDS::InstanceHandle_t handle) ;

DDS: :ReturnCode_t
unregister_instance_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t

446

Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

write(
in Foo instance_data,
in DDS::InstanceHandle_t handle) ;

DDS: :ReturnCode_t

write_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t handle,
in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
dispose (
in Foo instance_data,
in DDS::InstanceHandle_t instance_handle) ;

DDS: :ReturnCode_t

dispose_w_timestamp (
in Foo instance_data,
in DDS::InstanceHandle_t instance_handle,
in DDS::Time_t source_timestamp) ;

DDS: :ReturnCode_t
get_key_value(
inout Foo key_holder,
in DDS::InstanceHandle_t handle) ;

DDS: : InstanceHandle_t
lookup_instance (
in Foo instance_data) ;
Y
interface FooDataReader : DDS::DataReader {

DDS: :ReturnCode_t
read (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take (
inout FooSeqg data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states) ;

447
Java Reference Guide

Appendices

DDS: :ReturnCode_t
read_w_condition/(
inout FooSeq data_values,
inout DDS::SampleInfoSeqg info_seq,
in long max_samples,
in DDS::ReadCondition a_condition) ;

DDS: :ReturnCode_t
take_w_condition (
inout FooSeq data_values,
inout DDS::SampleInfoSeqg info_seq,
in long max_samples,
in DDS: :ReadCondition a_condition) ;

DDS: :ReturnCode_t
read_next_sample (
inout Foo data_value,
inout DDS::SampleInfo sample_info);

DDS: :ReturnCode_t
take_next_sample (
inout Foo data_value,
inout DDS::SampleInfo sample_info);

DDS: :ReturnCode_t
read_instance (
inout FooSeqg data_values,
inout DDS::SampleInfoSeqg info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take_instance (
inout FooSeqg data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states) ;

DDS: :ReturnCode_t
read_next_instance(
inout FooSeq data_values,
inout DDS::SampleInfoSeqg info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

448

Java Reference Guide & PRISMTECH

Appendices

in DDS::SampleStateMask sample_states,
in DDS::ViewStateMask view_states,
in DDS::InstanceStateMask instance_states);

DDS: :ReturnCode_t
take_next_instance(

inout FooSeqg data_values,

inout DDS::SampleInfoSeq info_seq,
long max_samples,

in
in
in
in
in

DDS:
DDS:
DDS:
DDS:

:InstanceHandle_t a_handle,
:SampleStateMask sample_states,
:ViewStateMask view_states,
:InstanceStateMask instance_states);

DDS: :ReturnCode_t
read_next_instance_w_condition (
inout FooSeq data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,

in DDS::ReadCondition a_condition)

DDS: :ReturnCode_t
take_next_instance_w_condition (
inout FooSeqg data_values,
inout DDS::SampleInfoSeq info_seq,
in long max_samples,
in DDS::InstanceHandle_t a_handle,
in DDS: :ReadCondition a_condition) ;

DDS: :ReturnCode_t

return_loan (

inout FooSeqg data_values,
inout DDS::SampleInfoSeq info_seq);

DDS: :ReturnCode_t
get_key value(
inout Foo key_holder,
in DDS::InstanceHandle_t handle) ;

DDS: : InstanceHandle_t
lookup_instance (
in Foo instance);

Y

& PRISMTECH

449
Java Reference Guide

Appendices

450

Java Reference Guide & PRISMTECH

Appendix

SampleSates, ViewSates and

| nstanceSates

Data is made available to the application by the following operations on
DataReader Objects: read and take operations. The general semantics of the
read operations is that the application only gets access to the matching data; the
data remain available in the Data Distribution Services and can be read again. The
semantics of the take operations is that the data is not available in the Data
Distribution Service; that data will no longer be accessible to the bataReader.
Consequently, it is possible for a pataReader to access the same sample multiple
times but only if al previous accesses were read operations.

Each of these operations returns an ordered collection of pata values and
associated sampleInfo objects. Each data value represents an atom of data
information (i.e., avalue for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the HistoryQosPolicy alow for
it.

Samplel nfo Class

SampleInfo istheinformation that accompanies each sample that is ‘read’ or
‘taken’. It contains, among others, the following information:

e The sample_state (READ_SAMPLE_STATE Of NOT_READ_SAMPLE_STATE)
* Theview_state, (NEW_VIEW_STATE Of NOT_NEW_VIEW_STATE)

* Theinstance_state (ALIVE_INSTANCE_STATE,
NOT_ALTVE_DISPOSED_INSTANCE_STATE Of
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)

sample sate

& PRISMTECH

For each sample, the Data Distribution Service internally maintains a
sample_state Specific to each DataReader. The sample_state can either be
READ_SAMPLE_STATE Of NOT_READ_SAMPLE_STATE.

READ_SAMPLE_STATE indicates that the bataReader has already accessed that
sample by means of read. Had the sample been accessed by take it would no
longer be available to the bataReader;

451
Java Reference Guide

Appendices

e NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that
sample before.

new sample received
(first time seen)

A@T_REA D_SAMPL E_STA'@

take/ read
sampleis“overwritten”

READ_SAMPLE_STATE

read

take/
sampleis “overwritten”

®

Figure 20: sample_statefor a Single Sample Sate Chart
Sate per Sample

The sample_state available in the sampleInfo reflect the sample_state of
each sample. The sample_state can be: different for all samplesin the returned
collection that refer to the same instance.

Instance date

For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state canbe

e ALIVE_INSTANCE_STATE indicates that
- samples have been received for the instance
- and there arelive Datawriter objects writing the instance

452
Java Reference Guide & PRISMTECH

Appendices

& PRISMTECH

- and the instance has not been explicitly disposed of (or else samples have been
received after it was disposed of).

NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was disposed
of by a patawriter, ether explicitly by means of the dispose operation or
implicitly in case the autodispose_unregistered_instances field of the
WriterDatalyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, WriterDataL ifecycleQosPalicy), and no new
samples for that instance have been written afterwards

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has been
declared as not-alive by the batareader becauseit detected that there are no live
DataWriter objectswriting that instance.

Owner shipQaosPoalicy

The precise events that cause the instance_state to change depends on the
setting of the OwnershipQosPolicy:

If ownershipQosPolicy IS Set t0 EXCLUSIVE_OWNERSHIP_QOS, then the
instance_state becoOmes NOT_ALIVE_DISPOSED_INSTANCE_STATE only if
the pDatawriter that “owns’ the instance explicitly disposes of it. The
instance_state becomes ALIVE_INSTANCE_STATE again only if the
DataWriter that ownsthe instance writesit;

If ownershipQosPolicy iS Set t0 SHARED OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE if any
DataWriter explicitly disposes of theinstance. The instance_state becomes
ALIVE_ INSTANCE_STATE asSS0ONnasany DataWriter writestheinstance again.

453
Java Reference Guide

Appendices

sample for 'never seen’
instance received/

sample received

sample received/ "live" DataWriter detected/

ALIVE_INSTANCE_STATE

no "live"
DataWriters

instance disposed
of by DataWriter

GOT_AL IVE_DISPOSED_| NSTANCE_STA'@ GOT_A LIVE_NO_WRITERS | NSTANCE_SI'AT9

[no samplesin
the DataReader]

[no samples in the DataReader
&& no "live" DataWriters]

Figure21: Sate Chart of theinstance statefor a Single Instance

Snapshot

The instance_state available in the sampleInfo is a snapshot of the
instance_state Of the instance at the time the collection was obtained (i.e. at the
time read or take wascalled). The instance_state istherefore the same for all
samples in the returned collection that refer to the same instance.

view_state
For each instance (identified by the key), the Data Distribution Service internally
maintains aview_state relative to each bataReader. The view_state can
either be NEW _VIEW STATE Of NOT_NEW VIEW STATE.

454 &4 PRISMTECH

Java Reference Guide

Appendices

e NEW_VIEW_STATE indicates that either thisisthe first time that the bataReader
has ever accessed samples of that instance, or else that the bataReader has
accessed previous samples of the instance, but the instance has since been reborn
(i.e. becomes not-alive and then alive again)

* NOT_NEW_VIEW_STATE indicates that the pataReader has already accessed
samples of the same instance and that the instance has not been reborn since

sample for 'never seen'
instance received/

< NEW_VIEW_STATE ><7

read/take

—»{ NOT_NEW_VIEW_STATE

read/take

sample received

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]
Figure22: view_statefor a Single Instance Sate Chart
Snapshot

The view_state availablein the sampleInfo isashapshot of view_state of
the instance relative to the batarReader used to access the samples at the time the
collection was obtained (i.e. at the time read or take was called). The
view_state istherefore the same for all samplesin the returned collection that
refer to the same instance.

455

& PRISMTECH Java Reference Guide

Appendices

Sate Masks

456

Sate Definitions

All states are available as a constant. These convenience constants can be used to
create abit mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.

The sample state definitions indicates whether or not the matching data sample has
aready been read:

* READ_SAMPLE_STATE: sample has aready been read
* NOT_READ_SAMPLE_STATE: Sample has not been read

The view state definitions indicates whether the DatarReader has already seen
samples for the most-current generation of the related instance

* NEW_VIEW_STATE: al samples of thisinstance are new
* NOT_NEW_VIEW_STATE: Some or al samples of thisinstance are not new

Theinstance state definitionsindicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:

* ALIVE_INSTANCE_STATE: thisinstanceis currently in existence

* NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of by a
DataWriter

* NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been disposed
of by the DataReader because none of the Datawriter objects currently
“aive’ (according totheLivelinessQosPolicy) arewriting the instance.

Pre-defined Bit Mask Definitions

For convenience, some pre-defined bit masks are available as a constant definition.
These bit mask constants can be used where a state bit mask is required. They can
also be used for testing whether certain bits are set.

The sample state bit mask definition selects both sample states

* ANY_SAMPLE_STATE: either the sample has already been read or not read
The view state bit mask definition selects both view states

* ANY_VIEW_STATE: either the sample has already been seen or not seen

The instance state bit mask definitions selects a combination of instance states

* NOT_ALIVE_INSTANCE_STATE: thisinstance was disposed of by abpatavriter
or the bataReader

e ANY INSTANCE STATE: thisinstanceis either in existence or not in existence

& PRISMTECH

Java Reference Guide

Appendices

Operations Concer ning Sates

& PRISMTECH

The application accesses data by means of the operations read or take on the
DataReader. These operations return an ordered collection of batasamples
consisting of a SampleInfo part and aData part. The way the Data Distribution
Service builds this collection (i.e., the data-samples that are parts of the list as well
as their order) depends on QosPolicy Settings set on the DataReader and the
Subscriber, aswell as the source timestamp of the samples and the parameters
passed to the read/take operations, namely:

« the desired sample states (i.e., READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE, Of ANY_SAMPLE_STATE)

* the desired view states (i.e., NEW_VIEW_STATE, NOT_NEW_VIEW_STATE, Of
ANY_VIEW_STATE)

« the desired instance states (ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
NOT_ALIVE_INSTANCE_STATE, Of ANY_INSTANCE_STATE)

The read and take operations are non-blocking and just deliver what is currently
available that matches the specified states.

On output, the collection of bata values and the collection of sampleInfo Objects
are of the same length and are in a one-to-one correspondence. Each sampleInfo
provides information, such as the source_timestamp, the sample_state,
view_state, and instance_state, €tc., about the matching sample.

Some elements in the returned collection may not have valid data. If the
instance_state inthe SampleInfois
NOT_ALIVE_DISPOSED_INSTANCE_STATE Of
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
instance in the collection, that is, the one whose sampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limits imposed by the ResourceLimitsQosPolicy.

read

The act of reading a sample setsitS sample_state t0 READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state Of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state Of theinstance.

457
Java Reference Guide

Appendices

458

Java Reference Guide

take

The act of taking a sample removes it from the DataReader S0 it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of theinstance.

read_w_condition

In case the ReadCondition isa‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling read and passing as
sample states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

take w_condition

The act of taking a sample removes it from the DataReader SO it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state Of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.

In case the ReadCondition isa‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling take and passing as
sample_states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

read_next_sample

The read_next_sample operation is semantically equivalent to the read
operation where the input pata sequence has max_len=1, the
sample_states=NOT_READ_SAMPLE_STATE,the
view_states=ANY_VIEW_STATE, and the
instance_states=ANY_INSTANCE_STATE.

take next_sample

The take_next_sample operation is semantically equivalent to the take
operation where the input sequence has max_len=1, the
sample_states=NOT_READ_SAMPLE_STATE,the
view_states=ANY_VIEW_STATE, and the

instance_states=ANY_ INSTANCE_STATE.

& PRISMTECH

Appendices

& PRISMTECH

read_instance

The act of reading a sample setsits sample_state t0O READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state Of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state Of the instance.

take instance

The act of taking a sample removes it from the DatarReader S0 it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of theinstance.

459
Java Reference Guide

Appendices

460

Java Reference Guide & PRISMTECH

Appendix

| nterface Inheritance

This appendix gives an overview of the inheritance relations of the DCPS interfaces.

Subscriber
(from Subscription Module)

Publisher
(from Publication Module)

DomainParticipant
(from Domain Module)

DomainEntity
(from Infrastructure Module)

™

Entity

(from Infrastructure Module)

DomainParticipantFactory
(from Domain Module)

TopicDescription
(from Topic-Definition Module)

DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

Topic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

FooDataWriter
(from Topic-Definition Module)

FooDataReader
(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

GuardCondition
(from Infrastructure Module)

<<Interface>>
<<Interface>> TypeSupport
Listener (from Topic-Definition Module) - o
R ndition ndition
(from Infrastructure Module) eadConditio Conditio
(from Subscription Module) —(> (from Infrastructure Module)
<<Interface>> <<Interface>> QueryCondition StatusCondition
DataReaderListener DataWriterListener (fmm':f:?zs;iiﬁgnp;g dule) (from Subscription Module) (from Infrastructure Module)
(from Subscription Module) (from Publication Module) P
<<Interface>>
TopicListener
Status WaitSet
<<|nFerfaC_E>> <<Interface>> (from Infrastructure Module) (from Infrastructure Module)
SubscriberListener PublisherListener
(from Subscription Module) (from Publication Module)
Samplelnfo QosPolicy
(from Subscription Module) (from Infrastructure Module)

DomainParticipantListener
(from Domain Module)

Figure 23 DCPSInheritance

461

& PRISMTECH Java Reference Guide

Appendices

462

Java Reference Guide & PRISMTECH

Appendix

Listeners, Conditions and

W\aitsets

& PRISMTECH

Listeners and conditions (Conditions in conjunction with waitsets) are
two mechanisms that allow the application to be made aware of changesin the
communication status. Listeners provide an event-based mechanism for the Data
Distribution Service to asynchronously alert the application of the occurrence of
relevant status changes. conditions in conjunction with waitSets provide a
state-based mechanism for the Data Distribution Service to synchronously
communicate the relevant status changes to the application.

Both mechanisms are based on the communication statuses associated with an
Entity object. Not al statuses are applicableto al Ent ity objects. Which statusis
applicable to which Entity object islisted in the next table:

463
Java Reference Guide

Appendices

Table 23 Communication Statuses

Entity Satus Name Description
Topic INCONSISTENT_TOPIC_STATUS Another Topic exists with the same name but
with different characteristics.
Subscriber |DATA_ON_READERS_STATUS New information is available.
DataReader |SAMPLE REJECTED_STATUS A (received) sample has been rejected.
LIVELINESS_CHANGED_STATUS Theliveliness of one or more batawriter
objects, that were writing instances read through
the DataReader Objects has changed. Some
DataWriter object have become “active’” or
“inactive”.
REQUESTED_ The deadline that the DataReader was
DEADLINE_MISSED_STATUS expecting through itsDeadlineQosPolicy
was not respected for a specific instance.
REQUESTED_ A QosPolicy setting was incompatible with what
INCOMPATIBLE_QOS_STATUS iS offered
DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS TheDpataReader hasfound aDatawriter that
matches the Topic and has compatible QoS.
DataWriter |LIVELINESS_LOST_STATUS Theliveliness that the Datawriter has
committed throughitST.ivelinessQosPolicy
was not respected; thus bataReader oObjects
will consider the Datawriter asno longer
“active’.
OFFERED_ The deadline that the Datawriter has
DEADLINE_MISSED STATUS committed through its DeadlineQosPolicy
was not respected for a specific instance.
OFFERED_ A QosPolicy setting wasincompatible with what
INCOMPATIBLE_QOS_STATUS was requested.
PUBLICATION_MATCH_STATUS The patawriter hasfound DataReader that
matches the Topic and has compatible QoS.
464

Java Reference Guide

& PRISMTECH

Appendices

The statuses may be classified in:

 read communication statuses. i.e., those that are related to arrival of data, namely
DATA_ON_READERS and DATA_AVAILABLE;

* plain communication statuses: i.e., al the others.

For each plain communication status, there is a corresponding status class. The
information from in instance of this class can be retrieved with the operations
get_<status_name>_status. For example, to get the INCONSISTENT_TOPIC
status (which information is stored in the TnconsistentTopicStatus oObject),
the application must call the operation get_inconsistent_topic_status. A
plain communication status can only be read from the Entity on which it is
applicable. For the read communication statuses there is no object available to the
application.

Communication Satus Event

& PRISMTECH

Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operation to read the statusChangedFlag). The
StatusChangedFlag isonly conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener Will only be activated when the statusChangedFlag changes from
false to true (provided the Listener is attached and enabled for this particular
status). The conditions which cause the statusChangedFlag to changeis dightly
different for the plain communication status and the read communication status.

For the plain communication status, the statusChangedFlag flagisinitially set to
false. It becomes true whenever the plain communication status changesand it is
reset to false each time the application accesses the plain communication status
viathe proper get_<status_name>_status operation onthe Entity.

The communication status is also reset to false whenever the associated
Listener operationiscaled asthe Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
calling the listener means that if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

An exception to thisrule is when the associated Listener isthe 'nil' listener, i.e. a

listener with value nu11. Such a listener is treated as a NOOP! for all statuses
activated in its bitmask and the act of calling this 'nil' listener does not reset the
corresponding communication statuses.

1. Short for No-Operation, an instruction that peforms nothing at all.

465
Java Reference Guide

Appendices

466

4>< StatusChangedFlag = false>

CurrentStatus ! = SavedStatus
get_<status name>_status

OR invocation of corres-
ponding Listener operation
event which can cause
the activation of a Listener
StatusChangedFlag = true

Figure 24: Plain Communication Status State Chart

For example, the value of the statusChangedFlag associated with the
RequestedDeadlineMissedStatus Will become true each time anew deadline
passes (which increases the total_count field within
RequestedDeadlineMissedStatus). The value changes to false when the
application accesses the status via the corresponding
get_requested_deadline_missed_status operation on the proper Entity,
or when the the on_requested_deadline_missed operation on the Listener
attached to thisEnt ity or oneits containing entitiesis invoked.

For the read communication status, the statusChangedrlag flagisinitially set to
false. It becomes true when data arrives, or when the InstanceState of a
contained instance changes. This can be caused by either:

» The arrival of the notification that an instance has been disposed by:

-the Dpatawriter that owns it if itS OwnershipQosPolicyKind =
EXCLUSIVE_OWNERSHIP_QOS
-or by any Datawriter if itS OwnershipQosPolicyKind =
SHARED_OWNERSHIP_QOS.
» The loss of liveliness of the patawriter of an instance for which there is no
other Datawriter.

» The arrival of the notification that an instance has been unregistered by the only
Datawriter that is known to be writing the instance.

& PRISMTECH

Java Reference Guide

Appendices

—»C StatusChangedFlag = false>
on_data_available OR

read/take or any of its DataarrivesOR o
variants change in InstanceState of a contained instance

event which can cause
the activation of a Listener
StatusChangedFlag = true

Figure 25: Read Communication Status DataReader Statecr aft

—»(StatusChangedFlag = false>

on_data_on_readers OR

on_data_available OR Data arrives OR changein | nstanceSaIe
read/take or any of its of any contained DataReader
variants

event which can cause
the activation of a Listener
StatusChangedFlag = true

Figure 26: Subscriber Satecraft for a Read Communication Status

» The status flag of the bATA_ON_READERS_STATUS becomes FALSE when any of
the following events occurs:

- The corresponding listener operation (on_data_on_readers) iscaled on the
corresponding Subscriber.

- The on_data_available listener operation is caled on any DataReader
belonging to the subscriber.

-The read or take operation (or any of its variants) is called on any
DataReader belonging to the subscriber.

467

& PRISMTECH Java Reference Guide

Appendices

Lisgeners

468

The Listeners provide for an event-based mechanism to asynchronousinform the
application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the Listener is activated, it will call the
corresponding on_<status_name> operation of that Listener. Each
on_<status_name> operation available in the Listener oOf an Entity isalso
avallableinthe Listener of the factory of the Entity.

For both the read communication statuses and the plain communication statuses a
Listener isonly activated when aListener isattached to this particular Entity
and enabled for this particular status. Statuses are enabled according the to the
StatusMask parameter that was passed at creation time of the Entity, or that was
passed to the set_1istener operation.

When an event occurs for a particular Entity and for a particular status, but the
applicable Listener isnot activated for this status, the status is propagated up to
the factory of thiseEntity. For thisfactory, the same propagation rules apply. When
eventhe bomainParticipantListener iSnot attached or enabled for this status,
the application will not be notified about this event. This means, that a status change
on acontained Entity only invokes the Listener of itsfactory if the Listener
of the contained Entity itself does not handle the trigger event generated by the
status change.

& PRISMTECH

Java Reference Guide

Appendices

& PRISMTECH

<<Interface>>
Listener
(from Infrastructure Module)

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qgos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

<<Interface>>
PublisherListener

DomainParticipantListener

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure27. DCPSListeners

The event propagation is also applicable to the read communication statuses.
However, since the event here is the arrival of data, both the DATA_ON_READERS
and DATA_AVAILABLE status are true. The Data Distribution Service will first
attempt to handle the pATA_oN_READERS status and try to activate the
SubscriberListener. When this Listener isnot activated for this status the
event will propagate to the DomainParticipantListener. Only when the
DATA_ON_READERS Status can not be handled, the Data Distribution Service will
attempt to handle the paTa_AVATILABLE status and try to activate the
DataReaderListener. In casethisListener iSnot activated for this status the
event will follow the propagation rules as described above.

469

Java Reference Guide

Appendices

Conditionsand Waitsets

470

The conditions in conjunction with waitsets provide for a state-based
mechanism to synchronously inform the application of status changes. A
Condition can be either a ReadCondition, QueryCondition,
StatusCondition Of GuardCondition. TO create a Condition one of the
following operations can be used:

* ReadCondition created by create_readcondition;

* QueryCondition created by create_querycondition;

* StatusCondition retrieved by get_statuscondition Onan Entity;
* GuardCondition created by the Java operation new.

* Note that the QueryCondition is a speciadized ReadCondition. The
GuardCondition isadifferent kind of condition sinceit isnot controlled by a
status but directly by the application (when a GuardCondition is initialy
created, the trigger_value iS false). The StatusCondition iS present by
default with each Entity, therefore, it does not have to be created.

WaitSet

Condition

attach_condition()
| detach_condition()
get_conditions()
wait()

Figure 28: DCPS WaitSets

get_trigger_value() *

A wWaitSet may have one or several conditions attached to it. An application
thread may block execution (blocking may be limited by atimeout) by waiting on a
waitSet until the trigger_value of one or more of the conditions become
true. When acondition, whose trigger value evaluatesto true, is attached
to awaitset that is currently being waited on (using the wait operation), the
waitSet will unblock immediately.

This (state-based) mechanism is generally used as follows:
» The application creates awaitset.

» The application indicates which relevant information it wants to be natified of, by
creating or retrieving Condition oObjects (StatusCondition,
ReadCondition, QueryCondition Of GuardCondition) and attach themto a
WaitSet.

* Itthen waitson that waitSet (USiNg wWaitSet.wait) until the trigger value
of one or several Condition objects (in thewaitset) become true.

» When the thread is unblocked, the application uses the result of thewait (i.e., the
list of condition objects with trigger_value==true) to actualy get the
information:

& PRISMTECH

Java Reference Guide

Appendices

- if the condition is a statusCondition and the status changes refer to a plain
communication status, by calling get_status_changes and then
get_<communication status> ontherelevant Entity;

- if the condition isa statusCondition and the status changes refer to the read
communication status:

- DATA_ON_READERS, by caling get_status_changes and then
get_datareaders on the relevant subscriber and then read/take on the
returned DataReader Objects;

- DATA_AVAILABLE, by calling get_status_changes and then read/take on
therelevant bataReader.

-if it iS a ReadCondition Or a QueryCondition, by caling directly
read_w_condition/take_w_condition on the DataReader with the
Condition asaparameter.

Condition

get_trigger_value()

StatusCondition GuardCondition
get_enabled_statuses() set_trigger_value()
ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
get_datareader() statuscondition
get_instance_state_mask() 0.1
get_sample_state_mask() §
get_view_state_mask() entity
1
/ QueryCondition Entity
<<create>> ‘ enable()
get_query_arguments() <<abstract>> get_listener()
L get_query_expression() <<abstract>> get_qos()
set_query_arguments() get_status_chang_es()
1 i get_statuscondition()
DataReader <<abstract>> set_listener() -
<<creale>j <<abstract>> set_qos() DataWriter
Subscriber Zﬁ " Publisher
— DomainEntity
Topic

Figure29 DCPS Conditions

471

& PRISMTECH Java Reference Guide

Appendices

No extrainformation is passed from the Data Distribution Service to the application
when await returnsonly the list of triggered condition objects. Therefore, it is
the application responsibility to investigate which condition objects have
triggered thewaitset.

Blocking Behaviour

The result of await operation depends on the state of the waitset, which in turn
depends on whether at least one attached condition hasatrigger_value of
true. If thewait operation is called on waitset with state BLOCKED it will
block the calling thread. If wait iscalled on awaitset with state UNBLOCKED it
will return immediately. In addition, when the waitset transitions from state
BLOCKED to state UNBLOCKED it wakes up the thread (if any) that had called
wait onit. Note that there can only be one thread waiting on asingle waitset.

4’(BLOCKED

[all attached conditions have [at least one attached condition has
trigger_value == false] trigger_value == true]
Wakeup waiting threads

4(UNBLOCKED

Figure 30: Blocking Behaviour of a Waitset Sate Chart

WaitSet::wait
Block calling thread

WaitSet::wait
Do not block. Return immediately

SatusCondition Trigger Sate

472

The trigger_value Of a statusCondition isthe boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
That is, trigger_value==false only if all the values of the
StatusChangedFlags ae false.

The sensitivity of the statusCondition to aparticular communication status is
controlled by the bit mask of enabled_statuses Set onthe condition by means
of the set_enabled_statuses operation.

& PRISMTECH

Java Reference Guide

Appendices

ReadCondition and QueryCondition Trigger Sate

Similar tothe statusCondition, aReadCondition dsohasatrigger_ value
that determines whether the attached waitset is BLOCKED or UNBLOCKED.
However, unlike the statusCondition, the trigger_value oOf the
ReadCondition istied to the presence of at least one sample managed by the Data
Distribution Service with SampleState, ViewState, and InstanceState
matching those of the Readcondition. Additionally, for the Querycondition,
the data associated with the sample, must be such that the query_expression
evaluatesto true.

The fact that the trigger_value of aReadCondition is dependent on the presence
of samples on the associated DataReader impliesthat asingle take operation can
potentially change the trigger_value Of several ReadCondition Or
QueryCondition Objects.

For example, if al samples are taken, any ReadCondition Of QueryCondition
objects associated with the bataReader that had their trigger_value==true
before will seethe trigger_value changeto false. Note that this does not
guarantee that waitset objects, that had those condition objects separately
attached to, will not be woken up. Once we have trigger_value==true On a
Condition it may wake up the waitSet it was attached to, the condition
transitions to trigger_value==false does not 'un-wake up' the waitset as
‘'un-wakening' is not possible. The consequence is that an application blocked on a
WaitSet may return from the wait with alist of condition objects some of which
are no longer “active”.

This is unavoidable if multiple threads are concurrently waiting on separate
waitSet objects and taking data associated with the same bataReader Entity.
In other words, await may return with alist of condition objects which all have
atrigger_value==false. Thisonly means, that at some point one or more of
the condition objectshave had atrigger value==true but nolonger do.

GuardCondition Trigger Sate

& PRISMTECH

The trigger_value Of a GuardCondition is completely controlled by the
application via the operation set_trigger_value. ThiSCondition can be used
to implement an application defined wake-up of the blocked thread.

473
Java Reference Guide

Appendices

474

Java Reference Guide & PRISMTECH

Appendix

Topic Definitions

The Data Distribution Service distributes its data in structured data types, called
topics. Thefirst step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

Topic Definition Example

& PRISMTECH

All data distributed using the Data Distribution Service has to be defined as a topic.
A topic is a structured data type, like a class with several data members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

}s

#pragma keylist Foo

Y
Thisisthe definition of atopic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent Java object which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL preprocessor, idlpp -1 java -S
<idl_filename>.id1, atool which translates the IDL topic definition into an
equivaent Java-definition. The -1 java option indicates that Java code has to be
generated. The -S option indicates that this Java-code should be StandAlone
Java-code, i.e. it must not have any dependency on external ORB libraries. (It isalso
possible to use libraries from an existing ORB, so that your DDS application can
al so manage information coming from an external ORB. In that case you should use
the CORBA-cohabitation mode, by replacing the -s flag witg a -c flag.) In this
example, the pre-processor will generate the classes FooTypeSupport,
FooDataWriter and FooDataReader Which contain the type specific operations.

475
Java Reference Guide

Appendices

Complex Topics
The Foo topic isrelatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. It is important to know that the pre-processor
accepts al IDL constructs but only the subset is being processed.

Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. a struct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs.

|DL Preprocessor
The subset of OMG IDL that can be used to define the topics are described bel ow.

IDL to Host Language M apping

The Data Distribution Service IDL pre-processor translates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of amodule defining several structs and typedefs.

Data Digtribution Service DL Keywords

The identifiers listed in this appendix are reserved for use as keywordsin IDL and
may not be used otherwise, unless escaped with aleading underscore.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char false multiple setraises union
component finder native sequence uses
const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private true

476 & PRISMTECH

Java Reference Guide

Appendices

& PRISMTECH

Keywords must be written exactly as shown in the above list. Identifiersthat collide
with keywords areillegal. For example, boolean isavalid keyword; Boolean and
BOOLEAN areillegal identifiers.

Data Digribution Service IDL PragmaKeylist

To define atopic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. When the <pragmakey1ist>hasno <fieid _id>, thetopicis
available but no key is set. To define the keylist the definition, written in
BNF-notation, is asfollows:
<pragmakeylist>::= “#pragma keylist” <type_id> <field_id>*
<type_id>::= <struct_type_identifier>
| <union_type_identifier>
<field_id>::= <member_declarator>
| <element_spec_declarator>
In case of astruct, <type_id> iSa@<struct_type_identifiers>. In case of aunion,
<type_id>iSa<union_type_identifier>.The<struct_type_identifier>iS
the identifier used in the struct declaration. The <union_type_identifier> iSthe
identifier used in the union declaration. The<field_id> istheidentifier of afieldin
the struct or union identified by <type_id>. In case of astruct, <field_ia> isa
<member_declarator> Which isone of the declarators used in the struct member. In
case of a union, <field_id> is d<element_spec_declarator> which is one of the
declarators used in the element specification in a case of the union.

For example, for the Foo example the next pragma must be used to have the
pre-processor generate the typed classes (FooTypeSupport, FooDataWriter and
FooDataReader).

#pragma keylist Foo userID index

Note that in this example the userID and the index are used as a key.

Data Digtribution Service I DL Subset in BNF-notation

Only a subset of IDL is used by the pre-processor. A description of the Data
Distribution Service IDL subset, written in BNF-notation, is as follows:

"

<definition> ::= <type_dcl> “;
| <const_dcl> »;”
| <module> “;”
<module>::= “module” <identifier> “{“ <definition>+ “}”
<scoped_name>::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>
<const_dcl>::= “const” <const_type>
<identifier> “=" <const_exp>
<const_type>::= <integer_type>
| <char_type>
477
Java Reference Guide

Appendices

478

| <boolean_type>

| <floating pt_type>
| <string_ type>

| <scoped_name>

| <octet_type>

<const_exp>::= <0or_expr>
<Or_expr>::= <XOr_expr>

| <or_expr> “|” <xor_expr>
<XOor_expr>::= <and_expr>

| <xor_expr> “~” <and_expr>
<and_expr>::= <shift_expr>

| <and_expr> “&” <shift_expr>
<shift_expr>::= <add_expr>

| <shift_expr> “>>" <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>
<mult_expr>::= <unary_expr>

| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr>::= <unary_operator> <primary_expr>

| <primary_expr>
<unary_operator>::= “-"
| v

|\\ "

<primary_expr>::= <scoped_name>
| <literal>
| “(” <const_exp> “)”
<literal>::= <integer_literal>
| <string literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal>::= “TRUE”

| “FALSE”
<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>

<type_declarator>::= <type_spec> <declarators>

<type_spec>::= <simple_type_spec>
| <constr_type_spec>
<simple_type_spec>::= <base_type_spec>
| <template_type_spec>
| <scoped_name>
<base_type_spec>::= <floating_pt_type>
| <integer_type>

Java Reference Guide

& PRISMTECH

Appendices

| <char_type>
| <boolean_type>
| <octet_type>

<template_type_spec>::= <sequence_type>
| <string_type>
<constr_type_spec>::= <struct_type>

| <union_type>

| <enum_type>
<declarators>::= <declarator> { “,” <declarator> }*
<declarator>::= <simple_declarator>

| <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating pt_type>::= “float”

| “double”
<integer_type>::= <signed_int>

| <unsigned_int>
<signed_int>::= <signed_short_int>

| <signed_long_int>

| <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long”
<char_type>::= “char”

<boolean_type>::= “boolean”

<octet_type>::= “octet”

<struct_type>::= “struct” <identifier> “{” <member_list> “}”
<member_list>::= <member>+

<member>::= <type_spec> <declarators> “;”

<union_type>::= “union” <identifier> “switch”

“ (" <switch_type_spec> “)”
“{"” <switch_body> “}”
<switch_type_spec>::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>
<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec> “;”
<case_label>::= “case” <const_exp> “:”
| “default” “:”
<element_spec>::= <type_spec> <declarator>
<enum_type>::= “enum” <identifier>
“{” <enumerator> { “,” <enumerator> }* “}”

479

& PRISMTECH Java Reference Guide

Appendices

480

<enumerator>::= <identifier>

<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”"
| “sequence” “<” <sgimple_type_spec> “>"

<string_ type>::= “string” “<” <positive_int_const> “>”
| “string”

<array_declarator>::= <identifier> <fixed_array_ size>+

<fixed_array_size>::= “[” <positive_int_const> “]”

Java Reference Guide

& PRISMTECH

Appendix

DCPS Queries and Filters

A subset of SQL syntax isused in several parts of OpenSplice:
e thefilter expressioninthecContentFilteredTopic
¢ the topic_expressionintheMultiTopic

* the query_expression inthe QueryReadCondition

Those expressions may use a subset of SQL, extended with the possibility to use
program variablesin the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:

* theNonTerminals aretypeset initalics
* the *Terminals’ arequoted and typeset in afixed width font
* the TOKENS are typeset in small caps

* the notation (element // ‘,’) represents a non-empty comma-separated list of
elements

SOL Grammar in BNF

& PRISMTECH

Expression::= FilterExpression

| TopicExpression

| QueryExpression
FilterExpression::= Condition
TopicExpression::= SelectFrom {Where } ‘;’
QueryExpression::= {Condition}
SelectFrom: := ‘SELECT’ Aggregation ‘FROM’ Selection
Aggregation::= ‘*’

| (SubjectFieldSpec // ‘,')
SubjectFieldSpec: := FIELDNAME

| FIELDNAME ‘AS’ FIELDNAME

| FIELDNAME FIELDNAME

Selection::= TOPICNAME
| TOPICTNAME NaturalJoin JoinItem
JoinItem: := TOPICNAME

| TOPICNAME NaturalJoin JoinItem

| ‘(' TOPICNAME NaturalJdoin JoinItem ‘)’
NaturalJoin::= ‘INNER NATURAL JOIN'’

| ‘NATURAL JOIN'

| ‘NATURAL INNER JOIN'
Where::= ‘WHERE’ Condition
Condition::= Predicate

| Condition ‘AND’ Condition

481
Java Reference Guide

Appendices

| Condition ‘OR’ Condition
| '‘NOT’ Condition

| ‘(' Condition ‘)’
Predicate::= ComparisonPredicate
| BetweenPredicate
ComparisonPredicate::= FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME
BetweenPredicate: := FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
RelOp::= ‘=’ | ‘>’ | *>=' | ‘<’ | ‘<= | *<>' | like
Range: := Parameter ‘AND’ Parameter
Parameter::= INTEGERVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER

Note: INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are
all aliases, in the sense that they have the same semantics. The aliases are all
supported because they all are part of the SQL standard.

SQL Token Expression

482

The syntax and meaning of the tokens used in the SQL grammar is described as
follows:

FIELDNAME - A fieldnameis a reference to afield in the data-structure. The dot
‘.’ isused to navigate through nested structures. The number of dots that may
be used in afieldname is unlimited. The field-name can refer to fields at any
depth in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the
fieldnames that appear on the Java mapping of the structure

TOPICNAME - A topic nameis an identifier for atopic, and is defined as any series
of characters *a’, ..., ‘z’, *A’,...,'2",*0",..., 9", *=',*_" but may not
start with adigit

INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign,
representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression

FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and
optionally including a floating point (* . ’). A power-of-ten expression may be
post-fixed, which has the syntax en, where n is a number, optionally preceded
by aplus or minus sign

& PRISMTECH

Java Reference Guide

Appendices

STRING - Any series of characters encapsulated in single quotes, except a new-line
character or aright quote. A string starts with aleft or right quote, but ends with
aright quote

ENUMERATEDVALUE - An enumerated value is areference to a value declared within
an enumeration. The name of the value must correspond to the names specified
in the IDL definition of the enumeration, and must be encapsulated in single
quotes. An enum value starts with a left or right quote, but ends with a right
guote

PARAMETER - A parameter is of the form %n, where n represents a natural number
(zero included) smaller than 100. It refers to the n + 1th argument in the given
context

Note: when Rel0p is *1ike~, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is * 2/, any zero
or more charactersis = /.

SQL Examples

& PRISMTECH

Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, X, y, z’, and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.

Example 1 topic_expression

“SELECT flight_name, x, y, z AS height FROM ‘Location’
NATURAL JOIN ‘FlightPlan’ WHERE height < 1000 AND x <23”

Example 2 query_expression or afilter_expression
“height < 1000 AND x <23”

483
Java Reference Guide

Appendices

484

Java Reference Guide & PRISMTECH

BIBLIOGRAPHY

Bibliography

[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object
Management Group

[2] OMG Java Language Mapping Specification formal/02-08-05, Object Management Group
(OMG)

[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,
formal/02-06-01, Object Management Group

487

& PRISMTECH Java Reference Guide

Bibliography

488

Java Reference Guide & PRISMTECH

GLOSSARY

Glossary

Acronyms

Acronym Meaning

CORBA Common Object Request Broker Architecture

DCPS Data Centric Publish/Subscribe

DDS Data Distribution Service

DLRL DataLoca Reconstruction Layer

IDL Interface Definition Language

OoMG Object Management Group

ORB Object Request Broker

QoS Quality of Service

SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
& PRISMTECH 491

Java Reference Guide

Glossary

492

Java Reference Guide & PRISMTECH

INDEX

| nd ex

Affected Entities. 391
assert_liveliness.................... 115, 227
BasicUsage ..., 391
begin access............ ... it 283
begin_coherent changes. 203
Castingof Objects 13
ClassCondition 101
ClassDataSample. 364
ClassDomainEntity 33
Class DomainParticipant 111
Class DomainParticipantFactory 154
Class FooTypeSupportovvn... 196
Class GuardCondition 103
ClassQosPolicy ...t 33
ClassSamplelnfo....................... 364
ClassStatus.o i 79
Class StatusCondition. 105
ClassWaitSet 96
Communication StatusEvent 465
Communication Statuses 464
Complex TOPICS . ..o v v 476

Data Distribution Service IDL Keywords476
Data Distribution Service IDL Pragma Keylist 477
Data Distribution Service IDL Subset in

BNF-notation. 477
DataReader Statecraft for a Read Communication

Status. . .o 467
DATAREADER_QOS DEFAULT 395
DataReaderListener interface. 372
DataReaderQos.covi i 393
DATAWRITER_QOS DEFAULT 398

& PrISMTECH

assert_liveliness (inherited) 247
Attributes 394, 397, 400, 401, 403, 404
Bibliography. oot 487
Blocking Behavior of a Waitset State Chart . . 472
Blocking Behaviour 472
Conditionso 422
Conditionsand Waitsets. 470
contains entity 116
copy_from_topic gos. 204, 284
create_contentfilteredtopic. 117
create datareader 285
create datawriter 205
create multitopic 118
create participant. 155
create publisher........................ 120
create_querycondition 306, 336
create readcondition 308
create_readcondition (inherited) 336
create subscriber 122
create topic ... 124
DatawriterListener interface 275
DataWriterQoSs.o oo v 396
DCPSConditions. 102, 471
DCPS Domain Module's ClassModel .. .19, 111
DCPSHolderClasses 12
DCPS Infrastructure Modul€e's Class Model 18, 26
DCPSInheritance. 461
DCPSListenerscooviivn... 78, 469
DCPS Module Composition. 17
DCPS Publication Module ClassMode 22

495

Java Reference Guide

Index

496

DCPS Publication Module' s ClassModel ... 200
DCPSStatusValuescoont. 81
DCPS Subscription Module's Class Model 23, 280
DCPS Topic-Definition Modul€' s Class Model 20,

................................. 171
DCPSWaitSets.oov v 96, 470
dds deps.idl. 417
DDS DeadlineQosPolicy 57
DDS _PARTICIPANT_QOS DEFAULT.... 399
DDS PublisherListener interface.......... 272
DeadlineQosPolicy 42,44
delete_contained_entities 127, 208, 288, 309
delete_contained_entities (inherited) 336
delete_contentfilteredtopic 128
delete datareader. 289
delete datawriter. 209
delete multitopic. 130
delete participant 158
delete publisher 131
enable 27

enable (inherited). . . 134, 176, 210, 229, 252, 290,

312, 337
find topic, 135
Fooddl ... 446
get_builtin_subscriber................... 136
get_conditions. 99
get current time....................... 137
get datareader......................... 380
get_datareader (inherited) 384
get datareaders................ 291
get_default_datareader gos............... 291
get_default_datawriter gqos............... 211
get_default_participant qos 159
get_default_publisher gos 138
get_default_subscriber qos............... 139
get_default_topic qos................... 140

Java Reference Guide

delete readcondition.................... 310
delete_readcondition (inherited) 337
delete subscriber. L 132
delete topic.......... ... i 133
Description 394, 397, 400, 401, 403, 404
DestinationOrderQosPolicy 44
detach_condition........................ 98

Detailed Description 395, 397, 400, 402, 403, 405

dispose. ... 247
dispose (abstract). 228
dispose w_timestamp................... 250
dispose w_timestamp (abstract)........... 229
Document Structure 3
DomainModule 19,111
DomainParticipantListener Interface 165
DomainParticipantQos 399
DurabilityQosPolicy 46
DurabilityServiceQosPolicy 49
Durationand Time 407
end acCess. v i 290
end coherent changes 210
EntityFactoryQosPolicy 52
Functionality 17
get_discovered participant data. 142
get_discovered participants.............. 142
get_discovered topic data............... 142
get_discovered topics. 142
get domain_id......................... 143
get enabled statuses. 106
get entity. 108
get_expression_parameters. 184, 189
get filter expression.................... 185
get_inconsistent_topic status............. 176
getinstance............... 160
get instance handle 29

& PRISMTECH

get_instance state mask 381
get_instance_state mask (inherited) 385
get key value.................. 252, 312, 337
get_ key vaue(abstract). 229
get listener........ 143, 177, 212, 229, 292, 312
get listener (abstract) 30
get_listener (inherited) 253, 337
get_liveliness changed_status............. 313
get_liveliness changed_status (inherited)338
get_liveliness lost status. 230
get_liveliness lost_status (inherited) 253
get_matched_publication data. 314
get_matched_publication_data (inherited)338
get_matched_publications 314
get_matched_publications (inherited) 338
get_matched_subscription data............ 231
get_matched_subscription_data (inherited) . . .254
get_matched_subscriptions. 231
get_matched_subscriptions (inherited). 254
get name. ... e 173
get_name (inherited). 178, 186, 190
get_offered deadline missed status........ 232

get_offered _deadline_missed_status (inherited) . .
254

get_offered_incompatible qos status 233

get_offered_incompatible_qos_status (inherited) .
254

get_participant 173, 213, 293
get_participant (inherited) 178, 186, 191
get_publication_match status 234
get_publication_match_status (inherited)255
get publisher 234
get_publisher (inherited) 255
get qos........... 144, 178, 214, 235, 293, 314
get gqos(abstract) ... 30
get qos(inherited) 255, 338
get_ query argumentS. 385
HistoryQosPolicy 53
Identifications. 413
& PRISMTECH

get_query expression.ienan.. 386
get related topic 186
get_requested_deadline_missed status. 315

get_requested_deadline_missed_status (inherited)
339

get_requested_incompatible_gos status 316
get_requested_incompatible_gos_status
(inherited)o 339
get sample lost_status. 317
get_sample lost_status (inherited). 339
get sample rejected status 319
get_sample_rejected status (inherited) 339
get sample state mask 381
get_sample_state mask (inherited) 387
get status changes. 30
get_status _changes (inherited) 145, 179, 214, 235,
255, 294, 319, 339
get_statuscondition. 32
get_statuscondition (inherited) 145, 179, 215, 236,
255, 295, 320, 340
get subscriber. ... L 320
get_subscriber (inherited). 340
get_subscription_expression 191
get_subscription_match status. 321
get_subscription_match_status (inherited). . . . 340
get tOPIC. . oot 236
get_topic (inherited) 256
get_topicdescription. 321
get_topicdescription (inherited) 340
get trigger value............., 102
get_trigger_value (inherited) . . 104, 108, 382, 387
get typename................. 174, 196, 197
get_type_name (inherited) 179, 187,192
get view state mask............... ..., 382
get view_state mask (inherited) 387
GroupDataQosPolicy 53
GuardCondition Trigger State 473
IDL MappingtoJdava...................... 8
497

Java Reference Guide

Index

IDL Preprocessor.ovvvevveenennnn. 476 Interface ContentFilteredTopic............ 183
IDL to Host Language Mapping........... 476 InterfaceDataReader. 302
IDL-Constant Mapping. 8 Interface DataWriter 224
IDL-SequenceMapping 9 InterfaceEntity 26
ignore_participant 145 Interface FooDataReader 331
ignore_publication. 146 Interface FooDataWriter................. 244
ignore_subscription..................... 146 Interface MultiTopic.................... 188
ignore topicC.o i 146 Interface Publisher 201
InfrastructureModule 18, 26 Interface QueryCondition................ 383
Inheritance of Abstract Operations.......... 15 Interface ReadCondition. 379
Instance Statesto Support Reads 411 Interface Subscriber 281
instance state 0., 452 InterfaceTopic 175
instance_state for a Single Instance State Chart . . Interface TopicDescription. 172
454 Interface TypeSupport. 195
J
Java Reference Guide Document Structure 3
L
LatencyBudgetQosPolicy 56 LivelinessQosPalicy 58, 60
LifespanQosPolicy 57 lookup datareader...................... 295
Listener Interface. 77 lookup _datawriter...................... 215
Listenerscoo.... 420,468 lookup instance 341
Listenersinterfaces...................... 14 lookup_instance (abstract) 321
LivelinessChangedStatus 84 lookup_participant 162
LivelinessLostStatus 85 lookup_topicdescription................. 147
M
Memory Management. 11
N
Names 411 notify datareaders...................... 296
O
OfferedDeadlineMissedStatus. 86 on_data on readers (inherited, abstract) 167
OfferedincompatibleQosStatus. 87 on_inconsistent_topic (abstract) 194
on data available 373 on_inconsistent_topic (inherited, abstract) . . . 168
on_data available (inherited) 369 on liveliness changed 375
on_data available (inherited, abstract) 167 on_liveliness changed (inherited) 371
ondataonreaders..................... 369 on_liveliness changed (inherited, abstract) .. 168
498

Java Reference Guide

& PRISMTECH

on liveliness lost....................... 277
on_liveliness_lost (inherited, abstract). . . 168, 274
on_offered deadline missed 278
on_offered_deadline_missed (inherited, abstract) .
168, .t 275
on_offered incompatible gos 279
on_offered_incompatible_qos (inherited, abstract)
169, v 275
on_publication_ match 280

on_publication_match (inherited, abstract) . . 169,
275

on_requested deadline missed 376

on_requested deadline_missed (inherited) . ..371

on_requested deadline_missed (inherited,

abstract). i 169
on_requested incompatible gos 377
Parameter Passing. 11
PARTICIPANT_QOS DEFAULT 401
PartitionQosPolicy 64
Plain Communication Status State Chart 466
Pre-defined Bit Mask Definitions. 456
Pre-defined Values. 408, 417
Pre-processor Generation of the Typed Classes for

DataType“Fo0”covvvunt. 172
QOS. . 424
QosPalicy 411
QosPolicyBasics ... 41
read.......... ..ol 322, 341, 457
read_instance 322, 345, 459
read_next_instance.................. 322, 347
read_next_instance w_condition........... 349
read_next_instance w_condition (abstract) . . . 323
read_next sample............... 323, 351, 458
read_w_condition................... 323, 351

ReadCondition and QueryCondition Trigger State
473

&4 PRISMTECH

Index

on_requested incompatible_qos (inherited) . .371
on_requested incompatible _qos (inherited,

abstract). ... 169
onsample lost......................... 378
on_sample lost (inherited). 371
on_sample lost (inherited, abstract) 170
on sample rejected 378
on_sample rejected (inherited) 372
on_sample regjected (inherited, abstract) 170
on_subscription_match (abstract) 379
on_subscription_match (inherited, abstract) .. 170
on_subscription_match (inherited,) 372
Operations ..o 4
Operations Concerning States 457
OwnershipQosPolicy 60, 453
OwnershipStrengthQosPolicy 63
PresentationQosPolicy 65
PublicationModule 21,200
Publication Type Specific Classes. 224
PublicationMatchStatus 90
PUBLISHER_QOS DEFAULT 402
PublisherListener interface. 273
PublisherQos 401
QosPolicy Default Attributes 38
QosPolicy Settings. 34
ReaderDatal ifecycleQosPolicy 67
register instance. 257
register_instance (abstract). 237
register_instance w_timestamp............ 259
register_instance w_timestamp (abstract) 237
register type.............. .. 196, 198
ReliabilityQosPolicy 69
Requested Offered DestinationOrderQosPolicy 46
Requested Offered DurabilityQosPolicy 48

499

Java Reference Guide

Index

500

Requested Offered PresentationQosPolicy 67
Requested Offered ReliabilityQosPolicy .. 62, 70

RequestedDeadlineMissedStatus 90
Requestedl ncompatibleQosStatus. 91
Sample Statesto Support Reads 410
sample state 451
sample_state for a Single Sample State Chart. 452
Samplelnfo 364
SamplelnfoClass. 451
SampleLostStatus 93
SampleRejectedStatus. 94
Scope........ 393, 396, 398, 399, 401, 402, 404
set default datareader qos............... 297
set default_datawriter gos............... 217
set_default_participant_qos. 163
set_default_publisher qos................ 147
set default_subscriber gos............... 149
set default topic gos................... 150
set enabled statuses.................... 109
set_expression parameters........... 187, 192
set listener........ 151, 180, 218, 237, 298, 324
set listener (abstract). 32
set_listener (inherited). 260, 355
Sset goS. 153, 181, 220, 239, 300, 326
set qos(abstract). ..., 33
set qos(inherited).................. 260, 355
set_query_arguments. 387
set trigger value.............. 104
Signa Handling. 10
take 328, 355, 458
take instance.................. 328, 357, 459
take next_instance 328, 359
take next_instance w_condition 329, 360
take next sample 329, 362, 458
take w_condition 329, 362, 458
Thread Safetyco L. 9
TimeBasedFilterQosPolicy 74
Topic Definition Example. 475

Java Reference Guide

ResourceLimitsQosPolicy. 70
resume_publications.................... 216
ReturnCodes. 7,408, 418
return loan, 324, 353
Snapshot ... 454, 455

SPACE_FooDataWriter_dispose w_timestamp .
272

SQLExamples 4383
SQL GrammarinBNF 4381
SQL Token Expression.................. 482
State Definitions oL 456
StateMasks. 456
Stateper Sample., .. 452
StateS. . v 410
Status Description Per Entity 79
Statusper Entity 105

Status to Support Listeners and Conditions . . 409,
418

StatusCondition Trigger State. 472
Subscriber Statecraft for a Read Communication
StatuS . .. 467
SUBSCRIBER_QOS DEFAULT 403
SubscriberListener Interface. 368
SubscriberQos. o 402
SubscriptionModule. 22,280
Subscription Type SpecificClasses 302
SubscriptionMatchStatus 95
suspend_publications 221
Synopsis 393, 396, 399, 401, 402, 404
TOPIC_QOS DEFAULT 405
TopicDataQosPolicy..................... 74
Topic-DefinitionModule 20,171
Topic-Definition type specific interfaces 195
TopicListener interface. 193
TopiCQOS. . . v e 404
TransportPriorityQosPolicy 75
Typed Classes for Data Type “Foo” Pre-processor
Generation 21
& PRISMTECH

Index

U

unregister_instance. 260 unregister_instance w_timestamp (abstract) . . 241

unregister_instance (abstract). 241 UserDataQosPolicy 76

unregister_instance w_timestamp.......... 263

View Statesto Support Reads 411 view_state for a Single Instance State Chart . . 455

view state. 454

Wait. e 100 write(abstract) o 242

wait_for_historical data.................. 330 writew timestamp 267

wait_for_historical_data (inherited)......... 364 write w_timestamp (abstract) 243

WHEE . . 265 WriterDatalifecycleQosPolicy 76
501

& PRISMTECH

Java Reference Guide

Index

502

Java Reference Guide & PRISMTECH

	Java Reference Guide
	Table of Contents
	List of Figures
	Preface
	About the Java Reference Guide
	Contacts

	Introduction
	About the Java Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 IDL Mapping to Java
	1.1.1 IDL-Constant Mapping
	1.1.2 IDL-Sequence Mapping

	1.2 Thread Safety
	1.3 Signal Handling
	1.4 Memory Management
	1.5 Parameter Passing
	1.6 Casting of Objects
	1.7 Listeners Interfaces
	1.8 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Interface Entity
	3.1.1.1 enable
	3.1.1.2 get_instance_handle
	3.1.1.3 get_listener (abstract)
	3.1.1.4 get_qos (abstract)
	3.1.1.5 get_status_changes
	3.1.1.6 get_statuscondition
	3.1.1.7 set_listener (abstract)
	3.1.1.8 set_qos (abstract)

	3.1.2 Class DomainEntity
	3.1.3 Class QosPolicy
	3.1.3.1 DeadlineQosPolicy
	3.1.3.2 DestinationOrderQosPolicy
	3.1.3.3 DurabilityQosPolicy
	3.1.3.4 DurabilityServiceQosPolicy
	3.1.3.5 EntityFactoryQosPolicy
	3.1.3.6 GroupDataQosPolicy
	3.1.3.7 HistoryQosPolicy
	3.1.3.8 LatencyBudgetQosPolicy
	3.1.3.9 LifespanQosPolicy
	3.1.3.10 LivelinessQosPolicy
	3.1.3.11 OwnershipQosPolicy
	3.1.3.12 OwnershipStrengthQosPolicy
	3.1.3.13 PartitionQosPolicy
	3.1.3.14 PresentationQosPolicy
	3.1.3.15 ReaderDataLifecycleQosPolicy
	3.1.3.16 ReliabilityQosPolicy
	3.1.3.17 ResourceLimitsQosPolicy
	3.1.3.18 SchedulingQosPolicy
	3.1.3.19 TimeBasedFilterQosPolicy
	3.1.3.20 TopicDataQosPolicy
	3.1.3.21 TransportPriorityQosPolicy
	3.1.3.22 UserDataQosPolicy
	3.1.3.23 WriterDataLifecycleQosPolicy

	3.1.4 Listener Interface
	3.1.5 Class Status
	3.1.5.1 InconsistentTopicStatus
	3.1.5.2 LivelinessChangedStatus
	3.1.5.3 LivelinessLostStatus
	3.1.5.4 OfferedDeadlineMissedStatus
	3.1.5.5 OfferedIncompatibleQosStatus
	3.1.5.6 PublicationMatchedStatus
	3.1.5.7 RequestedDeadlineMissedStatus
	3.1.5.8 RequestedIncompatibleQosStatus
	3.1.5.9 SampleLostStatus
	3.1.5.10 SampleRejectedStatus
	3.1.5.11 SubscriptionMatchedStatus

	3.1.6 Class WaitSet
	3.1.6.1 attach_condition
	3.1.6.2 detach_condition
	3.1.6.3 get_conditions
	3.1.6.4 wait

	3.1.7 Class Condition
	3.1.7.1 get_trigger_value

	3.1.8 Class GuardCondition
	3.1.8.1 get_trigger_value (inherited)
	3.1.8.2 set_trigger_value

	3.1.9 Class StatusCondition
	3.1.9.1 get_enabled_statuses
	3.1.9.2 get_entity
	3.1.9.3 get_trigger_value (inherited)
	3.1.9.4 set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DomainParticipant
	3.2.1.1 assert_liveliness
	3.2.1.2 contains_entity
	3.2.1.3 create_contentfilteredtopic
	3.2.1.4 create_multitopic
	3.2.1.5 create_publisher
	3.2.1.6 create_subscriber
	3.2.1.7 create_topic
	3.2.1.8 delete_contained_entities
	3.2.1.9 delete_contentfilteredtopic
	3.2.1.10 delete_multitopic
	3.2.1.11 delete_publisher
	3.2.1.12 delete_subscriber
	3.2.1.13 delete_topic
	3.2.1.14 enable (inherited)
	3.2.1.15 find_topic
	3.2.1.16 get_builtin_subscriber
	3.2.1.17 get_current_time
	3.2.1.18 get_default_publisher_qos
	3.2.1.19 get_default_subscriber_qos
	3.2.1.20 get_default_topic_qos
	3.2.1.21 get_discovered_participants
	3.2.1.22 get_discovered_participant_data
	3.2.1.23 get_discovered_topics
	3.2.1.24 get_discovered_topic_data
	3.2.1.25 get_domain_id
	3.2.1.26 get_listener
	3.2.1.27 get_qos
	3.2.1.28 get_status_changes (inherited)
	3.2.1.29 get_statuscondition (inherited)
	3.2.1.30 ignore_participant
	3.2.1.31 ignore_publication
	3.2.1.32 ignore_subscription
	3.2.1.33 ignore_topic
	3.2.1.34 lookup_topicdescription
	3.2.1.35 set_default_publisher_qos
	3.2.1.36 set_default_subscriber_qos
	3.2.1.37 set_default_topic_qos
	3.2.1.38 set_listener
	3.2.1.39 set_qos

	3.2.2 Class DomainParticipantFactory
	3.2.2.1 create_participant
	3.2.2.2 delete_participant
	3.2.2.3 get_default_participant_qos
	3.2.2.4 get_instance
	3.2.2.5 get_qos
	3.2.2.6 lookup_participant
	3.2.2.7 set_default_participant_qos
	3.2.2.8 set_qos

	3.2.3 DomainParticipantListener Interface
	3.2.3.1 on_data_available (inherited, abstract)
	3.2.3.2 on_data_on_readers (inherited, abstract)
	3.2.3.3 on_inconsistent_topic (inherited, abstract)
	3.2.3.4 on_liveliness_changed (inherited, abstract)
	3.2.3.5 on_liveliness_lost (inherited, abstract)
	3.2.3.6 on_offered_deadline_missed (inherited, abstract)
	3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
	3.2.3.8 on_publication_matched (inherited, abstract)
	3.2.3.9 on_requested_deadline_missed (inherited, abstract)
	3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
	3.2.3.11 on_sample_lost (inherited, abstract)
	3.2.3.12 on_sample_rejected (inherited, abstract)
	3.2.3.13 on_subscription_match (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Interface TopicDescription
	3.3.1.1 get_name
	3.3.1.2 get_participant
	3.3.1.3 get_type_name

	3.3.2 Interface Topic
	3.3.2.1 enable (inherited)
	3.3.2.2 get_inconsistent_topic_status
	3.3.2.3 get_listener
	3.3.2.4 get_name (inherited)
	3.3.2.5 get_participant (inherited)
	3.3.2.6 get_qos
	3.3.2.7 get_status_changes (inherited)
	3.3.2.8 get_statuscondition (inherited)
	3.3.2.9 get_type_name (inherited)
	3.3.2.10 set_listener
	3.3.2.11 set_qos

	3.3.3 Interface ContentFilteredTopic
	3.3.3.1 get_expression_parameters
	3.3.3.2 get_filter_expression
	3.3.3.3 get_name (inherited)
	3.3.3.4 get_participant (inherited)
	3.3.3.5 get_related_topic
	3.3.3.6 get_type_name (inherited)
	3.3.3.7 set_expression_parameters

	3.3.4 Interface MultiTopic
	3.3.4.1 get_expression_parameters
	3.3.4.2 get_name (inherited)
	3.3.4.3 get_participant (inherited)
	3.3.4.4 get_subscription_expression
	3.3.4.5 get_type_name (inherited)
	3.3.4.6 set_expression_parameters

	3.3.5 TopicListener interface
	3.3.5.1 on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition type specific interfaces
	3.3.6.1 Interface TypeSupport
	3.3.6.2 get_type_name
	3.3.6.3 register_type
	3.3.6.4 Class FooTypeSupport
	3.3.6.5 get_type_name
	3.3.6.6 register_type

	3.4 Publication Module
	3.4.1 Interface Publisher
	3.4.1.1 begin_coherent_changes
	3.4.1.2 copy_from_topic_qos
	3.4.1.3 create_datawriter
	3.4.1.4 delete_contained_entities
	3.4.1.5 delete_datawriter
	3.4.1.6 enable (inherited)
	3.4.1.7 end_coherent_changes
	3.4.1.8 get_default_datawriter_qos
	3.4.1.9 get_listener
	3.4.1.10 get_participant
	3.4.1.11 get_qos
	3.4.1.12 get_status_changes (inherited)
	3.4.1.13 get_statuscondition (inherited)
	3.4.1.14 lookup_datawriter
	3.4.1.15 resume_publications
	3.4.1.16 set_default_datawriter_qos
	3.4.1.17 set_listener
	3.4.1.18 set_qos
	3.4.1.19 suspend_publications
	3.4.1.20 wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Interface DataWriter
	3.4.2.2 assert_liveliness
	3.4.2.3 dispose (abstract)
	3.4.2.4 dispose_w_timestamp (abstract)
	3.4.2.5 enable (inherited)
	3.4.2.6 get_key_value (abstract)
	3.4.2.7 get_listener
	3.4.2.8 get_liveliness_lost_status
	3.4.2.9 get_matched_subscription_data
	3.4.2.10 get_matched_subscriptions
	3.4.2.11 get_offered_deadline_missed_status
	3.4.2.12 get_offered_incompatible_qos_status
	3.4.2.13 get_publication_matched_status
	3.4.2.14 get_publisher
	3.4.2.15 get_qos
	3.4.2.16 get_status_changes (inherited)
	3.4.2.17 get_statuscondition (inherited)
	3.4.2.18 get_topic
	3.4.2.19 lookup_instance (abstract)
	3.4.2.20 register_instance (abstract)
	3.4.2.21 register_instance_w_timestamp (abstract)
	3.4.2.22 set_listener
	3.4.2.23 set_qos
	3.4.2.24 unregister_instance (abstract)
	3.4.2.25 unregister_instance_w_timestamp (abstract)
	3.4.2.26 wait_for_acknowledgments
	3.4.2.27 write (abstract)
	3.4.2.28 write_w_timestamp (abstract)
	3.4.2.29 writedispose (abstract)
	3.4.2.30 writedispose_w_timestamp (abstract)
	3.4.2.31 Interface FooDataWriter
	3.4.2.32 assert_liveliness (inherited)
	3.4.2.33 dispose
	3.4.2.34 dispose_w_timestamp
	3.4.2.35 enable (inherited)
	3.4.2.36 get_key_value
	3.4.2.37 get_listener (inherited)
	3.4.2.38 get_liveliness_lost_status (inherited)
	3.4.2.39 get_matched_subscription_data (inherited)
	3.4.2.40 get_matched_subscriptions (inherited)
	3.4.2.41 get_offered_deadline_missed_status (inherited)
	3.4.2.42 get_offered_incompatible_qos_status (inherited)
	3.4.2.43 get_publication_matched_status (inherited)
	3.4.2.44 get_publisher (inherited)
	3.4.2.45 get_qos (inherited)
	3.4.2.46 get_status_changes (inherited)
	3.4.2.47 get_statuscondition (inherited)
	3.4.2.48 get_topic (inherited)
	3.4.2.49 lookup_instance
	3.4.2.50 register_instance
	3.4.2.51 register_instance_w_timestamp
	3.4.2.52 set_listener (inherited)
	3.4.2.53 set_qos (inherited)
	3.4.2.54 unregister_instance
	3.4.2.55 unregister_instance_w_timestamp
	3.4.2.56 write
	3.4.2.57 write_w_timestamp
	3.4.2.58 writedispose
	3.4.2.59 writedispose_w_timestamp

	3.4.3 PublisherListener interface
	3.4.3.1 on_liveliness_lost (inherited, abstract)
	3.4.3.2 on_offered_deadline_missed (inherited, abstract)
	3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
	3.4.3.4 on_publication_matched (inherited, abstract)

	3.4.4 DataWriterListener interface
	3.4.4.1 on_liveliness_lost
	3.4.4.2 on_offered_deadline_missed
	3.4.4.3 on_offered_incompatible_qos
	3.4.4.4 on_publication_matched

	3.5 Subscription Module
	3.5.1 Interface Subscriber
	3.5.1.1 begin_access
	3.5.1.2 copy_from_topic_qos
	3.5.1.3 create_datareader
	3.5.1.4 delete_contained_entities
	3.5.1.5 delete_datareader
	3.5.1.6 enable (inherited)
	3.5.1.7 end_access
	3.5.1.8 get_datareaders
	3.5.1.9 get_default_datareader_qos
	3.5.1.10 get_listener
	3.5.1.11 get_participant
	3.5.1.12 get_qos
	3.5.1.13 get_status_changes (inherited)
	3.5.1.14 get_statuscondition (inherited)
	3.5.1.15 lookup_datareader
	3.5.1.16 notify_datareaders
	3.5.1.17 set_default_datareader_qos
	3.5.1.18 set_listener
	3.5.1.19 set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Interface DataReader
	3.5.2.2 create_querycondition
	3.5.2.3 create_readcondition
	3.5.2.4 delete_contained_entities
	3.5.2.5 delete_readcondition
	3.5.2.6 enable (inherited)
	3.5.2.7 get_key_value (abstract)
	3.5.2.8 get_listener
	3.5.2.9 get_liveliness_changed_status
	3.5.2.10 get_matched_publication_data
	3.5.2.11 get_matched_publications
	3.5.2.12 get_qos
	3.5.2.13 get_requested_deadline_missed_status
	3.5.2.14 get_requested_incompatible_qos_status
	3.5.2.15 get_sample_lost_status
	3.5.2.16 get_sample_rejected_status
	3.5.2.17 get_status_changes (inherited)
	3.5.2.18 get_statuscondition (inherited)
	3.5.2.19 get_subscriber
	3.5.2.20 get_subscription_matched_status
	3.5.2.21 get_topicdescription
	3.5.2.22 lookup_instance (abstract)
	3.5.2.23 read (abstract)
	3.5.2.24 read_instance (abstract)
	3.5.2.25 read_next_instance (abstract)
	3.5.2.26 read_next_instance_w_condition (abstract)
	3.5.2.27 read_next_sample (abstract)
	3.5.2.28 read_w_condition (abstract)
	3.5.2.29 return_loan (abstract)
	3.5.2.30 set_listener
	3.5.2.31 set_qos
	3.5.2.32 take (abstract)
	3.5.2.33 take_instance (abstract)
	3.5.2.34 take_next_instance (abstract)
	3.5.2.35 take_next_instance_w_condition (abstract)
	3.5.2.36 take_next_sample (abstract)
	3.5.2.37 take_w_condition (abstract)
	3.5.2.38 wait_for_historical_data
	3.5.2.39 Interface FooDataReader
	3.5.2.40 create_querycondition (inherited)
	3.5.2.41 create_readcondition (inherited)
	3.5.2.42 delete_contained_entities (inherited)
	3.5.2.43 delete_readcondition (inherited)
	3.5.2.44 enable (inherited)
	3.5.2.45 get_key_value
	3.5.2.46 get_listener (inherited)
	3.5.2.47 get_liveliness_changed_status (inherited)
	3.5.2.48 get_matched_publication_data (inherited)
	3.5.2.49 get_matched_publications (inherited)
	3.5.2.50 get_qos (inherited)
	3.5.2.51 get_requested_deadline_missed_status (inherited)
	3.5.2.52 get_requested_incompatible_qos_status (inherited)
	3.5.2.53 get_sample_lost_status (inherited)
	3.5.2.54 get_sample_rejected_status (inherited)
	3.5.2.55 get_status_changes (inherited)
	3.5.2.56 get_statuscondition (inherited)
	3.5.2.57 get_subscriber (inherited)
	3.5.2.58 get_subscription_match_status (inherited)
	3.5.2.59 get_topicdescription (inherited)
	3.5.2.60 lookup_instance
	3.5.2.61 read
	3.5.2.62 read_instance
	3.5.2.63 read_next_instance
	3.5.2.64 read_next_instance_w_condition
	3.5.2.65 read_next_sample
	3.5.2.66 read_w_condition
	3.5.2.67 return_loan
	3.5.2.68 set_listener (inherited)
	3.5.2.69 set_qos (inherited)
	3.5.2.70 take
	3.5.2.71 take_instance
	3.5.2.72 take_next_instance
	3.5.2.73 take_next_instance_w_condition
	3.5.2.74 take_next_sample
	3.5.2.75 take_w_condition
	3.5.2.76 wait_for_historical_data (inherited)

	3.5.3 Class DataSample
	3.5.4 Class SampleInfo
	3.5.4.1 SampleInfo

	3.5.5 SubscriberListener Interface
	3.5.5.1 on_data_available (inherited)
	3.5.5.2 on_data_on_readers
	3.5.5.3 on_liveliness_changed (inherited)
	3.5.5.4 on_requested_deadline_missed (inherited)
	3.5.5.5 on_requested_incompatible_qos (inherited)
	3.5.5.6 on_sample_lost (inherited)
	3.5.5.7 on_sample_rejected (inherited)
	3.5.5.8 on_subscription_matched (inherited,)

	3.5.6 DataReaderListener interface
	3.5.6.1 on_data_available
	3.5.6.2 on_liveliness_changed
	3.5.6.3 on_requested_deadline_missed
	3.5.6.4 on_requested_incompatible_qos
	3.5.6.5 on_sample_lost
	3.5.6.6 on_sample_rejected
	3.5.6.7 on_subscription_matched (abstract)

	3.5.7 Interface ReadCondition
	3.5.7.1 get_datareader
	3.5.7.2 get_instance_state_mask
	3.5.7.3 get_sample_state_mask
	3.5.7.4 get_trigger_value (inherited)
	3.5.7.5 get_view_state_mask

	3.5.8 Interface QueryCondition
	3.5.8.1 get_datareader (inherited)
	3.5.8.2 get_instance_state_mask (inherited)
	3.5.8.3 get_query_parameters
	3.5.8.4 get_query_expression
	3.5.8.5 get_sample_state_mask (inherited)
	3.5.8.6 get_trigger_value (inherited)
	3.5.8.7 get_view_state_mask (inherited)
	3.5.8.8 set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DataReaderQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	DataWriterQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	DomainParticipantFactoryQos
	Scope

	DomainParticipantQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	PublisherQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	SubscriberQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	TopicQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	B API Constants and Types
	Duration and Time
	Pre-defined Values
	Return Codes

	Status to Support Listeners and Conditions
	States
	Sample States to Support Reads
	View States to Support Reads
	Instance States to Support Reads

	QosPolicy
	Names
	Identifications

	C Platform Specific Model IDL Interface
	dds_dcps.idl
	Pre-defined Values
	Return Codes
	Status to Support Listeners and Conditions
	Listeners
	Conditions
	QoS

	Foo.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State per Sample

	instance_state
	OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Interface Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	StatusCondition Trigger State
	ReadCondition and QueryCondition Trigger State
	GuardCondition Trigger State

	G Topic Definitions
	Topic Definition Example
	Complex Topics
	IDL Preprocessor
	IDL to Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL Subset in BNF-notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

