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What You’'ll See

» et up-to-speed in developing applications
with the OpenSplice DDS v4.1 Community

Edition
» Understanding the key concepts behind
DDS Programming and Open Splice DDS

What You’ll Need

» OpenSplice DDS v4.1 (from opensplice.org)
» Linux Distro with GCC v4.1 or higher

» Some C++ skills
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Splice

A little bit of [heory

lopics, Partritions, and Domains




Topics. Unit of information exchanged between
Publisher and Subscribers.

Data Types. Type associated to a Topic must
be a structured type expressed in IDL

Topic Instances. Key values in a datatype
uniquely identify a Topic Instance (like rows in
table]

Content Awareness. SUL Expressions can be
used to do content-aware subscriptions,
gueries, joins, and correlate topic instances

Topic
4 )
struct TempSensor {
) int tiD;
Topic Type float temp;
float humidity;
};
#pragma keylist TempSensor tiID
. J
TempSensor
humidity
— —> 21 62
Instances —
\ 27 78
25.5 72.3
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SELECT * FROM TempSensor t
WHERE t.temp > 25
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Keyless Topics

Topic Type

-

-

struct TempSensor {

};

#pragma keylist TempSensor

int tiD;
float temp;

float humidity;

J

TempSensor
tiD temp
21

humidity
62

Topic

Keyed Topics

Topic Type

\_

}:

int tiD;

float temp;

float humidity;

-
struct TempSensor {

#pragma keylist TempSensor tliID

Instances
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/|

TempSensor

temp

humidity
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Topic “AAPL”

Topic Type name exchange quote
Apple Inc. NASD 165.37
4 )
struct StockQuote { . Kevless-Topics have
char<64> name; Topic “GOOG~ Y P
float quote; name exchange  quote only one Instance
char<4> exchanage - » Googlelnc. = NASD  663.97 Tobi
ge, per 10pIC
}; T i “MSFT”
#pragma keylist StockQuote -
L ) name exchange quote
Microsoft Corp. NASD 33.73
Topic Type
e ~N Topic “StockQuote”
struct StockQuote {
char<4> symbol; name exchange quote Keyed-Topic have
char<64> name: Apple Inc. NASD 165.37 one Instance per
frl]oat4 qUOEe; » Googlelnc. ~ NASD  663.97 | | P
<4> - Key-
3 char exchange. Microsoft Corp.  NASD 33.73 €y-value
#pragma keylist StockQuote symbol
\_ /
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» All DDS communication is
organized within a Domain

» Domain can be divided into
DDS Partitions

» Topics are published and m
subscribed across on or more
partitions

» Note: OpenSplice DDS futher m

adds the concept of Network

Partitions which allows to

map logical DDS Partitions to m
“Physical Network

Partitions”

N
—)
¥ 4
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DataReader
struct TempSensor {

int tID; .
float temp;
float humidity;
¥
#pragma keylist TempSensor tiD
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—
=

struct TempSensor {
int tiD;
float temp;
float humidity;

};

#pragma keylist TempSensor tiD

Publisher Publisher
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Arrows
show
structural
relationship
s, hot data-
flows

D ata Read e struct TempSensor { I Data-W rite r

int tiD; . &
float temp;
float humidity;

}s
#pragma keylist TempSensor tiD

Publisher Publisher
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Type Matching

————— QoS matching
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QoS Policy
DURABILITY
DURABILITY SERVICE

LIFESPAN

HISTORY
PRESENTATION
RELIABILITY
PARTITION
DESTINATION ORDER

OWNERSHIP

OWNERSHIP
STRENGTH

DEADLINE
LATENCY BUDGET

TRANSPORT PRIORITY

TIME BASED FILTER

RESOURCE LIMITS

USER_DATA
TOPIC_DATA
GROUP_DATA

Applicability RxO Modifiable
T, DR, DW Y N Data Availability
T, DW N N
T, DW - Y
T, DR, DW N N
PS Y N Data Delivery
T, DR, DW Y N
RS N Y
T, DR, DW Y N
T, DR, DW Y N
DW -
T, DR, DW Y Y Data Timeliness
T, DR, DW Y Y
T, DW - Y
DR - Y Resources
T, DR, DW N N
DP, DR, DW Y Configuration
T Y
PS Y

© 2009,

PrismTech. All Rights Reserved

Type Matching

e e e e = = = - . = = — — — - - - —— - - - —— = — = = = = = — .
- - -

—-— e e = —

» Rich set of QoS allow to configure
several different aspects of data
avallability, delivery and timeliness

» QoS can be used to control and
optimize network as well as
computing resource
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A little bit of [heory

Reading Data




» Read iterates over the
available sample instances

. -~

-

....................................................................................................

» Samples are not removed
from the local cache as
result of a read

» Read samples can be read

Samples Read

Samples not Read

© 2009, PrismTech. All Rights Reserved

/ again, by accessing the
cache with the proper
options (more later)
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» Read iterates over the
avallable sample instances

..................................

....................................................................................................

""""""""""""""""""""""""""""""""""""" » Samples are not removed

from the local cache as
result of a read

A » Read samples can be read

Samples Read

again, by accessing the
Samples not Read — cache with the proper
options (more later)
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» Read iterates over the
available sample instances

.............................................

.............................................

"""""""""""""""""""""""""""""" » Samples are not removed

from the local cache as
result of a read

A » Read samples can be read

Samples Read

again, by accessing the
Samples not Read cache with the proper
options (more later)
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...............................................................................

Samples not Taken
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» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take
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DataReader i“:::::::::::::::::::::

.....................

................................................................................
...............................................................................

................................................................................

Samples Taken

Samples not Taken —¢
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» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take
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...............................................................................

......................................................................................................
.....................................................................................................

....................................................................................................
.....................................................................................................

....................................................................................................

Samples Taken Samples not Taken
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» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.



Splice

A little bit of [heory

Writing Data




» Samples are written in the
local cache

» \Writer control the creation
of instances

» The DDS ensures that the
local caches for the
matched DataReader will be
eventually consistent with
that of the Data \Writer

.....................................................................................................

......................................................................................................

Last Sample Written

© 2009, PrismTech. All Rights Reserved

DataVVriter
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» Samples are written in the
local cache

» \Writer control the creation
of instances

» The DDS ensures that the
local caches for the
matched DataReader will be
eventually consistent with
that of the Data \Writer

.....................................................................................................

......................................................................................................

Last Sample Written
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DataVVriter
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A little bit of [heory

Managing Data History



History Depth = | (DDS Defaulilt)

..................................................................................

..................................................................................

© 2009, PrismTech. All Rights Reserved

» The History QoS Controls the
number of samples-per-
Instance that will be stored by
the middleware on behalf of a
Reader

» Keep Last K. The History QoS
can be set so to always have
the latest K samples

» Keep All. The History QoS can
be set so keep all samples
produced by the writer and not
yet taken, until resource limits
are not reached

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.
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History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EI

..................

BN 2
2Rz B

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders
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History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EZ

..................

Els

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.



~

History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EE

..................

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders
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History Depth = 2

Network

BN 2
2Rz B

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders
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History Depth = 2

Network

Els

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders
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\
History Depth = 2

Network

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders
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History Depth = 2

DataReader

Samples

L Topic

~

DataReader Cache

» Along with data samples, DataReaders are provided
with state information that allows to detect relevant
transitions in the life-cycle of data as well as data
writers

» Sample State (READ | NOT_READ): Determines
wether a sample has already been read by this
Data\Writer or not.

» Instance State (ALIVE, NOT_ALIVE, DISPOSED).
Determines wether (1] writer exist for the specific
Instance, or (2) no matched writers are currently
avallable, or (3] the instance has been disposed

» View State ([NEW, NOT_NEW/). Determines wether

this Is the first sample of a new [or re-born] instance

© 2009, PrismTech. All Rights Reserved
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DDS provides three main mechanism for exchanging information with the application

» Polling. The application polls from time to time for new data or status changes. The
iInterval might depend on the kind of applications as well as data

» WaitSets. The application registers a \WaitSet with DDS and waits (i.e. is suspended]
until one of the specified events has not happened.

» Listeners. The application registers a listener with a specific DDS entity to be notified
when relevant events occur, such as state changes or

© 2009, PrismTech. All Rights Reserved
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Writing a DDS application can be decomposed in the following few simple steps:

» Step#1: Define Topics

» Step #2: Identify QoS representing key non-functional invariants for your system

» Transport Priority

» Deadline
» Durability

» Step #3:
» Step #4:

» Step #95:
» History

Define Topics / Partition Mapping
dentify Topic Readers/\Writers

Define QoS requirements for Readers/\Writers

» Latency Budget

» Auto-Dispose

» Transport Priority

» Deadline

» Step #6: Code-it in your favorite programming language

© 2009, PrismTech. All Rights Reserved
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Step #1: Topic definition
» We are going to define a simple key-less topic that will carry the name to greet.

module swatch {

struct hello {
string<256> name;

¥
#pragma keylist hello

¥

© 2009, PrismTech. All Rights Reserved
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Step #2: Topic QoS
» Reliability QoS: RELIABLE
» Durability QoS: TRANSIENT

module swatch {

struct hello {
string<256> name;

s
#pragma keylist hello

+s

© 2009, PrismTech. All Rights Reserved
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Step #3: Topics/Partitions Mapping
» swatch::hello will be mapped into the default-partition (thus no action to take]

© 2009, PrismTech. All Rights Reserved
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Step #4: Readers/Writers
» A Generic DataReader that will read the topic swatch:: hello

» We'll be able to run as many of this as we want

» A Generic Data\Writer that will read the topic swatch:: hello

» WEe'll be able to run as many of this as we want

© 2009, PrismTech. All Rights Reserved
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» Step #9: Define QoS requirements for Readers/\\Writers

» Writer:

» Inherit TopicQoS, and
» No-Auto Dispose
» History QoS: Keep Last N

» Reader

» Inherit TopicQoS, and
» History QoS: Keep Last N

© 2009, PrismTech. All Rights Reserved
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History Depth = 2

..................................

..................................
..................................

..................................

..................................

...................................

..................................

...................................
..................................

...................................

..................................

...................................

Samples

L swatch::hello

~

Network

)

DataReader Cache
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History Depth = 2

-

swatch::hello

"

~

J

DataWriter Cache
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How many lines of code Is going to take
this example?

© 2009, PrismTech. All Rights Reserved



» Today we'll write our DDS application using SIMD

» SIMD is a C++ library that takes advantage of C++ Template Meta-
Programming to:
» Vastly Improve Productivity
» Simplify Usage
» Automate Resource Management [All DDS Entities are Garbage Collected via Ref-Counting]

» Zero Overhead

© 2009, PrismTech. All Rights Reserved
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int main(int argc, char* argv[]) {

1f (!parse_args(argc, argv))

return 1;
-
// -- 1init the SIMD runtime
simd: :Runtime::init();
// -- create the DDS Topic
simd: :Topic<swatch: :hello> helloTopic("helloTopic™);
// -- create the DDS DataWriter
simd: :DataWriter<swatch: :hello> writerChelloTopic,
dwgos);
\_

Only 3-lines of DDS-Specific Code

swatch: :hello sample;

std: :stringstream ss;

for (int 1 =0; 1 < N; ++1) {

}

SS << 13

std::string tmp = ss.str() + "." + message;
ss.str("");

sample.name = DDS::string_dup(tmp.c_str());
std::cout << "<<= " << sample.name << std::endl;
writer.write(sample);

usleep(period*1000);

std: :cout << "[done]" << std::endl;
return 0; }

Business Logic

© 2009, PrismTech. All Rights Reserved
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int main(int argc, char* argv[]) {
1f (!parse_args(argc, argv))
return 1;
// -- 1init the SIMD runtime
simd: :Runtime::1nit();

simd: :TopicQos tqos;
tqos.set_reliable();
tqos.set_transient();

// -- create the DDS Topic

simd: :Topic<swatch: :hello> helloTopic("helloTopic",
tgos);

simd: :DataWriterQos dwgos(tqgos);
dwqos.set_keep_last(history_depth);
dwqgos.set_auto_dispose(false);

// -- create the DDS DataWriter
simd: :DataWriter<swatch: :hello> writerChelloTopic,
dwqgos);

swatch: :hello sample;
std: :stringstream ss;

for (int 1 =0; 1 < N; ++1) {

}

std: :cout << "[done]" << std::endl;
return 0; }

SS << 13

std::string tmp = ss.str() +
ss.str("");

sample.name = DDS::string_dup(tmp.c_str());

std::cout << "<<= " << sample.name << std::endl;

writer.write(sample);
usleep(period*1000);

+ message;

Business Logic

© 2009, PrismTech. All Rights Reserved
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int main(int argc, char* argv[]) {
1t (!parse_args(argc, argv))

return 1;
~N
// -- 1init the SIMD runtime
simd: :Runtime::1in1t();
// -- create the DDS Topic
simd: :Topic<swatch: :hello> helloTopic("helloTopic");
// -- create the DDS DataReader
simd: :DataReader<swatch: :hello> reader(ChelloTopic);

J

Only 3-lines of DDS-Specific Code

ffswatch::helloSeq samples;
DDS: :SampleInfoSeq infos;

while (true) {
reader.read(samples, infos);
for (int 1 = 0; 1 < samples.length(); ++1) {
std: :cout << "

'=>> " << samples[i].name
<< std::endl;

ks
1f (samples.length() > 0)
std::cout << "--" << std::endl;
reader.return_loan(samples, 1infos);
usleep(period*1000);
ks
return 0;}

Business Logic

© 2009, PrismTech. All Rights Reserved
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int main(int argc, char* argv[]) {

1t (!parse_args(argc, argv))
return 1;

// -- 1init the SIMD runtime

simd: :Runtime::init();

simd: :TopicQos tqos;
tqos.set_reliable();
tqos.set_transient();

// -- create the DDS Topic

simd: :Topic<swatch: :hello> helloTopic("helloTopic"

tqgos);

simd: :DataReaderQos drqgos(tgos);
drgos.set_keep_last(history_depth);

J

// -- create the DDS DataReader

simd: :DataReader<swatch: :hello> reader(helloTopic,
drqos);

ffswatch::helloSeq samples;
DDS: :SampleInfoSeq infos;

while (true) {
reader.read(samples, infos);
for (int 1 = 0; 1 < samples.length(); ++1) {
std: :cout << " samples[1i].name

=> <<
<< std::endl;

¥
1f (samples.length() > 0)
std::cout << "--" << std::endl;

reader.return_loan(samples, 1infos);
usleep(period*1000);

}

return 0;}

Business Logic

© 2009, PrismTech. All Rights Reserved
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DDS: :ReturnCode_t read(
TSeg& samples,
DDS: :SampleInfoSeg& 1infos,
long max_samples,
DDS: :SampleStateMask samples_state,
DDS: :ViewStateMask  views_state,
DDS: : InstanceStateMask instances_state)

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information



Splice

Demo!



» DDS is very Powerful, yet decomposable in Simple
aspects.

» DDS is a very powerful Pub/Sub Technology that
provides full control over all relevant aspects data
and life-cycle

» As demonstrated during the Webcast, writing
DDS applications is not hard at all!

» Thus, happy hacking and OpenSplice DDS!

© 2009, PrismTech. All Rights Reserved

OpenSplice

Delivering Performance, Openness, and Freedom

Enterprise Ed.

Professional Ed.

Compact Ed.

Community Ed.

DDS
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2k http://www.opensplice.com/

2k emailto:opensplicedds@prismtech.com

2k http://bit.1ly/1Sreg

2k http://www.youtube.com/OpenSpliceTube
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2k http://twitter.com/acorsaro/

2k http://opensplice.blogspot.com

2k http://www.dds-forum.org
2k http://portals.omg.org/dds
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