Splice

Angelo Corsaro, Ph.D.

Product Strategy & Marketing Manager
OMG RTESS and DDS SIG Co-Chair

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

What You’'ll See

» et up-to-speed in developing applications
with the OpenSplice DDS v4.1 Community

Edition
» Understanding the key concepts behind
DDS Programming and Open Splice DDS

What You’ll Need

» OpenSplice DDS v4.1 (from opensplice.org)
» Linux Distro with GCC v4.1 or higher

» Some C++ skills

Tuner

PowerTools

Connectors

Connectors

© 2009, PrismTech. All Rights Reserved

o Real Tlme Pub/Sub DCPS .

Application

Object/Relational Mapping

Object Orlented Pub/Sub (DLRL)

Persistence

Minimum Profile

''''

........

Networking Protocol (DDSI)

\t ﬂ worklng Technolo o
C st SOy IV e &R0y

UDP/IP

Secure Networking ‘! Real-Time Interoperable Wire .

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

A little bit of [heory

lopics, Partritions, and Domains

Topics. Unit of information exchanged between
Publisher and Subscribers.

Data Types. Type associated to a Topic must
be a structured type expressed in IDL

Topic Instances. Key values in a datatype
uniquely identify a Topic Instance (like rows in
table]

Content Awareness. SUL Expressions can be
used to do content-aware subscriptions,
gueries, joins, and correlate topic instances

Topic
4)
struct TempSensor {
) int tiD;
Topic Type float temp;
float humidity;
};
#pragma keylist TempSensor tiID
. J
TempSensor
humidity
— —> 21 62
Instances —
\ 27 78
25.5 72.3

© 2009, PrismTech. All Rights Reserved

SELECT * FROM TempSensor t
WHERE t.temp > 25

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Keyless Topics

Topic Type

-

-

struct TempSensor {

};

#pragma keylist TempSensor

int tiD;
float temp;

float humidity;

J

TempSensor
tiD temp
21

humidity
62

Topic

Keyed Topics

Topic Type

_

}:

int tiD;

float temp;

float humidity;

-
struct TempSensor {

#pragma keylist TempSensor tliID

Instances

© 2009, PrismTech. All Rights Reserved

/|

TempSensor

temp

humidity

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Topic “AAPL”

Topic Type name exchange quote
Apple Inc. NASD 165.37
4)
struct StockQuote { . Kevless-Topics have
char<64> name; Topic “GOOG~ Y P
float quote; name exchange quote only one Instance
char<4> exchanage - » Googlelnc. = NASD 663.97 Tobi
ge, per 10pIC
}; T i “MSFT”
#pragma keylist StockQuote -
L) name exchange quote
Microsoft Corp. NASD 33.73
Topic Type
e ~N Topic “StockQuote”
struct StockQuote {
char<4> symbol; name exchange quote Keyed-Topic have
char<64> name: Apple Inc. NASD 165.37 one Instance per
frl]oat4 qUOEe; » Googlelnc. ~ NASD 663.97 | | P
<4> - Key-
3 char exchange. Microsoft Corp. NASD 33.73 €y-value
#pragma keylist StockQuote symbol
_ /

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» All DDS communication is
organized within a Domain

» Domain can be divided into
DDS Partitions

» Topics are published and m
subscribed across on or more
partitions

» Note: OpenSplice DDS futher m

adds the concept of Network

Partitions which allows to

map logical DDS Partitions to m
“Physical Network

Partitions”

N
—)
¥ 4

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

'((((==

DataReader
struct TempSensor {

int tID; .
float temp;
float humidity;
¥
#pragma keylist TempSensor tiD

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

—
=

struct TempSensor {
int tiD;
float temp;
float humidity;

};

#pragma keylist TempSensor tiD

Publisher Publisher

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

=)

Arrows
show
structural
relationship
s, hot data-
flows

D ata Read e struct TempSensor { I Data-W rite r

int tiD; . &
float temp;
float humidity;

}s
#pragma keylist TempSensor tiD

Publisher Publisher

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

A little bit of [heory
Q0S5

Type Matching

————— QoS matching

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

QoS Policy
DURABILITY
DURABILITY SERVICE

LIFESPAN

HISTORY
PRESENTATION
RELIABILITY
PARTITION
DESTINATION ORDER

OWNERSHIP

OWNERSHIP
STRENGTH

DEADLINE
LATENCY BUDGET

TRANSPORT PRIORITY

TIME BASED FILTER

RESOURCE LIMITS

USER_DATA
TOPIC_DATA
GROUP_DATA

Applicability RxO Modifiable
T, DR, DW Y N Data Availability
T, DW N N
T, DW - Y
T, DR, DW N N
PS Y N Data Delivery
T, DR, DW Y N
RS N Y
T, DR, DW Y N
T, DR, DW Y N
DW -
T, DR, DW Y Y Data Timeliness
T, DR, DW Y Y
T, DW - Y
DR - Y Resources
T, DR, DW N N
DP, DR, DW Y Configuration
T Y
PS Y

© 2009,

PrismTech. All Rights Reserved

Type Matching

e e e e = = = - . = = — — — - - - —— - - - —— = — = = = = = — .
- - -

—-— e e = —

» Rich set of QoS allow to configure
several different aspects of data
avallability, delivery and timeliness

» QoS can be used to control and
optimize network as well as
computing resource

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

A little bit of [heory

Reading Data

» Read iterates over the
available sample instances

. -~

-

..

» Samples are not removed
from the local cache as
result of a read

» Read samples can be read

Samples Read

Samples not Read

© 2009, PrismTech. All Rights Reserved

/ again, by accessing the
cache with the proper
options (more later)

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Read iterates over the
avallable sample instances

..................................

..

""""""""""""""""""""""""""""""""""""" » Samples are not removed

from the local cache as
result of a read

A » Read samples can be read

Samples Read

again, by accessing the
Samples not Read — cache with the proper
options (more later)

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Read iterates over the
available sample instances

...

...

"""""""""""""""""""""""""""""" » Samples are not removed

from the local cache as
result of a read

A » Read samples can be read

Samples Read

again, by accessing the
Samples not Read cache with the proper
options (more later)

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

...

Samples not Taken

© 2009, PrismTech. All Rights Reserved

» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

......................

......................
......................

DataReader i“:::::::::::::::::::::

.....................

..
...

..

Samples Taken

Samples not Taken —¢

© 2009, PrismTech. All Rights Reserved

» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

...

..
...

..
...

..

Samples Taken Samples not Taken

© 2009, PrismTech. All Rights Reserved

» Take Iterates over the
available sample instances

» Taken Samples are
removed from the local
cache as result of a take

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

A little bit of [heory

Writing Data

» Samples are written in the
local cache

» \Writer control the creation
of instances

» The DDS ensures that the
local caches for the
matched DataReader will be
eventually consistent with
that of the Data \Writer

...

..

Last Sample Written

© 2009, PrismTech. All Rights Reserved

DataVVriter

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Samples are written in the
local cache

» \Writer control the creation
of instances

» The DDS ensures that the
local caches for the
matched DataReader will be
eventually consistent with
that of the Data \Writer

...

..

Last Sample Written

© 2009, PrismTech. All Rights Reserved

DataVVriter

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

A little bit of [heory

Managing Data History

History Depth = | (DDS Defaulilt)

..

..

© 2009, PrismTech. All Rights Reserved

» The History QoS Controls the
number of samples-per-
Instance that will be stored by
the middleware on behalf of a
Reader

» Keep Last K. The History QoS
can be set so to always have
the latest K samples

» Keep All. The History QoS can
be set so keep all samples
produced by the writer and not
yet taken, until resource limits
are not reached

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~

History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EI

..................

BN 2
2Rz B

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~

History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EZ

..................

Els

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~

History Depth = |
(DDS Default)

..................

Network

.................
.................

DataReader EE

..................

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

\
History Depth = 2

Network

BN 2
2Rz B

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

\
History Depth = 2

Network

Els

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

\
History Depth = 2

Network

DataReader Cache

DataVVriter

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the

Data\/Vriter to matched DataReaders

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

History Depth = 2

DataReader

Samples

L Topic

~

DataReader Cache

» Along with data samples, DataReaders are provided
with state information that allows to detect relevant
transitions in the life-cycle of data as well as data
writers

» Sample State (READ | NOT_READ): Determines
wether a sample has already been read by this
Data\Writer or not.

» Instance State (ALIVE, NOT_ALIVE, DISPOSED).
Determines wether (1] writer exist for the specific
Instance, or (2) no matched writers are currently
avallable, or (3] the instance has been disposed

» View State ([NEW, NOT_NEW/). Determines wether

this Is the first sample of a new [or re-born] instance

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

DDS provides three main mechanism for exchanging information with the application

» Polling. The application polls from time to time for new data or status changes. The
iInterval might depend on the kind of applications as well as data

» WaitSets. The application registers a \WaitSet with DDS and waits (i.e. is suspended]
until one of the specified events has not happened.

» Listeners. The application registers a listener with a specific DDS entity to be notified
when relevant events occur, such as state changes or

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

Splice

N Practice...

Writing a DDS application can be decomposed in the following few simple steps:

» Step#1: Define Topics

» Step #2: Identify QoS representing key non-functional invariants for your system

» Transport Priority

» Deadline
» Durability

» Step #3:
» Step #4:

» Step #95:
» History

Define Topics / Partition Mapping
dentify Topic Readers/\Writers

Define QoS requirements for Readers/\Writers

» Latency Budget

» Auto-Dispose

» Transport Priority

» Deadline

» Step #6: Code-it in your favorite programming language

© 2009, PrismTech. All Rights Reserved

is Prohibited.

ed Written Permission

- Distribution without Express

Proprietary Information

Step #1: Topic definition
» We are going to define a simple key-less topic that will carry the name to greet.

module swatch {

struct hello {
string<256> name;

¥
#pragma keylist hello

¥

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Step #2: Topic QoS
» Reliability QoS: RELIABLE
» Durability QoS: TRANSIENT

module swatch {

struct hello {
string<256> name;

s
#pragma keylist hello

+s

© 2009, PrismTech. All Rights Reserved

is Prohibited.

ed Written Permission

- Distribution without Express

Proprietary Information

Step #3: Topics/Partitions Mapping
» swatch::hello will be mapped into the default-partition (thus no action to take]

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Step #4: Readers/Writers
» A Generic DataReader that will read the topic swatch:: hello

» We'll be able to run as many of this as we want

» A Generic Data\Writer that will read the topic swatch:: hello

» WEe'll be able to run as many of this as we want

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Step #9: Define QoS requirements for Readers/\\Writers

» Writer:

» Inherit TopicQoS, and
» No-Auto Dispose
» History QoS: Keep Last N

» Reader

» Inherit TopicQoS, and
» History QoS: Keep Last N

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

|
Q
o
«
()
(a'd
<
]
«
|

History Depth = 2

..................................

..................................
..................................

..................................

..................................

...................................

..................................

...................................
..................................

...................................

..................................

...................................

Samples

L swatch::hello

~

Network

)

DataReader Cache

© 2009, PrismTech. All Rights Reserved

History Depth = 2

-

swatch::hello

"

~

J

DataWriter Cache

L
0,
Nt
§
(4]
)
(4]
O

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

(Publishea @ublishea

[Domain Participantj

5
[J]
=
i)
=
o
S
o
@
c
S
9]
@
£
£
[
o
c
Q
£
2
©
[
1]
[%]
(&)
o
o
x
Ll
-
>
o
=
=
2
c
S
2
>
a
=
=
2
[a)]
.
c
S
IS
£
£
(=]
S
E
>
z
]
3
k]
2
Qo
o
3
o

Domain

© 2009, PrismTech. All Rights Reserved

How many lines of code Is going to take
this example?

© 2009, PrismTech. All Rights Reserved

» Today we'll write our DDS application using SIMD

» SIMD is a C++ library that takes advantage of C++ Template Meta-
Programming to:
» Vastly Improve Productivity
» Simplify Usage
» Automate Resource Management [All DDS Entities are Garbage Collected via Ref-Counting]

» Zero Overhead

© 2009, PrismTech. All Rights Reserved

SIMD

is Prohibited.

ed Written Permission

- Distribution without Express

Proprietary Information

int main(int argc, char* argv[]) {

1f (!parse_args(argc, argv))

return 1;
-
// -- 1init the SIMD runtime
simd: :Runtime::init();
// -- create the DDS Topic
simd: :Topic<swatch: :hello> helloTopic("helloTopic™);
// -- create the DDS DataWriter
simd: :DataWriter<swatch: :hello> writerChelloTopic,
dwgos);
_

Only 3-lines of DDS-Specific Code

swatch: :hello sample;

std: :stringstream ss;

for (int 1 =0; 1 < N; ++1) {

}

SS << 13

std::string tmp = ss.str() + "." + message;
ss.str("");

sample.name = DDS::string_dup(tmp.c_str());
std::cout << "<<= " << sample.name << std::endl;
writer.write(sample);

usleep(period*1000);

std: :cout << "[done]" << std::endl;
return 0; }

Business Logic

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

int main(int argc, char* argv[]) {
1f (!parse_args(argc, argv))
return 1;
// -- 1init the SIMD runtime
simd: :Runtime::1nit();

simd: :TopicQos tqos;
tqos.set_reliable();
tqos.set_transient();

// -- create the DDS Topic

simd: :Topic<swatch: :hello> helloTopic("helloTopic",
tgos);

simd: :DataWriterQos dwgos(tqgos);
dwqos.set_keep_last(history_depth);
dwqgos.set_auto_dispose(false);

// -- create the DDS DataWriter
simd: :DataWriter<swatch: :hello> writerChelloTopic,
dwqgos);

swatch: :hello sample;
std: :stringstream ss;

for (int 1 =0; 1 < N; ++1) {

}

std: :cout << "[done]" << std::endl;
return 0; }

SS << 13

std::string tmp = ss.str() +
ss.str("");

sample.name = DDS::string_dup(tmp.c_str());

std::cout << "<<= " << sample.name << std::endl;

writer.write(sample);
usleep(period*1000);

+ message;

Business Logic

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

int main(int argc, char* argv[]) {
1t (!parse_args(argc, argv))

return 1;
~N
// -- 1init the SIMD runtime
simd: :Runtime::1in1t();
// -- create the DDS Topic
simd: :Topic<swatch: :hello> helloTopic("helloTopic");
// -- create the DDS DataReader
simd: :DataReader<swatch: :hello> reader(ChelloTopic);

J

Only 3-lines of DDS-Specific Code

ffswatch::helloSeq samples;
DDS: :SampleInfoSeq infos;

while (true) {
reader.read(samples, infos);
for (int 1 = 0; 1 < samples.length(); ++1) {
std: :cout << "

'=>> " << samples[i].name
<< std::endl;

ks
1f (samples.length() > 0)
std::cout << "--" << std::endl;
reader.return_loan(samples, 1infos);
usleep(period*1000);
ks
return 0;}

Business Logic

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

int main(int argc, char* argv[]) {

1t (!parse_args(argc, argv))
return 1;

// -- 1init the SIMD runtime

simd: :Runtime::init();

simd: :TopicQos tqos;
tqos.set_reliable();
tqos.set_transient();

// -- create the DDS Topic

simd: :Topic<swatch: :hello> helloTopic("helloTopic"

tqgos);

simd: :DataReaderQos drqgos(tgos);
drgos.set_keep_last(history_depth);

J

// -- create the DDS DataReader

simd: :DataReader<swatch: :hello> reader(helloTopic,
drqos);

ffswatch::helloSeq samples;
DDS: :SampleInfoSeq infos;

while (true) {
reader.read(samples, infos);
for (int 1 = 0; 1 < samples.length(); ++1) {
std: :cout << " samples[1i].name

=> <<
<< std::endl;

¥
1f (samples.length() > 0)
std::cout << "--" << std::endl;

reader.return_loan(samples, 1infos);
usleep(period*1000);

}

return 0;}

Business Logic

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

DDS: :ReturnCode_t read(
TSeg& samples,
DDS: :SampleInfoSeg& 1infos,
long max_samples,
DDS: :SampleStateMask samples_state,
DDS: :ViewStateMask views_state,
DDS: : InstanceStateMask instances_state)

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

Splice

Demo!

» DDS is very Powerful, yet decomposable in Simple
aspects.

» DDS is a very powerful Pub/Sub Technology that
provides full control over all relevant aspects data
and life-cycle

» As demonstrated during the Webcast, writing
DDS applications is not hard at all!

» Thus, happy hacking and OpenSplice DDS!

© 2009, PrismTech. All Rights Reserved

OpenSplice

Delivering Performance, Openness, and Freedom

Enterprise Ed.

Professional Ed.

Compact Ed.

Community Ed.

DDS

is Prohibited.

Proprietary Information - Distribution without Expressed Written Permission

2k http://www.opensplice.com/

2k emailto:opensplicedds@prismtech.com

2k http://bit.1ly/1Sreg

2k http://www.youtube.com/OpenSpliceTube

© 2009, PrismTech. All Rights Reserved

2k http://twitter.com/acorsaro/

2k http://opensplice.blogspot.com

2k http://www.dds-forum.org
2k http://portals.omg.org/dds

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

http://www.opensplice.com/
http://www.opensplice.com/
mailto:sales@prismtech.com
mailto:sales@prismtech.com
http://www.youtube.com/OpenSpliceTube
http://www.youtube.com/OpenSpliceTube
http://opensplice.blogspot.com
http://opensplice.blogspot.com
http://bit.ly/1Sreg
http://bit.ly/1Sreg
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://portals.omg.org/dds
http://portals.omg.org/dds
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/

