Splice

Angelo Corsaro, Ph.D.

|
Chief Technology Officer
OMG DDS SIG Co-Chair e u O r I a
angelo.corsaro@prismtech.com
sPart |
[I | a

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

DDS is standard designed to address the data-distribution challenges across
a wide class of Defense and Aerospace Applications

The OMG DDS Standard

» Introduced in 2004, DDS is a standard
for Real-Time, Dependable and High-
Performance Publish/Subscribe

» DDS behaviour and semantics can be
controlled via a rich set of QoS Policies

» DDS is today recommended by key
administration worldwide and widely
adopted across several different
application domains, such as, Automated
Trading, Simulations, SCADA, Telemetry,
etc.

© 2009, PrismTech. All Rights Reserved

DDS v1.2 API Standard
» Language Independent, OS and HW architecture Application

» DCPS. Standard API for Data-Centric, Topic- Data Local Reconstruction Layer (DLRL)

Based, Real-Time Publish /Subscribe
.:Mm Durability

» DLRL. Standard API for creating Object Views out

] Data Centric Publish/Subscribe (DCPS)
DDSI/RTPS v2.1 Wire Protocol Standard

: S " Real-Time Publish/Subscribe Protocol
» Standard wire protocol allowing interoperability

between different implementations of the DDS DDS Interoperability Wire Protocol
standard UDP/IP

» Interoperability demonstrated among key DDS
vendors in March 2008

© 2009, PrismTech. All Rights Reserved

Scope & Goals

» The Tutorial will cover the DCPS layer of DDS SRR
» It will give you enough details and examples
to make sure that you can get started Data Local Reconstruction Layer (DLRL)

writing DDS applications

T
Software |

-
» OpenSplice DDS

- DaEl Centric Publish/Subscribe (DCPS)
» http://www.opensplice.org : = -

» SIMple Dds (SIMD]

DDS Interoperability Wire Protocol
» http:/ /code.google.com/p/simd-Cxx

UDP/IP
Prerequisite

» Basic C++ understanding

© 2009, PrismTech. All Rights Reserved

http://www.opensplice.org
http://www.opensplice.org
http://code.google.com/p/simd-cxx
http://code.google.com/p/simd-cxx

Splice

Your will learn:
-What is a Topic

o e o Step |
Defining the Data

Topic

» Unit of information atomically
exchanged between Publisher ana
Subscribers.

» An association between a unique name,
a type and a QoS setting

© 2009, PrismTech. All Rights Reserved

A DDS Topic Type is described by an IDL Structure containing an arbitrary number for
fields whose types might be:

» IDL primitive types, e.qg., octet, short, long, float, string (bound/unbound], etc.
» Enumeration

» Union

» Sequence (bounded or unbounded]

» Array

» Structure (nested]

© 2009, PrismTech. All Rights Reserved

struct HelloTopicType {
string message;
i

struct PingType

{
long counter;
string<32> vendor;

&

struct ShapeType {
long X;
Long y;
Llong shapesize;
string color;

struct Counter {
long cID;
Llong count;

};

© 2009, PrismTech. All Rights Reserved

enum TemperatureScale {
CELSIUS,
FAHRENHEIT,
KELVIN

};

struct TempSensorType A
short id;
float temp;
float hum;
TemperatureScale scale;

};

» Each Topic Type has to define its key-set (which might be the empty set]
» There are no limitations on the number of attributes used to represent a key

» Keys can be top-level attributes as well as nested-attributes (i.e. attributes in nested
structures]

© 2009, PrismTech. All Rights Reserved

struct PingType

struct HelloTopicType { 1 _
string message; tong counter;
) string<32> vendor;
#pragma keylist HelloTopicType Iy , _
#pragma keylist PingType

© 2009, PrismTech. All Rights Reserved

enum TemperatureScale {

CELSIUS,
struct ShapeType { EQECE“HEIT;
long X; .
Long y; ’

Llong shapesize;
string color; struct TempSensorType {

1 short 1id;
! short roomid;

#pragma keylist ShapeType color float temp:

float hum;
TemperatureScale scale;

struct Counter { r
long cID; #pragma keylist TempSensorType id roomid

Llong count;
Fi
#pragma keylist Counter cID

© 2009, PrismTech. All Rights Reserved

» Keys are used to identify specific data “instances”
» It we want to make a parallel with OO then we could say that:

» Keyless Topic as singletons, e.g. there is only one instance!
» Keyed Topics identify a class of instances. Each instance is identified by a key value

» Think at each different key value as really instantiating a new “object” in your system. That will avoid
making mistakes in your keys assignment

» Never do something like this:

struct Counter A
Llong cID;
long count;

Fi

#pragma keylist Counter count

... As it will create a new topic instance for each ping you send thus consuming an unbounded
amount of resources!

© 2009, PrismTech. All Rights Reserved

» Topic types have to be compiled with the DDS-provided IDL compiler

» The compilation process will take care of generating code for
» Strongly typed Reader and Writers
» Type Serialization

» WWhen compiling a target language should be chosen, such as C/C++/Java/C#

» Example:

$ idlpp =S -1 cpp —d gencxx ShapeType.idl

$ idlpp [-S -1 java —d genjava ﬁhapeType.idl

e VN \

Standalone mode Target Language Target Directory Target File

© 2009, PrismTech. All Rights Reserved

» SIMD provides a template makefile that you can use to compile your IDL files.

» The default language is C++ (as SIMD currently supports only C++)

Makefile.idl

#—*x-Makefile—x-
include $(SIMD_HOME)/config/apps/Macros—-id1l.GNU

TARGET_IDL=ShapeType. idl

include $(SIMD_HOME)/config/apps/Rules—id1l.GNU

© 2009, PrismTech. All Rights Reserved

© 2009, PrismTech. All Rights Reserved

» SIMD provides several constructors that allow to register a topic:

Topic(const
Topic(const
Topic(const

Topic(const

std:
std:
std:

std:

:string& name);
:string& name, const TopicQos& qos);
:string& name, const std::string& type_name);

:string& name, const std::string& type_name, const TopicQos& qos);

© 2009, PrismTech. All Rights Reserved

struct ShapeType {

fong X n

long vy;

long shapesize; Default
string color; QoS

}s
#pragma keylist ShapeType color

dds::Topic<ShapeType> shape(“Circle”);

© 2009, PrismTech. All Rights Reserved

» Topics registration is iIdempotent as far as you register the topic in the same way from various
applications.

» It is an error to try to register a topic with the same name but a different type.

» Example:

Application | Application 2

dds::Topic<ShapeType> shape(“Circle”); dds::Topic<ShapeType> shape(“Circle”); OK

dds::Topic<ShapeType> shape(“Circle”); dds::Topic<AnotherType> shape(“Circle”); | Errror

© 2009, PrismTech. All Rights Reserved

Splice|

Your will learn:
-What are DDS Partitions

Step |
Defining the Scope

Domain

» A Domain is one instance of the DDS
Global Data Space

» DDS entities always belong to a specific
domain

Partition

» A partition is a scoping mechanism
provided by DDS organize a partition

DDS
Global Data Space

© 2009, PrismTech. All Rights Reserved

» Each partition is identified by a
string, such as "sensor-data’,
"log-data” etc.

» Read/\Write access to a

partition is gained by means of
DS Publisher/Subscribers

» Each Publisher/Subscriber
can be provided with a list of
Partitions name, which might
as well include wildcards ,or
generic regular expression,
such as " *-data”

DDS
Global Data Space

© 2009, PrismTech. All Rights Reserved

» Although DDS does not support explicit nesting of partitions, a powerful way of organizing your
data is by always using a hierarchical "dotted” notation to describe them.

» For instance, for a building in which you are deploying the new temperature control system you
might use a scheme such as “building.floor-level.room-number” for scoping the data that flows
In each room.

» building.floor-2.room-10
» building.floor-3.room-15

» In this way, accessing the data for a specific floor can be done by using the partition
expression “building.floor-2.*”

» While the data for all the building is available via “building. *”

© 2009, PrismTech. All Rights Reserved

“building.floor-1.”

“buildin:

oom-2"

» SIMD provides two ways of connecting to partitions.

» A simple one is to bound the full runtime to a partition expression by passing a string to the
Runtime class at construction time

» The other is to configure a specific Publisher/Subscriber with the relevant list of partitions

Runtime();
Runtime(const std::string& partition);
Runtime(const std::string& partition, const std::string& domain);

Publisher(const std::string& partition);
Publisher(const std::string& partition, ::dds::DomainParticipant dp);
Publisher(const ::dds::PublisherQos& qos, ::dds::DomainParticipant dp);

Subscriber(const std::string& partition);
Subscriber(const std::string& partition, ::dds::DomainParticipant dp);
Subscriber(const ::dds::SubscriberQos& qgos, ::dds::DomainParticipant dp);

© 2009, PrismTech. All Rights Reserved

Splice|

Your will learn:
-What is a Data Writer

e Step |l
Producing the Data

» Writing data with SIMD takes two steps.

» First you have to create the Data\VWriter by using the proper constructor (this
depends on the level of customization you require]

» Then, you'll have to decide how you want to write the data

© 2009, PrismTech. All Rights Reserved

» SIMD provides different DataWr 1ter constructors allowing to control the
level of customization required for the specific writer

template <typename T>
class dds::pub::DataWriter : public dds::core::Entity {
public:

DataWriter();

DataWriter(Topic<T> topic)

DataWriter(Topic<T> topic, const DataWriterQos& qos)

DataWriter(Topic<T> topic, const DataWriterQos& qos, Publisher pub);

© 2009, PrismTech. All Rights Reserved

» SIMD provides two generic writes as well as a method for creating a writer
dedicated to a specific Instance

» The DatalnstanceWr1ter provides constant time writes as it does not
need to look-up the key-fields

DDS: :ReturnCode_t write(const T& sample);
DDS: :ReturnCode_t write(const T& sample, const DDS::Time_t& timestamp);

DataInstanceWriter<T> register_instance(const T& key);

© 2009, PrismTech. All Rights Reserved

© 2009, PrismTech. All Rights Reserved

Splice

Your will learn:
- Reading vs Taking data

Step IV
Consuming Data

Samples Read

» Read iterates over the

R available sample instances

» Samples are not removed
from the local cache as
result of a read

Y » Read samples can be read

Samples not Read

DataReader Cache

again, by accessing the

cache with the proper
options (more later]

J

© 2009, PrismTech. All Rights Rese}Wd

\
struct Counter {

int clD;
InNt count;
}s]
#pragma keylist Counter clD

_J

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Read iterates over the

N
avallable sample instances
[1| » sampl d
o B B n amples are not remove
from the local cache as
: 1 3 :
W e T """" T » Read samples can be read
opicC : :
- P 4 again, by accessing the
Samples Read Samples not Read —— cache with the proper
options (more later)
DataReader Cache y
4)
struct Counter {
int cliD;
int count;
¥]
#pragma keylist Counter clID
© 2009, PrismTech. All Rights Rese}Wd J

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Read iterates over the

N
avallable sample instances
T) | » Sampl :
o B B n amples are not remove
from the local cache as
E result of a read
""""""""""""""""""""""""" ATA » Read samples can be read
opIcC : :
- P 4 again, by accessing the
Samples Read - Samples not Read - cache with the proper
options (more later)
DataReader Cache y
a4)
struct Counter {
int clD;
int count;
¥]
#pragma keylist Counter clID
© 2009, PrismTech. All Rights Rese}Wd J

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~. » Take iterates over the
available sample instances

.l e » Taken Samples are
" removed from the local
cache as result of a take

4

J

Samples not Taken
DataReader Cache y
e ™
struct Counter {
int clD;
InNt count;

};
#pragma keylist Counter clD

© 2009, PrismTech. All Rights Res&ud

J

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~ P Take iterates over the
avallable sample instances

g IITIITIIT """""""""""""""""""" » Taken Samples are

removed from the local
cache as result of a take

J
Samples not Taken
DataReader Cache y
~ ™\
struct Counter {
int clD;
InNt count;

};
#pragma keylist Counter clD

© 2009, PrismTech. All Rights Rese}Wd

_J

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

~ P Take iterates over the
avallable sample instances

-~ ™
B B t? » Taken Samples are
; removed from the local
cache as result of a take
Y,
— Samples not Taken —
DataReader Cache y
()
struct Counter {
int clD;
InNt count;

};
#pragma keylist Counter clD

© 2009, PrismTech. All Rights Res&bd

_/

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

History Depth = 2

DataReader

Samples

L Topic

~

DataReader Cache

» Along with data samples, DataReaders are provided
with state information allowing to detect relevant
transitions in the life-cycle of data as well as data
writers

» Sample State (READ | NOT_READ): Determines
wether a sample has already been read by this
DataReader or not.

» Instance State (ALIVE, NOT_ALIVE, DISPOSED).
Determines wether (1] writer exist for the specific
Instance, or (2) no matched writers are currently
avallable, or (3] the instance has been disposed

» View State [NEW, NOT_NEW). Determines wether

this is the first sample of a new [or re-born] instance

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

DDS provides three main mechanism for exchanging information with the application

» Polling. The application polls from time to time for new data or status changes. The
iInterval might depend on the kind of applications as well as data

» WaitSets. The application registers a \WaitSet with DDS and waits (i.e. is suspended]
until one of the specified events has happened.

» Listeners. The application registers a listener with a specific DDS entity to be notified
when relevant events occur, such as state changes or

© 2009, PrismTech. All Rights Reserved

is Prohibited.

- Distribution without Expressed Written Permission

Proprietary Information

/ k%

* Reads all new samples from any view state and alive instances. Notice
* that this call is intended to loan the <code>samples</code> as

* well as the <conde>infos</code> containers, thus will require a

* return_loan.

*/

DDS: :ReturnCode_t read(TSeq& samples, DDS::SampleInfoSeq& infos)

/ k%

* Reads at most <code>max_samples</code> samples that have not been
* read yet from all vies and alive instances.

*/

DDS::ReturnCode_t read(TSeq& samples, long max_samples)

/ k%

* Most generic <code>read</code> exposing all the knobs provided by

* the OMG DDS API.

*/

DDS: :ReturnCode_t

read(TSeq& samples, DDS::SampleInfoSeq& infos, long max_samples,
DDS: :SampleStateMask samples_state, DDS::ViewStateMask views_state,
DDS::InstanceStateMask instances_state)

DDS::ReturnCode_t
return_loan(TSeq& samples, DDS::SampleInfoSeq& infos);

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

/ %k

* Reads all new samples from any view state and alive instances. Notice
* that this call is intended to loan the <code>samples</code> as

* well as the <conde>infos</code> containers, thus will require a

* return_loan.

*/

DDS: :ReturnCode_t take(TSeq& samples, DDS::SampleInfoSeq& infos)

/ kX

* Reads at most <code>max_samples</code> samples that have not been
* read yet from all vies and alive instances.

*/

DDS: :ReturnCode_t take(TSeq& samples, long max_samples)

/ ¥k

* Most generic <code>read</code> exposing all the knobs provided by

* the OMG DDS API.

*/

DDS::ReturnCode_t

take(TSeq& samples, DDS::SampleInfoSeq& infos, long max_samples,
DDS: :SampleStateMask samples_state, DDS::ViewStateMask views_state,
DDS: :InstanceStateMask instances_state)

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» SIMD provides a strongly typed WaitSet that supports automatic dispatching to functors
» The best way of understanding SIMD waltsets Is to look at an example:

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» SIMD provides a strongly
typed Listeners based on
the Signals/ Slots patterns

» The best way of
understanding SIMD
Listeners Is to look at an
example...

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Splice

Step V
Compile and Run...

» Defining Topics and Topic Types

» Scoping Information with Partitions

» Writing Data

» Reading [Taking) data with \Walitsets and Listeners

» Writing an examp

e that demonstrate all of the above

© 2009, PrismTech. All Rights Reserved

» Content Filtered Topics and Queries

» QoS and the Request vs. Offered Model
» Setting QoS on DDS Entities

» Tuning OpenSplice DDS Configuration

© 2009, PrismTech. All Rights Reserved

3k http:=//wm.opensplice.con/ 3k http://www.slideshare._net/angelo.corsaro

2k emailto:opensplicedds@prismtech.com

sk http://bit.ly/1Sreg 2k http://twitter.com/acorsaro/

2k http://www.youtube.com/OpenSpliceTube 3 http://opensplice.blogspot.com

© 2009, PrismTech. All Rights Reserved

http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
mailto:sales@prismtech.com
mailto:sales@prismtech.com
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://bit.ly/1Sreg
http://bit.ly/1Sreg
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/

