
Angelo Corsaro, Ph.D.
Chief Technology Officer

OMG DDS SIG Co-Chair
angelo.corsaro@prismtech.com

Delivering Performance, Openness, and Freedom

OpenSplice DDS

The DDS Tutorial
::Part I

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

© 2009, PrismTech. All Rights Reserved

Addressing Data Distribution Challenges

The OMG DDS Standard
‣ Introduced in 2004, DDS is a standard

for Real-Time, Dependable and High-
Performance Publish/Subscribe

‣ DDS behaviour and semantics can be
controlled via a rich set of QoS Policies

‣ DDS is today recommended by key
administration worldwide and widely
adopted across several different
application domains, such as, Automated
Trading, Simulations, SCADA, Telemetry,
etc.

DDS is standard designed to address the data-distribution challenges across
a wide class of Defense and Aerospace Applications

© 2009, PrismTech. All Rights Reserved

The OMG Data Distribution Service (DDS)

DDS v1.2 API Standard
‣ Language Independent, OS and HW architecture

independent

‣ DCPS. Standard API for Data-Centric, Topic-
Based, Real-Time Publish/Subscribe

‣ DLRL. Standard API for creating Object Views out
of collection of Topics

DDSI/RTPS v2.1 Wire Protocol Standard
‣ Standard wire protocol allowing interoperability

between different implementations of the DDS
standard

‣ Interoperability demonstrated among key DDS
vendors in March 2009

Object/Relational Mapping

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

Real-Time Publish/Subscribe Protocol

© 2009, PrismTech. All Rights Reserved

Tutorial Scope
Scope & Goals

‣ The Tutorial will cover the DCPS layer of DDS

‣ It will give you enough details and examples
to make sure that you can get started
writing DDS applications

Software

‣ OpenSplice DDS

‣ http://www.opensplice.org

‣ SIMple Dds (SIMD)

‣http://code.google.com/p/simd-cxx

Prerequisite

‣ Basic C++ understanding

Object/Relational Mapping

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

Real-Time Publish/Subscribe Protocol

http://www.opensplice.org
http://www.opensplice.org
http://code.google.com/p/simd-cxx
http://code.google.com/p/simd-cxx

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Step I
Defining the Data

Your will learn:
- What is a Topic
- How to define Topic Types
- How to register a Topic

© 2009, PrismTech. All Rights Reserved

Topics

Topic

‣ Unit of information atomically
exchanged between Publisher and
Subscribers.

‣ An association between a unique name,
a type and a QoS setting

© 2009, PrismTech. All Rights Reserved

Topic Types

A DDS Topic Type is described by an IDL Structure containing an arbitrary number for
fields whose types might be:

‣ IDL primitive types, e.g., octet, short, long, float, string (bound/unbound), etc.

‣ Enumeration

‣ Union

‣ Sequence (bounded or unbounded)

‣ Array

‣ Structure (nested)

© 2009, PrismTech. All Rights Reserved

Examples

struct HelloTopicType {
 string message;
};

struct PingType
{
 long counter;
 string<32> vendor;
};

enum TemperatureScale {
 CELSIUS,
 FAHRENHEIT,
 KELVIN
};

struct TempSensorType {
 short id;
 float temp;
 float hum;
 TemperatureScale scale;
};

struct ShapeType {
 long x;
 long y;
 long shapesize;
 string color;
};

struct Counter {
 long cID;
 long count;
};

© 2009, PrismTech. All Rights Reserved

Topic Types & Keys

‣ Each Topic Type has to define its key-set (which might be the empty set)

‣ There are no limitations on the number of attributes used to represent a key

‣ Keys can be top-level attributes as well as nested-attributes (i.e. attributes in nested
structures)

© 2009, PrismTech. All Rights Reserved

Key Examples -- Empty Key-Set

struct HelloTopicType {
 string message;
};
#pragma keylist HelloTopicType

struct PingType
{
 long counter;
 string<32> vendor;
};
#pragma keylist PingType

© 2009, PrismTech. All Rights Reserved

Key Examples -- User-Defined Keys

enum TemperatureScale {
 CELSIUS,
 FAHRENHEIT,
 KELVIN
};

struct TempSensorType {
 short id;
 short roomid;
 float temp;
 float hum;
 TemperatureScale scale;
};
#pragma keylist TempSensorType id roomid

struct ShapeType {
 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

struct Counter {
 long cID;
 long count;
};
#pragma keylist Counter cID

© 2009, PrismTech. All Rights Reserved

Topic Keys Gotchas
‣Keys are used to identify specific data “instances”

‣ It we want to make a parallel with OO then we could say that:
‣Keyless Topic as singletons, e.g. there is only one instance!

‣Keyed Topics identify a class of instances. Each instance is identified by a key value

‣ Think at each different key value as really instantiating a new “object” in your system. That will avoid
making mistakes in your keys assignment

‣ Never do something like this:

... As it will create a new topic instance for each ping you send thus consuming an unbounded
amount of resources!

struct Counter {
 long cID;
 long count;
};
#pragma keylist Counter count

© 2009, PrismTech. All Rights Reserved

Compiling Topic Types

‣ Topic types have to be compiled with the DDS-provided IDL compiler

‣ The compilation process will take care of generating code for
‣Strongly typed Reader and Writers

‣ Type Serialization

‣When compiling a target language should be chosen, such as C/C++/Java/C#

‣ Example:

$ idlpp -S -l cpp -d gencxx ShapeType.idl

$ idlpp -S -l java -d genjava ShapeType.idl

Standalone mode
Target Language Target Directory Target File

© 2009, PrismTech. All Rights Reserved

IDL Compilation in SIMD

‣ SIMD provides a template makefile that you can use to compile your IDL files.

‣ The default language is C++ (as SIMD currently supports only C++)

#-*-Makefile-*-
include $(SIMD_HOME)/config/apps/Macros-idl.GNU

TARGET_IDL=ShapeType.idl

include $(SIMD_HOME)/config/apps/Rules-idl.GNU

Makefile.idl

© 2009, PrismTech. All Rights Reserved

Putting it all Together

Circle

struct ShapeType {
 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

Topic QoS

© 2009, PrismTech. All Rights Reserved

Registering Topics with SIMD

‣ SIMD provides several constructors that allow to register a topic:

Topic(const std::string& name);

Topic(const std::string& name, const TopicQos& qos);

Topic(const std::string& name, const std::string& type_name);

Topic(const std::string& name, const std::string& type_name, const TopicQos& qos);

© 2009, PrismTech. All Rights Reserved

Registering the Circle Topic

dds::Topic<ShapeType> shape(“Circle”);

Circle

struct ShapeType {
 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

Topic
Default

QoS

© 2009, PrismTech. All Rights Reserved

Topic Registration Gotchas

‣ Topics registration is idempotent as far as you register the topic in the same way from various
applications.

‣ It is an error to try to register a topic with the same name but a different type.

‣ Example:
Application 1 Application 2

OKdds::Topic<ShapeType> shape(“Circle”); dds::Topic<ShapeType> shape(“Circle”);

dds::Topic<ShapeType> shape(“Circle”); dds::Topic<AnotherType> shape(“Circle”); Errror

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Step II
Defining the Scope

Your will learn:
- What are DDS Partitions
- How to partitions work

© 2009, PrismTech. All Rights Reserved

Domains and Partitions

Domain

‣ A Domain is one instance of the DDS
Global Data Space

‣ DDS entities always belong to a specific
domain

Partition

‣ A partition is a scoping mechanism
provided by DDS organize a partition

Global Data Space
DDS

Domain

Partition

© 2009, PrismTech. All Rights Reserved

More about Partitions

‣ Each partition is identified by a
string, such as “sensor-data”,
“log-data” etc.

‣ Read/Write access to a
partition is gained by means of
DDS Publisher/Subscribers

‣ Each Publisher/Subscriber
can be provided with a list of
Partitions name, which might
as well include wildcards ,or
generic regular expression,
such as “*-data”

Global Data Space
DDS

Partition

© 2009, PrismTech. All Rights Reserved

Partition as Namespaces

‣ Although DDS does not support explicit nesting of partitions, a powerful way of organizing your
data is by always using a hierarchical “dotted” notation to describe them.

‣ For instance, for a building in which you are deploying the new temperature control system you
might use a scheme such as “building.floor-level.room-number” for scoping the data that flows
in each room.
‣ building.floor-2.room-10

‣ building.floor-3.room-15

‣ In this way, accessing the data for a specific floor can be done by using the partition
expression “building.floor-2.*”

‣ While the data for all the building is available via “building.*”

© 2009, PrismTech. All Rights Reserved

Emulating Partition Nesting

“building”

“building.floor-1”

“building.floor-1.room-1”
“building.floor-1.room-2”

“building.floor-2”
“building.floor-2.room-1”

“building.floor-2.room-2”

“building.floor-N”
“building.floor-N.room-1”

“building.floor-N.room-2”
...

...

...

...

“building.floor-1.*”

© 2009, PrismTech. All Rights Reserved

Connecting to Partitions in SIMD

‣ SIMD provides two ways of connecting to partitions.

‣ A simple one is to bound the full runtime to a partition expression by passing a string to the
Runtime class at construction time

‣ The other is to configure a specific Publisher/Subscriber with the relevant list of partitions

Publisher(const std::string& partition);
Publisher(const std::string& partition, ::dds::DomainParticipant dp);
Publisher(const ::dds::PublisherQos& qos, ::dds::DomainParticipant dp);

Subscriber(const std::string& partition);
Subscriber(const std::string& partition, ::dds::DomainParticipant dp);
Subscriber(const ::dds::SubscriberQos& qos, ::dds::DomainParticipant dp);

Runtime();
Runtime(const std::string& partition);
Runtime(const std::string& partition, const std::string& domain);

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Step III
Producing the Data

Your will learn:
- What is a Data Writer
- How to Create a Data Writer
- How to write Data

© 2009, PrismTech. All Rights Reserved

Writing Data in SIMD

‣Writing data with SIMD takes two steps.

‣ First you have to create the DataWriter by using the proper constructor (this
depends on the level of customization you require)

‣ Then, you’ll have to decide how you want to write the data

© 2009, PrismTech. All Rights Reserved

Creating a DataWriter

template <typename T>
class dds::pub::DataWriter : public dds::core::Entity {
public:
 DataWriter();

 DataWriter(Topic<T> topic)

 DataWriter(Topic<T> topic, const DataWriterQos& qos)

 DataWriter(Topic<T> topic, const DataWriterQos& qos, Publisher pub);
// ...
};

‣ SIMD provides different DataWriter constructors allowing to control the
level of customization required for the specific writer

© 2009, PrismTech. All Rights Reserved

Writing Data with SIMD

DDS::ReturnCode_t write(const T& sample);

DDS::ReturnCode_t write(const T& sample, const DDS::Time_t& timestamp);

DataInstanceWriter<T> register_instance(const T& key);

‣ SIMD provides two generic writes as well as a method for creating a writer
dedicated to a specific instance

‣ The DataInstanceWriter provides constant time writes as it does not
need to look-up the key-fields

© 2009, PrismTech. All Rights Reserved

Writing “Circling” Circle Samples

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Step IV
Consuming Data

Your will learn:
- Reading vs Taking data
- Sample State
- How to Create a Data Reader
- How to read/take data

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Reading Samples

‣ Read iterates over the
available sample instances

‣ Samples are not removed
from the local cache as
result of a read

‣ Read samples can be read
again, by accessing the
cache with the proper
options (more later)

DataReader Cache

Topic

DataReader

1 1

2 1

3 1

2 2

Samples Read Samples not Read

1 2 1 3 1 4

2 3

3 2 3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

DataReader Cache

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Reading Samples

‣ Read iterates over the
available sample instances

‣ Samples are not removed
from the local cache as
result of a read

‣ Read samples can be read
again, by accessing the
cache with the proper
options (more later)

Samples Read Samples not Read

DataReader

1 1

2 1

3 1

2 2

1 2 1 3 1 4

2 3

3 2 3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

DataReader Cache

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Reading Samples

‣ Read iterates over the
available sample instances

‣ Samples are not removed
from the local cache as
result of a read

‣ Read samples can be read
again, by accessing the
cache with the proper
options (more later)

Samples Read Samples not Read

DataReader

1 1

2 1

3 1

2 2

1 2 1 3 1 4

2 3

3 2 3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

DataReader Cache

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Taking Samples

‣ Take iterates over the
available sample instances

‣ Taken Samples are
removed from the local
cache as result of a take

‣
DataReader

1 1

2 1

3 1

2 2

Samples not Taken

1 2 1 3 1 4

2 3

3 2 3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

DataReader Cache

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Taking Samples

‣ Take iterates over the
available sample instances

‣ Taken Samples are
removed from the local
cache as result of a take

Samples not Taken

DataReader 2 2

1 2 1 3 1 4

2 3

3 2 3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

DataReader Cache

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Taking Samples

‣ Take iterates over the
available sample instances

‣ Taken Samples are
removed from the local
cache as result of a take

Samples not Taken

DataReader

1 3 1 4

2 3

3 3 3 4 3 5

struct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Sample, Instance and View States

‣ Along with data samples, DataReaders are provided
with state information allowing to detect relevant
transitions in the life-cycle of data as well as data
writers

‣ Sample State (READ | NOT_READ): Determines
wether a sample has already been read by this
DataReader or not.

‣ Instance State (ALIVE, NOT_ALIVE, DISPOSED).
Determines wether (1) writer exist for the specific
instance, or (2) no matched writers are currently
available, or (3) the instance has been disposed

‣ View State (NEW, NOT_NEW). Determines wether
this is the first sample of a new (or re-born) instance

D
at

aR
ea

de
r

History Depth = 2

DataReader Cache

Samples

1 1

2 2

3 1

1 2

2 3

SampleInfo

1

2

3

1

2

Topic

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Application / DDS Coordination

DDS provides three main mechanism for exchanging information with the application

‣ Polling. The application polls from time to time for new data or status changes. The
interval might depend on the kind of applications as well as data

‣WaitSets. The application registers a WaitSet with DDS and waits (i.e. is suspended)
until one of the specified events has happened.

‣ Listeners. The application registers a listener with a specific DDS entity to be notified
when relevant events occur, such as state changes or

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Reading Data with SIMD
 /**
 * Reads all new samples from any view state and alive instances. Notice
 * that this call is intended to loan the <code>samples</code> as
 * well as the <conde>infos</code> containers, thus will require a
 * return_loan.
 */
 DDS::ReturnCode_t read(TSeq& samples, DDS::SampleInfoSeq& infos)

 /**
 * Reads at most <code>max_samples</code> samples that have not been
 * read yet from all vies and alive instances.
 */
 DDS::ReturnCode_t read(TSeq& samples, long max_samples)

 /**
 * Most generic <code>read</code> exposing all the knobs provided by
 * the OMG DDS API.
 */
 DDS::ReturnCode_t
 read(TSeq& samples, DDS::SampleInfoSeq& infos,long max_samples,
 DDS::SampleStateMask samples_state, DDS::ViewStateMask views_state,
 DDS::InstanceStateMask instances_state)

 DDS::ReturnCode_t
 return_loan(TSeq& samples, DDS::SampleInfoSeq& infos);

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Taking Data with SIMD
 /**
 * Reads all new samples from any view state and alive instances. Notice
 * that this call is intended to loan the <code>samples</code> as
 * well as the <conde>infos</code> containers, thus will require a
 * return_loan.
 */
 DDS::ReturnCode_t take(TSeq& samples, DDS::SampleInfoSeq& infos)

 /**
 * Reads at most <code>max_samples</code> samples that have not been
 * read yet from all vies and alive instances.
 */
 DDS::ReturnCode_t take(TSeq& samples, long max_samples)

 /**
 * Most generic <code>read</code> exposing all the knobs provided by
 * the OMG DDS API.
 */
 DDS::ReturnCode_t
 take(TSeq& samples, DDS::SampleInfoSeq& infos,long max_samples,
 DDS::SampleStateMask samples_state, DDS::ViewStateMask views_state,
 DDS::InstanceStateMask instances_state)

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

WaitSets in SIMD

‣ SIMD provides a strongly typed WaitSet that supports automatic dispatching to functors

‣ The best way of understanding SIMD waitsets is to look at an example:

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Listeners
in SIMD

‣ SIMD provides a strongly
typed Listeners based on
the Signals/Slots patterns

‣ The best way of
understanding SIMD
Listeners is to look at an
example...

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Step V
Compile and Run...

© 2009, PrismTech. All Rights Reserved

What You’ve Learned today

‣Defining Topics and Topic Types

‣Scoping Information with Partitions

‣Writing Data

‣Reading (Taking) data with Waitsets and Listeners

‣Writing an example that demonstrate all of the above

© 2009, PrismTech. All Rights Reserved

What I’ll Cover Next Time

‣Content Filtered Topics and Queries

‣QoS and the Request vs. Offered Model

‣Setting QoS on DDS Entities

‣Tuning OpenSplice DDS Configuration

Online Resources

 http://www.opensplice.com/

 emailto:opensplicedds@prismtech.com

 http://www.youtube.com/OpenSpliceTube http://opensplice.blogspot.com

 http://bit.ly/1Sreg

© 2009, PrismTech. All Rights Reserved

 http://www.slideshare.net/angelo.corsaro

 http://twitter.com/acorsaro/

http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
mailto:sales@prismtech.com
mailto:sales@prismtech.com
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://bit.ly/1Sreg
http://bit.ly/1Sreg
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/

