
Angelo Corsaro, Ph.D.
Chief Technology Officer

OMG DDS SIG Co-Chair
angelo.corsaro@prismtech.com

Delivering Performance, Openness, and Freedom

OpenSplice DDS

The DDS Tutorial
::Part II

1

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

© 2010, PrismTech. All Rights Reserved

Tutorial Scope
Scope & Goals

‣ The Tutorial will cover the DCPS layer of DDS

‣ It will give you enough details and examples
to make sure that you can get started
writing DDS applications

Software

‣ OpenSplice DDS

‣ http://www.opensplice.org

‣ SIMple Dds (SIMD)

‣http://code.google.com/p/simd-cxx

Prerequisite

‣ Basic C++ understanding

Object/Relational Mapping

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

Real-Time Publish/Subscribe Protocol

2

http://www.opensplice.org
http://www.opensplice.org
http://code.google.com/p/simd-cxx
http://code.google.com/p/simd-cxx

© 2010, PrismTech. All Rights Reserved

What You’ve Learned on Part I

‣Defining Topics and Topic Types

‣Scoping Information with Partitions

‣Writing Data

‣Reading (Taking) data with Waitsets and Listeners

‣Writing an example that demonstrate all of the above

3

© 2010, PrismTech. All Rights Reserved

What we’ll Cover Today

‣Content Filtered Topics and Queries

‣QoS and the Request vs. Offered Model

‣Setting QoS on DDS Entities

‣Tuning OpenSplice DDS Configuration

4

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Filters and Queries
Your will learn:
- What Filters and Queries are
- The available SQL92 subset
- Programming Filters and Queries

5

© 2010, PrismTech. All Rights Reserved

DDS Filters & Queries

‣DDS provides means for filtering data using an application
specified condition expression

‣The two mechanism provided in order to filter data are:

‣ ContentFilteredTopics

‣ QueryCondition

‣Both working in conjunction with a DataReader

6

© 2010, PrismTech. All Rights Reserved

ContentFilteredTopic

‣ A ContentFilteredTopic can be seen
as a decorator of a user defined topic
defining a specific filter over the data
published for the given topic

‣ As a result, a ContentFilteredTopic
always exist in conjunction with its related
Topic

‣ A DataReader created with a specific
ContentFilteredTopic will only
receive the data that matches the filter
condition

‣ ContentFilteredTopic can be
thought of as Continuous Queries

related topic

7

© 2010, PrismTech. All Rights Reserved

QueryCondition

‣A QueryCondition can be created over an existing DataReader
in order to select, among received data, only the subset matching the
condition associated with the QueryCondition

‣QueryCondition are created for a specific DataReader and
used as an argument of the DataReader::read_w_condition
method

8

© 2010, PrismTech. All Rights Reserved

Filters & Queries Grammar
Condition::= Predicate
 | Condition ‘AND’ Condition
 | Condition ‘OR’ Condition
 | ‘NOT’ Condition | ‘(’ Condition ‘)’

Predicate::= ComparisonPredicate | BetweenPredicate

ComparisonPredicate::= FIELDNAME RelOp Parameter | Parameter RelOp FIELDNAME

BetweenPredicate::= FIELDNAME ‘BETWEEN’ Range | FIELDNAME ‘NOT BETWEEN’ Range

RelOp::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’ | like

Range::= Parameter ‘AND’ Parameter

Parameter::= INTEGERVALUE | FLOATVALUE
 | STRING | ENUMERATEDVALUE | PARAMETER

where PARAMETER has the for %n (with n in 0..100)

9

© 2010, PrismTech. All Rights Reserved

ContentFilteredTopics in SIMD
template <typename T>
class dds::ContentFilteredTopic : public dds::TopicDescription {
public:
 ContentFilteredTopic(const std::string& name,
 const dds::Topic<T>& t,
 const std::string& filter,
 const std::vector<std::string>& params);

 virtual ~ContentFilteredTopic();
public:
 std::string get_filter_expression() const;

 std::vector<std::string> get_expression_parameters() const;
 void set_expression_parameters(const std::vector<std::string>& params);

 dds::Topic<T> get_related_topic() const;

 virtual std::string get_name() const;

 virtual std::string get_type_name() const;

 virtual dds::DomainParticipant get_participant() const;

 TopicQos get_qos() const;
 void set_qos(const TopicQos& qos);
};

10

© 2010, PrismTech. All Rights Reserved

Using ContentFilteredTopics
enum TemperatureScale {
 CELSIUS,
 FAHRENHEIT,
 KELVIN
};

struct TempSensorType {
 short id;
 float temp;
 float hum;
 TemperatureScale scale;
};
#pragma keylist TempSensorType id

// Create the "TempSensor" Topic
dds::Topic<TempSensorType> tsTopic("TempSensor");

// Create the filter parameters
std::vector<std::string> params(2);
params[0] = "30";
params[1] = "0.6";

// Create the ContentFilteredTopic
dds::ContentFilteredTopic<TempSensorType>
 cfTsTopic("TempSensor-1",
 tsTopic,
 "(temp < %0) AND (hum < %1)",
 params);

// Create the DataReader with for the ContentFilteredTopic
dds::DataReader<TempSensorType> dr(cfTsTopic);

11

© 2010, PrismTech. All Rights Reserved

QueryCondition in SIMD
template <typename T>
class DataReader {
public:
 // [...] Other DataReader methods
 QueryCondition create_querycondition(const std::string& expression, const std::vector& params);

 QueryCondition create_querycondition(const SampleStateMask& samples_state,
 const ViewStateMask& views_state,
 const InstanceStateMask& instances_state,
 const std::string& expression, const std::vector& params);

ReturnCode_t read_w_condition(TSeq& samples, SampleInfoSeq& infos, const QueryCondition& cond);

 ReturnCode_t read_w_condition(TSeq& samples, SampleInfoSeq& infos,
 const QueryCondition& cond, long max_samples);

 ReturnCode_t take_w_condition(TSeq& samples, SampleInfoSeq& infos, const QueryCondition& cond);

 ReturnCode_t take_w_condition(TSeq& samples, SampleInfoSeq& infos, const QueryCondition& cond,
 long max_samples);
}

12

© 2010, PrismTech. All Rights Reserved

Using QueryConditions

dds::Topic<TempSensorType> tsTopic("TempSensor");
dds::DataReader<TempSensorType> dr(tsTopic);

std::vector<std::string> params(2);
params[0] = "30";
params[1] = "0.6";

// Create Query Condition
dds::QueryCondition cond =
 dr.create_querycondition("(temp < %0) AND (hum < %1)", params);

TempSensorTypeSeq data;
SampleInfoSeq info;
// Read with Condition
dr.read_w_condition(data, info, cond);

13

© 2010, PrismTech. All Rights Reserved

Filters vs Queries

ReaderCache
1 26 0.4 C

DataReader

ContentFilteredTopic

1 28 0.5 C

1 31 0.5 C

1 30 0.7 C

1 29 0.5 C

QueryCondition

(temp < 30) AND (hum < 0.6)

(temp < 30) AND (hum < 0.6)

ReaderCache

DataReader

14

© 2010, PrismTech. All Rights Reserved

Filters vs Queries

ReaderCache

1 26 0.4 C

DataReader

ContentFilteredTopic

1 28 0.5 C

1 29 0.5 C

QueryCondition

(temp < 30) AND (hum < 0.6)

(temp < 30) AND (hum < 0.6)

ReaderCache

DataReader

1 26 0.4 C

1 28 0.5 C

1 31 0.5 C

1 30 0.7 C

1 29 0.5 C

15

© 2010, PrismTech. All Rights Reserved

Filters vs Queries

ReaderCache

1 26 0.4 C

DataReader

ContentFilteredTopic

1 28 0.5 C

1 29 0.5 C

QueryCondition

(temp < 30) AND (hum < 0.6)

(temp < 30) AND (hum < 0.6)

ReaderCache

DataReader

1 26 0.4 C

1 28 0.5 C

1 31 0.5 C

1 30 0.7 C

1 29 0.5 C

1 26 0.4 C

1 28 0.5 C

1 29 0.5 C

read() read_w_condition()

16

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Quality of Service
(QoS)

Your will learn:
- What can you control with QoS
- Request vs. Offered in DDS
- QoS Patterns

17

© 2010, PrismTech. All Rights Reserved

Anatomy of a DDS Application

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 0.6 C

2 20 0.6 F

3 75 0.1 K

1 22 0.6 C 1 23 0.7 C

2 19 0.6 F

3 8 0.1 K 3 95 0.2 K

Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct TempSensor {

 int tID;
 float temp;
 float humidity;
 TemperatureScale scale;
};
#pragma keylist TempSensor tID

18

© 2010, PrismTech. All Rights Reserved

Anatomy of a DDS Application

Partition
PublisherSubscriber

Arrows
show
structural
relationship
s, not data-
flows

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 0.6 C

2 20 0.6 F

3 75 0.1 K

1 22 0.6 C 1 23 0.7 C

2 19 0.6 F

3 8 0.1 K 3 95 0.2 K

Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct TempSensor {

 int tID;
 float temp;
 float humidity;
 TemperatureScale scale;
};
#pragma keylist TempSensor tID

19

© 2010, PrismTech. All Rights Reserved

Anatomy of a DDS Application

PublisherSubscriber
Partition

Domain

Domain Participant

Arrows
show
structural
relationship
s, not data-
flows

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 0.6 C

2 20 0.6 F

3 75 0.1 K

1 22 0.6 C 1 23 0.7 C

2 19 0.6 F

3 8 0.1 K 3 95 0.2 K

Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct TempSensor {

 int tID;
 float temp;
 float humidity;
 TemperatureScale scale;
};
#pragma keylist TempSensor tID

20

© 2010, PrismTech. All Rights Reserved

QoS Model

‣ QoS-Policies are used to control relevant
properties of OpenSplice DDS entities,
such as:
‣ Temporal Properties

‣ Priority

‣ Durability

‣ Availability

‣ ...

‣ Some QoS-Policies are matched based on
a Request vs. Offered Model thus QoS-
enforcement

‣ Publications and Subscriptions match only if the declared vs. requested QoS are compatible
‣ e.g., it is not possible to match a publisher which delivers data unreliably with a subscriber which requires reliability

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

......

QoS QoS

Type Matching

DomainParticipant DomainParticipant

QoS QoS

21

© 2010, PrismTech. All Rights Reserved

QoS Policies

‣ Rich set of QoS allow to configure
several different aspects of data
availability, delivery and timeliness

‣ QoS can be used to control and
optimize network as well as
computing resource

QoS Policy Applicability RxO Modifiable

DURABILITY

DURABILITY SERVICE

LIFESPAN

HISTORY

PRESENTATION

RELIABILITY

PARTITION

DESTINATION ORDER

OWNERSHIP

OWNERSHIP
STRENGTH

DEADLINE

LATENCY BUDGET

TRANSPORT PRIORITY

TIME BASED FILTER

RESOURCE LIMITS

USER_DATA

TOPIC_DATA

GROUP_DATA

T, DR, DW Y N Data Availability
T, DW N N

Data Availability

T, DW N/A Y

Data Availability

T, DR, DW N N

Data Availability

P, S Y N Data Delivery
T, DR, DW Y N

Data Delivery

P, S N Y

Data Delivery

T, DR, DW Y N

Data Delivery

T, DR, DW Y N

Data Delivery

DW N/A Y

Data Delivery

T, DR, DW Y Y Data Timeliness
T, DR, DW Y Y

Data Timeliness

T, DW N/A Y

Data Timeliness

DR N/A Y Resources

T, DR, DW N N

Resources

DP, DR, DW N Y Configuration
T N Y

Configuration

P, S N Y

Configuration

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

......

QoS QoS

Type Matching

DomainParticipant DomainParticipant

QoS QoS

22

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Controlling Reliability

23

© 2010, PrismTech. All Rights Reserved

Reliability

The RELIABILITY QoS indicate the level of guarantee offered by the DDS in delivering data
to subscribers. Possible variants are:

QoS Policy Applicability RxO Modifiable

RELIABILITY T, DR, DW Y N

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

‣ Reliable. In steady-state the
middleware guarantees that all
samples in the DataWriter history will
eventually be delivered to all the
DataReader

‣ Best Effort. Indicates that it is
acceptable to not retry propagation of
any samples

24

© 2010, PrismTech. All Rights Reserved

History

‣ Keep Last K. The History QoS can be set so to always
have the latest K samples

‣ Keep All. The History QoS can be set so keep all
samples produced by the writer and not yet taken,
until resource limits are not reached

DataReaderDataReader

Topic

1 1

2 1

3 1

History Depth = 1 (DDS Default) History Depth = 5

Topic

1 1

2 1

3 1

1 2 1 3 1 4 1 5

2 2 2 3 2 4 2 5

3 2 3 3 3 4 3 5 QoS Policy Applicability RxO Modifiable

HISTORY T, DR, DW N N

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

‣ The History QoS Controls the number of samples-per-instance that will be stored by the middleware on
behalf of a Reader

25

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

History in Actionstruct Counter {
 int cID;
 int count;
};
#pragma keylist Counter cID

Topic Used in next section.

26

© 2010, PrismTech. All Rights Reserved

History in Action

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

Topic

DataReader

1 1

2 1

3 1

History Depth = 1
(DDS Default)

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter1 2

2 2 2 3

Network

27

© 2010, PrismTech. All Rights Reserved

History in Action

Topic

DataReader

1 2

2 2

3 1

History Depth = 1
(DDS Default)

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter
2 3

Network

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

28

© 2010, PrismTech. All Rights Reserved

History in Action

Topic

DataReader

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter

Network

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

29

© 2010, PrismTech. All Rights Reserved

History in Action

Topic

DataReader

1 1

2 1

3 1

History Depth = 2

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter1 2

2 2 2 3

Network

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

30

© 2010, PrismTech. All Rights Reserved

History in Action

Topic

DataReader

1 1

2 1

3 1

History Depth = 2

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter

1 2

2 2

2 3

Network

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

31

© 2010, PrismTech. All Rights Reserved

History in Action

Topic

DataReader

1 1

2 2

3 1

History Depth = 2

DataReader Cache

Topic

1 2

2 3

3 1

History Depth = 1
(DDS Default)

DataWriter Cache

DataWriter

1 2

2 3

Network

Note: The Reliability QoS controls wether data is sent reliably, or best-effort, from the
DataWriter to matched DataReaders

32

© 2010, PrismTech. All Rights Reserved

Putting it All Together
The reliability with which data is delivered to applications is impacted in DDS by the
following qualities of service

‣ RELIABILITY
‣ BEST_EFORT

‣RELIABLE

‣ HISTORY
‣ KEEP_LAST (K)

‣ KEEP_ALL

‣ Theoretically, the only way to assure that an application will see all the samples
produced by a writer is to use RELIABLE+KEEP_ALL. Any other combination could
induce to samples being discarded on the receiving side because of the HISTORY depth

33

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Controlling Real-Time
Properties

34

© 2010, PrismTech. All Rights Reserved

Deadline
The DEADLINE QoS policy allows to define the maximum inter-arrival time between data samples

QoS Policy Applicability RxO Modifiable

DEADLINE T, DR, DW Y Y

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

You can’t be later than...

‣ DataWriter indicates that the application
commits to write a new value at least once
every deadline period

‣ DataReaders are notified by the DDS when
the DEADLINE QoS contract is violated

Publisher Subscriber

DeadlineDeadlineDeadlineDeadlineDeadline

Deadline Violation

35

© 2010, PrismTech. All Rights Reserved

Latency Budget
The LATENCY_BUDGET QoS policy specifies the maximum acceptable delay from the time the data is written
until the data is inserted in the receiver's application-cache QoS Policy Applicability RxO Modifiable

LATENCY

BUDGET

T, DR, DW Y Y

‣ The default value of the duration is zero indicating that the delay
should be minimized

‣ This policy is a hint to the DDS, not something that must be
monitored or enforced.

I need to get there in at most...

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

T1

T2

T3

Latency Budget = Latency = TBuff +T1+T2+T3TBuff

36

© 2010, PrismTech. All Rights Reserved

Transport Priority

The TRANSPORT_PRIORITY QoS policy
is a hint to the infrastructure as to how
to set the priority of the underlying
transport used to send the data.

QoS Policy Applicability RxO Modifiable

TRANSPORT

PRIORITY

T, DW - Y

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

VIP Data, stay clear!

37

© 2010, PrismTech. All Rights Reserved

Putting it all Together
The real-time properties with which data is delivered to applications is impacted in DDS by the following
qualities of service:

‣ TRANSPORT_PRIORITY

‣ LATENCY_BUDGET

‣ In addition, DDS provides means for detecting performance failure, e.g., Deadline miss, by means of
the DEADLINE QoS

‣ Given a periodic task-set {T} with periods Di (with Di < Di+1) and deadline equal to the period, than
QoS should be set as follows:

‣ Assign to each task Ti a TRANSPORT_PRIORITY Pi such that Pi > Pi+1

‣ Set for each task Ti a DEADLINE QoS of Di

‣ For maximizing throughput and minimizing resource usage set for each Ti a LATENCY_BUDGET
QoS between Di /2 and Di/3 (this is a rule of thumb, the upper bound is Di-(RTT/2))

Publisher Subscriber

DeadlineDeadlineDeadlineDeadlineDeadline

Deadline Violation

38

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Controlling the
Consistency Model

39

© 2010, PrismTech. All Rights Reserved

Durability

‣ Volatile. No need to keep data instances
for late joining data readers

‣ Transient Local. Data instance availability
for late joining data reader is tied to the
data writer availability

‣ Transient. Data instance availability
outlives the data writer

‣ Persistent. Data instance availability
outlives system restarts

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

The DURABILITY QoS controls the data availability w.r.t. late joiners, specifically the DDS provides
the following variants:

The DURABILITY_SERVICE QoS provide control over configuration of the service that implements the transient and
persistent durability features

QoS Policy Applicability RxO Modifiable

DURABILITY

DURABILITY

SERVICE

T, DR, DW Y N

T, DW N N

40

© 2010, PrismTech. All Rights Reserved

Eventual Consistency & R/W Caches

Under an Eventual Consistency Model, DDS guarantees that all matched
Reader Caches will eventually be identical of the respective Writer Cache

Topic

DataReader

1 1

2 1

3 1

DataReader Cache Topic

1 2

2 3

3 1

DataWriter Cache

DataWriter

1 2

2 2 2 3

Topic

DataReader

1 1

2 1

3 1

DataReader Cache

Topic

DataReader

1 1

2 1

3 1

DataReader Cache

DDS

41

© 2010, PrismTech. All Rights Reserved

QoS Impacting the Consistency Model

The DDS Consistency Model is a property that can be associated to Topics or further refined by
Reader/Writers. The property is controlled by the following QoS Policies:

‣ DURABILITY
‣ VOLATILE | TRANSIENT_LOCAL | TRANSIENT | PERSISTENT

‣ LIFESPAN

‣ RELIABILITY
‣ RELIABLE | BEST_EFFORT

‣ DESTINATION ORDER
‣ SOURCE_TIMESTAMP | DESTINATION_TIMESTAMP QoS Policy Applicability RxO Modifiable

DURABILITY

LIFESPAN

RELIABILITY

DESTINATION ORDER

T, DR, DW Y N

T, DW - Y

T, DR, DW Y N

T, DR, DW Y N

42

© 2010, PrismTech. All Rights Reserved

QoS Impacting the Consistency Model

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

Eventual Consistency
(No Crash / Recovery)

Eventual Consistency
(Reader Crash / Recovery)

Eventual Consistency
(Crash/Recovery)

Eventual Consistency
(Crash/Recovery)

Weak Consistency

Weak Consistency
Weak Consistency

VOLATILE RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

PERSISTENT RELIABLE SOURCE_TIMESTAMP INF.

ANY ANY DESTINATION_TIMESTAMP ANY

ANY BEST_EFFORT ANY ANY

ANY ANY ANY N

43

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

P1

P2

S1
P = {A, B}

S = {A, D}

P = {D, C, J}

S4

S = {A}

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

A

P1

P2

S1
P = {A, B}

S = {A, D}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

A

P1

P2

S1

A

P = {A, B}

S = {A, D}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

B A

B

CD

E

F

m

J

K

A

P1

P2

S1

A

P = {A, B}

S = {A, D}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

A

P1

P2

S1
B

A

P = {A, B}

S = {A, D}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

A

P1

P2

S1

S2

B

A

B

A

P = {A, B}

S = {A, D}

S= {A, B, J}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

K

A

P1

P2

S1

S2

B

A

B

A

P = {A, B}

S = {A, D}

S= {A, B, J}

P = {D, C, J}
B

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

44

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

KP2

S1

S2

A

BA

BB

S = {A, D}

S= {A, B, J}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

45

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

KP2

S1

S2

S3

A

BA

B

S= {A, B, D, J}

B

S = {A, D}

S= {A, B, J}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

45

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

KP2

S1

S2

S3

A

BA

B

S= {A, B, D, J}

J

B

D

J

S = {A, D}

S= {A, B, J}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

45

© 2010, PrismTech. All Rights Reserved

Eventual Consistency @ Work

A

B

CD

E

F

m

J

KP2

S1

S2

S3

A

BA

B

S= {A, B, D, J}

B

D

J

S = {A, D}

S= {A, B, J}

P = {D, C, J}

S4

S = {A}

A

Eventual Consistency (Reader
Crash / Recovery)
Eventual Consistency
(Crash/Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

{A}

{B}

Weak Consistency ANY ANY ANY N {J}

45

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Controlling Replication

46

© 2010, PrismTech. All Rights Reserved

Ownership
The OWNERSHIP QoS specifies whether it is allowed for multiple DataWriters to write the
same instance of the data and if so, how these modifications should be arbitrated. Possible
choices are:

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

QoS Policy Applicability RxO Modifiable

OWNERSHIP T, DR, DW Y N

‣ Shared. Multiple writers are allowed to
update the same instance and all the
updates are made available to the reader

‣ Exclusive. Indicates that each instance can
only be owned by one DataWriter, but the
owner of an instance can change
dynamically -- due to liveliness changes

‣ The selection of the owner is controlled by
the setting of the OWNERSHIP_STRENGTH
QoS policy

Who owns the data?

47

© 2010, PrismTech. All Rights Reserved

Ownership Strength

The OWNERSHIP_STRENGTH Specifies the value of the “strength” used to arbitrate among
DataWriters that attempt to modify the same data instance

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......
QoS Policy Applicability RxO Modifiable

OWNERSHIP

STRENGTH

DW - Y

‣ Data instance are identified
by the couple (Topic, Key)

‣ The policy applies only if the
OWNERSHIP is EXCLUSIVE

How strong are you?

48

© 2010, PrismTech. All Rights Reserved

Next Steps

‣By now you’ve learned most of what you need to write complex DDS
applications

‣However, as the wise Confucius used to say:

‣ I hear an I forget. I see and I remember. I do I understand.

‣The best way of really getting into DDS is to write some DDS applications,
utilities or extensions

49

Online Resources

 http://www.opensplice.com/

 emailto:opensplicedds@prismtech.com

 http://www.youtube.com/OpenSpliceTube http://opensplice.blogspot.com

 http://bit.ly/1Sreg

© 2009, PrismTech. All Rights Reserved

 http://www.slideshare.net/angelo.corsaro

 http://twitter.com/acorsaro/

50

http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
mailto:sales@prismtech.com
mailto:sales@prismtech.com
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://bit.ly/1Sreg
http://bit.ly/1Sreg
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/

