
Angelo Corsaro, Ph.D.
Chief Technology Officer

OMG DDS SIG Co-Chair
angelo.corsaro@prismtech.com

Delivering Performance, Openness, and Freedom

OpenSplice DDS

DDS vs. AMQP

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

Agenda

‣Genesis
‣Technology Comparison
‣Code Examples
‣Concluding Remarks

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Historical
Perspectives

Genesis

‣ Emerged from Aerospace and Defense
to address the data distribution
requirement of a large class of mission-
critical systems

‣ Evolved to address on-the-wire
interoperability and provide the
ubiquitous data-bus for mission-critical
System-of-Systems

DDS AMQP

‣ Emerged from the Financial Market
from the desire of freeing users from
proprietary and non-interoperable
messaging systems

‣ Evolved into an effort to define a
generic enterprise messaging standard

Standardization Organization

‣DDS is an Object Management Group
(OMG) Standard

‣ The OMG is a an international, open
membership, not-for-profit computer
industry consortium since 1989

‣OMG is an ISO PAS submitter, able to
submit our specifications directly into
ISO’s fast-track adoption process.

DDS AMQP

‣ AMQP is standardized by the AMQP
Working Group

‣ The AMQP Working Group is a non-
profit organization with a free
membership based on interest and
merit

Standard Evolution

2004 2005 20072006 2008 2009 2010

DDS v1.0 DDS v1.1 DDS v1.2

Dec Dec Jan

AMQP v0-8

Jun

AMQP v0-9

Dec

AMQP v0-9-1

Nov

AMQP v1-0 draft

Dec

DDS-XTopics

March

DDSI v2.0

Apr

DDSI v2.1

Jan

AMQP v0-10

???

Scope of Standardization

Object/Relational Mapping

Ownership Durability Content
Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

Real-Time Publish/Subscribe Protocol

D
D

S
I

v2
.1

D
D

S
 v

1.
2

Interoperability Wire Protocol

TCP/IP

Advanced Message Queuing Protocol
A

M
Q

P
 v

1-
0

API (?)

Application

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Technology
Comparison

Which Versions?

In the reminder of this presentation I’ll compare DDS v1.2 / DDSI v2.1 with AMQP v1-0

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Messages vs. Topics

AMQP v1-0 Messages

‣ AMQP is a standard protocol for messaging

‣ As such AMQP the unit of information that
can be sent or received is a message.

‣ An AMQP message encapsulate the “Bare
Message”, provided by the application, within
an annotated message

[Source AMQP specification v1-0]

© 2009, PrismTech. All Rights Reserved

DDS Topics

Topic

‣ Unit of information exchanged between
Publisher and Subscribers.

‣ An association between a unique name, a
type and a QoS setting

struct ShapeType {
 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

{ShapeType}

{Circle, Square, Triangle}

{...}

Topic Type.

‣ Type describing the data associated with one
or more Topics

‣ A Topic type can have a key represented by an
arbitrary number of attributes

‣ Expressed in IDL

© 2009, PrismTech. All Rights Reserved

Topic/Instances/Samples Recap.
Topics Instances

Samples

timeti tj tnow

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Node/Links vs. Reader/Writers

AMQP v1-0 Conceptual Model

‣ An AMQP Network consists of Nodes and Links

‣ A Node is a named source and/or sink of Messages. A Message is created at a
(Producer) Node, and may travel along links, via other nodes until it reaches a
terminating (Consumer) Node.

‣ A Link is a unidirectional route between nodes along which messages may travel. Links
may have entry criteria (Filters) which restrict which messages may travel along them.
The link lifetime is tied to the lifetime of the source and destination nodes.

m

m

m
Link

Node Node

Destructive Links

Destructive Links consume the message from the originating source.

m

Destructive Link

Node 1 Node 2

m

Destructive Link

Node 1 Node 2

m

Destructive Link

Node 1 Node 2

m

Time

Non-Destructive Links

Non-Destructive Links don’t consume messages from the source node.

m

Non-Destructive
Link

Node 1 Node 2 Node 1 Node 2

m

Node 1 Node 2

mm m

Non-Destructive
Link

Time

Filtered Links

Links can have associated filters that allow to predicate on the messages that might
traverse. Filter can be based on the non opaque portion of the message.

m

m

m

Link
{color = red}

Node

Node

Time

mm

Link
{color = green}

Node

m

m

Link
{color = red}

Node

Node

m

Link
{color = green}

Node

m

m

© 2009, PrismTech. All Rights Reserved

Anatomy of a DDS Application

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct ShapeType {

 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

Destructive/Non-Destructive Links can be paralleled with the DDS read/take semantics

© 2009, PrismTech. All Rights Reserved

Content Filtering

‣DDS allows to specify content-
filtered Topics for which a subset
of SQL92 is used to express the
filter condition

‣Content filters can be applied on
the entire content of the Topic Type

‣Content filters are applied by DDS
each time a new sample is
produced/delivered

X0 X1

Y0

Y1

X0 <= X <= X1

Y0 <= Y <= Y1

© 2009, PrismTech. All Rights Reserved

Local Queries

‣ A subset of SQL92 can be used for performing queries

Circle Topic

 x > 25 AND y < 55

color x y shapesize
yellow 30 25 50

color x y shapesize
red
blue
yellow

57 62 50
90 85 50
30 25 50

‣ Queries are
performed under
user control and
provide a result that
depends on the
current snapshot of
the system, e.g.,
samples currently
available

X0

Y0
Y0

Y1

Y0 <= Y <= Y1

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Deployment Model

AMQP v1-0 Deployment Model

‣Nodes within the AMQP network
exist within Containers

‣ A container is a physical or logical
process to which network
connections can be established

[Source AMQP specification v1-0]

© 2009, PrismTech. All Rights Reserved

DDS Deployment Model
‣ DDS is based around the concept

of a fully distributed Global Data
Space (GDS)

‣ Publishers and Subscribers can
join and leave the GDS at any time

‣ Publishers and Subscribers
express their intent to produce/
consume specific type of data,
e.g., Topics

‣ Data flows from Publisher to
Subscribers

Global Data Space

DDS

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

Brokers

© 2009, PrismTech. All Rights Reserved

Domains and Partitions

Domain

‣ A Domain is one instance of the DDS
Global Data Space

‣ DDS entities always belong to a specific
domain

Partition

‣ A partition is a scoping mechanism
provided by DDS organize a domain

Global Data Space
DDS

Domain

Partition

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Communication Model

Sessions

‣ A Session is a named interaction
between two containers providing
for a pair of reliable ordered
command streams (one in each
direction)

‣ Links between nodes in different
containers are created on a
session

‣ Containers and Sessions form an
underlay network, nodes and links
an overlay network atop them

[Source AMQP specification v1-0]

Sessions & Commands

‣ Sessions are a transport for commands

‣ Commands are the atomic units of work of the AMQP transport protocol
Commands are used to create links between nodes in the source and destination
containers, to transfer message data, and to issue and revoke credit

‣ In general an AMQP session will be carried over some form of network layer, thus
commands sent on a session are asynchronous.

[Source AMQP specification v1-0]

Transport Model

Transport Connection (TCP/IP)

Session

Session

Session

Session

Session

Session

Links

Links

Links

Links

Links

Links

m

m

m
Link

Node Node

© 2009, PrismTech. All Rights Reserved

Anatomy of a DDS Application

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct ShapeType {

 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

© 2009, PrismTech. All Rights Reserved

Anatomy of a DDS Application

Partition
PublisherSubscriber

Arrows
show
structural
relationship
s, not data-
flows

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct ShapeType {

 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

© 2009, PrismTech. All Rights Reserved

Anatomy of a DDS Application

PublisherSubscriber
Partition

Domain

Domain Participant

Arrows
show
structural
relationship
s, not data-
flows

1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
1 21 62

2 20 61

3 25 70 25

1 22 62 1 23 63

2 19 60

3 25 71 3 25 74 3 26 77

Samples

Topic

Instances
Samples

Topic

InstancesDataReaderDataReaderDataReaderDataReaderDataReaderDataReader
DataWriterDataWriterDataWriterDataWriterstruct ShapeType {

 long x;
 long y;
 long shapesize;
 string color;
};
#pragma keylist ShapeType color

© 2009, PrismTech. All Rights Reserved

Transport Model

UDP (Unicast/MCast)

Pu
bl

is
he

r

Writers

Domain
Participant

Su
bs

cr
ib

er

Pu
bl

is
he

r

Readers

Writers

Domain
Participant

Su
bs

cr
ib

er

Pu
bl

is
he

r

Writers

Readers

Su
bs

cr
ib

er

Readers

Pu
bl

is
he

r

Writers

Domain
Participant

Su
bs

cr
ib

er

Pu
bl

is
he

r

Readers

Writers

Pu
bl

is
he

r

Writers

Domain
Participant

Su
bs

cr
ib

er

Pu
bl

is
he

r

Readers

Writers

Domain
Participant

Su
bs

cr
ib

er

Pu
bl

is
he

r
Writers

Readers

Su
bs

cr
ib

er

Readers

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Type System

AMQP Type System

‣ AMQP defines a type-system
that is used to encode messages
and controls sent as part of the
protocol

‣ This type system can be also
used to encode application data

[Source AMQP specification v1-0]

DDS Type System
‣ DDS supports the definition of types based on a subset of

the IDL specification language.

‣ This type system is used internally by DDS and is also
available to user for defining topic types

Primitive TypesPrimitive Types
boolean long
octet unsigned long
char long long
wchar unsigned long

long
short float

unsigned short double
long double

Template Type Example
string<length = UNBOUNDED> string s1;

string<32> s2;

wstring<length = UNBOUNDED> wstring ws1;
wstring<64> ws2;

sequence<T,length = UNBOUNDED> sequence<octet> oseq;
sequence<octet, 1024> oseq1k;

sequence<MyType> mtseq;
sequence<MyType, 10> mtseq10;

fixed<digits,scale> fixed<5,2> fp; //d1d2d3.d4d5

Constructed Types Example

enum enum Dimension { 1D, 2D, 3D, 4D };

struct

struct Coord1D { long x;};
struct Coord2D { long x; long y; };
struct Coord3D { long x; long y; long
z; };
struct Coord4D { long x; long y; long z,
 unsigned long long t;};

union

union Coord switch (Dimension) {
 case 1D:
 Coord1D c1d;
 case 2D:
 Coord2D c2d;
 case 3D:
 Coord3D c3d;
 case 4D:
 Coord4D c4d;
};

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Putting it all Together

‣ A generic DDS application is a self-formed
federation reads and writes topics over the
Global Data Space

‣ Communication is hidden to the applications
which is provided with a read/write sematics

‣ UDP Unicast and Multicast are available for
DDS v1.2, DDSI v2.1

DDS AMQP

‣ A generic AMQP application is a graph of
nodes connected by links over which travel
application provided messages

‣ The link-related traffic is managed by
sessions which in turns communicate via a
transport connection.

‣ The only transport currently available for
AMQP v1-0 is TCP

AMQP v1-0 StatusDDS AMQP

‣ Addressing Scheme. Does not define a standard
global addressing scheme, this will be part of v1-1

‣ Transport Protocol. Currently only supports
TCP, but UDP and SCTP will be added in future
revisions of the spec

‣ Broker Management. A SIG is working on
defining an API for Broker Management, today,
each implementation has its own way

‣ Topology Configuration. The Broker topology
can be configured via management tools, yet the
spec does not explicitly supports automatic
propagation of queue subscriptions (some
product do)

‣ Data Centricity. DDS is about data and it is fair
to say that data takes life in DDS, thanks to the
support for keys, lifecycle management, etc.

‣ Transport Protocol. Currently supports UDP
(Unicast and Multicast). TCP will be supported in
upcoming revisions of the standard. However,
there is nothing that prevents DDS today to use
TCP as a transport

‣ Topology Configuration. Topology is dynamically
discovered by DDS via its standard discovery
protocol

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Code Examples

Setting-up Subscriptions

std::string exchange = "amq.topic";

// Connect to the broker
Connection connection;
connection.open(host, port);

// Create a session
Session session = connection.newSession();

// Decrlare a queue
session.queueDeclare(arg::queue=queue,
 arg::exclusive=true,
 arg::autoDelete=true);

// Set-up routes
session.exchangeBind(arg::exchange=exchange,
 arg::queue="Track",
 arg::bindingKey="Track.#");
session.exchangeBind(arg::exchange=exchange,
 arg::queue="TrackClass",
 arg::bindingKey="TrackClass.#");

dds::Topic<Track> track("TrackTopic");
dds::Topic<TrackClass> track_class("TrackClassTopic");

dds::DataReader<Track> tDR(track);
dds::DataReader<TrackClass> tcDR(track_class);

DDS AMQP

struct Track {
 short id;
 long x;
 long y;
};
#pragma keylist Track id

struct TrackClass {
 short id;
 Classification cls;
 string descr;
};
#pragma keylist TrackClass id

Writing Data

Track t = { 101, 140, 200 };
Message message;

message.getDeliveryProperties().setRoutingKey("Track.Radar101");

std::stringstream message_data;
data << t.id << “ “ << t.x << “ “ << t.y;

message.setData(message_data.str());
async(session).messageTransfer(arg::content=message,
 arg::destination="amq.topic");

dds::DataWriter<Track> tDW(track);
dds::DataWriter<TrackClass> tcDW(track_class);

Track t = { 101, 140, 200 };
tDW(t);

TrackClass tc = { 101, FRIENDLY, “Some descr.”};
tcDW.write(tc);

DDS AMQP

Reading Data

void Listener::received(Message& message) {
 std::string data = message.getData();
 Track t;
 // Parse the string to extract the data
 string_to_track(data, t);
}

std::vector<Track> data;
std::vector<SampleInfo> info;

tDR.read(data, info);

DDS AMQP

D e l i v e r i n g P e r f o r m a n c e , O p e n n e s s , a n d F r e e d o m

OpenSplice DDS

Summing Up

Concluding Remarks

‣DDS provides the abstraction of a Global
Data Space, a ubiquitous, universal and fully
distributed data cache.

‣DDS makes user data a first class citizen

‣DDS provides a standard API as well as an
interoperable Wire-Protocol

DDS AMQP

DDS and AMQP are very interesting technologies, which at some point might work in synergy.
OpenSplice DDS could be using AMQP as one of its wire-protocols. The DDS API over AMQP could be
standardize...

‣ AMQP is provides as basic abstraction that
of messages and message routing.

‣ AMQP standardized the wire-protocol and
uses this standard to achieve API
independence

Online Resources

 http://www.opensplice.com/

 emailto:opensplicedds@prismtech.com

 http://www.youtube.com/OpenSpliceTube http://opensplice.blogspot.com

 http://bit.ly/1Sreg

© 2009, PrismTech. All Rights Reserved

 http://www.slideshare.net/angelo.corsaro

 http://twitter.com/acorsaro/

http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
mailto:sales@prismtech.com
mailto:sales@prismtech.com
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://www.prismtech.com/opensplice-dds
http://bit.ly/1Sreg
http://bit.ly/1Sreg
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/
http://twitter.com/acorsaro/

