
Angelo Corsaro, Ph.D.
Product Strategy & Marketing Manager

OMG RTESS and DDS SIG Co-Chair
angelo.corsaro@prismtech.com

Delivering Performance, Openness, and Freedom

OpenSplice DDS

Hibernating DDS
with Java and C++

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Agenda

‣ The Object/Relational Impedance Mismatch

‣ Why Hibernating DDS?

‣ DLRL: The Mysterious Acronym

‣ Hibernating DDS with DLRL

‣ Concluding Remarks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Object/Relational Impedance Mismatch [1/2]

‣When designing and building application with Object Oriented methodologies and
programming languages, one often struggles with the Object/Relational Impedance
Mismatch

‣ The Object/Relational Impedance Mismatch arises all the time when data represented
in a relational form, e.g., stored in a DBMS, has to be manipulated by applications
written in Object Oriented Programming Languages

‣ In these cases, the solution is often to manually reconstruct applications’ objects, and
their relationships out of the data base tables

‣ This approach however, has several drawbacks, as for instance it is tedious, error-
prone, requires application programmers to be familiar with SQL, etc.

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Object/Relational Impedance Mismatch [2/2]

‣ Several approaches have been
suggested to gap the object/
relational impedance
mismatch

‣ For the specific case of Data
Bases, two approaches have
received most attention:
‣ Use of OODMBS

‣ Use of ORM technologies, such as
JDO, Hibernate, etc.

‣ However, due to the
ubiquitous presence of
RDBMS, ORM techniques are
currently predominant

opOne()
opTwo()

a
b

Alpha

opA()
opB()

j
k

Theta

opX()
opY()

x
y

Beta

0..1 *

Relational RepresentationObject-Oriented Representation

?

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Agenda

‣ The Object/Relational Impedance Mismatch

‣ Why Hibernating DDS?

‣ DLRL: The Mysterious Acronym

‣ Hibernating DDS with DLRL

‣ Concluding Remarks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Why Hibernating DDS?

‣ DDS allows application to do publish/
subscribe over a Distributed Relational
Data Model

‣ DDS Topics, the unit of information that
applications can publish/subscribe, can be
seen and treated locally, as if it was a DBMS
Table

‣ Thus, each DDS application can use a
subset of SQL92 to access and navigate the
set of topics it’s currently subscribing

A

B

CD

E

F

m

J

K

Publisher

Subscriber

Publisher

Publisher

Subscriber

Subscriber

Subscriber

As a result, when using DDS with Object-Oriented Programming Languages the
Object/Relational Mismatch needs to be addressed!

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

A Simple Example[1/3]

‣ Suppose we have to build an application
for controlling the temperature in big
buildings

‣ The first step is to identify the DDS
(actually DCPS) data model capturing the
key entities of this application

‣ Once this is done, we will write the
application by leveraging on DDS
Readers/Writers and building the
business logic on-top of these
abstractions

Relational Data Model

‣ Topic Keys can be used to identify
instances as well as relationships

‣ Relationships can be navigated by
relying on a subset of SQL 92

‣ Keys can be represented by an
arbitrary number of Topic fields

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

A Simple Example [2/3]

class Room {
public:
	 explicit Room(int id);
	 Room(int it, float width, float height, float length);
	 ~Room();
public:
	
	 void set_climate(const Climate_t c);
	 void set_temperature(float temp);
	 float get_temperature();
	 void set_humidity(float hum);
	 float get_humidity();
public:
	 // Performs required DDS pub/sub activities
	 void update();
	 void flush();
	
protected:
	 void init(int id);
	
private:
	 TRoom room_topic_;
	 TRoomReader* room_reader_;
	 TRoomWriter* room_writer_;
	
	 std::vector<Conditioner> cond_vec_;
	 std::vector<TempSensor> temp_vec_;
	
	 // Used to build and manage the association between the
	 // room and the TempSensor
	 TTempSensorReader* temp_reader_;
};

class Conditioner {
public:
	 explicit Conditioner(int id);
	 Conditioner(const TConditioner& tcond)
	 ~Conditioner();
public:
	 void set_temp(float temp);
	 void set_humidity(float hum);
	 void set_fan_level(int level);
	 void start();
	 void stop();
	 void pause();
public:
	 // Performs required DDS pub/sub activities
	 void update();
	 void flush();
private:
	 TConditioner cond_topic_;
	 TConditionerWriter* cond_writer_;
};

void
Room::init(int id) {
	 TTempSensorReader* temp_reader_ = ...; //Resolve the reader
	 TConditionerReader* cond_reader_ = ...; //Resolve the reader	
	
	 // Query the reader for the TTempSensor and TConditioner
	 // that have "rID == id" then add those to the container
	
}

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

A Simple Example [3/3]

‣ As the simple example reveals, if DDS (actually DCPS) is used from an Object Oriented
programming language such as Java, or C++, the programmer is either left to deal with the
Object/Relational Mismatch

‣ Depending on how the programmer tackles this mismatch, its resulting application will be
more or less polluted by “DDS” details

‣ Implementing by hand the Object/Relational Mapping is quite a bit of work, which becomes
quickly non-creative and repetitive

Is there a better way to take tackle the Object/Relational Impedance Mismatch in DDS?

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Agenda

‣ The Object/Relational Impedance Mismatch

‣ Why Hibernating DDS?

‣ DLRL: The Mysterious Acronym

‣ Hibernating DDS with DLRL

‣ Concluding Remarks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

DLRL: The Mysterious Acronym...

‣ The OMG DDS Standard included since its
inception an optional layer, namely the Data
Local Reconstruction Layer (DLRL), which
provided an extended Object/Relational
Mapping facility for DDS

‣ The DLRL is quite similar to Hibernate (or Java
Data Objects), although introduces some
extensions needed to deal with Distributed
Systems

‣ DLRL implementation currently exist for C++
and Java

Object/Relational Mapping

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

DDS Interoperability Wire Protocol

Application

UDP/IP

Real-Time Publish/Subscribe Protocol

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

DCPS Application

‣ The application works directly at
the DCPS level

‣ When using OO Programming
Languages the Object/Relational
Impedance Mismatch has to be
manually dealt

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

D
D

S
 v

1
.2

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

DLRL Application

‣ The DLRL Layer is used to
provide a Language Integrated
access to DDS data

‣ The Designer has great freedom
in deciding how Objects have to
map to Topics

‣ Different Object Reconstruction
can be created for different
applications

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

D
D

S
 v

1
.2

getTemp()
getHumidity()

temp: float
humidity: float

TempSensor

set_climate();
set_temp()
set_humidity()

width: float
height: float
length: float
climate: int

Room

set_status()
set_climate()
get_level()

level: int
open: int
climate: int

Floor

setTemp()
setHumidity()
setFanLevel()
start()
stop()
pause():

temp: float
humidity: float
fan_level: int
status: int

Conditioner *
1

*

1

*

1

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

Object/Relational Mapping

Data Local Reconstruction Layer (DLRL) D
D

S
 v

1
.2

Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Generic DDS Application

‣ In the most general case, different portion of
the application might rely on DLRL or DCPS
depending on their specific needs

‣ DCPS access might be required for accessing
and tuning some specific QoS

Object/Relational Mapping

Data Local Reconstruction Layer (DLRL)

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

D
D

S
 v

1
.2

getTemp()
getHumidity()

temp: float
humidity: float

TempSensor

set_climate();
set_temp()
set_humidity()

width: float
height: float
length: float
climate: int

Room

set_status()
set_climate()
get_level()

level: int
open: int
climate: int

Floor

setTemp()
setHumidity()
setFanLevel()
start()
stop()
pause():

temp: float
humidity: float
fan_level: int
status: int

Conditioner *
1

*

1

*

1

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

Application

Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Agenda

‣ The Object/Relational Impedance Mismatch

‣ Why Hibernating DDS?

‣ DLRL: The Mysterious Acronym

‣ Hibernating DDS with DLRL

‣ Concluding Remarks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

DLRL Key Features

‣ The main goal of DLRL is that of providing a seamless integration of DDS for Object
Oriented Programming Languages

‣ DLRL provides a seamless integration for both:
‣ Applications that want to completely ignore the relational nature of DCPS

‣ Application that need to leverage an existing DCPS Data Model

‣ DLRL provides support for:
‣ Local/Shared Attributes (only shared attributes are subject to data distribution)

‣Mono-/Multi-valued attributes

‣ Association, with support for both one-to-one, one-to-many

‣ Aggregation, with support for both one-to-one, one-to-many

‣ Single Inheritance

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Structural Mapping

Two approaches are possible for structural mapping of DLRL Objects to DCPS

1
DLRL mapping to DCPS Topics can be automatically inferred by the
middleware using default mapping rules

2
DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Structural Mapping

1
DLRL mapping to DCPS Topics can be automatically inferred by the
middleware using default mapping rules

x: real
y: real
comments[*]: string

Track

z: real
Track3D

Radar
*0..1

a_radar tracks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Structural Mapping

1
DLRL mapping to DCPS Topics can be automatically inferred by the
middleware using default mapping rules

x: real
y: real
comments[*]: string

Track

z: real
Track3D

Radar
*0..1

a_radar tracks

oid: long
z: real

T3D_TOPIC

r_oid: int

index: int

T_class: string
T_oid: int

RADAR_TRACKS_TOPIC

oid: int

RADAR_TOPIC

class: string
oid: int
x: real
y: real
radar: int
comments: StringSeq

TRACK_TOPIC

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Structural Mapping

2
DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Structural Mapping

2
DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

getTemp()
getHumidity()

temp: float
humidity: float

TempSensor

set_climate();
set_temp()
set_humidity()

width: float
height: float
length: float
climate: int

Room

set_status()
set_climate()
get_level()

level: int
open: int
climate: int

Floor

setTemp()
setHumidity()
setFanLevel()
start()
stop()
pause():

temp: float
humidity: float
fan_level: int
status: int

Conditioner *
1

*

1

*

1

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Specifying the Structural Mapping

‣ The structural mapping between DLRL and DCPS
entities is specified by relying, depending on the case,
on:
‣ The IDL description of the DLRL Objects

‣ The Model Tags defining the mapping (which could be default)

‣ An Optional IDL file specifying DCPS Topics

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Concepts

The mechanism at the foundation is a managed Object Cache:

‣ An Object Cache can be populated by different types (classes) of Objects.

‣ Each object class has its own manager called an ObjectHome.
‣ They can inform the application about object creation/modification/deletion.

‣ Classes may contain navigable relationships to other classes.

‣ Each Object class may inherit from 1 other Object class.

Object Cache

Object Home(s)

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Processing Updates
‣ DCPS updates arrive as separate samples at separate times.
‣ DLRL Updates are processed in ‘update rounds’:
‣ ObjectHomes read all available samples from the DDS information backbone and update their corresponding objects

in the Cache accordingly.

‣ Objects are allocated once and their state is ‘overwritten’ on subsequent updates.

‣ Therefore an Object always contains the latest available state.

‣ Push mode: update rounds start when new data arrives. The application gets notified by Listeners.

‣ Pull mode: the application can determine the start of each update round manually.

OpenSplice DDS Information backbone

DR DR DR

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Processing Updates
‣ DCPS updates arrive as separate samples at separate times.
‣ DLRL Updates are processed in ‘update rounds’:
‣ ObjectHomes read all available samples from the DDS information backbone and update their corresponding objects

in the Cache accordingly.

‣ Objects are allocated once and their state is ‘overwritten’ on subsequent updates.

‣ Therefore an Object always contains the latest available state.

‣ Push mode: update rounds start when new data arrives. The application gets notified by Listeners.

‣ Pull mode: the application can determine the start of each update round manually.

OpenSplice DDS Information backbone

DR DR DR

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

attach_listener

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

attach_listener

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

on_begin_
updates()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

on_object_created()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

on_object_modified()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application

on_end_
updates()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:

‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.

‣ Listeners registered to the ObjectHome pass each modification back as a callback argument.

‣ With a simple mechanism that can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/modified/deleted in the current update
round.

OpenSplice DDS Information backbone

DR DR DR Application
get_modified_objects()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Using snapshots

Some applications want to be able to modify or create certain objects:

‣ An initial set of Objects may be cloned into a writeable CacheAccess.

‣ Available objects may then be modified locally.

‣ New objects can be created in the CacheAccess as well.

‣ The ‘write’ operation instructs the ObjectHomes to write any modifications into the system.

DCPS

DR DR DR DWDW DW

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Working with DLRL Objects

Creating and managing Selections
A Selection mechanism can keep track of subsets of information:

‣ Selections are created and managed by the ObjectHomes.

‣ A Criterion plugged into a Selection determines the boundaries of a subset:
‣ A QueryCriterion determines boundaries based on an SQL statement.

‣ A FilterCriterion determines boundaries based on user-defined callback filters.

‣ Selections can notify the application when objects enter and leave it.

DCPS

DR DR DR

S

Application

on_object_in()

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Putting it all Together

#include "dlrl.idl"
valuetype stringStrMap; // StrMap<string>
valuetype TrackList; // List<Track>
valuetype Radar;

valuetype Track : DLRL::ObjectRoot {
 public double x;
 public double y;
 public stringStrMap comments;
 public long w;
 public Radar a_radar;
};

valuetype Track3D : Track {
 public double z;
};

valuetype Radar : DLRL::ObjectRoot {
 public TrackList tracks;
};

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="Example">
<templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
<templateDef name="TrackList" pattern="List" itemType="Track"/>
<classMapping name="Track">

<local name="w"/>
</classMapping>
<associationDef>

<relation class="Track" attribute="a_radar"/>
<relation class="Radar" attribute="tracks"/>

</associationDef>
</Dlrl>

x: real
y: real
comments[*]: string

Track

z: real
Track3D

Radar
*0..1

a_radar tracks

Text

Track.idl

mapping.xml

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Putting it all Together

DDS::DomainParticipant_var dp;
DLRL::CacheFactory_var cf;
/*
 * Init phase
 */
DLRL::Cache_var c = cf->create_cache (WRITE_ONLY, dp);
RadarHome_var rh;
TrackHome_var th;
Track3DHome_var t3dh;
c->register_home (rh);
c->register_home (th);
c->register_home (t3dh);
c->register_all_for_pubsub();
// some QoS settings if needed
c->enable_all_for_pubsub();

main.cpp

/*
 * Creation, modifications and publication
 */
Radar_var r1 = rh->create_object(c);
Track_var t1 = th->create-object (c);
Track3D_var t2 = t3dh->create-object (c);
t1->w(12); // setting of a pure local attribute
t1->x(1000.0); // some DLRL attributes settings
t1->y(2000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
t2->x(1000.0);
t2->y(2000.0);
t2->z(3000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
c->write(); // all modifications are published

main.cpp (cont)

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Agenda

‣ The Object/Relational Impedance Mismatch

‣ Why Hibernating DDS?

‣ DLRL: The Mysterious Acronym

‣ Hibernating DDS with DLRL

‣ Concluding Remarks

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

© 2009, PrismTech. All Rights Reserved

Concluding Remarks
‣ DDS provides a very powerful facility for automating

Object/Relational Mapping, namely the Data Local
Reconstruction Layer (DLRL)

‣ The DLRL is an optional layer of the DDS v1.2 standard,
and implementation exists, e.g., OpenSplice DDS, that
support it for both C++ and Java

‣ The use of DLRL make it much more productive to write
DDS application with Object Oriented Languages

‣ It is easy to get started with DLRL since it is quite similar
to other popular Object/Relational Mapping
Technologies such as Hibernate, JDO, etc.

Object/Relational Mapping

Data Local Reconstruction Layer (DLRL)

Ownership Durability
Content

Subscription

Minimum Profile

Data Centric Publish/Subscribe (DCPS)

D
D

S
 v

1
.2

getTemp()
getHumidity()

temp: float
humidity: float

TempSensor

set_climate();
set_temp()
set_humidity()

width: float
height: float
length: float
climate: int

Room

set_status()
set_climate()
get_level()

level: int
open: int
climate: int

Floor

setTemp()
setHumidity()
setFanLevel()
start()
stop()
pause():

temp: float
humidity: float
fan_level: int
status: int

Conditioner *
1

*

1

*

1

tID: int
temp: float
humidity: float
rID: int

TTempSensor

rID: int
width: float
height: float
length: float
fID: int

TRoom

fID: int
level: int
open: int

TFloor

cID: int
temp: float
humidity: float
fan_level: int
status: int
rID: int

TConditioner

Application

Application

P
ro

pr
ie

ta
ry

 In
fo

rm
at

io
n

 -
D

is
tri

bu
tio

n
w

ith
ou

t E
xp

re
ss

ed
 W

rit
te

n
P

er
m

is
si

on
 is

 P
ro

hi
bi

te
d.

Online Resources

 http://www.opensplice.com/

 emailto:opensplicedds@prismtech.com

 http://www.youtube.com/OpenSpliceTube

 http://opensplice.blogspot.com http://www.opensplice.com

 http://www.dds-forum.org

 http://portals.omg.org/dds

© 2009, PrismTech. All Rights Reserved

