LD
’ 11y
N I
\ AT
AR RN

Open DDS

Delivering Performance, Openness, and Freedom

Angelo Corsaro, Ph.D.

Product Strategy & Marketing Manager [[
, ~meezet | Hibernating DDS
M PRISMTECH | with Java and C++

Powering Netcentricity

The Object/Relational Impedance Mismatch

» Why Hibernating DDS?
» DLRL: The Mysterious Acronym

» Hibernating DDS with DLRL

» Concluding Remarks

Dpenspllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Object/Relational Impedance Mismatch

» When designing and building application with Object Oriented methodologies and

programming languages, one often struggles with the Object/Relational Impedance
Mismatch

» The Object/Relational Impedance Mismatch arises all the time when data represented
In a relational form, e.g., stored in a DBMS, has to be manipulated by applications
written in Object Oriented Programming Languages

» In these cases, the solution is often to manually reconstruct applications’ objects, and
their relationships out of the data base tables

» This approach however, has several drawbacks, as for instance it is tedious, error-
prone, requires application programmers to be familiar with SAL, etc. :

: A
DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved Ad PRISMTECH

Object/Relational Impedance Mismatch

» Several approaches have been
suggested to gap the object/
relational impedance
mismatch Alpha

a

» For the specific case of Data 25D -

Bases, two approaches have BT} 0pY()
received most attention:
» Use of OODMBS

» Use of ORM technologies, such as
JDO, Hibernate, etc.

Object-Oriented Representation Relational Representation

» However, due to the
ubiquitous presence of
RDBMS, ORM techniques are
currently predominant

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

» The Object/Relational Impedance Mismatch

Why Hibernating DDS?

» DLRL: The Mysterious Acronym

» Hibernating DDS with DLRL

» Concluding Remarks

DpenSpllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Why Hibernating DDS?

» DDS allows application to do publish/
subscribe over a Distributed Relational
Data Model

» DDS Topics, the unit of information that
applications can publish/subscribe, can be
seen and treated locally, as if it was a DBMS
Table

d.

rmission is Prohi

» Thus, each DDS application can use a
subset of SAL92 to access and navigate the
set of topics it's currently subscribing

without Expressed Written Pe

ribution

- Disty

As a result, when using DDS with Object-Oriented Programming Languages the
Object/Relational Mismatch needs to be addressed!

Proprietary Information

Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

A Simple Example

» Suppose we have to build an application
for controlling the temperature in big
buildings

» The first step is to identify the DDS
(actually DCPS) data model capturing the
key entities of this application

» Once this is done, we will write the
application by leveraging on DDS
Readers,/\\riters and building the
business logic on-top of these
abstractions

OpenSplice| DDS

TConditioner

clD: int

temp: float
humidity: float
fan_level: int
status: int

© 2009, PrismTech. All Rights Reserved

» Topic Keys can be used to identify
instances as well as relationships

» Relationships can be navigated by
relying on a subset of SAL 92

» Keys can be represented by an
arbitrary number of Topic fields

%

5

%

§

TTempSensor 3

tID: int g

temp: float d

TRoom humidity: float £

L — o —
width: float g
height: float 8
length: float TFloor s
fiD:int = J------- fID: int £
level: int S

open: int 3

Relational Data Model g
L4 PRISMTECH

A Simple Example

(" class Room {) 4)
public: class Conditioner {
explicit Room(int id); publictl . o . .
Room(int it, float width, float height, float length); explicit Conditioner(int id);
~Room(); Conditioner(const TConditioner& tcond)
public: ~Conditioner();
public:
void set_climate(const Climate_t c); VO@d set_temp(float temp);
void set_temperature(float temp); VO}d Set_humldlty(f}oat hum) ;
float get_temperature(); VO}d set_fan_level(int level);
void set_humidity(float hum); v0}d startQ);
float get_humidityQ); void stopQ; 3
public: vpld pause(); §
// Performs required DDS pub/sub activities public: g
void update(); // Performs required DDS pub/sub activities s
void flushQ); void update(); é
void flushQ); 8
protected: private: é
void init(int id); TConditioner cond_topic_; S
TConditionerWriter* cond_writer_; 2
private: }; %
TRoom room_topic_; - J 3
TRoomReader* room_reader_; e ™\ E
TRoomWriter* room_writer_; verla §
o Room: :initCint id) { §
std::vector<Conditioner> cond_vec_; TTempSensorReader* temp_reader_ = ...; //Resolve the reader .
std::vector<TempSensor> temp_vec_; TConditionerReader* cond_reader_ = ...; //Resolve the reader §
// Used to build and manage the association between the // Query the reader for the TTempSensor and TConditioner %
/7 room and the TempSensor // that have "rID == id" then add those to the container g
TTempSensorReader* temp_reader_; g
15 1
o) - %

Dpenspllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

A Simple Example

» As the simple example reveals, if DDS (actually DCPS) is used from an Object Oriented
programming language such as Java, or C++, the programmer is either left to deal with the
Object/Relational Mismatch

» Depending on how the programmer tackles this mismatch, its resulting application will be
more or less polluted by "DDS” details

rmission is

» Implementing by hand the Object/Relational Mapping is quite a bit of work, which becomes
quickly non-creative and repetitive

without Expressed Written Pe

Distribution

rmation -

Is there a better way to take tackle the Object/Relational Impedance Mismatch in DDS?

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

» The Object/Relational Impedance Mismatch

» Why Hibernating DDS?

DLRL: The Mysterious Acronym

» Hibernating DDS with DLRL

» Concluding Remarks

Dpenspllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

DLRL: The Mysterious Acronym...

» The OMG DDS Standard included since its Application
iInception an optional layer, namely the Data

Local Reconstruction Layer (DLRL), which o

provided an extended Object/Relational S i Data Local Reconstruction Layer (DLRL)

Mapping facility for DDS
=
» The DLRL is quite similar to Hibernate (or Java

Data D_b]eCtS]’ 8|thOUgh |ntrqducgs S_Ome Data Centric Publish/Subscribe (DCPS)
extensions needed to deal with Distributed

SySte ms Real-Time Publish/Subscribe Protocol

DDS Interoperability Wire Protocol

n is Prohibited.

» DLRL implementation currently exist for C++
and Java

UDP/IP

Proprietary Information - Distribution without Expressed Written Permissio

Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

DCPS Application

Application |
R AR A AR A AR RERREREEEEEEEE————

» The application works directly at

the DCPS |eve| cl;?:::ditioner t"':l)":l'tler:\:pSensor
temp: float temp: float
humidity: float TRoom humidity: float
. . fan_ley_el: int | r_ID ||.1t ————— rID: int
» When using OO0 Programming Statuscint -~ Toat
Languages the Object/Relational Tt ——— T
guages the Ubject L
Impedance Mismatch has to be pen:int ___

manually dealt

Data Centric Publish/Subscribe (DCPS)

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

: A
Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved Ad PRISMTECH

DLRL Application

Application |
T —

TempSensor

temp: float
humidity: float
gelTemp()l Room Floor
getHumidity() R
. \ width: float Tevel: Tt
» The DLRL Layer is used to ron o e
temp: float climate: int set_status()
1 idity: set_climate(); set_climate()
provide a Language Integrated mmaytos |l e ol
|status:int | set_humidity()
setTemp()
access to DDS data sty
start()
stop()

ause

» The Designer has great freedom E
in decid - | TN |

in deciding how Objects have to
. Data Local Reconstruction Layer (DLRL)
map tO TOpICS TConditioner

cID: int Wﬁ%w
. . . LeuTnl?c:jiftl;J:a ft!oat TRoom LiTnﬁdlftI}?a ftloat
» Different Object Reconstruction S =
'_r o ’ e?\lgtt g:: oor
can be created for different e ey A

Ievel int
open: int

applications

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

u PRISMTECH

' Minimum Profile

Data Centric Publish/Subscribe (DCPS)

Dp e nS p I I C e | D DS © 2009, PrismTech. All Rights Reserved

Generic DDS Application

Application
T — —

TempSensor
temp: float
humidity: float
getTemp() & -
etHumidit 4 oom oor
2 X \ width: float level: int
height: float open: int
Conditioner length: float |- 1lclimate:int
temp: float climate: int set_status()
humidity: float 1| set_climate(); set_climate()
fan_level: int l_—] set_temp() get level)
status: int set_humidity()
- . setTemp()
» In the most general case, different portion of sevmy
’ setFanLevel()
start()
stop()

the application might rely on DLRL or DCPS PSS

depending on their specific needs ' '

Data Local Reconstruction Layer (DLRL)

» DCPS access might be required for accessing i e
and tuning some specific QoS del = ramaty oa
i 7
fID int
IeveI int
open: int

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Minimum Profile E'

' Data Centric Publish/Subscribe (DCPS)

Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

» The Object/Relational Impedance Mismatch

» Why Hibernating DDS?

» DLRL: The Mysterious Acronym

=
<
=
@

Hibernating DDS with DLRL

» Concluding Remarks

Dpenspllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

DLRL Key Features

» The main goal of DLRL is that of providing a seamless integration of DDS for Object
Oriented Programming Languages

» DLRL provides a seamless integration for both:

» Applications that want to completely ignore the relational nature of DCPS

n is Prohibited.

» Application that need to leverage an existing DCPS Data Model

» DLRL provides support for:
» Local/Shared Attributes (only shared attributes are subject to data distribution)
» Mono-/Multi-valued attributes
» Association, with support for both one-to-one, one-to-many

ed Written Permissios

- Distribution without Expressi

» Aggregation, with support for both one-to-one, one-to-many

» Single Inheritance

Proprietary Information

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Structural Mapping

Two approaches are possible for structural mapping of DLRL Objects to DCPS

a DLRL mapping to DCPS Topics can be automatically inferred by the
middleware using default mapping rules

e DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

rmission is Prol

without Expressed Written Pe

Distribution

: A
DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved Ad PRISMTECH

Structural Mapping

DLRL mapping to DCPS Topics can be automatically inferred by the
middleware using default mapping rules

3
2
s
S
Track S
Radar x: real g
0..1 * 5
- y: real g
a_radar tracks | comments[*]: string §
3

Track3D

z: real

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Structural Mapping

middleware using default mapping rules

RADAR_TOPIC
oid: int
‘ J
Track
Radar x: real
0..1 * . ea
y: real
a_radar tracks | comments[*]: string
—

Z

RADAR_TRACKS_TOPIC

r_oid: int
index: int
T_class: string
T_oid: int

OpenSplice| DDS

Track3D
z: real

© 2009, PrismTech. All Rights Reserved

DLRL mapping to DCPS Topics can be automatically inferred by the

TRACK_TOPIC

class: string

oid: int

X: real

y: real

radar: int

comments: StringSeq

T3D_TOPIC

oid: long

z: real
T —

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

A
A\ PRISMTECH

Structural Mapping

DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

TConditioner TTempSensor

clD: int tiD: int

temp: float temp: float

humidity: float TRoom humidity: float

fan_level: int riD:int b ----- riD: int

status: int |- - -~ Twidth: float

riD: int height: float

length: float TFloor
A —

level: int
open: int

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved T RSG__——— ﬁ PRISMTECH

Structural Mapping

DLRL mapping to DCPS Topics can be specified by the designer, thus making it
possible for reconstructing Object Oriented views of existing data models

TempSensor
temp: float

humidity: float
getTemp() <
etHumidity() * Room Floor g
b\ width: float level: int s
height: float open: int %
Conditioner length: float :/1_ climate: int s
temp: float climate: int set_status() ‘§
humidity: float 1 | set_climate(); set_climate() $
fan_level: int L, __— | set_temp() get_level() $
status: int set_humidity() %
setTemp() 2
setHumidity() ——————————— j‘;-i
setFanLevel() 4
start() - A g
stop() §
pausel] TConditioner TTempSensor 2
cID: int tID: int 8
temp: float temp: float 5
humidity: float TRoom humidity: float g
fan_level: int riD:int ----- rID: int 2
status: int |- ---Twidth: float g
riD: int height: float 3
length: float TFloor <

A —
level: int
open: int

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved T RSG__——— ﬁ PRISMTECH

Specifying the Structural Mapping

Model
Description
(IDL valuetypes)

»| DLRL Generator o

» The structural mapping between DLRL and DCPS
entities is specified by relying, depending on the case,
on:

» The IDL description of the DLRL Objects

n is Prohibited.

ed Written Permissios

» The Model Tags defining the mapping (which could be default) Elltihzgcled Dgilicl;lied DCPS
C et
» An Optional IDL file specifying DCPS Topics Description Entities description
(+ implied IDL) (IDL)

Language mappings

- Distribution without Expressi

Native
constructs

Native
constructs

Proprietary Information

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Working with DLRL Objects

Object Home(s) ? A

Object Cache

n is Prohibited.

Concepts

The mechanism at the foundation is a managed Object Cache:
» An Object Cache can be populated by different types (classes) of Objects.

» Each object class has its own manager called an ObjectHome.
» They can inform the application about object creation/maodification/deletion.

» Classes may contain navigable relationships to other classes.

Proprietary Information - Distribution without Expressed Written Permissio

» Each Object class may inherit from 1 other Object class.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Working with DLRL Objects

OpenSplice DDS Information backbone

Processing Updates
» DCPS updates arrive as separate samples at separate times.

» DLRL Updates are processed in ‘update rounds’:

» ObjectHomes read all available samples from the DDS information backbone and update their corresponding objects
in the Cache accordingly.

» Objects are allocated once and their state is ‘overwritten’ on subsequent updates.
» Therefore an Object always contains the latest available state.
» Push mode: update rounds start when new data arrives. The application gets notified by Listeners.

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Pull mode: the application can determine the start of each update round manually.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Working with DLRL Objects

OpenSplice DDS Information backbone

Processing Updates
» DCPS updates arrive as separate samples at separate times.

» DLRL Updates are processed in ‘update rounds’:

» ObjectHomes read all available samples from the DDS information backbone and update their corresponding objects
in the Cache accordingly.

» Objects are allocated once and their state is ‘overwritten’ on subsequent updates.
» Therefore an Object always contains the latest available state.
» Push mode: update rounds start when new data arrives. The application gets notified by Listeners.

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» Pull mode: the application can determine the start of each update round manually.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Working with DLRL Objects

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

=

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

attach 1

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

AR

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

""e

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

on object modified()

Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

{03

. p 0)
Application

DR

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

o
N -

@ C
Application

DR

get modified objects()

Notifying the application
The Object Caches offer two ways to notify an application of incoming information:
» Listeners can be triggered for each modification of an object’s state.
» Listeners registered to the Cache indicate the start and end of each update round.
» Listeners registered to the ObjectHome pass each madification back as a callback argument.
» With a simple mechanism that can be translated into callbacks for Listeners on individual objects.
» It is possible to get a separate list of all objects that have been created /modified/deleted in the current update
round.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Working with DLRL Objects

Using snapshots

Some applications want to be able to modify or create certain objects:

» Aninitial set of Objects may be cloned into a writeable CacheAccess.

» Available objects may then be modified locally.

» New objects can be created in the CacheAccess as well.

» The ‘write’ operation instructs the ObjectHomes to write any maodifications into the system.

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

Dpensp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Working with DLRL Objects
on_object_in() g

Application

DR DR DR

Creating and managing Selections
A Selection mechanism can keep track of subsets of information:

» Selections are created and managed by the ObjectHomes.
» A Criterion plugged into a Selection determines the boundaries of a subset:

» A QueryCriterion determines boundaries based on an SAL statement.

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

» A FilterCriterion determines boundaries based on user-defined callback filters.

» Selections can notify the application when objects enter and leave it.

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Putting it all Together

Track.idl

#include "dlrl.idl"
valuetype stringStrMap;

valuetype TrackList;

valuetype Radar;

valuetype Track : DLRL:
public double
public double

public long

};

public double
b

public TrackList

1

valuetype Radar : DLRL:

// StrMap<string>
// List<Track>

:0bjectRoot {

X’
ys

public stringStrMap comments;

W;

public Radar a_radar;

valuetype Track3D : Track {

Z;

:0bjectRoot {

tracks;

Track
Radar x: real
0.1 - y: real
a_radar tracks | comments[*]: string
e _____________________J
Track3D
z: real
R
mapping.xml

OpenSplice| DDS

<?xml version="1.0" encoding="IS0-8859-1"7>
<!DOCTYPE D1rl SYSTEM "dlrl.dtd">
<D1rl name="Example">
<templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
<templateDef name="TrackList" pattern="List" itemType="Track"/>
<classMapping name="Track">
<local name="w"/>
</classMapping>
<associationDef>
<relation class="Track" attribute="a_radar"/>
<relation class="Radar" attribute="tracks"/>
</associationDef>
</Dlrl>

© 2009, PrismTech. All Rights Reserved

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

A
A\ PRISMTECH

Putting it all Together

main.cpp

DDS: :DomainParticipant_var dp;

DLRL: :CacheFactory_var cf; .

/% main.cpp (cont)

* Init phase

DLRL::Cache_var c = cf->create_cache (WRITE_ONLY, dp); * Creation, modifications and publication -

RadarHome_var rh; */ %

TrackHome_var th; Radar_var rl = rh->create_object(c); :

Track3DHome_var t3dh; Track_var tl = th->create-object (c); g

c->register_home (rh); Track3D_var t2 = t3dh->create-object (c); £

c->register_home (th); t1->w(12); // setting of a pure local attribute E

c->register_home (t3dh); t1->x(1000.0); // some DLRL attributes settings s

c->register_all_for_pubsub(); t1->y(2000.0); :

// some QoS settings if needed t2->a_radar->put(rl);// modifies rl->tracks accordingly §

c->enable_all_for_pubsub(); t2->x(1000.0); é
t2->y(2000.0); g
t2->2(3000.0); s
t2->a_radar->put(rl);// modifies rl->tracks accordingly f
c->write(); // all modifications are published §

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

» The Object/Relational Impedance Mismatch
» Why Hibernating DDS?
» DLRL: The Mysterious Acronym

» Hibernating DDS with DLRL

Concluding Remarks

DpenSpllce| DDS ©2009, PrismTech. All Rights Reserved ﬁ PRISMTECH

Concluding Remarks

» DDS provides a very powerful facility for automating

Object/Relational Mapping, namely the Data Local -
humidity: float

Reconstruction Layer (DLRL] A N
ot e,
humidity:_f:gtat L 1 ::::tcgr:sle(): s::lceli‘glale()

» The DLRL is an optional layer of the DDS v1.2 standard, e gl e

setHumidity()

and implementation exists, e.g., OpenSplice DDS, that !
ﬁause():

‘ Application

support it for both C++ and Java

Object/Relational Mapping ’

Data Local Reconstruction Layer (DLRL)

TConditioner | TTempSensor

» The use of DLRL make it much more productive to write
DDS application with Object Oriented Languages e o~ amp Tt
r

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

v -
e W oy
» It is easy to get started with DLRL since it is quite similar — G o If.D
to other popular Object/Relational Mapping :V:"
Technologies such as Hibernate, JDO, etc. ' E'
Data Centric Publish/Subscribe (DCPS)

DpenSp ||Ce| DDS ©2009, PrismTech. All Rights Reserved u PRISMTECH

Online Resources

OpenSplice| DDS

Delivering Performance, Openness, and Freedom
2k http://www.opensplice.com/

* emailto:opensplicedds@prismtech.com

@ webex

K http://www.opensplice.com

([T Tube

2k http://www.youtube.com/OpenSpliceTube

OpenSplice| DDS

© 2009, PrismTech. All Rights Reserved

2k http://opensplice.blogspot.com

m
1.t DDS
v~

OBJECT MANAGEMENT GROUP

2k http://www.dds-forum.org

3k http://portals.omg.org/dds

A
A\ PRISMTECH

Proprietary Information - Distribution without Expressed Written Permission is Prohibited.

