
Dr. Angelo Corsaro [angelo.corsaro@prismtech.com]

OpenSplice DDS Product Marketing Manager, PrismTech
Angelo co-chairs the OMG Data Distribution Service (DDS) Special Interest Group and
the Real-Time Embedded and Specialized Services (RTESS) Task Force. He is a well
known figure in the distributed real-time and embedded systems middleware
community and has a wealth of experience in hard real-time embedded systems, large-
scale and very large-scale distributed systems, such as defense, aerospace, homeland
security and transportation systems. Prior to joining PrismTech, he worked for the
SELEX-SI CTO Directorate, a FINMECCANICA company, where his responsibilities
included mapping business requirements to technology capabilities, strategic
standardization and technology innovation.

Erik Hendriks [erik.hendriks@prismtech.com]

OpenSplice DDS Senior Software Engineer, PrismTech
Erik has more than 10 years of experience in the design and development of high
performance Real-Time and Distributed Systems. Over the past few years Erik has
been one of the main contributor of OpenSplice DDS, and specifically of the Data Local
Reconstruction Layer (DLRL). Erik is a recognized authority on DLRL, and regularly
runs tutorial on the topic. Before joining PrismTech Erik was working for THALES Naval
Netherlands were he was one of the key engineers working on DDS. Erik holds a MS in
Electrical Enginering from the University of Twente, Netherlands.

Webinar will begin momentarily...

mailto:angelo.corsaro@prismtech.com
mailto:angelo.corsaro@prismtech.com

OpenSplice DDS
Data Local Reconstruction Layer

--Bringing the Data Centric Paradigm on Steroids--

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

Dr. Angelo Corsaro

© 2007, PrismTech. All Rights Reserved

OpenSplice DDS

‣ An High Performance Real-Time Data-Centric Publish/Subscribe Middleware
‣ The right data, at the right place, at the right time -- all the time!
‣ Fully distributed, high performance, highly scalable, and high availability architecture

‣ Perfect Blend of Data-Centric and Real-Time Publish/Subscribe Technologies
‣ Content based subscriptions, queries, and filters
‣ Fine grained tuning of resource usage and data delivery and availability QoS
‣ Optimal networking and computing resources usage

‣ Loosely coupled
‣ Plug and Play Architecture with Dynamic Discovery
‣ Time and Space Decoupling

‣ Open Standard
‣ Complies with the full profile of the OMG DDS v1.2

Global Data Space

Publishers Subscribers

Topic B R1 Topic A

Topic C

Topic X

Topic Y
Topic Z

© 2007, PrismTech. All Rights Reserved

Standard Compliance

‣ OpenSplice DDS is compliant with the full profile specified in the
OMG DDS Specification v1.2

Minimum Profile

Content-SubscriptionPersistenceOwnership

Object Model Profile

Data Centric Publish Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

© 2007, PrismTech. All Rights Reserved

OpenSplice™ DDS

DDS API

RTOS
[VxWorks, RT-Linux, LynxOS)

OS
[Linux, Windows, Solaris)

SOAP DBMS Durability NetworkingSecurity

DLRL

Minimum Profile

Content SubscriptionPersistenceOwnership

D
C

P
S

Monitor & Control

C/C++ Java XML

Logging & Replay Configuration

Pluggable

Services

OMG DDS

Profiles

Supported

Platforms

High-Level

Services

© 2007, PrismTech. All Rights Reserved

OpenSplice DDS PowerTools

Domain Specific Language

Eclipse

Tuner
Remote

Connect

Information

Modeling

Deployment

Modeling

Application

Modeling
Plug-ins

User

Interface

Foundation

© 2007, PrismTech. All Rights Reserved

Who is using OpenSplice DDS

Defense
‣ TACTICOS-CMS: THALES Naval Netherlands’

CMS, 26 ships classes, >100 ships
‣ > 2.000 deployed runtimes (running on Solaris-servers, Linux-

consoles, and vxWorks embedded subsystems)

‣ 15 Navies worldwide (Netherlands, Germany, Turkey, Greece,
Oman, Qatar, Portugal, South Korea, Japan, Poland,…)

‣ USA programs: LCS/GD, ENFMC/NG, LHA-
LHD/DRS

‣ Brazilian Navy
‣ Australia: DSTO, ADI (Australia)
‣ THALES Naval NL’s Flycatcher system
‣ 4 army’s, >400 deployments

‣ NSWC: Open Architecture Test Facility (OA-TF)

Tactical networks
‣ Ultra Electronics (US, UK): OpenSplice DDS

selected over competition for superior
scalability and fault-tolerance

© 2007, PrismTech. All Rights Reserved

Who is using OpenSplice DDS

Transportation
‣ Amsterdam Metro
‣ CoFlight Flight-plan management system upgrades

for France, Italy, Switzerland

Aerospace
‣ NASA Kennedy Space Center: Constellation

Program for next generation ARES Rocket Launch
System

SCADA
‣ Chemtech/Siemens in Brazil: since 2006

Homeland Security
‣ IDA: ‘Cybercrime Defense’ in WAN environment

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

 Erik Hendriks

© 2007, PrismTech. All Rights Reserved

OpenSplice DDS -- In Summary

Functionality
‣ Full OMG DDS v1.2 specification coverage
‣ High Performance, Fault-Tolerant, and Secure Information Backbone
‣ Wide Technology cohabitation and Integration
‣ Support for MDE with Power Tools

Performance
‣ Great Scalability in the number of

nodes, applications, and Topics
‣ Real-Time Determinism with priority

and latency budget driven network
scheduling

‣ Fault-Tolerant architecture, with no
single point of failure, and safe isolation
between application and critical
resources, e.g., network

Pedigree
‣ Maturity. Proven, and fielded in more than

15 navies worldwide
‣ Fractal Architecture. Large-scale, real-time,

fault-tolerant, embedded, all in 1 system
‣ High Standards of Quality Assurance.

Process/procedures, QA-artefacts and
regression testing w.r.t. number of
applications as well as computing nodes and
topics

© 2007, PrismTech. All Rights Reserved

Introduction to DLRL

‣ DLRL offers an Object Oriented (OO) view on the global information model

‣ OO-views may be application specific (hence the ‘L’ for Local).

‣ Allows OO concepts like inheritance, aggregation, composition in your application specific view.

‣ Adds “relational awareness” to your application.

‣ Basically performs OO to Relational Mapping

‣ Transport is delegated to the underlying DCPS.

‣ DCPS is based on a Relational Model where the ‘Tables’ are represented by Topics.

Minimum Profile

Content-SubscriptionPersistenceOwnership

Object Model Profile

Data Centric Publish Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

 Erik Hendriks

© 2007, PrismTech. All Rights Reserved

Information Modelling in DCPS

‣ Modeling. As in a Relational DB, a DCPS
information model can be represented by means
of Entity Relationship (ER) diagrams

‣ Topics. The entities, represented by means of
Topics, are in turns an association between a data
type and a set of QoS and identified by a unique
name (like tables in an RDBMS).

‣ Data Types. The data type associated to a Topic
must be a structured type expressed in IDL.

‣ Instances. Key values in a datatype uniquely
identify an instance (like rows in table).

‣ Correlation. SQL Expressions can be used to
correlate information by means of key values.

struct StockQuote {
 string ID;
 float quote;
};
#pragma keylist StockQuote ID

StockQuote
ID = “PHI”

quote = 27.6

StockQuote
ID = “INTC”

quote = 213.3

CompanyIncome
ID = “PHI”

Profit = 12.7E9

Marketing
ID = “PHI”

quote = 27.6
Profit = 12.7E9

© 2007, PrismTech. All Rights Reserved

Example of a typical DCPS data model

Polygon
Line[] elements
String name

T r i a n g l e \0
struct Point {
 long x;
 long y;
};

struct Line {
 Point start;
 Point end;
};

typedef
 sequence<Line> LineSeq;

Struct Polygon {
 LineSeq elements;
 string name;
};

Point
Long x
Long y

Line
start

end

Point
Long x
Long y

dcps_figures.idl

Limitations of such a data-model:
‣ No encapsulation of information.
‣ No notion of instances.
‣ To distinguish between instances, key-fields need to be

added which must be managed by hand.

‣ Limited automatic correlation capabilities.
‣ Topics can only be joined for matching key-fields.

© 2007, PrismTech. All Rights Reserved

DLRL: Responding to the OO-trend

Modern applications are more and more designed in UML using the Object
Oriented facilities it provides.
‣ More and more demand for support of OO-information models.

DLRL facilitates the use of IDL valuetypes for these cases, and offers the
following OO-constructs:
‣ Automatic Instance management.
‣ Encapsulation.

‣ Attributes are only accessible through dedicated getter/setter operations.

‣ (Local) Operations.
‣ Besides getters/setters, all other kind of manipulations can be done using custom operations.

‣ Inheritance.
‣ Only single inheritance between DLRL objects.

‣ (Navigable) Relationships.
‣ Mono relationships.
‣ Multi Relationships (Set, Map, List): requires some extra annotations in XML.

© 2007, PrismTech. All Rights Reserved

Example of a typical DLRL object model

valuetype Employer;

valuetype Person : DDS::ObjectRoot
{
 public long age;
 public string name;
};

valuetype Employee : Person {
 public string job;
 public Employer boss;
 void work();
};

valuetype EmpList; // List<Employee>

valuetype Employer : DDS::ObjectRoot
{
 public EmpList staff;
};

Person
Long age
String name

Employee
String job
Employer boss
void work()

Employer
EmpList staff

dlrl_company.idl

1

*

© 2007, PrismTech. All Rights Reserved

Mapping a DLRL Model onto a DCPS Model

DLRL offers a local Object view on a global Topic model.
‣ Each object will need to be mapped onto a corresponding Topic.

Mapping is performed in a separate XML file:
‣ The identity of the Object is mapped onto a number of key-fields.
‣ Each Object attribute is mapped onto a corresponding Topic field.
‣ Each mono Relationship is mapped onto a number of foreign/

shared key fields.
‣ The number of keys that models the relationship is based on the number of keys that

represents the identity of the targeted topic.

‣ Each multi Relationship is mapped onto an external Topic.
‣ External topics are required to account for the extra dimension introduced by the

Collection.
‣ The XML element used to define this mapping also annotates the IDL model with the

Collection type that is to be used.

© 2007, PrismTech. All Rights Reserved

A mapping example

Person
Long age
String name

Employee
String job
Employer boss
void work()

Employer
EmpList staff

PersonTopic
DLRLOid oid
ClassName class_name
Long age
String name

<<key>>
<<key>>

1

*

DLRL Object Model DCPS Topic Model

© 2007, PrismTech. All Rights Reserved

A mapping example

Person
Long age
String name

Employee
String job
Employer boss
void work()

Employer
EmpList staff

PersonTopic
DLRLOid oid
ClassName class_name
Long age
String name

<<key>>
<<key>>

EmployeeTopic
DLRLOid oid
ClassName class_name
String job
DLRLOid boss_oid

<<shared key>>
<<shared key>>

<<foreign key>>

1

*

DLRL Object Model DCPS Topic Model

© 2007, PrismTech. All Rights Reserved

A mapping example

Person
Long age
String name

Employee
String job
Employer boss
void work()

Employer
EmpList staff

PersonTopic
DLRLOid oid
ClassName class_name
Long age
String name

<<key>>
<<key>>

EmployeeTopic
DLRLOid oid
ClassName class_name
String job
DLRLOid boss_oid

<<shared key>>
<<shared key>>

<<foreign key>>

EmployerTopic
DLRLOid oid<<key>>

1

*

DLRL Object Model DCPS Topic Model

© 2007, PrismTech. All Rights Reserved

A mapping example

Person
Long age
String name

Employee
String job
Employer boss
void work()

Employer
EmpList staff

PersonTopic
DLRLOid oid
ClassName class_name
Long age
String name

<<key>>
<<key>>

EmployeeTopic
DLRLOid oid
ClassName class_name
String job
DLRLOid boss_oid

<<shared key>>
<<shared key>>

<<foreign key>>

EmployerTopic
DLRLOid oid<<key>>

1

*

DLRL Object Model DCPS Topic Model

EmployerEmployeeListTopic

DLRLOid oid
Long index
DLRLOid empOid
ClassName empClassName

<<shared key>>
<<key>>

<<foreign key>>
<<foreign key>>

© 2007, PrismTech. All Rights Reserved

Modelling approaches.

Object Models always need to be mapped onto
an underlying Topic Model.

‣ This can be an existing Topic Model:
‣ Mapping needs to be performed manually.
‣ Different Object Models can match the same Topic Model
‣ Useful in hybrid systems

‣ A matching Topic Model can be generated for
a given (annotated) Object Model.
‣ Result is a dedicated Topic Model that is probably only

usable in the context of this specific Object Model.

Topic
IDL

Object
IDL

ospldcg

Appl.
code

Object
IDL

Annotated
XML

Topic
IDL

ospldcg

Appl.
code

Mapping
XML

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

 Erik Hendriks

© 2007, PrismTech. All Rights Reserved

DLRL General Overview

The mechanism at the foundation of DLRL is a managed Object Cache:

‣ A DLRL Cache can be populated by different types of DLRL Objects.

‣ Each object type has its own manager called an ObjectHome.
‣ They can inform the application about object creation/modification/deletion.

‣ Objects may contain navigable relationships to other objects.

‣ A DLRL Object type may inherit from 1 other DLRL Object type.

© 2007, PrismTech. All Rights Reserved

DLRL at work

DCPS

DR DR DR

DLRL processes information in so called ‘update rounds’:
‣ All ObjectHomes read incoming information from DCPS and refresh

their corresponding objects in the Cache accordingly.
‣ In contrast to DCPS, where each update is a new sample, a DLRL Object is allocated once

and recycled on subsequent updates. It always contains the latest available object state.

‣ DLRL offers both a push and a pull mode.
‣ In push mode, updates are applied automatically and Listeners will notify the application

about this.
‣ In pull mode, the application can determine the start of each update round manually.

© 2007, PrismTech. All Rights Reserved

DLRL at work

DCPS

DR DR DR

DLRL processes information in so called ‘update rounds’:
‣ All ObjectHomes read incoming information from DCPS and refresh

their corresponding objects in the Cache accordingly.
‣ In contrast to DCPS, where each update is a new sample, a DLRL Object is allocated once

and recycled on subsequent updates. It always contains the latest available object state.

‣ DLRL offers both a push and a pull mode.
‣ In push mode, updates are applied automatically and Listeners will notify the application

about this.
‣ In pull mode, the application can determine the start of each update round manually.

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application

attach_listener

attach_listener

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application

on_begin_
updates()

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application

on_object_modified()

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application

on_object_created()

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application

on_end_
updates()

© 2007, PrismTech. All Rights Reserved

Notification patterns

DCPS

DR DR DR

DLRL offers two ways to get notified of incoming information:
‣ Listeners can be triggered for each modification of an object’s state.
‣ Listeners registered to the Cache indicate the start and end of each update round.
‣ Listeners registered to the ObjectHome pass the modifications back as callback arguments.
‣ With a simple mechanism this can be translated into callbacks for Listeners on individual objects.

‣ It is possible to get a separate list of all objects that have been created/
modified/deleted in the current update round.

Application
get_modified_objects()

© 2007, PrismTech. All Rights Reserved

Using DLRL to auto-correlate information

Relationships in DLRL can very easily correlate information for you:

‣ By defining a relationship in your object model, you can easily navigate
from one object to the other.
‣ DLRL will translate (foreign) keys on its incoming topics to objects.
‣ Minimal overhead when resolving relationships (depending on the number and kind of keyfields and

the number of potential target objects).
‣ Tailor your object model in such a way that only the relationships you actually plan to navigate are

resolved. This may save you some overall overhead.

‣ Advantages of relationships when compared to DCPS aggregation:
‣ DCPS Aggregation can only be performed in case of shared keys.
‣ Better visibility of information. (Aggregation only shows a combined set when it is complete).
‣ Granularity of notifications is more fine grained. (combined type vs. a dedicated atom).
‣ Aggregation is only available on the Reader side, relationships are also available on the Writer side.
‣ DLRL allows you to choose lazy instantiation for related objects, removing processing and memory

overhead of information that is not accessed by the application.

© 2007, PrismTech. All Rights Reserved

CacheAccess: Examining objects in isolation

DCPS

DR DR DR

Some applications want to be able to store temporal ‘snapshots’:
‣ A CacheAccess can be used to contain a temporal graph of objects.
‣ Objects must physically be cloned from Cache to CacheAccess.
‣ A CacheAccesses is not automatically kept in sync with the main Cache.
‣ A ‘refresh’ operation can be used to resync the contents of CacheAccess

with the contents of the main Cache .

© 2007, PrismTech. All Rights Reserved

CacheAccess: Examining objects in isolation

DCPS

DR DR DR

Some applications want to be able to store temporal ‘snapshots’:
‣ A CacheAccess can be used to contain a temporal graph of objects.
‣ Objects must physically be cloned from Cache to CacheAccess.
‣ A CacheAccesses is not automatically kept in sync with the main Cache.
‣ A ‘refresh’ operation can be used to resync the contents of CacheAccess

with the contents of the main Cache .

© 2007, PrismTech. All Rights Reserved

CacheAccess: Examining objects in isolation

DCPS

DR DR DR

Some applications want to be able to store temporal ‘snapshots’:
‣ A CacheAccess can be used to contain a temporal graph of objects.
‣ Objects must physically be cloned from Cache to CacheAccess.
‣ A CacheAccesses is not automatically kept in sync with the main Cache.
‣ A ‘refresh’ operation can be used to resync the contents of CacheAccess

with the contents of the main Cache .

© 2007, PrismTech. All Rights Reserved

CacheAccess: Examining objects in isolation

DCPS

DR DR DR

Some applications want to be able to store temporal ‘snapshots’:
‣ A CacheAccess can be used to contain a temporal graph of objects.
‣ Objects must physically be cloned from Cache to CacheAccess.
‣ A CacheAccesses is not automatically kept in sync with the main Cache.
‣ A ‘refresh’ operation can be used to resync the contents of CacheAccess

with the contents of the main Cache .

© 2007, PrismTech. All Rights Reserved

CacheAccess: modifying and creating objects

DCPS

DR DR DR

Some applications want to be able to modify or create certain objects:
‣ An initial set of Objects may be cloned into a writeable CacheAccess.
‣ Available objects may then be modified locally.
‣ New objects can be created in the CacheAccess as well.
‣ The ‘write’ operation instructs the ObjectHomes to write any modifications

into the system.

DWDW DW

© 2007, PrismTech. All Rights Reserved

CacheAccess: modifying and creating objects

DCPS

DR DR DR

Some applications want to be able to modify or create certain objects:
‣ An initial set of Objects may be cloned into a writeable CacheAccess.
‣ Available objects may then be modified locally.
‣ New objects can be created in the CacheAccess as well.
‣ The ‘write’ operation instructs the ObjectHomes to write any modifications

into the system.

DWDW DW

© 2007, PrismTech. All Rights Reserved

CacheAccess: modifying and creating objects

DCPS

DR DR DR

Some applications want to be able to modify or create certain objects:
‣ An initial set of Objects may be cloned into a writeable CacheAccess.
‣ Available objects may then be modified locally.
‣ New objects can be created in the CacheAccess as well.
‣ The ‘write’ operation instructs the ObjectHomes to write any modifications

into the system.

DWDW DW

© 2007, PrismTech. All Rights Reserved

Using Selections to manage subsets

DCPS

DR DR DR

DLRL offers a Selections mechanism to keep track of subsets of information:
‣ Selections are created and managed by the ObjectHomes.
‣ A Criterion plugged into a Selection determines the boundaries of a subset:
‣ A QueryCriterion determines boundaries based on an SQL statement.
‣ A FilterCriterion determines boundaries based on user-defined callback filters.

‣ Selections can notify the application when objects enter and leave it.

S

Application

© 2007, PrismTech. All Rights Reserved

Using Selections to manage subsets

DCPS

DR DR DR

DLRL offers a Selections mechanism to keep track of subsets of information:
‣ Selections are created and managed by the ObjectHomes.
‣ A Criterion plugged into a Selection determines the boundaries of a subset:
‣ A QueryCriterion determines boundaries based on an SQL statement.
‣ A FilterCriterion determines boundaries based on user-defined callback filters.

‣ Selections can notify the application when objects enter and leave it.

S

Application

on_object_in()

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

 Erik Hendriks

© 2007, PrismTech. All Rights Reserved

Benefits of the OpenSplice-DDS DLRL

‣ The DLRL API is compliant with the latest DDS V1.2 specification.
‣ It is available for both C++ and Java.
‣ Allows the use in mixed language environments.

‣ It is fully integrated with the DCPS layer
‣ Tight integration allows smart ‘short-cuts’ and removes redundant administration.
‣ This allows for better performance and a smaller memory footprint.
‣ DCPS functionality is almost fully orthogonal: all DCPS QoSPolicies function as expected.
‣ Creating hybrid systems (even mixing DCPS and DLRL applications on a single node) is

very well possible and comes with no extra overhead.

‣ OpenSplice DDS PowerTools help you focus on your domain
knowledge instead of on the DLRL API itself.
‣ Information modeller helps you design your Object Model and to map it on the Topics.
‣ Application designer helps you graphically compose your application from default building

blocks and generates most of the code for you.

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

Dr. Angelo Corsaro

© 2007, PrismTech. All Rights Reserved

Upcoming Webinars

2007

21 5

Data Centric Paradigm & Power Tools

OpenSplice DDS Performance & Tuning

Registration: http://www.prismtech.com/section-item.asp?id=731&sid=29&sid2=15&sid3=289

http://www.prismtech.com/section-item.asp?id=731&sid=29&sid2=15&sid3=289
http://www.prismtech.com/section-item.asp?id=731&sid=29&sid2=15&sid3=289

© 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Introduction to DLRL
‣ Information Modeling for DLRL
‣ DLRL Overview
‣ OpenSplice DDS-DLRL Benefits
‣ What’s Next
‣ Concluding Remarks

Dr. Angelo Corsaro

© 2007, PrismTech. All Rights Reserved

Concluding Remarks

Information Modeling and Management
‣ The DLRL provides a more powerful information modeling and

management support than DCPS, as it allows to deal with subtypes,
relationships, etc.

‣ The mapping between DLRL and DCPS information models allow to easily
migrate from DCPS-based to DLRL-based solutions

Performance
‣ The OpenSplice DDS-DLRL layer is designed to minimize performance

overhead over the DCPS layer
‣ Lazy instantiation, and finer control over the information model, allow the

application for an even greater control over resources than DCPS
Open Architecture
‣ OpenSplice DDS-DLRL is the only implementation in the world which is

compliant with the latest OMG DDS v1.2 standard

OpenSplice DDS is the best solution available on the
market for solving your data distribution problems!

© 2007, PrismTech. All Rights Reserved

Contact Us

‣ OpenSpliceDDS Resource Center
‣ http://www.prismtech.com/opensplice-dds/

‣ Evaluate OpenSplice DDS
‣ Training and Consulting

‣ sales@prismtech.com

‣ OMG DDS Information
‣ http://www.dds-forum.org/
‣ http://portals.omg.org/dds/

Thank You!

