Webinar begins at 2:05PM, EST

Dr. Angelo Corsaro [angelo.corsaro@prismtech.com]

OpenSplice DDS Product Marketing Manager, PrismTech

Angelo co-chairs the OMG Data Distribution Service (DDS) Special Interest Group
and the Real-Time Embedded and Specialized Services (RTESS) Task Force. He is
a well known figure in the distributed real-time and embedded systems middleware
community and has a wealth of experience in hard real-time embedded systems,
large-scale and very large-scale distributed systems, such as defense, aerospace,
homeland security and transportation systems. Prior to joining PrismTech, he
worked for the SELEX-SI CTO Directorate, a FINMECCANICA company, where his
responsibilities included mapping business requirements to technology capabilities,
strategic standardization and technology innovation.

Hans van’t Hag [hans.vanthag@prismtech.com]

OpenSplice DDS Product Manager, PrismTech

Hans has extensive experience in applying an information approach towards
mission-critical and real-time net-centric systems. He is a co-author of the OMG
DDS specification and has presented numerous papers on DDS and publish
subscribe middleware technologies. Prior to joining PrismTech he worked for 23
years at Thales Naval Netherlands (TNN) where he was responsible as Product
Manager for the development of the data-centric real-time middleware (SPLICE) as
applied in TNN’s TACTICOS combat system in service with 15 Navies worldwide.

A
M PRISMTECH |OpenSplice DDS,
Productivity Tools & Middleware Performance & Tuning

Architecting Distributed Systems
What is “Performance”
OpenSplice DDS Architecture Dr. Angelo Corsaro
OpenSplice DDS Deployment Tools

The “Pother” benchmarking suite

Demo

Whats Next

vV VvV VvV VvV VvV Vv V9

open yplice ‘DDS © 2007, PrismTech. All Rights Reserved V| PRISMTECH

OpenSplice DDS

» An High Performance Real-Time Data-Centric Publish/Subscribe Middleware

» The right data, at the right place, at the right time -- all the time!
» Fully distributed, high performance, highly scalable, and high availability architecture

» Perfect Blend of Data-Centric & Real-Time Publish/Subscribe Technologies

» Content based subscriptions, queries and filters, DLRL
» Fine grained tuning of resource usage and data delivery and availability QoS

» Optimal networking and computing resources usage
» Loosely coupled

» Plug and Play Architecture with Dynamic Discovery

» Time and Space Decoupling

» Open Standard,
» Complies with the full profile of the OMG DDS v1.2

----- “! Subscribers

|

Publishers

’IIIIIlI" |

Global Data Space

N
M PRISMTECH

© 2007, PrismTech. All Rights Reserved

Open' /.- DDS

Standard Compliance

» OpenSplice DDS is compliant with the full OMG DDS rev 1.2 Specification

QIR T

OBJECT MANAGEMENT GROUP

O ECHYCUEINIGHIE

Data Local Reconstruction Layer (DLRL)

OWhHESHIP Parsisiarics Corligni-Sugscrigtiorn

Minimum Profile

Data Centric Publish Subscribe (DCPS)

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

OpenSplice™ DDS Prod

R —

ict

Deployment

OpenSplice™ DDS product-line

Views &
Editors

Modeling-
Plug-ins

Roundtrip-

. L .
Development Vonitor & 29N E | comamaton
Control (Tuner) Replay
Open Spllce PowerToolsTM S DDS API's CORBA cohabitation Dynamic
E C/C++/Java C++/(RT)Java | XML-based API
©
ML DDS-DSL v
U B IT Minimum Ownership Su?:sr:r?:tti;)n Persistence DLRL
. o T
Informeftlon Appllca.tlon Deployr.nent % DCPS
Modeling Modeling Modeling

Engineering

Foundation &
Framework

soap

High-level
Services

Middleware-
Integration

OMG-DDS
Profiles

Pluggable-
Services

Supported
Platforms

© 2007, PrismTech. All Rights Reserved

Open

DDS

N
M PRISMTECH

OpenSplice™ DDS v3 - |

Functionality

» Full OMG-DDS specification coverage (DCPS and DLRL)
» Provision of a true ‘fault-tolerant & secure information backbone’ (content-aware and FT-durability)
» Wide Cohabitation and Connectivity with other Technologies (Corba, RT-Java, DBMS, SOAP, XML)
» Availability of (remote) deployment tools (Tuner™ offering total & remote control)
» Support for Information/application/deployment modeling (DCPS/DLRL-specific roundtrip development)
Performance Pedigree
» Scalability w.r.t. number of applications as » Maturity. Product proven, fielded,
well as computing nodes and topics In service in 15 Navies world-wide
» Real-time determinism by urgency (latency- » Fractal Architecture. Large-scale, real-time,
budget) & importance (priority) based fault-tolerant, embedded, all in one system!
network-scheduling » High Standard of Quality Assurance.
» Fault-tolerance by FT-durability and reliable Process/procedures, QA-artefacts and
network-service shielding faulty applications regression testing w.r.t. number of
from the network applications as well as computing nodes and
topics

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

» OpenSplice DDS Overview

>!e||n|ng h !er'ormance"

» OpenSplice DDS Architecture

» OpenSplice DDS Deployment Tools
» The “Pother” benchmarking suite
» Demo

» Whats Next

open VDI ‘DDS © 2007, PrismTech. All Rights Reserved

Hans van’t Hag

N
M PRISMTECH

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Distributed Systems: The Problem

Problem: (engineering) COST of distributed systems
» too complex security functionality

» not reactive o L
distribution timeliness

» not future-proof

» not fault tolerant extensibility availability

Because ‘multi-dimensional engineering’ is needed.:

What about the current ‘state-of-the-art’?
» architectures: C/S, MOM, SOA
» most efforts fall short in a number of dimensions:

> typically:
4 limited RT performance (high-volume & low-latency balance)
4 exploding complexity (dependencies in many dimensions)
4 costly evolution (impact of changes & extensions)

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Open

Autonomous components [

Interacting only with the information (model) L___
Spontaneous: , Self-healing:

Redundant & Replicated: ,

QOS-driven Data Distribution Service (urgency, importance, durability):

—

A
\DDS © 2007, PrismTech. All Rights Reserved A\ PRISMTECH

Pub/Sub Messaging Network

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

DDS: Implementation;A\rchj%e’CtUés

“Process-Bound” Data Distribution “Node-bound” Data Distribution (OpenSplice DDS)

Application 4 Application 5 Application 6

Shared Memory

Network-Scheduler

Application 1 Application 2 Application 3

comm / aux comm / aux comm / aux
threads threads threads

‘é network ; }

» Process bound DDS (RTI/OCI) » Node bound DDS (OpenSplice)
» Application level networking » Node level networking

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

» OpenSplice DDS Overview
» Architecting Distributed Systems

! !pen!pllce !!! !rc“eclure

» OpenSplice DDS Deployment Tools
» The “Pother” benchmarking suite
» Demo

» Whats Next

open VDI ‘DDS © 2007, PrismTech. All Rights Reserved

Hans van’t Hag

N
M PRISMTECH

PERFORMANCE REQUIREMENTS

Realtime Planning grid

Soft » COTS (DBMS/Web) integration

% Security

Awareness grid

Firm < Throughput performance
% Dependability & Availability

End-to-end Latency & Jitter
Safety & Fault-tolerance

Hard

Small Large Ultra-Large

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Realtime
< |IDL/CORBA/Java

% XML (extension)
% SQL (extension)

EFFICIENCY & AVAILABIIL Y

+ Latency Budget QoS
% Transient/Persistent durability
% Filters/Queries, DLRL-layer

IVIIINISIVE

* Reliability QoS
% Transport_Priority QoS
% Ownership/Lifeliness QoS

Small Large Ultra-Large

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Realtime

Web-services gateway
DBMS gateway

% Latency budget based packing
« Distributed/FT durability service
+» Relations & update management

TERIVIINISIVI

Info-priority based network scheduling
Safety: shielding faulty applications
Low Footprint & RTOS support

Small Large Ultra-Large

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

(1) Performance: Determinism & Lasten(:‘y

User Problem

Data distribution in a system typically requires the ability to handle different levels of
Importance. In mission critical systems it is essential the “The right (important) data
always gets to the right place” also in face of temporary overload condition

DDS Features (OMG-DDS specification/API)

The DDS provide the concept of Transport Priority as a mean of expressing data
importance. This QoS can be used by DDS implementations to ensure that the
distribution of more important data always take precedence over less important data

OpenSplice DDS Features (OMG-DDS/API implementation)

The combination of an advanced Network Scheduler and Priority Bands allow
OpenSplice to enforce information priority across all nodes making up the distributed
system

Application 1 Application 2 Application 3

Shared Memory

Computing Node @Network Scheduler

N
M PRISMTECH

(2) Performance: Efficiency & Thr&agﬁﬁt_

User Problem

Complex distributed applications often require extraordinary high throughput. Achieving it
requires smart management of the networking resources without introducing accidental
complexity in the solution space

DDS Features (OMG-DDS specification/API)

The DDS provides the concept of Latency Budget as a means of specifying the urgency
of data. This QoS can be used by DDS implementations to optimize the utilization of
networking resources thus increasing efficiency and related data-distribution throughput
for applications

OpenSplice DDS Features (OMG-DDS/API implementation)

OpenSplice’s Network Scheduler takes advantage of Latency Budget in order to perform
data aggregation across topics & applications. Moreover, its federated architecture
reduces communication overhead, and greatly improves the overall application throughput

Application 1 Application 2 Application 3

Shared Memory

Computing Node @Network Scheduler

N
M PRISMTECH

(3) Performance: Scalability & Footprint |

User Problem

With Multi-Cores and Blades becoming more accessible many systems are contracting to a
single box. Thus it becomes more and more relevant to have efficient intra-nodal
communication. Moreover, as already experienced in OS such as Linux (dbus), Pub/Sub
middleware provides the right level of decoupling, and facilitate plug an play behavior.

DDS Features (OMG-DDS specification/API)

The DDS is by nature location agnostic, thus is a perfect candidate for making applications
location independent. Thanks to its potentially very high performance, it is also extremely
suitable as a high throughput and low latency intra-nodal communication means

OpenSplice DDS Features (OMG-DDS/API implementation)

OpenSplice’s architecture is optimized for distributed as well as co-located applications.
Thanks to its Shared Memory optimizations, it delivers maximum performance at minimal
footprint in local and distributed scenarios, thus allowing seamless localization or distribution of
the application components

Application 1 Application 2 Application 3

Shared Memory

comm threads 8 Network Scheduler

Computing Node

Open’ /'~ |DDS { PRISMTECH

(4) Performance: Point to Point Commu

User Problem

Some distributed application, along with one to many and many to many communication,
require high throughput point to point communication

DDS Features (OMG-DDS specification/API)

Although DDS is agnostic of the underlying transport protocol, it does supports the notion of
dynamic logical ‘Partitions’. This QoS policy can be used to scope and bound the global
dataspace in the sense that communication between writers and readers is bounded to the
shared notion of these Partitions as defined by the respective publishers and subscribers

OpenSplice DDS Features (OMG-DDS/API implementation)

OpenSplice’s architecture allows the dynamic mapping of logical partitions to physical

network partitions (multicast groups) to optimize the throughput of scoped (e.g. point-to-
point) communication, as well as to minimize the impact of high throughput communication

on other system elements

Application 1 Application 2 Application 3

Shared Memory

Computing Node ﬁNetwork Scheduler

N
M PRISMTECH

(5) Performance: Delivery & Availability. '

User Problem

Delivery reliability controls whether the data will always make its way to interested parties.
Availability, controls when and for how long the data will be available. As reliability and
availability have a cost, being able to quantify it gives useful guidance on how to design a
system

DDS Features (OMG-DDS specification/API)

The DDS provides a set of features, such as Reliability, and Persistency that allow to
configure how data will be distributed and for how long it will be kept available for late-joining
applications

OpenSplice DDS Features (OMG-DDS/API implementation)

- OpenSplice’s communication architecture minimizes the protocol overhead of achieving
reliable communication

- OpenSplice’s distributed durability implementation provides fault-tolerant availability of non-
VOIatlle data Application 1 Application 2 Application 3

Shared Memory

Computing Node @Network Scheduler

N
M PRISMTECH

(6) Performance: Discovery Latency -

User Problem

Large scale mission critical systems have stringent requirements on the time that can elapse
between when the system start-ups, or recovers from a failure, and when the system
becomes operational.

DDS Features (OMG-DDS specification/API)

The DDS features dynamic discovery which allows for plug and play interoperability of
applications. However, if not implemented properly, its performance can adversely impact the
startup and/or recovery time of large scale distributed systems

OpenSplice DDS Features (OMG-DDS/API implementation)

OpenSplice features a constant time discovery mechanism which allows application of any
scale to be operational as soon as they are running. This provides application with
unprecedented responsiveness to change of environment as well as change of operational
mode

Application 1 Application 2 Application 3

Shared Memory

comm threads 8 Network Scheduler

Computing Node

Open’ /'~ |DDS { PRISMTECH

X 1T\

-

(7) Performance: Portability, Re-usgabﬁi‘ty&'Corﬁ‘ple

User Problem

Applications should be re-usable (location agnostic), portable (DDS vendor agnostic) and
simple (configuration agnostic)

DDS Features (OMG-DDS specification/API)

The DDS concept allows for a clear separation of concerns w.r.t. information-modeling
(topics), application processing (business logic) and dynamic deployment (discovery) and as
such provides a clear decoupling in space (location) and time (information persistence).

OpenSplice DDS Features (OMG-DDS/API implementation)

OpenSplice, as a full DDS implementation exploits these features ‘to the fullest’ w.r.t. full API
compliance to the specification, no vendor-specific extensions and application-agnostic
configuration and tuning possibilities of the DDS runtime-system

Application 1 Application 2 Application 3

Shared Memory

Computing Node @Network Scheduler

N
M PRISMTECH

» OpenSplice DDS Overview

» Architecting Distributed Systems

) Definini “Performance”

» OpenSplice DDS Deployment Tools
» The “Pother” benchmarking suite

» Demo
» Whats Next

open VDI ‘DDS © 2007, PrismTech. All Rights Reserved

Hans van’t Hag

N
M PRISMTECH

Participant

» Passive Global Data-Space
@ » Communication by Applicati

» No Data outside applications

Participant

\

Participant

\ Participant

Publisher(partition)>Writer(reliability, transport_priority, latency_budget, durability)

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Full DDS (OpenSplice DDS)

Participant
Active Global Data-Space

Applications produce/consume data
@ No communication by applications

Qo0S-Driven Data management

Computing-Node

App-1 \ App-2 H App-3 \

Shared memory

» Network-channels
» Priority bands

» Network-partitions
» Multicast groups

» Traffic-shaping

\ » Burst/throughput /\

i
(XML/Binary)

<@g network =

© Scalability & Efficiency

© Single shared library for applications & services (code-footprint)

© Ring-fenced shared memory segment (single copy regardless of nr. of applications)

© Data urgency driven network-packing (Latency_Budget QOS drives packing per channel)

© Constant serialization/deserialization effort (one-time only regardless of nr. of applications)
© Determinism & Safety

© Pre-emptive network-scheduler (traffic-shaping per priority-band)

© Data importance based network-channel selection (Transport_Priority QoS of actual data)

© Partition based multicast-group selection (dynamic mapping of logical DDS partitions)

© Managed critical network-resource (limited impact/damage of faulty-applications)

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

DDS Architecture Impact: OpenSplice DDS__.aFeI'Ti’[‘eqtufe (3/3)

Data
@ Instance Sample)

Participant

Safe=Copy-Out

Participant

Safe:Copy-In
S

QoS: PointTrack {

Transport_Priority (T) long trackld;

atency Budget (L) } Position pos;

G Keys: trackld

/

Logical (application driven)

Physical (dynamic configurable)

Channel 1: priority-band [0-9]

>
;I'x/Rx/Diffserv Prio, Traffic shaping, Reliability

Channel 2: priority-band [10-20]

St

- Channel Selection (T)
- Packing (L)

Channel 3: priority-band [20-30]

Priority Pre-emptive Urgency-based Network Scheduling !

DDS Architecture Impact: Performance (

Application 1 Application 2 Application 3 Application 4 Application 5 Application 6

Shared Memory

comm / aux comm / aux comm / aux
threads threads threads

comm threads @ Network Scheduler

Process-bound Data Distribution Node-bound Data Distribution (OpenSplice DDS)

© Process bound DDS: communication BY applications BETWEEN individual readers/writers
© Application-process threads responsible for performing/maintaining system-wide communication
© Application-level configuration for each reader/writer required

© Real-world example: private Car for transportation
© user needs driving-capabilities and must maintain his car
© Every house has a driveway to the highway (only fast when no traffic and car OK)

© OpenSplice: communication BY network-scheduler BETWEEN computing nodes
© Application-processes NOT responsible for communication over the network
© Nodal Network-scheduler takes care of urgency/importance driven data-distribution
© Network-scheduler ‘populates’ the shared-memory with relevant data from other nodes

© Real-world example: public transportation
© user needs no driving-capabilities nor needs to maintain the train
© commuter/express trains can deliver massive amounts of people ‘at the right place, at the right time’

A
Trust Networking to Trusted Middleware !! V| PRISMTECH

© 2007, PrismTech. All Rights Reserved

DDS Architecture Impact: Perfor

» Example scenario: » Example OpenSplice configuration:
» 200 nodes » 4 priority-bands (low/med/high/expedited)
» 10 applications per node » So 4 best-effort and 4 reliable ‘channels’
» 40 readers per application » Transport_Priority to express data-importance
» 20 writers per application » Latency Budget to express data-urgency

© Impact of scale on Discovery Times

© Process Bound DDS (using statefull & ‘typed RTPS-channels’ between individual readers/writers)
© 200 *10* 60 = 120,000 networking-endpoints (RTPS readers/writers) that need to be discovered
© For each reader/writer peer-state has to be built-up before communication can occur
© Discovery times can ‘explode’ with expanding scale

© OpenSplice DDS (using self-describing data sent over RTPS-like untyped channels between nodes)
© 200*8=1,600 networking-endpoints (replicating the relevant parts of the ‘shared-dataspace’ to other nodes)
© Zero discovery times because of Self-describing data (‘inline-QoS’ overhead 50 bytes per sample)
© Reliable-channels have an optional ‘discovery’ (of remote nodes) to prevent network-traffic if no remote nodes

© Impact of scale on Data Distribution Performance

© Process bound DDS (each writer forwards copies of each sample to each reader)
© 120,000 readers/writers that maintain copies of published/subscribed data
© No packing of multiple-topics to increase efficiency (typed RTPS channels between DomainParticipants)

© OpenSplice DDS (only 1 copy of any sample maintained within 1 node and shared between all applications)
© Only 1 copy of any topic sample required that populates ALL relevant writer and reader caches/histories per node
© Latency-budget driven packing (of ALL topics within a priority-band) dramatically increases efficiency
© De-serialization only once per node instead of once per participant/reader

Open ’DDS System Scalability requires a scalable DDS architecture ﬁ PRISMTECH

DDS Architecture Impact: Dependability

» Determinism scenario:

» Track producer: » Safety scenario (misbehaving application):

» Normal / High-Prio tracks » 10 applications at different priorities

» High-priority tracks must pre-empt » High-priority process publishes at high rate
low-priority tracks » Low priority process can't execute

© Impact of scale on Determinism

© Process bound DDS (Application bound Data Distribution)
© Data-Priority (importance of data) = Processing Priority (importance of processing)
© Track publisher has to (dynamically) create communication-threads at right priority, will travel over same channel
© Track subscriber has no means to handle high/low priority samples

© OpenSplice DDS (Node bound Data Distribution)

© Writers can set TRANSPORT_PRIORITY QoS ‘per sample’ to indicate IMPORTANCE of the data
© High-priority data will pre-empt low(er) priority data both in sending AND receiving node

© Impact of scale on System Safety

© Process bound DDS (Application bound Data Distribution)
© Non-responsive low-priority process can trigger system-wide retransmissions
© Over-responsive high-priority process can overload system-wide network & processing resources
© So every application is a potential single-point-of-(system)failure !
© OpenSplice DDS (Node bound Data Distribution)
© Traffic-shaped (reactivity, max-throughput, burst-size) network-channels are managed by trusted middleware
© Application misbehaviour (under/over responsiveness) can only have limited/bounded impact on other nodes

Open ’DDS Mission critical systems need arbitration: for processes AND data !! ﬁ PR'SMTECH

Application 1 Application 2 Application 3 Application 4 Application 5 Application 6

Shared Memory

comm threads @ Network Scheduler

comm / aux comm / aux comm / aux
threads threads threads

Process-bound Data Distribution Node-bound Data Distribution (OpenSplice DDS)

© General Issues
© Application location awareness (configuration) = Re-usability
© Application vendor awareness (AP1/QoS compliance, required vendor-specific extensions) > Portability

© Application Portability (between DDS implementations)
© OpenSplice is fully DDS-compliant (DDS rev1.2)
© OpenSplice doesn't require vendor-specific API extensions unlike most process-bound DDS implementations

© Application Re-usability (in different systems & environments)
© OpenSplice does NOT require application-level transport-configuration, unique ID’s etc.
© OpenSplice runtime configuration does NOT impact application-code
© Application QoS policy settings can be tuned at runtime by OpenSplice Tuner™ (supporting MDE roundtrip-engineering)

© System Complexity
© OpenSplice supports a clear separation of concerns w.r.t.

© Information modeling : shared information model annotated with QoS policies for global behavior: reliability, urgency, importance, persistence
© Application development : re-usable (location/deployment agnostic) applications with tool-supported code-generation (PowerTools™ MDE-sulite)
© System integration : dynamically configurable & Tunable deployment environment without impacting application-code

» There’'s more to performance than pt-to-pt latency ﬁ PR|S|V|TECH

© 2007, PrismTech. All Rights Reserved

DDS API compliance: Portability, Re-usabili

DomainParticipant

Factory compliant

compliant

Register Data Types static method member method | member method

extra argument

Spec Operations (Newer spec) compliant compliant
: single pair of
Key Declaration //0key #pragma #oragma

Required App. IDs none

Required App.
Transport Config

none

D T @ u g » DDS2=0penSplice ﬁ PRISMTECH

DDS API complia

Description

Differences

Compliance lIssue?

type of Domainld_t
(native in spec IDL)

OpenSplice - charx
RTI DDS - signed 32-bit int
OpenDDS - signed 32-bit int

NO (the DDS spec example is signed 32-bit int but it's not required)

use of namespace DDS

OpenSplice - yes
RTI DDS - yes, but must include extra header file
OpenDDS - yes

NO (C++ mapping requires it, but it's obtainable from all vendors)

mapping of IDL
modules to namespaces

OpenSplice - yes
RTI DDS - not by default (needs command line option)
OpenDDS - yes

NO (C++ mapping requires it, but it's obtainable from all vendors)

use of CORBA _ptr
and _var types

OpenSplice - yes
RTI DDS - no (without RTI CORBA Compatibility Kit)
OpenDDS - yes

YES (It's an IDL to C++ mapping issue)

use of CORBA
basic types

OpenSplice - yes
RTI DDS - no (proprietary typedefs without RTI CORBA Compatibility Kit)
OpenDDS - yes

YES (RTI not compliant, Not a CORBA issue but IDL to C++
mapping - see section 1.3)

scope of generation
from implied
IDL

OpenSplice - same as original IDL
RTI DDS - same as original IDL
OpenDDS - configurable (global scope by default)

UNKNOWN (I can't find any reference to it in the DDS spec)

type registration

OpenSplice - FooTypeSupport instantiated on stack
RTI DDS - no instantiation (register_type() is static)
OpenDDS - fooTypeSupport instantiated on heap

YES (Only OpenDDS is conpliant here - see section 1.3 of IDL C++
mapping. OpenSplice also allows heap instantiation, but the
mapping forbids direct instantiation of interface classes)

type of [datatype]Seq
max length

OpenSplice - CORBA::ULong
RTI DDS - signed long
OpenDDS - CORBA::ULong

YES (RTI not compliant, C++ mapping prescribes IDL sequence
length as CORBA::ULong)

s)y-# 2.4, 3

“RTDEEP” compliance assessment by Vanderbilt (1/2)

A
M PRISMTECH

DDS API compliance: Portability, Re

Description

Differences

Compliance lIssue?

resolution of
D omainParticipantFactory

OpenSplice - static instance() method
RTI DDS - static instance() method
OpenDDS - proprietary global function

YES (OpenDDS is non-compliant)

passing of ConditionSeq t0 wait()

OpenSplice - by reference
RTI DDS - by reference
OpenDDS - does not support WaitSets or conditions

NO (The signature of this operation changed from passing
ConditionSeq as an OUT parameter - which takes a pointer to be
converted to the ConditionSeq_out class - in DDS 1.0, to passing
ConditionSeq as in INOUT parameter - which maps to a reference
for sequences - in DDS 1.1.)

passing of [datatype]Seq and
SamplelnfoSeq t0 take()

OpenSplice - by reference
RTI DDS - by reference
OpenDDS - by pointer

YES (OpenDDS is not compliant with IDL C++ mapping)

identifier for generated
downcasting method

OpensSplice - _narrow
RTI DDS - narrow
OpenDDS - _ narrow

YES (RTI DDS is non-compliant with IDL C++ mapping)

StatusM ask arg in create_*
methods

OpenSplice - yes
RTI DDS - yes
OpenDDS - no

YES (RTI DDS and OpenSplice compliant with DDS 1.1 & 1.2,
OpenDDS compliant only with DDS 1.0)

proprietary listener methods

OpenSplice - no
RTI DDS - no
OpenDDS - yes (in DataReaderlistener and DataW riterListener)

YES (the extra methods are pure virtual, and must be recognized
and implemented)

type of datatypeSeq[index]
index variable between brackets

OpenSplice - CORBA::ULong
RTI DDS - signed long
OpenDDS - CORBA::ULong

YES (C++ mapping prescribes IDL sequence length as
CORBA::ULong. Even though RTI DDS doesn't use CORBA
basic types without the optional kit, it would still be better if it
used an unsigned type)

proprietary QoS settings
required

OpenSplice - no
RTI DDS - yes
OpenDDS - no

YES RTI DDS has several non-spec members in the
ParticipantQod struct, some of which (host id and app id) need
to be set on publisher and subscriber, with another (participant
index) needing to be set on the subscriber only

» “RTDEEP” compliance assessment by Vanderbilt (2/2)

A
M PRISMTECH

» OpenSplice DDS Overview
» Architecting Distributed Systems
» Defining “Performance”

» OpenSplice DDS Architecture

4 T!e . Pot!er” !enc!mar!lng suite

» Demo
» Whats Next

open e ‘ D DS © 2007, PrismTech. All Rights Reserved

Hans van’t Hag

N
M PRISMTECH

OpenSplice Tuner™: local & remote monitor

R —————

———
- S——

Monitor & control
» Local & Remote
» Control & Monitoring

» Configuration

A

Deployment

Views &
Editors

Modeling-
Plug-ins

Roundtrip-
Engineering

Foundation &
Framework

OpenSplice PowerTools™

UML DDS-DSL

Information
Modeling

Application |Deployment;
Modeling | Modeling

OpenSplice Tuner &
Remote-connect

OpenSplice™ OMG-DDS product-line

<=S—-XxCOMmM®M

soap

A 4

Monitor & Logging & : :
cIaie Configuration
Control (Tuner) Replay
DDS API's CORBA cohabitation Dynamic
C/C++/Java C++/(RT)Java | XML-based API
Minimum | Ownership Contt.ant.- Persistence DLRL
Subscription
DCPS

Webservice
gateway

High-level
Services

Middleware-
Integration

OMG-DDS
Profiles

Pluggable-
Services

Supported
Platforms

© 2007, PrismTech. All Rights Reserved

N
M PRISMTECH

© Features
© Design stage: deploy the information model even without applications by dynamicallly created readers/writers
© Development stage: inject (write) test-data, capture (read/store) application responses
© Deployment stage: inspect reader/writer caches, QoS and performance metrics
© Maintenance stage: log/inject datasets (both volatile and/or persistent)

© Characteristics
© 100% Java application, direct or remote connection to any OpenSplice™ system using SOAP™
© Dynamic discovery of all DDS entities (participants, subscribers, publishers, readers, writers, services)
© Finetune QoS parameters (at runtime)
© Support Roundtrip-engineering (SpliceTuner as OpenSplice PowerTools™ MDE eclipse-plugin)

A
© 2007, PrismTech. All Rights Reserved u P Rl S M T E C H

OpenSplice TUNER™

Splice-Tuner:

TOTAL SYSTEM CONTROL:

* 100 % Java-based
¢ Remote connect via SOAP
¢ Monitor & Control:
« all DDS-entities & relations
« all QoS settings
« all services such as:
e communication
« durability-service
« Interactive browsing:
« inspect any data-cache
« make cache-snapshots
* view statistics
* Reading/Writing data:
e create readers/writers
« read/write any data
* Multiple views:
e participant view
« topic view
« partition view
* Dynamic creation of:
« readers (with filters/queries)
« writers (with input validation)
* Automatic discovery of:
« Partitions & participants
« Topics with name/type
« related publishers/writers
« related subscribers/readers

© 2007, PrismTech. All Rights Reserved

%I SPLICE-DDS Tuner (file
File Edit View

ix| Writer: DCPSPublicationWriter | Entity info

File Edit View

SPLICE-DDS Tuner (fle:/fworkfossidi721isplice2vdicv... v || attributes | Status | 0oS | Datatype |

D Participant: Splice Tuner
[senvice: cMS0AP
¢ [Service: splicedaemon
¢ [Publisher: Built-in publisher
D Partition: _BUILT-IN PARTITION__
9 [Writer: DCPSPatticipantyiriter
[y Topic: DCPSParticipant
¢ [C3 Writer: DCPSPublicationiriter
[Topic: DCPSPublication
9 [Writer: DCPSSubscriptioniriter
[Topic: DCPSSubscription
¢ [Writer: DCPSTopicWriter
[Topic: DCPSTopic
9 [Subscriber. __BUILTIN SUBSCRIBER__
¢ [] DataReader: DCPSParticipantReader
¢ [View: DCPSPatticipantview
[Topic: DCPSParticipant
¢ [] DataReader: DCPSPublicationReader
¢ [View: DCPSPublicationView
[y Topic: DCPSPublication
¢ [] DataReader: DCPSSubscriptionReader
¢ [View: DCPSSubscriptionyiew
[Tapic: DCPSSubscription
¢ [DataReader: DCPSTopicReader
¢ [3 view: DCPSTopicView
[Topic: DCPSTopic
D Partition: __BUILT-IN PARTITION__
o= [View: DCPSParticipantview
o= [view: DCPSPublicationview
o= [View: DCPSSubscriptionyiew
o [view: DCPSTopicView

participant view

Name Field Yalue
STATE 0
LIVELINESS_LOST total_count 0
LIVELINESS_LOST total_count_change 0
OFFERED_DEADLINE_MISSED total_caunt 0
OFFERED_DEADLINE_MISSED total_count_change 0
OFFERED_DEADLINE_MISSED last_instance_handle [null, null
OFFERED_INCOMPATIBLE_QOS [total_count 0
OFFERED_INCOMPATIBLE_QOS [total_count_change 0
OFFERED_INCOMPATIBLE_QOS [last_policy_id 0
OFFERED_INCOMPATIBLE_QOS |policies [0,0]
PUBLICATION_MATCH total_caunt 0
| |PUBLICATION_MATCH total_count_change 0
||PUBLICATION_MATCH last_subscription_handle |<NULL>

x| DataReader: DCPSParticipantReader | Entity info

=10(x]
File Edit View
[Attributes | Status | QoS | Datatype |
Name Field Yalue
DURABILITY kind TRANSIENT
DURABILITY service_cleanup_delay 0.0
DEADLINE period 0.0
LATENCY_BUDGET duration 0.0
LIVELINESS kind AUTOMATIC
LIVELINESS lease_duration 0.0
RELIABILITY kind RELIABLE
RELIABILITY max_hlocking_time 0.0
DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP
HISTORY kind KEEPLAST
HISTORY depth 1
RESOURCE_LIMITS max_samples -1
RESOURCE_LIMITS max_instances -1
RESOURCE_LIMITS max_samples_per_instance -1
USERDATA value null
TIME_BASED_FILTER minimum_separation 0.0
READER_DATA_LIFECYCLE |autopurge_nowriter_samples_delay |0.0
Get | Set

fxi Topic: DCPSParticipant | Entity info ixi Topic: DCPSPublication | Entity info =10 x|
File Edit View File Edit View
attributes | Status | QoS | Datatype | attributes | Status | QoS | Datatype |
typedef struct v_gid_s { 2)|||Field name ; Field value

c_ulong systemld; fnd Topic —

_ul localld: name DCPSPublication

c_ulong localld, handle index |14

¢_ulong lifecycleld, =||[[handle serial 1213484880
} v_builtinTopicKey, address 3ea220

key list userData.key.systemld,userData key.localld userData key.lifecycleld

struct v_participantInfo { type name kemelhadule:v_publicationinfo

v_builtinTopicKey key,

struct v_userDataPolicy {

C_ARRAY<c_octet> value ; <

|Ready

\4 PRISMTECH

OpenSplice Configurator™

OpenSplice Configurator | /home/hansh/OpenSpliceV3.1/HDE/x86.linux2.6/etc/config/ospl.xml

File Edit Help

EEX

Domain | NetworkService[name=networking] | DurabilityService[name=durability] | TunerService[name=cmsoap] | DbmsConnecService[name=dbmsconnect] |

¢ NetworkService[name=networking]
¢ Partitioning
GlobalPartition[Address=225.0.0.0]

¢ Channels
¢ Channel[name=Base-BE]
¢ Sending
Scheduling
¢ Receiving
Scheduling
9 Channel[name=Low-Reliab]
o= Sending
o= Receiving

o= Channel[name=_Low-BE]

o= Channel[name=High-Reliab]
o= Channel[name=High-BE]
Discovery

General

Elements

Name Yalue
@clefault true
@enabled true
@name Base-BE
@priority 0
@reliahle false
PortNr 4200
FragmentSize 60000
Resalution 50

Attributes

The Networking service will make sure messages with a higher priority precede messages with a lower priority and it uses the latency budget to
assemble multiple messages into one UDP packet where possible, to optimize the bandwidth usage. Of course, its performance depends heavily on

the compatbility of the configured channels with the used DDS QoS policies of the applications.

Documentation for '/ /OpenSplice/NetworkService/ Channels/ Channel’

Ready

Deployment help

© 2007, PrismTech. All Rights Reserved

User-friendly, intuitive generation and management of OpenSplice (XML) configuration files
Context-sensitive help (deployment-information)
Enforced correctness

100% Java tool so platform independent (also doesn’t depend on OpenSplice to be installed)

N
M PRISMTECH

» OpenSplice DDS Overview

» Architecting Distributed Systems
» Defining “Performance” i
» OpenSplice DDS Architecture Hans van't Hag
» OpenSplice DDS Deployment Tools

» !emo

» Whats Next

open yplice ‘DDS © 2007, PrismTech. All Rights Reserved V| PRISMTECH

Benchmarking for ‘real-life’ systems

Goal

© Evaluate the performance of an application benchmark relevant to the application domain
© Evaluate & highlight how predictability and throughput are maintained with expanding scale
© Showcase DDS implementation features:

© QoS support

© Distribution and Discovery

© Determinism, efficiency and scalability

Approach

= Comgose an representative application benchmark by providing a generic scenario-driven
benchmarking suite that is fully DDS_compliant (and thus vendor independent)

© Provide the full benchmark (code, documentation, scenario’s) to the DDS community
© Sollicitate feedback to improve/enhance the benchmark suite

Constraint

© Take to the minimum the number of nodes needed in order to showcase scalability/determinism
superiority (one cannot expect users to have test-bed with hundreds of nodes)

© Make the test configurable so to be deployable on any number of nodes

© Assure the test is portable & vendor-agnostic i.e:
© compliant to the DDS-specification
© non-reliant on vendor-specific extensions

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Benchmarking: Deployment example

W1'W10

Rl-Rlo

Determinism &

Dependability:
- Latency

- Jitter

W1'W10

Rl-Rlo

Efficiency &

Scalability:
- Throughput

- Discovery

© 2007, PrismTech. All Rights Reserved

Rl-Rlo

W1'W10

Rl-Rlo

W1'W10

A4,10

A
M PRISMTECH

Benchmarking Overview: Executables

File Edit View

© General characteristics: e T G e ™
© One generic program ‘Pother’ to perform latency/discovery/throughput tests *gl opic: disco;ervR:TporfTopic 4]
. °- opic: errorReportTopic
© Multiple instances running at multiple machines o~ £ Topic: receiverDefTopic
© Identified by <application-ld> and <group-ld> startup parameters "g?”?‘: r“efvergf'”ff;‘;mc
. . . o OpIC: recerverrepo
© Each Pother instance can perform multiple tests simultaneously o (= Topic: recorderCommandTopic
© Threads are created dynamically at proper scheduling-class/priority :glggif :f:;f;ﬁféi?f;c
. [—
© Allinterfacing (input settings, output results) done via DDS Topics = o (= Topic: transceiverQosTopic
© Relevant QoS policies can also be dynamically set/changed via Dedicated Topics :ggz;zf ::Z::;::::g?;::;fp“
o= [Topic: transmitterQosT opic =
. . o= (9 Topic: transmitterReportTopic
© Pother Benchmark Suite Programs: b &3 Topic. transponderDefTopic
. 1 1 1 o~ (] Topic: transponderQosTopic
© Pother : main program (for.Iatency/throughput/dlscovery testing) | ERERE——
© Watcher . basic result reporting for latency & throughput performance e
© Spotter . basic result reporting for discovery performance Entity tree refreshed.
e ErrorLOg : baSIC e_rror reportlng apphcatlon transceiverDefTopic@PotherCommands... E]@@
© Recorder . scenario logging & replay tool File Edit View
© Excellerator : comma-separated logging (to feed into excel) attribute value I
sample_state NOT_READ -
view_state NEW =
inst _stat ALIVE
© OpenSplice Tuner™ Usage: i a3 TRUE
. i . disposed_generation_count 0 -
e To deflne, control & monitor the benchmarklng ‘:st __________ S.“e ‘M ne, | __
© By dynamic creation of Readers/Writers for any of the involved topics ' Field' e — —
© This creation can be logged/replayed by the provided ‘Recorder’ tool : [
H 0
© Define - .
© Setup & adapt ‘transceiver/transponder’ pairs for latencyijitter testing i—”'.°;9 - :OD?C_L{! - gEST S
© Setup & adapt ‘transmitters’ & ‘receivers’ for throughput/discovery testing SthehingCinss |sche hiing ians ™ [VASHRING
_l thread_priority 0
© Control - | | s "
© Set & change ‘QoSTopics’ to drive the behaviour of OpenSplice DDS c_ulong write_period 10
© Typically: Reliability, Transport-Priority, Latency Budget & Deadline QoS policies c_ulona feport period___5000
© Monitor
© By dynamic creation of Readers for the result topics (“Watcher” does this statically) L<< JL < JLDBI JL > J[wite]
© Typically: latencyljitter, throughput/discovery and notifications results HGetly

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

Overview: Operation of Potherﬁgr,gfgia

— -
o
e —
———

m

Pother <application_id> [group_id]

© Parameters

© Application_id: unique identification for each Pother instance

© Group_id (optional) : commands identification (to ‘broadcast’ commands)

© Operation

© Several Pother instances can be started on 1 or more computing nodes

© to perform determinism (latency & Jitter) and efficiency (throughput & discovery)
benchmarking

© Determinism (Latency & Jitter) benchmarking
© RTT (Round Trip Time) & Jitter measurement between ‘transceiver’ and ‘transponder’
© Driven by topics: Transceiver Definition/QoS topics and Transponder Definition/QoS topics

© Efficiency (Throughput & Discovery) benchmarking
© Point-to-point Throughput and reader/writer discovery times benchmarking

© Driven by topics: Transmitter Definition/QoS topics and Receiver Definition/QoS topics

% Topic: transceiver... E|@|[z]
File Edit View
Data type | Statistics

Topic: transponder... g@|®

File Edit View

Data type | Statistics |

} scheduling _class;

c_long thread_priority;

c_ulong message_size;

msec_t write_period;

msec_t report_period;
} transceiverDef;

% Topic: transmitterDefTopic... g@|®

File Edit View

QoS | Datatype | Statistics |

Topic: receiver... g@@

File Edit Yiew
Data type Statistics

c_long thread _priority;
c_ulong message_size;
msec_t write_period;

} transmitterDef;

c_long thread _priority;
msec_t report_period;
} receiverDef;

nsmitterQosTopic | E... B@

File Edit View

QoS [Datatype | Statistics |

OpenSplice Tuner (file:/,
File Edit View
OpenSplice Tuner (file:/ / /home/cmj... |v

o= [Topic: discoveryRepontTopic Z

o= [Topic: errorReportTopic

o= [Topic: receiverDefTopic

o= [Topic: receiverQosTopic

o= [Topic: receiverReportTopic

o~ (3 Topic: recorderCommandT opic

o~ (3 Topic: recorderStateT opic

o~ (3 Topic: transceiverDefTopic —

o~ (-3 Topic: transceiverQosTopic

o~ (-3 Topic: transceiverReportTopic

o~ (-3 Topic: transmitterDefT opic

o= (3 Topic: transmitterQosTopic =

o= (3 Topic: transmitterReportTopic

o [Topic: transponderDefTopic

o~ (3 Topic: transponderQosTopic

o 3 Topic: transponderReportTopic |]
topic view

Entity tree refreshed.

Topic: transceiverQosTopic | E... B@E|
File Edit Yiew
QoS Statistics |

Attributes I Status

c_long value;
} transport_priority;
}qos;
} transmitterQos;

I

struct transceiverQos {
c_ulong group_id;
c_ulong transceiver_id;
c_ulong partition _id;
struct DataWriterQos {
struct DeadlineQosPolicy {
struct Duration_t {
c_long sec;
c_ulong nanosec;
} period;
} deadline;
struct LatencyBudgetQosPolicy {
struct Duration_t {

Atributes | staus | Qos || | Atwibutes | status | qos | Attributes Status Attributes | Status | QoS | AIibutes S E:ﬁgi: ence;mosec
typedef c_ulong msec_t; slructl transpunde_;Def { typedef c_ulong msec_t; typedef c_ulong msec_t; sugﬁ;a;;g::;ex;gus { [) lgtcelr‘.;éati’gnéiget
c-ulong group.id, c:ulong transn_litt‘er_id' ¥ -Du o .
struct transceiverDef { c_ulong transponder id; struct transmltteijlef { struct receiverDef { c_ulong partition_id; sw:iggrigfﬁgrtPnontyQosPohcy {
c_ulong group_id; c_ulong partition_id; c_ulong group_id; c_ulong group._id; struct DataWriterQos { }tre;nspirt prié:rit .
c_ulong transceiver _id; c_ulong tO}?lC_}d,’ c_ulong tran_smltte_r_ld; c_ulong recew_er_xq; struct DeadlineQosPolicy { } writer_qos; - ¥
c_ulong partition_id; enum TopicKind { c_ulong par_nnpr}_ld, c_ulong par_tm_og_nd; struct DwaQDn_t{ struct DataRea derQos {
¢_ulong topic_id; BEST_EFFORT, C_ulong topic_id; c_ulong topic_id; c_long sec; truct Deadli Policy {
enum TopicKind { RELIABLE, enum TopicKind { enum TopicKind { c_ulong nanosec; s ‘:_u teS "“;Qﬂi (“ icy
pt El; P TRANSIENT, BEST_EFFORT, BEST_EFFORT, } period; e ongsecs
BEST.EFFORT, PEISISTENT RELIABLE, RELIABLE, } deadline; . < long nanosec
RE £ } topic_kind; TRANSIENT, TRANSIENT, struct Latency?udgetQusPnllcy { } pe_rxod- ’
é;?;;‘?%f;\f;‘ enum SchedulingClass { PERSISTENT PERSISTENT su'cu'lzénnugzgun—t{ } deadline:
} topic_kind: 7"{1_‘4'551'13‘\511‘*' G, } topic_kind;) } topic_kind; c_uloﬁg i — struct LatencyBudgetQosPolicy {
b JineCl (REALTIME enum SchedulingClass { enum SchedulingClass { } duration: ’ struct Duration_t {
enum SchedulingClass } scheduling _class; TIMESHARING, TIMESHARING, }latency_budget: c_long sec;
TIMESHARING, c_long thread _priority; REALTIME REALTIME struct ’ c_ulong nanosec;
REALTIME } transponderDef; } scheduling _class; } scheduling _class; TransportPriorityQosPolicy { } duration;

}latency _budget;
} reader_qos;
} transceiverQos;

© 2007, PrismTech. All Rights Reserved

Open /.- DDS { PRISMTECH

Pother Design: Overview

Pother 1 (application_Id = 1)

Pother 2 (application_Id = 2)

Transceiver 1-10

(partition-1)

Determinism &
Dependability:
- Latency/Jitter

- Data Importance

Open

DP2
(partition-2)

Efficiency &
Scalability:

- Throughput

- Data Urgency

Transmitter 1-10

DDS

Topic-ld 1-10

Topic-ld 1-10

Latency Top

LatencyEchao Topic

R o1

TOpIC Id 1-10

Receiver 1-3, Topic-Id 1-10

A

Ra-l |4 Rb-1

Ra-10 Rb-10

Throughput Topic

Rc-10

© 2007, PrismTech. All Rights Reserved

Transponder 1-10

(partition-1)

Determinism &
Dependability:
- Latencyl/Jitter

- Data Importance

DP2
(partition-2)

Efficiency &
Scalability:
- Throughput
Data Urgency,

Receiver 1-10

N
M PRISMTECH

—

Example Benchmark: SCALABILITY (throughput/efficiency)

© Goal: Measure (one-way) throughput, report throughput (theoretical/achieved) per application/node/system
© With 4 distributed nodes & 10 applications per node

© With 30 readers and 10 writers per application, so a total of 1,600 readers/writers (400 writers, 1,200 readers)

© Per application: 10 writers for 10 broadcast topics and 3*10=30 readers for these 10 topics
i.e., data going to readers in all applications (including ‘own’) in all nodes (including ‘own’)
© Writing: 10 writers (W1-10) write 10 different topics (T1-10)
© Reading: 30 readers (Ral-10, Rb1-10, Rc1-10) read these to different topics (T1-10)
© So asingle reader reads data from: 4 nodes * 10 App’s * 1 writer/app = 40 writers
© So per application 3 * 10 = 30 readers receive data from 10 * 40 = 400 writers (at 4 nodes)

© Node/Network impact:
© Data Frequency, Size and Urgency settings
© Frequency (each writer): 2 Hz writes for each writer
© Size (topic payload size): 1,000 bytes
© Latency budget: 200 msec
© TX network traffic per node
© 10 applications * 10 writers/application = 100 writers that write 1,000 bytes at 2Hz: 200 Kbyte/s
© Packing: typically sends at 5 Hz (instead of 200), meaning a packing of 40 messages (40 Kbytes)
© Rxnetwork Traffic: 3 nodes * 200 Hz
© So 600 Hz * 1000 Bytes = 600 Kbyte/s

© Calculated (theoritical) throughput

© Reader-throughput =40 writers * 2 Hz * 1,000 bytes =80 Kbyte/s
© Application-throughput = 30 readers * 80 Kbyte/s = 2.4 Mbyte/s
© Node-throughput = 10 applications * 2.4 Mbyte/s =24 Mbytel/s
© System-throughput = 4 nodes * 24 Mbyte/s =96 Mbyte/s

© Actual (measured) throughput (on 4 Linux DELL bladeservers, dual Opteron 2.4 Ghz. CPU’s)
© Actual throughput measured = 96 Mbyte/s (Same as theoretical) at < 50 % CPU load

A
Open]DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

[Received Transceiver report from (1.0.0)
Send latenc
» min= 67, avg= 282, max= 971.
i 2808, max= 896.
max= 799,
max= 298,

dev= 119.65
dev= 111.81
dev= 93.12
dev= 49.12

Discovered Datallriter (1.0.60):
creation tim 529.008 usec
discovery time: 2625.00 usec
So discovered 96.08 usec after creation
uriter messages lost before discovered:
Discovered DataReader <2.0.8):

creation time:
discovery time:

3836.08 usec
3668.88 usec

a

So discovered 168.808 usec hefore creation was finished

max= 3, deu=

508, avg= 186, max= 954,
] 1 max
96.8x
Echo latenc
7

98.8% : cn
Echo Source latency:
o

dev=

248,

8.31
dev= 119.62

dev= 23.10
dev= 49.22

8.47
dev= 12.23
?7.45

» min= 156, avg= 294, max= 1072, dev= 121.68
i 1

156.
156.

156,
ival time:
cnt= 320, =
319.

max= 996.
max= 898.
max= 399,

avg= 291,
avg= 285,
avg= 264,

18643.
18639,
18629,
18567,

max=
max=
max=
[Received receiver report from (2.0.8>

Throughput 752327308 bytes/sec

Read 75232730 bytes/sec

max= 20041,

dev= 350.62
19858, 34
196083,

18976 .

File Edit View

le Edit View

[Attributes | Status | QoS | Datatype | Statistics |

li"]
File Edit View
| Attributes | status ' QoS T Data type

typedef C_SEQUENCE<c_char> payload,

struct throughput_message {
c_ulong application_id;
c_ulong transmitter_id;
c_ulong random_id;
c_ulong sequence_number,
c_ulong config_number;
usec_duration creation_duration;
timestamp creation_time;
timestamp write_timestamp;
payload payload_data;

} throughput_message;

typedef c_double timestamp;
typedef c_double usec_duration;
typedef C_SEQUENCE<c_char> payload,

struct latency_message {
c_ulong application_id;
c_ulong transceiver_id;
c_ulong random_id;
c_ulong sequence_number,
c_ulong config_number;
timestamp write_timestamp;
timestamp echo_timestamp;
usec_duration source_lat
duration arrival_latency;
_duration send_latency;
oad payload_data;

typedef c_double usec_duration;
typedef c_double timestamp;

File Edit View

attribute

value

attribute

sample_state

NEW
ALIVE

NOT_READ

sample_state

view_state

instar state

valid_data

TRUE

valid_data

dispc

d_generation_count 0

disposed_generation_count

a=
[List | Single | Writer

-

[List | single | Writer

Field type

[Field name

Field value

c_ulong
_ulong

group_id
transceiver_id

Field name

Field value

’ Field type

_ulong group_id

_ulong

ulong

partition_id

transponder_id

_ulong partition_id

topic_id

topic_id

hedulingClass

topic_kind
scheduling_class

|BEST_EFFORT

TIMESHARING

[TopicKind topic_kind

BEST_EFFORT

scheduling_class

c_long

thread_priority

\Schedulmgclass

TIMESHARING

c_long thread_priority

c_ulong
ulong

message_size
write_period
report_period

0

} latency_message;

7

File Edit View

File Edit View

File Edit View

| i DefTopic@PotherC:

o= =3 Topic
o= (] Topic
o= (] Topic
o= =] Topic
o= [Topic
o= [Topic
o= [Topic
o~ =] Topic:
o= [Topic
o= [Topic
o=] Topic
o=] Topic
o~] Topic
o~] Topic

transceiverR
transmitte
transmitterQosTopic
transmitterReportTopic
transponderDefTopic
transponderQosTopic
transponderReporiTopic

discoveryReporfTopic
errorReportTopic
erDefTopic
erQosTopic
iverReportTopic

efTopic
sTopic
portTopic

DefTopic

-

topic view

IReady

m

attribute
sample_state

value

NOT_READ

view_state NEW

attribute

sample_state
view_state

value

|[NOT_READ

NEW

instance_state ALIVE
valid_data TRUE
disposed_generation_count 7

instance_state

ALIVE

valid_data

[TRUE

disposed_generation_count 4

(=~

)

| Single | writer

[List | single

| writer |

Field type Field name

Field value

c_ulong group_id

Field type

Field name
group_id 2

Field value

ulong transmitter_id

receiver_id

ulong partition_id

ulong topic_id

TopicKind topic_kind

BEST_EFFORT

| TopicKind

partition_id

topic_id
topic_kind

BEST_EFFORT

SchedulingClass scheduling_class

TIMESHARING

|SchedulingClass

scheduling_class

TIMESHARING

c_long
ulong

[thread_priority
message_size

0
10000

[c_long
[c_ulong

thread_priority
report_period

0
5000

ulong write_period

Delivery Latency

T4

* Send Arrival Latency

Appl-1. write

Network Channel transport

Lib. JAppl-2. read

Node-1

T1 = Data about to be written
T2 = Middleware has the data

File Edit View
attribute | value
sample_state NOT_READ =
view_state NEW 1=|
instance_state ALIVE
valid_data TRUE
disposed_generation_count 0 - |
-
List | Single | Writer |

Field type Field name Field value
c_ulong |group_id
¢_ulong transceiver_id
c_ulong |partition_id
c_ulong topic_id
TopicKind topic_kind BEST_EFFORT
SchedulingClass scheduling_class |TIMESHARING
c_long thread_priority
c_ulong message_size
c_ulong write_p
c_ulong report_period 15000

<< > > Write
|Rea(ly !l

Open

DDS

T1/T4 (send) and T2/T3 (delivery) = ONLY jitter is relevant if no inter-nodal clock alignment)

Received Transceiver report from (1,0,.0)

Send latency:

108.8% : cnt= 319, min= 81, avg= 87, max= 149, dev= 9.95
99.9% = cnt= 318, min= 81, avg= 87, max= 145, dev= 9.33
99.8% : cnt= 315, min= 81, avg= 86, max= 128, dev= ?7.52
980.82z : cnt= 287, min= 81, avg= 84, max= 92, dev= 2.85
Send Source latency:

188.8% : cnt= 319, min= 2, avg= 3, max= 4, dev= 0.36

929.9% = cnt= 318, min= 2, avg= 3, max= 4, dev= 0.35

99.8% : cnt= 315, min= 2, avg= 3. max= 4, dev= 0.34

90.0z : cnt= 287, min= 2, avg= 3, max= 3, dev= 0.25

Send Arrival latency:

108.8% : cnt= 319, min= 65, avg= 78, max= 126, dev= ?7.91
99.9% & cnt= 318, min= 65, av 69, max= 113, dev= 7.26
99.8% : cnt= 315, min= 65, avg= 69, max= 110, dev= 5.96
98.8% : cnt= 287, min= 65, avg= 67. max= 74, dev= 1.69
Echo latency:

1008.8% : cnt= 319, min= 85, avg= 88, max= 187, dev= 2.93
99.9% = cnt= 318, min= 85, avg= 88, max= 106, dev= 2.73
99.8% : cnt= 315, min= 85, avg= 88, max= 183, dev= 2.16
90.8% : cnt= 287, min= 85, avg= 87, max= 89, dev= B.66
Echo Source latency:

108.8% : cnt= 319, min= 1, avg= 2, max= 3, dev= 8.50
99.9% & cnt= 318, min= 1, avg= 2. max= 3, dev= 0.50

99.8% : cnt= 315, min= 1, avg= 2, max= 3, dev= 0.50

98.8% : cnt= 287, min= 1, avg= 2, max= 3, dev= 0.48

Echo Arrival latency:

1808.8% : cnt= 319, min= 72, avg= 74, max= 85, dev= 1.90
929.9% = ¢n 318, min= 72, av 73, max= 84, dev= 1.79
99.8% : cnt= 315, min= 72, avg= 73, max= 83, dev= 1.47
90.82z : cnt= 287, min= 72, avg= 73, max= 74, dev= 0.59
Trip latency:

108.8x : cnt= 319, min= 170, avg= 177, max= 257, dev= 12.52
99.9 cnt= 318, min= 178, avg= 177, max= 254, dev= 11.71
929.82z : cnt= 315, min= 178, avg= 176, max= 232, dev= 9.53
99.82z : cnt= 287, min= 178, avg= 174, max= 183, dev= 2.40
Inter arrival time:

108.8% : cnt= 319, min= 18099, avg= 18642, max= 18798, dev= 46.99
99.9% = cnt= 318, min= 18899, avg= 18641, max= 18789, dev= 46.24
99.82% : cnt= 315, min= 18899, avg= 18648, max= 18737, dev= 44.77
90.8% : cnt= 287, min= 18899, avg= 18634, max= 18683, dev= 41.75

Example output for Windows
(XP, 2.0Ghz Xeon, local-latency)

Node-2

= Data has been delivered
Data has been read

transponderDefTopic@PotherComman...

File Edit View
attribute | value

sample_state NOT_READ =
view_state NEW |=]|
instance_state ALIVE
valid_data TRUE
disposed_generation_count 0 -

| single | writer |

Field type | Field name Field value
c_ulong lgroup_id 2
¢_ulong {transponder_id [0
¢_ulong |partition_id 0
_ulong topic_id 0
TopicKind topic_kind BEST_EFFORT
SchedulingClass scheduling_class [TIMESHARING
_long [thread_priority |0
[=< J[< J[B[J[>][wite]
| Ready =

A4 PRISMTECH

Scalability benchmarks: Thro

© Transmitter(s) with defined size & frequency (period)

© Receiver(s) report throughput:

© Theoretical Throughput, based upon sequence-numbers
© Actual ‘Read’ throughput, based upon amount of data read
© Those can differ (if system gets overloaded):
© if reader can’t keep-up (history-depth = 1, keep_last)
© If samples are lost during transport (reported as ‘error’)

transmitterDefTopic@PotherCommands | ReaderWriter... E]@

Received receiver
= 26724988 hytes/sec
267249008 bytes/sec

Received receiver

Received receiver

Throughput
Read

Throughput
Read

Throughput
Read

report from (2.,0,.60>

report from (2,.0.2)>
= 26758479 hytes/sec
26750479 bytes/sec

report from (2,0,.1>
= 26540225 hytes/sec
26540225 hbytes/sec

Aggregate Throughput = 80 Mbyte/s
(XP, 2.0Ghz Xeon, local-throughput)
(on dual-CPU Opteron: 450 Mbyte/s)

receiverDefTopic@PotherCommands | ReaderWriter (ta... [:]@

transmitterDefT opic@PotherCommands | ReaderWriter... E]@ receiverDefTopic@PotherCommands | ReaderWriter (ta... Q@
i y 7 5 - Fil ‘ - . =
sampf Ele E9 transmitterDefTopic@PotherCommands | ReaderWriter... E]@ Topic: ThroughputTopic_0_B | Entit... [:]@[z] j:”w' i E9 receiverDefTopic@PotherCommands | ReaderWriter (ta... [:]@@
view . . view | - :
Iivnsta_ samd] File Edit View File Edit View insta sam] File Edit View
valid_fview | attribute value (Attributes | Status | QoS [Datatype | statistics valid_fview_| attribute value
dmpomnﬁa sample_state NOT_READ = dispojfinstarfj sample_state NOT_READ -
«>Hvalid_Jview_state NEW = typedef C_SEQUENCE<c_char> payload, 2. Jualid_Jview_state NEW =
[Listfdispofinstance_state ALIVE || | Li dispolins.tance_state ALIVE
<> Y aiig_oata TRUE | struct throughput_message { === valid_data TRUE |
m‘ Li diSpOS“d generation_count 1 = . u.ll:mg application i c_ul l Li dlSpOSb:‘d anPratIOH count U V
. u| .. -) _‘ . c_ul -
i ol st | single | writer C—j"ng ”:I“;t’imttif‘d’ ¢_uiclc_uigf [List | Single [Witer
c_ufle_ul Field type | Field name Field valug - mongp nit b c_ulcglc_ul Field type | Figld name Field value
- . 3 - — -
Topidflc_uiflc_ulong |application_id 1 cuong S‘eq‘;m“e-n‘;m'“’ 3 ;,OEL c_u: ¢_ulong lapplication_id 2
schelllc_uidllc_ulong transmitter_id 2 g_ulung config number, chefic_ulojic_ulong receiver_id 2
¢_lor§ Topid)lc_ulong partiion_id 0 timestamp creation_time; ¢_lorgTopicjc_ulong PETHONE o
c_ulgfscheflc_ulong topic_id 2 timestamp write_timestamp; - ?C|hoe 'CI'Bl;;ligEignd :gﬁ:z_lk?nd BEST EFFORT
c_uigc lorgiTopicKind fopic_dnd BEST_EFFORT payload payload_data, ¢_ull/SchedulingClass stheduling_class TIMESHARING
c_ulo{SchedulingClass scheduling_class TIMESHARING } throughput_message; — = | o ‘d ‘_‘ty 5
<flc_uidllc_long thread_priority 0 = > N~ c_long read_priort
¢_ulong Message_size 100000 l Real c_ulong report_period 10000
Rea <Jc_ulong write_period 0 o |
— il o [« I > J[>][e][oswse
| <« |[< |[B [> |[wit || Dpispose | Ready
Ready)|

Open

DDS

© 2007, PrismTech. All Rights Reserved

A
M PRISMTECH

© Discovery definition
© “after entity creation, how long before entity actually active”
© Reader Discovery (adding a reader to system with writers)

© After entity creation, how long before reader discovered & first data actually received
© Writer Discovery (adding a writer to system with readers)

© After entity creation, how long before writer discovered & first data actually received

B transmitterDefT opic@PotherCommands | ReaderWriter ... g@@

File Edit View
attribute receiverDefTopic@PotherCommands | ReaderWriter (ta... Q@@
sample_state - : - i i
view_state fle Edit_ View cv C:\Documents and Settings\Hans\My Documents\Splice\1_Marke... =
instance_state attribute value \
valid_data sample_state NOT_READ - Discovered Datallriter (1.0.0):
disposed_generation_cofjview_state NEW = creation time: 2285.00 usec
- instance_state ALIVE A . . -
List | Single | Writdlvalid_data TRUE | discovery time: 2382.008 usec _
— disposed_generation_count |4 - So discovered 97.80 usec after creation
__ Fieldtype ¥ . . -
¢_ulong 4 - : writer messages lost hefore discovered: @
¢_ulong [Lst | Single | Discovered Datalriter (1.,.0.0):
c_ulong Field type] Field name Field value creat ion t ime - 2529 . g@ usec
0 c_ulong roup_id 2 . .

‘?’J:E;?nj e uionp %cei',),;, i 3 discovery time: 2625.80 usec
SchedulingClass c_ulong partition_id 0 So discovered 96.80 usec after creation
c_long [c_ulong topic_id 0 writer messages lost hefore discovered: 8
c_ulong [Tomemd topic_kind BEST_EFFORT DlS cove l‘ed DataReade P (2 g B) -
¢_ulong SchedulingClass scheduling_class TIMESHARING . . - o=t
= <_long thread_priority 0 creation time: 3836.80 usec

c_ulong report_period 5000 discovery time: 3668.00 usec

So discovered 168.080 usec hefore creation was finished

Ready

[<<] l < ‘ l > ‘ [>>] l Wirite } l Dispose]

|Rea(|y EII

N
Open D DS © 2007, PrismTech. All Rights Reserved u P R I S M T E C H

Writer/Reader discovery on Linux—cmét‘r

Writer discovery within one node Reader discovery within one node

Writer at 1,000 Hz, 40 bytes Writer at 1,000 Hz, (so 1 ms ‘extra’ worst-case), 40 bytes
Create writer Create reader

» Creation-time 784 usec » Creation-time 1103 usec

» Discovery-time 791 usec » Discovery-time 866 usec (see above)

» So discovered 7 usec. after creation » So discovered 237 usec. before creation finished
» lost 0 msgs. before discovered

Create Participant/Publisher/Writer Create Participant/Subscriber/Reader

» Creation-time 1021 usec » Creation-time 1270 usec

» Discovery-time 1038 usec » Discovery-time 1157 usec

» So discovered 17 usec. after creation » So discovered 113 usec. before creation finished
» lost 0 msgs. Before discovered

Writer Discovery between nodes Reader discovery between nodes

Writer at 1,000 Hz, 40 bytes Writer at 1,000 Hz, (so 1 ms ‘extra’ worst-case), 40 bytes
Create writer Create reader

» Creation-time 621 usec » Creation-time 1218 usec

» Discovery-time 624 usec » Discovery-time 1241 usec

» So discovered 3 usec. after creation » So discovered 23 usec. after creation

» lost 0 msgs. Before discovered

Create Participant/Publisher/Writer Create Participant/Subscriber/Reader

» Creation-time 2459 usec » Creation-time 1253 usec

» Discovery-time 2461 usec » Discovery-time 1280 usec

» So discovered 2 usec. after creation » So discovered 27 usec. after creation

» lost 0 msgs. before discovered

A
© 2007, PrismTech. All Rights Reserved u P Rl S M T E C H

[—

Network Latency figures on Linux (application on RT/30)

cm@perf1:/home/cm/hans

Received Transceiver report from (10,0,0)
Send latency:
100,0% ¢ cnt= 3886, min= 7283632, avg= 7203645, max= 7284894, dev= 21,32
} Co nfl u ratl O n 99.9% : o 3882, min= 7203632, avg= 7283644, max= 7283700, dev= 5,53
g 99,0% ¢ cnt= 3847, min= 7283632, avg= 7283644, max= 7203666, dev= 4,77
90,0% 3 cnt= 3497, min= 7283632, avg= 7283643, max= 72083650, dev= 2,74
» transceiver/transponder at RT/30 prio P0.07 ¢ ot SR
p p File Edit View 100,02 ¢ ent= 3892, min= 1, avg= 2, max= 16, dev= 0,65
- 99,92 ¢ cnt= 3888, min= 1, avg= 2, max= 14, dev= 0,47
» Transport priority 0 and 100 SGane Al 99,07 ¢ cnt= 3853, nin= 1, avg= 2, max= 3, dev= 0,38
p p y sample_state MNOT_READ 5 90,0% : ent= 3502, min= 1, avg= 2, max= 2, dev= 0,33
view_state NEW = Send Arrival latency:
} 1000 HZ Fre uenc instance_state ALIVE 100,02 ¢ ent= 3893, min= 30, avg= 41, max= 79, dev= 3,33
. q y valid_data TRUE 99,92 ¢ cnt= 3883, min= 30, avg= 41, max= 69, dev= 3,15
Prr—— - — 99,02 ¢ cnt= 3854, min= 30, avg= 41, max= 55, dev= 2,51
> Roundtrip at Transport Priority 0 disposed.generation_count___|0 = 90,07 : cnt= 3503, min= 30, avg= 41, max= 44, dev= 1.64
p p _ y = e e %, Echo latency:
. . . List | Single rerl.el'] 100,0% ¢ cnt= 3888, min= -7283344, avg= -7283324, max= -7282507, dev= 25,02
- = = 99,92 : cnt= 3884, min= -7283344, avg= -7283325, ma 283042, dev= 9,2
> Lowest pI’IOI’Ity band (t|meShare) Fi... Field name mm% 93,07 : ont= 3843, min= -7283344, avg= 7283325, max= -7283301, dev= 6,70
. C... 90,02 : ent= 3499, min= -7283344, avg= -7283326, max= -7283317, dev= 5,15
» Roundtrip latency = 323 usec g ey g
p y . C... d [100,0% ¢ cnt= 3895, min= 1, avg= 2, max= 24, dev= 0,63
. lwriter_gos.deadline. period. sec 0 99,92 : cnt= 3891, min= 1, avg= 2, max= 9, dev= 0,41
13 Roundtnp J'tter < c... |writer_gos.deadline. period.nanosec 0 g%gz : z:{: gggg' :i:; 1’ :zg; g’ :::; %' ::z; g'ﬁ
... [writer_gos.latency_budget. duration. sec 0 Echo Arrival later',cg: . . . *
} RO u n dtl’l at Tran S 0 rt PI’IOI’It 100 ... writer_gos.latency_budget.duration.nanosec m 100,02 ¢ cnt= 3896, min= 35, avg= 45, max= 76, dev= 3,94
p p - y c... [writer_gos.transport_priority. value € 00 B 99,92 & cnt= 3892, min= 35, avg= 45, max= 71, dev= 3,84
. . . . c... [reader_gos.deadline. period. sec hy— 99,02 :ont= 3857, min= 35, avg= = 63, dev= 3,23
13 ngheSt pr|or|ty band (realt|me) ... [reader_gos.deadline. period.nanosec 0 ?07021.tcnt-‘3508, nin= 35, avg= U 48, dev=
c... |reader_gos.latency_budget. duration.sec 0 15(1)p0za‘egﬁ%; 3890, min= 298,
> ROUI’ldtI’I |atenC — 316 usec c... [reader_gos.latency_budget. duration.nanosec 0 39,97 : ont= 3886, min= 298, a
p y 99,0% ¢ cnt= 3851, min= 298, all
. .. 90,02 ¢ cnt= 3501, min= 298, a
} Roundtl’lp Jltter < || ” || H : H f iggegzatré:é gégg min= 44, avg= max= 2302, dev=3
== = = == Write Dispose 39,97 : cnt= 3894, min= 44, avg= 1028, max= 1564, dev= 31,4
Ready 99,02 : ent= 3859, min= 44, avg= 1028, max= 1063, dev= 29,52
90,02 : ent= 3508, min= 44, avg= 1026, max= 1042, dev= 30,24
Received Transceiver report from (10,0,0)
Send latency:
100,0% ¢ cnt= 3745, min= 7283968, avg= 7283980, max= 7284025, dev= 5,17
»% transceiverDefTopic@PotherCommands | ReaderWriter »3 transponderDefTopic@PotherCommands | ReaderWriter... (= |(O] L gg’gg f g:t: g;g%’ :::: ;gggggg’ ::g: ;gggggg’ ::i: ;gggggg’ gz:: 3"5)3
File Edit View File Edit View 90,02 ¢ cnt= 3370, min= 7283968, avg= 7283979, max= 7283986, dev= 3,16
- - Send Source latency:
attribute value attribute value 100,02 ¢ cnt= 3751, min= 2, avg= 2, max= 23, dev= 0,63
sample_state NOT _READ - sample_state NJA - 99,92 : cnt= 3747, min= 2, avg= 2, max= 7, dev= 0,41
wview_state NEW = wview_state NSA = 99,02 ¢ cnt= 3713, min= 2, avg= 2, max= 3, dev= 0,35
instance_state ALIVE instance_state NfA 90,02 ¢ cnt= 3375, min= 2, avg= 2, max= 3, dev= 0,24
valid_data TRUE valid_data N/A Send Arrival latency: _ _ _
disposed_generation_count 0 = disposed_generation_count NjA B égoégz,‘cﬁzg'sgzgz’m'::‘g'zg5'a3;§' 4:1'“‘2?’__"5;1’ dgs‘:szégs
. S 99,07 ¢ cnt= 3714, nin= 35, avg= 4L, naxe 53, dev= 2.64
List | Single | writer | List | Single | writer | 90,02 ¢ cnt= 3376, min= 35, avg= 41, max= 45, dev= 1,82
- | | T Echo latency:
e feldname - Fieldvalue ___ iong Fleld name o heldvale 100,02 1 cnt= 3747, min= ~7283682, avg= ~7283686, max= 7283623, dev= 6,20
= 99,9% ¢ cnt= 3743, min= -7283682, avg= -7283666, max= -7283631, dev= 6,06
0 c_ulong 99,02 ¢ cnt= 3709, min= -7283682, avg= -7283666, ma: 7283644, dev= 5,49
0 c_ulong 90,02 ¢ cnt= 3372, min= -7283682, avg= -7283667, max= -7283658, dev= 3,69
topic_id c_ulong topic_id Echo Source latency:
TopicKind topic_kind BEST_EFFORT TopicKind topic_kind 100,02 + ent= 3754, min= 1, avg= 2, max= 21, dev= 0,57
SchedulingClass scheduling_clasd REALTIME)] SchedulingClass scheduling_class ({ |REALTIME 9992 ¢ ont= 3750, min= 1, avg= 2, max= 9, dev= 0.42
c_long thread._ priority N 30 c_long thread_priority gg’g§ : g:t; ggg’ :::; 1’ :xg; %’ :::i; g' gzz; g'ﬁ
c.ulong message. size Echo Arrival latency:
c_ulong write_period 1 100,0% 3 cnt= 3755, min= 36, avg= 42, max= 75, dev= 3,69
c_ulong report_period |4000 99,92 ¢ cnt= 3751, min= 36, avg= 42, max= 68, dev= 3,54
93,02 ¢ cnt= 3717, min= 36, avg= 41, max= 59, dev= 2,88
90,02 ¢ cnt= 3379, min= 36, avo=_ddmmpax= 45, dev= 1,
Trip latency:
100,0% ¢ cnt= 3749, min= 299,
99,9% : cnt= 3745, min= 299,
I " " = - 99,0% : cnt= 3711, min= 299,
[<< I[< J[[> J[>>][write [[Dbispose << [< [> J[>> |[wrte [[Dpispose | 90,02 cnt= 3374, min= 299,
Inter arrival time:
Ready _ Ready 100,0% & ent= 3757, min= 1022, avg® 1068, max= 1121, deve
99,9% ¢ cnt= 3753, min= 1022, avg= 1068, max= 1111, dev= 10,59
. . 99,02 ¢ cnt= 3719, min= 1022, avg= 1068, max= 1093, dev= 10,07
pen D D © 2007, PrismTech. All Rights Reserved I 90,07 + cnt= 3381, min= 1022, avg= 1086, max= 1081, dev= 8.13

Network Latency figures on Lin_uaeéaﬁli_catio‘h_‘o‘n T

transceiverQosTopic@PotherCommands | ReaderWriter (ta... EH@@‘
File Edit View

» Configuration T T —— =
» transceiver/transponder at Timeslicing / prio-0 B "L _
» 1000 Hz. Frequency Ci Fonae o i
» Payload = 0 bytes E—

e tar-cox doatline peror sasset s

» Roundtrip at Transport_Priority 100 T
» Highest priority band (realtime) e e e 3
» Roundtrip latency = 316 usec T —
» Roundtrip jitter < 8 usec (!!) e

5, cm@perf1:/home/cm/hans

Received Transceiver report from (10,0,0)

» Conclusion ived Tra
) .)) . end latencys:)
} Even Iow_p rio ap p I | Catl ons can sen d h i g h _p rio d ata ég%gz + cnt= 3869, min= 7278056, avg= 7278070, max= 7278115, dev= 5,58

+ cnt= 3865, min= 7278056, avg= 7278070, max= 7278104, dev= 5,44
. 99,02 : cnt= 3830, min= 7278056, avg= 7278070, max= 7278034, dev= 4,77
» With extreme low laten cy 30,02 ¢ cnt= 3482, min= 7278056, avg= 7273083, max= 7278075, dev= 3.10
Send Source latency:

R = 100,0% ¢ ent= 3874, min= 1, avg= 2, max= 23, dev= 0,69
» Send-Arrival Latency only can have some jitter 90,97 2 o 3970, mine 1. e 2w 16 dowe 0.5
93,02 : cnt= 3835, min= 1, avg= 2, max= 3, dev= 0,22
90,02 : cnt= 3486, min= 1, avg= 2, max= 2, dev= 0,20
Send Arrival latency:
100,0% ¢ cnt= 3876, min= 39, avg= 40, max= 89, dev= 2,75

SchedulingClass

c_long

thread_priority Gy |0

topic_kind =
scheduling_class 4% |TIMESHARING

c.ulong message_size 99,9% ¢ cnt= 3868, min= 321, avg= 340, max= 389, deff= 7,61
c_ulong write_period 1 99,02 ¢ cnt= 3833, min= 321, avg= 340, max= 371, deg= 6,68
c_ulong report_period |4000 90,02 : cnt= 3484, min= 321, avg= 338, max= 350, deV
Inter arrival time:
100,0% ¢ cnt= 3881, min= 994, avg= 1034, max= 1913, dev= 16.78
W92 ¢ cnt= 3877, min= 994, avg= 1034, max= 1089, dev= 8,93
99,02 : cnt= 3842, min= 994, avg= 1033, max= 1066, dev= 7,97
90,02 : cnt= 3492, min= 994, avg= 1032, max= 1043, dev= 5,80
[=< || < Il = || == |[write |[Dpispose | I'.
Ready

transceiverDefTopic@PotherCommands | ReaderWriter [._”El[?l 99,9% : cnt= 3872, min= 33, avg= 40, max= 73, dev= 2,47
File Edit View — 99,0% ¢ cnt= 3837, min= 39, avg= 40, max= 48, dev= 1,23
—— = 90,02 : cnt= 3488, min= 39, avg= 40, max= 40, dev= 0,45
attribute value Echo latency:
sample_state NOT_READ = 100,02 3 ent= 3870, min= -7277751, avg= -7277732, max= -7277690, dev= 5,83
view_state INEW =| 99,9% 1 cnt= 3866, min= -7277751, avg= -7277732, max= -7277694, dev= 5,67
instance_state ALIVE 99,02 : cnt= 3831, min= -7277751, avg= -7277732, max= -7277711, dev= 5,04
valid_data TRUE 90,0% ¢ cnt= 3483, min= -7277751, avg= -7277734, max= -7277724, dev= 3,04
| disposed_generation_count 0 | Echo Source latency:
e 100,02 3 cnt= 3877, min= 1, avg= 2, max= 9, dev= 0,42
[List | single | writer | 99,92 ¢ cnt= 3873, min= 1, avg= 2, max= 3, dev= 0,40
Field toe Field name Field value 99,02 ¢ cnt= 3838, min= 1, avg= 2, max= 2, dev= 0,40
ulong o 90,0% : cnt= 3489, min= 1, avg= 2, max= 2, dev= 0,41
c-ulong o Echo Arrival latency:
il o 100,0% ¢ cnt= 3879, min= 49, avg= 52, max= 90, dev= 3,30
T e 99,92 @ cnt= 3875, min= 49, avg= 52, max= 75, dev= 3,15
%?Sgnd topic.id 0 99,02 @ cnt= 3840, min= 49, avg= 52, max= 63, dev= 2,63

90,02 : cnt= 3491, min= 49, avg= 51, max= 52, dev= 0,46
Trip latency:
100,0% 3 cnt= 3872, min= 321, avg= 340, max= 406, dgv= 7,81

© 2007, PrismTech. All Rights Reserved

Open’ /'~ |DDS A PRISMTECH

Measured roundtrip-latency & Jitter

100 bytes @ 1,000 Hz

@ Background load of 5 Mbyte/s
Pother 30 500,000 bytes @ 10 Hz

Low (priority=0)

Medium (priority=25)

Perf3 High (priority=75)
Network-channels

Goal:
» Measure determinism (roundtrip jitter) under heavy background load
» Determine impact of information-priority (TRANSPORT-PRIORITY) versus application priority (OS scheduling prio)
» Show that low-application priority process can send high-priority information with low Jitter & low Latency

Configuration:
» Background load: “Transmitter” & “Receiver” at Real-time/Prio-30 (high appl. Prio), Transport-priority O (low info prio)
» Network-channels for 3 priority-bands: 0-25 (base-prio), 25-75 (medium prio), >75 (high-prio)

» Low-prio channel : TX/Rx threads at timesharing priority O, DIFSERYV priority 0x0
» Medium-prio channel : TX/Rx threads at Real-time OS priority 25, DIFSERYV priority 0x2
» High-prio channel : TX/IRx threads at Real-time OS priority 75, DIFSERYV priroity 0x4

A
Open \DDS © 2007, PrismTech, All Rights Reserved \ PRISMTECH

OpenSplice DDS Overview
Architecting Distributed Systems
What is “Performance”

OpenSplice DDS Architecture
OpenSplice DDS Deployment Tools
The “Pother” benchmarking suite
Demo

vV Vv VvV VvV VvV Vv V9

open VDI ‘DDS © 2007, PrismTech. All Rights Reserved

Dr. Angelo Corsaro

N
M PRISMTECH

Concluding Remarks

Architecture

» OpenSplice DDS has an architecture that explicitly targets determinism and
scalability for real-time and mission-critical distributed systems

» OpenSplice DDS provides full OMG-DDS rev1.2 functional coverage combining
pub/sub messaging with elaborate information management

» OpenSplice DDS can therefore significantly reduce system complexity and enhance
component re-use while maintaining proper performance levels

Performance & Tuning

» OpenSplice DDS’s advanced network-scheduler utilizes several DDS QoS policies to
optimize efficiency while maintaining proper determinism

» OpenSplice DDS’s federated architecture provides excellent scalability while
maintaining low discovery times

» OpenSplice Tuner™ provides system-monitoring and performance tuning
capabilities for local as well as remotely deployed nodes

OpenSplice DDS is the best implementation available on the
market providing the highest-performance DDS solution!

A
Open DDS M PRISMTECH

Contact Us

» OpenSpliceDDS Home Page

» http://www.prismtech.com/opensplice-dds/

»For Information on OpenSplice DDS contact:

» opensplicedds@prismtech.com -or-
» sales@prismtech.com

»OMG DDS Information

» http://www.dds-forum.orqg/
» http://portals.omq.org/dds/

A
Open' /.- DDS \M PRISMTECH

