
Dr. Angelo Corsaro [angelo.corsaro@prismtech.com]
OpenSplice DDS Product Marketing Manager, PrismTech
Angelo co-chairs the OMG Data Distribution Service (DDS) Special Interest Group
and the Real-Time Embedded and Specialized Services (RTESS) Task Force. He is
a well known figure in the distributed real-time and embedded systems middleware
community and has a wealth of experience in hard real-time embedded systems,
large-scale and very large-scale distributed systems, such as defense, aerospace,
homeland security and transportation systems. Prior to joining PrismTech, he
worked for the SELEX-SI CTO Directorate, a FINMECCANICA company, where his
responsibilities included mapping business requirements to technology capabilities,
strategic standardization and technology innovation.

Hans van’t Hag [hans.vanthag@prismtech.com]

OpenSplice DDS Product Manager, PrismTech
Hans has extensive experience in applying an information approach towards
mission-critical and real-time net-centric systems. He is a co-author of the OMG
DDS specification and has presented numerous papers on DDS and publish
subscribe middleware technologies. Prior to joining PrismTech he worked for 23
years at Thales Naval Netherlands (TNN) where he was responsible as Product
Manager for the development of the data-centric real-time middleware (SPLICE) as
applied in TNN’s TACTICOS combat system in service with 15 Navies worldwide.

Webinar begins at 2:05PM, EST

OpenSplice DDS,
Performance & Tuning

© 2007, PrismTech. All Rights Reserved

33

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ What is “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

Dr. Angelo Corsaro

© 2007, PrismTech. All Rights Reserved

44

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

OpenSplice DDS

‣ An High Performance Real-Time Data-Centric Publish/Subscribe Middleware
‣ The right data, at the right place, at the right time -- all the time!
‣ Fully distributed, high performance, highly scalable, and high availability architecture

‣ Perfect Blend of Data-Centric & Real-Time Publish/Subscribe Technologies
‣ Content based subscriptions, queries and filters, DLRL
‣ Fine grained tuning of resource usage and data delivery and availability QoS
‣ Optimal networking and computing resources usage

‣ Loosely coupled
‣ Plug and Play Architecture with Dynamic Discovery
‣ Time and Space Decoupling

‣ Open Standard,
‣ Complies with the full profile of the OMG DDS v1.2

Global Data Space

Publishers Subscribers

© 2007, PrismTech. All Rights Reserved

55

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Standard Compliance

‣ OpenSplice DDS is compliant with the full OMG DDS rev 1.2 Specification

Minimum ProfileMinimum Profile

Content-SubscriptionContent-SubscriptionPersistencePersistenceOwnershipOwnership

Object Model ProfileObject Model Profile

Data Centric Publish Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

6

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

OpenSplice™ DDS Product-line

Enterprise
(Windows, Solaris, Linux, AIX)

Embedded
POSIX RTOS i.e. vxWorks

Webservice
Gateway

Network
Scheduler

Fault-tolerant
Durability

Minimum Ownership
Content-

Subscription Persistence

DCPS

DLRL

DDS API’s
C/C++/Java

CORBA cohabitation

C++ / (RT)Java
Dynamic

XML-based API

Monitor &
Control (Tuner)

Logging &
Replay

Configuration

S
E
C
U
R
I
T
YInformation

Modeling
Application
Modeling

Deployment
Modeling

OMG-DDS
Profiles

Pluggable-
Services

Supported
Platforms

Middleware-
Integration

High-level
Services

UML DDS-DSL

OpenSplice Tuner &
Remote-connect

EclipseFoundation &
 Framework

Roundtrip-
Engineering

Modeling-
Plug-ins

Views &
Editors

OpenSplice PowerTools™

OpenSplice™ DDS product-line

Development

Deployment

DBMS
Gatewaysoap

© 2007, PrismTech. All Rights Reserved

99

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

OpenSplice™ DDS v3 - In Summary

Functionality
‣ Full OMG-DDS specification coverage
‣ Provision of a true ‘fault-tolerant & secure information backbone’
‣ Wide Cohabitation and Connectivity with other Technologies
‣ Availability of (remote) deployment tools
‣ Support for Information/application/deployment modeling

Performance
‣ Scalability w.r.t. number of applications as

well as computing nodes and topics
‣ Real-time determinism by urgency (latency-

budget) & importance (priority) based
network-scheduling

‣ Fault-tolerance by FT-durability and reliable
network-service shielding faulty applications
from the network

(DCPS and DLRL)

(content-aware and FT-durability)

(Corba, RT-Java, DBMS, SOAP, XML)

(Tuner™ offering total & remote control)

(DCPS/DLRL-specific roundtrip development)

Pedigree
‣ Maturity. Product proven, fielded,

In service in 15 Navies world-wide
‣ Fractal Architecture. Large-scale, real-time,

fault-tolerant, embedded, all in one system!
‣ High Standard of Quality Assurance.

Process/procedures, QA-artefacts and
regression testing w.r.t. number of
applications as well as computing nodes and
topics

© 2007, PrismTech. All Rights Reserved

1010

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

 Hans van’t Hag

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ Defining “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

© 2007, PrismTech. All Rights Reserved

1111

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

More Complex Systems and Requirements

© 2007, PrismTech. All Rights Reserved

1212

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Distributed Systems: The Problem

functionality

timeliness

availabilityextensibility

distribution

security
Problem: (engineering) COST of distributed systems
‣ too complex
‣ not reactive
‣ not future-proof
‣ not fault tolerant

Because ‘multi-dimensional engineering’ is needed:

What about the current ‘state-of-the-art’?
‣ architectures: C/S, MOM, SOA
‣ most efforts fall short in a number of dimensions:
‣ typically:

‣ limited RT performance (high-volume & low-latency balance)
‣ exploding complexity (dependencies in many dimensions)
‣ costly evolution (impact of changes & extensions)

13

© 2007, PrismTech. All Rights Reserved

13

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

A B C E F G H I J K L

M N O P Q R S T Y

D

 QOS-driven Data Distribution Service (urgency, importance, durability): DDS

Information Backbone

DDS: AN INFORMATION-CENTRIC ARCHITECTURE

L’

Y’

L’ Y’ Redundant & Replicated: ,

Information-model

 Interacting only with the information (model)
 Autonomous components

D’

Z

 Spontaneous: Z D’, Self-healing:

© 2007, PrismTech. All Rights Reserved

1414

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

DDS: ‘Under the Hood’

application

Pub/Sub Messaging Network

cache

Agent

application

cache

Agent

application

cache

Agentstorestore storestore storestore

© 2007, PrismTech. All Rights Reserved

1515

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

DDS: Implementation Architectures

“Process-Bound” Data Distribution

participant

comm / aux
threads

participant

comm / aux
threads

participant

comm / aux
threads

Application 1 Application 2 Application 3

Node 1

 Process bound DDS (RTI/OCI)
Application level networking

“Node-bound” Data Distribution (OpenSplice DDS)

participant

aux threads

participant

aux threads

Application 4 Application 5 Application 6

Node 2
Network-Scheduler

Shared Memory

comm threads

participant

aux threads

 Node bound DDS (OpenSplice)
Node level networking

network

© 2007, PrismTech. All Rights Reserved

1616

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

 Hans van’t Hag

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ Defining “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

© 2007, PrismTech. All Rights Reserved

1717

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

PERFORMANCE REQUIREMENTS IN NCW

Soft

Firm

Hard

Small Large Ultra-Large

Scale

Realtime

 End-to-end Latency & JitterEnd-to-end Latency & Jitter
 Safety & Fault-toleranceSafety & Fault-tolerance

Execution gridExecution grid

Awareness gridAwareness grid

 Throughput performanceThroughput performance
 Dependability & AvailabilityDependability & Availability

Planning gridPlanning grid
 COTS (DBMS/Web) integrationCOTS (DBMS/Web) integration
 SecuritySecurity

Tactical interoperability

COTS interoperability

© 2007, PrismTech. All Rights Reserved

1818

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

DDS APPLICABILITY: Functional Specification & QoS

Soft

Firm

Hard

Small Large Ultra-Large

Scale

Realtime

 Reliability QoSReliability QoS
 Transport_Priority QoSTransport_Priority QoS
 Ownership/Ownership/LifelinessLifeliness QoS QoS

DETERMINISMDETERMINISM

EFFICIENCY & AVAILABILITYEFFICIENCY & AVAILABILITY

 Latency_Budget QoSLatency_Budget QoS
 Transient/Persistent durabilityTransient/Persistent durability
 Filters/Queries, DLRL-layerFilters/Queries, DLRL-layer

INTEROPERABILITYINTEROPERABILITY
 IDL/CORBA/JavaIDL/CORBA/Java
 XML (extension)XML (extension)
 SQL (extension)SQL (extension)

Partitions / Domains

IDL XML/JSON
(extension)

© 2007, PrismTech. All Rights Reserved

1919

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

DDS APPICABILITY: OpenSplice DDS Implementation

Soft

Firm

Hard

Small Large Ultra-Large

Scale

Realtime

Common Information Models

COTS interoperability

 Web-services gatewayWeb-services gateway
 DBMS gatewayDBMS gateway

INTEROPERABILITYINTEROPERABILITY

 Info-priority based network schedulingInfo-priority based network scheduling
 Safety: shielding faulty applicationsSafety: shielding faulty applications
 Low Footprint & RTOS supportLow Footprint & RTOS support

DETERMINISMDETERMINISM

 Latency budget based packingLatency budget based packing
 Distributed/FT durability serviceDistributed/FT durability service
 Relations & update managementRelations & update management

EFFICIENCY & AVAILABILITYEFFICIENCY & AVAILABILITY

© 2007, PrismTech. All Rights Reserved

2020

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(1) Performance: Determinism & Latency

User Problem
Data distribution in a system typically requires the ability to handle different levels of
importance. In mission critical systems it is essential the “The right (important) data
always gets to the right place” also in face of temporary overload condition

DDS Features (OMG-DDS specification/API)
The DDS provide the concept of Transport Priority as a mean of expressing data
importance. This QoS can be used by DDS implementations to ensure that the
distribution of more important data always take precedence over less important data

OpenSplice DDS Features (OMG-DDS/API implementation)
The combination of an advanced Network Scheduler and Priority Bands allow
OpenSplice to enforce information priority across all nodes making up the distributed
system

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2121

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(2) Performance: Efficiency & Throughput

User Problem
Complex distributed applications often require extraordinary high throughput. Achieving it
requires smart management of the networking resources without introducing accidental
complexity in the solution space

DDS Features (OMG-DDS specification/API)
The DDS provides the concept of Latency Budget as a means of specifying the urgency
of data. This QoS can be used by DDS implementations to optimize the utilization of
networking resources thus increasing efficiency and related data-distribution throughput
for applications

OpenSplice DDS Features (OMG-DDS/API implementation)
OpenSplice’s Network Scheduler takes advantage of Latency Budget in order to perform
data aggregation across topics & applications. Moreover, its federated architecture
reduces communication overhead, and greatly improves the overall application throughput

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2222

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(3) Performance: Scalability & Footprint

User Problem
With Multi-Cores and Blades becoming more accessible many systems are contracting to a
single box. Thus it becomes more and more relevant to have efficient intra-nodal
communication. Moreover, as already experienced in OS such as Linux (dbus), Pub/Sub
middleware provides the right level of decoupling, and facilitate plug an play behavior.

DDS Features (OMG-DDS specification/API)
The DDS is by nature location agnostic, thus is a perfect candidate for making applications
location independent. Thanks to its potentially very high performance, it is also extremely
suitable as a high throughput and low latency intra-nodal communication means

OpenSplice DDS Features (OMG-DDS/API implementation)
OpenSplice’s architecture is optimized for distributed as well as co-located applications.
Thanks to its Shared Memory optimizations, it delivers maximum performance at minimal
footprint in local and distributed scenarios, thus allowing seamless localization or distribution of
the application components

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2323

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(4) Performance: Point to Point Communication

User Problem
Some distributed application, along with one to many and many to many communication,
require high throughput point to point communication

DDS Features (OMG-DDS specification/API)
Although DDS is agnostic of the underlying transport protocol, it does supports the notion of
dynamic logical ‘Partitions’. This QoS policy can be used to scope and bound the global
dataspace in the sense that communication between writers and readers is bounded to the
shared notion of these Partitions as defined by the respective publishers and subscribers

OpenSplice DDS Features (OMG-DDS/API implementation)
OpenSplice’s architecture allows the dynamic mapping of logical partitions to physical
network partitions (multicast groups) to optimize the throughput of scoped (e.g. point-to-
point) communication, as well as to minimize the impact of high throughput communication
on other system elements

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2424

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(5) Performance: Delivery & Availability

User Problem
Delivery reliability controls whether the data will always make its way to interested parties.
Availability, controls when and for how long the data will be available. As reliability and
availability have a cost, being able to quantify it gives useful guidance on how to design a
system

DDS Features (OMG-DDS specification/API)
The DDS provides a set of features, such as Reliability, and Persistency that allow to
configure how data will be distributed and for how long it will be kept available for late-joining
applications

OpenSplice DDS Features (OMG-DDS/API implementation)
- OpenSplice’s communication architecture minimizes the protocol overhead of achieving
reliable communication

- OpenSplice’s distributed durability implementation provides fault-tolerant availability of non-
volatile data

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2525

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(6) Performance: Discovery Latency

User Problem
Large scale mission critical systems have stringent requirements on the time that can elapse
between when the system start-ups, or recovers from a failure, and when the system
becomes operational.

DDS Features (OMG-DDS specification/API)
The DDS features dynamic discovery which allows for plug and play interoperability of
applications. However, if not implemented properly, its performance can adversely impact the
startup and/or recovery time of large scale distributed systems

OpenSplice DDS Features (OMG-DDS/API implementation)
OpenSplice features a constant time discovery mechanism which allows application of any
scale to be operational as soon as they are running. This provides application with
unprecedented responsiveness to change of environment as well as change of operational
mode

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2626

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

(7) Performance: Portability, Re-usability & Complexity

User Problem
Applications should be re-usable (location agnostic), portable (DDS vendor agnostic) and
simple (configuration agnostic)

DDS Features (OMG-DDS specification/API)
The DDS concept allows for a clear separation of concerns w.r.t. information-modeling
(topics), application processing (business logic) and dynamic deployment (discovery) and as
such provides a clear decoupling in space (location) and time (information persistence).

OpenSplice DDS Features (OMG-DDS/API implementation)
OpenSplice, as a full DDS implementation exploits these features ‘to the fullest’ w.r.t. full API
compliance to the specification, no vendor-specific extensions and application-agnostic
configuration and tuning possibilities of the DDS runtime-system

participant

aux threads

participant

aux threads

Application 1 Application 2 Application 3

Computing Node Network Scheduler

Shared Memory

comm threads

participant

aux threads

© 2007, PrismTech. All Rights Reserved

2727

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

 Hans van’t Hag

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ Defining “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

28

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Participant

Writer

Publisher
Minimal/process-bound DDS

 Passive Global Data-Space
 Communication by Applications
 No Data outside applications

Participant

Reader

Subscriber

Participant

Reader

Subscriber

Participant

Writer

Publisher

Full DDS (OpenSplice DDS)

 Active Global Data-Space
 Applications produce/consume data
 No communication by applications
 QoS-Driven Data management

Participant

Reader

Subscriber

Participant

Reader

Subscriber

Publisher(partition)Writer(reliability, transport_priority, latency_budget, durability)

DDS Architecture Impact: Minimal versus Full DDS

29

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Scalability & Efficiency
Single shared library for applications & services (code-footprint)
Ring-fenced shared memory segment (single copy regardless of nr. of applications)
Data urgency driven network-packing (Latency_Budget QOS drives packing per channel)
Constant serialization/deserialization effort (one-time only regardless of nr. of applications)

Determinism & Safety
Pre-emptive network-scheduler (traffic-shaping per priority-band)
Data importance based network-channel selection (Transport_Priority QoS of actual data)
Partition based multicast-group selection (dynamic mapping of logical DDS partitions)
Managed critical network-resource (limited impact/damage of faulty-applications)

 Network-channels
Priority bands

 Network-partitions
Multicast groups

 Traffic-shaping
Burst/throughput

DDS Architecture Impact: OpenSplice DDS architecture

30

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

Participant

Writer

Publisher

Participant

Reader

Subscriber PointTrack {

 long trackId;

 Position pos;
 }

Keys: trackId

 Instance Sample

 Transport_Priority (T)

 Latency_Budget (L)

QoS:

Shared Memory

Safe Copy-In

Shared Memory

Safe Copy-Out

Logical (application driven)
Physical (dynamic configurable)

 Channel Selection (T)
 Packing (L)

Tx
Rx

Rx
Tx

Tx/Rx/Diffserv Prio, Traffic shaping, Reliability

Channel 1: priority-band [0-9]

Channel 2: priority-band [10-20]

Channel 3: priority-band [20-30]

Data

Priority Pre-emptive Urgency-based Network Scheduling !!

DDS Architecture Impact: OpenSplice DDS architecture (3/3)

31

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

Process bound DDS: communication BY applications BETWEEN individual readers/writers
Application-process threads responsible for performing/maintaining system-wide communication
Application-level configuration for each reader/writer required
Real-world example: private Car for transportation

user needs driving-capabilities and must maintain his car
Every house has a driveway to the highway (only fast when no traffic and car OK)

OpenSplice: communication BY network-scheduler BETWEEN computing nodes
Application-processes NOT responsible for communication over the network
Nodal Network-scheduler takes care of urgency/importance driven data-distribution
Network-scheduler ‘populates’ the shared-memory with relevant data from other nodes
Real-world example: public transportation

user needs no driving-capabilities nor needs to maintain the train
commuter/express trains can deliver massive amounts of people ‘at the right place, at the right time’

DDS Architecture Impact: Performance (1/2)

Process-bound Data Distribution Node-bound Data Distribution (OpenSplice DDS)

Trust Networking to Trusted Middleware !!

participant

comm / aux
threads

participant

comm / aux
threads

participant

comm / aux
threads

Application 1 Application 2 Application 3

Node 1

participant

aux threads

participant

aux threads

Application 4 Application 5 Application 6

Node 2
Network Scheduler

Shared Memory

comm threads

participant

aux threads

32

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Impact of scale on Discovery Times
Process Bound DDS (using statefull & ‘typed RTPS-channels’ between individual readers/writers)

200 * 10 * 60 = 120,000 networking-endpoints (RTPS readers/writers) that need to be discovered
For each reader/writer peer-state has to be built-up before communication can occur
Discovery times can ‘explode’ with expanding scale

OpenSplice DDS (using self-describing data sent over RTPS-like untyped channels between nodes)
200 * 8 = 1,600 networking-endpoints (replicating the relevant parts of the ‘shared-dataspace’ to other nodes)
Zero discovery times because of Self-describing data (‘inline-QoS’ overhead 50 bytes per sample)
Reliable-channels have an optional ‘discovery’ (of remote nodes) to prevent network-traffic if no remote nodes

Impact of scale on Data Distribution Performance
Process bound DDS (each writer forwards copies of each sample to each reader)

120,000 readers/writers that maintain copies of published/subscribed data
No packing of multiple-topics to increase efficiency (typed RTPS channels between DomainParticipants)

OpenSplice DDS (only 1 copy of any sample maintained within 1 node and shared between all applications)
Only 1 copy of any topic sample required that populates ALL relevant writer and reader caches/histories per node
Latency-budget driven packing (of ALL topics within a priority-band) dramatically increases efficiency
De-serialization only once per node instead of once per participant/reader

DDS Architecture Impact: Performance (2/2)

 Example scenario:
200 nodes
10 applications per node
40 readers per application
20 writers per application

 Example OpenSplice configuration:
4 priority-bands (low/med/high/expedited)
So 4 best-effort and 4 reliable ‘channels’
Transport_Priority to express data-importance
Latency_Budget to express data-urgency

System Scalability requires a scalable DDS architecture

33

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

DDS Architecture Impact: Dependability

Impact of scale on Determinism
Process bound DDS (Application bound Data Distribution)

Data-Priority (importance of data) = Processing Priority (importance of processing)
Track publisher has to (dynamically) create communication-threads at right priority, will travel over same channel
Track subscriber has no means to handle high/low priority samples

OpenSplice DDS (Node bound Data Distribution)
Writers can set TRANSPORT_PRIORITY QoS ‘per sample’ to indicate IMPORTANCE of the data
High-priority data will pre-empt low(er) priority data both in sending AND receiving node

Impact of scale on System Safety
Process bound DDS (Application bound Data Distribution)

Non-responsive low-priority process can trigger system-wide retransmissions
Over-responsive high-priority process can overload system-wide network & processing resources
So every application is a potential single-point-of-(system)failure !

OpenSplice DDS (Node bound Data Distribution)
Traffic-shaped (reactivity, max-throughput, burst-size) network-channels are managed by trusted middleware
Application misbehaviour (under/over responsiveness) can only have limited/bounded impact on other nodes

 Determinism scenario:
Track producer:

Normal / High-Prio tracks
High-priority tracks must pre-empt
 low-priority tracks

 Safety scenario (misbehaving application):
10 applications at different priorities
High-priority process publishes at high rate
Low priority process can’t execute

Mission critical systems need arbitration: for processes AND data !!

34

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

General Issues
Application location awareness (configuration)  Re-usability
Application vendor awareness (API/QoS compliance, required vendor-specific extensions)  Portability

Application Portability (between DDS implementations)
OpenSplice is fully DDS-compliant (DDS rev1.2)
OpenSplice doesn’t require vendor-specific API extensions unlike most process-bound DDS implementations

Application Re-usability (in different systems & environments)
OpenSplice does NOT require application-level transport-configuration, unique ID’s etc.
OpenSplice runtime configuration does NOT impact application-code
Application QoS policy settings can be tuned at runtime by OpenSplice Tuner™ (supporting MDE roundtrip-engineering)

System Complexity
OpenSplice supports a clear separation of concerns w.r.t.

Information modeling : shared information model annotated with QoS policies for global behavior: reliability, urgency, importance, persistence
Application development : re-usable (location/deployment agnostic) applications with tool-supported code-generation (PowerTools™ MDE-suite)
System integration : dynamically configurable & Tunable deployment environment without impacting application-code

DDS PERFORMANCE: Portability, Re-usability & Complexity (1/4)

 There’s more to performance than pt-to-pt latency

Process-bound Data Distribution Node-bound Data Distribution (OpenSplice DDS)

participant

comm / aux
threads

participant

comm / aux
threads

participant

comm / aux
threads

Application 1 Application 2 Application 3

Node 1

participant

aux threads

participant

aux threads

Application 4 Application 5 Application 6

Node 2
Network Scheduler

Shared Memory

comm threads

participant

aux threads

35

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

publishernonepublisher &
subscriberRequired App. IDs

pair of
#pragma

single
#pragma

//@keyKey Declaration

member methodmember methodstatic methodRegister Data Types

file-based or
code-basednonecode-basedRequired App.

Transport Config

compliantcompliantextra argument
(newer spec)Spec Operations

proprietary
functioncompliantcompliantDomainParticipant

Factory

DDS3DDS2DDS1

DDS API compliance: Portability, Re-usability & Complexity (2/4)

 DDS2=OpenSplice

36

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

YES (RTI not compliant, C++ mapping prescribes IDL sequence
length as CORBA::ULong)

OpenSplice - CORBA::ULong
RTI DDS - signed long
OpenDDS - CORBA::ULong

type of [datatype]Seq
max length

YES (Only OpenDDS is conpliant here - see section 1.3 of IDL C++
mapping. OpenSplice also allows heap instantiation, but the
mapping forbids direct instantiation of interface classes)

OpenSplice - fooTypeSupport instantiated on stack
RTI DDS - no instantiation (register_ type() is static)
OpenDDS - fooTypeSupport instantiated on heap

type registration

UNKNOWN (I can't find any reference to it in the DDS spec)
OpenSplice - same as original IDL
RTI DDS - same as original IDL
OpenDDS - configurable (global scope by default)

scope of generation
from implied
IDL

YES (RTI not compliant, Not a CORBA issue but IDL to C++
mapping - see section 1.3)

OpenSplice - yes
RTI DDS - no (proprietary typedefs without RTI CORBA Compatibility Kit)
OpenDDS - yes

use of CORBA
basic types

YES (It's an IDL to C++ mapping issue)
OpenSplice - yes
RTI DDS - no (without RTI CORBA Compatibility Kit)
OpenDDS - yes

use of CORBA _ ptr
and _ var types

NO (C++ mapping requires it, but it's obtainable from all vendors)OpenSplice - yes
RTI DDS - not by default (needs command line option)
OpenDDS - yes

mapping of IDL
modules to namespaces

NO (C++ mapping requires it, but it's obtainable from all vendors)OpenSplice - yes
RTI DDS - yes, but must include extra header file
OpenDDS - yes

use of namespace DDS

NO (the DDS spec example is signed 32-bit int but it's not required)
OpenSplice - char*
RTI DDS - signed 32-bit int
OpenDDS - signed 32-bit int

type of DomainId_ t
(native in spec IDL)

Compliance Issue?DifferencesDescription

DDS API compliance: Portability, Re-usability & Complexity (3/4)

 “RTDEEP” compliance assessment by Vanderbilt (1/2)

37

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

YES RTI DDS has several non-spec members in the
ParticipantQod struct, some of which (host id and app id) need
to be set on publisher and subscriber, with another (participant
index) needing to be set on the subscriber only

OpenSplice - no
RTI DDS - yes
OpenDDS - no

proprietary QoS settings
required

YES (C++ mapping prescribes IDL sequence length as
CORBA::ULong. Even though RTI DDS doesn't use CORBA
basic types without the optional kit, it would still be better if it
used an unsigned type)

OpenSplice - CORBA::ULong
RTI DDS - signed long
OpenDDS - CORBA::ULong

type of datatypeSeq[index]
index variable between brackets

YES (the extra methods are pure virtual, and must be recognized
and implemented)

• OpenSplice - no
• RTI DDS - no
• OpenDDS - yes (in DataReaderListener and DataW riterListener)

proprietary listener methods

YES (RTI DDS and OpenSplice compliant with DDS 1.1 & 1.2,
OpenDDS compliant only with DDS 1.0)

OpenSplice - yes
RTI DDS - yes
OpenDDS - no

StatusMask arg in create_ *
methods

YES (RTI DDS is non-compliant with IDL C++ mapping)
• OpenSplice - _ narrow
• RTI DDS - narrow
• OpenDDS - _ narrow

identifier for generated
downcasting method

YES (OpenDDS is not compliant with IDL C++ mapping)
OpenSplice - by reference
RTI DDS - by reference
OpenDDS - by pointer

passing of [datatype]Seq and
SampleInfoSeq to take()

NO (The signature of this operation changed from passing
ConditionSeq as an OUT parameter - which takes a pointer to be
converted to the ConditionSeq_out class - in DDS 1.0, to passing
ConditionSeq as in INOUT parameter - which maps to a reference
for sequences - in DDS 1.1.)

OpenSplice - by reference
RTI DDS - by reference
OpenDDS - does not support WaitSets or conditions

passing of ConditionSeq to wait()

YES (OpenDDS is non-compliant)
• OpenSplice - static instance() method
• RTI DDS - static instance() method
• OpenDDS - proprietary global function

resolution of
DomainParticipantFactory

Compliance Issue?DifferencesDescription

DDS API compliance: Portability, Re-usability & Complexity (4/4)

 “RTDEEP” compliance assessment by Vanderbilt (2/2)

© 2007, PrismTech. All Rights Reserved

3838

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

 Hans van’t Hag

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ Defining “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

39

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

Enterprise
(Windows, Solaris, Linux, AIX)

Embedded
(vxWorks, QNX, LynxOS)

Webservice
gateway

Network
Scheduler

Fault-tolerant
Durability

Minimum Ownership Content-
Subscription

Persistence

DCPS

DLRL

DDS API’s
C/C++/Java

CORBA cohabitation

C++ / (RT)Java
Dynamic

XML-based API

Monitor &
Control (Tuner)

Logging &
Replay

Configuration

S
E
C
U
R
I
T
Y

Information
Modeling

Application
Modeling

Deployment
Modeling

OMG-DDS
Profiles

Pluggable-
Services

Supported
Platforms

Middleware-
Integration

High-level
Services

UML DDS-DSL

OpenSplice Tuner &
Remote-connect

Eclipse
Foundation &

 Framework

Roundtrip-
Engineering

Modeling-
Plug-ins

Views &
Editors

OpenSplice PowerTools™

OpenSplice™ OMG-DDS product-line

Deployment

DBMS
Gatewaysoap

Monitor & control
 Local & Remote
 Control & Monitoring
 Configuration

OpenSplice Tuner™: local & remote monitor & Control

40

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

OpenSplice DDS Advantages: OpenSplice Tuner

Features
Design stage: deploy the information model even without applications by dynamicallly created readers/writers
Development stage: inject (write) test-data, capture (read/store) application responses
Deployment stage: inspect reader/writer caches, QoS and performance metrics
Maintenance stage: log/inject datasets (both volatile and/or persistent)

Characteristics
100% Java application, direct or remote connection to any OpenSplice™ system using SOAP™
Dynamic discovery of all DDS entities (participants, subscribers, publishers, readers, writers, services)
Finetune QoS parameters (at runtime)
Support Roundtrip-engineering (SpliceTuner as OpenSplice PowerTools™ MDE eclipse-plugin)

41

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

OpenSplice TUNER™

Splice-Tuner:

TOTAL SYSTEM CONTROL:

• 100 % Java-based
• Remote connect via SOAP
• Monitor & Control:

• all DDS-entities & relations
• all QoS settings
• all services such as:

• communication
• durability-service

• Interactive browsing:
• inspect any data-cache
• make cache-snapshots
• view statistics

• Reading/Writing data:
• create readers/writers
• read/write any data

• Multiple views:
• participant view
• topic view
• partition view

• Dynamic creation of:
• readers (with filters/queries)
• writers (with input validation)

• Automatic discovery of:
• Partitions & participants
• Topics with name/type
• related publishers/writers
• related subscribers/readers

42

© 2007, PrismTech. All Rights Reserved
© 2007, PrismTech. All Rights Reserved

User-friendly, intuitive generation and management of OpenSplice (XML) configuration files
Context-sensitive help (deployment-information)
Enforced correctness
Deployment help
100% Java tool so platform independent (also doesn’t depend on OpenSplice to be installed)

OpenSplice Configurator™

© 2007, PrismTech. All Rights Reserved

4343

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

 Hans van’t Hag

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ Defining “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

44

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Benchmarking for ‘real-life’ systems

Goal

Evaluate the performance of an application benchmark relevant to the application domain
Evaluate & highlight how predictability and throughput are maintained with expanding scale
Showcase DDS implementation features:

QoS support
Distribution and Discovery
Determinism, efficiency and scalability

Approach

Compose an representative application benchmark by providing a generic scenario-driven
benchmarking suite that is fully DDS_compliant (and thus vendor independent)
Provide the full benchmark (code, documentation, scenario’s) to the DDS community
Sollicitate feedback to improve/enhance the benchmark suite

Constraint

Take to the minimum the number of nodes needed in order to showcase scalability/determinism
superiority (one cannot expect users to have test-bed with hundreds of nodes)
Make the test configurable so to be deployable on any number of nodes
Assure the test is portable & vendor-agnostic i.e:

compliant to the DDS-specification
non-reliant on vendor-specific extensions

45

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Benchmarking: Deployment example

N1 N2

N3 N4

A1,1

…

A1,10

W1-W10

R1-R10

A2,1

…

A2,10

R1-R10

W1-W10

Determinism &
Dependability:
- Latency
- Jitter

Efficiency &
Scalability:
- Throughput
- Discovery

A3,1

…

A3,10

W1-W10

R1-R10
A4,1

…

A4,10

R1-R10

W1-W10

46

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Benchmarking Overview: Executables

General characteristics:
One generic program ‘Pother’ to perform latency/discovery/throughput tests
Multiple instances running at multiple machines
Identified by <application-Id> and <group-Id> startup parameters
Each Pother instance can perform multiple tests simultaneously
Threads are created dynamically at proper scheduling-class/priority
All interfacing (input settings, output results) done via DDS Topics 
Relevant QoS policies can also be dynamically set/changed via Dedicated Topics

Pother Benchmark Suite Programs:
Pother : main program (for latency/throughput/discovery testing)
Watcher : basic result reporting for latency & throughput performance
Spotter : basic result reporting for discovery performance
ErrorLog : basic error reporting application
Recorder : scenario logging & replay tool
Excellerator : comma-separated logging (to feed into excel)

OpenSplice Tuner™ Usage:
To define, control & monitor the benchmarking

By dynamic creation of Readers/Writers for any of the involved topics
This creation can be logged/replayed by the provided ‘Recorder’ tool

Define
Setup & adapt ‘transceiver/transponder’ pairs for latency/jitter testing
Setup & adapt ‘transmitters’ & ‘receivers’ for throughput/discovery testing

Control
Set & change ‘QoSTopics’ to drive the behaviour of OpenSplice DDS
Typically: Reliability, Transport-Priority, Latency_Budget & Deadline QoS policies

Monitor
By dynamic creation of Readers for the result topics (“Watcher” does this statically)
Typically: latency/jitter, throughput/discovery and notifications results

47

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Overview: Operation of Pother main program

Pother <application_id> [group_id]
Parameters

Application_id: unique identification for each Pother instance
Group_id (optional) : commands identification (to ‘broadcast’ commands)

Operation
Several Pother instances can be started on 1 or more computing nodes
to perform determinism (latency & Jitter) and efficiency (throughput & discovery)
benchmarking

Determinism (Latency & Jitter) benchmarking
RTT (Round Trip Time) & Jitter measurement between ‘transceiver’ and ‘transponder’
Driven by topics: Transceiver Definition/QoS topics and Transponder Definition/QoS topics

Efficiency (Throughput & Discovery) benchmarking
Point-to-point Throughput and reader/writer discovery times benchmarking
Driven by topics: Transmitter Definition/QoS topics and Receiver Definition/QoS topics

48

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Pother Design: Overview

DP1
(partition-1)

DP2
(partition-2)

Transceiver 1-10

Pother 1 (application_Id = 1)

Transponder 1-10

Transmitter 1-10 Receiver 1-10

Determinism &
Dependability:
- Latency/Jitter
- Data Importance

 W1
 ..
W10

 R1
 ..
 R10

R1
 ..
R10

W1
 ..
W10

Topic-Id 1-10 Topic-Id 1-10

Determinism &
Dependability:
- Latency/Jitter
- Data Importance

Latency Topic

LatencyEcho Topic

Pother 2 (application_Id = 2)

DP1
(partition-1)

DP2
(partition-2)

Efficiency &
Scalability:
- Throughput
- Data Urgency

W1
 ..
W10

W1
 ..
W10

Rc-1
 ..
Rc-10

Ra-1
 ..
Ra-10

Rb-1
 ..
Rb-10

Efficiency &
Scalability:
- Throughput
- Data Urgency

Topic-Id 1-10 Receiver 1-3, Topic-Id 1-10

Throughput Topic

Throughput Topic
Rc-1
 ..
Rc-10

Ra-1
 ..
Ra-10

Rb-1
 ..
Rb-10

49

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Goal: Measure (one-way) throughput, report throughput (theoretical/achieved) per application/node/system
With 4 distributed nodes & 10 applications per node
With 30 readers and 10 writers per application, so a total of 1,600 readers/writers (400 writers, 1,200 readers)

Per application: 10 writers for 10 broadcast topics and 3*10=30 readers for these 10 topics
i.e., data going to readers in all applications (including ‘own’) in all nodes (including ‘own’)
Writing: 10 writers (W1-10) write 10 different topics (T1-10)
Reading: 30 readers (Ra1-10, Rb1-10, Rc1-10) read these to different topics (T1-10)
So a single reader reads data from: 4 nodes * 10 App’s * 1 writer/app = 40 writers
So per application 3 * 10 = 30 readers receive data from 10 * 40 = 400 writers (at 4 nodes)

Node/Network impact:
Data Frequency, Size and Urgency settings

Frequency (each writer): 2 Hz writes for each writer
Size (topic payload size): 1,000 bytes
Latency budget: 200 msec

TX network traffic per node
10 applications * 10 writers/application = 100 writers that write 1,000 bytes at 2Hz: 200 Kbyte/s
Packing: typically sends at 5 Hz (instead of 200), meaning a packing of 40 messages (40 Kbytes)

Rx network Traffic: 3 nodes * 200 Hz
So 600 Hz * 1000 Bytes = 600 Kbyte/s

Calculated (theoritical) throughput
Reader-throughput = 40 writers * 2 Hz * 1,000 bytes = 80 Kbyte/s
Application-throughput = 30 readers * 80 Kbyte/s = 2.4 Mbyte/s
Node-throughput = 10 applications * 2.4 Mbyte/s = 24 Mbyte/s
System-throughput = 4 nodes * 24 Mbyte/s = 96 Mbyte/s

Actual (measured) throughput (on 4 Linux DELL bladeservers, dual Opteron 2.4 Ghz. CPU’s)
Actual throughput measured = 96 Mbyte/s (Same as theoretical) at < 50 % CPU load

Example Benchmark: SCALABILITY (throughput/efficiency)

50

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Overview: Example (Windows-XP)

51

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Determinism benchmarks: Latency

T1

Appl-1. write Network Channel transport Appl-2. read

T2 T3 T4

 Lib.

Send Source Latency Send Arrival Latency

 Lib.

Node-1 Node-2

 Delivery Latency

T1 = Data about to be written
T2 = Middleware has the data

T3 = Data has been delivered
T4 = Data has been read

T1/T4 (send) and T2/T3 (delivery)  ONLY jitter is relevant if no inter-nodal clock alignment)

Example output for Windows
(XP, 2.0Ghz Xeon, local-latency)

52

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Scalability benchmarks: Throughput

Transmitter(s) with defined size & frequency (period)
Receiver(s) report throughput:

Theoretical Throughput, based upon sequence-numbers
Actual ‘Read’ throughput, based upon amount of data read
Those can differ (if system gets overloaded):

if reader can’t keep-up (history-depth = 1, keep_last)
If samples are lost during transport (reported as ‘error’) Aggregate Throughput = 80 Mbyte/s

(XP, 2.0Ghz Xeon, local-throughput)
(on dual-CPU Opteron: 450 Mbyte/s)

53

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Scalability Benchmarks: Discovery

Discovery definition
“after entity creation, how long before entity actually active”

Reader Discovery (adding a reader to system with writers)
After entity creation, how long before reader discovered & first data actually received

Writer Discovery (adding a writer to system with readers)
After entity creation, how long before writer discovered & first data actually received

© 2007, PrismTech. All Rights Reserved

54Writer/Reader discovery on Linux cluster

Writer discovery within one node
Writer at 1,000 Hz, 40 bytes
Create writer
‣ Creation-time 784 usec
‣ Discovery-time 791 usec
‣ So discovered 7 usec. after creation
‣ lost 0 msgs. before discovered
Create Participant/Publisher/Writer
‣ Creation-time 1021 usec
‣ Discovery-time 1038 usec
‣ So discovered 17 usec. after creation
‣ lost 0 msgs. Before discovered

Writer Discovery between nodes
Writer at 1,000 Hz, 40 bytes
Create writer
‣ Creation-time 621 usec
‣ Discovery-time 624 usec
‣ So discovered 3 usec. after creation
‣ lost 0 msgs. Before discovered
Create Participant/Publisher/Writer
‣ Creation-time 2459 usec
‣ Discovery-time 2461 usec
‣ So discovered 2 usec. after creation
‣ lost 0 msgs. before discovered

Reader discovery within one node
Writer at 1,000 Hz, (so 1 ms ‘extra’ worst-case), 40 bytes
Create reader
‣ Creation-time 1103 usec
‣ Discovery-time 866 usec (see above)
‣ So discovered 237 usec. before creation finished

Create Participant/Subscriber/Reader
‣ Creation-time 1270 usec
‣ Discovery-time 1157 usec
‣ So discovered 113 usec. before creation finished

Reader discovery between nodes
Writer at 1,000 Hz, (so 1 ms ‘extra’ worst-case), 40 bytes
Create reader
‣ Creation-time 1218 usec
‣ Discovery-time 1241 usec
‣ So discovered 23 usec. after creation

Create Participant/Subscriber/Reader
‣ Creation-time 1253 usec
‣ Discovery-time 1280 usec
‣ So discovered 27 usec. after creation

55

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Network Latency figures on Linux (application on RT/30)

 Configuration
 transceiver/transponder at RT/30 prio
 Transport priority 0 and 100
 1000 Hz. Frequency

 Roundtrip at Transport_Priority 0
 Lowest priority band (timeshare)
 Roundtrip latency = 323 usec.
 Roundtrip Jitter < 34 usec

 Roundtrip at Transport_Priority 100
 Highest priority band (realtime)
 Roundtrip latency = 316 usec
 Roundtrip jitter < 8 usec (!!)

56

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Network Latency figures on Linux (application on TS)

 Configuration
 transceiver/transponder at Timeslicing / prio-0
 1000 Hz. Frequency
 Payload = 0 bytes

 Roundtrip at Transport_Priority 100
 Highest priority band (realtime)
 Roundtrip latency = 316 usec
 Roundtrip jitter < 8 usec (!!)

 Conclusion
 Even low-prio applications can send high-prio data
 With extreme low latency
 Send-Arrival Latency only can have some jitter

57

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

 Pother 40

DEMO

Goal:
 Measure determinism (roundtrip jitter) under heavy background load
 Determine impact of information-priority (TRANSPORT-PRIORITY) versus application priority (OS scheduling prio)
 Show that low-application priority process can send high-priority information with low Jitter & low Latency

Configuration:
 Background load: “Transmitter” & “Receiver” at Real-time/Prio-30 (high appl. Prio), Transport-priority 0 (low info prio)
 Network-channels for 3 priority-bands: 0-25 (base-prio), 25-75 (medium prio), >75 (high-prio)

 Low-prio channel : Tx/Rx threads at timesharing priority 0, DIFSERV priority 0x0
 Medium-prio channel : Tx/Rx threads at Real-time OS priority 25, DIFSERV priority 0x2
 High-prio channel : Tx/Rx threads at Real-time OS priority 75, DIFSERV priroity 0x4

Perf3 Perf4

transmitter receiver

transceiver transponder

500,000 bytes @ 10 Hz

Background load of 5 Mbyte/s

Gigabit Ethernet

Measured roundtrip-latency & Jitter

100 bytes @ 1,000 Hz

Low (priority=0)

Network-channels

Medium (priority=25)

High (priority=75)

 Pother 30

© 2007, PrismTech. All Rights Reserved

5858

© 2007, PrismTech. All Rights Reserved © 2007, PrismTech. All Rights Reserved

Agenda

‣ OpenSplice DDS Overview
‣ Architecting Distributed Systems
‣ What is “Performance”
‣ OpenSplice DDS Architecture
‣ OpenSplice DDS Deployment Tools
‣ The “Pother” benchmarking suite
‣ Demo
‣ Whats Next

Dr. Angelo Corsaro

© 2007, PrismTech. All Rights Reserved

5959Concluding Remarks

OpenSplice DDS is the best implementation available on the
market providing the highest-performance DDS solution!

Architecture
‣ OpenSplice DDS has an architecture that explicitly targets determinism and

scalability for real-time and mission-critical distributed systems
‣ OpenSplice DDS provides full OMG-DDS rev1.2 functional coverage combining

pub/sub messaging with elaborate information management
‣ OpenSplice DDS can therefore significantly reduce system complexity and enhance

component re-use while maintaining proper performance levels

Performance & Tuning
‣ OpenSplice DDS’s advanced network-scheduler utilizes several DDS QoS policies to

optimize efficiency while maintaining proper determinism
‣ OpenSplice DDS’s federated architecture provides excellent scalability while

maintaining low discovery times
‣ OpenSplice Tuner™ provides system-monitoring and performance tuning

capabilities for local as well as remotely deployed nodes

© 2007, PrismTech. All Rights Reserved

6060Contact Us

‣OpenSpliceDDS Home Page
‣ http://www.prismtech.com/opensplice-dds/

‣For Information on OpenSplice DDS contact:
‣ opensplicedds@prismtech.com -or-
‣ sales@prismtech.com

‣OMG DDS Information
‣ http://www.dds-forum.org/
‣ http://portals.omg.org/dds/

