OpenSplice DDS in Transportation

Dr. Angelo Corsaro [angelo.corsaro@prismtech.com]

OpenSplice DDS Product Marketing Manager, PrismTech
Angelo co-chairs the OMG Data Distribution Service (DDS) Special
Interest Group and the Real-Time Embedded and Specialized Services
(RTESS) Task Force. He is a well known figure in the distributed realtime and embedded systems middleware community and has a wealth of
experience in hard real-time embedded systems, large-scale and very
large-scale distributed systems, such as defense, aerospace, homeland
security and transportation systems. Prior to joining PrismTech, he
worked for the SELEX-SI CTO Directorate, a FINMECCANICA company,
where his responsibilities included mapping business requirements to
technology capabilities, strategic standardization and technology
innovation.

OpenSplice DDS in Transportation

The Right Data to the Right Place at the Right Time – All the Time –

Agenda

- Challenges Ahead
- Addressing the Challenges
- Use Cases
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

Air Traffic Control/Management

Increasing Traffic Volumes

- ▶ By 2025 it is estimated that traffic volumes will double!
- Current solutions won't be able to keep-up with the traffic's growth
- Urge to move from airspace-based to performance and trajectory based ATM/C

Today 2025

Air Traffic Control/Management

New Operational Requirements

- System Wide Interoperability is a key enabler
- Real-Time shared common operational picture

Air Traffic Control/Management

Airborne Networks

- Peer-to-Peer, mobile, ad hoc communication networks between established between airborne elements, such as airplanes, UAVs, etc.
- Self regulating, self-managed air-traffic
- Better air-space utilization

Metropolitan Traffic Management

Traffic Management

- With the increase in motorization, more and more cities are increasingly experiencing disarming Traffic Congestion
- In many cases this traffic congestion could be prevented if more real-time information was available to both traffic engineers, as well as drivers

Metropolitan Traffic Management

Vehicular Networks (VANETs)

- Peer-to-Peer, mobile and ad hoc vehicular networks
- VANETS are intended to be one of the enabling technologies for safer driving, dynamic route planning, and invehicle entertainments

Rail-Based Traffic Management/Monitoring

Safety

- Real-Time monitoring and control of every single element in a railway system is of ultimate importance
- Increasing scale is posing challenges with respect to the achievable performance

Rail-Based Traffic Management/Monitoring [2/2]

Unmanned Rail-Based Transportation

- Several examples of unmanned rail-based transportation exist at a small scale
- Effectively supporting unmanned rail-based transportation will require a more pervasive availability of data
- This will result in a massive increase in the data volumes that will have to be distributed

Common Problems

Shared Operational Picture

Increasing need in real-time access to the common operational picture

Increased Data Volumes

 Real-time dissemination of massive data volumes, often over large scale

Loosely Coupled & Plug and Play

 Ability to fully support, and cope with, environment such as MANET, VANET, etc., and in general time and space decoupling

Interoperability

Need to share information end-to-end, in the new and emerging systems of systems. Interoperability is a key enabler for achieving better performance and enabling new operational requirements

Emerging Convergence

Domain Problems Convergence

- Defense and Transportation are nowadays being challenged by very similar problems
- Recently, concrete moves were made in order to share experience and technologies emerged in these distinct domains
- As an example FAA recently joined the NCOIC in order to exploit NCW-derived technologies for next generation ATM/C

Technologies Convergence

 Technologies, such as the DDS, which have evolved to address DoD NCW-like scenarios are now being adopted in major transportation programs

Agenda

- Challenges Ahead
- ▶ Addressing the Challenges
- Use Cases
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

OpenSplice DDS

- An High Performance Real-Time Data-Centric Publish/Subscribe Middleware
 - The right data, at the right place, at the right time -- all the time!
 - ▶ Fully distributed, high performance, highly scalable, and high availability architecture
- Perfect Blend of Data-Centric and Real-Time Publish/Subscribe Technologies
 - Content based subscriptions, queries, and filters
 - Fine grained tuning of resource usage and data delivery and availability QoS
 - Optimal networking and computing resources usage
- Loosely coupled
 - Plug and Play Architecture with Dynamic Discovery
 - Time and Space Decoupling
- Open Standard
 - Complies with the full profile of the OMG DDS v1.2

OpenSplice DDS: Foundational Abstractions

- Information Model. Defines the structure, relations, and QoS, of the information exchanged by the application. DDS supports both Relational (DCPS) and Object Oriented Modeling (DLRL)
- Typed Global Data Space. A logical data space in which applications read and write data anonymously and asynchronously, decoupled in space and time
- Publisher/Subscriber. Produce/Consume information into/from the Global Data Space
- ▶ QoS. Regulates the non-functional properties of information in the Global Data Space, *e.g.*, reliability, availability, and timeliness, etc.

Shared Operational Picture

OpenSplice DDS Information Modeling

Challenges

- **▶** Shared Operational Picture => *Information Modeling, Global Data Space*
- Increased Data Volumes
- Loosely Coupled & Plug and Play
- Interoperability

Relational Modeling with DDS

- Modeling. As in a Relational DB, a DCPS information model can be represented by means of Entity Relationship (ER) diagrams
- Topics. The entities, represented by means of Topics, are in turns an association between a data **type** and a set of **QoS** and identified by a unique name (like tables in an RDBMS)
- Data Types. The data type associated to a Topic must be a structured type expressed in IDL
- Instances. Key values in a datatype uniquely identify an instance (like rows in table)
- Correlation. SQL Expressions can be used to correlate information by means of key values


```
struct StockQuote {
   string symbol;
   string name;
   sting exchange;
   float quote;
};
#pragma keylist StockQuote symbol
```

StockQuote

symbol: "GOOG" name: "Google Inc." exchange: "NASD" quote: 663.97

StockQuote

symbol: "AAPL" name: "Apple Inc." exchange: "NASD" quote: 165.37

StockQuote

symbol: "MSFT" name: "Microsoft Corp." exchange: "NASD" quote: 33.73

Object Oriented Modeling with DDS

The DDS supports Object Oriented Information Modeling by means of the DLRL layer

▶ Automatic Instance Management

 Instances are supported as first class citizen and don't need emulation by means of keys

Encapsulation

Attributes are only accessible through dedicated getter/setter operations

Local Operations

 Besides getters/setters, all other kind of manipulations can be done using custom operations

Inheritance

Only single inheritance between DLRL objects

Navigable Relationships

- Single Relationships
- Multi Relationships (Set, Map, List)

Sample DLRL/DCPS Mapping

Sample DLRL/DCPS Mapping

Sample DLRL/DCPS Mapping

DLRL → DCPS

Middleware can automatically manage the generation and association between the Object-Oriented Model and the Relational Model

DCPS → DLRL

uid: GUID

- The Relational Model can be mapped to an Object Oriented model
- The mapping is under control of the architect

- Allow different, Object-Oriented, *local reconstruction* of the same underlying relation model
- The state is shared across all the *local reconstruction*

- Allow different, Object-Oriented, *local reconstruction* of the same underlying relation model
- The state is shared across all the *local reconstruction*

- Allow different, Object-Oriented, *local reconstruction* of the same underlying relation model
- The state is shared across all the *local reconstruction*

- Allow different, Object-Oriented, *local reconstruction* of the same underlying relation model
- The state is shared across all the *local reconstruction*

Global Data Space

- The Global Data space can be divided into domains which in turns can have partitions
- The availability of data and its consistency model depends on QoS that can be set at a Topic level and overridden by the writer
- The stronger consistency model that can be supported for the global data space is eventual consistency

Increased Data Volumes

OpenSplice DDS Performance and Scalability

Challenges

- Shared Operational Picture
- ▶ Increased Data Volumes => High Performance, Rich QoS Support
- Loosely Coupled & Plug and Play
- Interoperability

DDS Applicability

The DDS is the only technology that spans across the board -- It guarantees exceptional real-time behavior, while providing unparalleled level of throughput!

QoS Model

- QoS can associated with all relevant OpenSplice DDS entities
- Some QoS are matched based on a Request vs. Offered Model
- Publications and Subscriptions match only if the declared and requested QoS are compatible

• e.g., it is not possible to match a publisher which delivers data unreliably with a subscriber which requires reliability

QoS

QoS Policy	Applicability	RxO	Modifiable	
DURABILITY	T, DR, DW	Y	N	Data
DURABILITY SERVICE	T, DW	N	N	Availability
LIFESPAN	T, DW	-	Y	
HISTORY	T, DR, DW	N	N	
PRESENTATION	P, S	Y	N	Data Delivery
RELIABILITY	T, DR, DW	Y	N	
PARTITION	P, S	N	Y	
DESTINATION ORDER	T, DR, DW	Y	N	
OWNERSHIP	T, DR, DW	Y	N	
OWNERSHIP STRENGTH	DW	-	Υ	
DEADLINE	T, DR, DW	Y	Y	Data
LATENCY BUDGET	T, DR, DW	Y	Y	Timeliness
TRANSPORT PRIORITY	T, DW	-	Y	
TIME BASED FILTER	DR	-	Υ	Resources
RESOURCE LIMITS	T, DR, DW	N	N	
USER_DATA	DP, DR, DW	N	Y	Configuration
TOPIC_DATA	Т	N	Y	
GROUP_DATA	P, S	N	Y	

- Rich set of QoS allow to configure several different aspects of data availability, delivery and timeliness
- QoS can be used to control and optimize network as well as computing resource

Loosely Coupled & Plug and Play

OpenSplice DDS Performance and Scalability

Challenges

- Shared Operational Picture
- Increased Data Volumes
- **▶** Loosely Coupled & Plug and Play => *Time+Space Decoupling, Dynamic Discovery*
- Interoperability

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- ▶ Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- ▶ Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

- OpenSplice DDS' publisher and subscriber dynamically discover each other
- Time and Space decoupling is highly configurable by relying on OpenSplice DDS' rich set of QoS such as Availability, Life-Span, etc.

Interoperability

OpenSplice DDS Standard Compliance

Challenges

- Shared Operational Picture
- Increased Data Volumes
- Loosely Coupled & Plug and Play
- ▶ Interoperability => API + Wire Interoperability Standard

Standard Compliance

- OpenSplice DDS complies with the full profile specified in the OMG DDS Specification v1.2
- Standard wire protocol for interoperability between vendors implementation of the standard

OpenSplice™ DDS

OpenSplice DDS PowerTools

Who is using OpenSplice DDS

Defense

- TACTICOS-CMS: THALES Naval Netherlands' CMS, 26 ships classes, >100 ships
 - > 2.000 deployed runtimes (running on Solaris-servers, Linuxconsoles, and vxWorks embedded subsystems)
 - ▶ 15 Navies worldwide (Netherlands, Germany, Turkey, Greece, Oman, Qatar, Portugal, South Korea, Japan, Poland,...)
- USA programs: LCS/GD, ENFMC/NG, LHA-LHD/DRS
- Brazilian Navy
- Australia: DSTO, ADI (Australia)
- THALES Naval NL's Flycatcher system
 - ▶ 4 army's, >400 deployments
- ▶ NSWC: Open Architecture Test Facility (OA-TF)

Tactical networks

Ultra Electronics (US, UK): OpenSplice DDS selected over competition for superior scalability and fault-tolerance

Who is using OpenSplice DDS

Transportation

- Amsterdam Metro
- CoFlight Flight-plan management system upgrades for France, Italy, Switzerland

Aerospace

NASA Kennedy Space Center: Constellation Program for next generation ARES Rocket Launch System

SCADA

▶ Chemtech/Siemens in Brazil: since 2006

Homeland Security

▶ **IDA**: 'Cybercrime Defense' in WAN environment

OpenSplice DDS -- In Summary

OpenSplice DDS

Functionality

- Full OMG DDS v1.2 specification coverage
- High Performance, Fault-Tolerant, and Secure Information Backbone
- Wide Technology co-habitation and Integration
- Support for MDE with Power Tools

Performance

- Great Scalability in the number of nodes, applications, and Topics
- Real-Time Determinism with priority and latency budget driven network scheduling
- Fault-Tolerant architecture, with no single point of failure, and safe isolation between application and critical resources, *e.g.*, network

Pedigree

- Maturity. Proven, and fielded in more than 15 navies worldwide
- Fractal Architecture. Large-scale, real-time, fault-tolerant, embedded, all in 1 system
- High Standards of Quality Assurance. Process/procedures, QA-artefacts and regression testing w.r.t. number of applications as well as computing nodes and topics

Agenda

- Challenges Ahead
- Addressing the Challenges
- Use Cases
 - **▶ ATM**
 - Metropolitan Railway
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

CoFlight Program

 Large program to replace existing Flight Data Processors (FDPs)

Coflight eFD7

- ▶ 5 Centers in France
- 4 Centers in Italy
- 2 Centers in Switzerland

Initial Operational Capability by 2009

CoFlight System Architecture

- Evolution from centralized architecture towards a fully distributed and open architecture based on modular components
- ▶ CoFlight makes use of a new Open Middleware: CARDAMOM

Pluggable ATM SVCs

CARDAMOM MW

Linux OS

COTS Hardware

CARDAMOM

CARDAMOM

CoFlight and DDS

- Pervasive use of DDS
- DDS is used as the key mechanism for distributing Flight Data Plans
 - Within the FDP core
 - To CWPs
- As CoFlight has been built ready for Operational Interoperability, it also relies on DDS for inter-center data exchange

Interoperability

Toward Single Sky

Today...

 Tightly coupled, brittle architectures are pervasive

It is hard to extend scale, keep up with throughput, add new operational features

 Interoperability is limited and/ or requires major human intervention

Approach

...Tomorrow

- Loosely Coupled Extensible Architecture
- Autonomous. Limited or none human-assisted interoperability
- Full operational integration
 - Single Sky
 - Gate-to-Gate
 - SESAR

DDS and Interoperability

DDS has been selected as the data distribution mean for interoperability by projects as:

CoFlight

ICOG 2

US/EU SWIM is also investigating DDS

CoFlight's middleware,
 CARDAMOM already integrates
 OpenSplice DDS

OpenSplice DDS

DDS is going to be the back-bone of EU's ATC/ATM Interoperability Network

En-Route Center

Agenda

- Challenges Ahead
- Addressing the Challenges
- Use Cases
 - **ATM**
 - Metropolitan Railway
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

Metro Equipment Management

Agenda

- Challenges Ahead
- Addressing the Challenges
- Use Cases
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

Upcoming Webinars

Registration: http://www.prismtech.com/section-item.asp?id=731&sid=29&sid2=15&sid3=289

Agenda

- Challenges Ahead
- Addressing the Challenges
- Use Cases
- What's Next
- Concluding Remarks

Dr. Angelo Corsaro

Concluding Remarks

Applicability

- OpenSplice DDS uniquely addresses some of the key requirements for next generation Transportation Systems
- Thanks to its architecture, OpenSplice DDS it delivers extremely high performance, high availability and reliability, and retains predictability even under burst of activities

Open Architecture

 OpenSplice DDS is the only implementation in the world which fully implements the OMG DDS v1.2 standard

Technology Ecosystem

- Seamless cohabitation with CORBA (Java+C++) and RTSJ
- DBMS Integration
- Security Plug-in

OpenSplice DDS is the best solution available on the market for solving your data distribution problems!

Contact Us

- OpenSpliceDDS Resource Center
 - http://www.prismtech.com/opensplice-dds/
- Evaluate OpenSplice DDS
- Training and Consulting
 - <u>sales@prismtech.com</u>
- OMG DDS Information
 - http://www.dds-forum.org/
 - http://portals.omg.org/dds/

