
Sun Federated Access Manager
8.0 Developer's Guide

Beta

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3748–05
June 2008

Early Access Documentation

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080611@20490

Early Access Documentation

List of Remarks

REMARK 1–1 Reviewer This chapter talks only about Java SDK. What about .NET and C? Is there stuff I should
be writing about an SDK for those languages? .. 17

REMARK 1–2 Reviewer More real world type examples for this section would be great!!! 18
REMARK 1–3 Reviewer ... 22
REMARK 1–4 Writer Need new graphic header now says 'configure client SDK' .. 22
REMARK 1–5 Reviewer Please review the properties in this section carefully. Let me know if any are missing or if

any need to be removed. Also check the values: I modifed them from the opensso values
I saw - mostly replacing opensso and amserver with fam. Finally, should the properties
below match the properties in the AMConfig.properties file generated by the Client
SDK configuration page? ... 24

REMARK 1–6 Writer This only covers JSS. Most recently we've added some new properties for JCE/JSSE
based provider to support SSL with client auth. We need to doc those properties too.
This section should be tied to first two use cases in new use case section 28

REMARK 1–7 Reviewer How do I reword this? No JES, right? ... 29
REMARK 1–8 Reviewer Please check these three sections and make sure they still work as documented. 32
REMARK 1–9 Reviewer Code sample still valid? .. 33
REMARK 1–10 Reviewer Changed this section. Please review carefully. How does the client send the

username/PW that is stored in AMConfig? .. 33
REMARK 1–11 Reviewer I don't see this property in AMConfig. Is it still there? Has this option changed?

Shouldn't the implementation be used in the client app? Please explain. 34
REMARK 1–12 Writer Need to get these procedures ... 34
REMARK 1–13 Reviewer It seems to me that this section should change. I need to speak with the appropriate

engineer regard this. ... 35
REMARK 1–14 Writer add details on what are needed in terms of jars , config files , properties files etc. 35
REMARK 1–15 Writer add details on what are needed in terms of jars , config files , properties files etc. 35
REMARK 3–1 Reviewer Rewritten. Review carefully. .. 77
REMARK 4–1 Writer Sent email regarding docing this and SSOTokenID ... 109
REMARK 5–1 Reviewer Public or private? Doc or no? .. 121
REMARK 5–2 Reviewer Public or private? Doc or no? .. 121
REMARK 5–3 Reviewer Public or private? Doc or no? .. 121

3

Early Access Documentation

REMARK 5–4 Reviewer Public or private? Doc or no? .. 122
REMARK 5–5 Reviewer Other federation samples for WS-Federation?? .. 123
REMARK 6–1 Reviewer Other packages used by WS-Federation?? ... 125
REMARK 6–2 Reviewer Other federation samples for WS-Federation?? .. 126
REMARK 7–1 Writer "Installing the SAML v2 SDK" section need to be rewritten, user need to use our FAM

client SDK based installation. ... 129
REMARK 7–2 Writer two new public API to be documented: AssertionIDRequestMapper.java

SAML2ServiceProviderAdapter.java ... 129
REMARK 7–3 Reviewer New ... 144
REMARK 7–4 Reviewer New ... 144
REMARK 7–5 Writer As of 3/17/08 no saml1x samples integrated in FAM8. .. 148
REMARK 8–1 Reviewer New ... 168
REMARK 8–2 Reviewer New section. .. 175
REMARK 9–1 Reviewer Not sure where this sample is so I haven't rewritten this info. Needs more info on

sample. ... 202
REMARK 9–2 Reviewer Still valid? This info is on Client SDK chapter also. .. 206
REMARK A–1 Reviewer Define the root certificate and the server certificate. How do you get both of these from

one request? .. 286
REMARK A–2 Writer Whose password is this encrypting? ... 287

List of Remarks

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)4

Early Access Documentation

Contents

Preface ...13

1 Enhancing Remote Applications Using the Client Software Development Kit17
About the Client SDK ... 17
Using the Client SDK .. 18
Running the Client SDK Samples .. 19

Web-based Samples ... 19
Command Line Samples ... 21

Using AMConfig.properties with Client SDK ... 22
Federated Access Manager Properties for AMConfig.properties .. 24
Initializing the AMConfig.properties Properties ... 32

Setting Up a Client SDK Identity ... 33
To Set Username and Password Properties .. 34
To Set an SSO Token Provider ... 34

Client SDK Use Cases ... 34
SAE API .. 34
Building Custom Web Applications ... 35

Building Stand-Alone Applications ... 35
Targets Defined in clientsdk ... 35

2 Using the Authentication Interfaces ..37
Initiating Authentication with the Java Authentication API .. 37
Writing Authentication Modules with the Java Authentication SPI ... 40

Creating an Authentication Module Configuration Properties File 41
Writing the Principal Class ... 43
Creating the Authentication Module ... 43
Adding Post Processing Features ... 44

5

Early Access Documentation

Communicating Authentication Data as XML .. 45
XML Messages and remote-auth.dtd .. 45
XML/HTTP(s) Interface for Other Applications ... 47

Working with the Authentication API Samples .. 48
Java API Code Samples and Their Locations .. 48
LDAPLogin Example ... 51
CertLogin Example .. 51
JCDI Module Example .. 52

Working with the Authentication SPI Samples ... 52
Implementing a Custom Authentication Module .. 53
Implementing the Authentication Post Processing SPI .. 59
Generating an Authentication User ID ... 63
Implementing A Pure JAAS Module ... 66

3 Enforcing Authorization with the Policy Service ... 71
About The Policy Service .. 71
About the Policy Service Interfaces ... 72

The com.sun.identity.policy Package ... 72
The com.sun.identity.policy.client Package .. 75
The com.sun.identity.policy.interfaces Package .. 75
The com.sun.identity.policy.jaas Package .. 76

Enabling Authorization Using the Java Authentication and Authorization Service 77
Adding a Policy-Enabled Service to Federated Access Manager ... 79

▼ To Add a New Policy-Enabled Service to Access Manager ... 81
Using the Policy Code Samples .. 82

Use Cases Illustrated by Policy Code Samples .. 83
Compiling the Policy Code Samples .. 85

Developing Custom Subjects, Conditions, Referrals, and Response Providers 86
▼ To Add a Sample Implementation to the Policy Framework .. 90

Creating Policies for a New Service ... 91
▼ To Load a Policy XML File .. 92

Developing and Running a Policy Evaluation Program ... 92
▼ To Set Policy Evaluation Properties ... 93
▼ To Run a Policy Evaluation Program ... 94

Programmatically Constructing Policies .. 94

Contents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)6

Early Access Documentation

▼ To Run the Sample Program PolicyCreator.java .. 98

4 Tracking Session Data for Single Sign-On ... 101
A Simple Single Sign-On Scenario .. 101
Inside a User Session ... 102

Session Attributes ... 102
Protected And Custom Properties ... 103

About the Session Service Interfaces ... 104
SSOTokenManager .. 105
SSOToken ... 106
SSOTokenListener .. 109

Using the SSO Code Samples ... 110
Running SSO Code Samples on Solaris ... 111

Developing Non-Web Based Applications .. 116

5 Implementing the Liberty Alliance Project Identity-Federation Framework 117
About the Liberty ID-FF ... 117
Understanding Federation ... 118
Customizing the Federation Graphical User Interface ... 118
Using the Liberty ID-FF Federation API .. 121

com.sun.identity.federation.accountmgmt .. 121
com.sun.identity.federation.common .. 121
com.sun.identity.federation.message .. 121
com.sun.identity.federation.message.common ... 122
com.sun.identity.federation.plugins .. 122
com.sun.identity.federation.services .. 122
com.sun.liberty .. 122

Executing the Federation Samples .. 123

6 Implementing WS-Federation ...125
Using the WS-Federation API ... 125

com.sun.identity.wsfederation.plugins .. 125
com.sun.identity.wsfederation.common .. 125

WS-Federation Samples ... 126

Contents

7

Early Access Documentation

7 Constructing SAML Messages ...127
SAML v2 ... 127

Using the SAML v2 SDK ... 127
Service Provider Interfaces ... 129
Using Secure Attribute Exchange .. 133
JavaServer Pages ... 134
SAML v2 Samples .. 141

SAML 1.x .. 141
Interfaces ... 141
SAML 1.x Samples ... 148

8 Implementing Web Services ..149
Developing New Web Services .. 149

▼ To Host a Custom Service ... 150
▼ To Invoke the Custom Service .. 157

Setting Up Liberty ID-WSF 1.1 Profiles .. 160
▼ To Configure Federated Access Manager to Use Liberty ID-WSF 1.1 Profiles 160

Common Application Programming Interfaces ... 166
Common Interfaces ... 166
Common Security API .. 168

Web Service Consumer Sample ... 169
Authentication Web Service .. 170

Authentication Web Service Default Implementation .. 170
Authentication Web Service API ... 171
Access the Authentication Web Service .. 172
Authentication Web Service Sample ... 172

Data Services .. 172
Liberty Personal Profile Service .. 173
Liberty Employee Profile Service ... 173
Data Services Template API ... 174

Discovery Service ... 175
Generating Security Tokens ... 175
Discovery Service APIs .. 178
Access the Discovery Service .. 183
Discovery Service Sample ... 183

Contents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)8

Early Access Documentation

SOAP Binding Service ... 183
SOAPReceiver Servlet .. 183
SOAP Binding Service Package .. 184

Interaction Service ... 185
Configuring the Interaction Service .. 185
Interaction Service API ... 187

PAOS Binding .. 187
Comparison of PAOS and SOAP ... 188
PAOS Binding API ... 188
PAOS Binding Sample ... 189

9 Reading and Writing Log Records .. 193
About the Logging Service .. 193
Using the Logging Interfaces ... 194

Implementing Logging with the Logging API .. 194
Developing Plug-ins with the Logging SPI ... 198

Logging to a Second Instance of Federated Access Manager ... 199
Implementing Remote Logging ... 199

If Client Executes in Local or Remote JVM .. 200
If Client Executes in Remote JVM Only .. 201
If SSL is Enabled ... 202

Logging Samples .. 202
LogSample.java .. 202
LogReaderSample.java .. 202

Using the Logging Sample Files ... 206
▼ To Run the Sample Programs on Solaris ... 206
▼ To Run the Sample Programs on Windows 2000 .. 208

10 Securing Web Services ..211
About Web Services Security ... 211
Authentication Agents .. 212

HTTP Authentication Agent .. 214
SOAP Authentication Agent .. 216

The Security Token Service .. 218
Accessing the Security Token Service .. 220

Contents

9

Early Access Documentation

Extending the Security Token Service ... 220
Configuring the Security Token Service ... 220

Testing Web Services Security ... 221
Stock Service Sample ... 221
Calendar Service Sample ... 221

Keystores .. 221
▼ To Configure for a Custom Keystore ... 222

11 Identifying the Client Type ..225
About the Client Detection Service ... 225
Enabling Client Detection .. 226

▼ To Enable Client Detection .. 226
Defining Client Data ... 228

HTML .. 228
genericHTML ... 229

Using the Client Detection Interfaces ... 229

12 Using the Access Manager Utilities .. 231
Utility APIs ... 231

AdminUtils ... 231
AMClientDetector ... 232
AMPasswordUtil .. 232
Debug .. 232
Locale ... 232
SystemProperties ... 233
ThreadPool ... 233

Password API Plug-Ins ... 233
Notify Password Sample .. 234
Password Generator Sample ... 234

13 The Federated Access Manager Notification Service .. 235
Overview ... 235
Enabling The Notification Service ... 236

▼ To Receive Session Notifications .. 236

Contents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)10

Early Access Documentation

14 Updating and Redeploying Federated Access Manager WAR Files .. 239
WAR Files in J2EE Software Development .. 239

Web Components .. 240
How Web Components are Packaged ... 240

WAR Files in Federated Access Manager ... 240
password.war .. 243
services.war ... 243

Updating Modified WARs ... 244
▼ To Update a Modified WAR ... 244

Redeploying Modified Access Manager WAR Files .. 245
Redeploying a Federated Access Manager WAR On BEA WebLogic Server 6.1 245
Redeploying a Federated Access Manager WAR on Sun Java System Application Server
7.0 ... 246
Redeploying a Federated Access Manager WAR on IBM WebSphere Application
Server ... 247

15 Customizing the Administration Console ...249
About the Administration Console ... 249

Generating The Console Interface ... 250
Plug-In Modules ... 251
Accessing the Console ... 251

Customizing The Console .. 251
The Default Console Files ... 252
console.war ... 252
Creating Custom Organization Files ... 253
Alternate Customization Procedure .. 255
Miscellaneous Customizations ... 255

Console APIs .. 259
▼ To Create a Console Event Listener ... 260

Precompiling the Console JSP ... 260
Console Samples .. 260

Modify User Profile Page ... 260
Create A Tabbed Identity Management Display .. 261
ConsoleEventListener ... 261
Add Administrative Function .. 261
Add A New Module Tab .. 261

Contents

11

Early Access Documentation

Create A Custom User Profile View .. 261

16 Customizing the Authentication User Interface .. 263
User Interface Files You Can Modify .. 263

Staging Area for Files to be Customized .. 264
Java Server Pages .. 265
XML Files .. 267
JavaScript Files .. 270
Cascading Style Sheets ... 271
Images .. 271
Localization Files .. 272

Customizing Branding and Functionality .. 273
▼ To Modify Branding and Functionality .. 274

Customizing the Self-Registration Page ... 275
▼ To Modify the Self-Registration Page .. 275

Updating and Redeploying services.war .. 277
▼ To Update services.war ... 278

To Redeploy services.war .. 278
Customizing the Distributed Authentication User Interface ... 279

▼ To Customize the Distributed Authentication User Interface ... 279

A Key Management ...283
Public Key Infrastructure Basics .. 283

Digital Signatures ... 284
Digital Certificates ... 284

keytool Command Line Interface .. 285
Setting Up a Keystore .. 286

▼ To Set Up a Keystore .. 286

Index ... 289

Contents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)12

Early Access Documentation

Preface

Sun JavaTM System Access Manager is a component of the Sun Java Enterprise System (Java ES),
a set of software components that provide services needed to support enterprise applications
distributed across a network or Internet environment. The Sun Java System Access Manager 7.1
Developer's Guide provides information about using the Access Manager Java application
programming interfaces (APIs) and service preprogramming interfaces (SPIs).

For information about using the Access Manager C-APIs, see Chapter 1, “The C Application
Programming Interface Files,” in Sun Java System Access Manager 7.1 C API Reference in the
document Sun Java System Access Manager 7.1 C API Reference.

Before You Read This Book
This book is intended for use by IT administrators and software developers who implement a
web access platform using Sun servers and software. Readers of this guide should be familiar
with the following concepts and technologies:
■ Deployment platform: SolarisTM or Linux operating system
■ Web container that will run Access Manager: Sun Java System Application Server, Sun Java

System Web Server, BEA WebLogic, or IBM WebSphere Application Server
■ Technical concepts: Lightweight Directory Access Protocol (LDAP), Java technology,

JavaServer PagesTM (JSP) technology, HyperText Transfer Protocol (HTTP), HyperText
Markup Language (HTML), and eXtensible Markup Language (XML)

Related Books
Related documentation is available as follows:
■ “Access Manager Core Documentation” on page 13
■ “Sun Java Enterprise System Product Documentation” on page 15

Access Manager Core Documentation
The Access Manager core documentation set contains the following titles:

13

Early Access Documentation

■ The Sun Java System Access Manager 7.1 Release Notes will be available online after the
product is released. It gathers an assortment of last-minute information, including a
description of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the documentation.

■ The Sun Java System Access Manager 7.1 Technical Overview provides an overview of how
Access Manager components work together to consolidate access control functions, and to
protect enterprise assets and web-based applications. It also explains basic Access Manager
concepts and terminology.

■ The Sun Java System Access Manager 7.1 Deployment Planning Guide provides planning
and deployment solutions for Sun JavaTM System Access Manager based on the solution life
cycle.

■ The Sun Java System Access Manager 7.1 Postinstallation Guideprovides information about
basic Access Manager configuration tasks you must perform immediately after running the
Java Enterprise System installer.

■ The Sun Java System Access Manager 7.1 Performance Tuning Guide provides information
on how to tune Access Manager and its related components for optimal performance.

■ The Sun Java System Access Manager 7.1 Administration Guide describes how to use the
Access Manager console as well as manage user and service data via the command line
interface.

■ The Sun Java System Access Manager 7.1 Federation and SAML Administration
Guideprovides information about the Federation module based on the Liberty Alliance
Project specifications. It includes information on the integrated services based on these
specifications, instructions for enabling a Liberty-based environment, and summaries of the
application programming interface (API) for extending the framework.

■ The Sun Java System Access Manager 7.1 Developer’s Guide (this guide) offers information
on how to customize Access Manager and integrate its functionality into an organization’s
current technical infrastructure. It also contains details about the programmatic aspects of
the product and its API.

■ The Sun Java System Access Manager 7.1 C API Reference provides summaries of data
types, structures, and functions that make up the public Access Manager C APIs.

■ The Sun Java System Access Manager 7.1 2006Q4 Java API Reference (part number
819-2141) provides information about the implementation of Java packages in Access
Manager.

■ The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of
the policy functionality and the policy agents available for Access Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Access Manager page at the Sun Java Enterprise System documentation web site.
Updated documents will be marked with a revision date.

Preface

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)14

Early Access Documentation

http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/prod/entsys.05q4

Sun Java Enterprise System Product Documentation
Useful information can be found in the documentation for the following products:

■ Directory Server
■ Web Server
■ Application Server
■ Web Proxy Server

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation
■ Support
■ Training

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

15

Early Access Documentation

http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1308.1
http://docs.sun.com/coll/1310.1
http://docs.sun.com/coll/1311.1
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–1 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the book or at the top of the document.

For example, the title of this book is Sun Java System Federated Access Manager 8.0 Developer's
Guide, and the part number is 820–3748.

Preface

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)16

Early Access Documentation

http://docs.sun.com

Enhancing Remote Applications Using the
Client Software Development Kit

The Sun JavaTM System Federated Access Manager Client Software Development Kit (Client
SDK) provides Java libraries for integrating access management functionality within
stand-alone applications and web applications. The Client SDK can be used in remote
applications to take advantage of Federated Access Manager services such as authentication,
single sign-on (SSO), authorization, auditing and logging, and Security Assertion Markup
Language (SAML). This chapter contains the following sections:

■ “About the Client SDK” on page 17
■ “Using the Client SDK” on page 18
■ “Running the Client SDK Samples” on page 19
■ “Using AMConfig.properties with Client SDK” on page 22
■ “Setting Up a Client SDK Identity” on page 33
■ “Client SDK Use Cases” on page 34
■ “SAE API” on page 34
■ “Building Custom Web Applications” on page 35

About the Client SDK
This chapter talks only about Java SDK. What about .NET and C? Is there stuff I should be writing
about an SDK for those languages?

The Federated Access Manager Client SDK contains Java packages and class files that can be
used by developers to implement remote applications with Federated Access Manager services
such as authentication, authorization, SSO, and SAML. The Client SDK is a streamlined version
of the complete SDK installed with Federated Access Manager. The Client SDK includes only
the client-side classes and configuration properties needed by remote applications to
communicate with Federated Access Manager services. It is aimed at applications that use
identity APIs at run time for authentication, SSO, policy evaluation and enforcement, and
obtaining and setting user attributes. It is not for use by applications that perform policy

1C H A P T E R 1

Remark 1–1
Reviewer

17

Early Access Documentation

management or identity management (creation and deletion of entries). From a deployment
point of view, the Client SDK offers the following:

■ The Client SDK communicates directly with Federated Access Manager using XML (SOAP)
over HTTP or HTTPS. In turn, Federated Access Manager communicates directly with the
data store.

■ The Client SDK does not require administrator credentials.
■ Applications using the Client SDK can be deployed in demilitarized zones (DMZs), and a

firewall can be placed between them and Federated Access Manager.
■ The Client SDK includes samples to show how it can be used.

The packages that comprise the Client SDK include:

■ com.iplanet.am.sdk

■ com.iplanet.am.util

■ com.iplanet.sso

■ com.sun.identity.authentication

■ com.sun.identity.federation

■ com.sun.identity.idm

■ com.sun.identity.liberty.ws

■ com.sun.identity.log

■ com.sun.identity.policy

■ com.sun.identity.policy.client

■ com.sun.identity.saml

■ com.sun.identity.saml2

■ com.sun.identity.smt

■ com.sun.identity.xacml

■ com.sun.identity.wss

Descriptions of these packages can be found in Federated Access Manager 8.0 Java API
Reference. A complete listing of the classes that comprise the Client SDK can be found in the
ClientSDKClasses file available on the OpenSSO web site.

Caution – It is recommended that developers don't call com.iplanet.am.sdk,
com.iplanet.am.util, com.sun.identity.policy, and com.sun.identity.sm directly.

Using the Client SDK
[Remark 1–2 Reviewer: More real world type examples for this section would be great!!!] There
are many ways to use the Client SDK. Following is a list of some of them.

■ Build a proprietary application framework in which the Client SDK is a part. The Client
SDK features can allow independence from policy agents.

Using the Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)18

Early Access Documentation

https://opensso.dev.java.net/source/browse/opensso/products/amserver/clientsdk/#dirlist

■ Access profile data to perform authentication and authorization beyond what is offered
out-of-the-box.

■ Allow authenticated and non-authenticated users access to a login process with a
registration option that, if accepted, would create a user account.

Running the Client SDK Samples
Federated Access Manager comes with samples and source code that can help developers
understand how the Client SDK classes can be implemented. The samples, acting as standalone
applications, can be run on the command-line and in a web browser to see the function being
performed. By looking at the provided sample source code you can understand how the Client
SDK classes were used to perform the sample function.

fam-client.zip is the Client SDK sample ZIP and located in the samples directory of the
inflated Federated Access Manager ZIP. After inflating fam-client.zip to its core fam-client
directory, you will find two subdirectories:

■ sdk contains the command line samples and source code. You must compile this before
using the command line samples.

■ war contains deployable WAR files comprised of the Client SDK and web-based samples.

The following sections further explain the two directories.

■ “Web-based Samples” on page 19
■ “Command Line Samples” on page 21

Web-based Samples
The web-based Client SDK samples are run by deploying a WAR file. The Client SDK WAR
files are located in the samples/fam-client/war directory of the inflated Federated Access
Manager download. They are:

■ fam-client-jdk15.war requires Java Platform, Enterprise Edition 1.5.
■ fam-client-jdk14.war requires Java 2, Standard Edition 1.4.2.

These WAR files contain the web-based samples and the Client SDK for use with them. Deploy
either fam-client-jdk14.war or fam-client-jdk15.war to your web container, depending on
the version of Java installed on the machine. After deploying, launching, and configuring the
appropriate WAR, click the resulting link to proceed to the web-based samples Introduction
page. This page contains links to the web-based samples.

Running the Client SDK Samples

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 19

Early Access Documentation

Note – For more information on configuring the Client SDK, see “Using AMConfig.properties
with Client SDK” on page 22.

The following table documents the web-based sample applications and their corresponding
source file. Look in the samples directory for additional source code files not specifically called
out below. The source files and directories noted in this table are linked to the version on the
OpenSSO web site.

TABLE 1–1 Web-based Client SDK Samples

Sample Function Source

Service Configuration
Sample Servlet

Retrieves and displays
attributes of the entered
service name

ServiceConfigServlet.java

User Profile (Attribute)
Sample Servlet

Retrieves and displays
the attributes that
correspond to the
entered user ID

UserProfileServlet.java

Policy Evaluator Client
Sample Servlet

Retrieves from the Policy
Service a policy decision
that would be passed to a
web agent for
enforcement

PolicyClientServlet.java

Running the Client SDK Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)20

Early Access Documentation

https://opensso.dev.java.net
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/clientsdk/source/com/sun/identity/samples/clientsdk/ServiceConfigServlet.java?rev=1.1&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/clientsdk/source/com/sun/identity/samples/clientsdk/UserProfileServlet.java?rev=1.2&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/clientsdk/source/com/sun/identity/samples/clientsdk/PolicyClientServlet.java?rev=1.1&view%3B=log

TABLE 1–1 Web-based Client SDK Samples (Continued)
Sample Function Source

Single Sign-on Token
Verification Servlet

Validates a session token
and then displays the
user profile associated
with it

SSOTokenSampleServlet.java

Liberty ID-WSF 1.x Web
Service Consumer
Sample

Query and modify the
Discovery Service and
the Liberty Personal
Profile Service

wsc Directory

Security Token Service
(WS-Trust) Client
Sample

Obtain security tokens
from the Security Token
Service

sts Directory

Command Line Samples
The command line samples are located in the samples/fam-client/sdk directory of the
inflated Federated Access Manager download. These samples must be compiled before they can
be used by running scripts/compile-samples.sh.

Caution – Be sure to run all the scripts discussed in this section from outside the scripts
directory: scripts/setup.sh

The README in the sdk directory contains instructions on how to run the command line
samples. The table documents the command line sample applications and their corresponding
source file. Look in the samples directory for additional source code files not specifically called
out below.

Note – The source files in this table are linked to the version on the OpenSSO web site.

TABLE 1–2 Command Line Client SDK Samples

Sample Function Source

setup.sh Create
AMConfig.properties

and populate it with
values based on your
deployment.

Main.java

Running the Client SDK Samples

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 21

Early Access Documentation

https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/clientsdk/source/com/sun/identity/samples/sso/SSOTokenSampleServlet.java?rev=1.2&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/war/wsc/
https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/war/sts/
https://opensso.dev.java.net
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/setup/Main.java?rev=1.3&view%3B=log

TABLE 1–2 Command Line Client SDK Samples (Continued)
Sample Function Source

Login.sh Logs in and then logs
out the user

Login.java

CommandLineSSO.sh Demonstrates how to
retrieve a user profile

CommandLineSSO.java

CommandLineIdrepo.sh Perform operations on
the Identity
Repository; for
example, create an
identity, delete an
identity and search or
select an identity

idrepo Directory

CommandLineLogging.sh Demonstrates the
writing to a log a
record of a successful
authentication

logging Directory

SSOTokenSample.sh Verifies a session
token from a
SSOTokenID input

SSOTokenSample.java

run-policy-evaluation-sample.shReturns a policy
decision based on
console created user
and configured policy

policy Directory

run-xacml-client-sample.sh Constructs a XACML
request, makes an
authorization query,
receives the decision,
and prints out the
response

XACMLClientSample.java

Using AMConfig.propertieswith Client SDK
[Remark 1–3 Reviewer:] Although AMConfig.properties has been deprecated as the
configuration data store for the Federated Access Manager application, the file is still used to
store configuration data for the Client SDK. This AMConfig.properties points to the instance
of Federated Access Manager that will be used by the Client SDK samples. After deploying and
launching one of the sample WAR files (as discussed in “Web-based Samples” on page 19), a
Client SDK configuration page is displayed.

Need new graphic header now says 'configure client SDK'Remark 1–4
Writer

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)22

Early Access Documentation

https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/authentication/Login.java?rev=1.2&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/sso/CommandLineSSO.java?rev=1.1&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/clientsdk/idrepo/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/clientsdk/logging/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/sso/SSOTokenSample.java?rev=1.1&view%3B=log
https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/sdk/source/samples/policy/
https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/sdk/source/samples/xacml/XACMLClientSample.java?rev=1.1&view%3B=log

Entering the appropriate values and clicking Configure creates an AMConfig.properties file
under the home directory of the user running the web container. This value is indicated by the
JDK system property user.home. When running the command line interface samples (as

Using AMConfig.propertieswith Client SDK

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 23

Early Access Documentation

discussed in “Command Line Samples” on page 21) AMConfig.properties is created in the
samples/sdk/resources directory of the inflated Federated Access Manager ZIP.

Note – Both famclientsdk.jar and servlet.jar are required in the CLASSPATH of the machine
on which the Client SDK is installed.

An AMConfig.properties file with the information needed to point to the remote Federated
Access Manager server must be accessible to the Client SDK from the machine on which the
client application is hosted. The AMConfig.properties created by the sample WAR can be
modified for this purpose. The following sections explain how to do this.
■ “Federated Access Manager Properties for AMConfig.properties” on page 24
■ “Initializing the AMConfig.properties Properties” on page 32

Note – An AMConfig.properties file is also created and populated with values when the
setup.sh script is run as discussed in “Command Line Samples” on page 21.

Federated Access Manager Properties for
AMConfig.properties

Federated Access Manager properties used by the Client SDK are contained in the
AMConfig.properties file generated by the Client SDK configured during installation. (See
“Using AMConfig.properties with Client SDK” on page 22.) Additional properties can be
added to this file as the client application can register for notification of changes to session and
user attributes, and policy decisions. The following sections describe these properties.

Please review the properties in this section carefully. Let me know if any are missing or if any
need to be removed. Also check the values: I modifed them from the opensso values I saw -
mostly replacing opensso and amserver with fam. Finally, should the properties below match
the properties in the AMConfig.properties file generated by the Client SDK configuration page?

■ “Naming Properties” on page 25
■ “Debug Properties” on page 25
■ “Notification URL Property” on page 26
■ “Security Credentials Properties” on page 26
■ “Encryption Properties” on page 26
■ “Cache Update Properties” on page 27
■ “Client Services Properties” on page 27
■ “Cookie Property” on page 27
■ “Session Service Properties” on page 27
■ “Certificate Database Properties” on page 28
■ “Policy Client Properties” on page 28

Remark 1–5
Reviewer

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)24

Early Access Documentation

■ “Monitoring Framework Property” on page 29
■ “Remote Client SDK Property” on page 29
■ “Federation Properties” on page 29

Naming Properties
com.iplanet.am.naming.url

This is a required property. The value of this property is the URI of the Naming Service from
which the Client SDK would retrieve the URLs of Federated Access Manager internal
services. Example:

com.iplanet.am.naming.url=http://FAM_Host_Machine.domain_name:port
/fam/namingservice

com.iplanet.am.naming.failover.url

This property can be used by any remote application developed with the Client SDK that
wants failover in, for example, session validation or getting the service URLs. Example:

com.iplanet.am.naming.failover.url=http://FAM_Host_Machine.domain_name:port
/fam/failover

Debug Properties
com.iplanet.services.debug.level

Specifies the debug level. Values are:
■ Off specifies that no debug information is recorded.
■ error specifies that there should be no errors in the debug files. This level is

recommended for production environments.
■ warning is not a recommended value at this time.
■ message alerts to possible issues using code tracing. Most Federated Access Manager

modules use this level to send debug messages.

Caution – warning and message should not be used in production. They cause severe
performance degradation and an abundance of debug messages.

com.iplanet.services.debug.directory

The value of this property is the output directory for the debug information. The directory
should be writable by the server process. Example:

com.iplanet.services.debug.directory=/fam/debug

Using AMConfig.propertieswith Client SDK

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 25

Early Access Documentation

Notification URL Property
com.iplanet.am.notification.url

The value of this property is the URI of the Notification Service running on the machine
where the Client SDK is installed. Example:

com.iplanet.am.notification.url=http://SDK_Host_Machine.domain_name:port
/fam/notificationservice

Security Credentials Properties
com.sun.identity.agents.app.username

User with permission to read Federated Access Manager configuration data. Default:

com.sun.identity.agents.app.username=UrlAccessAgent

com.iplanet.am.service.password

Password of user with permission to read Federated Access Manager configuration data.

Note – Before running the Client SDK sample applications, you need to add changeit as a
value for this property.

com.iplanet.am.service.secret

The encryption key used to encrypt the password. Example:

com.iplanet.am.service.secret=AQIC24u86rq9RRZGr/HN25OcIuO6w+ne+0lG

Encryption Properties
am.encryption.pwd

The encryption key used to decrypt service configuration passwords. Example:

am.encryption.pwd=ENCRYPTION_KEY

com.sun.identity.client.encryptionKey

Encryption key used to encrypt and decrypt data used locally within the client application.
Example:

com.sun.identity.client.encryptionKey=ENCRYPTION_KEY_LOCAL

com.iplanet.security.encryptor

Property to set the default encrypting class. Values are:
■ com.iplanet.services.util.JCEEncryption

■ com.iplanet.services.util.JSSEncryption

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)26

Early Access Documentation

Cache Update Properties
com.sun.identity.sm.cacheTime

Cache update time (in minutes) for service configuration data if notification URL is not
provided. Example:

com.sun.identity.sm.cacheTime=1

com.iplanet.am.sdk.remote.pollingTime

Cache update time (in minutes) for user management data if notification URL is not
provided. Example:

com.iplanet.am.sdk.remote.pollingTime=1

Client Services Properties
These properties are defined by the Client SDK configuration page.

com.iplanet.am.server.protocol

Protocol of machine on which Federated Access Manager is deployed. Example:

com.iplanet.am.server.protocol=http

com.iplanet.am.server.host

Name and domain of machine on which Federated Access Manager is deployed. Example:

com.iplanet.am.server.host=machine2.sun.com

com.iplanet.am.server.port

Port of machine on which Federated Access Manager is deployed. Example:

com.iplanet.am.server.port=8080

com.iplanet.am.services.deploymentDescriptor

URI of the deployed instance of Federated Access Manager. Example:

com.iplanet.am.server.protocol=fam

Cookie Property
com.iplanet.am.cookie.name

The name of the Federated Access Manager cookie. Example:

com.iplanet.am.cookie.name=iPlanetDirectoryPro

Session Service Properties
com.iplanet.am.session.client.polling.enable

A value of true or false enables or disables, respectively, client-side session polling.

Using AMConfig.propertieswith Client SDK

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 27

Early Access Documentation

com.iplanet.am.session.client.polling.period

Specifies the number of seconds in the polling period. Example

com.iplanet.am.session.client.polling.period=180

Certificate Database Properties

This only covers JSS. Most recently we've added some new properties for JCE/JSSE based
provider to support SSL with client auth. We need to doc those properties too. This section
should be tied to first two use cases in new use case section

com.iplanet.am.admin.cli.certdb.dir

Identifies the directory path to the certificate database for initializing the JSS Socket Factory
when the Federated Access Manager web container is configured for SSL.

com.iplanet.am.admin.cli.certdb.passfile

Identifies the certificate database password file for initializing the JSS Socket Factory when
the Federated Access Manager web container is configured for SSL. Example:

com.iplanet.am.admin.cli.certdb.passfile=/config/.wtpass

com.iplanet.am.admin.cli.certdb.prefix

Identifies the certificate database prefix for initializing the JSS Socket Factory when the
Federated Access Manager web container is configured for SSL.

Policy Client Properties
com.sun.identity.agents.server.log.file.name

Specifies name of the client's policy log file. Example:

com.sun.identity.agents.server.log.file.name=amRemotePolicyLog

com.sun.identity.agents.logging.level

Specifies the granularity of logging to the client's policy log file.
■ NONE is the default value. Nothing is logged.
■ ALLOW logs allowed access decisions.
■ DENY logs denied access decisions.
■ BOTH logs allowed and denied access decisions.
■ DECISION

com.sun.identity.agents.notification.enabled

A value of true or false enables or disables, respectively, notifications from Federated
Access Manager for updating the client cache.

com.sun.identity.client.notification.url

Specifies the URL to which policy, session, and agent configuration notifications from
Federated Access Manager are sent.

Remark 1–6
Writer

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)28

Early Access Documentation

com.sun.identity.agents.polling.interval

Specifies the number of minutes after which an entry is dropped from the Client SDK cache.
Example:

com.sun.identity.agents.polling.interval=3

com.sun.identity.policy.client.cacheMode

Specifies the cache mode for the client policy evaluator. Values are:
■ subtree specifies that the policy evaluator obtains policy decisions from the server for all

the resources from the root of resource actually requested.
■ self specifies that the policy evaluator obtains policy decisions from the server only for

the resource actually requested.

com.sun.identity.policy.client.usePre22BooleanValues

Define and set this property to false if you do not want to use Boolean values. The default
value is true if the property is not defined.

Monitoring Framework Property
com.sun.identity.monitoring=off [Remark 1–7 Reviewer: How do I reword this? No JES,

right?] Explicitly disables Java Enterprise System
(JES) monitoring services in the sample client
applications.

Remote Client SDK Property
com.iplanet.am.sdk.package If you want to use a remote instance of the Client SDK, set

the value of this property to remote.

The default value is ldap if not explicitly defined.

Federation Properties
You must manually add these federation properties to AMConfig.properties as needed. They
are not automatically placed in the file when generated.

com.sun.identity.wss.provider.plugins.AgentProvider

com.sun.identity.liberty.ws.soap.supportedActor

Supported SOAP actors. Each actor must be separated by a pipe (|). Example:

com.sun.identity.liberty.ws.soap.supportedActors=

http://schemas.xmlsoap.org/soap/actor/next

Using AMConfig.propertieswith Client SDK

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 29

Early Access Documentation

com.sun.identity.liberty.interaction.wspRedirectHandler

Indicates the URL for WSPRedirectHandlerServlet to handle Liberty the WSF web service
provider-resource owner. Interactions are based on user agent redirects. The servlet should
be running in the same JVM where the Liberty service provider is running.

com.sun.identity.liberty.interaction.wscSpecifiedInteractionChoice

Indicates whether the web service client should participate in an interaction. Valid values are
interactIfNeeded | doNotInteract | doNotInteractForData. Default value is
interactIfNeeded. Default value is used if an invalid value is specified.

com.sun.identity.liberty.interaction.wscWillInlcudeUserInteractionHeader

Indicates whether the web service client should include userInteractionHeader. Valid
values are yes and no (case ignored). Default value is yes. Default value is used if no value is
specified.

com.sun.identity.liberty.interaction.wscWillRedirect

Indicates whether the web service client will redirect user for an interaction. Valid values are
yes and no. Default value is yes. Default value is used if no value is specified.

com.sun.identity.liberty.interaction.wscSpecifiedMaxInteractionTime

Indicates the web service client preference for acceptable duration (in seconds) for an
interaction. If the value is not specified or if a non-integer value is specified, the default value
is 60.

com.sun.identity.liberty.interaction.wscWillEnforceHttpsCheck

Indicates whether the web service client enforces that redirected to URL is HTTPS. Valid
values are yes and no (case ignored). The Liberty specification requires the value to be yes.
Default value is yes. Default value is used if no value is specified.

com.sun.identity.liberty.interaction.wspWillRedirect

Indicates whether the web service provider redirects the user for an interaction. Valid values
are yes and no (case ignored). Default value is yes. Default value is if no value is specified.

com.sun.identity.liberty.interaction.wspWillRedirectForData

Indicates whether the web service provider redirects the user for an interaction for data.
Valid values are yes and no. Default value is yes. If no value is specified, the value is yes.

com.sun.identity.liberty.interaction.wspRedirectTime

Web service provider expected duration (in seconds) for an interaction. Default value if the
value is not specified or is a non-integer value is 30.

com.sun.identity.liberty.interaction.wspWillEnforceHttpsCheck

Indicates whether the web service client enforces that returnToURL is HTTP. Valid values are
yes and no (case ignored). Liberty specification requires the value to be yes. Default value is
yes. If no value is specified, then the value used is yes.

com.sun.identity.liberty.interaction.wspWillEnforceReturnToHostEqualsRequestHost

Indicates whether the web services client enforces that returnToHost and requestHost are
the same. Valid values are yes and no. Liberty specification requires the value to be yes.

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)30

Early Access Documentation

com.sun.identity.liberty.interaction.htmlStyleSheetLocation

Indicates the path to the style sheet used to render the interaction page in HTML.

com.sun.identity.liberty.interaction.wmlStyleSheetLocation

Indicates the path to the style sheet used to render the interaction page in WML.

Example:
com.sun.identity.liberty.interaction.wmlStyleSheetLocation=/opt/SUNWam/lib/is-wml.xsl

com.sun.identity.liberty.ws.interaction.enable

Default value is false.

com.sun.identity.wss.provider.config.plugin=

com.sun.identity.wss.provider.plugins.AgentProvider

Used by the web services provider to determine the plug-in that will be used to store the
configuration.

Example: com.sun.identity.wss.provider.config.plugin=
com.sun.identity.wss.provider.plugins.AgentProvider

com.sun.identity.loginurl

Used by the web services clients in Client SDK mode. Example:

com.sun.identity.loginurl=https://hostName:portNumber/amserver/UI/Login

com.sun.identity.liberty.authnsvc.url

Indicates the Liberty authentication service URL.

com.sun.identity.liberty.wsf.version

Used to determine which version of the Liberty identity web services framework is to be used
when the framework can not determine from the inbound message or from the resource
offering. This property is used when Access Manager is acting as the web service client. The
default version is 1.1. The possible values are 1.0 or 1.1.

com.sun.identity.liberty.ws.soap.certalias

Value is set during installation. Client certificate alias that will be used in SSL connection for
Liberty SOAP Binding.

com.sun.identity.liberty.ws.soap.messageIDCacheCleanupInterval

Default value is 60000. Specifies the number of milliseconds to elapse before cache cleanup
events begin. Each message is stored in a cache with its ownmessageID to avoid duplicate
messages. When a message's current time less the received time exceeds thestaleTimeLimit
value, the message is removed from the cache.

com.sun.identity.liberty.ws.soap.staleTimeLimit

Default value is 300000. Determines if a message is stale and thus no longer trustworthy. If
the message timestamp is earlier than the current timestamp by the specified number of
milliseconds, the message the considered to be stale.

Using AMConfig.propertieswith Client SDK

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 31

Early Access Documentation

com.sun.identity.liberty.ws.wsc.certalias

Value is set during installation. Specifies default certificate alias for issuing web service
security token for this web service client.

com.sun.identity.liberty.ws.trustedca.certaliases

Value is set during installation. Specifies certificate aliases for trusted CA. SAML or SAML
BEARER token of incoming request. Message must be signed by a trusted CA in this list. The
syntax is:

cert alias 1[:issuer 1]|cert alias 2[:issuer 2]|.....

Example: myalias1:myissuer1|myalias2|myalias3:myissuer3. The value issuer is used
when the token doesn't have a KeyInfo inside the signature. The issuer of the token must be
in this list, and the corresponding certificate alias will be used to verify the signature. If
KeyInfo exists, the keystore must contain a certificate alias that matches the KeyInfo and the
certificate alias must be in this list.

Initializing the AMConfig.propertiesProperties
[Remark 1–8 Reviewer: Please check these three sections and make sure they still work as
documented.] When you configure the Client SDK (as documented in “Using
AMConfig.properties with Client SDK” on page 22) you are minimally configuring it to
communicate with a remote instance of Federated Access Manager. The properties listed in
“Federated Access Manager Properties for AMConfig.properties” on page 24 can also be
initialized. The following sections describe different ways in which these properties can be
initialized.

■ “Using the AMConfig.properties Properties File” on page 32
■ “Using the Java API” on page 33
■ “Setting Individual Properties” on page 33

Using the AMConfig.propertiesProperties File
You can set properties in the AMConfig.properties properties file created during installation.
The properties are formatted as follows:

property_name=property_value

Note – The properties files must be in the CLASSPATH. If necessary, declare the Java Virtual
Machine (JVM) option as follows:

-Damconfig=properties_file_name

Using AMConfig.propertieswith Client SDK

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)32

Early Access Documentation

Using the Java API
[Remark 1–9 Reviewer: Code sample still valid?] The Client SDK properties can be set
programmatically using the class com.iplanet.am.util.SystemProperties. The following
code sample illustrates how this can be accomplished.

EXAMPLE 1–1 Setting Client SDK Properties Programmatically

import com.iplanet.am.util.SystemProperties;

import java.util.Properties;

public static void main(String[] args) {

// To initialize a set of properties

Properties props = new Properties();

props.setProperty(”com.iplanet.am.naming.url’,
”http://sample.com/amserver/namingservice’);

props.setProperty(”com.sun.identity.agents.app.username’, ”amAdmin’);
props.setProperty(”com.iplanet.am.service.password’, ”11111111’);
SystemProperties.initializeProperties(props) ;

// To initialize a single property

SystemProperties.initializeProperties(“com.iplanet.am.naming.url’,
”http://sample.com/amserver/namingservice’);

// Application specific code ...

}

Setting Individual Properties
You can set properties one at a time. For example, you can declare the following JVM option at
run time to assign a value to a particular property:

-DpropertyName=propertyValue

Setting Up a Client SDK Identity
[Remark 1–10 Reviewer: Changed this section. Please review carefully. How does the client send
the username/PW that is stored in AMConfig?] Some Federated Access Manager components
(such as SAML, user management, and policy) require an identity to be authenticated before
the client application can read configuration data. The client can provide either a username and
password that can be authenticated, or an implementation of the
com.sun.identity.security.AppSSOTokenProvider interface. Either option will return a
session token which the client can then use to access Federated Access Manager configuration
data.

■ “To Set Username and Password Properties” on page 34
■ “To Set an SSO Token Provider” on page 34

Setting Up a Client SDK Identity

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 33

Early Access Documentation

To Set Username and Password Properties
The following properties in AMConfig.properties can be used to set the username and
password. The authenticated username should have permission to read the Federated Access
Manager configuration data.

■ The property to provide the user name is com.sun.identity.agents.app.username.
■ The property to provide the plain text password is com.iplanet.am.service.password.

Note – If a plain text password is a security concern, an encrypted password can be provided
as the value of com.iplanet.am.service.secret. If an encrypted password is provided, the
encryption key must also be provided as the value of am.encryption.pwd.

To Set an SSO Token Provider
[Remark 1–11 Reviewer: I don't see this property in AMConfig. Is it still there? Has this option
changed? Shouldn't the implementation be used in the client app? Please explain.] Provide the
implementation of the com.sun.identity.security.AppSSOTokenProvider interface as the
value of the com.sun.identity.security.AdminToken property.

Client SDK Use Cases
Need to get these procedures

This section contains the procedures for the following Client SDK use cases.

■ Enabling the Client SDK to run against an SSL enabled instance of Federated Access
Manager

■ Enabling the Client SDK to run against an SSL enabled instance of Sun Directory Server
■ how to enable Client SDK failover. Though this has been described on pager 15 via naming

URL. It's good to list this as a separate section

SAE API
See SAE_README in home directory

Remark 1–12
Writer

Client SDK Use Cases

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)34

Early Access Documentation

Building Custom Web Applications
[Remark 1–13 Reviewer: It seems to me that this section should change. I need to speak with the
appropriate engineer regard this.] [Remark 1–14 Writer: add details on what are needed in
terms of jars , config files , properties files etc.] The Client SDK is contained in a small Java
archive (JAR) named famclientsdk.jar. If using the Client SDK to write client applications,
download (or retrieve from the libraries/jars directory of the Federated Access Manager
ZIP) famclientsdk.jar, and include it in the class path for the application.

The Client SDK package contains Makefile.clientsdk that you can use to generate and build
samples and web applications. The makefile defines targets to build configuration properties,
samples and web applications.
■ “Building Stand-Alone Applications” on page 35
■ “Targets Defined in clientsdk” on page 35

Building Stand-Alone Applications
add details on what are needed in terms of jars , config files , properties files etc.

Use this procedure for building identity-enabled web applications.

▼ To Build a Stand-Alone Application

Install the Client SDK.
See “Running the Client SDK Samples” on page 19.

Copy servlet.jar to the libdirectory.

Run the stand-alone application.
Change directory to respective components within clientsdk-samples. Each has a
Readme.html file explaining the changes and a Makefile to rebuild and run the program.

Targets Defined in clientsdk
For web deployment, amclientwebapps.war is ready to be deployed. However, you can make
changes in the clientsdk-webapps directory and the WAR file can be recreated.

Custom web applications can use the following as a template to build their identity enabled web
application.

properties: Generates AMConfig.properties in the temp directory that can used as a template
for setting AM SDK’s properties

Remark 1–15
Writer

1

2

3

Building Custom Web Applications

Chapter 1 • Enhancing Remote Applications Using the Client Software Development Kit 35

Early Access Documentation

samples: Copies standalone samples and corresponding Makefiles to samples directory.

webapp: Generates amclientwebapps.war that can be deployed on any Servlet 2.3 compliant
web container.

Building Custom Web Applications

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)36

Early Access Documentation

Using the Authentication Interfaces

This chapter provides information on the Sun Federated Access Manager Authentication
Service application programming interfaces (API) and service provider interfaces (SPI). It
contains the following sections:

■ “Initiating Authentication with the Java Authentication API” on page 37
■ “Writing Authentication Modules with the Java Authentication SPI” on page 40
■ “Communicating Authentication Data as XML” on page 45
■ “Working with the Authentication API Samples” on page 48
■ “Working with the Authentication SPI Samples” on page 52

Initiating Authentication with the Java Authentication API
The com.sun.identity.authentication package provides interfaces and classes that can be
used by a Java application to access the Federated Access Manager Authentication Service.
Through this access the application, running either locally or remotely toFederated Access
Manager, can initiate an authentication process, submit required credentials and retrieve the
single sign-on (SSO) session token (for an application or a user). When implemented, the
authentication API starts the authentication process, and the Authentication Service responds
with a set of requirements (user ID, password and the like). The appropriate credentials are
returned to the Authentication Service. This back and forth communication between the
custom application (with implemented API) and the Federated Access Manager Authentication
Service continues until all requirements have been met. At that point, the client makes one final
call to determine if authentication has been successful or has failed.

Note – There are authentication API for C applications. See Sun Java System Federated Access
Manager 8.0 C API Reference for more information.

The first step in the code sequence for the authentication process is to instantiate the
com.sun.identity.authentication.AuthContext class which will create a new AuthContext

2C H A P T E R 2

37

Early Access Documentation

object for each authentication request. Since Federated Access Manager can handle multiple
organizations, AuthContext should be initialized, at the least, with the name of the organization
to which the requestor is authenticating. Once an AuthContext object has been created, the
login() method is called indicating to the server what method of authentication is desired. The
getRquirements method returns an array of Callback objects that correspond to the
credentials the user must pass to the Authentication Service. These objects are requested by the
authentication plug-ins, and are usually displayed to the user as login requirement screens. For
example, if the requested user is authenticating to an organization configured for LDAP
authentication only, the server will respond with the LDAP login requirement screen to supply
a user name and a password. The code must then loop by calling the hasMoreRequirements()
method until the required credentials have been entered. Once entered, the credentials are
submitted back to the server with the submitRequirements() method. The final step is to make
a getStatus() method call to determine if the authentication was successful. If successful, the
caller obtains a session token for the user; if not, a LoginException is thrown.

The following code sample illustrates how to authenticate users with user name and password
credentials and obtain the session token using getSSOToken().

EXAMPLE 2–1 Authentication Code Sample

import com.iplanet.sso.SSOToken;

import com.sun.identity.authentication.AuthContext;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.NameCallback;

import javax.security.auth.callback.PasswordCallback;

import javax.security.auth.callback.UnsupportedCallbackException;

import javax.security.auth.login.LoginException;

public class TokenUtils {

public static SSOToken getSessionToken(String orgName, String userId,

String password) throws Exception {

AuthContext ac = null;

try {

if (orgName == null || orgName.length() == 0) {

orgName = "/";
}

ac = new AuthContext(orgName);

ac.login();

} catch (LoginException le) {

le.printStackTrace();

return null;

}

try {

Callback[] callbacks = null;

// Get the information requested by the plug-ins

Initiating Authentication with the Java Authentication API

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)38

Early Access Documentation

EXAMPLE 2–1 Authentication Code Sample (Continued)

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

addLoginCallbackMessage(callbacks, userId, password);

ac.submitRequirements(callbacks);

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

System.out.println("Auth success");
} else if (ac.getStatus() == AuthContext.Status.FAILED) {

System.out.println("Authentication has FAILED");
}

}

}

} catch (Exception e) {

e.printStackTrace();

return null;

}

return ac.getSSOToken();

}

static void addLoginCallbackMessage(Callback[] callbacks, String userId,

String password)

throws UnsupportedCallbackException

{

int i = 0;

try {

for (i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {

NameCallback nc = (NameCallback) callbacks[i];

nc.setName(userId);

} else if (callbacks[i] instanceof PasswordCallback) {

PasswordCallback pc = (PasswordCallback) callbacks[i];

pc.setPassword(password.toCharArray());

}

}

} catch (Exception e) {

throw new UnsupportedCallbackException(callbacks[i],

"Callback exception: " + e);

}

}

}

Initiating Authentication with the Java Authentication API

Chapter 2 • Using the Authentication Interfaces 39

Early Access Documentation

Note – Because the Authentication Service is built on the Java Authentication and Authorization
Service (JAAS) framework, the Authentication Service API can invoke any authentication
modules written with the JAAS API as well as those built specifically for Federated Access
Manager.

For a comprehensive listing of, and detailed information on, the Java API for authentication, see
the Federated Access Manager 8.0 Java API Reference.

Writing Authentication Modules with the Java Authentication
SPI

Federated Access Manager provides the com.iplanet.authentication.spi Java package to
write Java-based authentication modules and plug them into the Authentication Service
framework, allowing proprietary authentication providers to be managed using the
administration console. The authentication module is created using the
com.iplanet.authentication.spi.AMLoginModule class which implements the Java
Authentication and Authorization Service (JAAS) LoginModule class.

Note – JAAS is a set of API that enables services to authenticate and enforce access controls upon
users. It implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. Because of this architecture, any custom JAAS authentication module will work
with the Authentication Service. For more information on the JAAS API, see the Java
Authentication And Authorization Service Reference Guide. Additional information can be
found at http://java.sun.com/products/jaas/

com.iplanet.authentication.spi.AMLoginModule provides methods to access the
Authentication Service and the authentication module's configuration properties files. This
class takes advantage of many built-in features of Federated Access Manager and scales well.
Once created, the custom authentication module can be added to the list of authentication
modules displayed by the Federated Access Manager console. The following steps represent an
overview of the procedure to create an authentication module and plug it into the Federated
Access Manager framework.

1. Create a module properties file.
See “Creating an Authentication Module Configuration Properties File” on page 41.

2. Write a principal class.
See “Writing the Principal Class” on page 43.

3. Implement the LoginModule interface.

Writing Authentication Modules with the Java Authentication SPI

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)40

Early Access Documentation

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

See “Creating the Authentication Module” on page 43.
4. Add post processing tasks.

See “Adding Post Processing Features” on page 44.

For a comprehensive listing of, and detailed information on, the Java SPI for authentication, see
the Federated Access Manager 8.0 Java API Reference.

Creating an Authentication Module Configuration
Properties File
The authentication module's configuration properties file is an XML file that defines the
module's authentication requirements and login state information. The parameters in this file
automatically and dynamically customize the authentication module's user interface, providing
the means to initiate, construct and send the credential requests, in the form of login pages, to
the Distributed Authentication User Interface. Auth_Module_Properties.dtd defines the data
structure of the file.

Tip – Name the authentication module's configuration properties file using the same name as
that of the authentication module's class (no package information) and use the extension .xml.
Use this naming convention even if no states are required.

When an authentication process is invoked, values nested in the Callbacks element of the
module's configuration properties file are used to generate login screens. The module controls
the login process, and determines each concurring screen. The following configuration
properties file for the LDAP authentication module illustrates this concept.

EXAMPLE 2–2 LDAP Authentication Module Configuration Properties File

<ModuleProperties moduleName="LDAP" version="1.0" >

<Callbacks length="2" order="1" timeout="120"
header="This server uses LDAP Authentication" >

<NameCallback>

<Prompt> User Name: </Prompt>

</NameCallback>

<PasswordCallback echoPassword="false" >

<Prompt> Password: </Prompt>

</PasswordCallback>

</Callbacks>

<Callbacks length="4" order="2" timeout="120"
header="Change Password
</BR>#REPLACE#
</BR>" >

Writing Authentication Modules with the Java Authentication SPI

Chapter 2 • Using the Authentication Interfaces 41

Early Access Documentation

EXAMPLE 2–2 LDAP Authentication Module Configuration Properties File (Continued)

<PasswordCallback echoPassword="false" >

<Prompt>Old Password </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" >

<Prompt> New Password </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" >

<Prompt> Confirm Password </Prompt>

</PasswordCallback>

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> Submit </Value>

</OptionValue>

<OptionValue>

<Value> Cancel </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

</Callbacks>

<Callbacks length="0" order="3" timeout="120"
header=" Your password has expired. Please contact service desk to

reset your password" error="true" />

<Callbacks length="0" order="4" timeout="120" template="user_inactive.jsp"
error="true"/>

</ModuleProperties>

The initial interface has two Callback elements corresponding to requests for the user
identifier and password. When the user enters values, the following events occur:

■ The values are sent to the module.
■ The process() routine validates the values.

If the module writer throws a LoginException, an Authentication Failed page will be sent to
the user. If no exception is thrown, the user is redirected to his or her default page.

■ If the user's password is expiring, the module writer sets the next page state to 2.

Page state 2 requires the user to change a password. The process() routine is again called
after the user submits the appropriate values.

Writing Authentication Modules with the Java Authentication SPI

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)42

Early Access Documentation

Writing the Principal Class
After creating the authentication module's configuration properties file, write a class which
implements java.security.Principal to represent the entity requesting authentication. For
example, the constructor takes the username as an argument. If authentication is successful, the
module will return this principal to the Authentication Service which populates the login state
and session token with the information representing the user.

Creating the Authentication Module
Custom authentication modules extend the
com.sun.identity.authentication.spi.AMLoginModule class and must implement the
init(), process() and getPrincipal() methods. Other methods that can be implemented
include setLoginFailureURL() and setLoginSuccessURL() which define URLs to which the
user is sent based on a failed or successful authentication, respectively. To make use of the
account locking feature with custom authentication modules, the InvalidPasswordException
exception should be thrown when the password is invalid.

Note – If the custom authentication module requires or already uses a service configuration
XML file:

■ The file should contain attribute schema for one of the following attributes:
iplanet-am-auth-authModuleName-auth-level or
lsunAMAuthauthModuleNameAuthLevel

■ The module Java file should invoke the setAuthLevel() method in the init() method
implementation.

Information on implementing the three main methods is in the following sections:

■ “Implementing the init() Method” on page 43
■ “Implementing the process() Method” on page 44
■ “Implementing the getPrincipal() Method” on page 44

Implementing the init()Method
init() is an abstract method that initializes the module with relevant information. This
method is called by AMLoginModule prior to any other method calls. The method
implementation should store the provided arguments for future use. It may peruse the
sharedState to determine what information it was provided by other modules, and may also
traverse through the options to determine the configuration parameters that will affect the
module's behavior. The data can be ignored if the module being developed does not understand
it.

Writing Authentication Modules with the Java Authentication SPI

Chapter 2 • Using the Authentication Interfaces 43

Early Access Documentation

Implementing the process()Method
process() is called to perform the actual authentication. For example, it may prompt for a user
name and password, and then attempt to verify the credentials. If your module requires user
interaction (for example, retrieving a user name and password), it should not do so directly.
This method should invoke the handle method of the
javax.security.auth.callback.CallbackHandler interface to retrieve and display the
appropriate callbacks. The AMLoginModule then internally passes the callback values to the
Distributed Authentication User Interface which performs the requested authentication.

Note – Consider the following points while writing the process()method:

■ Perform the authentication and if successful, save the authenticated principal.
■ Return -1 if authentication succeeds.
■ Throw an exception, such as AuthLoginException, if authentication fails or return the

relevant state specified in the module's configuration properties file
■ If multiple states are available to the user, the Callback array from a previous state may be

retrieved by using the getCallback() method. The underlying login module keeps callback
information from previous states until the login process is completed.

■ If a module needs to substitute dynamic text (generate challenges, passwords or user
identifiers) in the next state, use the getCallback() method to retrieve the callback for the
next state, modify the text, and call replaceCallback() to update the array.

■ Each authentication session will create a new instance of your module's Java class. The
reference to the class will be released once the authentication session has either succeeded or
failed.

■ Any static data or reference to any static data in your module must be thread-safe.

Implementing the getPrincipal()Method
getPrincipal() should be called once at the end of a successful authentication session. This
method retrieves the authenticated token string which will refer to the authenticated user in the
Federated Access Manager environment. A login session is deemed successful when all pages in
the module's configuration properties file have been sent and the module has not thrown an
exception.

Adding Post Processing Features
The com.sun.identity.authentication.spi.AMPostAuthProcessInterface interface can
be implemented for post processing tasks on authentication success, failure and logout using
the methods onLoginSuccess(), onLoginFailure(), and onLogout(), respectively. The

Writing Authentication Modules with the Java Authentication SPI

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)44

Early Access Documentation

Authentication Post Processing Classes are defined in the Core Authentication Service and
configurable at several levels such as at the realm or role levels. Post processing tasks might
include:
■ Adding attributes to a user’s session token after successful authentication.
■ Sending notification to an administrator after failed authentication.
■ General clean up such as clearing cookies after logout, or logging out of other system

components.

Communicating Authentication Data as XML
Communication between applications and the Authentication Service is conducted with XML
messages sent over HTTP(s). The remote-auth.dtd is the template used to format the XML
request messages sent to Federated Access Manager and to parse the XML return messages
received by the external application. The remote-auth.dtd is in the
path-to-context-root/FAM/WEB-INF directory.
■ “XML Messages and remote-auth.dtd” on page 45
■ “XML/HTTP(s) Interface for Other Applications” on page 47

XML Messages and remote-auth.dtd

The following sections contain examples of XML messages based on the remote-auth.dtd.

Note – The client application writes XML messages based on the remote-auth.dtd but, when
the messages are sent, the Authentication API adds additional XML code to them. This
additional XML is not illustrated in the following examples.

■ “Authentication Request Message from Application” on page 45
■ “Response Message from Federated Access Manager with Session Identifier and Callbacks”

on page 46
■ “Response Message from Application with User Credentials” on page 46
■ “Authentication Status Message from Federated Access Manager With Session Token” on

page 46

Authentication Request Message from Application
This example illustrates the XML message sent to Federated Access Manager requesting
authentication. It opens a connection and asks for authentication requirements regarding the
exampleorg organization to which the user will login.

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Request authIdentifier="0">

Communicating Authentication Data as XML

Chapter 2 • Using the Authentication Interfaces 45

Early Access Documentation

<Login orgName="dc=red,dc=iplanet,dc=com">
<IndexTypeNamePair indexType="moduleInstance"><IndexName>LDAP</IndexName>
</IndexTypeNamePair></Login></Request></AuthContext>

Response Message from Federated Access Manager with Session
Identifier and Callbacks
This example illustrates an affirmative response from Federated Access Manager that contains
the session identifier for the original request (authIdentifier) as well as callback details.

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Response authIdentifier="AQIC5wM2LY4SfczGP8Kp9
cqcaN1uW+C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<GetRequirements><Callbacks length="3">
<PagePropertiesCallback isErrorState="false"><ModuleName>LDAP</ModuleName>
<HeaderValue>This server uses LDAP Authentication</HeaderValue>

<ImageName></ImageName><PageTimeOutValue>120</PageTimeOutValue>

<TemplateName></TemplateName>

<PageState>1</PageState>

</PagePropertiesCallback>

<NameCallback><Prompt> User Name: </Prompt></NameCallback>

<PasswordCallback echoPassword="false"><Prompt> Password: </Prompt>

</PasswordCallback></Callbacks></GetRequirements></Response></AuthContext>

Response Message from Application with User Credentials
This example illustrates the client's response to Federated Access Manager. It contains the
credentials input by the user to log in.

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Request authIdentifier="AQIC5wM2LY4SfczGP8Kp9cqca
N1uW+C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<SubmitRequirements><Callbacks length="2"><NameCallback><Prompt>User Name:</Prompt>

<Value>amadmin</Value>

</NameCallback>

<PasswordCallback echoPassword="false"><Prompt>Password:</Prompt>
<Value>admin123</Value>

</PasswordCallback></Callbacks></SubmitRequirements></Request></AuthContext>

Authentication Status Message from Federated Access Manager With
Session Token
This example illustrates the message from Federated Access Manager specifying the user's
successful authentication and the session token (SSOToken).

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Response authIdentifier="AQIC5wM2LY4SfczGP8Kp9cqcaN1uW+

Communicating Authentication Data as XML

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)46

Early Access Documentation

C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<LoginStatus status="success" ssoToken="AQIC5wM2LY4SfczGP8Kp9cqcaN1uW+C7CMdeR2afoN1
ZxwY=@AAJTSQACMDE=#" successURL="http://blitz.red.iplanet.com/amserver/console">
<Subject>AQICOIy3FdTlJoAiOyyyZRTjOVBVWAb2e5MOAizI7ky3raaKypFE3e+GGZuX6chvLgDO32Zugn

pijo4xW4wUzyh2OAcdO9r9zhMU2Nhm206IuAmz9m18JWaYJpSHLqtBEcf1GbDrm3VAkERzIqsvkLKHmS1qc

yaT3BJ87wH0YQnPDze4/BroBZ8N5G3mPzPz5RbE07/1/w02yH9w0+UUFwwNBLayywGsr3bJ6emSSYqxos1N

1bo98xqL4FKAzItsfUAMd6v0ylWoqkoyoSdKYNHKbqvLDIeAfhqgoldxt64Or6HMXnOxz/jiVauh2mmwBpH

q1H2mOeF3agfUfuzKxBpLfELLwCH6QWcJmOZl0eNCFkGl7VwfnCJpTx1WcUhPSg0xD26D3dCQNruJpHPgzZ

FThe55M2gQ2qX+I1klmvzghSqiYfyoGg2SFeBeHE7iHuujO0e6UZgKDrOQPjU9aDh1GxxnsMQmaNkjuW+up

ghruWBGy+mDWmPQTme2bQWPIjBgB4wTDXTedeDzDBeulhCH4M0Ak9lvS7EIv6kHX5pRph6d0ND4/RVHka3k

WcQ5e0w2HpPjOxzNrWMfyXTkQJwOrA8yh1eBjG04VwiVqDV4wAV5EsIsIt0TrtAW2VZwV/KtLcGmjaKaT0H

dwRy0M4DHEqDbc6jF5ItVo9NneGFXMswPIoLm2nLuMrteAt7AtK7FGuCHlfYLavKoROtjaSuYTJGFwgz8Oi

vZ2r9boVnWVlz7ehwlyHvdfmpSKVl76Y4qEclX25m+lddAZE92RgSIrg97fp9gBOk2gVJWoQORNRDV2siHr

26 RiPLdvW3foG0hZgpLimJuLdByThRd/tdknDCCNRzelv7khr6nLPVPFVBgEJWlHmuffkdz4OsL0omFWpi

Jq05sQCPs/q6rq9ZJ98a8mcFK10BVPQki/1VfkIbKAdO4eswsIMalYkglBqXT4ARVTWRCWRNMCTDlQitF3g

T51AHn1WioFPm+NZ2KagVjQR6JFxHbdW0bKN7cLQViArJJFRtktR1BJh31/K+dAM2P+KbT1Lq13UUvXCynS

QwVbf7HJP5m3XrIQ6PtgZs4TB026H+iKy5T85YNL03j9sNnALiIKJEgvGLg2jxG+SU10xNLz3P3UVqmAnQI

9FIjmCtJcFtlLYR6BbkTvZVKxWz6+SoxNfDeKhIDwxkTNTLOzK491KzU/XAZTKmvdxTgf+WikbriBhFjsJ4

M6Npsq4p9Ksrjun9FVBTE/EUT5X/bY8zXLm0nw5KspQ7XRHPwrppQMVMMekz5qrNtQ9Cw/TeOhm4jvww/Bz

j4rydi7s7D10s2BWMfcuxmwQEipAWNmraKL37wWskrCdAzO2HXH4iJjWimiJ6J</Subject>

</LoginStatus></Response></AuthContext>

XML/HTTP(s) Interface for Other Applications
Applications written in a programming language other than Java or C can also exchange
authentication information with Federated Access Manager using the XML/HTTP(s) interface
and the Authentication Service URL,
http://server_name.domain_name:port/service_deploy_uri/authservice. An application
can open a connection using the HTTP POST method. In order to access the Authentication
Service in this manner, the client application must contain the following:

■ A means of producing valid XML compliant with the remote-auth.dtd .
■ HTTP 1.1 compliant client implementation to send XML-configured information to

Federated Access Manager.
■ HTTP 1.1 compliant server implementation to receive XML-configured information from

Federated Access Manager.
■ An XML parser to interpret the data received from Federated Access Manager.

If contacting the Authentication Service directly through its URL, a detailed understanding of
remote-auth.dtd will be needed for generating and interpreting the messages passed between
the client and Federated Access Manager.

Communicating Authentication Data as XML

Chapter 2 • Using the Authentication Interfaces 47

Early Access Documentation

Working with the Authentication API Samples
Federated Access Manager comes with sample programs that demonstrate how to use the
Authentication API to extend the functionality of the Authentication Service and
authentication modules. Source code and a Makefile are provided for all sample programs. For
some sample programs, additional supporting files are also included. The following sections
contain information regarding these sample programs.

■ “Java API Code Samples and Their Locations” on page 48
■ “LDAPLogin Example” on page 51
■ “CertLogin Example” on page 51
■ “JCDI Module Example” on page 52

Java API Code Samples and Their Locations
The following tables describe the locations (on the various platforms) of all the files you need to
implement the sample programs, and the variable names used for the default directories in the
source code and Makefile.

■ Table 2–1 summarizes file locations and variable names for Solaris Sparc/x86.
■ Table 2–2 summarizes file locations and variable names for Linux.
■ Table 2–3 summarizes file locations and variable names for Windows 2000.

TABLE 2–1 File Locations for Solaris Sparc/x86

Variable Description Location

Api_sample_dir Directory that contains
authentication API
sample files

<install_root>/SUNWam/

samples/authenitcation/api

Config_directory Directory that contains
configuration files

/etc/opt/SUNWam/config

Product_Directory Directory where
Federated Access
Manager is installed.

install_root>/SUNWam

TABLE 2–2 File Locations for Linux

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API sample
files

<install_root>/sun/

identity/samples/authentication/api

Working with the Authentication API Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)48

Early Access Documentation

TABLE 2–2 File Locations for Linux (Continued)
Variable Description Location

Config_Directory Directory that contains
configuration files

/etc/opt/sun/identity/config

Product_Directory Directory where Federated
Access Manager is installed.

<install_root>/sun/identity

TABLE 2–3 File Locations for Windows 2000

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API sample
files

<install_root>\samples\

authentication\api

Config_Directory Directory that contains
configuration files

<install_root>\lib

Product_Directory Directory where Federated
Access Manager is installed.

<install_root>

The instructions for compiling and executing the sample programs are the same for all samples
described in this section.
■ “To Compile and Execute the Java API Samples” on page 49
■ “To Configure SSL for Java API Samples” on page 50

▼ To Compile and Execute the Java API Samples

In the Makefile, modify the following variables as necessary to suit your Federated Access
Manager installation.
BASE_DIR: Enter the path to the directory where Federated Access Manager is installed.

JAVA_HOME: Enter the path to the directory where the Java compiler is installed.

DOMAIN: Enter the name of the organization to login to.

SHARE_LIB: Enter the path to the directory where Federated Access Manager JAR files are
stored.

JSS_JAR_PATH: Enter the path to the directory where JSS jar files are stored.

JSSPATH: Enter the path to the directory where JSS libraries are located.

In the Certificate Sample Makefile only, modify the following as necessary:
CERTNICKNAME: Enter the Certificate nickname.

URL: Enter the Federated Access Manager URL.

1

2

Working with the Authentication API Samples

Chapter 2 • Using the Authentication Interfaces 49

Early Access Documentation

PASSWORD: Enter the Certificate DB Password.

Copy AMConfig.properties from Config_Directory in the Federated Access Manager
installation to the client machine.

Note – For SSL check SSL Configuration Setup, step 2.

In the Makefile, update the classpath to include the location of the newly created
AMConfig.properties.

In the client machine, create a directory named locale.

Copy all the property files from the localedirectory in the Federated Access Manager host
machine to the client machine.

The locale directory on the server machine can be found under the Product_Directory.

Update the classpath in the Makefile to include the location of newly created locale files.

Include jaas.jar in your classpath if you are using a JDK version less than JDK1.4

Compile the program.

■ On Solaris Sparc/x86 or Linux, run the gmake command.
■ On Windows 2000, run the make command.

Run the sample program.

■ On Solaris Sparc/x86 or Linux, run gmake run.
■ On Windows 2000, run make run

▼ To Configure SSL for Java API Samples

In the Makefile, add this JVM property in the run target:

-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

Copy AMConfig.properties from Config_Directory in the Federated Access Manager
installation to the client machine.

Edit the following properties in AMConfig.properties.

com.iplanet.am.admin.cli.certdb.dir: Enter the path to the certificate database directory.

com.iplanet.am.admin.cli.certdb.prefix: Enter the certificate database prefix.

3

4

5

6

7

8

9

10

1

2

3

Working with the Authentication API Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)50

Early Access Documentation

In the LDAP and JCDI Samples only:
com.iplanet.am.server.protocol: Change the value to HTTPS.

com.iplanet.am.server.port: Enter the appropriate port number from the server machine.

Create or copy the certificate database file to the certificate db directory. Use the directory name
in com.iplanet.am.admin.cli.certdb.dir.

Rename the file to use the prefix specified in the property
com.iplanet.am.admin.cli.certdb.prefix.
For the details, see the Java API Reference for the Remote Client API.

LDAPLogin Example
The LDAPLogin sample is an example of a custom Java application that uses the authentication
remote APIs to authenticate to the LDAP module. You can modify the sample source code to
authenticate to other existing or customized authentication modules. The sample source code,
Makefile, and Readme.html are located in the following directory:

/FederatedAccessManager-base/ SUNWam/samples/authentication/LDAP

To compile and run the sample program, follow the steps in “To Compile and Execute the Java
API Samples” on page 49.

CertLogin Example
The CertLogin sample is an example of a custom Java application that uses digital certificates
for authentication. You can modify the sample source code to authenticate to other existing or
customized authentication modules. The sample source code, Makefile, and Readme.html are
located in the following file:

/FederatedAccessManager-base/ SUNWam/samples/authentication/Cert

▼ To Run the CertLogin Program

Enable SSL.
Follow the instructions in “To Configure SSL for Java API Samples” on page 50.

Compile and execute the sample code.
See “To Compile and Execute the Java API Samples” on page 49

4

5

6

1

2

Working with the Authentication API Samples

Chapter 2 • Using the Authentication Interfaces 51

Early Access Documentation

Using certutil for Client Certificate Management
certutil is a command-line utility that can create and modify cert7.db and key3.db database
files. It can also list, generate, modify, or delete certificates within the cert7.db file and create or
change the password, generate new public and private key pairs, display the contents of the key
database, or delete key pairs within the key3.db file. The key and certificate management
process usually begins with creating keys in the key database, then generating and managing
certificates in the certificate database.

JCDI Module Example
The JCDI Module Example demonstrates the use of Java Card Digital ID (JCDI) authentication
with Access Manager. The sample has two components:

■ Remote client
■ Server JCDI authentication module

The remote client component is located in the following directory:

/FederatedAccessManager-base/samples/authentication/api/jcdi

The server JCDI authentication module is located in the following directory:

/FederatedAccessManager-base/samples/authentication/spi/jcdi

The sample illustrates JCDI authentication using the Remote Authentication API. You can
modify the sample source code to authenticate to other existing or customized authentication
modules. The source code, Makefile, and Readme.html are located in the following directory:

/FederatedAccessManager-base/samples/authentication/api/jcdi

Working with the Authentication SPI Samples
Federated Access Manager provides sample programs to demonstrate how to use the
authentication SPI to extend authentication functionality. The following sections have more
information.

■ “Implementing a Custom Authentication Module” on page 53
■ “Implementing the Authentication Post Processing SPI” on page 59
■ “Generating an Authentication User ID” on page 63
■ “Implementing A Pure JAAS Module” on page 66

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)52

Early Access Documentation

Implementing a Custom Authentication Module
Federated Access Manager contains a sample exercise for integrating a custom authentication
module with files that have already been created. This sample illustrates the steps for integrating
an authentication module into a Federated Access Manager deployment. All the files needed to
compile, deploy and run the sample authentication module can be found in the following
directory:

/FederatedAccessManager-base/SUNWam/samples/authentication/providers

The following sections will use files from this sample as example code:
■ “Compiling and Deploying the LoginModule program” on page 53
■ “To Deploy the Login Module Sample Program” on page 54
■ “Loading the Login Module Sample into Federated Access Manager” on page 56
■ “Running the LoginModule Sample Program” on page 57

Note – The following are the default directories used in the sample exercises for the various
platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam

Linux: <PRODUCT_DIR> = base-directory/sun/identity

Windows 2000: <PRODUCT_DIR> = base-directory

Compiling and Deploying the LoginModule program
If you are writing a custom authentication module based on the AMLoginModule SPI or JAAS,
you can skip this section. Otherwise, after writing the sample Login Module, use these
procedures to compile and deploy the sample found under Federated Access
Manager/samples/authentication/spi/providers.

■ “To Compile the Login Module” on page 53
■ “To Deploy the Login Module Sample Program” on page 54
■ “To Redeploy the amserver.war File” on page 54

▼ To Compile the Login Module

Set the following environment variables.
These variables will be used to run the gmake command. You can also set these variables in the
Makefile in the following directory:
/FederatedAccessManager-base/samples/authentication/spi/providers.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

1

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 53

Early Access Documentation

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
Idetnity_base/lib directory. Include jaas.jar in your classpath if you are using JDK version
less than JDK1.4

BASE_DIR: Set this variable to the directory where the Federated Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the sample compiled classes
will be created.

In the /FederatedAccessManager-base/samples/authentication/spi/providers directory,
run gmake.

▼ To Deploy the Login Module Sample Program

Copy LoginModuleSample.jar from JAR_DIR to
/FederatedAccessManager-base/web-src/services/WEB-INF/lib.

Copy LoginModuleSample.xml from
/FederatedAccessManager-base/samples/authentication/spi/providers to
/FederatedAccessManager-base/web-src/services/config/auth/default .

Redeploy the amserver.war file.

▼ To Redeploy the amserver.war File

In /FederatedAccessManager-base/bin/amsamplesilent, set Deploy Level variable as follows:
DEPLOY_LEVEL=21

In /FederatedAccessManager-base/bin/amsamplesilent, set container-related environment
variables.

■ On Sun Java System Web Server 6.1, where /amserver is the default DEPLOY_URI:

SERVER_HOST=WebServer-hostName
SERVER_PORT=WebServer-portNumber
SERVER_PROTOCOL=[http | https]

SERVER_DEPLOY_URI=/amserver

WEB_CONTAINER=WS6

WS61_INSTANCE=https-$SERVER_HOST

WS61_HOME= WebServer-base-directory
WS61_PROTOCOL=$SERVER_PROTOCOL

WS61_HOST=$SERVER_HOST

2

1

2

3

1

2

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)54

Early Access Documentation

WS61_PORT=$SERVER_PORT

WS61_ADMINPORT=WebServer-adminPortWS61_ADMIN=WebServer-adminUserName
■ On Sun Java System Application Server 7.0, where /amserver is the default DEPLOY_URI:

SERVER_HOST=ApplicationServer-hostName
SERVER_PORT=ApplicationServer-portNumber
SERVER_PROTOCOL=[http | https]

SERVER_DEPLOY_URI=/amserver

WEB_CONTAINER=AS7

AS70_HOME=/opt/SUNWappserver7

AS70_PROTOCOL=$SERVER_PROTOCOL

AS70_HOST=$SERVER_HOST

AS70_PORT=$SERVER_PORT

AS70_ADMINPORT=4848

AS70_ADMIN=admin

AS70_ADMINPASSWD=ApplicationServer-adminPassword
AS70_INSTANCE=server1

AS70_DOMAIN=domain1

AS70_INSTANCE_DIR=/var/opt/SUNWappserver7/domains/

${AS70_DOMAIN:-domain1}/${AS70_INSTANCE:-server1}

AS70_DOCS_DIR=/var/opt/SUNWappserver7/domains/${AS70_DOMAIN:-domain1}/

${AS70_INSTANCE:-server1}/docroot

#If Application Server is SSL Enabled then set the following:

#AS70_IS_SECURE=true

#SSL_PASSWORD=SSLpassword
■ On other supported platforms:

Set platform-specific variables as is appropriate for the container.

Redeploy the services web application by running the following command:

/FederatedAccessManager-base/bin/amconfig -s

/FederatedAccessManager-base/bin/amsamplesilent

Restart the container instance.

■ Web Server example:

/WebServer-base/
https-WebServer-instanceName/restart

■ Application Server example:

/var/opt/SUNWappserver7/domains/${AS70_DOMAIN:-domain1}/

${AS70_INSTANCE:-server1}/bin/restartserv

3

4

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 55

Early Access Documentation

Loading the Login Module Sample into Federated Access Manager
Once you’ve compiled and deployed the login module, you must load it into Federated Access
Manager. You can load the login module by using either the administration console, or by using
the amadmin command.
■ “To Load the Login Module Using the Administration Console” on page 56
■ “To Load the Login Module Using the Command Line” on page 56

▼ To Load the Login Module Using the Administration Console

Login to the console as amadmin, using the URL:
http://host.domain:port/Console-Deploy-URL

Click Configuration.

In the Configuration tab, under Authentication, click Core.

Add class file name
com.iplanet.am.samples.authentication.spi.providers.LoginModuleSample to the
Pluggable Authentication Modules Classes list.

Click Save.

▼ To Load the Login Module Using the Command Line

Write a sample XML file which will add the LoginModuleSample authentication module entry
into the allowed modules and an authenticators list.

<!--

Copyright (c) 2003 Sun Microsystems, Inc.

All rights reserved

Use is subject to license terms.

-->

<!DOCTYPE Requests

PUBLIC "-//iPlanet//iDSAME 5.0 Admin CLI DTD//EN"
"jar://com/iplanet/am/admin/cli/amAdmin.dtd"

>

<Requests>

<SchemaRequests serviceName="iPlanetAMAuthService"
SchemaType="Global">

<AddDefaultValues>

<AttributeValuePair>

1

2

3

4

5

1

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)56

Early Access Documentation

<Attribute name="iplanet-am-auth-authenticators"/>

<Value>com.iplanet.am.samples.authentication.spi.providers.

LoginModuleSample</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

</Requests>

Use amadmin to load sample.xml:
<AMADMIN> --runasdn uid=amAdmin,ou=People,<root_suffix> --password <password>

--data sample.xml

Solaris Sparc/x86: AMADMIN = <PRODUCT_DIR>/bin/amadmin

On W2K: AMADMIN = <PRODUCT_DIR>\\bin\\amadmin

Running the LoginModule Sample Program
This sections provides instructions for running the login module on Solaris and on Windows
platforms.

■ “To Run the LoginModule on Solaris” on page 57
■ “To Run the Login Module on Windows 2000” on page 58
■ “To Deploy the Login Module” on page 58

▼ To Run the LoginModule on Solaris

Use the following URL to log in to the console as amAdmin:
http://host.domain:port/Console-Deploy-URI

Click Identity Management, and in the Identity Management view select your organization.

From the View menu, select Services.

In the navigation frame, under Authentication, click Core.

SelectLoginModuleSample to add it to the list of highlighted modules in Organization
Authentication Modules.
Make sure LDAP module is also selected. If not selected, you will not be able to login to Access
Manager Console. You can use Control + mouse click to add additional modules.

Click Save.

2

1

2

3

4

5

6

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 57

Early Access Documentation

Log out.

Enter the following URL:
http://host.domain:port/Service-Deploy-URI/UI/Login?module=LoginModuleSample

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

▼ To Run the Login Module on Windows 2000

Set the following environment variables. These variables will be used to run the make command.
You can also set these variables in the Makefile.
This Makefile is in the same directory as the Login Module Sample program files:
/FederatedAccessManager-base\samples\authentication\spi\providers

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

BASE: Set this variable to base-directory

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
base-directory\lib directory. Include jaas.jar in your classpath if you are using JDK version
less than JDK1.4

BASE_CLASS_DIR: Set this variable to the directory where all the sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the sample compiled classes
will be created.

Run the make command from
/FederatedAccessManager-base\samples\authentication\spi\providers.

▼ To Deploy the Login Module

Copy LoginModuleSample.jar from JAR_DIR to
/FederatedAccessManager-base\web-src\services\WEB-INF\lib

In the web container from which this sample will run, update the classpath with
LoginModuleSample.jar.

Update server.xmlwith the new classpath and server.xml locations:

■ Sun Java System Web Server :
<WS-install-dir>\https-<WS-instance-name>\config\server.xml

7

8

1

2

1

2

3

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)58

Early Access Documentation

■ Sun Java System Application Server: <AS-install-dir>\domain<appserver
domain><appserver_instance>\config\server.xml

Example:<AS-install-dir>\domain\domain1\server1\config\server.xml

Copy LoginModuleSample.xml from
/FederatedAccessManager-base\samples\authentication\spi\providers to
/FederatedAccessManager-base\web-src\services\config\auth\default.

Restart the web container
Web Server: <WS-home-dir>\https-<WS-instance-name>\restart

Application Server: AppServer-home-dir>\domains\<domain
name><server_instance>\bin\restartserv

Implementing the Authentication Post Processing SPI
The Authentication SPI includes the AMPostAuthProcessInterface which can be
implemented for post processing tasks. The SPI is configurable at the organization, service and
role levels. The Authentication Service invokes the post processing SPI methods on successful
or failed authentication and on logout. The Java API Reference for AMPostProcessInterface is
available at:

/FederatedAccessManager-base/SUNWam/docs/com/sun/identity/authentication/spi/
AMPostAuthProcessInterface.html

Note – <PRODUCT_DIR> or /FederatedAccessManager-base directory on different platforms:

■ Solaris Sparc/x86: /FederatedAccessManager-base/SUNWam
■ Linux: /FederatedAccessManager-base/sun/identity

■ “To Compile the ISAuthPostProcess Sample Program on Solaris Sparc/x86 or Linux” on
page 59

■ “To Deploy the ISAuthPostProcess Sample Program on Solaris Sparc/x86 or Linux” on
page 60

■ “To Deploy the ISAuthPostProcess Sample Program on Windows 2000” on page 61
■ “Configuring the Authentication Post Processing SPI” on page 61

▼ To Compile the ISAuthPostProcess Sample Program on Solaris
Sparc/x86 or Linux
Follow this procedure to compile the sample found under
/FederatedAccessManager-base/samples/authentication/spi/postprocess.

4

5

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 59

Early Access Documentation

Set the following environment variables.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
AccessManager-base/lib directory. Include jaas.jar in your classpath if you are using JDK
version lower than JDK1.4

BASE_DIR: Set this variable to the directory where Federated Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

These variables will be used to run the gmake command. You can also set these variables in the
Makefile. This Makefile is in the following directory:
/FederatedAccessManager-base/samples/authentication/spi/postprocess.

In the directory /FederatedAccessManager-base
/samples/authentication/spi/postprocess, run the gmake command.

▼ To Deploy the ISAuthPostProcess Sample Program on Solaris Sparc/x86
or Linux

Copy ISAuthPostProcess.jar from JAR_DIR to /FederatedAccessManager-base/lib.

Update the web container configuration file server.xml.

Add ISAuthPostProcessSample.jar to the classpath. The server.xml file for different web
containers can be found at the following locations:

Web Server: <WS-home-dir>/https-<WS-instance-name>/config/

Application Server:<AS-home-dir>/domain/domain1/server1/config/

For all other web containers consult, the manufacturer’s documentation.

Restart the web container.

Web Server: <WS-home-dir>/https-<WS-instance-name>/restart

Application Server: <AS-install-dir>/<domains>/<domain name>/<server

instance>/bin/restartserv Example:
/<AS-home-dir>/domains/domain1/server1/bin/restartserv

For all other web containers consult their documentation.

1

2

1

2

3

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)60

Early Access Documentation

▼ To Deploy the ISAuthPostProcess Sample Program on Windows 2000
Go to the base-directory\samples\authentication\spi\postprocess directory and run the
make command.

Copy ISAuthPostProcess.jar from JAR_DIR to base-directory\lib

In the Web Container from which this sample has to run, update the classpath with
ISAuthPostProcess.jar.

Restart Access Manager.
base-directory\bin\amserver start

To Configure Authentication Post Processing SPI

This sample can be can be set in the Core Authentication Service for Organization and
Authentication Configuration Service for Role OR Service.

See the section “Configuring the Authentication Post Processing SPI” on page 61.

Configuring the Authentication Post Processing SPI
The Authentication PostProcessing Sample can be configured at the Organization, Service or
Role level.
■ “To Configure ISAuthPostProcess Sample for an Organization” on page 61
■ “To Configure the ISAuthPostProcess Sample for a Service” on page 62
■ “To Configure ISAuthPostProcess Sample for a Role” on page 63

▼ To Configure ISAuthPostProcess Sample for an Organization

Log in to the console as amAdmin. Use the following URL:
http://host.domain:port/Console-Deploy-URI

Click Identity Management, and select your organization.

From the View menu, click Services.

In the navigation frame, under Authentication, click Core.

Add the following to the Authentication PostProcessing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess

Add the following to the Authentication PostProcessing Class attribute:
ISAuthPostProcessSample

1

2

3

More Information

1

2

3

4

5

6

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 61

Early Access Documentation

Click Save.

Log out.

Go to the following URL

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

The postprocessing SPI will be executed on successful authentication, on failed authentication,
and on Logout.

▼ To Configure the ISAuthPostProcess Sample for a Service

Log in to the console as amAdmin. Use the following URL:

http://<host>.<domain>:<port>/<Console-Deploy-URI>

Click Identity Management, and select your organization.

From the View menu, select Services.

Select Authentication Configuration

From the Service Instance frame, select New Instance.

Enter a name for the service.

Add the following to the Authentication PostProcessing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess. ISAuthPostProcessSampl

Click Submit to save the changes.

Click Service Name and define the Authentication Configuration for the new service.

Log out.

Go to the following URL: http://host.domain:port/Service-Deploy-URI/UI/Login?
service=servicename
If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

The postprocessing SPI will get executed on successful authentication, failed authentication and
on Logout for the service accessed.

7

8

9

1

2

3

4

5

6

7

8

9

10

11

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)62

Early Access Documentation

▼ To Configure ISAuthPostProcess Sample for a Role

Log in to the console as amAdmin. Use the following URL:
http://host.domain:port/Console-Deploy-URI

Click the Identity Management tab, and select your organization.

From the View menu, select Roles to view the role properties.

From the View menu, select Services.

Click Edit to edit the authentication configuration.

Add the following to the Authentication post Processing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess. ISAuthPostProcessSample

Click Submit to save the changes.

Log out.

Go to the following URL:
http://host.domain:port/Service-Deploy-URI/UI/Login?role=roleName

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter. Example: org=orgName

The postprocessing SPI will be executed for the service accessed on successful authentication,
on failed authentication, and on Logout.

Generating an Authentication User ID
This file explains how to compile, deploy and configure the Authentication User ID Generation
SPI Sample.
■ “To Compile the UserIDGeneratorSample on Solaris Sparc/x86 and Linux” on page 64
■ “To Deploy the UserIDGeneratorSample Program on Solaris SPARC/x86 or Linux” on

page 65
■ “Configuring the UserIDGeneratorSample Program” on page 65
■ “Compiling the UserIDGeneratorSample Program” on page 64

In the following sections, the PRODUCT_DIR setting depends on which platform you’re using:

Solaris Sparc/x86: PRODUCT_DIR = <install_root>/SUNWam

Linux: PRODUCT_DIR = <install_root>/sun/identity

1

2

3

4

5

6

7

8

9

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 63

Early Access Documentation

Compiling the UserIDGeneratorSample Program
■ “To Compile the UserIDGeneratorSample on Solaris Sparc/x86 and Linux” on page 64
■ “To Compile the UserIDGeneratorSample on Windows 2000” on page 64
■ “To Deploy the UserIDGeneratorSample Program on Windows 2000” on page 65
■ “To Configure the UserIDGeneratorSample Program” on page 65

▼ To Compile the UserIDGeneratorSample on Solaris Sparc/x86 and Linux
The sample is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

Set the following environment variables.
These variables will be used to run the gmake command. You can also set these variables in the
Makefile which is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
<PRODUCT_DIR>/lib directory. Include jaas.jar in your classpath if you are using JDK
version less than JDK1.4.

BASE_DIR: Set this variable to the directory where the Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

In the directory AccessManager-base /samples/authentication/spi/genuid, run the gmake
command:

▼ To Compile the UserIDGeneratorSample on Windows 2000

Change to the <install-root>\samples\authentication\spi\genuid directory.

Run the make command:

Deploying the UserIDGeneratorSample Program
■ “To Deploy the UserIDGeneratorSample Program on Solaris SPARC/x86 or Linux” on

page 65
■ “To Deploy the UserIDGeneratorSample Program on Windows 2000” on page 65

1

2

1

2

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)64

Early Access Documentation

▼ To Deploy the UserIDGeneratorSample Program on Solaris SPARC/x86
or Linux

Copy UserIDGeneratorSample.jar from JAR_DIR to AccessManager-base/lib.

in the Web Container from which this sample has to run, update the classpath with
UserIDGeneratorSample.jar.

■ On Sun ONE Web Server, go to server instance configurationdirectory:
<WS-home-dir>/https-<WS-instance-name>/config/

■ On Sun ONE Application Server, in the directory
<AS-home-dir>/domain/domain1/server1/config/ update server.xml with the new
classpath.

■ For all other containers, consult the documentation that came with the product.

Restart web container.<WS-home-dir>/https-<WS-instance-name>/start
<AS-home-dir>/domains/domain1/server1/bin/start

▼ To Deploy the UserIDGeneratorSample Program on Windows 2000

Copy UserIDGeneratorSample.jar from JAR_DIR to <install-root>\\lib

In the Web Container from which this sample has to run, update the classpath with
UserIDGeneratorSample.jar.

Restart Access Manager.
<install-root>\bin\amserver start

Configuring the UserIDGeneratorSample Program
The Authentication User ID Generation Sample can be configured at the Organization level,
and then used or invoked by the out-of-box Membership/Self- registration authentication
module.

■ “To Configure the UserIDGeneratorSample Program” on page 65
■ “To Configure UserIDGeneratorSample for an Organization” on page 66
■ “To Access an Authentication Module for an Organization” on page 66

To Configure the UserIDGeneratorSample Program

Configuring the program on Windows 2000 is similar to configuring the program on Solaris.
See “Configuring the Authentication Post Processing SPI” on page 61.

1

2

3

1

2

3

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 65

Early Access Documentation

▼ To Configure UserIDGeneratorSample for an Organization

Log in to Access Manager console as amAdmin. Use the following URL:
http://host.domain:port/Console-Deploy-URI

Click the Identity Management tab, and select your organization.

From the View menu, select Services.

In the navigation frame, under Authentication, click Core.

Add the following to the Pluggable User Name Generator Class attribute:
com.iplanet.am.samples.authentication.spi.genuid. UserIDGeneratorSample

Click Save to save the changes.

Log out.

▼ To Access an Authentication Module for an Organization
This module is the one which invokes the UserIDGenerator SPI implementation class. By
default, only the Membership/Self-registration authentication module calls this SPI
implementation.

Make sure that you have registered and enabled the Membership authentication module, and
that you have created a template for the organization.

Enter the following URL:
http://host.domain:port/Service-Deploy-URI/UI/Login?module=Membership

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter. Example: org=orgName

Click New User.
You should be able to register any existing username or user ID.

The UserIDGeneratorSample will be executed. You will be presented with the generated User
IDs choice menu to choose any one username or user ID.

Implementing A Pure JAAS Module
A sample program demonstrates how to write pure a JAAS module to replay callbacks by
authenticating using Access Manager Authentication Client API. It will authenticate a user by

1

2

3

4

5

6

7

1

2

3

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)66

Early Access Documentation

replaying the callbacks required by Access Manager the Authentication Module. You can
modify this program to use other existing or customized Access Manager Authentication
modules. This sample module can be plugged in into any standard JAAS framework using the
JAAS API.

Note – For detailed information on JAAS, see the Sun Developer Documentation at the
following URL: http://java.sun.com/products/jaas/. For detailed information on how to
write a JAAS module, see the JAAS LoginModule Developer’s Guide at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/security/

jaas/JAASLMDevGuide.html

Conventions Used in the Samples

TABLE 2–4 File Locations for Solaris Sparc/x86

Variable Description Location

Config_directory Directory that contains
configuration files

/CONFIG_DIR = /etc/opt/SUNWam/config

Product_Directory Directory where Federated
Access Manager is installed.

PRODUCT_DIR = <install_root>/SUNWam

TABLE 2–5 File Locations for Linux

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = /etc/opt/sun/identity/config

Product_Directory Directory where Federated
Access Manager is installed.

PRODUCT_DIR = <install_root>/sun/identity

TABLE 2–6 File Locations for Windows 2000

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = <install_root>\lib

Product_Directory Directory where Federated
Access Manager is installed.

▼ To Run the JAAS Module Sample on Solaris Sparc x86 or Linux
A sample configuration file purejaassample.config is provided for testing this sample. It
contains only one entry: Sample. Sample is the value for CONFIG in the Makefile:

Before You Begin

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 67

Early Access Documentation

Sample {

PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"
INDEX_NAME="LDAP" debug=true;

};

The entry specifies that the LoginModule used to do the user authentication is the
PureJAASSampleLoginModule and that this SampleLoginModule must succeed in order for
authentication to be considered successful. It passes options with ORG_NAME as the organization
name and INDEX_NAME as the Federated Access Manager authentication module to which this
sample must authenticate. If you must use a different login configuration, modify the Makefile.
For example, change the following:

-Djava.security.auth.login.config=purejaassample.config

to:

-Djava.security.auth.login.config=your_jaas_config_file.config

In the Makefile, set the following variables:

BASE: Enter the path to the directory where Access manager is installed.

JAVA_HOME: Enter the path to the directory where Java compiler is installed

CONFIG: Enter the entry specified in the login configuration file. This entry will be used to do
the user authentication

Copy AMConfig.properties from the Federated Access Manager host machine to the client
machine where the sample will be run.

On the client machine, be sure the following are in your classpath:

■ am_services.jar

■ jaas.jar

■ jss3.jar

■ AMConfig.properties

Include jaas.jar in your classpath if you are using a JDK version less than JDK1.4

To compile, run the gmake command.

To run the sample program run the gmake run command.

1

2

3

4

5

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)68

Early Access Documentation

▼ To Enable SSL

In the sample client program, add this JVM property:

-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

In the AMConfig.properties file, edit the following properties:

com.iplanet.am.admin.cli.certdb.dir: <PRODUCT_DIR>/servers/alias

com.iplanet.am.admin.cli.certdb.prefix: https-machine1.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine where
machine1 is the host name of the server

▼ To Run the Sample on Windows 2000
A sample configuration file purejaassample.config is provided for testing this sample. It
contains only one entry: Sample. Sample is the value for CONFIG in the Makefile:

Sample {

PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"
INDEX_NAME="LDAP" debug=true;

};

The entry specifies that the LoginModule used to do the user authentication is the
PureJAASSampleLoginModule and that this SampleLoginModule must succeed in order for
authentication to be considered successful. It passes options with ORG_NAME as the organization
name and INDEX_NAME as the Federated Access Manager authentication module to which this
sample must authenticate. If you must use a different login configuration, modify the Makefile.
For example, change the following:

-Djava.security.auth.login.config=purejaassample.config

to:

-Djava.security.auth.login.config=your_jaas_config_file.config

In make.bat, set the following properties:

BASE: Enter the path to the directory where Federated Access Manager is installed

JAVA_HOME: Enter the path to the directory where the Java compiler is installed.

CONFIG: Enter the entry which will be used for user authentication. This entry is specified in
the login configuration file.

1

2

Before You Begin

1

Working with the Authentication SPI Samples

Chapter 2 • Using the Authentication Interfaces 69

Early Access Documentation

Copy AMConfig.properties from the Federated Access Manager host machine to the client
machine where this sample will be run.

On the client machine, make sure the following are in your classpath:

■ am_services.jar

■ jaas.jar

■ jss3.jar

■ AMConfig.properties

Include jaas.jar in your classpath if you are using JDK version less than JDK1.4.

To compile, run the make command.

To run the sample program, run the make run command.

▼ To Enable SSL

In the sample client program, add this JVM property:
-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

Edit the following properties in the AMConfig.properties file:
com.iplanet.am.admin.cli.certdb.dir:
<install-dir>\SUN\IdentityServer6\Servers\alias

com.iplanet.am.admin.cli.certdb.prefix:https-machine1.red.iplanet.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine where
machine1 is the host name of the server

For the detailed information, see the Java API Reference for Remote Client APIs, by default, in
the following directory:

/FederatedAccessManager-base/SUNWam/docs

For the detailed information on how to plug the Login Module into the standard JAAS Context,
see the JAAS Reference Guide at the following URL:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

2

3

4

5

1

2

Working with the Authentication SPI Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)70

Early Access Documentation

Enforcing Authorization with the Policy Service

Sun JavaTM System Federated Access Manager enables organizations to control the usage of, and
access to, their resources. This chapter provides information about how the Policy Service
allows you to define, manage, and enforce policies towards that end. It contains the following
sections:

■ “About The Policy Service” on page 71
■ “About the Policy Service Interfaces” on page 72
■ “Enabling Authorization Using the Java Authentication and Authorization Service” on

page 77
■ “Adding a Policy-Enabled Service to Federated Access Manager” on page 79
■ “Using the Policy Code Samples” on page 82
■ “Developing Custom Subjects, Conditions, Referrals, and Response Providers” on page 86
■ “Creating Policies for a New Service” on page 91
■ “Developing and Running a Policy Evaluation Program” on page 92
■ “Programmatically Constructing Policies” on page 94

About The Policy Service
The Policy Service provides the functionality to control access to web services and applications
by providing authorization decisions based on defined and applicable policies or rules that
define who or what is authorized to access a resource. In a single sign-on (SSO) environment,
the Policy Service acts as authorization authority, providing authorization decisions that are
enforced by a policy agent. The Policy Service acts as a Policy Administration Point (PAP) and a
Policy Decision Point (PDP). As a PAP, it allows privileged users to create, modify, and delete
access control policies. As a PDP, it provides access control decisions (after evaluating
applicable policies) to a Policy Enforcement Point (PEP) which, in a Federated Access Manager
environment, is a policy agent.

3C H A P T E R 3

71

Early Access Documentation

Note – For information on how the Policy Service works within a user session, see Chapter 5,
“User Session and Single Sign-On Processes,” in Sun Federated Access Manager 8.0 Technical
Overview. Additional information is in Chapter 4, “Authorization and the Policy Service,” in Sun
Java System Access Manager 7.1 Technical Overview. More information on policy agents can be
found in XXXX Policy Agents User's Guide XXXX.

About the Policy Service Interfaces
The Policy Service provides application programming interfaces (API) to administer policies
and provide authorization decisions. It also provides service provider interfaces (SPI) to extend
the Policy Service functionality. These interfaces are described in the following sections,
organized by package names.
■ “The com.sun.identity.policy Package” on page 72
■ “The com.sun.identity.policy.client Package” on page 75
■ “The com.sun.identity.policy.interfaces Package” on page 75
■ “The com.sun.identity.policy.jaas Package” on page 76

Note – Federated Access Manager also provides C API to enable external applications to connect
to the Policy Service framework. For information about using the Policy C API, see Chapter 3,
“Policy Data Types and Functions,” in Sun Java System Access Manager 7.1 C API Reference. For a
comprehensive listing of all Java interfaces and their usage, see the Federated Access
Manager 8.0 Java API Reference.

The com.sun.identity.policyPackage
com.sun.identity.policy contains classes for policy management and policy evaluation as
described in the following sections.
■ “Policy Management Classes” on page 72
■ “Policy Evaluation Classes” on page 73

Policy Management Classes
Policy management classes are used by privileged system administrators to programmatically
add, look up, modify, replace and delete policies, and update the policy data store, if
appropriate. Attempts by non-privileged users to manage policies will result in an exception
and be logged. A valid session token is required to invoke any method provided by these classes.
The key policy management classes are:
■ “PolicyManager” on page 73
■ “Policy” on page 73

About the Policy Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)72

Early Access Documentation

PolicyManager

com.sun.identity.policy.PolicyManager is the top-level administrator class for policy
management in a specific realm. This class provides methods that enable the administrator to
add, look up, modify, replace and delete policies. Only a privileged user with access to the policy
data store and a valid session token can create a PolicyManager object. Some of the more
widely used methods include:

getPolicyNames() Retrieves all named policies created in the realm for which the
PolicyManager object was instantiated. This method can also take a
pattern (filter) as an argument.

getPolicy() Retrieves a policy when given the policy name.

addPolicy() Adds a policy to the realm for which the PolicyManager object was
instantiated. If a policy with the same name already exists, it will be
overwritten.

removePolicy() Removes a policy from the realm for which the PolicyManager object
was instantiated.

replacePolicy() Overwrites a policy already defined in the realm for which the
PolicyManager object was instantiated.

Policy

com.sun.identity.policy.Policy represents a policy definition with all its intended parts,
including Rule(s), Subject(s), Condition(s), Referral(s) and Response Provider(s). The Policy
object can be saved in the policy data store if the addPolicy() or replacePolicy() methods
from the PolicyManager class are invoked. This class contains methods for adding, removing,
replacing or retrieving any of the parts of a policy definition.

Policy Evaluation Classes
Policy Decision API is used to evaluate policy decision when a principal attempts an action on a
resource. This section covers some key classes that provide Policy Evaluation API. Some classes
are also provided to be used only by privileged users to test policy decisions applicable to other
users.

Policy evaluation classes are used to evaluate the applicable policy when a principal attempts an
action on a resource and send a determination on whether the principal will be allowed or
denied access. The key policy evaluation classes are:

■ PolicyEvaluator
■ ProxyPolicyEvaluator
■ PolicyEvent

About the Policy Service Interfaces

Chapter 3 • Enforcing Authorization with the Policy Service 73

Early Access Documentation

Caution – Policy evaluation classes from this package require a direct connection to the policy
data store. These classes should be used with caution, and only when classes from
com.sun.identity.policy.client cannot handle your use case. See “The
com.sun.identity.policy.client Package” on page 75.

PolicyEvaluator

com.sun.identity.policy.PolicyEvaluator evaluates policy privileges and provides policy
decisions. It provides methods to evaluate access to one resource or a hierarchy of resources,
and supports both boolean and non-boolean type policies. A valid session token of the principal
attempting access is required to invoke any method of this class. A PolicyEvaluator class is
created by calling the constructor with a service name. Key public methods of this class include:

isAllowed() Evaluates a policy associated with the given resource and returns a
boolean-type value indicating an allow or deny decision.

getPolicyDecision() Evaluates policies and returns a decision as to whether the
associated principal can perform the specified actions on the
specified resource.

getResourceResults() A ResourceResult contains policy decisions regarding a
particular protected resource and its sub resources.
getResourceResults() obtains these policy decisions. Possible
values for the scope of objects retrieved are
ResourceResult.SELF_SCOPE (returns an object that contains the
policy decision for the specified resource only),
ResourceResult.SUBTREE_SCOPE (includes policy decisions for
the specified resource and its sub-resources), and
ResourceResult.STRICT_SUBTREE_SCOPE (returns an object that
contains one policy decision regarding the resourceName only).
For example, the PolicyEvaluator class can be used to display
links for a list of resources to which an authenticated user has
access. The getResourceResults() method can be used to
retrieve a list of resources to which the user has access from a
defined resourceName parameter — a URL in the form
http://host.domain:port. The resources are returned as a
PolicyDecision object based on the user’s policies. If the user is
allowed to access resources on different servers, this method needs
to be called for each server.

Note – Not all resources that have policy decisions are accessible to the user. Access depends on
the ActionDecision() value contained in policy decisions.

About the Policy Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)74

Early Access Documentation

ProxyPolicyEvaluator

com.sun.identity.policy.ProxyPolicyEvaluator allows a privileged user (top-level
administrator, organization administrator, policy administrator, or organization policy
administrator) to get policy privileges and evaluate policy decisions for any user in their scope
of administration. com.sun.identity.policy.ProxyPolicyEvaluatorFactory is the
singleton class used to get ProxyPolicyEvaluator instances.

PolicyEvent

com.sun.identity.policy.PolicyEvent represents a policy event that could potentially
change the current access status. A policy event is created and passed to registered policy
listeners whenever there is a change in a policy rule. This class works with the PolicyListener
class in the com.sun.identity.policy.interface package.

The com.sun.identity.policy.client Package
The com.sun.identity.policy.client package contains classes that can be used by remote
Java applications to evaluate policies and communicate with the Policy Service to get policy
decisions. This package does not communicate with the policy data store therefore, use it when,
for example, there is an intervening firewall. The package also maintains a local cache of policy
decisions kept current either by a configurable time to live and/or notifications from the Policy
Service.

The com.sun.identity.policy.interfaces Package
The com.sun.identity.policy.interfaces package contains SPI for writing custom plug-ins
to extend the Policy Service. The classes are used by service developers and policy
administrators who need to provide additional policy features as well as support for legacy
policies.

Condition Provides methods used to constrain a policy to, for example,
time-of-day or IP address. This interface allows the pluggable
implementation of the conditions.

PolicyListener Defines an interface for registering policy events when a policy is
added, removed or changed. PolicyListener is used by the Policy
Service to send notifications and by listeners to review policy change
events.

Referral Provides methods used to delegate the policy definition or evaluation of
a selected resource (and its sub-resources) to another realm or policy
server.

About the Policy Service Interfaces

Chapter 3 • Enforcing Authorization with the Policy Service 75

Early Access Documentation

ResourceName Provides methods to determine the hierarchy of the resource names for
a determined service type. For example, these methods can check to see
if two resources names are the same or if one is a sub-resource of the
other.

ResponseProvider Defines an interface to allow pluggable response providers into the
Federated Access Manager framework. Response providers are used to
provide policy response attributes which typically provide attribute
values from the user profile.

Subject Provides methods to determine if an authenticated user is a member of
the given subject.

The com.sun.identity.policy.jaas Package
The com.sun.identity.policy.jaas package provides classes for performing policy
evaluation against Federated Access Manager using the Java Authentication and Authorization
Service (JAAS) framework. JAAS is a set of APIs that enable services to authenticate and enforce
access controls upon users. This package provides support for authorization only, making it
possible to use JAAS interfaces to access the Policy Service. It contains the following
implementations of JAAS classes:

■ “ISPermission” on page 76
■ “ISPolicy” on page 77

For more information see “Enabling Authorization Using the Java Authentication and
Authorization Service” on page 77.

ISPermission

com.sun.identity.policy.jaas.ISPermission extends java.security.Permission, an
abstract class for representing access to a resource. It represents the control of a sensitive
operation, such as opening of a socket or accessing a file for a read or write operation. It does not
grant permission for that operation, leaving that responsibility to the JAAS AccessController

class which evaluates Federated Access Manager policy against the Policy Service.

Note – ISPermission covers the case when additional policy services are defined and imported
provided they only have boolean action values as a JAAS permission only has a boolean result.

About the Policy Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)76

Early Access Documentation

ISPolicy

com.sun.identity.policy.jaas.ISPolicy is an implementation of the JAAS abstract class
java.security.Policy which represents the system policy for a Java application environment.
It performs policy evaluation against the Policy Service instead of against the default file-based
PolicyFile.

Enabling Authorization Using the Java Authentication and
Authorization Service

Rewritten. Review carefully.

The Java Authentication and Authorization Service (JAAS) is a set of API that can determine
the identity of a user or computer attempting to run Java code, and ensure that the entity has the
right to execute the requested functions. After an identity has been determined using
authentication, a Subject object, representing a grouping of information about the entity, is
created. Whenever the Subject attempts a restricted operation or access, the Java runtime uses
the JAAS AccessController class to determine which, if any, Principal (representing one
piece of information established during authentication) would authorize the request. If the
Subject in question contains the appropriate Principal, the request is allowed. If the
appropriate Principal is not present, an exception is thrown.

Note – For more information see the JAAS Java API Reference.

In Federated Access Manager the custom implementation of the JAAS java.security.Policy,
com.sun.identity.policy.jaas.ISPolicy, relies on the policy framework to provide policy
evaluation for all Policy Service policies. Policy related to resources not under Federated Access
Manager control (for example, system level resources) are evaluated using JAAS.

Note – Federated Access Manager policy does not control access to
com.sun.security.auth.PolicyFile, the default JAAS policy store.

To enable authorization using JAAS in Federated Access Manager use the JAAS
java.security.Policy API to reset policy during run time. In the sample code, the client
application resets the policy to communicate with Federated Access Manager using ISPolicy.
Federated Access Manager provides the support needed to define policy through
ISPermission.

Remark 3–1
Reviewer

Enabling Authorization Using the Java Authentication and Authorization Service

Chapter 3 • Enforcing Authorization with the Policy Service 77

Early Access Documentation

http://java.sun.com/j2se/1.4.2/docs/api/index.html

EXAMPLE 3–1 Sample JAAS Authorization Code

public static void main(String[] args) {

try {

// Create an SSOToken

AuthContext ac = new AuthContext("dc=iplanet,dc=com");
ac.login();

Callback[] callbacks = null;

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

try {

addLoginCallbackMessage(callbacks);

// this method sets appropriate responses

// in the callbacks.

ac.submitRequirements(callbacks);

} catch (Exception e) { }

}

}

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

Subject subject = ac.getSubject();

// get the authenticated subject

Policy.setPolicy(new ISPolicy());

// change the policy to our own Policy

ISPermission perm = new ("iPlanetAMWebAgentService",

"http://www.sun.com:80", "GET");
Subject.doAs(subject, new PrivilegedExceptionAction() {

/* above statement means execute run() method of the

/* Class PrivilegedExceptionAction()

as the specified subject */

public Object run() throws Exception {

AccessController.checkPermission(perm);

// the above will return quietly if the Permission

// has been granted

// else will throw access denied

// Exception, so if the above highlighed ISPermission

// had not been granted, this return null;

}

});

}

}

Enabling Authorization Using the Java Authentication and Authorization Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)78

Early Access Documentation

Adding a Policy-Enabled Service to Federated Access Manager
You can load a service into Federated Access Manager that already contains policy schema.
Federated Access Manager provides a sample XML file for a new service that contains policy
schema. You can modify
/FederatedAccessManager-base/SUNWam/samples/policy/SampleWebService.xml to fit your
needs, and then add your service to Federated Access Manager. Following is a copy of
SampleWebService.xml

EXAMPLE 3–2 SampleWebService.xml

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"
"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="SampleWebService" version="5.0">
<Schema

serviceHierarchy="/DSAMEConfig/SampleWebService"
i18nFileName="SampleWebService"
i18nKey="SampleWebService">*

<Global>

<AttributeSchema name="serviceObjectClasses" type="list" syntax="string"
i18nKey="SampleWebService"/>

</Global>

<Policy>

<AttributeSchema name="GET"
type="single"
syntax="boolean"
uitype="radio"
i18nKey="get">
<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>
<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="POST"
type="single"

syntax="boolean"
uitype="radio"

i18nKey="post">
<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

Adding a Policy-Enabled Service to Federated Access Manager

Chapter 3 • Enforcing Authorization with the Policy Service 79

Early Access Documentation

EXAMPLE 3–2 SampleWebService.xml (Continued)

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>
</BooleanValues>

</AttributeSchema>

<AttributeSchema name="PUT"
type="single"

syntax="boolean"
uitype="radio"

i18nKey="put">
<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>
<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="DELETE"
type="single"

syntax="boolean"
uitype="radio"

i18nKey="delete">
<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>
<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

</Policy>

</Schema>

</Service>

</ServicesConfiguration>

The Policy element contains AttributeSchema elements to define applicable actions and values
for actions. While defining policies, you can define access rules for those actions. Examples
include canForwardEmailAddress and canChangeSalaryInformation. The actions specified
by these attributes can be associated with a resource if the IsResourceNameAllowed element is
specified in the attribute definition. For example, in the web agent XML service file,
amWebAgent.xml, GET and POST are defined as policy attributes with an associated URL resource
as IsResourceNameAllowed is specified.

Adding a Policy-Enabled Service to Federated Access Manager

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)80

Early Access Documentation

▼ To Add a New Policy-Enabled Service to Access
Manager

Run the amadmin command to load the policy-enabled service.
/FederatedAccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,default_org,root_suffix"
--password password
--schema /FederatedAccessManager-base/samples/policy/SampleWebService.xml

Copy the properties file to the localedirectory of the Federated Access Manager host machine.
cp SampleWebService.properties /FederatedAccessManager-base/locale

Create a service XML file that conforms to /FederatedAccessManager-base/dtd/sms.dtdand
contains the <Policy> element. See example below.
/etc/opt/SUNWam/config/xml/amWebAgent.xml (Solaris)
/etc/opt/sun/identity/config/xml/amWebAgent.xml(Linux and HP-UX)
Federated Access Manager\AccessManager\identity\config\xml\amWebAgent.xml

(Windows)

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"
"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="iPlanetAMWebAgentService" version="1.0">
<Schema

i18nFileName="amWebAgent"
i18nKey="iplanet-am-web-agent-service-description">

<Global>

<AttributeSchema name="serviceObjectClasses"
type="list"
syntax="string"

i18nKey="">
<DefaultValues>

<Value>iplanet-am-web-agent-service</Value>

</DefaultValues>

</AttributeSchema>

</Global>

<Policy>

<AttributeSchema name="GET"
type="single"

syntax="boolean"

1

2

3

Adding a Policy-Enabled Service to Federated Access Manager

Chapter 3 • Enforcing Authorization with the Policy Service 81

Early Access Documentation

uitype="radio"
i18nKey="GET">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>
<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="POST"
type="single"

syntax="boolean"
uitype="radio"
i18nKey="POST">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>
<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

</Policy>

</Schema>

</Service>

</ServicesConfiguration>

Create and copy locale properties file to /FederatedAccessManager-base/locale.

Use amadmin to load the service into Federated Access Manager.
Once the new service is added, you can define rules for the new service in policy definitions.

Using the Policy Code Samples
Federated Access Manager provides policy code samples to perform the following tasks:

■ Add a new service, which has a policy schema, to Federated Access Manager.
■ Develop and add custom developed subjects, referrals, conditions and response providers to

Federated Access Manager.
■ Develop and run policy evaluation programs
■ Construct policies programmatically and add them to the policy data store.
■ Create policies using amadmin.

All the files you need to run the policy code samples are located in the following directories:

Solaris Platform /FederatedAccessManager-base\samples\policy

4

5

Using the Policy Code Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)82

Early Access Documentation

Linux and HP-UX Platforms /FederatedAccessManager-base\identity\samples\policy

Windows Platform /FederatedAccessManager-base/identity/samples/policy

This section contains the following information regarding the samples.

■ “Use Cases Illustrated by Policy Code Samples” on page 83
■ “Compiling the Policy Code Samples” on page 85

Use Cases Illustrated by Policy Code Samples
Each of the following sections describes a sequence of steps you must take to run a policy
evaluation program or to create policies. Each step in a sequence is linked to detailed
instructions further down in this chapter.

■ “Policy Evaluation” on page 83
■ “Using amadmin to Create Policies for the URL Policy Agent Service” on page 85

Policy Evaluation
This section contains the following procedures:

■ “To Run a Policy Evaluation Program for the URL Policy Agent Service” on page 83
■ “To Run a Policy Evaluation Program for the URL Policy Agent Service and More” on

page 83
■ “To Run a Policy Evaluation Program for the Sample Service” on page 84
■ “To Run a Policy Evaluation Program for the Sample Service and More” on page 84

▼ To Run a Policy Evaluation Program for the URL Policy Agent Service
Use this sequence to runs a policy evaluation program for the iPlanetAMWebAgentService
service.

Compile the Policy code samples.
See Compiling the Policy Code Samples.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 92.

▼ To Run a Policy Evaluation Program for the URL Policy Agent Service
and More
This sequence runs the evaluation program for iPlanetAMWebAgentService and the sample
subject, condition, ResponseProvider, and referral implementations.

1

2

Using the Policy Code Samples

Chapter 3 • Enforcing Authorization with the Policy Service 83

Early Access Documentation

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 85.

Develop custom subjects, conditions, and referrals.
See “Developing Custom Subjects, Conditions, Referrals, and Response Providers” on page 86.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 92.

▼ To Run a Policy Evaluation Program for the Sample Service
This sequence runs the evaluation program for the SampleWebService.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 85.

Add a Policy-enabled service to Access Manager.
See “Adding a Policy-Enabled Service to Federated Access Manager” on page 79.

Create policies for the new service.
See “Creating Policies for a New Service” on page 91.

Develop and run a Policy evaluation program.
“Developing and Running a Policy Evaluation Program” on page 92.

▼ To Run a Policy Evaluation Program for the Sample Service and More
This sequence runs the evaluation program forSampleWebService and the sample subject,
condition, Response Provider, and referral implementations.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 85.

Add a Policy-enabled service to Access Manager.
See “Adding a Policy-Enabled Service to Federated Access Manager” on page 79.

Develop custom subjects, conditions, and referrals.
See “Developing Custom Subjects, Conditions, Referrals, and Response Providers” on page 86.

Create policies for the new service.
See “Creating Policies for a New Service” on page 91.

1

2

3

1

2

3

4

1

2

3

4

Using the Policy Code Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)84

Early Access Documentation

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 92.

Using amadmin to Create Policies for the URL Policy Agent Service
Use amadmin to create policies for the service. See “Creating Policies” in Sun Java System Access
Manager 7.1 Administration Guide for detailed instructions.

■ “To Use amadmin to Create Policies for the Sample Service” on page 85
■ “To Programmatically Construct Policies” on page 85

▼ To Use amadmin to Create Policies for the Sample Service
This sequence creates policies for SampleWebService.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 85.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 92.

▼ To Programmatically Construct Policies
This sequence constructs policies and adds them to the policy data store.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 85.

Programmatically construct policies.
See “Programmatically Constructing Policies” on page 94.

Compiling the Policy Code Samples
Samples can be run on Solaris, Linux, HP-UX, and Windows platforms. In the sample files, root
suffix DNs are specified as dc=example,dc=com. Substitute the root suffix with the actual root
suffix of your Federated Access Manager installation.

▼ To Compile the Policy Code Samples

Set the following variables in the Makefile (or make.bat in Windows).
BASE Set this to refer to the directory where Federated Access Manager is installed.

5

1

2

1

2

1

Using the Policy Code Samples

Chapter 3 • Enforcing Authorization with the Policy Service 85

Early Access Documentation

JAVA_HOME Set this variable to your installation of JDK. The JDK version should be higher
than JDK 1.4

To compile the sample program, run the gmake all command (or make.bat in Windows).

In the sample files, replace the root suffix DNswith values appropriate for your environment.

Developing Custom Subjects, Conditions, Referrals, and
Response Providers

Federated Access Manager provides subject, condition, referral, and response provider
interfaces that enable you to develop your own custom subjects, conditions, referrals, and
response providers. A sample implementation is provided for the following four interfaces.

SampleSubject.java Implements the Subject interface. This subject applies to
all the authenticated users who have valid SSOTokens.

SampleCondition.java Implements the Condition interface. This condition
makes the policy applicable to those users whose user
name length is greater than or equal to the length specified
in the condition.

SampleReferral.java Implements the Referral interface.
SampleReferral.java gets the referral policy decision
from a text file SampleReferral.properties located in
the /samples directory.

SampleResponseProvider.java Implements the ResponseProvider interface.
SampleResponseProvider.java takes as input the
attribute for which values are retrieved from Federated
Access Manager and sent back in the Policy Decision. If
the attribute does not exist in the user profile, no value is
sent back in the response.
SampleResponseProvider.java relies on the underlying
Identity Repository service to retrieve the attribute values
for the Subject(s) defined in the policy.

You must add the subject, condition, response provider, referral implementations to
iPlanetAMPolicyService and iPlanetAMPolicyConfigService in order to make them
available for policy definitions. These services are loaded into Federated Access Manager during
installation. To add the sample implementations to the Policy framework, modify the
iPlanetAMPolicy service and iPlanetAMPolicyConfig service. The service XML files are
located in the following directory:

2

3

Developing Custom Subjects, Conditions, Referrals, and Response Providers

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)86

Early Access Documentation

/FederatedAccessManager-base/SUNWam/samples/policy

The following is the text of the amPolicy_mod.xml file for the iPlanetAMPolicy service.

EXAMPLE 3–3 Text of the Default amPolicy_mod.xml File

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved

Use is subject to license terms.

-->

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"
"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="iPlanetAMPolicyService" version="1.0">
<PluginSchema className="SampleSubject"

i18nFileName="amPolicy"
i18nKey="iplanet-subject-SampleSubject-name"
interfaceName="Subject"
name="SampleSubject" >

</PluginSchema>

<PluginSchema className="SampleCondition"
i18nFileName="amPolicy"
i18nKey="iplanet-samplecondition-condition-name"
interfaceName="Condition"
name="SampleCondition" >

</PluginSchema>

<PluginSchema className="SampleReferral"
i18nFileName="amPolicy"
i18nKey="iplanet-sample-referral"
interfaceName="Referral"
name="SampleReferral" >

</PluginSchema>

<PluginSchema className="SampleResponseProvider"
i18nFileName="amPolicy"
i18nKey="iplanet-sample-responseprovider"
interfaceName="ResponseProvider"
name="SampleResponseProvider" >

</PluginSchema>

</Service>

Developing Custom Subjects, Conditions, Referrals, and Response Providers

Chapter 3 • Enforcing Authorization with the Policy Service 87

Early Access Documentation

EXAMPLE 3–3 Text of the Default amPolicy_mod.xml File (Continued)

</ServicesConfiguration>

The following is the text of the amPolicyConfig_mod.xml file for the iPlanetAMPolicyConfig
service .

EXAMPLE 3–4 Text of the Default amPolicyConfig_mod.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!--

Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved

Use is subject to license terms.

-->

<!DOCTYPE Requests

PUBLIC "-//iPlanet//Sun Java System Access Manager 2005Q4 Admin CLI DTD//EN"
"jar://com/iplanet/am/admin/cli/amAdmin.dtd"
>

<Requests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="a163">
<AddChoiceValues>

<AttributeValuePair>

<Attribute name="sun-am-policy-selected-responseproviders"/>
<Value>SampleResponseProvider</Value>

</AttributeValuePair>

</AddChoiceValues>

</SchemaRequests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="">
<AddDefaultValues>

<AttributeValuePair>

<Attribute name="sun-am-policy-selected-responseproviders"/>
<Value>SampleResponseProvider</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

Developing Custom Subjects, Conditions, Referrals, and Response Providers

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)88

Early Access Documentation

EXAMPLE 3–4 Text of the Default amPolicyConfig_mod.xml File (Continued)

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="a160">
<AddChoiceValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-subjects"/>
<Value>SampleSubject</Value>

</AttributeValuePair>

</AddChoiceValues>

</SchemaRequests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="">
<AddDefaultValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-subjects"/>
<Value>SampleSubject</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="a161">
<AddChoiceValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-conditions"/>
<Value>SampleCondition</Value>

</AttributeValuePair>

</AddChoiceValues>

</SchemaRequests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="">
<AddDefaultValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-conditions"/>
<Value>SampleCondition</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

Developing Custom Subjects, Conditions, Referrals, and Response Providers

Chapter 3 • Enforcing Authorization with the Policy Service 89

Early Access Documentation

EXAMPLE 3–4 Text of the Default amPolicyConfig_mod.xml File (Continued)

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="a162">
<AddChoiceValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-referrals"/>
<Value>SampleReferral</Value>

</AttributeValuePair>

</AddChoiceValues>

</SchemaRequests>

<SchemaRequests serviceName="iPlanetAMPolicyConfigService"
SchemaType="Organization"
i18nKey="">
<AddDefaultValues>

<AttributeValuePair>

<Attribute name="iplanet-am-policy-selected-referrals"/>
<Value>SampleReferral</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

</Requests>

▼ To Add a Sample Implementation to the Policy
Framework

Use dscfg to back up iPlanetAMPolicy and iPlanetAMPolicyConfig services.
cd DirectoryServer-base/ds6/bin
./dscfg export

-s "ou=iPlanetAMPolicyService,ou=services,root_suffix" output_file
./dscfg export

-s "ou=iPlanetAMPolicyConfigService,ou=services,root_suffix" output_file

Set the environment variable LD_LIBRARY_PATH.
On Solaris, add /usr/lib/mps/secv1 to LD_LIBRARY_PATH.

On Linux, add /opt/sun/private/lib to LD_LIBRARY_PATH.

On HP-UX, add /opt/sun/private/lib to SHLIB_PATH.

1

2

Developing Custom Subjects, Conditions, Referrals, and Response Providers

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)90

Early Access Documentation

Run the following commands:
cd /FederatedAccessManager-base/samples/policy

/FederatedAccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,root_suffix
--password password
--schema amPolicy_mod.xml

/FederatedAccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,root_suffix
--password password
--data amPolicyConfig_mod.xml

Change the properties files of the iPlanetAMPolicy and iPlanetAMPolicyConfig services to
add messages related to the new implementations.
cd /FederatedAccessManager-base/locale

cp amPolicy.properties amPolicy.properties.orig

cp amPolicy_en.properties amPolicy_en.properties.orig

cp amPolicyConfig.properties amPolicyConfig.properties.orig

cp amPolicyConfig_en.properties amPolicyConfig_en.properties.orig

cat <BASE_DIR>/samples/policy/amPolicy.properties >>

<BASE_DIR>/locale/amPolicy.properties

cat <BASE_DIR>/samples/policy/amPolicy_en.properties >>

<BASE_DIR>/locale/amPolicy_en.properties

cat <BASE_DIR>/samples/policy/amPolicyConfig.properties >>

<BASE_DIR>/locale/amPolicyConfig.properties

cat <BASE_DIR>/samples/policy/amPolicyConfig_en.properties >>

<BASE_DIR>/locale/amPolicyConfig_en.properties

Deploy the sample plug-ins.
Copy SampleSubject.class, SampleCondition.class, SampleResponseProvider.class,
SampleReferral.class from the /samples/policy directory to
/FederatedAccessManager-base/lib.

Restart Federated Access Manager.
The sample subject, condition, response provider, and referral implementations are now
available for policy definitions through the administration console or amadmin tool.

Creating Policies for a New Service
Federated Access Manager policies are managed through the Administration console or
through the amadmin command. However, policies cannot be modified using amadmin
command. You must delete the policy, and then add the modified policy using amadmin. To add

3

4

5

6

Creating Policies for a New Service

Chapter 3 • Enforcing Authorization with the Policy Service 91

Early Access Documentation

policies using amadmin, the Policy XML file must be developed following
/FederatedAccessManager-base/dtd/policy.dtd. Once the Policy XML file is developed, you
can load the Policy XML file.

Two sample Policy XML files exist in the Policy /samples directory. The sample Policy XML
files define policies for theSampleWebService service. SamplePolicy.xml defines a normal
policy for SampleWebService with a SampleSubject, a SampleResponseProvider, and a
SampleCondition. SamplereferralPolicy.xml defines a referral policy for SampleWebService
with a SampleReferral.

▼ To Load a Policy XML File
You must compile the Policy code samples and develop custom subjects, conditions, response
providers, and referrals before you can load policies present in the Policy XML files. See
“Compiling the Policy Code Samples” on page 85 and “Developing Custom Subjects,
Conditions, Referrals, and Response Providers” on page 86 for instructions.

Run the following command:
/FederatedAccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,<default_org>,root_suffix>"
--password <password>
--data <policy.xml>

Run the following command:
/FederatedAccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,default_org,root_suffix"
--password password
--data /FederatedAccessManager-base/samples/policy/SamplePolicy.xml
/FederatedAccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,root_suffix"
--password password
--data /FederatedAccessManager-base/samples/policy/

SampleReferralPolicy.xml

You can verify the newly added policies in Administration Console.

Developing and Running a Policy Evaluation Program
Federated Access Manager provides a Policy Evaluation API. This API has one Java class,
PolicyEvaluator. The package for this class is com.sun.identity.policy.PolicyEvaluator.
Federated Access Manager provides a sample policy evaluator program,
PolicyEvaluation.java. You can use this program to run policy evaluations for different

Before You Begin

1

2

Developing and Running a Policy Evaluation Program

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)92

Early Access Documentation

services. The policy evaluation is always based on a service such as iPlanetAMWebAgentService
or SampleWebService. The sample policy evaluation program uses the
PolicyEvaluation.properties file. Specify the input for the evaluation program in this file.
Examples are service name, action names, condition environment parameters, user name, and
user password.

This section contains the following procedures.

■ “To Set Policy Evaluation Properties” on page 93
■ “To Run a Policy Evaluation Program” on page 94

▼ To Set Policy Evaluation Properties
Set the value of pe.servicename to the service name.
Examples: iPlanetAMWebAgentService or SampleWebService.

Set the pe.resoucename to the name of the resource that you want to evaluate the policy
against.

Specify the action names in the pe.actionnames.
Separate the action names with a colon (:). If you want to get all the action values, leave the
pe.actionnamesblank.

Set other required properties such as pe.username and pe.password.

(Optional) Set the following properties pe.authlevel, pe.authscheme, pe.requestip,
pe.dnsname , pe.time if you use the corresponding conditions in your policy definitions.
If you don't want to set these environment parameters, just leave their values as blank.
pe.authlevel Used to evaluate AuthLevel Condition. pe.authlevel takes a positive

integer.

pe.authscheme Used to evaluate AuthScheme Condition. pe.authscheme takes a set of
colon-separated AuthScheme names.

pe.requestip Used to evaluate the IP Condition. pe.requestip takes an IP address
string.

pe.dnsname Used to evaluate the IP Condition. pe.dnsname takes a set of
colon-separated DNS names.

property pe.time Used to evaluate the Simple Time Condition. property pe.time
specifies the request time in milliseconds. If its value is set to the current
time, then it takes the current time in milliseconds.

1

2

3

4

5

Developing and Running a Policy Evaluation Program

Chapter 3 • Enforcing Authorization with the Policy Service 93

Early Access Documentation

▼ To Run a Policy Evaluation Program
You must set up policies before running a policy evaluation program.

Set the environment variable LD_LIBRARY_PATH.
On Solaris, add /usr/lib/mps/secv1 to LD_LIBRARY_PATH .

On Linux, add /opt/sun/private/lib to LD_LIBRARY_PATH.

On HP-UX, add /opt/sun/private/lib to the environment variable SHLIB_PATH.

Run the gmake run command (On Windows, make.bat run).

Programmatically Constructing Policies
Federated Access Manager provides Policy Management APIs that enable you to
programmatically create, add, update and remove policies. The sample program
PolicyCreator.java demonstrates how to programmatically construct policies and add them
to policy store. The program creates one normal policy named policy1 and one referral policy
named refpolicy1 and adds both policies to the policy store. The normal policy has one
subject of each subject type, one condition of each condition type, and one response provider of
each response provider type that comes with Access Manager at installation.

EXAMPLE 3–5 Sample Program PolicyCreator.java

/**

* $Id: PolicyCreator.java,v 1.5 2005/06/24 16:53:50 vs125812 Exp $

* Copyright © 2005 Sun Microsystems, Inc. All rights reserved.

*

import com.sun.identity.policy.PolicyManager;

import com.sun.identity.policy.ReferralTypeManager;

import com.sun.identity.policy.SubjectTypeManager;

import com.sun.identity.policy.ConditionTypeManager;

import com.sun.identity.policy.Policy;

import com.sun.identity.policy.Rule;

import com.sun.identity.policy.interfaces.Referral;

import com.sun.identity.policy.interfaces.Subject;

import com.sun.identity.policy.interfaces.Condition;

import com.sun.identity.policy.PolicyException;

import com.iplanet.sso.SSOToken;

import com.iplanet.sso.SSOException;

Before You Begin

1

2

Programmatically Constructing Policies

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)94

Early Access Documentation

EXAMPLE 3–5 Sample Program PolicyCreator.java (Continued)

import java.util.Set;

import java.util.HashSet;

import java.util.Map;

import java.util.HashMap;

public class PolicyCreator {

public static final String DNS_NAME="DnsName";
public static final String DNS_VALUE="*.red.iplanet.com";
public static final String START_TIME="StartTime";
public static final String START_TIME_VALUE="08:00";
public static final String END_TIME="EndTime";
public static final String END_TIME_VALUE="21:00";
public static final String AUTH_LEVEL="AuthLevel";
public static final String AUTH_LEVEL_VALUE="0";
public static final String AUTH_SCHEME="AuthScheme";
public static final String AUTH_SCHEME_VALUE="LDAP";

private String orgDN;

private SSOToken ssoToken;

private PolicyManager pm;

private PolicyCreator() throws PolicyException, SSOException {

BaseUtils.loadProperties();

orgDN = BaseUtils.getProperty("pe.realmname");
System.out.println("realmDN = " + orgDN);

ssoToken = BaseUtils.getToken();

pm = new PolicyManager(ssoToken, orgDN);

}

public static void main(String[] args) {

try {

PolicyCreator pc = new PolicyCreator();

pc.addReferralPolicy();

pc.addNormalPolicy();

System.exit(0);

} catch(Exception e) {

e.printStackTrace();

}

}

private void addNormalPolicy() throws PolicyException, SSOException {

System.out.println("Creating normal policy in realm:" + orgDN);

PolicyManager pm = new PolicyManager(ssoToken, orgDN);

Programmatically Constructing Policies

Chapter 3 • Enforcing Authorization with the Policy Service 95

Early Access Documentation

EXAMPLE 3–5 Sample Program PolicyCreator.java (Continued)

SubjectTypeManager stm = pm.getSubjectTypeManager();

ConditionTypeManager ctm = pm.getConditionTypeManager();

Policy policy = new Policy("policy1", "policy1 description");
Map actions = new HashMap(1);

Set values = new HashSet(1);

values.add("allow");
actions.put("GET", values);

String resourceName = "http://myhost.com:80/hello.html";
Rule rule = new Rule("rule1", "iPlanetAMWebAgentService",

resourceName, actions);

policy.addRule(rule);

Subject subject = stm.getSubject("Organization");
Set subjectValues = new HashSet(1);

subjectValues.add(orgDN);

subject.setValues(subjectValues);

policy.addSubject("organization", subject);

subject = stm.getSubject("LDAPUsers");
subjectValues = new HashSet(1);

String userDN = "uid=user1,ou=people" + "," + orgDN;

subjectValues.add(userDN);

subject.setValues(subjectValues);

policy.addSubject("ldapusers", subject);

subject = stm.getSubject("LDAPGroups");
subjectValues = new HashSet(1);

String groupDN = "cn=group1,ou=groups" + "," + orgDN;

subjectValues.add(groupDN);

subject.setValues(subjectValues);

policy.addSubject("ldapgroups", subject);

subject = stm.getSubject("LDAPRoles");
subjectValues = new HashSet(1);

String roleDN = "cn=role1" + "," + orgDN;

subjectValues.add(roleDN);

subject.setValues(subjectValues);

policy.addSubject("ldaproles", subject);

subject = stm.getSubject("IdentityServerRoles");
subjectValues = new HashSet(1);

roleDN = "cn=role1" + "," + orgDN;

subjectValues.add(roleDN);

subject.setValues(subjectValues);

Programmatically Constructing Policies

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)96

Early Access Documentation

EXAMPLE 3–5 Sample Program PolicyCreator.java (Continued)

policy.addSubject("is-roles", subject);

Condition condition = ctm.getCondition("IPCondition");
Map conditionProperties = new HashMap(1);

Set propertyValues = new HashSet(1);

propertyValues.add(DNS_VALUE);

conditionProperties.put(DNS_NAME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("ip_condition", condition);

condition = ctm.getCondition("SimpleTimeCondition");
conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(START_TIME_VALUE);

conditionProperties.put(START_TIME, propertyValues);

propertyValues = new HashSet(1);

propertyValues.add(END_TIME_VALUE);

conditionProperties.put(END_TIME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("time_condition", condition);

condition = ctm.getCondition("AuthLevelCondition");
conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(AUTH_LEVEL_VALUE);

conditionProperties.put(AUTH_LEVEL, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("auth_level_condition", condition);

condition = ctm.getCondition("AuthSchemeCondition");
conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(AUTH_SCHEME_VALUE);

conditionProperties.put(AUTH_SCHEME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("auth_scheme_condition", condition);

pm.addPolicy(policy);

System.out.println("Created normal policy");
}

private void addReferralPolicy()

Programmatically Constructing Policies

Chapter 3 • Enforcing Authorization with the Policy Service 97

Early Access Documentation

EXAMPLE 3–5 Sample Program PolicyCreator.java (Continued)

throws PolicyException, SSOException {

System.out.println("Creating referral policy for realm1");
ReferralTypeManager rtm = pm.getReferralTypeManager();

String subOrgDN = "o=realm1" + ",ou=services," + orgDN;

Policy policy = new Policy("refpolicy1", "ref to realm1",
true);

Map actions = new HashMap(1);

Rule rule = new Rule("rule1", "iPlanetAMWebAgentService",
"http://myhost.com:80/realm1", actions);

policy.addRule(rule);

Referral referral = rtm.getReferral("SubOrgReferral");
Set referralValues = new HashSet(1);

referralValues.add(subOrgDN);

referral.setValues(referralValues);

policy.addReferral("ref to realm1" , referral);

pm.addPolicy(policy);

System.out.println("Created referral policy for realm1");
}

}

▼ To Run the Sample Program PolicyCreator.java

Compile the sample code.
See “Compiling the Policy Code Samples” on page 85 above.

Set the environment variable LD_LIBRARY_PATH.
On Solaris, add /usr/lib/mps/secv1 to LD_LIBRARY_PATH.

On Linux, add /opt/sun/private/lib to LD_LIBRARY_PATH.

On HP-UX, add /opt/sun/private/lib to the environment variable SHLIB_PATH.

In the administration console, go to Access Control > root_realm> Services > Policy
Configuration.

Under“Selected Dynamic Attributes,”add the following as the two dynamic attributes to be
retrieved as part of the Policy Decision:

■ uid

■ cn

Set the following properties in the PolicyEvaluation.properties file.

1

2

3

4

5

Programmatically Constructing Policies

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)98

Early Access Documentation

pe.realmname DN of the root realm.

pe.username UserId to authenticate as.

pe.password Password to use to authenticate.

Run the gmake createPolicies command. (On Windows, make.bat createPolicies.)
gmake createPolicies .

Use the administration console to verify that the policies policy1 and refpolicy1 are added to
Federated Access Manager.

6

Programmatically Constructing Policies

Chapter 3 • Enforcing Authorization with the Policy Service 99

Early Access Documentation

100

Early Access Documentation

Tracking Session Data for Single Sign-On

The Federated Access Manager Session Service maintains information about an authenticated
user's session across all web applications in a single sign-on (SSO) environment. This chapter
describes the interfaces used to track session data for purposes of SSO and related sample code.
It includes the following sections:

■ “A Simple Single Sign-On Scenario” on page 101
■ “Inside a User Session” on page 102
■ “About the Session Service Interfaces” on page 104
■ “Using the SSO Code Samples” on page 110
■ “Developing Non-Web Based Applications” on page 116

A Simple Single Sign-On Scenario
In an SSO scenario, a user logs in to a protected resource. Once the user has successfully
authenticated to Federated Access Manager, a user session is created and stored in Federated
Access Manager memory. The user object uses browser cookies or URL query parameters to
carry a session identifier. Each time the user requests access to another protected resource, the
new application must verify the user's identity. It does not ask the user to present credentials.
Instead, the application uses the session identifier and the Session Service interfaces to retrieve
the user's session information from Federated Access Manager. If it is determined from the
session information that the user has already been authenticated and the session is still valid, the
new application allows the user access to its data and operations. If the user is not authenticated,
or if the session is no longer valid, the requested application prompts the user to present
credentials a second time. Until logging out, this scenario is played out every time the user
accesses a protected resource in the SSO environment. For more detailed information about
user sessions and SSO, see Chapter 5, “User Session and Single Sign-On Processes,” in Sun
Federated Access Manager 8.0 Technical Overview.

4C H A P T E R 4

101

Early Access Documentation

Inside a User Session
A user session is, more specifically, a data structure created by the Session Service to store
information about a user session. Cookies are used to store a token that uniquely identifies the
session data structure. A session data structure contains attributes and properties that define the
user's identity and time-dependent behaviors (for example, the maximum time before the
session expires).

Note – The values of most of these attributes and properties are set by services other than the
Session Service (primarily, the Authentication Service). The Session Service only provides
storage for session information and enforces some of the time-dependent behavior; for
example, invalidating and destroying sessions which exceed their maximum idle time or
maximum session time.

The following sections contain information about the session attributes and properties
contained in the session data structure.
■ “Session Attributes” on page 102
■ “Protected And Custom Properties” on page 103

Session Attributes
The session data structure contains the following fixed attributes:

UUID This universal, unique session identifier is an opaque, global string that
programmatically identifies a specific session data structure. With this
identifier, a resource is able to retrieve session information.

ClientDomain This is the DNS domain in which the client is located.

ClientID This is the user DN or the application's principal name.

Type This is specifies the type of client: USER or APPLICATION.

State This is the state of the session: VALID, INVALID, DESTROYED or
INACTIVE.

maxIdleTime This is the maximum time in minutes without activity before the
session will expire and the user must reauthenticate.

maxSessionTime This is the maximum time in minutes before the session expires and the
user must reauthenticate.

maxCachingTime. This is the maximum time in minutes before the client contacts Identity
Server to refresh cached session information

latestAccessTime This refers to the last time the user accessed the resource.

Inside a User Session

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)102

Early Access Documentation

creationTime This is the time at which the session token was set to a valid state.

Protected And Custom Properties
The session data structure also contains an extensible set of protected (or core) properties and
custom properties. Protected properties are set by Federated Access Manager and can only be
modified by Federated Access Manager (primarily the Authentication Service). Custom
properties are set and modified remotely by any application that knows the session identifier.

Note – The session property implementation can be extended to provide the private property
scope for each of the clients participating in the SSO environment. This addresses the
requirement of having an independent property space for each client to store and retrieve its
own session properties without interference from other clients sharing the same user session.

See the following sections for more information.

■ “Protected Properties” on page 103
■ “Custom Properties” on page 104

Protected Properties
The current protected properties used are:

Organization This is the DN of the organization to which the user belongs.

Principal This is the DN of the user.

Principals This is a list of names to which the user has authenticated. (This property
may have more then one value defined as a pipe separated list.)

UserId This is the user's DN as returned by the module, or in the case of modules
other than LDAP or Membership, the user name. (All Principals must
map to the same user. The UserId is the user DN to which they map.)

UserToken This is a user name. (All Principals must map to the same user. The
UserToken is the user name to which they map.)

Host This is the host name or IP address for the client.

authLevel This is the highest level to which the user has authenticated.

AuthType This is a pipe separated list of authentication modules to which the user
has authenticated (for example, module1|module2|module3).

Role Applicable for role-based authentication only, this is the role to which
the user belongs.

Inside a User Session

Chapter 4 • Tracking Session Data for Single Sign-On 103

Early Access Documentation

Service Applicable for service-based authentication only, this is the service to
which the user belongs.

loginURL This is the client's login URL.

Hostname This is the host name of the client.

cookieSupport This attribute contains a value of true if the client browser supports
cookies.

authInstant This is a string that specifies the time at which the authentication took
place.

SessionTimedOut This attribute contains a value of true if the session has timed out.

Custom Properties
The custom properties currently used are:

clientType This is the device type of the client browser.

Locale This is the locale of the client.

CharSet This is the determined character set for the client.

About the Session Service Interfaces
All Federated Access Manager services (except for the Authentication Service) require a valid
session identifier (programmatically referred to as SSOToken) to process an HTTP request.
External applications developed using the Session Service interfaces and protected by a policy
agent also require an SSOToken to determine access. The SSOToken is an encrypted, unique
string that identifies a specific session data structure stored by Federated Access Manager. If the
SSOToken is known to a Federated Access Manager service or an external protected resource
such as an application, the service or application can access all user information and session
data stored in the session data structure it identifies. After successful authentication, the
SSOToken is transported using cookies or URL parameters, allowing participation in SSO.

The Session Service provides Java interfaces to allow Federated Access Manager services and
external applications to participate in the SSO functionality. The com.iplanet.sso package
contains the tools for creating, destroying, retrieving, validating and managing session data
structures and session identifiers. All external applications wishing to participate in the SSO
solution must be developed using this API. In the case of a remote application, the invocation is
forwarded to Federated Access Manager by the client libraries using XML messages over
HTTP(S).

About the Session Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)104

Early Access Documentation

Note – Federated Access Manager also includes an API for session management in C
applications. For information see Chapter 4, “Single Sign-On Data Types and Functions,” in
Sun Java System Federated Access Manager 8.0 C API Reference.

The following sections contain more specific information about the contents of
com.iplanet.sso.

■ “SSOTokenManager” on page 105
■ “SSOToken” on page 106
■ “SSOTokenListener” on page 109

For a comprehensive listing of all Java interfaces and their usage, see the Federated Access
Manager 8.0 Java API Reference.

SSOTokenManager

The SSOTokenManager class contains the methods needed to get, validate, destroy and refresh
the session identifiers that are programmatically referred to as the SSOToken. To obtain an
instance of SSOTokenManager, call the getInstance() method. Once instantiated,
SSOTokenManager can be used to create an SSOToken object using one of the forms of the
createSSOToken() method. The destroyToken() method is called to invalidate and delete a
token when its corresponding session has ended. Either the isValidToken() and
validateToken() methods can be called to verify whether a token is valid (asserting successful
authentication). isValidToken() returns true or false depending on whether the token is valid
or invalid, respectively. validateToken() throws an exception only when the token is invalid;
nothing happens if the token is valid. The refreshSession() method resets the idle time of the
session. Example 4–1 illustrates one way in which the SSOTokenManager class can be used.

EXAMPLE 4–1 SSOTokenManagerCode Sample

try {

/* get an instance of the SSOTokenManager */

SSOTokenManager ssoManager = SSOTokenManager.getInstance();

/* The request here is the HttpServletRequest. Get

/* SSOToken for session associated with this request. */

SSOToken ssoToken = ssoManager.createSSOToken(request);

/* use isValid method to check if token is valid or not.

/* This method returns true for valid token, false otherwise. */

About the Session Service Interfaces

Chapter 4 • Tracking Session Data for Single Sign-On 105

Early Access Documentation

EXAMPLE 4–1 SSOTokenManagerCode Sample (Continued)

if (ssoManager.isValidToken(ssoToken)) {

/* If token is valid, this information may be enough for

/* some applications to grant access to the requested

/* resource. A valid user represents a user who is

/* already authenticated. An application can further

/* utilize user identity information to apply

/* personalization logic .*/

} else {

/* Token is not valid, redirect the user login page. */

}

/* Alternative: use of validateToken method to check

/* if token is valid */

try {

ssoManager.validateToken(ssoToken);

/* handle token is valid */

} catch (SSOException e) {

/* handle token is invalid */

}

/*refresh session. idle time should be 0 after refresh. */

ssoManager.refreshSession(ssoToken);

} catch (SSOException e) {

/* An error has occurred. Do error handling here. */

}

SSOToken

The SSOToken interface represents the session identifier returned from the createSSOToken()
method, and is used to retrieve session data such as the authenticated principal name,

About the Session Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)106

Early Access Documentation

authentication method, and other session information (for example, session idle time and
maximum session time). The SSOToken interface has methods to get predefined session
information such as:

■ getProperty() is used to get any information about the session, predefined or otherwise
(for example, information set by the application).

■ setProperty() can be used by the application to set application-specific information in the
session.

■ addSSOTokenListener() can be used to set a listener to be invoked when the session state
has become invalid.

Caution – The methods getTimeLeft() and getIdleTime() return values in seconds while the
methods getMaxSessionTime() and getMaxIdleTime() return values in minutes.

The following code samples illustrate ways to use the interface.

■ Example 4–2 illustrates one way in which the SSOToken interface can be used.
■ Example 4–3 illustrates how to use the getTokenID() method to create a cookie from a

session token in order to allow SSO to work on protected resources not residing on the same
server as Federated Access Manager.

EXAMPLE 4–2 SSOTokenCode Sample

/* get http request output stream for output */

ServletOutputStream out = response.getOutputStream();

/* get the sso token from http request */

SSOTokenManager ssoManager = SSOTokenManager.getInstance();

SSOToken ssoToken = ssoManager.createSSOToken(request);

/* get the sso token ID from the sso token */

SSOTokenID ssoTokenID = ssoToken.getTokenID();

out.println("The SSO Token ID is "+ssoTokenID.toString());

/* use validate method to check if the token is valid */

try {

ssoManager.validateToken(ssoToken);

out.println("The SSO Token validated.");

} catch (SSOException e) {

About the Session Service Interfaces

Chapter 4 • Tracking Session Data for Single Sign-On 107

Early Access Documentation

EXAMPLE 4–2 SSOTokenCode Sample (Continued)

out.println("The SSO Token failed to validate.");
}

/* use isValid method to check if the token is valid */

if (!ssoManager.isValidToken(token)) {

out.println("The SSO Token is not valid.");
} else {

/* get some values from the SSO Token */

java.security.Principal principal = ssoToken.getPrincipal();

out.println("Principal name is "+principal.getName());

String authType = ssoToken.getAuthType();

out.println("Authentication type is "+authType);

int authLevel = ssoToken.getAuthLevel();

out.println("Authentication level is "+authLevel);

long idleTime = ssoToken.getIdleTime();

out.println("Idle time is "+idleTime);

long maxIdleTime = ssoToken.getMaxIdleTime();

out.println("Max idle time is "+maxIdleTime);

long maxTime = token.getMaxSessionTime();

out.println("Max session time is "+maxTime);

String host = ssoToken.getHostName();

out.println("Host name is "+host);

/* host name is a predefined information of the session,

/* and can also be obtained the following way */

String hostProperty = ssoToken.getProperty("HOST");
out.println("Host property is "+hostProperty);

/* set application specific information in session */

String appPropertyName = "appProperty";
String appPropertyValue = "appValue";
ssoToken.setProperty(appPropertyName, appPropertyValue);

/* now get the app specific information back */

About the Session Service Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)108

Early Access Documentation

EXAMPLE 4–2 SSOTokenCode Sample (Continued)

String appValue = ssoToken.getProperty(appPropertyName);

if (appValue.equals(appPropertyValue)) {

out.println("Property "+appPropertyName+",
value "+appPropertyValue+" verified to be set.");
} else {

out.println("ALERT: Setting property "+appPropertyName+" failed!");

}

}

EXAMPLE 4–3 getTokenID()Code Sample

// Get SSOToken string

String strToken = null;

strToken = getSSOToken().getTokenID().toString();

// Set it to response as cookies

String s = strToken;

String ssotokencookiename = "iPlanetDirectoryPro";
String ssotokencookiedomain = ".mydomain.com.tw";
String ssotokencookiepath = "/";
String gt = "/welcomepage.jsp";

Cookie cookie = new Cookie(ssotokencookiename,s);

cookie.setDomain(ssotokencookiedomain);

cookie.setPath(ssotokencookiepath);

response.addCookie(cookie);

response.sendRedirect(gt);

SSOTokenListener

Sent email regarding docing this and SSOTokenID

The SSOTokenListener class allows the application to be notified when a SSOToken has become
invalid — for example, when a session has timed out.

Remark 4–1
Writer

About the Session Service Interfaces

Chapter 4 • Tracking Session Data for Single Sign-On 109

Early Access Documentation

Using the SSO Code Samples
Federated Access Manager provides the following code samples that demonstrate how you can
use the Single Sign-On APIs. These samples are in the form of either standalone Java
application or Java servlets.

SDKCommandLineSSO.java Standalone Java program.

Creates a new SSO token given a valid SSO token
id.

Input: Token id.

Output: Basic SSO token information.

CommandLineSSO.java Standalone Java program.

Demonstrates the usage of retrieving the user
profile given the correct user credentials.

Input: Organization name (in DN format).

Output: User profile attributes.

SSOTokenSample.java Standalone Java program.

Serves as a basis for using SSO API. It
demonstrates creating an SSO token and calling
various methods from the token including
getting/setting the session properties.

Input: Token id.

Output: Basic SSO token information and session
properties.

SDKSampleServlet.java Java Servlet.

Demonstrates the usage of retrieving the user
profile given the valid cookie set in the browser.

Input: None, but require AM session cookie set in
the browser.

Output: SSO token information and user profile
attributes.

SSOTokenSampleServlet.java

SampleTokenListener.java

Java Servlet.

Using the SSO Code Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)110

Early Access Documentation

Given the valid cookie sent in the browser, these
serve as the basis for using the SSO API.
Demonstrates use of the of Session Notification
Service as well as getting and setting session
properties.

Input: None. Requires a Federated Access
Manager session cookie to be set in the browser.

Output: Basic SSO token information and session
properties.

Running SSO Code Samples on Solaris
On the Solaris platform, you can run the sample programs in one of the following ways:

■ “To Run a Sample Program from Federated Access Manager” on page 111
■ “To Run a Sample Program on a Remote Client” on page 113
■ “To Run the Sample Code” on page 114
■ “To Run a Sample Program on the Remote Client Command Line” on page 115
■ “To Test the Command Line” on page 116

▼ To Run a Sample Program from Federated Access Manager

Set the environment variables.
The following environment variables are used to run the make command. You can also set these
variables in the Makefile which is in the same directory as the sample files.
BASE Specify the directory where Federated Access Manager is installed.

CLASSPATH Specify the directory where the JAR files are installed. Example:
FederationManager-base/SUNWam/lib

JAVA_HOME Specify the JDK version your are using. The version must be JDK 1.3.1 or
higher.

BASE_CLASS_DIR Specify the directory where you will keep the sample compiled classes.

JAR_DIR Specify the directory where the JAR of the sample classes will be created.
The default is the current directory.

In the directory /FederatedAccessManager-base/SUNWam/samples/sso, run the gmake
command.

1

2

Using the SSO Code Samples

Chapter 4 • Tracking Session Data for Single Sign-On 111

Early Access Documentation

From the directory JAR_DIR, copy SSOSample.jar to the directory
/FederatedAccessManager-base/SUNWam/lib.

Update the web container classpath.

a. Create a web server administrator password file.
echo "wadm_password=<WS_ADMINPASSWD>" > /tmp/ws70adminpasswd

b. Use wadm get-jvm-prop to retrieve the current classpath for the Web Server instance.
ORIGCLASSPATH=‘$WADM get-jvm-prop --user=$WS_ADMIN

--password-file=/tmp/ws70adminpasswd--host=$WS_HOST --port=$WS_ADMINPORT

--config=$WS_CONFIG class-path-suffix‘

c. Use wadm set-jvm-prop to add the SSOSample.jar to the Web Server instance's classpath.
$WADM set-jvm-prop --user=$WS_ADMIN --password-file=/tmp/ws70adminpasswd
--host=$WS_HOST --port=$WS_ADMINPORT --config=$WS_CONFIG class-path-suffix=

"$ORIGCLASSPATH:AccessManager-base/SUNWam/lib/SSOSample.jar"

Register the Sample servlet.

a. In the file
WebContainer-base/https-host.domain/web-app/SERVICES_DEPLOY_URI/WEB-INF/web.xml,
insert the following lines immediately after the last </servlet> tag:
<servlet>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<description>SSOTokenSampleServlet</description>

<servlet-class>SSOTokenSampleServlet</servlet-class>

</servlet>

b. Insert the following lines immediately after the last </servlet-mapping> tag.
<servlet-mapping>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<url-pattern>/SSOTokenSampleServlet</url-pattern>

</servlet-mapping>

Restart Federated Access Manager.

Log in to the Federated Access Manager console.
To execute SSOTokenSampleServlet, you must be authorized to access that resource. If you do
not have authorization, the request will be denied. See the instructions for setting policy in the
Administration Guide.

3

4

5

6

7

Using the SSO Code Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)112

Early Access Documentation

Use a browser to access the following URL:
protocol://host:port/SERVICES-DEPLOY-URI/SSOTokenSampleServlet

The default value of SERVICES-DEPLOY-URI is amserver.

The host name must be a fully qualified domain name. Your sample program should display the
output in the browser.

▼ To Run a Sample Program on a Remote Client
Install the Federated Access Manager Client API in a web container and perform the following
steps. In the following example, Sun Java System Web Server is installed in a directory named
iws, and the Client API are installed in a directory named opt. For information on installing the
Client APIs, see Chapter 1, “Enhancing Remote Applications Using the Client Software
Development Kit.”

In the directory /FederatedAccessManager-base/SUNWam/samples/sso, run the gmake
command.

Be sure that the following are included in the Web Server classpath in the server.xmlfile:

■ /opt/SUNWam/samples/sso/SSOSample.jar

■ /opt/SUNWam/lib/am_sdk.jar

■ /usr/share/lib/mps/secv1/jss4.jar

■ /opt/SUNWam/lib/jaxp.jar

■ /opt/SUNWam/lib/dom.jar

■ /opt/SUNWam/lib/xercesImpl.jar

■ /opt/SUNWam/lib/jaas.jar (Add this only if you are using a JDK version lower than
JDK1.4)

■ /opt/SUNWam/localeand /opt/SUNWam/lib directories

Include java.protocol.handler.pkgs=com.iplanet.services.comm as an argument to be
passed into the Web Server virtual machine (VM).
$WADM create-jvm-options --user=$WS_ADMIN --password-file=/tmp/ws70adminpasswd

--host=$WS_HOST --port=$WS_ADMINPORT --config=$WS_CONFIG --

-Djava.protocol.handler.pkgs=com.iplanet.services.comm

Restart Web Server.
If Federated Access Manager is running with the Secure Socket Layer (SSL) protocol enabled,
you may need to add the following line to the AMConfig.properties file for testing purposes:

com.iplanet.am.jssproxy.trustAllServerCerts=true

8

Before You Begin

1

2

3

4

Using the SSO Code Samples

Chapter 4 • Tracking Session Data for Single Sign-On 113

Early Access Documentation

This property tells the SSL client in the Client APIs to trust all certificates presented by the
servers. Adding this property enables you test the SSL connection without having the root CA
for your test certificate installed on the this client. Without this property configured, you must
install the SSL server rootCA certificate in client trust database, and then make sure that the
following properties in AMConfig.properties are set to the same values:

■ com.iplanet.am.admin.cli.certdb.dir

■ com.iplanet.am.admin.cli.certdb.prefix

■ com.iplanet.am.admin.cli.certdb.passfile

▼ To Run the Sample Code

In the /opt/SUNWam/samples/sso directory, run the gmake command.
This compiles the samples and creates the necessary JAR files.

Register the sample servlet.

a. In the file
WebServer-base/https-hostName.domainName.com/is-web-apps/services/WEB-INF/web.xml,
insert the following lines immediately after the last </servlet> tag.

<servlet>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<description>SSOTokenSampleServlet</description>

<servlet-class>SSOTokenSampleServlet</servlet-class>

</servlet>

b. Insert the following lines immediately after the last </servlet-mapping> tag.

<servlet-mapping>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<url-pattern>/SSOTokenSampleServlet</url-pattern>

</servlet-mapping>

Restart the web container where the Federated Access Manager Client APIs are installed.

Log in to the Federated Access Manager console.

To Invoke the servlet, use a browser to go to the following URL:
http://amsdk-server.sub.domain/servlet/SSOTokenSampleServlet

1

2

3

4

5

Using the SSO Code Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)114

Early Access Documentation

The SSOTokenSampleServlet servlet validates the session and prints out all relevant session
information. You may have to reload the URL (Shift + Reload Button) to see updated
information.

Log out of the Federated Access Manager console.
Because no log out link exists in the sample servlet, you must use a browser to access the log out
URL. Example: https://hostName.domainName.com/amserver/UI/Logout

To verify that the client SSOtoken is no longer valid, invoke the servlet a second time.
Use a browser to go to the following URL:

http://amsdk-server.sub.domain/servlet/SSOTokenSampleServlet

This time, a session exception occurs. Reload the URL to see the updated information.

▼ To Run a Sample Program on the Remote Client Command Line
You must install the Federated Access Manager Client API before you can run a sample
program on the remote client command line. For more information on using the Client APIs,
see Chapter 1, “Enhancing Remote Applications Using the Client Software Development Kit.”

When you run an SSO program from the command line, your application is not running in a
web container, but your application must have access to the cookies from the web container
HTTP requests. Your application must extract the Federated Access Manager cookie from the
request, and then pass the string value of the cookie into the createSSOToken method. Because
notifications are only supported in a web container, and because your application is not
running in a web container, notifications are not supported in this sample.

In the directory Federated Access Manager/SUNWam/samples/sso, run the gmake command.

Modify the script Federated Access Manager/SUNWam/samples/sso/run to specify the sample
program that you want to test.
For example, to run SDKCommandLineSSO.java, in the last line in the script, replace
CommandLineSSO with SDKCommandLineSSO. The result looks like this:

${JAVA_EXEC} -Xbootclasspath ...SDKCommandLineSSO $@

If you are using a JDK version lower than JDK1.4, add the following to the classpath:
/opt/SUNWam/lib/jaas.jar

If SSL is enabled, in the script Federated Access Manager/SUNWam/samples/sso/run, add the
following VM argument when executing your Java code:
java.protocol.handler.pkgs=com.iplanet.services.comm

6

7

Before You Begin

1

2

3

4

Using the SSO Code Samples

Chapter 4 • Tracking Session Data for Single Sign-On 115

Early Access Documentation

▼ To Test the Command Line
To test the command line you can run the servlet test above, cut and paste the cookie value and
pass it in as the token value.

Use a browser to access the following URL:
http://test-server.sun.com:80/amserver/SSOTokenSampleServlet

The following output is displayed:
SSOToken host name: 123.123.123.123 (Your server’s ip address)

SSOToken Principal name: uid=amAdmin,ou=People,dc=example,dc=com

Authentication type used: LDAP

IPAddress of the host: 123.123.123.123 (Your server’s ip address)

The token id is AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY=

Property: Company is - Sun Microsystems

Property: Country is - USA

SSO Token Validation test Succeeded

In the Federated Access Manager/SUNWam/samples/sso directory, execute the run command:
run AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY=

The following result is displayed:
SSO "AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY="

SSOToken host name: 123.123.123.123 (Your server’s ip address)

SSOToken Principal name: uid=amAdmin,ou=People,dc=example,dc=com

Authentication type used: LDAP

IPAddress of the host: 123.123.123.123 (Your server’s ip address)

Developing Non-Web Based Applications
Federated Access Manager provides the SSO APIs primarily for web-based applications
although the APIs can be extended to any non-web-based applications with limitations. When
developing non-web-based applications, you can use the SSO APIs in one of two ways:

■ The application must obtain the Federated Access Manager cookie value and pass it into the
SSO client methods to get to the session token. The method used for this process is
application-specific.

■ You can use command-line applications such as amadmin. In this case, session tokens can be
created to access the Directory Server directly. There is no session created, making the
Federated Access Manager access valid only within that process or VM.

1

2

Developing Non-Web Based Applications

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)116

Early Access Documentation

Implementing the Liberty Alliance Project
Identity-Federation Framework

Sun JavaTM System Federated Access Manager has a robust framework for implementing
federated identity infrastructures. It provides interfaces, based on the Liberty Alliance Project
Identity-Federation Framework (Liberty ID-FF) for creating, modifying, and deleting circles of
trust, service providers, and identity providers as well as samples to get you started. This chapter
covers the following topics:

■ “Understanding Federation” on page 118
■ “Customizing the Federation Graphical User Interface” on page 118
■ “Using the Liberty ID-FF Federation API” on page 121
■ “Executing the Federation Samples” on page 123

About the Liberty ID-FF
The Liberty Alliance Project addresses the need for an open industry standard for federated
identity management. The concept of a federated identity begins with the notion of a virtual
identity. On the internet, one person might have a multitude of accounts set up to access
various business, community and personal service providers — each of these providers is said to
have a virut. For example, the person might have used different names, user identifiers,
passwords or preferences to set up accounts for a news portal, a bank, a retailer, and an email
provider, respectively; thus the person has a different virtual identity for each web site has a
different virtua. A local identity refers to the set of attributes that an individual might have with
each of these service providers. These attributes uniquely identify the individual with that
particular provider and can include a name, phone number, passwords, social security number,
address, credit records, bank balances or bill payment information. Because the internet is fast
becoming the prime vehicle for business, community and personal interactions, it has become
necessary to fashion a system for online users to link their local identities, enabling them to have
one network identity.

5C H A P T E R 5

117

Early Access Documentation

Understanding Federation
The umbrella term federation encompasses both identity federation and provider federation.
The concept of identity federation begins with the notion of virtual identity. On the internet,
one person might have a multitude of accounts set up to access various business, community
and personal service providers; for example, the person might have used different names, user
identifiers, passwords or preferences to set up accounts for a news portal, a bank, a retailer, and
an email provider. A local identity refers to the set of attributes that an individual might have
with each of these service providers. These attributes uniquely identify the individual with that
particular provider and can include a name, phone number, passwords, social security number,
address, credit records, bank balances or bill payment information. Because the internet is fast
becoming the prime vehicle for business, community and personal interactions, it has become
necessary to fashion a system for online users to link their local identities, enabling them to have
one network identity. This system is identity federation. Identity federation allows a user to
associate, connect or bind the local identities they have configured with multiple service
providers. A federated identity allows users to login at one service provider's site and move to an
affiliated service provider site without having to re-authenticate or re-establish their identity.

The concept of provider federation as defined in a federation-based environment begins with
the notion of a security domain (referred to as a circle of trust in Federated Access Manager). A
circle of trust is a group of service providers (with at least one identity provider) that agree to
join together to exchange user authentication information using open—standards and
technologies. Once a group of providers has been federated within a circle of trust,
authentication accomplished by the identity provider in that circle is honored by all affiliated
service providers. Thus, single sign-on (SSO) can be enabled amongst all membered providers
as well as identity federation among users. For more information on the federation process in
Federated Access Manager, see the Sun Federated Access Manager 8.0 Technical Overview. The
following sections contain information on the federation specifications implemented by
Federated Access Manager.

Federated Access Manager supports the Liberty Alliance Identity Federation Framework 1.2
Specifications and the WS-Federation 1.1 Metadata.

Customizing the Federation Graphical User Interface
The Federation Service uses JavaServer PagesTM (JSPTM) to define its look and feel. JSP are HTML
files that contain additional code to generate dynamic content. More specifically, a JavaServer
page contains HTML code to display static text and graphics, as well as application code to
generate information. When the page is displayed in a web browser, it contains both the static
HTML content and, in the case of the Federation component, dynamic content retrieved
through calls to the Federation API. An administrator can customize the look and feel of the
interface by changing the HTML tags in the JSP but the invoked APIs must not be changed.

The JSP are located in
/path-to-context-root/fam/web-src/services/config/federation/default. The files in this

Understanding Federation

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)118

Early Access Documentation

directory provide a default interface to the Federation Service. To customize the pages for a
specific organization, this default directory can be copied and renamed to reflect the name of
the organization (or any value). This directory would then be placed at the same level as the
default directory, and the files within this directory would be modified as needed. The following
table lists the JSP including details on what each page is used for and the invoked APIs that
cannot be modified.

JSP Name and Implemented APIs Purpose

■ CommonLogin.jsp Invoked APIs are:

■ LibertyManager.

getLoginURL(request)

■ LibertyManager.

getInterSiteURL(request)

■ LibertyManager.

getIDPList(providerID)

■ LibertyManager.

getNewRequest(request)

■ LibertyManager.

getSuccintID(idpID)

■ LibertyManager.

cleanQueryString(request)

Displays a link to the local login page as well as links to
the login pages of the trusted identity providers. This
page is displayed when a user is not logged in locally or
with an identity provider. The list of identity providers
is obtained by using the
getIDPList(hostedProviderID) method.

■ Error.jsp Displays an error page when an error has occurred.
No APIs are invoked.

■ Federate.jsp Invoked APIs are:

■ LibertyManager.

isLECPProfile(request)

■ LibertyManager.

getAuthnRequestEnvelope

(request)

■ LibertyManager.

getUser(request)

■ LibertyManager.

getProvidersTo

Federate(providerID,userDN)

Displays when a user clicks a federate link on a
provider page. Contains a drop-down of all providers
with which the user is not yet federated. This list is
constructed by using the
getProvidersToFederate(userName,providerID)

method.

■ FederationDone.jsp Invoked API is:

■ LibertyManager.

isFederationCancelled

(request)

Displays the status of a federation (success or
cancelled). This page checks the status by using the
isFederationCancelled(request) method.

Customizing the Federation Graphical User Interface

Chapter 5 • Implementing the Liberty Alliance Project Identity-Federation Framework 119

Early Access Documentation

JSP Name and Implemented APIs Purpose

■ Footer.jsp Displays a branded footer that is included on all the
pages. No APIs are invoked.

■ Header.jsp Displays a branded header that is included on all the
pages. No APIs are invoked.

■ ListOfCOTs.jsp Invoked API is:

■ LibertyManager.

getListOfCOTs

(providerID)

Displays a list of circles of trust. When a user is
authenticated by an identity provider and the service
provider belongs to more than one circle of trust, the
user is shown this JSP and is prompted to select an
authentication domain as their preferred domain. In
the case that the provider belongs to only one domain,
this page will not be displayed. The list is obtained by
using the getListOfCOTs(providerID) method.

■ LogoutDone.jsp Invoked API is:

■ LibertyManager.

isLogoutSuccess(request)

Displays the status of the local logout operation.

■ NameRegistration.jsp Invoked APIs are:

■ LibertyManager.

getUser(request)

■ LibertyManager.

getRegisteredProviders

(userDN)

Displays when the Name Registration link is clicked
on a provider page. When a federated user chooses to
register a new Name Identifier from a service provider
to an identity provider, this JSP is displayed.

■ NameRegistrationDone.jsp Invoked APIs are:

■ LibertyManager.

isNameRegistration

Success(request)

■ LibertyManager.

isNameRegistration

Canceled(request)

Displays the status of NameRegistration.jsp. When
finished, this page is displayed.

■ Termination.jsp Invoked APIs are:

■ LibertyManager.

getUser(request)

■ LibertyManager.

getFederatedProviders

(userDN)

Displays when a user clicks a defederate link on a
provider page. Contains a drop-down of all providers
to which the user has federated and from which the
user can choose to defederate. The list is constructed
by using the getFederatedProviders(userName)
method, which returns all active providers to which
the user is already federated.

Customizing the Federation Graphical User Interface

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)120

Early Access Documentation

JSP Name and Implemented APIs Purpose

■ TerminationDone.jsp Invoked APIs are:

■ LibertyManager.

isTerminationSuccess

(request)

■ LibertyManager.

isTerminationCanceled

(request)

Displays the status of federation termination (success
or cancelled). Status is checked using the
isTerminationCancelled(request) method.

Using the Liberty ID-FF Federation API
The following packages form the Federation API. For more detailed information, see the
Federated Access Manager 8.0 Java API Reference.

■ “com.sun.identity.federation.accountmgmt” on page 121
■ “com.sun.identity.federation.common” on page 121
■ “com.sun.identity.federation.message” on page 121
■ “com.sun.identity.federation.message.common” on page 122
■ “com.sun.identity.federation.plugins” on page 122
■ “com.sun.identity.federation.services” on page 122
■ “com.sun.liberty” on page 122

com.sun.identity.federation.accountmgmt

Public or private? Doc or no?

Retrieves the information of federated user account

com.sun.identity.federation.common

Public or private? Doc or no?

Common federation utilities

com.sun.identity.federation.message

Public or private? Doc or no?

Classes for federation messages and assertions

Remark 5–1
Reviewer

Remark 5–2
Reviewer

Remark 5–3
Reviewer

Using the Liberty ID-FF Federation API

Chapter 5 • Implementing the Liberty Alliance Project Identity-Federation Framework 121

Early Access Documentation

com.sun.identity.federation.message.common

Public or private? Doc or no?

common classes used by federation protocol messages

com.sun.identity.federation.plugins

The com.sun.identity.federation.plugins package contains the FederationSPAdapter
interface which can be implemented to allow applications to customize their actions before and
after invoking the federation protocols. For example, a service provider may want to choose to
redirect to a specific location after single sign-on.

com.sun.identity.federation.services

The com.sun.identity.federation.services package provides interfaces for writing custom
plug-ins that can be used during the federation or single sign-on process. The interfaces are
described in the following table.

TABLE 5–1 com.sun.identity.federation.services Interfaces

Interface Description

FSAttributeMapper Plug-in for mapping the attributes passed from the
identity provider to local attributes on the service
provider side during the single sign-on.

FSAttributePlugin Plug-in for an identity provider to add
AttributeStatements into a SAML assertion during
the single sign-on process.

FSIDPProxy Interface used to find a preferred identity provider to
which an authentication request can be proxied.

com.sun.liberty

The com.sun.liberty package contains the LibertyManager class which must be instantiated
by web applications that want to access the Federation framework. It also contains the methods
needed for account federation, session termination, log in, log out and other actions. Some of
these methods are described in the following table.

Remark 5–4
Reviewer

Using the Liberty ID-FF Federation API

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)122

Early Access Documentation

TABLE 5–2 com.sun.libertyMethods

Method Description

getFederatedProviders() Returns a specific user’s federated providers.

getIDPFederationStatus() Retrieves a user’s federation status with a specified identity
provider. This method assumes that the user is already
federated with the provider.

getIDPList() Returns a list of all trusted identity providers.

getIDPList() Returns a list of all trusted identity providers for the specified
hosted provider.

getProvidersToFederate() Returns a list of all trusted identity providers to which the
specified user is not already federated.

getSPList() Returns a list of all trusted service providers.

getSPList() Returns a list of all trusted service providers for the specified
hosted provider.

getSPFederationStatus() Retrieves a user’s federation status with a specified service
provider. This method assumes that the user is already
federated with the provider.

Executing the Federation Samples
[Remark 5–5 Reviewer: Other federation samples for WS-Federation??] need to be rewritten
based on the new client WAR sample. There is no Sample1, 2, 3 anymore.

Executing the Federation Samples

Chapter 5 • Implementing the Liberty Alliance Project Identity-Federation Framework 123

Early Access Documentation

124

Early Access Documentation

Implementing WS-Federation

Federation used to mean Liberty ID-FF, now it includes SAML 1.x and SAML2 and
WS-Federation as well. Although WS-Federation and Identity Federation contains federation
word, they are not related, so should separate them into two separate chapters. This chapter
should be renamed as "Implementing Liberty ID-FF". The new chapter should be something
like "Implementing WS-Federation".

■ “Using the WS-Federation API” on page 125
■ “WS-Federation Samples” on page 126

Using the WS-Federation API
[Remark 6–1 Reviewer: Other packages used by WS-Federation??] The following packages form
the WS-Federation API. For more detailed information, see the Federated Access Manager 8.0
Java API Reference.

■ “com.sun.identity.wsfederation.plugins” on page 125
■ “com.sun.identity.wsfederation.common” on page 125

com.sun.identity.wsfederation.plugins

Defines common WS-Federation utilities and constants.

com.sun.identity.wsfederation.common

Defines WS-Federation Plugin SPIs

6C H A P T E R 6

125

Early Access Documentation

WS-Federation Samples
Other federation samples for WS-Federation??

XXXXXX

Remark 6–2
Reviewer

WS-Federation Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)126

Early Access Documentation

Constructing SAML Messages

Sun JavaTM System Federated Access Manager has implemented two versions of the Security
Assertion Markup Language (SAML). This chapter contains information on these
implementations in the following sections.

■ “SAML v2” on page 127
■ “SAML 1.x” on page 141

SAML v2
■ “Using the SAML v2 SDK” on page 127
■ “Service Provider Interfaces” on page 129
■ “Using Secure Attribute Exchange” on page 133
■ “JavaServer Pages” on page 134
■ “SAML v2 Samples” on page 141

Using the SAML v2 SDK
The SAML v2 framework provides application programming interfaces (API) that can be used
to construct and process assertions, requests, and responses. The SDK is designed to be
pluggable although it can also be run as a standalone application (outside of an instance of
Federated Access Manager).

■ For information on the packages in the SDK, see “Exploring the SAML v2 Packages” on
page 128.

■ For ways to set a customized implementation, see “Setting a Customized Class” on page 128.
■ For instructions on how to install the SDK as a standalone application, see “Installing the

SAML v2 SDK” on page 129.

7C H A P T E R 7

127

Early Access Documentation

Exploring the SAML v2 Packages
The SAML v2 SDK includes the following packages:

■ “com.sun.identity.saml2.assertion Package” on page 128
■ “com.sun.identity.saml2.common Package” on page 128
■ “com.sun.identity.saml2.protocol Package” on page 128

For more detailed information, see the Federated Access Manager 8.0 Java API Reference.

com.sun.identity.saml2.assertion Package

This package provides interfaces to construct and process SAML v2 assertions. It also contains
the AssertionFactory, a factory class used to obtain instances of the objects defined in the
assertion schema.

com.sun.identity.saml2.common Package

This package provides interfaces and classes used to define common SAML v2 utilities and
constants.

com.sun.identity.saml2.protocol Package

This package provides interfaces used to construct and process the SAML v2 request/response
protocol. It also contains the ProtocolFactory, a factory class used to obtain object instances
for concrete elements in the protocol schema.

Setting a Customized Class
There are two ways you could set a customized implementation class:

1. Add a mapping property to Federated Access Manager configuration data store in the
format:
com.sun.identity.saml2.sdk.mapping.interface-name=new-class-name
For example, to define a customized Assertion interface, you would add:

com.sun.identity.saml2.sdk.mapping.Assertion=

com.ourcompany.saml2.AssertionImpl

2. Set an environment variable for the Virtual Machine for the JavaTM platform (JVMTM). For
example, you can add the following environment variable when starting the application:

-Dcom.sun.identity.saml2.sdk.mapping.Assertion=

com.ourcompany.saml2.AssertionImpl

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)128

Early Access Documentation

Installing the SAML v2 SDK
[Remark 7–1 Writer: "Installing the SAML v2 SDK" section need to be rewritten, user need to use
our FAM client SDK based installation.] "Installing the SAML v2 SDK" section need to be
rewritten, user need to use our FAM client SDK based installation.

Service Provider Interfaces
two new public API to be documented: AssertionIDRequestMapper.java
SAML2ServiceProviderAdapter.java

The com.sun.identity.saml2.plugins package provides pluggable interfaces to extend
SAML v2 functionality into your remote application. The classes can be configured per
provider entity. Default implementations are provided, but a customized implementation can
be plugged in by modifying the corresponding attribute in the provider's extended metadata
configuration file. The mappers include:
■ “Account Mappers” on page 129
■ “Attribute Mappers” on page 130
■ “Authentication Context Mappers” on page 130

For more information, see the Federated Access Manager 8.0 Java API Reference.

Account Mappers
An account mapper is used to associate a local user account with a remote user account based
on a specified attribute. A default account mapper has been developed for both sides of the
SAML v2 interaction, service providers and identity providers.
■ “IDPAccountMapper” on page 129
■ “SPAccountMapper” on page 129

IDPAccountMapper

The IDPAccountMapper interface is used on the identity provider side to map user accounts in
cases of single sign-on and federation termination. The default implementation,
com.sun.identity.saml2.plugins.DefaultIDPAccountMapper, maps the accounts based on
the persistent NameID attribute.

SPAccountMapper

The SPAccountMapper interface is used on the service provider side to map user accounts in
cases of single sign-on and federation termination. The default implementation,
com.sun.identity.saml2.plugins.DefaultSPAccountMapper, supports mapping based on
the transient and persistent NameID attributes, and attribute federation based on properties
defined in the extended metadata configuration file. The user mapping is based on information
passed from the identity provider in an <AttributeStatment>.

Remark 7–2
Writer

SAML v2

Chapter 7 • Constructing SAML Messages 129

Early Access Documentation

Attribute Mappers
An attribute mapper is used to associate attribute names passed in the <AttributeStatement>
of an assertion. A default attribute mapper has been developed for both participants in the
SAML v2 interaction, service providers and identity providers. They are defined in the extended
metadata configuration files and explained in the following sections:

■ “IDPAttributeMapper” on page 130
■ “SPAttributeMapper” on page 130
■ “Setting Up Attribute Mappers” on page 130

IDPAttributeMapper

The IDPAttributeMapper interface is used by the identity provider to specify which user
attributes will be included in an assertion. The default implementation,
com.sun.identity.saml2.plugins.DefaultIDPAttributeMapper, retrieves attribute
mappings (SAML v2-attribute=user-attribute) defined in the attributeMap property in the
identity provider's extended metadata configuration file. It reads the value of the user attribute
from the identity provider's data store, and sets this value as the <AttributeValue> of the
specified SAML v2 attribute. The SAML v2 attributes and values are then included in the
<AttributeStatement> of the assertion and sent to the service provider. The value of
attributeMap can be changed to modify the mapper's behavior without programming. The
default mapper itself can be modified to attach any identity provider user attribute with
additional programming.

SPAttributeMapper

The SPAttributeMapper interface is used by the service provider to map attributes received in
an assertion to its local attributes. The default implementation,
com.sun.identity.saml2.plugins.DefaultSPAttributeMapper, retrieves the attribute
mappings defined in the attributeMap property in the service provider's extended metadata
configuration file. It extracts the value of the SAML v2 attribute from the assertion and returns a
key/value mapping which will be set in the user's single sign-on token. The mapper can also be
customized to choose user attributes from the local service provider datastore.

Setting Up Attribute Mappers

"To Setup Attribute Mapper" & "To configure mappings" sections, user need to go to console to
set it instead of using saml2meta CLI.

Authentication Context Mappers
Authentication context refers to information added to an assertion regarding details of the
technology used for the actual authentication action. For example, a service provider can
request that an identity provider comply with a specific authentication method by identifying
that method in an authentication request. The authentication context mapper pairs a standard

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)130

Early Access Documentation

SAML v2 authentication context class reference (PasswordProtectedTransport, for example)
to a Federated Access Manager authentication scheme (module=LDAP, for example) on the
identity provider side and sets the appropriate authentication level in the user's SSO token on
the service provider side. The identity provider would then deliver (with the assertion) the
authentication context information in the form of an authentication context declaration added
to the assertion. The process for this is described below.

1. A user accesses spSSOInit.jsp using the AuthnContextClassRef query parameter.

For example, http://SP_host:SP_port/uri/spSSOInit.jsp?
metaAlias=SP_MetaAlias&idpEntityID=IDP_EntityID&AuthnContextClassRef=PasswordProtectedTransport

2. The SPAuthnContextMapper is invoked to map the value of the query parameter to a
<RequestedAuthnContext> and an authentication level.

3. The service provider sends the <AuthRequest> with the <RequestedAuthnContext> to the
identity provider.

4. The identity provider processes the <AuthRequest> by invoking the
IDPAuthnContextMapper to map the incoming information to a defined authentication
scheme.

Note – If there is no matching authentication scheme, an authentication error page is
displayed.

5. The identity provider then redirects the user (including information regarding the
authentication scheme) to the Authentication Service for authentication.

For example, http://AM_host:AM_port/uri/UI/Login?module=LDAP redirects to the
LDAP authentication module.

6. After successful authentication, the user is redirected back to the identity provider for
construction of a response based on the mapped authentication class reference.

7. The identity provider then returns the user to the assertion consumer on the service
provider side.

8. After validating the response, the service provider creates a single sign-on token carrying the
authentication level defined in the previous step.

A default authentication context mapper has been developed for both sides of the SAML v2
interaction. Details about the mappers are in the following sections:

■ “IDPAuthnContextMapper” on page 132
■ “SPAuthnContextMapper” on page 132

The procedure for configuring mappings is in “Configuring Mappings” on page 133.

SAML v2

Chapter 7 • Constructing SAML Messages 131

Early Access Documentation

IDPAuthnContextMapper

The IDPAuthnContextMapper is configured for the identity provider and maps incoming
authentication requests from the service provider to a Federated Access Manager
authentication scheme (user, role, module, level or service-based authentication), returning a
response containing the authentication status to the service provider. The following attributes
in the identity provider extended metadata are used by the IDPAuthnContextMapper:

■ The idpAuthncontextMapper property specifies the mapper implementation.
■ The idpAuthncontextClassrefMapping property specifies the mapping between a

standard SAMLv2 authentication context class reference and an Access Manager
authentication scheme. It takes a value in the following format:

authnContextClassRef | authlevel | authnType=authnValue | authnType=authnValue | ... [|default]

For example,
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|3|module=LDAP|default

maps the SAMLv2 PasswordProtectedTransport class reference to the Federated Access
Manager LDAP authentication module.

SPAuthnContextMapper

The SPAuthnContextMapper is configured for the service provider and maps the parameters in
incoming HTTP requests to an authentication context. It creates a <RequestedAuthnContext>
element based on the query parameters and attributes configured in the extended metadata of
the service provider. The <RequestedAuthnContext> element is then included in the
<AuthnRequest> element sent from the service provider to the identity provider for
authentication. The SPAuthnContextMapper also maps the authentication context on the
identity provider side to the authentication level set as a property of the user's single sign-on
token. The following query parameters can be set in the URL when accessing spSSOInit.jsp:

■ AuthnContextClassRef or AuthnContextDeclRef: These properties specify one or more
URI references identifying the provider's supported authentication context classes. If a value
is not specified, the default is
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport.

■ AuthLevel: This parameter specifies the authentication level of the authentication context
being used for authentication.

■ AuthComparison: This parameter specifies the method of comparison used to evaluate the
requested context classes or statements. Accepted values include:
■ exact where the authentication context statement in the assertion must be the exact

match of, at least, one of the authentication contexts specified.
■ minimum where the authentication context statement in the assertion must be, at least,

as strong (as deemed by the identity provider) one of the authentication contexts
specified.

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)132

Early Access Documentation

■ maximum where the authentication context statement in the assertion must be no
stronger than any of the authentication contexts specified.

■ better where the authentication context statement in the assertion must be stronger than
any of the authentication contexts specified.

If the element is not specified, the default value is exact.

An example URL might be http://SP_host:SP_port/uri/spSSOInit.jsp?
metaAlias=SP_MetaAlias&idpEntityID=IDP_EntityID&AuthnContextClassRef=PasswordProtectedTransport&AuthL

The following attributes in the service provider extended metadata are used by the
SPAuthnContextMapper:

■ The spAuthncontextMapper property specifies the name of the service provider mapper
implementation.

■ The spAuthncontextClassrefMapping property specifies the map of authentication
context class reference and authentication level in the following format:
authnContextClassRef | authlevel [| default]

■ The spAuthncontextComparisonType property is optional and specifies the method of
comparison used to evaluate the requested context classes or statements. Accepted values
include:
■ exact where the authentication context statement in the assertion must be the exact

match of, at least, one of the authentication contexts specified.
■ minimum where the authentication context statement in the assertion must be, at least,

as strong (as deemed by the identity provider) one of the authentication contexts
specified.

■ maximum where the authentication context statement in the assertion must be no
stronger than any of the authentication contexts specified.

■ better where the authentication context statement in the assertion must be stronger than
any of the authentication contexts specified.

If the element is not specified, the default value is exact.

Configuring Mappings

"To Setup Attribute Mapper" & "To configure mappings" sections, user need to go to console to
set it instead of using saml2meta CLI.

Using Secure Attribute Exchange
XXXXX

SAML v2

Chapter 7 • Constructing SAML Messages 133

Early Access Documentation

JavaServer Pages
JavaServer Pages (JSP) are HTML files that contain additional code to generate dynamic
content. More specifically, they contain HTML code to display static text and graphics, as well
as application code to generate information. When the page is displayed in a web browser, it
will contain both the static HTML content and dynamic content retrieved via the application
code. The SAML v2 framework contains JSP that can initiate SAML v2 interactions. After
installation, these pages can be accessed using the following URL format:

http(s)://host:port/uri/saml2/jsp/jsp-page-name?metaAlias=xxx&...

The JSP are collected in the /path-to-context-root/fam/saml2/config/jsp directory. The
following sections contain descriptions of, and uses for, the different JSP.
■ “Default Display Page” on page 134
■ “Assertion Consumer Page” on page 134
■ “Single Sign-on Pages” on page 135
■ “Name Identifier Pages” on page 137
■ “Single Logout JavaServer Pages” on page 139

Caution – The following JSP cannot be modified:
■ idpArtifactResolution.jsp

■ idpMNISOAP.jsp

■ spMNISOAP.jsp

Default Display Page
default.jsp is the default display page for the SAML v2 framework. After a successful SAML
v2 operation (single sign-on, single logout, or federation termination), a page is displayed. This
page, generally the originally requested resource, is specified in the initiating request using the
<RelayState> element. If a <RelayState> element is not specified, the value of the
<defaultRelayState> property in the extended metadata configuration is displayed. If a
<defaultRelayState> is not specified, this default.jsp is used. default.jsp can take in a
message to display, for example, upon a successful authentication. The page can also be
modified to add additional functionality.

Caution – When the value of <RelayState> or <defaultRelayState> contains special
characters (such as &), it must be URL-encoded. For more information, see XXXXXX.

Assertion Consumer Page
The spAssertionConsumer.jsp processes the responses that a service provider receives from
an identity provider. When a service provider wants to authenticate a user, it sends an
authentication request to an identity provider. The AuthnRequest asks that the identity

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)134

Early Access Documentation

provider return a Response containing one or more assertions. The spAssertionConsumer.jsp
receives and parses the Response (or an artifact representing it). The endpoint for this JSP is
protocol://host:port/service-deploy-uri/Consumer. Some ways in which the
spAssertionConsumer.jsp can be customized include:
■ The localLoginUrl parameter in the spAssertionConsumer.jsp retrieves the value of the

localAuthUrl property in the service provider's extended metadata configuration. The
value of localAuthUrl points to the local login page on the service provider side. If
localAuthUrl is not defined, the login URL is calculated using the Assertion Consumer
Service URL defined in the service provider's standard metadata configuration. Changing
the localLoginUrl parameter value in spAssertionConsumer.jsp is another way to define
the service provider's local login URL.

■ After a successful single sign-on and before the final protected resource (defined in the
<RelayState> element) is accessed, the user may be directed to an intermediate URL, if one
is configured as the value of the intermediateUrl property in the service provider's
extended metadata configuration file. For example, this intermediate URL might be a
successful account creation page after the auto-creation of a user account. The redirectUrl
in spAssertionConsumer.jsp can be modified to override the intermediateUrl value.

Single Sign-on Pages
The single sign-on JSP are used to initiate single sign-on and, parse authentication requests, and
generate responses. These include:
■ “idpSSOFederate.jsp” on page 135
■ “idpSSOInit.jsp” on page 135
■ “spSSOInit.jsp” on page 136

idpSSOFederate.jsp

idpSSOFederate.jsp works on the identity provider side to receive and parse authentication
requests from the service provider and generate a Response containing an assertion. The
endpoint for this JSP is protocol://host:port/service-deploy-uri/idpSSOFederate.
idpSSOFederate.jsp takes the following parameters:

■ SAMLRequest: This required parameter takes as a value the XML blob that contains the
AuthnRequest.

■ metaAlias: This optional parameter takes as a value the metaAlias set in the identity
provider's extended metadata configuration file.

■ RelayState: This optional parameter takes as a value the target URL of the request.

idpSSOInit.jsp

idpSSOInit.jsp initiates single sign-on from the identity provider side (also referred to as
unsolicited response). For example, a user requests access to a resource. On receiving this

SAML v2

Chapter 7 • Constructing SAML Messages 135

Early Access Documentation

request for access, idpSSOInit.jsp looks for a cached assertion which, if present, is sent to the
service provider in an unsolicited <Response>. If no assertion is found, idpSSOInit.jsp verifies
that the following required parameters are defined:

■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's
extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

■ spEntityID: The entity identifier of the service provider to which the response is sent.

If defined, the unsolicited Response is created and sent to the service provider. If not, an error is
returned. The endpoint for this JSP is protocol://host:port/service-deploy-uri/idpssoinit.
The following optional parameters can also be passed to idpSSOInit.jsp:

■ RelayState: The target URL of the request.
■ NameIDFormat: The currently supported name identifier formats: persistent or transient.
■ binding: A URI suffix identifying the protocol binding to use when sending the Response.

The supported values are:
■ HTTP-Artifact

■ HTTP-POST

spSSOInit.jsp

spSSOInit.jsp is used to initiate single sign-on from the service provider side. On receiving a
request for access, spSSOInit.jsp verifies that the following required parameters are defined:

■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's
extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

■ idpEntityID: The entity identifier of the identity provider to which the request is sent. If
idpEntityID is not provided, the request is redirected to the SAML v2 IDP Discovery
Service to get the user's preferred identity provider. In the event that more then one identity
provider is returned, the last one in the list is chosen. If idpEntityID cannot be retrieved
using either of these methods, an error is returned.

If defined, the Request is created and sent to the identity provider. If not, an error is returned.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/spssoinit. The following
optional parameters can also be passed to spSSOInit.jsp:

■ RelayState: The target URL of the request.
■ NameIDFormat: The currently supported name identifier formats: persistent or transient.
■ binding: A URI suffix identifying the protocol binding to use when sending the Response.

The supported values are:
■ HTTP-Artifact

■ HTTP-POST

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)136

Early Access Documentation

■ AssertionConsumerServiceIndex: An integer identifying the location to which the
Response message should be returned to the requester. requester. It applies to profiles in
which the requester is different from the presenter, such as the Web Browser SSO profile.

■ AttributeConsumingServiceIndex: An integer indirectly specifying information
(associated with the requester) describing the SAML attributes the requester desires or
requires to be supplied.

■ isPassive: Takes a value of true or false with true indicating the identity provider should
authenticate passively.

■ ForceAuthN: Takes a value of true indicating that the identity provider must force
authentication or false indicating that the identity provider can reuse existing security
contexts.

■ AllowCreate: Takes a value of true indicating that the identity provider is allowed to
created a new identifier for the principal if it does not exist or false.

■ Destination: A URI indicating the address to which the request has been sent.
■ AuthnContextClassRef: Specifies a URI reference identifying an authentication context

class that describes the declaration that follows. Multiple references can be pipe-separated.
■ AuthnContextDeclRef: Specifies a URI reference to an authentication context declaration.

Multiple references can be pipe-separated.
■ AuthComparison: The comparison method used to evaluate the requested context classes or

statements. Accepted values include: minimum, maximum or better.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

Name Identifier Pages
The various ManageNameID (MNI) JSP provide a way to change account identifiers or
terminate mappings between identity provider accounts and service provider accounts. For
example, after establishing a name identifier for use when referring to a principal, the identity
provider may want to change its value and/or format. Additionally, an identity provider might
want to indicate that a name identifier will no longer be used to refer to the principal. The
identity provider will notify service providers of the change by sending them a
ManageNameIDRequest. A service provider also uses this message type to register or change the
SPProvidedID value (included when the underlying name identifier is used to communicate
with it) or to terminate the use of a name identifier between itself and the identity provider.

■ “idpMNIRequestInit.jsp” on page 138
■ “idpMNIRedirect.jsp” on page 138
■ “spMNIRequestInit.jsp” on page 138
■ “spMNIRedirect.jsp” on page 139

SAML v2

Chapter 7 • Constructing SAML Messages 137

Early Access Documentation

idpMNIRequestInit.jsp

idpMNIRequestInit.jsp initiates the ManageNameIDRequest at the identity provider by user
request. The endpoint for this JSP is protocol://host:port/service-deploy-uri/IDPMniInit. It
takes the following required parameters:

■ metaAlias: The value of the metaAlias property set in the identity provider's extended
metadata configuration file. If the metaAlias attribute is not present, an error is returned.

■ spEntityID: The entity identifier of the service provider to which the response is sent.
■ requestType: The type of ManageNameIDRequest. Accepted values include Terminate and

NewID.

Note – NewID is not supported in this release.

Some of the other optional parameters are :

■ binding: A URI specifying the protocol binding to use for the <Request>. The supported
values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ RelayState: The target URL of the request

idpMNIRedirect.jsp

idpMNIRedirect.jsp processes the ManageNameIDRequest and the ManageNameIDResponse
received from the service provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/IDPMniRedirect. It takes the following required
parameters:

■ SAMLRequest: The ManageNameIDRequest from the service provider.
■ SAMLResponse: The ManageNameIDResponse from the service provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

spMNIRequestInit.jsp

spMNIRequestInit.jsp initiates the ManageNameIDRequest at the service provider by user
request. The endpoint for this JSP is protocol://host:port/service-deploy-uri/SPMniInit. It
takes the following required parameters:

■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's
extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)138

Early Access Documentation

■ idpEntityID: The entity identifier of the identity provider to which the request is sent.
■ requestType: The type of ManageNameIDRequest. Accepted values include Terminate and

NewID.

Note – NewID is not supported in this release.

Some of the other optional parameters are :
■ binding: A URI specifying the protocol binding to use for the Request. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ RelayState: The target URL of the request.

spMNIRedirect.jsp

spMNIRedirect.jsp processes the ManageNameIDRequest and the <ManageNameIDResponse>
received from the identity provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/SPMniRedirect. It takes the following required
parameters:
■ SAMLRequest: The ManageNameIDRequest from the identity provider.
■ SAMLResponse: The ManageNameIDResponse from the identity provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

Single Logout JavaServer Pages
The single logout JSP provides the means by which all sessions authenticated by a particular
identity provider are near-simultaneously terminated. The single logout protocol is used either
when a user logs out from a participant service provider or when the principal logs out directly
from the identity provider.
■ “idpSingleLogoutInit.jsp” on page 139
■ “idpSingleLogoutRedirect.jsp” on page 140
■ “spSingleLogoutInit.jsp” on page 140
■ “spSingleLogoutRedirect.jsp” on page 141

idpSingleLogoutInit.jsp

idpSingleLogoutInit.jsp initiates a LogoutRequest at the identity provider by user request.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/IDPSloInit. There are no
required parameters. Optional parameters include:

SAML v2

Chapter 7 • Constructing SAML Messages 139

Early Access Documentation

■ RelayState: The target URL after single logout.
■ binding: A URI specifying the protocol binding to use for the <Request>. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ Destination: A URI indicating the address to which the request has been sent.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

■ Extension: Specifies permitted extensions as a list of string objects.

Note – Extension is not supported in this release.

■ logoutAll: Specifies that the identity provider send log out requests to all service providers
without a session index. It will logout all sessions belonging to the user.

idpSingleLogoutRedirect.jsp

idpSingleLogoutRedirect.jsp processes the LogoutRequest and the LogoutResponse
received from the service provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/IDPSloRedirect. It takes the following required
parameters:
■ SAMLRequest: The LogoutRequest from the service provider.
■ SAMLResponse: The LogoutResponse from the service provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

spSingleLogoutInit.jsp

spSingleLogoutInit.jsp initiates a LogoutRequest at the identity provider by user request.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/SPSloInit. There are no
required parameters. Optional parameters include:
■ RelayState: The target URL after single logout.
■ binding: A URI specifying the protocol binding to use for the <Request>. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

SAML v2

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)140

Early Access Documentation

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ Destination: A URI indicating the address to which the request has been sent.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

■ Extension: Specifies permitted extensions as a list of string objects.

Note – Extension is not supported in this release.

spSingleLogoutRedirect.jsp

spSingleLogoutRedirect.jsp processes the LogoutRequest and the LogoutResponse
received from the identity provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/SPSloRedirect. It takes the following required
parameters:

■ SAMLRequest: The LogoutRequest from the identity provider.
■ SAMLResponse: The LogoutResponse from the identity provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

SAML v2 Samples
Need info on SAML2 samples

SAML 1.x
The following sections contain information on the SAML 1.x framework.

■ “Interfaces” on page 141
■ “SAML 1.x Samples” on page 148

Interfaces
Federated Access Manager contains a SAML 1.x API that consists of several Java packages.
Administrators can use these packages to integrate the SAML functionality and XML messages

SAML 1.x

Chapter 7 • Constructing SAML Messages 141

Early Access Documentation

into their applications and services. The API supports all types of assertions and operates with
the Federated Access Manager authorities to process external SAML 1.x requests and generate
SAML 1.x responses. The packages include the following:

■ “com.sun.identity.saml Package” on page 142
■ “com.sun.identity.saml.assertion Package” on page 143
■ “com.sun.identity.saml.common Package” on page 143
■ “com.sun.identity.saml.plugins Package” on page 143
■ “com.sun.identity.saml.protocol Package” on page 145
■ “com.sun.identity.saml.xmlsig Package” on page 147

For more detailed information, including methods and their syntax and parameters, see the
Federated Access Manager 8.0 Java API Reference.

com.sun.identity.samlPackage
This package contains the following classes.

■ “AssertionManager Class” on page 142
■ “SAMLClient Class” on page 142

AssertionManager Class

The AssertionManager class provides interfaces and methods to create and get assertions,
authentication assertions, and assertion artifacts. This class is the connection between the
SAML specification and Federated Access Manager. Some of the methods include the following:

■ createAssertion creates an assertion with an authentication statement based on an
Federated Access Manager SSO Token ID.

■ createAssertionArtifact creates an artifact that references an assertion based on an
Federated Access Manager SSO Token ID.

■ getAssertion returns an assertion based on the given parameter (given artifact, assertion
ID, or query).

SAMLClientClass

The SAMLClient class provides methods to execute either the Web Browser Artifact Profile or
the Web Browser POST Profile from within an application as opposed to a web browser. Its
methods include the following:

■ getAssertionByArtifact returns an assertion for a corresponding artifact.
■ doWebPOST executes the Web Browser POST Profile.
■ doWebArtifact executes the Web Browser Artifact Profile.

SAML 1.x

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)142

Early Access Documentation

com.sun.identity.saml.assertion Package
This package contains the classes needed to create, manage, and integrate an XML assertion
into an application. The following code example illustrates how to use the Attribute class and
getAttributeValue method to retrieve the value of an attribute. From an assertion, call the
getStatement() method to retrieve a set of statements. If a statement is an attribute statement,
call the getAttribute() method to get a list of attributes. From there, call
getAttributeValue() to retrieve the attribute value.

EXAMPLE 7–1 Sample Code to Obtain an Attribute Value

// get statement in the assertion

Set set = assertion.getStatement();

//assume there is one AttributeStatement

//should check null& instanceof

AttributeStatement statement = (AttributeStatement) set.iterator().next();

List attributes = statement.getAttribute();

// assume there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeValue();

com.sun.identity.saml.common Package
This package defines classes common to all SAML elements, including site ID, issuer name, and
server host. The package also contains all SAML-related exceptions.

com.sun.identity.saml.plugins Package
The SAML 1.x framework provides service provider interfaces (SPIs), three of which have
default implementations. The default implementations of these SPIs can be altered, or brand
new ones written, based on the specifications of a particular customized service. The
implementations are then used to integrate SAML into the custom service. Currently, the
package includes the following.

■ “ActionMapper Interface” on page 143
■ “AttributeMapper Interface” on page 144
■ “NameIdentifierMapper Interface” on page 144
■ “PartnerAccountMapper Interface” on page 144
■ “PartnerSiteAttributeMapper Interface” on page 144

ActionMapper Interface

ActionMapper is an interface used to obtain single sign-on information and to map partner
actions to Federated Access Manager authorization decisions. A default action mapper is
provided if no other implementation is defined.

SAML 1.x

Chapter 7 • Constructing SAML Messages 143

Early Access Documentation

AttributeMapper Interface

AttributeMapper is an interface used in conjunction with an AttributeQuery class When a
site receives an attribute query, this mapper obtains the SSOToken or an assertion (containing an
authentication statement) from the query. The retrieved information is used to convert the
attributes in the query to the corresponding Federated Access Manager attributes. A default
attribute mapper is provided if no other implementation is defined.

For more information, see XXXXX.

NameIdentifierMapper Interface

NameIdentifierMapper is an interface that can be implemented by a site to map a user account
to a name identifier in the subject of a SAML assertion. The implementation class is specified
when configuring the site's Trusted Partners.

PartnerAccountMapper Interface

New

Caution – The AccountMapper interface has been deprecated. Use the PartnerAccountMapper
interface.

The PartnerAccountMapper interface needs to be implemented by each partner site. The
implemented class maps the partner site's user accounts to user accounts configured in Access
Manager for purposes of single sign-on. For example, if single sign-on is configured from site A
to site B, a site-specific account mapper can be developed and defined in the Trusted Partners
sub-attribute of site B's Trusted Partners profile. When site B processes the assertion received, it
locates the corresponding account mapper by retrieving the source ID of the originating site.
The PartnerAccountMapper takes the whole assertion as a parameter, enabling the partner to
define user account mapping based on attributes inside the assertion. The default
implementation is com.sun.identity.saml.plugin.DefaultAccountMapper. If a site-specific
account mapper is not configured, this default mapper is used.

Note – Turning on the Debug Service in the Federated Access Manager configuration data store
logs additional information about the account mapper, for example, the user name and
organization to which the mapper has been mapped.

PartnerSiteAttributeMapper Interface

New

Remark 7–3
Reviewer

Remark 7–4
Reviewer

SAML 1.x

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)144

Early Access Documentation

Caution – The SiteAttributeMapper interface has been deprecated. Use the
PartnerSiteAttributeMapper interface.

The PartnerSiteAttributeMapper interface needs to be implemented by each partner site.
The implemented class defines a list of attributes to be returned as elements of the
AttributeStatements in an authentication assertion. By default, when Federated Access
Manager creates an assertion and no mapper is specified, the authentication assertion only
contains authentication statements. If a partner site wants to include attribute statements, it
needs to implement this mapper which would be used to obtain attributes, create the attribute
statement, and insert the statement inside the assertion. To set up a
PartnerSiteAttributeMapper do the following:

1. Implement a customized class based on the PartnerSiteAttributeMapper interface.
This class will include user attributes in the SAML authentication assertion.

2. Log in to the Federated Access Manager console to configure the class in the Site Attribute
Mapper attribute of the Trusted Partner configuration.
See XXXXX for more information.

com.sun.identity.saml.protocol Package
This package contains classes that parse the request and response XML messages used to
exchange assertions and their authentication, attribute, or authorization information.
■ “AuthenticationQuery Class” on page 145
■ “AttributeQuery Class” on page 145
■ “AuthorizationDecisionQuery Class” on page 146

AuthenticationQuery Class

The AuthenticationQuery class represents a query for an authentication assertion. When an
identity attempts to access a trusted partner web site, a SAML 1.x request with an
AuthenticationQuery inside is directed to the authority site.

The Subject of the AuthenticationQuery must contain a SubjectConfirmation element. In
this element, ConfirmationMethod needs to be set to urn:com:sun:identity, and
SubjectConfirmationData needs to be set to the SSOToken ID of the Subject. If the Subject
contains a NameIdentifier, the value of the NameIdentifier should be the same as the one in
the SSOToken.

AttributeQuery Class

The AttributeQuery class represents a query for an identity’s attributes. When an identity
attempts to access a trusted partner web site, a SAML 1.x request with an AttributeQuery is
directed to the authority site.

SAML 1.x

Chapter 7 • Constructing SAML Messages 145

Early Access Documentation

You can develop an attribute mapper to obtain an SSOToken, or an assertion that contains an
AuthenticationStatement from the query. If no attribute mapper for the querying site is
defined, the DefaultAttributeMapper will be used. To use the DefaultAttributeMapper, the
query should have either the SSOToken or an assertion that contains an
AuthenticationStatement in the SubjectConfirmationData element. If an SSOToken is used,
the ConfirmationMethod must be set to urn:com:sun:identity:. If an assertion is used, the
assertion should be issued by the Federated Access Manager instance processing the query or a
server that is trusted by the Federated Access Manager instance processing the query.

Note – In the DefaultAttributeMapper, a subject’s attributes can be queried using another
subject’s SSOToken if the SSOToken has the privilege to retrieve the attributes.

For a query using the DefaultAttributeMapper, any matching attributes found will be
returned. If no AttributeDesignator is specified in the AttributeQuery, all attributes from
the services defined under the userServiceNameList in amSAML.properties will be returned.
The value of the userServiceNameList property is user service names separated by a comma.

AuthorizationDecisionQuery Class

The AuthorizationDecisionQuery class represents a query about a principal’s authority to
access protected resources. When an identity attempts to access a trusted partner web site, a
SAML request with an AuthorizationDecisionQuery is directed to the authority site.

You can develop an ActionMapper to obtain the SSOToken ID and retrieve the authentication
decisions for the actions defined in the query. If no ActionMapper for the querying site is
defined, the DefaultActionMapper will be used. To use the DefaultActionMapper, the query
should have the SSOToken ID in the SubjectConfirmationData element of the Subject. If the
SSOToken ID is used, the ConfirmationMethod must be set to urn:com:sun:identity:. If a
NameIdentifier is present, the information in the SSOToken must be the same as the
information in the NameIdentifier.

Note – When using web agents, the DefaultActionMapper handles actions in the namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. Web agents serve the policy decisions for this
action namespace.

The authentication information can also be passed through the Evidence element in the query.
Evidence can contain an AssertionIDReference, an assertion containing an
AuthenticationStatement issued by the Federated Access Manager instance processing the
query, or an assertion issued by a server that is trusted by the Federated Access Manager
instance processing the query. The Subject in the AuthenticationStatement of the Evidence
element should be the same as the one in the query.

SAML 1.x

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)146

Early Access Documentation

Note – Policy conditions can be passed through AttributeStatements of assertion(s) inside the
Evidence of a query. If the value of an attribute contains a TEXT node only, the condition is set
as attributeName=attributeValueString. Otherwise, the condition is set as
attributename=attributeValueElement.

The following example illustrates one of many ways to form an authorization decision query
that will return a decision.

EXAMPLE 7–2 AuthorizationDecisionQueryCode Sample

// testing getAssertion(authZQuery): no SC, with ni, with

// evidence(AssertionIDRef, authN, for this ni):

String nameQualifier = "dc=iplanet,dc=com";
String pName = "uid=amadmin,ou=people,dc=iplanet,dc=com";
NameIdentifier ni = new NameIdentifier(pName, nameQualifier);

Subject subject = new Subject(ni);

String actionNamespace = "urn:test";
// policy should be added to this resource with these

// actions for the subject

Action action1 = new Action(actionNamespace, "GET");
Action action2 = new Action(actionNamespace, "POST");
List actions = new ArrayList();

actions.add(action1);

actions.add(action2);

String resource = "http://www.sun.com:80";
eviSet = new HashSet();

// this assertion should contain authentication assertion for

// this subject and should be created by a trusted server

eviSet.add(eviAssertionIDRef3);

evidence = new Evidence(eviSet);

authzQuery = new AuthorizationDecisionQuery(eviSubject1, actions,

evidence, resource);

try {

assertion = am.getAssertion(authzQuery, destID);

} catch (SAMLException e) {

out.println("--failed. Exception:" + e);

}

com.sun.identity.saml.xmlsig Package
All SAML 1.x assertions, requests, and responses can be signed using this signature package. It
contains SPI that are implemented to plug in proprietary XML signatures. This package
contains classes needed to sign and verify using XML signatures. By default, the keystore
provided with the Java Development Kit is used and the key type is DSA. The configuration
properties for this functionality are in the Federated Access Manager configuration data store.
For details on how to use the signature functionality, see “SAML 1.x Samples” on page 148.

SAML 1.x

Chapter 7 • Constructing SAML Messages 147

Early Access Documentation

SAML 1.x Samples

As of 3/17/08 no saml1x samples integrated in FAM8.

You can access several SAML-based samples from the “SAML 1.x Samples” on page 148
installation in /path-to-context-root/fam/samples/saml. These samples illustrate how the
SAML 1.x framework can be used in different ways, including the following:

■ A sample that serves as the basis for using the SAML client API. This sample is located in
/path-to-context-root/fam/samples/saml/client.

■ A sample that illustrates how to form a Query, write an AttributeMapper, and send and
process a SOAP message using the SAML SDK. This sample is located in
/path-to-context-root/fam/samples/saml/query.

■ A sample application for achieving SSO using either the Web Browser Artifact Profile or the
Web Browser POST Profile. This sample is located in
/path-to-context-root/fam/samples/saml/sso.

■ A sample that illustrates how to use the XMLSIG API and explains how to configure for
XML signing. This sample is located in /path-to-context-root/fam/samples/saml/xmlsig.

Each sample includes a README file with information and instructions on how to use it.

Remark 7–5
Writer

SAML 1.x

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)148

Early Access Documentation

Implementing Web Services

Federated Access Manager contains web services that can be used to extend the functionality of
your federated environment. Additionally, new web services can be developed. This chapter
covers the following topics:

■ “Developing New Web Services” on page 149
■ “Setting Up Liberty ID-WSF 1.1 Profiles” on page 160
■ “Common Application Programming Interfaces” on page 166
■ “Web Service Consumer Sample” on page 169
■ “Authentication Web Service” on page 170
■ “Data Services” on page 172
■ “Discovery Service” on page 175
■ “SOAP Binding Service” on page 183
■ “Interaction Service” on page 185
■ “PAOS Binding” on page 187

Developing New Web Services
Any web service that is plugged into the Federated Access Manager Liberty ID-WSF framework
must register a key, and an implementation of the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface, with the SOAP
Binding Service. (For example, the Liberty Personal Profile Service is registered with the key
idpp, and the class com.sun.identity.liberty. ws.soapbinding.PPRequestHandler.) The
Key value becomes part of the URL for the web service's endpoint (as in
protocol://host:port/deploymenturi/Liberty/key). The implemented class allows the web
service to retrieve the request (containing the authenticated principal and the authenticated
security mechanism along with the entire SOAP message). The web service processes the
request and generates a response. This section contains the process you would use to add a new
Liberty ID-WSF web service to the Federated Access Manager framework. Instructions for
some of these steps are beyond the scope of this guide. The process has been divided into two
tasks:

8C H A P T E R 8

149

Early Access Documentation

■ “To Host a Custom Service” on page 150
■ “To Invoke the Custom Service” on page 157

▼ To Host a Custom Service
The XML Schema Definition (XSD) file written to define the new service is the starting point for
developing the service's server-side code. More information can be found in XXXXXXSchema
Files and Service Definition Documents.

Write an XML service schema for the new web service and Java classes to parse and process the
XML messages.
The following sample schema defines a stock quote web service. The QuoteRequest and
QuoteResponse elements define the parameters for the request and response that are inserted in
the SOAP Body of the request and response, respectively. You will need to have
QuoteRequest.java and QuoteResponse.java to parse and process the XML messages.
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="urn:com:sun:liberty:sample:stockticker"
targetNamespace="urn:com:sun:liberty:sample:stockticker">
<xs:annotation>

<xs:documentation>

This is a sample stock ticker web service protocol

</xs:documentation>

</xs:annotation>

<xs:element name="QuoteRequest" type="QuoteRequestType"/>
<xs:complexType name="QuoteRequestType">
<xs:sequence>

<xs:element name = "ResourceID" type="xs:string" minOccurs="0"/>
<xs:element name = "Symbol" type="xs:string" minOccours="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PriceType">
<xs:sequence>

<xs:element name="Last" type="xs:integer"/>
<xs:element name="Open" type="xs:integer"/>
<xs:element name="DayRange" type="xs:string"/>
<xs:element name="Change" type="xs:string"/>
<xs:element name="PrevClose" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

<xs:element name="QuoteResponse" type="QuoteResponseType"/>
<xs:complexType name="QuoteResponseType">

Before You Begin

1

Developing New Web Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)150

Early Access Documentation

<xs:sequence>

<xs:element name="Symbol" type="xs:string"/>
<xs:element name="Time" type="xs:dateTime"/>
<xs:element name="Delay" type="xs:dateTime" minOccurs="0"/>
<xs:element name="Price" type="PriceType"/>
<xs:element name="Volume" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Provide an implementation for one of the following interfaces based on the type of web service
being developed:

■ com.sun.identity.liberty.ws.soapbinding.RequestHandler for developing and
deploying a general web service.
See XXXXX.

■ com.sun.identity.liberty.ws.dst.service.DSTRequestHandler for developing and
deploying an identity data service type web service based on the Liberty Alliance Project
Identity Service Interface Specifications (Liberty ID-SIS).
See XXXXX.

In Federated Access Manager, each web service must implement one of these interfaces to
accept incoming message requests and return outgoing message responses. The following
sample implements the com.sun.identity.liberty.ws.soapbinding.RequestHandler
interface for the stock quote web service.
com.sun.identity.liberty.ws.soapbinding.Message is the API used to construct requests
and responses.

public class StockTickerService implements RequestHandler {

:

//implement business logic

public Message processRequest(Message msg) throws

SOAPFaultException, Exception {

:

SSOToken token = (SSOToken)msg.getToken();

List responseBody = processSOAPBody(msg.getBodies());

:

Message response = new Message();

response.setBodies(responseBody);

return response;

}

:

//more business logic

2

Developing New Web Services

Chapter 8 • Implementing Web Services 151

Early Access Documentation

}

Compile the Java source code.

Be sure to include am_services.jar in your classpath.

Add the previously created classes to the web container classpath and restart the web
container.

Login to the Federated Access Manager console as the top level administrator.

By default, amadmin.

Click the Web Services tab.

Under Web Services, click the SOAP Binding Service tab to register the new implementation
with the SOAP Binding Service.

3

4

5

6

7

Developing New Web Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)152

Early Access Documentation

Click New under the Request Handler List global attribute.

Enter a name for the implementation in the Key field.
This value will be used as part of the service endpoint URL for the web service. For example, if
the value is stock, the endpoint URL to access the stock quote web service will be:
http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/stock

8

9

Developing New Web Services

Chapter 8 • Implementing Web Services 153

Early Access Documentation

Enter the name of the implementation class previously created in the Class field.

(Optional) Enter a SOAP Action in the SOAP Action field.

Click Save to save the configuration.

The request handler will be displayed under the Request Handler List.

Click on the Access Control tab to begin the process of publishing the web service to the
Discovery Service.

The Discovery Service is a registry of web services. It matches the properties in a request with
the properties in its registry and returns the appropriate service location. See XXXXX.

Select the name of the realm to which you want to add the web service.

Select Services to access the realm's services.

Click Discovery Service.

If the Discovery Service has not yet been added, do the following.

a. Click Add.

A list of available services is displayed.

b. Select Discovery Service and click Next to add the service.

The list of added services is displayed including the Discovery Service.

Click Add to create a new resource offering.

10

11

12

13

14

15

16

17

Developing New Web Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)154

Early Access Documentation

(Optional) Enter a description of the resource offering in the Description field.18

Developing New Web Services

Chapter 8 • Implementing Web Services 155

Early Access Documentation

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
a valid URI for the sample service is urn:com:sun:liberty:sample:stockticker.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This
information is useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs.

Note – The provider represented by the URI in the Provider ID attribute must also have an entry
in the ResourceIDMapper attribute. For more information, see XXXXXClasses For
ResourceIDMapper Plug-in.

Click New Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Type a value for the End Point URL.

This value is the URL to access the new web service. For this example, it should be:
http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/stock

c. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap:soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OK to complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

19

20

21

22

Developing New Web Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)156

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

■ GenerateBearerToken specifies that a bearer token be generated.
■ AuthenticateRequester must be used with any service description that use SAML for

message authentication.
■ EncryptResourceID specifies that the Discovery Service encrypt the resource ID.
■ AuthenticateSessionContext is specified when a Discovery Service provider includes a

SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

■ AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.

Logout from the console.

▼ To Invoke the Custom Service
Web service clients can access the custom web service by discovering the web service's end
point and using the required credentials. This information is stored by the Federated Access
Manager Discovery Service. There are two ways in which a client can authenticate to Federated
Access Manager in order to access the Discovery Service:

■ The Liberty ID-FF is generally used if it's a browser-based application and the web service
client is a federation enabled service provider.

■ The Access Manager Authentication Web Service (based on the Liberty ID-WSF) is used for
remote web services clients with pure SOAP-based authentication capabilities.

In the following procedure, we use the Liberty ID-WSF client API to invoke the web service.

Note – The code in this procedure is used to demonstrate the usage of the Liberty ID-WSF client
API. More information can be found in the Federated Access Manager 8.0 Java API Reference.

23

24

25

Developing New Web Services

Chapter 8 • Implementing Web Services 157

Early Access Documentation

Write code to authenticate the WSC to the Authentication Web Service of Federated Access
Manager.

The sample code below will allow access to the Discovery Service. It is a client-side program to
be run inside the WSC application.
public class StockClient {

:

public SASLResponse authenticate(

String userName,

String password,

String authurl) throws Exception {

SASLRequest saslReq =

new SASLRequest(AuthnSvcConstants.MECHANISM_PLAIN);

saslReq.setAuthzID(userName);

SASLResponse saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);

String statusCode = saslResp.getStatusCode();

if (!statusCode.equals(SASLResponse.CONTINUE)) {

return null;

}

String serverMechanism = saslResp.getServerMechanism();

saslReq = new SASLRequest(serverMechanism);

String dataStr = userName + "\0" + userName + "\0" + password;

saslReq.setData(dataStr.getBytes("UTF-8"));
saslReq.setRefToMessageID(saslResp.getMessageID());

saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);

statusCode = saslResp.getStatusCode();

if (!statusCode.equals(SASLResponse.OK)) {

return null;

}

return saslResp;

}

:

}

Add code that will extract the Discovery Service information from the Authentication Response.

The following additional code would be added to what was developed in the previous step.
ResourceOffering discoro = saslResp.getResourceOffering();

List credentials = authnResponse.getCredentials();

1

2

Developing New Web Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)158

Early Access Documentation

Add code to query the Discovery Service for the web service's resource offering by using the
Discovery Service resource offering and the credentials that are required to access it.
The following additional code would be added to what was previously developed.
RequestedService rs = new RequestedService(null,

"urn:com:sun:liberty:sample:stockticker");
List rss = new ArrayList();

rss.add(rs);

Query discoQuery = new Query(discoro.getResourceID(), rss);

DiscoveryClient discoClient = null;

discoClient = new DiscoveryClient(secAssertion, serviceURL, null);

QueryResponse queryResponse = discoClient.getResourceOffering(discoQuery);

The discovery response contains the service's resource offering and the credentials required to
access the service.
quotes contains the response body (the stock quote). You would use the Federated Access
Manager SOAP API to get the body elements.
List offerings = discoResponse.getResourceOffering();

ResourceOffering stockro = (ResourceOffering)offerings.get(0);

List credentials = discoResponse.getCredentials();

SecurityAssertion secAssertion = null;

if(credentials != null && !credentials.isEmpty()) {

secAssertion = (SecurityAssertion)credentials.get(0);

}

String serviceURL = ((Description)stockro.getServiceInstance().

getDescription().get(0)).getEndpoint();

QuoteRequest req = new QuoteRequest(symbol,

stockro.getResourceID().getResourceID());

Element elem = XMLUtils.toDOMDocument(

req.toString(), debug).getDocumentElement();

List list = new ArrayList();

list.add(elem);

Message msg = new Message(null, secAssertion);

msg.setSOAPBodies(list);

Message response = Client.sendRequest(msg, serviceURL, null, null);

List quotes = response.getBodies();

3

4

Developing New Web Services

Chapter 8 • Implementing Web Services 159

Early Access Documentation

Setting Up Liberty ID-WSF 1.1 Profiles
Federated Access Manager automatically detects which version of the Liberty ID-WSF profiles
is being used. If Federated Access Manager is the web services provider (WSP), it detects the
version from the incoming SOAP message. If Federated Access Manager is the WSC, it uses the
version the WSP has registered with the Discovery Service. If the WSP can not detect the
version from the incoming SOAP message or the WSC can not communicate with the
Discovery Service, the version defined in the com.sun.identity.liberty.wsf.version
property in the Federated Access Manager configuration data store will be used. Following are
the steps to configure Federated Access Manager to use Liberty ID-WSF 1.1 profiles.

▼ To Configure Federated Access Manager to Use Liberty
ID-WSF 1.1 Profiles

Install Federated Access Manager on two different machines.

Test the installation by logging in to the console at http://server:port/amserver/UI/Login.

Setup the two instances of Federated Access Manager for communication using the Liberty
ID-FF protocols.

This entails setting up one instance as the service provider (SP) and the other as the identity
provider (IDP). Instructions for doing this can be found in XXXXXEntities and Authentication
Domains or in the README file located in the
/path-to-context-root/samples/liberty/sample1 directory.

Note – This step also entails creating a keystore for each provider. Instructions for this procedure
are located in /path-to-context-root/samples/saml/xmlsig/keytool.html or in
XXXXXAppendix B, Key Management in this guide. For testing purposes, you can copy the
same keystore to each machine; if not, import the public keys from one machine to the other. Be
sure to update the Key Alias attribute for each provider in the Federated Access Manager
configuration data store and change the cookie name on one of the machines (in the same file) if
both machines are in the same domain.

Using the Federated Access Manager console on the SP side, change the value of the Protocol
Support Enumeration attribute to urn:liberty:iff:2003-08 in both provider configurations.

The value of this attribute defines the supported release of the Liberty ID-FF; in this case,
version 1.2.

1

2

3

Setting Up Liberty ID-WSF 1.1 Profiles

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)160

Early Access Documentation

Setup the two instances of Federated Access Manager for communication with the Liberty
ID-WSF web services.
This entails copying the files located in the /path-to-context-root/samples/phase2/wsc
directory to your web container's doc root directory and making the changes specified in the
sample README file. The relevant files and corresponding function are:
■ index.jsp: Retrieves boot strapping resource offering for Discovery Service.
■ discovery-modify.jsp: Adds resource offering for a user.
■ discovery-query.jsp: Sends query to Discovery Service for a resource offering.
■ id-sis-pp-modify.jsp: Sends Data Service Modify request to modify user attributes.
■ id-sis-pp-query.jsp: Sends Data Service Query request to retrieve user attributes.

Copy the discovery-modify.jsp reproduced below into the web container's doc root
directory.
This JSP is configured to use the Liberty ID-WSF 1.1 Bearer token profile
(<SecurityMechID>urn:liberty:security:2005-02:null:Bearer</SecurityMechID>) with
appropriate directives and should replace the file already in the directory. You can modify this
file to use other profiles if you know the defined URI of the particular Liberty ID-WSF 1.1
profile. (X509 or SAML token, for example.)
<%--

Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved

Use is subject to license terms.

--%>

<%@page import="java.io.*,java.util.*,com.sun.identity.saml.common.*,
com.sun.identity.liberty.ws.disco.*,com.sun.identity.liberty.ws.disco.common.*,

javax.xml.transform.stream.*,

com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper,

com.iplanet.sso.*,com.sun.liberty.LibertyManager" %>

<html xmlns="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<head><title>Discovery Service Modification</title></head>

<body bgcolor="white">
<h1>Discovery Service Modification</h1>

<%

if (request.getMethod().equals("GET")) {

String resourceOfferingFile =

request.getParameter("discoveryResourceOffering");
if (resourceOfferingFile == null) {

resourceOfferingFile= "";
}

String entryID =

request.getParameter("entryID");
if (entryID == null) {

entryID= "";
}

4

5

Setting Up Liberty ID-WSF 1.1 Profiles

Chapter 8 • Implementing Web Services 161

Early Access Documentation

// The following three values need to be changed to register a personal

// profile resource offering for a user.

String ppProviderID =

"http://shivalik.red.iplanet.com:58080/amserver/Liberty/idpp";
String userDN = "uid=amAdmin,ou=People,dc=iplanet,dc=com";
String ppEndPoint =

"http://shivalik.red.iplanet.com:58080/amserver/Liberty/idpp";

String providerID = request.getParameter("providerID");
String ppResourceID = (new IDPPResourceIDMapper()).getResourceID(

ppProviderID, userDN);

String newPPRO =

"<ResourceOffering xmlns=\"urn:liberty:disco:2003-08\">"
+ " <ResourceID>" + ppResourceID + "</ResourceID>\n"
+ " <ServiceInstance>\n"
+ " <ServiceType>urn:liberty:id-sis-pp:2003-08</ServiceType>\n"
+ " <ProviderID>" + ppProviderID + "</ProviderID>\n"
+ " <Description>"
+ " <SecurityMechID>urn:liberty:security:2005-02:null:Bearer"
+ "</SecurityMechID>\n"
+ " <Endpoint>" + ppEndPoint + "</Endpoint>\n"
+ " </Description>\n"
+ " </ServiceInstance>\n"
+ " <Abstract>This is xyz </Abstract>\n"
+ "</ResourceOffering>";

%>

<form method="POST">
<table>

<tr>

<td>ResourceOffering (for discovery service itself)</td>

<td>

<textarea rows="2" cols="30" name="discoResourceOffering">
<%= resourceOfferingFile %>

</textarea>

</td>

</tr>

<tr>

<td>PP ResourceOffering to add</td>

<td>

<textarea rows="20" cols="60" name="insertStr"><%= newPPRO %></textarea>

</td>

</tr>

<tr>

<td>AND/OR PP ResourceOffering to remove</td>

<td>

Setting Up Liberty ID-WSF 1.1 Profiles

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)162

Early Access Documentation

<textarea rows="2" cols="30" name="entryID"></textarea>
</td>

</tr>

</table>

<input type="hidden" name="providerID" value="<%= providerID %>" />

<input type="submit" value="Send Discovery Update Request" />

</form>

<%

} else {

try {

String resourceXMLFile = request.getParameter("discoResourceOffering");
String resourceXML = null;

try {

BufferedReader bir = new BufferedReader(

new FileReader(resourceXMLFile));

StringBuffer buffer = new StringBuffer(2000);

int b1;

while ((b1=bir.read ())!= -1) {

buffer.append((char) b1);

}

resourceXML = buffer.toString();

} catch (Exception e) {

%>Warning: cannot read disco resource offering.<%

}

String insertString = request.getParameter("insertStr");
String entryID = request.getParameter("entryID");
String providerID = request.getParameter("providerID");
if (resourceXML == null || resourceXML.equals("")) {

%>ERROR: resource offering missing<%

} else {

ResourceOffering offering;

try {

offering = new ResourceOffering(DiscoUtils.parseXML(

resourceXML));

DiscoveryClient client = new DiscoveryClient(

offering,

SSOTokenManager.getInstance().createSSOToken(request),

providerID);

Modify mod = new Modify();

mod.setResourceID(offering.getResourceID());

mod.setEncryptedResourceID(offering.getEncryptedResourceID());

if ((insertString != null) &&

!(insertString.equals("")))
{

InsertEntry insert = new InsertEntry(

new ResourceOffering(

DiscoUtils.parseXML(insertString)),

null);

Setting Up Liberty ID-WSF 1.1 Profiles

Chapter 8 • Implementing Web Services 163

Early Access Documentation

// Uncommnent the following when it’s required.

List directives = new ArrayList();

Directive dir1 = new Directive(

Directive.AUTHENTICATE_REQUESTER);

directives.add(dir1);

// Directive dir2 = new Directive(

// Directive.AUTHORIZE_REQUESTER);

// directives.add(dir2);

Directive dir3 = new Directive(

Directive.GENERATE_BEARER_TOKEN);

directives.add(dir3);

insert.setAny(directives);

List inserts = new ArrayList();

inserts.add(insert);

mod.setInsertEntry(inserts);

}

if ((entryID != null) && !(entryID.equals(""))) {

RemoveEntry remove = new RemoveEntry(

com.iplanet.am.util.XMLUtils.escapeSpecialCharacters(

entryID));

List removes = new ArrayList();

removes.add(remove);

mod.setRemoveEntry(removes);

}

if ((mod.getInsertEntry() == null) &&

(mod.getRemoveEntry() == null))

{

%>ERROR: empty Modify<%

} else {

%>

<h2>Formed Modify :</h2>

<pre><%= SAMLUtils.displayXML(mod.toString()) %></pre>

<%

ModifyResponse resp2 = client.modify(mod);

%>

<h2>Got result:</h2>

<pre><%= SAMLUtils.displayXML(resp2.toString()) %></pre>

<%

}

} catch (Throwable t) {

t.printStackTrace();

StringWriter buf = new StringWriter();

t.printStackTrace(new PrintWriter(buf));

%>

ERROR: caught exception:

<pre>

<%

out.println(buf.toString());

Setting Up Liberty ID-WSF 1.1 Profiles

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)164

Early Access Documentation

%>

</pre>

<%

}

}

%>

<p>Return to index.jsp</p>

<%

} catch (Throwable e) {

e.printStackTrace();

StringWriter buf = new StringWriter();

e.printStackTrace(new PrintWriter(buf));

%>

ERROR: oocaught exception:

<pre>

<%

out.println(buf.toString());

%>

</pre>

<%

}

}

%>

<hr/>

</body>

</html>

Modify the values of the following properties in the Federated Access Manager configuration
data store on the IDP side to reflect the key alias.

■ com.sun.identity.liberty.ws.wsc.certalias=wsc_certificate_alias
■ com.sun.identity.liberty.ws.ta.certalias=signing_trusted_authority_certificate_alias
■ com.sun.identity.liberty.ws.trustedca.certaliases=list_of_trusted_authority_certification_alias

Register the Liberty Personal Profile Service to the user defined by the userDN in
discovery-modify.jsp.
Under the default top-level realm on the instance of Access Manager acting as an IDP, go to
Subjects and click User. Select the user and click Services. Click Add and register the Liberty
Personal Profile Service.

Note – In the discovery-modify.jsp reproduced above, the user is defined as the default
administrator, amAdmin. See the line:

String userDN = "uid=amAdmin,ou=People,dc=iplanet,dc=com";

Restart both instances of Federated Access Manager.

6

7

8

Setting Up Liberty ID-WSF 1.1 Profiles

Chapter 8 • Implementing Web Services 165

Early Access Documentation

Test that the Liberty ID-WSF 1.1 profiles are working by following the Run the Sample section of
the README located in /path-to-context-root/samples/phase2/wsc.

Common Application Programming Interfaces
The following list describes the API common to all Liberty-based Access Manager service
components and services.

■ “Common Interfaces” on page 166
■ “Common Security API” on page 168

For more information, including methods and their syntax and parameters, see the Federated
Access Manager 8.0 Java API Reference.

Common Interfaces
This section summarizes classes that can be used by all Liberty-based Federated Access
Manager service components, as well as interfaces common to all Liberty-based Federated
Access Manager services. The packages that contain the classes and interfaces are:

■ “com.sun.identity.liberty.ws.common Package” on page 166
■ “com.sun.identity.liberty.ws.interfaces Package” on page 166

com.sun.identity.liberty.ws.common Package
This package includes classes common to all Liberty-based Federated Access Manager service
components.

TABLE 8–1 com.sun.identity.liberty.ws.commonClasses

Class Description

LogUtil Defines methods that are used by the Liberty component of
Federated Access Manager to write logs.

Status Represents a common status object.

For more information, including methods and their syntax and parameters, see the Federated
Access Manager 8.0 Java API Reference.

com.sun.identity.liberty.ws.interfaces Package
This package includes interfaces that can be implemented to add their corresponding
functionality to each Liberty-based Federated Access Manager web service.

9

Common Application Programming Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)166

Early Access Documentation

TABLE 8–2 com.sun.identity.liberty.ws.interfaces Interfaces

Interface Description

Authorizer This interface, once implemented, can be used by each Liberty-based
web service component for access control.

Note – The
com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer

class is the implementation of this interface for the Discovery Service.
For more information, see XXXXX. The
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer class
is the implementation for the Liberty Personal Profile Service. For more
information, see XXXXX.

The Authorizer interface enables a web service to check whether a web
service consumer (WSC) is allowed to access the requested resource.
When a WSC contacts a web service provider (WSP), the WSC conveys a
sender identity and an invocation identity. Note that the invocation
identity is always the subject of the SAML assertion. These conveyances
enable the WSP to make an authorization decision based on one or both
identities. The Federated Access Manager Policy Service performs the
authorization based on defined policies.

Note – See the Sun Federated Access Manager 8.0 Technical Overview for
more information about policy management, single sign-on, and user
sessions. See the XXXXX for information about creating policy.

ResourceIDMapper This interface is used to map a user DN to the resource identifier
associated with it. Federated Access Manager provides implementations
of this interface.
■ com.sun.identity.liberty.ws.disco.plugins.

Default64ResourceIDMapper assumes the Resource ID format to
be: providerID + "/" + the Base64 encoded userIDs.

■ com.sun.identity.liberty.ws.disco.plugins.

DefaultHexResourceIDMapper assumes the Resource ID format to
be: providerID + "/" + the hex string of userID.

■ com.sun.identity.liberty.ws.idpp.plugin.

IDPPResourceIDMapper assumes the Resource ID format to be:
providerID + "/" + the Base64 encoded userIDs.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the
Discovery Service. The mapping between the providerID and the
implementation class can be configured through the Classes For
ResourceIDMapper Plugin attribute.

ServiceInstanceUpdate Interface used to include a SOAP header
(ServiceInstanceUpdateHeader) when sending a SOAP response.

Common Application Programming Interfaces

Chapter 8 • Implementing Web Services 167

Early Access Documentation

Common Security API
The Liberty-based security APIs are included in the com.sun.identity.liberty.ws.security
package and the com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security Package

New

The com.sun.identity.liberty.ws.security package includes the SecurityTokenProvider
interface for managing Web Service Security (WSS) type tokens and the
SecurityAttributePlugin interface for inserting security attributes, via an
AttributeStatement, into the assertion during the Discovery Service token generation. The
following table describes the classes used to manage Liberty-based security mechanisms.

TABLE 8–3 com.sun.identity.liberty.ws.securityClasses

Class Description

ProxySubject Represents the identity of a proxy, the confirmation key, and
confirmation obligation the proxy must possess and
demonstrate for authentication purposes.

ResourceAccessStatement Conveys information regarding the accessing entities and
the resource for which access is being attempted.

SecurityAssertion Provides an extension to the Assertion class to support
ID-WSF ResourceAccessStatement and
SessionContextStatement.

SecurityTokenManager An entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X.509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

SecurityUtils Defines methods that are used to get certificates and sign
messages.

SessionContext Represents the session status of an entity to another system
entity.

SessionContextStatement Conveys the session status of an entity to another system
entity within the body of an <saml:assertion> element.

SessionSubject Represents a Liberty subject with its associated session
status.

Remark 8–1
Reviewer

Common Application Programming Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)168

Early Access Documentation

For more information, including methods and their syntax and parameters, see the Federated
Access Manager 8.0 Java API Reference.

com.sun.identity.liberty.ws.common.wsse Package
This package includes classes for creating security tokens used for authentication and
authorization in accordance with the Liberty ID-WSF Security Mechanisms. Both WSS X.509
and SAML tokens are supported.

TABLE 8–4 com.sun.identity.liberty.ws.common.wsseClasses

Class Description

BinarySecurityToken Provides an interface to parse and create the X.509
Security Token depicted by Web Service Security: X.509

WSSEConstants Defines constants used in security packages.

For more information, including methods and their syntax and parameters, see the Federated
Access Manager 8.0 Java API Reference.

Web Service Consumer Sample
The wsc directory contains a collection of files to deploy and run a web service consumer
(WSC).

Note – Before implementing this sample, you must have two instances of Federated Access
Manager installed, and running, and Liberty-enabled. Completing the procedure in
XXXXXsample1 Directory will accomplish this.

In addition, this sample illustrates how to use the Discovery Service and Data Services Template
client APIs to allow the WSC to communicate with a web service provider (WSP). This sample
describes the flow of the Liberty-based Web Service Framework (ID-WSF) and how the security
mechanisms and interaction service are integrated. The Readme.html file in the wsc directory
provides detailed steps on how to deploy and configure this sample. For more information, see
also XXXXXChapter 7, Data Services and XXXXXChapter 8, Discovery Service.

Web Service Consumer Sample

Chapter 8 • Implementing Web Services 169

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1

Authentication Web Service
The SOAP specifications define an XML-based messaging paradigm, but do not specify any
particular security mechanisms. Particularly, they do not describe user authentication using
SOAP messages. To rectify this, the Authentication Web Service was implemented based on the
Liberty ID-WSF Authentication Service and Single Sign-On Service Specification. The
specification defines a protocol that adds the Simple Authentication and Security Layer (SASL)
authentication functionality to the SOAP binding described in the Liberty ID-WSF SOAP
Binding Specification and, XXXXXXChapter 9, SOAP Binding Service in this guide. The
Authentication Web Service is for provider-to-provider authentication.

Note – The specification also contains an XML schema that defines the authentication protocol.
More information can be found in XXXXXXSchema Files and Service Definition Documents.

■ “Authentication Web Service Default Implementation” on page 170
■ “Authentication Web Service API” on page 171
■ “Access the Authentication Web Service” on page 172
■ “Authentication Web Service Sample” on page 172

Authentication Web Service Default Implementation
The Authentication Web Service attribute is a global attribute. The value of this attribute is
carried across the Access Manager configuration and inherited by every organization. The
attribute for the Authentication Web Service is defined in the XML service file amAuthnSvc.xml
service file and is called the Mechanism Handlers List.

Note – For information about the types of attributes used in Access Manager, see the Sun Java
System Access Manager 7.1 Technical Overview. For information about service files, see the Sun
Java System Access Manager 7.1 Administration Guide.

Mechanism Handlers List
The Mechanism Handler List attribute stores information about the SASL mechanisms that are
supported by the Authentication Web Service.

keyParameter

The required key defines the SASL mechanism supported by the Authentication Web Service.

classParameter

The required class specifies the name of the implemented class for the SASL mechanism. Two
authentication mechanisms are supported by the following default implementations:

Authentication Web Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)170

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

TABLE 8–5 Default Implementations for Authentication Mechanism

Class Description

com.sun.identity.liberty.ws.

authnsvc.mechanism.PlainMechanismHandler

This class is the default implementation for the PLAIN
authentication mechanism. It maps user identifiers
and passwords in the PLAIN mechanism to the user
identifiers and passwords in the LDAP authentication
module under the root organization.

com.sun.identity.liberty.ws.

authnsvc.mechanism.CramMD5MechanismHandler

This class is the default implementation for the
CRAM-MD5 authentication mechanism.

Note – The Authentication Web Service layer provides an interface that must be implemented
for each SASL mechanism to process the requested message and return a response. For more
information, see XXXXXcom.sun.identity.liberty.ws.authnsvc.mechanism Package.

Authentication Web Service API
The Authentication Web Service provides programmatic interfaces to allow clients to interact
with it. The following sections provide short descriptions of these packages. For more detailed
information, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com. The authentication-related packages include:

■ “com.sun.identity.liberty.ws.authnsvc Package” on page 171
■ “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 171
■ “com.sun.identity.liberty.ws.authnsvc.protocol Package” on page 172

com.sun.identity.liberty.ws.authnsvc Package
This package provides web service clients with a method to request authentication credentials
from the Authentication Web Service and receive responses back from it using the Simple
Authentication and Security Layer (SASL).

com.sun.identity.liberty.ws.authnsvc.mechanism Package
This package provides an interface that must be implemented for each different SASL
mechanism to enable authentication using them. Each SASL mechanism will correspond to one
implementation that will process incoming SASL requests and generate outgoing SASL
responses.

Authentication Web Service

Chapter 8 • Implementing Web Services 171

Early Access Documentation

com.sun.identity.liberty.ws.authnsvc.protocol Package
This package provides classes that correspond to the request and response elements defined in
the Liberty XSD schema that accompanies the Liberty ID-WSF Authentication Service
Specification. More information about the XSD schemas can be found in XXXXXSchema Files
and Service Definition Documents.

Access the Authentication Web Service
The URL to gain access to the Authentication Web Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/authnsvc

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public client,
com.sun.identity.liberty.ws.authnsvc.AuthnSvcClient uses this URL to authenticate
principals with Access Manager.

Authentication Web Service Sample
A sample authentication client is included with Access Manager. It is located in the
/AccessManager-base/SUNWam/samples/phase2/authnsvc directory. The client uses the PLAIN
SASL authentication mechanism. It first authenticates against the Authentication Web Service,
then extracts a resource offering to bootstrap the Discovery Service. It looks for a SAML Bearer

token credential, issues a discovery query request with SAML assertion included, and receives a
response. The Readme.html file in the sample directory provides detailed steps on how to
deploy and configure this sample.

Note – This sample can be used by a Liberty User Agent Device WSC.

Data Services
A data service is a web service that supports the query and modification of data regarding a
principal. An example of a data service is a web service that hosts and exposes a principal's
profile information, such as name, address and phone number. A query is when a web service
consumer (WSC) requests and receives the data (in XML format). A modify is when a WSC
sends new information to update the data. The Liberty Alliance Project has defined the Liberty
ID-WSF Data Services Template Specification (Liberty ID-WSF-DST) as the standard protocol
for the query and modification of data profiles exposed by a data service. Using this
specification, the Liberty Alliance Project has developed additional specifications for other
types of data services: personal profile service, geolocation service, contact service, and calendar

Data Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)172

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

service). Of these data services, Access Manager has implemented the Liberty Personal Profile
Service and, using the included sample, the Liberty Employee Profile Service.

■ “Liberty Personal Profile Service” on page 173
■ “Liberty Employee Profile Service” on page 173
■ “Data Services Template API” on page 174

Liberty Personal Profile Service
The Liberty Personal Profile Service is a default Access Manager identity service. It can be
queried for identity data and its attributes can be updated.

For access to occur, the hosting provider of the Liberty Personal Profile Service needs to be
registered with the Discovery Service on behalf of each identity principal. To register a service
with the Discovery Service, update a resource offering for that service. For more information,
see XXXXXChapter 8, Discovery Service.

The URL to gain access to the Liberty Personal Profile Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/idpp

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public Data Service Template client,
com.sun.identity.liberty.ws.dst.DSTClient uses this URL to query and modify an
identity's personal profile attributes stored in Access Manager.

Liberty Employee Profile Service
The Liberty Employee Profile Service sample provides a collection of files that can be used to
deploy and invoke a new corporate data service. The files are located in the
/path-to-context-root/fam/samples/phase2/sis-ep directory.

Note – Before implementing this sample, you must have two instances of Federated Access
Manager installed, and running, and Liberty-enabled. Completing the procedure in
XXXXXsample1 Directory will accomplish this.

The Liberty Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile
Service Specification (ID-SIS-EP), which is one of the Liberty Alliance ID-SIS 1.0 Specifications.
The Readme.html file in the sample directory provides detailed steps on how to deploy and
configure this sample. For more information, see also XXXXXChapter 7, Data Services

Data Services

Chapter 8 • Implementing Web Services 173

Early Access Documentation

Data Services Template API
Access Manager contains two packages based on the Liberty ID-WSF-DST. They are:

■ “com.sun.identity.liberty.ws.dst Package” on page 174
■ “com.sun.identity.liberty.ws.dst.service Package” on page 174

For more detailed API documentation, including methods and their syntax and parameters, see
the Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.dst Package
The following table summarizes the classes in the Data Services Template client API that are
included in the com.sun.identity.liberty.ws.dst package.

TABLE 8–6 Data Service Client APIs

Class Description

DSTClient Provides common functions for the Data Services
Templates query and modify options.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification
operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response to a
DST modify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem Wrapper for one query item.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

com.sun.identity.liberty.ws.dst.service Package
This package provides a handler class that can be used by any generic identity data service that
is built using the Liberty Alliance ID-SIS Specifications.

Note – The Liberty Personal Profile Service is built using the Liberty ID-SIS Personal Profile
Service Specification, based on the Liberty Alliance ID-SIS Specifications.

Data Services

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)174

Early Access Documentation

The DSTRequestHandler class is used to process query or modify requests sent to an identity
data service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. For more detailed API
documentation, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Note – Access Manager provides a sample that makes use of the DSTRequestHandler class. The
sis-ep sample illustrates how to implement the DSTRequestHandler and deploy a new identity
data service instance. The sample is located in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory.

Discovery Service
Sun JavaTM System Access Manager contains a Discovery Service defined by the Liberty Alliance
Project. The Discovery Service allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service, issuing security
tokens to the requester that can then be used in the request to the discovered identity service.

Generating Security Tokens

New section.

In general, a discovery service and an identity provider are hosted on the same machine.
Because the identity provider hosting the Discovery Service might be fulfilling other roles for an
identity (such as a Policy Decision Point or an Authentication Authority), it can be configured
to provide the requesting entity with security tokens. The Discovery Service can include a
security token (inserted into a SOAP message header) in a DiscoveryLookup response. The
token can then be used as a credential to invoke the service returned with it.

▼ To Configure the Discovery Service to Generate Security Tokens
After completing the following procedure, you can test the functionality by running the
samples.

Generate the keystore and certificate aliases for the machines that are hosting the Discovery
Service, the WSP and the WSC.
Access Manager uses a Java keystore for storing the public and private keys so, if this is a new
deployment, you might need to generate one. keystore.html in
AccessManager-base/SUNWam/samples/saml/xmlsig/ has information on accomplishing this
using keytool, the key and certificate management utility supplied with the Java Platform,
Standard Edition. In short, keytool generates key pairs as separate key entries (one for a public

Remark 8–2
Reviewer

1

Discovery Service

Chapter 8 • Implementing Web Services 175

Early Access Documentation

key and the other for its associated private key). It wraps the public key into an X.509 self-signed
certificate (one for which the issuer/signer is the same as the subject), and stores it as a
single-element certificate chain. Additionally, the private key is stored separately, protected by a
password, and associated with the certificate chain for the corresponding public key. All public
and private keystore entries are accessed via unique aliases.

Update the values of the following key-related properties in the AMConfig.properties files of
the appropriate deployed instances of Access Manager.
AMConfig.properties is located in /etc/opt/SUNWam/config/.

Note – The same property might have already been edited depending on the deployment
scenario.

a. Update the values of the following key-related properties in the AMConfig.properties files
on the machine that hosts the Discovery Service.

■ com.sun.identity.saml.xmlsig.keystore defines the location of the keystore file.
■ com.sun.identity.saml.xmlsig.storepass defines the location of the file that

contains the password used to access the keystore file.
■ com.sun.identity.saml.xmlsig.keypass defines the location of the file that contains

the password used to protect the private key of a generated key pair.
■ com.sun.identity.liberty.ws.ta.certalias defines the certificate alias used by the

Discovery Service to sign SAML assertions.
■ com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used by the

Discovery Service to sign the protocol response.

b. Update the values of the following key-related properties in the AMConfig.properties files
on the machines that acts as the WSP.

■ com.sun.identity.saml.xmlsig.keystore defines the location of the keystore file.
■ com.sun.identity.saml.xmlsig.storepass defines the location of the file that

contains the password used to access the keystore file.
■ com.sun.identity.saml.xmlsig.keypass defines the location of the file that contains

the password used to protect the private key of a generated key pair.
■ com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used for

signing the WSP protocol responses.
■ com.sun.identity.liberty.ws.trustedca.certaliases defines the certificate alias

and the Provider ID list on which the WSP is trusting.

c. Update the values of the following key-related properties in the AMConfig.properties files
on the machine that acts as the WSC.

■ com.sun.identity.saml.xmlsig.keystore defines the location of the keystore file.

2

Discovery Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)176

Early Access Documentation

■ com.sun.identity.saml.xmlsig.storepass defines the location of the file that
contains the password used to access the keystore file.

■ com.sun.identity.saml.xmlsig.keypass defines the location of the file that contains
the password used to protect the private key of a generated key pair.

■ com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used by
web service clients for signing protocol requests.

Note – The com.sun.identity.liberty.ws.wsc.certalias property must be added to
the AMConfig.properties file.

Configure each identity provider and service provider as an entity using the Access Manager
Federation module.

This entails configuring a entity for each provider using the Access Manager Console or loading
an XML metadata file using amadmin. See XXXXXEntities for information on the former and
Chapter 1, “The amadmin Command Line Tool,” in Sun Java System Access Manager 7.1
Administration Reference for information on the latter.

Note – Be sure to configure each provider's entity so that all providers in the scenario are defined
as Trusted Providers.

Establish provider trust between the entities by creating an authentication domain using the
Access Manager Federation module.

See XXXXXAuthentication Domains.

Change the default value of the Provider ID for the Discovery Service on the machine where the
Discovery Service is hosted to the value that reflects the previously loaded metadata.

a. Click the Web Services tab from the Access Manager Console.

b. Click the Discovery Service tab under Web Services.

c. Change the default value of the Provider ID from
protocol://host:port/deployuri/Liberty/disco.

Note – If using the samples, make sure that the value of Provider ID in discovery-modify.jsp is
changed, if necessary, before the WSP registers with the Discovery Service.

3

4

5

Discovery Service

Chapter 8 • Implementing Web Services 177

Early Access Documentation

Change the default value of the Provider ID for the Liberty Personal Profile Service on the
machine where the Liberty Personal Profile Service is hosted to the value that reflects the
previously loaded metadata.

a. Click the Web Services tab from the Access Manager Console.

b. Click the Liberty Personal Profile Service tab under Web Services.

c. Change the default value of the Provider ID from
protocol://host:port/deployuri/Liberty/idpp.

Register a resource offering for the WSP using either of the following methods.

■ Access Manager Console
See XXXXXXStoring Resource Offerings for information on registering a resource offering
using the Access Manager Console.

■ Client API
See discovery-modify.jsp in AccessManager-base/samples/phase2/wsc which calls the
API for registering a resource offering.

Also, make sure that the appropriate directives are chosen.

■ For SAML Bearer token use GenerateBearerToken or AuthenticateRequester.
■ For SAML Token (Holder of key) use AuthenticateRequester or AuthorizeRequester.

Discovery Service APIs
Access Manager contains several Java packages that are used by the Discovery Service. They
include:

■ com.sun.identity.liberty.ws.disco includes a client API that provides interfaces to
communicate with the Discovery Service. See “Client APIs in
com.sun.identity.liberty.ws.disco” on page 179.

■ com.sun.identity.liberty.ws.disco.plugins includes an interface that can be used to
develop plug-ins. The package also contains some default plug-ins. See
“com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on
page 180.

■ com.sun.identity.liberty.ws.interfaces includes interfaces that can be used to
implement functionality common to all Liberty-enabled identity services. Several
implementations of these interfaces have been developed for the Discovery Service. See
“com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 180 and
“com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 182.

6

7

Discovery Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)178

Early Access Documentation

Note – Additional information is in the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com. Information about the
com.sun.identity.liberty.ws.common package is in XXXXXXCommon Service Interfaces in
XXXXXChapter 11, Application Programming Interfaces.

Client APIs in com.sun.identity.liberty.ws.disco

The following table summarizes the client APIs in the package
com.sun.identity.liberty.ws.disco. For more information, including methods and their
syntax and parameters, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

TABLE 8–7 Discovery Service Client APIs

Class Description

Description Represents a DescriptionType element of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Provides methods to send Discovery Service queries and
modifications.

EncryptedResourceID Represents an EncryptionResourceID element for the Discovery
Service.

InsertEntry Represents an Insert Entry for Discovery Modify request.

Modify Represents a discovery modify request.

ModifyResponse Represents a discovery response to a modify request.

Query Represents a discovery Query object.

QueryResponse Represents a response to a discovery query request.

RemoveEntry Represents a remove entry element for the discovery modify
request.

RequestedService Enables the requester to specify that all the resource offerings
returned must be offered through a service instance that complys
with one of the specified service types.

ResourceID Represents a Discovery Service Resource ID.

ResourceOffering Associates a resource with a service instance that provides access
to that resource.

ServiceInstance Describes a web service at a distinct protocol endpoint.

Discovery Service

Chapter 8 • Implementing Web Services 179

Early Access Documentation

com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Interface
This interface is used to get and set discovery entries for a user. A number of default
implementations are provided, but if you want to handle this function differently, implement
this interface and set the implementing class as the value of the Entry Handler Plugin Class
attribute as discussed in XXXXXEntry Handler Plug-in Class. The default implementations of
this interface are described in the following table.

TABLE 8–8 Implementations of com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Class Description

UserDiscoEntryHandler Gets or modifies discovery entries stored in the user’s
entry as a value of the
sunIdentityServerDiscoEntries attribute. The
UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Liberty
Personal Profile Service.

DynamicDiscoEntryHandler Gets discovery entries stored as a value of the
sunIdentityServerDynamicDiscoEntries dynamic
attribute in the Discovery Service. Modification of
these entries is not supported and always returns
false. The resource offering is saved in an
organization or a role. The
DynamicDiscoEntryHandler implementation is used
in business-to-business scenarios such as the Liberty
Employee Profile service.

UserDynamicDiscoEntryHandler Gets a union of the discovery entries stored in the user
entry sunIdentityServerDiscoEntries attribute
and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute.
It modifies only discovery entries stored in the user
entry. The UserDynamicDiscoEntryHandler
implementation can be used in both
business-to-consumer and business-to-business
scenarios.

com.sun.identity.liberty.ws.interfaces.Authorizer Interface
This interface is used to enable an identity service to check the authorization of a WSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. The class uses
the Access Manager Policy Service for creating and applying policy definitions. Policy
definitions for the Discovery Service are configured using the Access Manager Console.

Discovery Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)180

Early Access Documentation

Note – The Policy Service looks for an SSOToken defined for Authenticated Users or Web Service
Clients. For more information on this and the Policy Service in general, see the Sun Java System
Access Manager 7.1 Administration Guide.

▼ To Configure Discovery Service Policy Definitions

In the Access Manager Console, click the Access Control tab.

Select the name of the realm in which the policy definitions will be configured.

Select Policies to access policy configurations.

Click New Policy to add a new policy definition.

Type a name for the policy.

(Optional) Enter a description for the policy.

(Optional) Select the check box next to Active.

Click New to add rules to the policy definition.

Select Discovery Service for the rule type and click Next.

Type a name for the rule.

Type a resource on which the rule acts.
The Resource Name field uses the form ServiceType + RESOURCE_SEPARATOR +

ProviderID. For example, urn:liberty:id-sis-pp:2003-08;http://example.com.

Select an action and appropriate value for the rule.
Discovery Service policies can only look up or update data.

Click Finish to configure the rule.
The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be implemented
by any web service in Access Manager. For more information, see XXXXXCommon Service
Interfaces and the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Click New to add subjects to the policy definition.

Select the subject type and click Next.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Discovery Service

Chapter 8 • Implementing Web Services 181

Early Access Documentation

Type a name for the group of subjects.

(Optional) Click the check box if this is an exclusive group.

Select the users and click to add them to the group.

Click Finish to return to the policy definition screen.

Click New to add conditions to the policy definition.

Select the condition type and click Next.

Type values for the displayed attributes.
For more information, see the Sun Java System Access Manager 7.1 Administration Guide.

Click Finish to return to the policy definition screen.

Click New to add response providers to the policy definition.

Type a name for the response provider.

(Optional) Add values for the StaticAttribute.

(Optional) Add values for the DynamicAttribute.

Click Finish to return to the policy definition screen.

Click Create to finish the policy configuration.

com.sun.identity.liberty.ws.interfaces.ResourceIDMapper

Interface
This interface is used to map a user ID to the resource identifier associated with it. Access
Manager provides two implementations of this interface.

■ com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes
the format to be providerID + "/" + the Base64 encoded userIDs

■ com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes
the format to be providerID + "/" + the hex string of userIDs

A different implementation of the interface may be developed. The implementation class
should be given to the provider that hosts the Discovery Service. The mapping between the
providerID and the implementation class can be configured through the XXXXXClasses For
ResourceIDMapper Plug-in attribute.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Discovery Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)182

Early Access Documentation

Note – The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface is
common to all identity services in Access Manager not only the Discovery Service. For more
information, see XXXXXCommon Service Interfaces and the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

Access the Discovery Service
The URL to gain access to the Discovery Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/disco

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public Discovery Service client,
com.sun.identity.liberty.ws.disco.DiscoveryClient uses this URL to query and modify
the resource offerings of an identity.

Discovery Service Sample
A sample that shows the process for querying and modifying the Discovery Service is included
with Access Manager in the /AccessManager-base/SUNWam/samples/phase2/wsc directory.
The sample initially shows how to deploy and run a WSC. The final portion queries the
Discovery Service and modifies identity data in the Liberty Personal Profile Service.

SOAP Binding Service
SunTM Java System Access Manager contains an implementation of the Liberty ID-WSF SOAP
Binding Specification from the Liberty Alliance Project. The specification defines a transport
layer for sending and receiving SOAP messages.

■ “SOAPReceiver Servlet” on page 183
■ “SOAP Binding Service Package” on page 184

SOAPReceiver Servlet
The SOAPReceiver servlet receives a Message object from a web service client (WSC), verifies
the signature, and constructs its own Message object for processing by Access Manager. The
SOAPReceiver then invokes the correct request handler class to pass this second Message object
on to the appropriate Access Manager service for a response. When the response is generated,
the SOAPReceiver returns this Message object back to the WSC. More information can be
found in the XXXXXSOAP Binding Process.

SOAP Binding Service

Chapter 8 • Implementing Web Services 183

Early Access Documentation

SOAP Binding Service Package
The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. This package provides classes to construct
SOAP requests and responses and to change the contact point for the SOAP binding. The
following table describes some of the available classes. For more detailed information, see the
Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 8–9 SOAP Binding Service API

Class Description

Client Provides a method with which a WSC can send a request to a
WSP using a SOAP connection. It also returns the response.

ConsentHeader Represents the SOAP element named Consent.

CorrelationHeader Represents the SOAP element named Correlation. By
default, CorrelationHeader will always be signed.

ProcessingContextHeader Represents the SOAP element named ProcessingContext.

ProviderHeader Represents the SOAP element named Provider.

RequestHandler Defines an interface that needs to be implemented on the
server side by each web service in order to receive a request
from a WSC and generate a response. After implementing
the class, it must be registered in the SOAP Binding Service
so the SOAP framework knows where to forward incoming
requests.

Message Represents a SOAP message and is used by both the web
service client and server to construct SOAP requests and
responses. Each SOAP message has multiple headers and
bodies. It may contain a certificate for client authentication,
the IP address of a remote endpoint, and a SAML assertion
used for signing.

ServiceInstanceUpdateHeader Allows a service to change the endpoint on which requesters
will contact it.

ServiceInstanceUpdateHeader.Credential Allows a service to use a different security mechanism and
credentials to access the requested resource.

SOAPFault Represents the SOAP element named SOAP Fault.

SOAPFaultDetail Represents the SOAP element named Detail, a child
element of SOAP Fault.

UsageDirectiveHeader Defines the SOAP element named UsageDirective.

See “PAOS Binding” on page 187 for information on this reverse HTTP binding for SOAP.

SOAP Binding Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)184

Early Access Documentation

Interaction Service
Providers of identity services often need to interact with the owner of a resource to get
additional information, or to get their consent to expose data. The Liberty Alliance Project has
defined the Liberty ID-WSF Interaction Service Specification to specify how these interactions
can be carried out. Of the options defined in the specification, Federated Access Manager has
implemented the Interaction RequestRedirect Profile. In this profile, the WSP requests the
connecting WSC to redirect the user agent (principal) to an interaction resource (URL) at the
WSP. When the user agent sends an HTTP request to get the URL, the WSP has the opportunity
to present one or more pages to the principal with questions for other information. After the
WSP obtains the information it needs to serve the WSC, it redirects the user agent back to the
WSC, which can now reissue its original request to the WSP.

■ “Configuring the Interaction Service” on page 185
■ “Interaction Service API” on page 187

Configuring the Interaction Service
While there is no XML service file for the Interaction Service, this service does have properties.
The properties are configured upon installation in the AMConfig.properties file located in
/path-to-context-root/fam/lib and are described in the following table.

TABLE 8–10 Interaction Service Properties in AMConfig.properties

Property Description

com.sun.identity.liberty.interaction.

wspRedirectHandler

Points to the URL where the WSPRedirectHandler
servlet is deployed. The servlet handles the service
provider side of interactions for user redirects.

com.sun.identity.liberty.interaction.

wscSpecifiedInteractionChoice

Indicates the level of interaction in which the WSC
will participate if the WSC participates in user
redirects. Possible values include interactIfNeeded,
doNotInteract, and doNotInteractForData. The
affirmative interactIfNeeded is the default.

com.sun.identity.liberty.interaction.

wscWillIncludeUserInteractionHeader

Indicates whether the WSC will include a SOAP
header to indicate certain preferences for interaction
based on the Liberty specifications. The default value
is yes.

com.sun.identity.liberty.

interaction.wscWillRedirect

Indicates whether the WSC will participate in user
redirections. The default value is yes.

Interaction Service

Chapter 8 • Implementing Web Services 185

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1

TABLE 8–10 Interaction Service Properties in AMConfig.properties (Continued)
Property Description

com.sun.identity.liberty.interaction.

wscSpecifiedMaxInteractionTime

Indicates the maximum length of time (in seconds)
the WSC is willing to wait for the WSP to complete its
portion of the interaction. The WSP will not initiate
an interaction if the interaction is likely to take more
time than . For example, the WSP receives a request
where this property is set to a maximum 30 seconds. If
the WSP property com.sun.identity.liberty.
interaction.wspRedirectTime is set to 40 seconds,
the WSP returns a SOAP fault (timeNotSufficient),
indicating that the time is insufficient for interaction.

com.sun.identity.liberty.interaction.

wscWillEnforceHttpsCheck

Indicates whether the WSC will enforce HTTPS in
redirected URLs. The Liberty Alliance Project
specifications state that, the value of this property is
always yes, which indicates that the WSP will not
redirect the user when the value of redirectURL
(specified by the WSP) is not an HTTPS URL. The
false value is primarily meant for ease of deployment
in a phased manner.

com.sun.identity.liberty.

interaction.wspWillRedirect

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user for
consent. The default value is yes.

com.sun.identity.liberty.

interaction.wspWillRedirectForData

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user to
collect additional data. The default value is yes.

com.sun.identity.liberty.

interaction.wspRedirectTime

Indicates the length of time (in seconds) that the WSP
expects to take to complete an interaction and return
control back to the WSC. For example, the WSP
receives a request indicating that the WSC will wait a
maximum 30 seconds (set in
com.sun.identity.liberty.

interaction.wscSpecifiedMaxInteractionTime)
for interaction. If the wspRedirectTime is set to 40
seconds, the WSP returns a SOAP fault
(timeNotSufficient), indicating that the time is
insufficient for interaction.

com.sun.identity.liberty.interaction.

wspWillEnforceHttpsCheck

Indicates whether the WSP will enforce a HTTPS
returnToURL specified by the WSC. The Liberty
Alliance Project specifications state that the value of
this property is always yes. The false value is
primarily meant for ease of deployment in a phased
manner.

Interaction Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)186

Early Access Documentation

TABLE 8–10 Interaction Service Properties in AMConfig.properties (Continued)
Property Description

com.sun.identity.liberty.

interaction.

wspWillEnforceReturnToHost

EqualsRequestHost

Indicates whether the WSP would enforce the address
values of returnToHost and requestHost if they are
the same. The Liberty Alliance Project specifications
state that the value of this property is always yes. The
false value is primarily meant for ease of deployment
in a phased manner.

com.sun.identity.liberty.

interaction.htmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page in HTML.

com.sun.identity.liberty.

interaction.wmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page in WML.

Interaction Service API
The Federated Access Manager Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCs and WSPs use the classes in this package
to interact with a resource owner. The following table describes the classes.

TABLE 8–11 Interaction Service Classes

Class Description

InteractionManager Provides the interface and implementation for
resource owner interaction.

InteractionUtils Provides some utility methods related to resource
owner interaction.

JAXBObjectFactory Contains factory methods that enable you to construct
new instances of the Java representation for XML
content.

For more information, including methods and their syntax and parameters, see the Federated
Access Manager 8.0 Java API Reference.

PAOS Binding
Federated Access Manager has implemented the optional Liberty Reverse HTTP Binding for
SOAP Specification. This specification defines a message exchange protocol that permits an
HTTP client to be a SOAP responder. HTTP clients are no longer necessarily equipped with
HTTP servers. For example, mobile terminals and personal computers contain web browsers
yet they do not operate HTTP servers. These clients, though, can use their browsers to interact

PAOS Binding

Chapter 8 • Implementing Web Services 187

Early Access Documentation

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

with an identity service, possibly a personal profile service or a calendar service. These identity
services could also be beneficial when the client devices interact with an HTTP server. The use
of PAOS makes it possible to exchange information between user agent-hosted services and
remote servers. This is why the reverse HTTP for SOAP binding is also known as PAOS; the
spelling of SOAP is reversed.

■ “Comparison of PAOS and SOAP” on page 188
■ “PAOS Binding API” on page 188
■ “PAOS Binding Sample” on page 189

Comparison of PAOS and SOAP
In a typical SOAP binding, an HTTP client interacts with an identity service through a client
request and a server response. For example, a cell phone user (client) can contact the phone
service provider (service) to retrieve stock quotes and weather information. The service verifies
the user’s identity and responds with the requested information.

In a reverse HTTP for SOAP binding, the phone service provider plays the client role, and the
cell phone client plays the server role. The initial SOAP request from the server is actually
bound to an HTTP response. The subsequent response from the client is bound to a request.

PAOS Binding API
The Federated Access Manager implementation of PAOS binding includes a Java package
named com.sun.identity.liberty.ws.paos. This package provides classes to parse a PAOS
header, make a PAOS request, and receive a PAOS response.

Note – This API is used by PAOS clients on the HTTP server side. An API for PAOS servers on
the HTTP client side would be developed by the manufacturers of the HTTP client side
products, for example, cell phone manufacturers.

The following table describes the available classes in com.sun.identity.liberty.ws.paos.
For more detailed API documentation, see the Federated Access Manager 8.0 Java API
Reference.

TABLE 8–12 PAOS Binding Classes

Class Description

PAOSHeader Used by a web application on the HTTP server side to parse a
PAOS header in an HTTP request from the user agent side.

PAOS Binding

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)188

Early Access Documentation

TABLE 8–12 PAOS Binding Classes (Continued)
Class Description

PAOSRequest Used by a web application on the HTTP server side to construct
a PAOS request message and send it via an HTTP response to the
user agent side.

Note – PAOSRequest is made available in PAOSResponse to
provide correlation, if needed, by API users.

PAOSResponse Used by a web application on the HTTP server side to receive
and parse a PAOS response using an HTTP request from the user
agent side.

PAOSException Represents an error occurring while processing a SOAP request
and response.

PAOS Binding Sample
A sample that demonstrates PAOS service interaction between an HTTP client and server is
provided in the /path-to-context-root/fam/samples/phase2/paos directory. The paos
directory contains a collection of files that demonstrate how to set up and invoke a PAOS
Service interaction between a client and server. The sample is based on the following scenario: a
cell phone user subscribes to a news service offered by the cell phone’s manufacturer. The news
service automatically provides stocks and weather information to the user’s cell phone at
regular intervals. In this scenario, the manufacturer is the news service provider, and the
individual cell phone user is the consumer. The PAOS client is a servlet, and the PAOS server is a
stand-alone Java program. (In an actual deployment, the server-side code would be developed
by a service provider.) Instructions on how to run the sample can be found in the Readme.html
or Readme.txt file. Both files are included in the paos directory. After running the sample, you
will see the output from the PAOSServer program.

Note – You can also see the output from PAOSClientServlet program in the log file of the Web
Server. For example, when using Sun Java System Web Server, look in the log subdirectory for
the errors file.

The following code example is the PAOS client servlet.

EXAMPLE 8–1 PAOS Client Servlet From PAOS Sample

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

PAOS Binding

Chapter 8 • Implementing Web Services 189

Early Access Documentation

EXAMPLE 8–1 PAOS Client Servlet From PAOS Sample (Continued)

import com.sun.identity.liberty.ws.paos.*;

import com.sun.identity.liberty.ws.idpp.jaxb.*;

public class PAOSClientServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

PAOSHeader paosHeader = null;

try {

paosHeader = new PAOSHeader(req);

} catch (PAOSException pe1) {

pe1.printStackTrace();

String msg = "No PAOS header\\n";
res.setContentType("text/plain");
res.setContentLength(1+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());

out.println(msg);

out.close();

throw new ServletException(pe1.getMessage());

}

HashMap servicesAndOptions = paosHeader.getServicesAndOptions();

Set services = servicesAndOptions.keySet();

String thisURL = req.getRequestURL().toString();

String[] queryItems = { "/IDPP/Demographics/Birthday" };

PAOSRequest paosReq = null;

try {

paosReq = new PAOSRequest(thisURL,

(String)(services.iterator().next()),

thisURL,

queryItems);

} catch (PAOSException pe2) {

pe2.printStackTrace();

throw new ServletException(pe2.getMessage());

}

System.out.println("PAOS request to User Agent side --------------->");
System.out.println(paosReq.toString());

paosReq.send(res, true);

}

PAOS Binding

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)190

Early Access Documentation

EXAMPLE 8–1 PAOS Client Servlet From PAOS Sample (Continued)

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

PAOSResponse paosRes = null;

try {

paosRes = new PAOSResponse(req);

} catch (PAOSException pe) {

pe.printStackTrace();

throw new ServletException(pe.getMessage());

}

System.out.println("PAOS response from User Agent side -------------->");
System.out.println(paosRes.toString());

System.out.println("Data output after parsing -------------->");

String dataStr = null;

try {

dataStr = paosRes.getPPResponseStr();

} catch (PAOSException paose) {

paose.printStackTrace();

throw new ServletException(paose.getMessage());

}

System.out.println(dataStr);

String msg = "Got the data: \\n" + dataStr;

res.setContentType("text/plain");
res.setContentLength(1+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());

out.println(msg);

out.close();

}

}

PAOS Binding

Chapter 8 • Implementing Web Services 191

Early Access Documentation

192

Early Access Documentation

Reading and Writing Log Records

Sun JavaTM System Federated Access Manager provides a Logging Service for recording
information such as user activity, traffic patterns, and authorization violations. This chapter
contains information on how to implement and customize the logging functionality. It contains
the following sections:

■ “About the Logging Service” on page 193
■ “Using the Logging Interfaces” on page 194
■ “Logging to a Second Instance of Federated Access Manager” on page 199
■ “Implementing Remote Logging” on page 199
■ “Logging Samples” on page 202
■ “Using the Logging Sample Files” on page 206

About the Logging Service
The Logging Service extracts information from the principal's session data structure and writes
it to the configured log format — either a flat file or a relational database — when processing a
request for logging. This information might include access denials and approvals,
authentication events, and authorization violations. Administrators can use the logs to track
user actions, analyze traffic patterns, audit system usage, review authorization violations, and
troubleshoot. Logged information is recorded in a centralized directory; by default,
/fam/fam/log. For more information on user sessions and the session data structure see
Chapter 5, “User Session and Single Sign-On Processes,” in Sun Federated Access Manager 8.0
Technical Overview. For information on how the Logging Service works, see Chapter 11,
“Logging and the Java Enterprise System Monitoring Framework,” in Sun Federated Access
Manager 8.0 Technical Overview.

9C H A P T E R 9

193

Early Access Documentation

Using the Logging Interfaces
The Logging Service contains application programming interfaces (API) and service provider
interfaces (SPI). The Logging API are used to add the logging functionality to a client
application while the SPI can be used to develop custom plug-ins to add functionality to the
Logging Service. The following sections contain information on these interfaces.

■ “Implementing Logging with the Logging API” on page 194
■ “Developing Plug-ins with the Logging SPI” on page 198

Implementing Logging with the Logging API
The Logging Service API provide the tools for all Federated Access Manager internal services
and remote applications running the Client SDK to create, retrieve, submit, or delete log
records. The API are contained in the com.sun.identity.log package.

Note – The Logging Service API extend the core logging API in the Java Platform, Standard
Edition Development Kit (JDK). For more information, see Java SE Reference at a Glance.

The following sections have more information.

■ “Writing Log Records” on page 194
■ “Reading Log Records” on page 196

For more information see the Federated Access Manager 8.0 Java API Reference.

Writing Log Records
In writing log records, the Logging Service verifies that the logging requester has the proper
authority to log, then writes the information to the configured storage medium, formatting and
completing the record's columns. Applications make logging calls using the getLogger()
method which returns a Logger object. Each Logger keeps track of a log level and discards log
requests that are below this level. (There is one Logger object per log file.) The Logger object
allocates a LogRecord which is written to the log file using the log() method. An ssoToken,
representing the user's session data, is passed to the LogRecord constructor and used to
populate the appropriate fields to be logged. Federated Access Manager contains plug-ins to
write log records in the following ways:

■ Writing to the host's flat file system
■ Writing to the host's flat file system with added signing of the LogRecord and periodic

verification
■ Writing to a relational database
■ Writing to a remote instance of Federated Access Manager

Using the Logging Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)194

Early Access Documentation

http://java.sun.com/javase/reference/index.jsp

Note – The Logging Service requires two session tokens. Creating the LogRecord requires an
ssoToken for the subject about whom the LogRecord is being written. Writing the LogRecord
requires an ssoToken for the entity requesting the logging of the record.

The following parameters may have values logged when the addLogInfo() method is invoked.
All columns except for time, Data, and NameID may be selected for exclusion from the record
written to the log file.

time The date and time is retrieved from Federated Access Manager and added by
the Logging Service.

Data The event being logged as defined in the message string specified in the
LogRecord() constructor call.

ModuleName The value specified for the LogConstants.MODULE_NAME property in the
addLogInfo() call. For example, the RADIUS module might be specified in
an authentication attempt.

Note – If no value is specified, this field will be logged as Not Available.

MessageID The value specified for the LogConstants.MESSAGE_ID property in an
addLogInfo() call.

Note – If no value is specified, this field will be logged as Not Available.

Domain The value for this field is extracted from the SSOToken and corresponds to
either the subject userID's domain, or organization.

ContextID The value for this field is extracted from the SSOToken and corresponds to the
subject userID's session context.

LogLevel The logging level, passed to the LogRecord() constructor, at which this
record is being logged.

LoginID The value for this field is extracted from the SSOToken and corresponds to the
subject userID's Principal name.

NameID The value specified for the LogConstants.NAME_ID property in an
addLogInfo() call. It is an alias that maps to the actual userID.

Note – If no value is specified, this field will be logged as Not Available.

Using the Logging Interfaces

Chapter 9 • Reading and Writing Log Records 195

Early Access Documentation

IPAddr The value for this field is extracted from the SSOToken and corresponds to the
originating point of the action being logged.

LoggedBy The identifier in this field is extracted from the logging requestor's SSOToken
specified in the Logger.log() call.

HostName The host name corresponding to the originating point of the action being
logged is derived from the IPAddr in the user's SSOToken, if it can be resolved.

Note – Resolving host names is disabled by default; enable this feature by
toggling the Log Record Resolve Host Name system configuration attribute
under Logging Service. If disabled, the HostName value is taken from the
user's SSOToken and the IPAddr value is logged as Not Available.

Reading Log Records
When handling log reading requests, a valid SSOToken must be provided. The Logging Service
verifies that the requester has the proper authority after which it retrieves the requested records
from the configured storage medium. The LogReader class provides the mechanism to read a
log file and return the appropriate data to the caller. It provides the authorization check, reads
the data, applies the query (if any), and returns the result as a string. The LogQuery is
constructed using the getLogQuery() method.

Note – Unless all records from a log file are to be retrieved, at least one LogQuery must be
constructed. The LogQuery objects qualify the search criteria.

A LogQuery may specify a list of QueryElements, each containing a value for a field (column)
and a relationship. QueryElement supports the following relationships:

QueryElement.GT Greater than

QueryElement.LT Less than

QueryElement.EQ Equal to

QueryElement.NE Not equal to

QueryElement.GE Greater than or equal to

QueryElement.LE Less than or equal to

QueryElement.CN Contains

QueryElement.SW Starts with

QueryElement.EW Ends with

Using the Logging Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)196

Early Access Documentation

Caution – Log files and tables in particular can become very large. If you specify multiple logs in a
single query, create queries that are very specific, or limited in the number of records to return,
or both specific and limited. If a large number of records are returned, the Federated Access
Manager resource limits (including those of the hosting system) may be exceeded.

The following sample code queries for all successful authentications in domain dc=sun,dc=com,
and returns the time, Data, MessageID, ContextID, LoginID, and Domain fields, sorted on the
LoginID field:

ArrayList al = new ArrayList();

al.add (LogConstants.TIME);

al.add (LogConstants.Data);

al.add (LogConstants.MESSAGE_ID);

al.add (LogConstants.CONTEXT_ID);

al.add (LogConstants.LOGIN_ID);

al.add (LogConstants.DOMAIN);

LogQuery lq = new LogQuery(LogQuery.ALL_RECORDS,

LogQuery.MATCH_ALL_CONDITIONS,

LogConstants.LOGIN_ID);

QueryElement qe1 = new QueryElement(LogConstants.MESSAGE_ID,

"AUTHENTICATION-105",
QueryElement.EQ);

lq.addQuery(qe1);

QueryElement qe2 = new QueryElement(LogConstants.DOMAIN,

"dc=sun,dc=com",
QueryElement.EQ);

lq.addQuery(qe2);

In this code, assuming that dc=sun,dc=com is the root domain, changing the qe2 relationship
field to QueryElement.EW or QueryElement.CN changes the query to include all successful
authentications in all domains. To read the example query from the amAuthentication.access
log, assuming presence of an SSOToken, add the following:

String[][] result = new String[1][1];

result = read("amAuthentication.access", lq, ssoToken);

Note – The first record in a log (row 0) contains the field and column names.

Using the Logging Interfaces

Chapter 9 • Reading and Writing Log Records 197

Early Access Documentation

Developing Plug-ins with the Logging SPI
The Logging SPI is contained in the com.sun.identity.log.spi package. The interfaces can
be used for plugging in authorization support and an aspect related to secure logging. They can
also be used as models to develop the plug-ins with customized features. The following sections
have more information.

Provides an interface to define the actions that need to be taken depending on the return value
of the Log Verification process.

■ “Authorization” on page 198
■ “Verification” on page 199

For more information, see the Federated Access Manager 8.0 Java API Reference.

Authorization
The Logging Service enables you to determine if an entity is authorized to perform the specified
log operation (usually write or read). The IAuthorizer interface accepts an SSOToken and the
LogRecord. The Authorizer class gets an instance of the class defined; by default,
com.sun.identity.log.spi.ISAuthorizer in amLogging.xml. The determination is based on
the authorization of the owner of the session token performing the event. There are several ways
to accomplish this detemination. The following procedure is one example.

▼ To Implement a Log Authorization Plug-In

Get the applicable role or DN of the user from the SSOToken and check it against a
pre-configured (or hardcoded) list of roles or users that are allowed access.
The administrator must configure a role and assign all policy agents and entities, such as
applications that can possibly log into Federated Access Manager, into this role.

Instantiate a PolicyEvaluator using the following steps.
This entails defining a policy XML service file to model log access and registering it with
Federated Access Manager.

a. Implement the com.sun.identity.log.spi.IAuthorizer interface with the desired
functionality.

b. Add the implementing class in the classpath of Federated Access Manager.

c. Modify the property iplanet-am-logging-authz-class in the amLogging.xml file with the
name of the new class.

1

2

Using the Logging Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)198

Early Access Documentation

Call PolicyEvaluator.isAllowed(ssotoken, logname).

Verification
The IVerifierOutput interface defines the actions that need to be taken depending on the
return value of the log verification process. If secure logging is enabled, the log files are checked
periodically to detect any attempted tampering. If tampering is detected, the action taken can be
customized using the following procedure.

▼ To Customize Actions to be Taken in Secure Logging

Implement the IVerifierOutput interface with the desired functionality.

Add the implementing class to the classpath of Federated Access Manager.

Modify the iplanet-am-logging-verifier-action-class property in the amLogging.xml file
with the name of the new class.

Logging to a Second Instance of Federated Access Manager
For a remote instance of Federated Access Manager to use a second instance's Logging Service,
set the Logging Service URL in the remote instance's Naming Service to the URL of the instance
of Federated Access Manager that will be performing the actual logging. The URL should be in
the following form:

http://host:port/fam/loggingservice

Note – There is no interface to read logs from a server remote to Federated Access Manager.

Implementing Remote Logging
Federated Access Manager supports remote logging. If your remote application is running in a
container such as Sun Java System Application Server or Sun Java System Web Server, run the
following commands to set the applicable properties.

-Ds1is.java.util.logging.config.class=

com.sun.identity.log.s1is.LogConfigReader

-DLOG_COMPATMODE=Off

3

1

2

3

Implementing Remote Logging

Chapter 9 • Reading and Writing Log Records 199

Early Access Documentation

-Djava.util.logging.manager=

com.iplanet.ias.server.logging.ServerLogManager

Note – The -Djava.util.logging.manager property is set in the server.xml file of the Web
Server. Other JVM options are typically added to the server.xml file in Web Server, or to the
domain.xml file in Application Server.

You must also set the following shared library environment variables in the executable for an
application that is using the Logging Service. You can determine how to set the variables
depending upon the following.

■ If the application can execute in the either Java Virtual Machine (JVM) local to the instance
of Federated Access Manager to which you are logging, or in a JVM remote to the instance of
Federated Access Manager to which you are logging, see “If Client Executes in Local or
Remote JVM” on page 200. The configuration also involves whether or not you want the
Federated Access Manager LogManager class to override the native LogManager class.

■ If the application can execute only in a JVM remote to the instance of Federated Access
Manager to which you are logging, see “If Client Executes in Remote JVM Only” on
page 201. The configuration also involves whether or not you want the Federated Access
Manager LogManager class to override the native LogManager class.

■ If SSL is enabled and uses JSS for Federated Access Manager, see “If SSL is Enabled” on
page 202.

If Client Executes in Local or Remote JVM
When the client application can execute in either the local Federated Access Manager JVM or a
remote JVM, choose one of the following configurations:

■ If it is acceptable for the native LogManager class to be overridden by the Federated Access
Manager LogManager class in the JDK1.4 environment, set the following variables:

-D"java.util.logging.manager=com.sun.identity.log.LogManager"
s1is.LogConfigReader"

■ If it is not acceptable for the native LogManager class to be overridden by the Federated
Access Manager LogManager class in the JDK1.4 environment, set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.class=com.sun.identity.log.

s1is.LogConfigReader

Implementing Remote Logging

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)200

Early Access Documentation

If Client Executes in Remote JVM Only
When the client application can execute only in a remote JVM, choose one of the following
configurations:

■ If it is acceptable for the native LogManager class to be overridden by the Federated Access
Manager LogManager class in the JDK1.4 environment, follow these steps:
1. Set the following variables:

-Djava.util.logging.manager=com.sun.identity.log.LogManager

-Djava.util.logging.config.file=/AccessManager_base/SUNwam/

lib/LogConfig.properties

2. In LogConfig.properties, or in the logging.properties file supplied by the JDK, set
the following properties:

iplanet-am-logging-remote-handler=

com.sun.identity.log.handlers.RemoteHandler

iplanet-am-logging-remote-formatter=

com.sun.identity.log.handlers.RemoteFormatter

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

■ If it is not acceptable for the native LogManager class to be overridden by the Federated
Access Manager LogManager class in the JDK1.4 environment, follow these steps:
1. Set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.file=

/AccessManager-base/SUNwam/lib/LogConfig.properties

2. In LogConfig.properties, or in the logging.properties file supplied by the JDK, set
the following properties:

iplanet-am-logging-remote-handler=

com.sun.identity.log.handlers.RemoteHandler

iplanet-am-logging-remote-formatter=

com.sun.identity.log.handlers.RemoteFormatter

Implementing Remote Logging

Chapter 9 • Reading and Writing Log Records 201

Early Access Documentation

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

The Client APIs use this logging configuration by default. In this case, the Logging API will
configure a remote handler for all logs. Access to the Directory Server is not required in this
case.

If SSL is Enabled
If SSL is enabled and uses JSS for Federated Access Manager, set the following parameter:

-D"java.protocol.handler.pkgs=com.iplanet.services.comm"

Logging Samples
Federated Access Manager provides two comprehensive sample logging programs in the
path-to-context-root/fam/samples/logging directory. LogSample.java is a log-writing
program, and LogReaderSample.java is a log-reading program.

■ “LogSample.java” on page 202
■ “LogReaderSample.java” on page 202

LogSample.java

LogSample.java authenticates a user with Federated Access Manager, creates a LogRecord, and
writes the record to the specified log. The configuration of the Logging Service determines
whether the log records go to a flat file or to a relational database. This sample is part of the
Client SDK. More information can be found in Chapter 1, “Enhancing Remote Applications
Using the Client Software Development Kit.”

LogReaderSample.java

Not sure where this sample is so I haven't rewritten this info. Needs more info on sample.

LogReaderSample.java requires three command-line arguments which are used to
authenticate with Federated Access Manager. If you specify a log name, then the sample
becomes a single-log reading application. If you don't specify a log name, reading from multiple

Remark 9–1
Reviewer

Logging Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)202

Early Access Documentation

logs is allowed. Reading from multiple logs does not preclude reading from a single log. Reading
from multiple logs is useful when the exact log names available are unknown. The log reading
sample is also very interactive. The following command-line example uses the
LogReaderSample script:

./RunLogReader -o dc=iplanet,dc=com -u amadmin -p mypassword

In LogReaderSample.java, the command-line arguments are read. The following arguments
are used to obtain the SSOToken that is specified in invoking the various LogReader.read()
methods:

-o organization name

-u userID

-p userID password

The LDAP login utility ldapLogin() is provided in a separate file, LogSampleUtils.java.

Next, the Logging Service configuration is read to determine, for example, whether file or
database logging is specified and which log fields are logged.

manager.readConfiguration();

String logStorageType = manager.getProperty(LogConstants.BACKEND);

Depending on whether the Logging Service is logging to a file or to a database, when the
LogReader.getSize() method is invoked on a particular log name,
LogReader.getSizeUnits() will return either LogConstants.NUM_BYTES or
LogConstants.NUM_RECORDS. For example:

i3 = LogReader.getSizeUnits();

The LogConstants.LOG_FIELDS property specifies which log fields have been specified for
inclusion in the log record. For example:

String selFldsStr = manager.getProperty(LogConstants.LOG_FIELDS);

The time and Data fields are mandatory, thus they do not appear in the Logging Service list.
They must be explicitly added to the Set of Fields to Retrieve.

StringTokenizer stoken = new StringTokenizer(selFldsStr, ", ");
String [] sFields = new String[stoken.countTokens() + 3];

Set allFields = new HashSet();

allFields.add("time");
allFields.add("data");

To get the Set of Log Names Available to read and their sizes:

Logging Samples

Chapter 9 • Reading and Writing Log Records 203

Early Access Documentation

Set filesThereAre = LogReader.getLogNames();

for (Iterator it=filesThereAre.iterator(); it.hasNext();) {

String fileName = (String)it.next();

long li = 0;

try {

li = LogReader.getSize(fileName);

} catch (Exception ex) {

System.out.println("got exception on file " +

fileName + ". " + ex.getMessage());

}

System.out.println (fileOrTable + " " + (i2++) +

" = " + fileName + " contains " + li + " " +

sizeUnit + ".");
}

LogReaderSample.java allows you to select reads on a single or multiple logs. If a log name was
specified on the command line with the -n option, then you can select from among the
following types of reads:

1. read all records

2. specify logType

3. specify logType and timeStamp

4. specify logType and logQuery

5. specify logType, timeStamp, and logQuery

6. specify logQuery

If no log name was specified on the command line, and you select single log to read, you may
select from only a list of pre-configured reports:

Single (s) or multiple (m) file/table read: [s]

What type of audit report to generate:

1. all records from file/table

2. authentication successes

3. authentication failures

4. login/logout activity

5. policy allows

6. policy denies

7. amAdmin CLI activity

8. amAdmin console activity

9. Federation access

10. Federation errors

11. Liberty access

12. Liberty errors

13. SAML access

14. SAML error

enter type [1..14]:

Logging Samples

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)204

Early Access Documentation

If you want to read from a selected single log, but specify the logQuery settings, do not use the
-n command-line option. Select multiple log read, and then select the single log from which to
read:

Available files:

file 0 = amAuthentication.access contains 1595 bytes.

file 1 = amPolicy.access contains 2515 bytes.

...

file 13 = amAuthentication.error contains 795 bytes.

Single (s) or multiple (m) file/table read: [s] m

Available files:

0: amAuthentication.access

1: amPolicy.access

...

12: amConsole.access-1

13: amAuthentication.error

Enter selections (space-separated): 0

What type of read to use:

1. read all records

2. specify logQuery

enter type [1 or 2]:

The following table provides brief descriptions of the LogReader.read() methods.

The LogQuery, along with the QueryElements that may be specified, are constructed in the
getLogQuery() routine in LogReaderSample.java.

The following are brief descriptions of the LogQuery constructors.

LogQuery()

Creates a new LogQuery object with the following default values:

maxRecord =

LogQuery.MOST_RECENT_MAX_RECORDS

globalOperand =

LogQuery.MATCH_ANY_CONDITION

queries = null (QueryElement)

columns = null (columns to return)

sortBy = null (field to sort on)

LogQuery(int max_record)

Creates a new LogQuery object with the following values:

maxRecord = max_record

globalOperand = LogQuery.MATCH_ANY_CONDITION

Logging Samples

Chapter 9 • Reading and Writing Log Records 205

Early Access Documentation

queries = null (QueryElement)

columns = null (columns to return)

sortBy = null (field to sort on)

LogQuery(int max_Record, int matchCriteria, java.lang.String sortingBy)

Creates a new LogQuery object with the following values:

maxRecord = max_Record

globalOperand = matchCriteria

queries = null (QueryElement)

columns = null (columns to return)

sortBy = sortingBy (field to sort on)

The LogQuery object created with the constructors may be subsequently modified with the
following set* methods:

■ setColumns(java.util.ArrayList columns)

■ setGlobalOperand(int no)

■ setMaxRecord(int value)

■ setSortingField(java.lang.String fieldName)

String[][] result = new String[1][1];

result = read("amAuthentication.access", lq, ssoToken);

The first record (row 0) contains the field and column names. See the printResults() method
in LogReaderSample.java for a sample display routine.

Using the Logging Sample Files
Still valid? This info is on Client SDK chapter also.

The sample files demonstrate how you can use the Federated Access Manager Logging APIs for
to log operations. You can execute the samples through the command line. You must have
super user privileges to run the RunSample and RunLogReader programs and to access
AMConfig.properties.

■ “To Run the Sample Programs on Solaris” on page 206
■ “To Run the Sample Programs on Windows 2000” on page 208

▼ To Run the Sample Programs on Solaris
In the Makefile, RunSample, and RunLogReader files, set the following variables. The variables
may already have been set during installation.
AM_HOME Set this to refer to where Federated Access Manager is installed.

Remark 9–2
Reviewer

1

Using the Logging Sample Files

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)206

Early Access Documentation

JAVA_HOME Set this variable to your installation of the JDK. The JDK version should be
greater than or equal to 1.3.1_06.

JDK14 Set this variable to true if your JAVA_HOME points to JDK 1.4 or newer, else
set it to false

LOCAL_LOGGING Set this variable to true if you are executing this sample at complete
Federated Access Manager installation which will perform local logging. If
you are executing this sample from a SUNWamsdk only install set it to false

which will perform remote logging (logging at server side).

Set the LD_LIBRARY_PATH as is appropriate for your installation.

Run the gmake command to compile the sample program.

Run the following chmod command:
chmod +x RunSample RunLogReader

Run the following command to run the logging sample program:
./RunSample [-o organizationName] [-u userName -p userPassword]

-n logName -m message -l loggedByUser -w loggedByUserPassword
orgName Name of the organization. This is an optional parameter. If a value is

not provided, Federated Access Manager assumes the value to be the
root organization.

userName Name of the user on whose behalf the logging is performed. This is
an optional parameter.

userPassword Password for authenticating the user. This value must be provided if
userName is provided.

logName Name of the log file.

message Message to be logged to the log file.

loggedByUser Name of the administrator user who is logging the message.

loggedByUserPassword Password to authenticate the administrator user.

2

3

4

5

Using the Logging Sample Files

Chapter 9 • Reading and Writing Log Records 207

Early Access Documentation

Example:

$./RunSample -u amadmin -p 11111111 -n testLog.access -m "trying test logging"-l
amadmin -w 11111111

Run the log reader program by running the following command:
./RunLogReader -o organizationName -u userName

-p userPassword [-n logName]

organizationName Name of the organization. This is a required parameter.

username Name of the user who is accessing the log file or table. This is a required
parameter.

userpassword Password to authenticate the user. This is a required parameter.

logName Name of the log file or table. This parameter is optional. You can select
the log file or table when running the program.

Example :

$./RunLogReader -u amadmin -p 11111111 -o dc=example,dc=com

-n testLog.access

▼ To Run the Sample Programs on Windows 2000
In the make.batfile, set the following variables:
BASE Set this to refer to the where Federated Access Manager is installed.

JAVA_HOME Set this variable to your installation of the JDK. The JDK version should be
greater than or equal to 1.3.1_06.

JDK14 Set this variable to true if your JAVA_HOME points to JDK 1.4 or newer
version. Otherwise, set it to false.

LOCAL_LOGGING Set this variable to true if you are executing this sample at complete
Federated Access Manager installation which will perform local logging. If
you are executing this sample from an SUNWamsdk only install, set it to
false which will perform remote logging (logging at server side).

Set the LD_LIBRARY_PATH as is appropriate for your installation.

Compile the program by running the make command.

Run the sample program by running the make run command:

6

1

2

3

4

Using the Logging Sample Files

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)208

Early Access Documentation

make run [-o organizationName]
[-u userName -p userPassword] -n logName
-m message -l loggedByUser

-wloggedByUserPassword

orgName Name of the organization. This is an optional parameter. If a value is
not provided, Federated Access Manager assumes the value to be the
root organization.

userName Name of the user on whose behalf the logging is performed. This is
an optional parameter.

userPassword Password for authenticating the user. This value must be provided if
userName is provided.

logName Name of the log file.

message Message to be logged to the log file.

loggedByUser Name of the administrator user who is logging the message.

loggedByUserPassword Password to authenticate the administrator user.

Example:

c> make run -u amadmin -p 11111111 -n testLog.access

-m "trying test logging" -l amadmin -w 11111111

Using the Logging Sample Files

Chapter 9 • Reading and Writing Log Records 209

Early Access Documentation

210

Early Access Documentation

Securing Web Services

Web services are developed using open standards such as XML, SOAP, WSDL and HTTPS. Sun
JavaTM System Federated Access Manager provides the functionality to secure web services
communications using authentication agents and the Security Token Service. This chapter
contains the following sections:

■ “About Web Services Security” on page 211
■ “Authentication Agents” on page 212
■ “The Security Token Service” on page 218
■ “Testing Web Services Security” on page 221
■ “Keystores” on page 221
■ “Accessing the Security Token Service” on page 220
■ “Extending the Security Token Service” on page 220
■ “Configuring the Security Token Service” on page 220

About Web Services Security
A web service is an application whose functionality and interfaces are exposed through open
technology standards including the eXtensible Markup Language (XML), SOAP, the Web
Service Description Language (WSDL) and HTTP(S). A web service client (WSC) accesses a
web service provider (WSP) by sending a SOAP message to a service endpoint identified by a
URI; after receiving the request, the WSP responds appropriately with a SOAP response. The
built-in openness of these technologies though creates security risks. Initially, securing these
web services communications was addressed using transport level security in which the
complete message was encrypted and transmitted using Secure Sockets Layer (SSL) with mutual
authentication. But with current enterprise topologies (including proxies, load balancers, data
centers, and the like) security must be addressed when intermediaries are involved. Web
services must be prepared to:

■ Pass fine-grained security data (for example, identity attributes for authorization).
■ Enable one or more trusted authorities to broker trust between communicating entities.

10C H A P T E R 1 0

211

Early Access Documentation

■ Maintain security on a per message basis.
■ Maintain transport layer independence.

These requirements call for message level security (also referred to as application level security
and end-to-end security) in which only the content of the message is encrypted. Message level
security embeds all required security information in a message's SOAP header. Additionally,
encryption and digital signatures can be applied to the data itself. The advantages of message
level security are that:

■ Security stays with the message through all intermediaries, across domain boundaries, and
after the message arrives at its destination.

■ Security can be selectively applied to different portions of the message.
■ Security is independent of the application environment and transport protocol.

To address message level security in web services communications, organizations such as the
Organization for Advancement of Structured Information Standards (OASIS), the Liberty
Alliance Project and the Java Community Process (JCP) have proposed specifications based on
open standards and from them Federated Access Manager has implemented “Authentication
Agents” on page 212 and “The Security Token Service” on page 218.

Authentication Agents
The Java Community Process (JCP) primarily guides the development and approval of Java
technical specifications, one of which is the Java Specification Request (JSR) 196. JSR 196 is a
draft of the Java Authentication Service Provider Interface for Containers. It defines a standard
service provider interface (SPI) with which an authentication agent can be developed to police
Java EE containers on either the client side or the server side. These agents may establish the
authenticated identities used by the containers allowing:

■ A server side agent to verify security tokens or signatures on incoming requests and extract
principal data or assertions before adding them to the client security context.

■ A client side agent to add security tokens to outgoing requests, sign messages, and interact
with the trusted authority to locate targeted web service providers.

Note – The JSR 196 draft specifications are available at
http://www.jcp.org/en/jsr/detail?id=196.

A typical interaction between a WSC and a WSP begins with a request from the WSC. The
container on which the WSP is deployed receives the request and dispatches it to perform the
requested operation. When the web service completes the operation, it creates a response that is
returned back to the client. The following illustration and procedure illustrates a scenario when
both client and service web containers employ the Java Authentication SPI.

Authentication Agents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)212

Early Access Documentation

http://www.oasis-open.org/home/index.php
http://www.projectliberty.org/
http://www.projectliberty.org/
http://www.jcp.org/
http://www.jcp.org/en/jsr/detail?id=196

1. The client browser's attempt to invoke a web service is intercepted by the client's web
container.

2. The deployed authentication agent on the client's web container is invoked to secure the
request (based on the security policy of the web service being invoked).

3. The client's web container sends the secured request message to the web service.
4. The web service's web container receives the secured request message and it's deployed

authentication agent is invoked to validate the request and obtain the identity of the caller.
5. Assuming successful authentication, the web service's web container invokes the requested

web service.
6. This action (the invocation of the web service) is returned to the web service's web container

as a response.
7. The deployed authentication agent on the web service's web container is invoked to secure

the response message.
8. The web service's web container sends the secured response message to the client.
9. The deployed authentication agent on the client's web container is invoked to validate the

secured response message.
10. The invocation of the web service is returned to the client browser.

Security processes can be delegated to an authentication agent at any of the following
interaction points.

■ Securing a request on the client side

Authentication
Agent

Authentication
Agent

Client
Container

Service
Container

Client Service

Authentication Agents

Chapter 10 • Securing Web Services 213

Early Access Documentation

■ Validating a request on the provider side
■ Securing a response on the provider side
■ Validating a response on the client side

Thus, when a WSC and a WSP are both deployed in a Java EE web container protected by an
authentication agent, the initial request from the WSC is intercepted by the authentication
agent on the client side. The client side agent queries a trusted authority (for example, the
Security Token Service) to retrieve the necessary authorization credentials and secure them to
the request. The request is then passed to the WSP. The authentication agent on the provider
side receives the request to validate the authorization credentials. If validation is successful, the
request is exposed to the web service and a response is created using the sender's credentials and
the application specific request. The response is then intercepted by the authentication agent on
the provider side to secure it and return it to the WSC. Upon receiving the response, the
authentication agent on the client side validates it and dispatches it to the client application.
This is illustrated in the following illustration.

This authentication agent uses an instance of Federated Access Manager for all authentication
decisions. Web services requests and responses are passed to the authentication modules using
standard Java representations based on the transmission protocol. Currently, the following
agents are provided.

■ “HTTP Authentication Agent” on page 214
■ “SOAP Authentication Agent” on page 216

HTTP Authentication Agent
The HTTP authentication agent protects the endpoints of a web service that uses HTTP for
communication. After the HTTP authentication agent is deployed in a web container on the
WSP side, all HTTP requests for access to web services protected by the agent are redirected to
the login and authentication URLs defined in the Federated Access Manager configuration data
store on the WSC side. The configurable properties are:

Web Service Client
(WSC)

Web Service Provider
(WSP)

Secure request
from principal

Validate request
from WSC

Secure response
from WSP

Validate response
from WSP

Dispatch to
web service

HTTP Client
(Browser)

Authentication Agents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)214

Early Access Documentation

■ com.sun.identity.loginurl=fam_protocol://fam_host:fam_port/fam/UI/Login
■ com.sun.identity.liberty.authnsvc.url=fam_protocol://fam_host:fam_port/fam/Liberty/authnsvc

Note – Application Server 9 has the ability to configure only one HTTP agent per instance.
Therefore, all authentication requests for all web applications hosted in the container will be
forwarded to the one configured agent.

When the WSC makes a request to access a web application protected by an HTTP
authentication agent (1 in the illustration below), the agent intercepts the request and redirects
it (via the browser) to Federated Access Manager for authentication (2). Upon successful
authentication, a response is returned to the application, carrying a token as part of the Java EE
Subject (3). This token is used to bootstrap the appropriate Liberty ID-WSF security profile. If
the response is successfully authenticated, the request is granted (3).

Note – For this release, the HTTP authentication agent is used primarily for bootstrapping.
Future releases will contain information on how to protect web applications.

The following figure illustrates the interactions described.

HTTP Client
(Browser)

HTTP Provider
Agent

Sun Java System
Application Server

PE 9.0

Sun Java System
Access Manager

7.1

Authentication Agents

Chapter 10 • Securing Web Services 215

Early Access Documentation

Note – The functionality of the HTTP Provider agent is similar in to that of the Java EE policy
agents when used in SSO ONLY mode. This is a non restrictive mode that uses only the
Federated Access Manager Authentication Service to authenticate users attempting access. For
more information on Java EE policy agents, see the Sun Java System Access Manager Policy
Agent 2.2 User’s Guide.

SOAP Authentication Agent
The SOAP authentication agent secures SOAP messages between a WSC and a WSP. The agent
can be configured for use as an authentication provider on either the WSC server or the WSP
server. This initial release encapsulates the Liberty Identity Web Services Framework (Liberty
ID-WSF) SOAP Binding Specification as implemented by Access Manager and supports the
following:

■ “Supported Liberty Alliance Project Security Tokens” on page 216
■ “Supported Web Services-Interoperability Basic Security Profile Security Tokens” on

page 217

Note – The configuration process for the SOAP authentication agent is described in Installing
the Policy Agent 2.2 for Sun Java System Application Server 9.0 / Web Services.

Supported Liberty Alliance Project Security Tokens
In a scenario where security is enabled using Liberty Alliance Project tokens, the HTTP client
requests (via the WSC) access to a service. The HTTP authentication agent redirects the request
to the Access Manager Authentication Service for authentication and to determine the security
mechanism registered by the WSP and obtain the security tokens expected. After a successful
authentication, the WSC provides a SOAP body while the SOAP authentication agent on the
WSC side inserts the security header and a token. The message is then signed before the request
is sent to the WSP.

When received by the SOAP authentication agent on the WSP side, the signature and security
token in the SOAP request are verified before forwarding the request on to the WSP itself. The
WSP then processes it and returns a response, signed by the SOAP authentication agent on the
WSP side, back to the WSC. The SOAP authentication agent on the WSC side then verifies the
signature before forwarding the response on to the WSC. The following diagram illustrates the
interactions as described.

Authentication Agents

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)216

Early Access Documentation

http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf
http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf

The following Liberty Alliance Project security tokens are supported in this release:

X.509 A secure web service uses a PKI (public key infrastructure) in which the web service consumer supplies a
public key as the means for identifying the requester and accomplishing authentication with the web
service provider. Authentication with the web service provider using processing rules defined by the
Liberty Alliance Project.

BearerToken A secure web service uses the Security Assertion Markup Language (SAML) SAML Bearer token
confirmation method. The web service consumer supplies a SAML assertion with public key information
as the means for authenticating the requester to the web service provider. A second signature binds the
assertion to the SOAP message This is accomplished using processing rules defined by the Liberty Alliance
Project

SAMLToken A secure web service uses the SAML holder-of-key confirmation method. The web service consumer adds a
SAML assertion and a digital signature to a SOAP header. A sender certificate or public key is also
provided with the signature. This is accomplished using processing rules defined by the Liberty Alliance
Project.

Supported Web Services-Interoperability Basic Security Profile
Security Tokens
In a scenario where security is enabled using Web Services-Interoperability Basic Security
Profile (WS-I BSP) tokens, the HTTP client requests (via the WSC) access to a service. The
SOAP authentication agent redirects the request to the Access Manager Authentication Service
for authentication and to determine the security mechanism registered by the WSP and obtain
the expected security tokens. After a successful authentication, the WSC provides a SOAP body

HTTP Client
(Browser)

Web
Service
Provider

SOAP
Provider
Agent

Web
Service
Client

HTTP
Provider
Agent

SOAP
Provider
Agent

Authentication
Service

Trusted
Authority

(Discovery
Service)

Sun Java System
Access Manager 7.1

SAMLToken

Chapter 10 • Securing Web Services 217

Early Access Documentation

while the SOAP authentication agent on the WSC side inserts the security header and a token.
The message is then signed before the request is sent to the WSP.

When received by the SOAP authentication agent on the WSP side, the signature and security
token in the SOAP request are verified before forwarding the request on to the WSP itself. The
WSP then processes it and returns a response, signed by the SOAP authentication agent on the
WSP side, back to the WSC. The SOAP authentication agent on the WSC side then verifies the
signature before forwarding the response on to the WSC. The following diagram illustrates the
interactions as described.

The following WS-I BSP security tokens are supported in this release.

User Name A secure web service requires a user name, password and, optionally, a signed the request. The web service
consumer supplies a username token as the means for identifying the requester and a password, shared
secret, or password equivalent to authenticate the identity to the web service provider.

X.509 A secure web service uses a PKI (public key infrastructure) in which the web service consumer supplies a
public key as the means for identifying the requester and accomplishing authentication with to the web
service provider.

SAML-Holder-Of-KeyA secure web service uses the SAML holder-of-key confirmation method. The web service consumer
supplies a SAML assertion with public key information as the means for authenticating the requester to
the web service provider. A second signature binds the assertion to the SOAP payload.

SAML-SenderVouchesA secure web service uses the SAML sender-vouches confirmation method. The web service consumer
adds a SAML assertion and a digital signature to a SOAP header. A sender certificate or public key is also
provided with the signature.

The Security Token Service
When a WSC communicates with a WSP it must first connect with a trusted authority to
determine the security mechanism and, optionally, obtain the security token expected by the
WSP. This information is registered with the trusted authority by the WSP. The Security Token
Service is a trusted authority that provides issuance and management of security tokens; that is,
it makes security statements or claims often, although not required to be, in cryptographically
protected sets. The Federated Access Manager trust brokering process is as follows.

1. An authenticated WSC requests a token to access a particular WSP.

HTTP Client
(Browser)

Web
Service
Provider
(WSP)

SOAP
Provider
Agent

Web
Service
Client
(WSC)

SOAP
Provider
Agent

User Name

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)218

Early Access Documentation

2. The Security Token Service verifies the credentials presented by the WSC.
3. In response to an affirmative verification, the Security Token Service issues a security token

that provides proof that the client has been authenticated.
4. The WSC presents the security token to the WSP.
5. The WSP verifies that the token was issued by a trusted Security Token Service, affirming

authentication.

The Security Token Service issues, renews, cancels, and validates security tokens that can
contain an identifier for either the WSC or the actual end user. It also allows you to write a
proprietary token providers using the included service provider interfaces (SPI). Finally, it
provides application programming interfaces (API), based on the WS-Trust protocol, that
allow applications to access the service. The WS-Trust protocol defines the formats of the
messages used to request security tokens and the responses to those messages as well as
mechanisms for key exchange. By default, the Security Token Service serves the following
tokens:

User Name Token Carries basic information (username and, optionally, a password or shared secret) for purposes of
authenticating the user identity to the WSP. Communication is done in plain text so SSL over HTTPS
transport must be used to protect the credentials.

X.509 Token Contains an X.509 formatted certificate for authentication using credentials created with a public key
infrastructure (PKI). In this case, the WSC and WSP must trust each other's public keys or share a
common, trusted certificate authority.

SAML-Holder-Of-Key
Token

Uses the SAML holder-of-key confirmation method whereby the WSC supplies a SAML assertion with
public key information as the means for authenticating the requester to the web service provider. A second
signature binds the assertion to the SOAP payload.

SAML-SenderVouches
Token

Uses the SAML sender-vouches confirmation method whereby the WSC adds a SAML assertion and a
digital signature to a SOAP header. A sender certificate or public key is also provided with the signature.

Note – The Security Token Service issues security tokens allowed by the WS-I Basic Security
Profile while the Federated Access Manager Discovery Service issues tokens based on the
Liberty Alliance Project specifications; thus, the two services are independent. See “Discovery
Service” on page 175 for more information on the latter.

In a scenario where security is enabled using Web Services-Interoperability Basic Security
Profile (WS-I BSP) tokens, the HTTP client requests (via the WSC) access to a service. The
SOAP authentication agent redirects the request to the Access Manager Authentication Service
for authentication and to determine the security mechanism registered by the WSP and obtain
the expected security tokens. After a successful authentication, the WSC provides a SOAP body
while the SOAP authentication agent on the WSC side inserts the security header and a token.
The message is then signed before the request is sent to the WSP.

SAML-SenderVouches Token

Chapter 10 • Securing Web Services 219

Early Access Documentation

When received by the SOAP authentication agent on the WSP side, the signature and security
token in the SOAP request are verified before forwarding the request on to the WSP itself. The
WSP then processes it and returns a response, signed by the SOAP authentication agent on the
WSP side, back to the WSC. The SOAP authentication agent on the WSC side then verifies the
signature before forwarding the response on to the WSC. The following diagram illustrates the
interactions as described.

Accessing the Security Token Service
API : com.sun.identity.wss.sts

Extending the Security Token Service
SPI : com.sun.identity.wss.security

Configuring the Security Token Service
How does WSC know to talk to STS ? > WSP WSDL (retrieved via MEX) > Defines
configuration at WSC provider to choose STS issued token and selects the STS Agent (STS
client) to retrieve STS service end points.

For setting up client to talk to FAM STS services (STS end points), please deploy
fam-client-jdk15.war and follow sts/index.html under this deployment. You need to deploy this
client war on App server. Also before this, on same App server, setup security modules (based
on JSR 196) for STS security, using ../products/wssagents/built/dist/openssowssproviders.zip
(unzip and follow README).

HTTP Client
(Browser)

Web
Service
Provider
(WSP)

SOAP
Provider
Agent

Web
Service
Client
(WSC)

SOAP
Provider
Agent

SAML-SenderVouches Token

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)220

Early Access Documentation

Testing Web Services Security
Access Manager Policy Agent 2.2 for Sun Java System Application Server 9.0 / Web Services is
installed with Sun Microsystems' best practice applications called Java BluePrints. The Java
BluePrints program defines the application programming model for the Java Enterprise Edition
(Java EE) platform. The following sections describe the included BluePrints which focus on web
services security.
■ “Stock Service Sample” on page 221
■ “Calendar Service Sample” on page 221

Stock Service Sample
This BluePrint focuses on building a web service provider (WSP) and a web service client
(WSC), authenticating the WSC before access to the service is given, and guaranteeing the
integrity of the authentication data. This is accomplished by using Web Services
Interoperability Basic Security Profile (WS-I BSP) tokens to secure communications between
the participants. The BluePrint encompasses a web service that provides details for a given stock
symbol. The instructions for the Stock Service BluePrint is the index.html file found in
/javaee.home/blueprints/ws-security/stock-jaxrpc/ directory.

Calendar Service Sample
This BluePrint focuses on securing an identity-based WSP. Identity-based web services must
know the identity of the user accessing the service. The Calendar Service BluePrint is a calendar
service which uses the identity of the user to enforce permission checks on the event(s) being
accessed. In securing an identity-based WSP, the identity accessing the service (via the WSC) is
authenticated before being given access. Additionally, the WSC would also be authenticated by
the WSP before being given access. The instructions for the Calendar Service BluePrint is the
index.html file found in /javaee.home/blueprints/ws-security/calendar-jaxrpc/
directory.

Keystores
J2EE agents work with Access Manager to protect resources. However, for security purposes,
these two pieces of software can only interact with each other after the J2EE agent authenticates
with Access Manager by supplying an agent profile name and password. The agent profiles we
are using (wscWSC, LibertyBearerToken, etc.) are configured to use the following keystores, by
default:
■ The Access Manager Policy Agent 2.2 for Application Server 9.0 / Web Services uses the

client keystore shipped with the Java EE SDK, amclientkeystore.jks, as its default client
keystore. It is located in javaee.home/addons/accessmanager for installations of Java

Keystores

Chapter 10 • Securing Web Services 221

Early Access Documentation

Application Platform SDK (when Download or Download with JDK is selected), and in
javaee.home/addons/amserver for installations of Java Application Platform SDK or Java
EE 5 SDK Update 1 (when Download with Tools is selected), and NetBeans Enterprise Pack
5.5

■ The single WAR instance of Access Manager uses the server keystore shipped with the Java
EE SDK, keystore.jks, for its default keystore. It is located in
javaee.home/domains/domain_name/config/amflatfiledir/amserver for installations
of Java Application Platform SDK (all downloads), Java EE 5 SDK Update 1 (only when
Download with Tools is selected), and NetBeans Enterprise Pack 5.5.

You can configure for a custom keystore, though. The following procedure describes the
necessary steps.

Note – For more information on agent profiles, see “Agents Profile” in Sun Java System Access
Manager 7.1 Administration Guide in the Sun Java System Access Manager 7.1 Administration
Guide

During the installation of the J2EE agent, you must provide a valid agent profile name and the
respective password to enable authentication attempts to succeed.

▼ To Configure for a Custom Keystore
Export the certificate for the alias amserverusing the following command:
keytool -list -keystore keystore_file -alias amserver -rfc

Store the exported X509 certificate, using the RFC format, in a file named server.txt.

Export the certificate from your custom keystore using the following command:
keytool -list -keystore custom_keystore_file -alias key alias -rfc

key alias is the alias of the private key used by the WSC to sign SOAP messages.

Store the exported X509 certificate, using the RFC format, in a file named client.txt.

Import the stored amserver certificate into the agent's custom keystore file using the following
command:
keytool -import -keystore custom_keystore_file -alias custom_alias -file server.txt

Import the stored custom keystore's certificate into the Access Manager keystore file using the
following command:
keytool -import -keystore custom_keystore_file -alias custom_alias -file client.txt

1

2

3

4

5

6

Keystores

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)222

Early Access Documentation

Generate a Discovery Service token for the WSC that will use the custom keystore with the
following command:
keytool -import -keystore custom_keystore.jks -alias amserver -file server.txt

This allows the WSP which uses the custom keystore to trust the Access Manager Discovery
Service.

Edit the following properties in the client's AMConfig.properties:

■ com.sun.identity.liberty.ws.wsc.certalias=alias_of_private_key_in_custom_client_keystore
This certificate is used by the Liberty X509/SAML profiles for signing the SOAP messages.

■ com.sun.identity.liberty.ws.trustedca.certaliases=alias_of_private_key_in_custom_server_keystore:AM_ho

AMConfig.properties is located in javaee.home/domains/domain_name/config when the
Java Platform, Enterprise Edition (Java EE) 5 SDK is installed and in
javaee.home/addons/amserver when the Java EE 5 Tools Bundle is installed.

7

8

Keystores

Chapter 10 • Securing Web Services 223

Early Access Documentation

224

Early Access Documentation

Identifying the Client Type

The Sun JavaTM System Federated Access Manager Authentication Service has the capability of
being accessed from many client types, whether HTML-based, WML-based or other protocols.
In order for this function to work, Federated Access Manager must be able to identify the client
type. The Client Detection Service is used for this purpose. This chapter offers information on
the service, and how it can be used to recognize the client type. It contains the following
sections:

■ “About the Client Detection Service” on page 225
■ “Enabling Client Detection” on page 226
■ “Defining Client Data” on page 228
■ “Using the Client Detection Interfaces” on page 229

About the Client Detection Service
The Federated Access Manager Authentication Service has the capability to process requests
from multiple browser type clients. Thus, the service can be used to authenticate users
attempting to access applications based in HTML, WML or other protocols. The client
detection API are used to determine the protocol of the requesting client browser and retrieve
the correctly formatted pages for the particular client type.

Caution – The Federated Access Manager console though cannot be accessed from any client
type except HTML.

Since any user requesting access to Federated Access Manager must first be successfully
authenticated, browser type client detection is accomplished within the Authentication Service.
When a client’s request is passed to Federated Access Manager, it is directed to the
Authentication Service. Within this service, the first step in user validation is to identify the
browser type using the User-Agent field stored in the HTTP request.

11C H A P T E R 1 1

225

Early Access Documentation

Note – The User-Agent field contains product tokens which hold information about the browser
type client originating the HTTP request. The tokens are a standard used to allow
communicating applications to identify themselves. The format is software/version
library/version.

The User-Agent information is then matched to browser type data defined and stored in the
amClientData.xml file.

Caution – User-Agent information is defined in amClientData.xml but this information is
stored in the configuration data store under Client Detection Service.

Based on this client data, correctly formatted browser pages are sent back to the client for
authentication (for example, HTML or WML pages). Once the user is validated, the client type
is added to the session token (as the key clientType) where it can be retrieved and used by
other Federated Access Manager services. (If there is no matching client data, the default type is
returned.)

Note – The userAgent must be a part of the client data configured for all browser type clients. It
can be a partial string or the exact product token.

Enabling Client Detection
By default, the client detection capability is disabled; this then assumes the client to be of the
genericHTML type. (For example, Federated Access Manager will be accessed from a HTML
browser.) The preferred way to enable the Client Detection Service is to use the Federated
Access Manager console and select the option in the Client Detection Service itself. For more
information, see the Administration Guide. To enable client detection using the
amClientDetection.xml, the iplanet-am-client-detection-enabled attribute must be set
to true. amClientDetection.xml must then be deleted from Directory Server and reloaded
using amAdmin. The following procedure illustrates the complete enabling process.

▼ To Enable Client Detection
Import client data XML file using the amadmin command //FederatedAccessManager-base
amadmin_DN -w amadmin_password -tname_of_XML_file
This step is only necessary if the client data is not already defined in amClientData.xml.

Restart Federated Access Manager.

1

2

Enabling Client Detection

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)226

Early Access Documentation

Login to the Federated Access Manager console.

Go to Service Configuration and click ClientDetectionproperties.

Enable Client Detection.

Make sure the imported data can be viewed with the Federated Access Manager console.

Click on the Edit button next to the Client Data attribute.

Create a directory for new client type and add customized JSPs.

Create a new directory in
//FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default/ and add
JSPs for the new client type. Client Detection Process is a login page written for a WML
browser.
<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN">
<"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright Sun Microsystems, Inc. All Rights Reserved -->

<wml>

<head>

<meta http-equiv="Cache-Control" content="max-age=0"/>
</head>

<card id="authmenu" title="Username">
<do type="accept" label="Enter">

<go method="get" href="/wireless">
<postfield name="TOKEN0" value="$username"/>
<postfield name="TOKEN1" value="$password"/>
</go>

</do>

<p>

Enter username:

<input type="text" name="password"/>
</p>

<p>

Enter password:

<input type="text" name="username"/>
</p>

</card>

</wml>

3

4

5

6

7

Enabling Client Detection

Chapter 11 • Identifying the Client Type 227

Early Access Documentation

Defining Client Data
In order to detect client types, Federated Access Manager needs to recognize their identifying
characteristics. These characteristics identify the features of all supported types and are defined
in the amClientData.xml service file. The full scope of client data available is defined as a
schema in amClientData.xml. The configured client data available for HTML-based browsers
is defined as sub-configurations of the overall schema: genericHTML and its parent HTML.

Note – Parent profiles (or styles as they are referred to in the console) are defined with properties
that are common to its configured child devices. This allows for the dynamic inheritance of the
parent properties to the child devices making the device profiles easier to mange.

■ “HTML” on page 228
■ “genericHTML” on page 229

HTML
HTML is a base style containing properties common to HTML-based browsers. It might have
several branches including web-based HTML (or genericHTML), cHTML (Compact HTML) and
others. All configured devices for this style could inherit these properties which include:

parentId Identifies the base profile. The default value is HTML.

clientType Arbitrary string which uniquely identifies the client. The default
value is HTML.

filePath Used to locate the client type files (templates and JSP files). The
default value is html.

contentType Defines the content type of the HTTP request. The default value is
text/html.

genericHTML Client that will be treated as HTML. The default value is true. This
attribute does not refer to the similarly named generic HTML style.

cookieSupport Defines whether cookies are supported by the client browser. The
default value is true which sets a cookie in the response header. The
other two values could be False which sets the cookie in the URL
and Null which allows for dynamic cookie detection. In the first
request, the cookie is set in both the response header and the URL;
the actual mode is then detected and set from the subsequent request.

Although the Client Detection Service supports a cookieless mode,
Federated Access Manager console does not. Therefore, enabling this
function will not allow logging in to the console. This feature is
provided for wireless applications and others that will support it.

Defining Client Data

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)228

Early Access Documentation

CcppAccept-Charset Defines the character encoding used by Federated Access Manager to
send a response to the browser. The default value is UTF-8.

genericHTML
genericHTML refers to an HTML browser such as Netscape NavigatorTM, MicrosoftTM Internet
Explorer, or MozillaTM. As a configured device, it inherits properties from the HTML style as well
as defining its own properties. genericHTML properties include the following:

parentId Identifies the base profile for the configured device. The default value
is HTML.

clientType An arbitrary string which uniquely identifies the client. The default
value is genericHTML.

userAgent Search filter used to compare/match the user agent defined in the
HTTP header. The default value is Mozilla/4.0 .

CcppAccept-Charset Defines the character encoding set supported by the browser. The
default values are:

UTF-8;ISO-8859-1;ISO-8859-2;

ISO-8859-3;ISO-8859-4;ISO-8859-5;

ISO-8859-6;ISO-8859-7;ISO-8859-8;

ISO-8859-9;ISO-8859-10;ISO-8859-14;

ISO-8859-15;Shift_JIS;EUC-JP;

ISO-2022-JP;GB18030;GB2312;BIG5;

EUC-KR;ISO-2022-KR;TIS-620;KOI8-R

Note – The character set can be configured for any given locale by
adding charset_locale=codeset where the code set name is based
on the Internet Assigned Numbers Authority (IANA) standard.

Using the Client Detection Interfaces
Federated Access Manager is packaged with Java APIs which can implement the client detection
functionality. The client detection APIs are contained in a package named
com.iplanet.services.cdm. This package provides the interfaces and classes you need to
retrieve client properties. The client detection procedure entails defining the client type
characteristics and implementing the client detection API within the external application.

The client detection capability is provided by ClientDetectionInterface, a pluggable
interface (not an API invoked by a regular application). ClientDetectionInterface provides a

Using the Client Detection Interfaces

Chapter 11 • Identifying the Client Type 229

Early Access Documentation

getClientType method. The getClientType method extracts the client data from the
browser’s incoming HttpRequest, matches the user agent information and returns the
ClientType as a string. Upon successful authentication, the client type is added to the user’s
session token. The ClientDetectionException handles any error conditions.

Using the Client Detection Interfaces

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)230

Early Access Documentation

Using the Access Manager Utilities

Sun JavaTM System Federated Access Manager provides scripts to backup and restore data as well
as APIs that are used by the server itself or by external applications. This chapter describes the
scripts and the APIs. The chapter contains the following sections:

■ “Utility APIs” on page 231
■ “Password API Plug-Ins” on page 233

Utility APIs
The utilities package is called com.iplanet.am.util. It contains utility programs that can be
used by external applications accessing Access Manager. Following is a summary of the utility
API and their functions.

■ “AdminUtils” on page 231
■ “AMClientDetector” on page 232
■ “AMPasswordUtil” on page 232
■ “Debug” on page 232
■ “Locale” on page 232
■ “SystemProperties” on page 233
■ “ThreadPool” on page 233

AdminUtils
This class contains the methods used to retrieve the TopLevelAdmin DN and password. The
information comes from the server configuration file, serverconfig.xml, located in
/FederatedAccessManager-base/SUNWam/config/ums.

12C H A P T E R 1 2

231

Early Access Documentation

AMClientDetector
The AMClientDetector interface executes the Client Detection Class configured in the Client
Detection Service to get the client type.

AMPasswordUtil
The AMPasswordUtil interface has two purposes:

■ Encrypting and decrypting any string.
■ Encrypting and decrypting special user passwords such as the password for dsameuser or

proxy user.

Any remote application using this utility should have the value of the AMConfig property
am.encryption.pwd copied to a properties file on the client side. This value is generated at
installation time and stored in /etc/opt/SUNWam/config/AMConfig.properties on

Solaris, /etc/opt/sun/identity/AMConfig.properties on Linux.

Debug
The Debug utility allows an interface to file debug and exception information in a uniform
format. It supports different levels of information (in the ascending order): OFF, ERROR,
WARNING, MESSAGE and ON. A given debug level is enabled if it is set to at least that level. For
example, if the debug state is ERROR, only errors will be filed. If the debug state is WARNING, only
errors and warnings will be filed. If the debug state is MESSAGE, everything will be filed. MESSAGE
and ON are the same level except MESSAGE writes to a file, whereas ON writes to System.out.

Note – Debugging is an intensive operation and can hurt performance. Java evaluates the
arguments to message() and warning() even when debugging is turned off. It is recommended
that the debug state be checked before invoking any message() or warning() methods to avoid
unnecessary argument evaluation and maximize application performance.

Locale
This class is a utility that provides the functionality for applications and services to
internationalize their messages.

Utility APIs

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)232

Early Access Documentation

SystemProperties
This class provides functionality that allows single-point-of-access to all related system
properties. First, the class tries to find AMConfig.class, and then a file, AMConfig.properties,
in the CLASSPATH accessible to this code. The class takes precedence over the flat file. If
multiple servers are running, each may have their own configuration file. The naming
convention for such scenarios is AMConfig_serverName.

ThreadPool
ThreadPool is a generic thread pool that manages and recycles threads instead of creating them
when a task needs to be run on a different thread. Thread pooling saves the virtual machine the
work of creating new threads for every short-lived task. In addition, it minimizes the overhead
associated with getting a thread started and cleaning it up after it dies. By creating a pool of
threads, a single thread from the pool can be reused any number of times for different tasks.
This reduces response time because a thread is already constructed and started and is simply
waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of construction. All
the threads are started, and then each goes into a wait state until a task is assigned to it. If all the
threads in the pool are currently assigned a task, the pool is empty and new requests (tasks) will
have to wait before being scheduled to run. This is a way to put an upper bound on the amount
of resources any pool can use up. In the future, this class may be enhanced to provide support
growing the size of the pool at runtime to facilitate dynamic tuning.

Password API Plug-Ins
The Password API plug-ins can be used to integrate password functions into applications. They
can be used to generate new passwords as well as notify users when their password has been
changed. These interfaces are PasswordGenerator and NotifyPassword, respectively. They can
be found in the com.sun.identity.password.plugins package.

Note – The Access Manager Javadocs can be accessed from any browser by copying the complete
/FederatedAccessManager-base/SUNWam/docs/ directory into the
/FederatedAccessManager-base/SUNWam/public_html directory and pointing the browser to
http:// AcceessManager-HostName.domain_name :port/docs/ index.html.

There are samples (which include sample code) for these API that can be accessed from the
Federated Access Manager installation. They are located in
/FederatedAccessManager-base/SUNWam/samples/console. They include:

Password API Plug-Ins

Chapter 12 • Using the Access Manager Utilities 233

Early Access Documentation

Notify Password Sample
This sample details how to build a plug-in which an administrator can define their own method
of notification when a user has reset a password. Instructions for this sample are in the
Readme.txt or Readme.html file located in
/FederatedAccessManager-base/SUNWam/samples/console/NotifyPassword .

Password Generator Sample
This sample details how to build a plug-in which an administrator can define their own method
of random password generation when a user’s password is reset using the Password Reset
Service. Instructions for this sample are in the Readme.txt or Readme.html file located in
/FederatedAccessManager-base/SUNWam/samples/console/PasswordGenerator .

Password API Plug-Ins

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)234

Early Access Documentation

The Federated Access Manager Notification
Service

The SunTM Java System Federated Access Manager Notification Service allows for session
notifications to be sent to remote web containers. It is necessary to enable this service for use by
SDK applications running remotely from the Federated Access Manager server itself. This
chapter explains how to enable a remote web container to receive the notifications. It contains
the following sections:

■ “Overview” on page 235
■ “Enabling The Notification Service” on page 236

Overview
The Notification Service allows for session notifications to be sent to web containers that are
running the Federated Access Manager SDK remotely. The notifications apply to the Session,
Policy and Naming Services only. In addition, the remote application must be running in a web
container. The purpose of the notifications would be:

■ To sync up the client side cache of the respective services.
■ To enable more real time updates on the clients. (Polling is used in absence of notifications.)
■ No client application changes are required to support notifications.

Note that the notifications can be received only if the remote SDK is installed on a web
container.

13C H A P T E R 1 3

235

Early Access Documentation

Enabling The Notification Service
Following are the steps to configure the remote SSO SDK to receive session notifications.

▼ To Receive Session Notifications
Install Federated Access Manager on Machine 1.

Install Sun Java System Web Server on Machine 2.

Install the SUNWamsdk on the same machine as the Web Server.
For instructions on installing the Federated Access Manager SDK remotely, see the Sun Java
Enterprise System 5 Installation Guide for Unix.

Ensure that the following are true concerning the machine where the SDK is installed.

a. Ensure that the right access permissions are set for the /remote_SDK_server/SUNWam/lib and
/remote_SDK_server/SUNWam/localedirectories on the server where the SDK is installed.
These directories contains the files and jars on the remote server.

b. Ensure that the following permissions are set in the Grant section of the server.policy file
of the Web Server.
server.policy is in the config directory of the Web Server installation. These permissions
can be copied and pasted, if necessary:

permission java.security.SecurityPermission

"putProviderProperty.Mozilla-JSS"

permission java.security.SecurityPermission "insertProvider.Mozilla-JSS";

c. Ensure that the correct classpath is set in server.xml.
server.xml is also in the config directory of the Web Server installation. A typical
classpath would be:
<JAVA javahome="/export/home/ws61/bin/https/jdk"
serverclasspath="/export/home/ws61/bin/https/jar/webserv-rt.jar:
${java.home}/lib/tools.jar:/export/home/ws61/bin/https/jar/webserv-ext.jar:

/export/home/ws61/bin/https/jar/webserv-jstl.jar:/export/home/ws61/

bin/https/jar/nova.jar"
classpathsuffix="::/IS_CLASSPATH_BEGIN_DELIM:

//usr/share/lib/xalan.jar:

//export/SUNWam/lib/xmlsec.jar:

//usr/share/lib/xercesImpl.jar:

1

2

3

4

Enabling The Notification Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)236

Early Access Documentation

//usr/share/lib/sax.jar:

//usr/share/lib/dom.jar:

//export/SUNWam/lib/dom4j.jar:

//export/SUNWam/lib/jakarta-log4j-1.2.6.jar:

//usr/share/lib/jaxm-api.jar:

//usr/share/lib/saaj-api.jar:

//usr/share/lib/jaxrpc-api.jar:

//usr/share/lib/jaxrpc-impl.jar:

//export/SUNWam/lib/jaxm-runtime.jar:

//usr/share/lib/saaj-impl.jar:/export/SUNWam

//lib:/export/SUNWam/locale:

//usr/share/lib/mps/jss3.jar:

//export/SUNWam/lib/ am_sdk.jar:

//export/SUNWam/lib/am_services.jar:

//export/SUNWam/lib/am_sso_provider.jar:

//export/SUNWam/lib/swec.jar:

//export/SUNWam/lib/acmecrypt.jar:

//export/SUNWam/lib/iaik_ssl.jar:

//usr/share/lib/jaxp-api.jar:

//usr/share/lib/mail.jar:

//usr/share/lib/activation.jar:

//export/SUNWam/lib/servlet.jar:

//export/SUNWam/lib/am_logging.jar:

//usr/share/lib/commons-logging.jar:

//IS_CLASSPATH_END_DELIM:"
envclasspathignored="true" debug="false"
debugoptions="-Xdebug -Xrunjdwp:

transport=dt_socket,

server=y,suspend=n"
javacoptions="-g"
dynamicreloadinterval="2">

Use the SSO samples installed on the remote SDK server for configuration purposes.

a. Change to the /remote_SDK_server/SUNWam/samples/sso directory.

b. Run gmake.

c. Copy the generated class files from /remote_SDK_server/SUNWam/samples/sso to
/remote_SDK_server/SUNWam/lib/.

5

Enabling The Notification Service

Chapter 13 • The Federated Access Manager Notification Service 237

Early Access Documentation

Copy the encryption value of am.encryption.pwd from the AMConfig.properties file installed
with Federated Access Manager to the AMConfig.properties file on the remote server to which
the SDK was installed.
The value of am.encryption.pwd is used for encrypting and decrypting passwords.

Login into Federated Access Manager as amadmin.
http://AcceessManager-HostName:3000/amconsole

Execute the servlet by entering http://

remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the browser location field
and validating the SSOToken.
SSOTokenSampleServlet is used for validating a session token and adding a listener. Executing
the servlet will print out the following message:

SSOToken host name: 192.18.149.33 SSOToken Principal name:

uid=amAdmin,ou=People,dc=red,dc=iplanet,dc=com Authentication type used: LDAP

IPAddress of the host: 192.18.149.33 The token id is

AQIC5wM2LY4SfcyURnObg7vEgdkb+32T43+RZN30Req/BGE= Property: Company is - Sun

Microsystems Property: Country is - USA SSO Token Validation test Succeeded

Set the property com.iplanet.am.notification.url= in AMConfig.properties of the
machine where the Client SDK is installed:
com.iplanet.am.notification.url=http://clientSDK_host.domain:port
/servlet

com.iplanet.services.comm.client.PLLNotificationServlet

Restart the Web Server.

Login into Federated Access Manager as amadmin.
http://AcceessManager-HostName:3000/amconsole

Execute the servlet by entering http://

remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the browser location field
and validating the SSOToken again.
When the machine on which the remote SDK is running receives the notification, it will call the
respective listener when the session state is changed. Note that the notifications can be received
only if the remote SDK is installed on a web container.

6

7

8

9

10

11

12

Enabling The Notification Service

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)238

Early Access Documentation

Updating and Redeploying Federated Access
Manager WAR Files

Federated Access Manager contains a number of web archive (WAR) files. These packages
contain Java servlets and JavaServer PagesTM (JSP) you can modify to customize Federated
Access Manager to meet your needs. The chapter contains the following sections:

■ “WAR Files in J2EE Software Development” on page 239
■ “WAR Files in Federated Access Manager” on page 240
■ “Updating Modified WARs” on page 244
■ “Redeploying Modified Access Manager WAR Files” on page 245

WAR Files in J2EE Software Development
Federated Access Manager is built upon the Java 2 Platform, Enterprise Edition (J2EE) platform
which uses a component model to create full-scale applications. A component is self-contained
functional software code assembled with other components into a J2EE application. The J2EE
application components can be deployed separately on different servers. J2EE application
components include the following:

■ Client components such as including dynamic web pages, applets, and a Web browser that
run on the client machine.

■ Web components such as servlets and Java Server Pages (JSPs) that run within a web
container.

■ Business components, which can be code that meets the needs of a particular enterprise
domain such as banking, retail, or finance. Such business components also run within the
web container.

■ Enterprise infrastructure software that runs on legacy machines.

14C H A P T E R 1 4

239

Early Access Documentation

Web Components
When a web browser executes a J2EE application, it deploys server-side objects known as web
components. JSP and corresponding servlets are two such web components.

Servlets Small Java programs that dynamically process requests and
construct responses from a web browser. Servlets run within web
containers.

Java Server Pages (JSPs) Text-based documents that contain static template data such as
HTML, Scalable Vector Graphics (SVG), Wireless Markup
Language (WML), or eXtensible Markup Language (XML). JSPs
also contain elements such as servlets that construct dynamic
content.

How Web Components are Packaged
J2EE components are usually packaged separately, and then bundled together into an
Enterprise Archive (EAR) file for application deployment. Web components are packaged in
web application archives, also known as WAR files. Each WAR file contains servlets, JSPs, a
deployment descriptor, and related resource files.

Static HTML files and JSP are stored at the top level of the WAR directory. The top-level
directory contains the WEB-INF subdirectory which contains tag library descriptor files in
addition to the following:

Server-side classes Servlets, JavaBean components and related Java class files. These must be
stored in the WEB-INF/classes directory.

Auxiliary JARs Tag libraries and any utility libraries called by server-side classes. These
must be stored in the WEB-INF/lib directory.

web.xml The web component deployment descriptor is stored in the WEB-INF
directory

WAR Files in Federated Access Manager
When you customize Federated Access Manager, you must also modify the Federated Access
Manager WAR files. The modifications in turn result in changes to the web components.

Federated Access Manager provides two types of WAR files. One type of WAR file is
automatically built and deployed for you at installation. The password.war and services.war

files are of this type. Both password.war and services.war are related to features and services
that power Federated Access Manager. At installation, based on the source files in the staging

WAR Files in Federated Access Manager

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)240

Early Access Documentation

directory /FederatedAccessManager-base/web-src/, both password.war and services.war are
automatically generated and deployed into the /FederatedAccessManager-base/SUNWam/war
directory. When you want to customize Federated Access Manager features or services, you
must make changes in the source files contained in the staging directory, and then regenerate
and redeploy the appropriate WAR files.

Caution – When you apply a patch or an upgrade to Federated Access Manager, any
customizations you have implemented may be overwritten.

The second type of Federated Access Manager WAR is a specialized WAR file that you must
manually deploy. The amaduthdistui.war for the Distributed Authentication UI, and the
amclient.war for the Client SDK are such WARs. You can install amaduthdistui.war or
amclient.war through the JES installer, or you can manually deploy one or both of them.

The following Access Manager WAR files are located in /FederatedAccessManager-base/SUNWam
directory:

amcommon.war Automatically deployed at installation, and builds the Liberty IDFF profile
named Identity Provider Introduction which is used in implementing a
circle of trust. You do not need to redeploy this WAR.

amconsole.war If you choose the Legacy mode option during installation, this WAR is
automatically deployed at installation, and builds the legacy mode
administration console. Redeploy this WAR after you make changes to
/FederatedAccessManager-base/web-src/services/console/* source
files.

ampassword.war Automatically deployed at installation, and builds the password reset
feature. Redeploy this WAR after you make changes to
/FederatedAccessManager-base/web-src/password/* source files.

amserver.war Automatically deployed at installation, and builds Access Manager service
components. Redeploy this WAR after you make changes to
/FederatedAccessManager-base/web-src/services/* source files.

The following Access Manager WARs are located in the
/FederatedAccessManager-base/SUNWam/war directory:

.

am_server.war Use this WAR to manually install Federated Access Manager as a
stand-alone product, and without using the JES installer. For more
information, see Chapter 12, “Deploying Access Manager as a Single
WAR File,” in Sun Java System Access Manager 7.1 Postinstallation
Guide.

WAR Files in Federated Access Manager

Chapter 14 • Updating and Redeploying Federated Access Manager WAR Files 241

Early Access Documentation

amclient.war Use this WAR to manually install the Client SDK on a container remote
from the Federated Access Manager server. For more information, see
“Running the Client SDK Samples” on page 19.

amauthdistui.war Use this WAR to manually install the Distributed Authentication UI
server on a container remote from the Federated Access Manager
server. You can install this WAR using the JES installer. For more
information, see Chapter 11, “Deploying a Distributed Authentication
UI Server,” in Sun Java System Access Manager 7.1 Postinstallation
Guide. You can also manually deploy this WAR. For more information,
see “Customizing the Distributed Authentication User Interface” on
page 279.

amconsole.war Federated Access Manager uses this WAR to build the realm mode
administration console. The amconsole.war file is automatically
generated and deployed, based on the source code in
/FederatedAccessManager-base/web-src/services/console, when
Access Manager is installed. You cannot customize this WAR.

console.war Federated Access Manager uses this WAR to build the legacy mode
administration console. The console.war file is automatically
generated and deployed, based on the source code in
/FederatedAccessManager-base/web-src/services/console, when
Access Manager is installed. You can customize this WAR. For more
information, see Chapter 15, “Customizing the Administration
Console.”

introduction.war This WAR is related to the Liberty IDFF profile named Identity
Provider Introduction which is used in implementing a circle of trust.
The introduction.war file is automatically generated and deployed,
based on the source code in
/FederatedAccessManager-base/web-src/services/common, when
Federated Access Manager is installed. You cannot customize this
WAR.

password.war Federated Access Manager uses this WAR for the password reset
service. The password.war file is automatically generated and
deployed, based on the source code in
/FederatedAccessManager-base/web-src/services/password, when
Federated Access Manager is installed. You can customize this WAR.
For more information, see the section “password.war” on page 243.

services.war Federated Access Manager uses this WAR to build the UI for various
services. The services.war file is automatically generated and
deployed, based on the source code in
/FederatedAccessManager-base/web-src/services/services, when

WAR Files in Federated Access Manager

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)242

Early Access Documentation

Federated Access Manager is installed. You can customize this WAR.
For more information, see the section “services.war” on page 243.

password.war
The password.war contains files used by the Federated Access Manager password reset service.

Files You Can Modify
You can modify the following password.war files:

■ web.xml and related XML files used for constructing it are located in
/FederatedAccessManager-base/SUNWam/web-src/password/WEB-INF/.

■ JSPs located in /FederatedAccessManager-base/SUNWam/web-src/password/password/ui/
.

■ Image files located in
/FederatedAccessManager-base/SUNWam/web-src/password/password/images/ .

■ Stylesheets located in
/FederatedAccessManager-base/SUNWam/web-src/password/password/css/.

Files You Must Not Modify
Do not modify the following password.war files. Modifying the following files may cause
unintended Access Manager behaviors.

■ JARs located in
/FederatedAccessManager-base/SUNWam/web-src/password/WEB-INF/lib/.

■ Tag library descriptor (.tld) files located in
/FederatedAccessManager-base/SUNWam/web-src/password/WEB-INF/.

services.war
The services.war contains files used by various services.

Files You Can Modify
You can modify the following services.war files:

■ web.xml and related XML files used for constructing it are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/.

■ JavaScript files are located in
/FederatedAccessManager-base/SUNWam/web-src/services/js/.

WAR Files in Federated Access Manager

Chapter 14 • Updating and Redeploying Federated Access Manager WAR Files 243

Early Access Documentation

■ JSP are located in the following directories:
■ /FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default/
■ /FederatedAccessManager-base/SUNWam/web-src/services/config/federation/default/

Image files are located in the following directories:
■ /FederatedAccessManager-base/SUNWam/web-src/services/images/
■ /FederatedAccessManager-base/SUNWam/web-src/services/fed_images/
■ /FederatedAccessManager-base/SUNWam/web-src/services/login_images/

Stylesheets are located in the following directories:
■ /FederatedAccessManager-base/SUNWam/web-src/services/css/.
■ /FederatedAccessManager-base/SUNWam/web-src/services/fed_css/.

Files You Must Not Modify
Do not modify the following services.war files. Modifying the following files may cause
Federated Access Manager to fail:

■ Non-modifiable JARs are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/lib/.

■ Non-modifiable Tag Library Descriptor (.tld) files are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/.

Updating Modified WARs
Once a file within a WAR is modified, the WAR itself needs to be updated with the newly modified
file. Following is the procedure to update a WAR.

▼ To Update a Modified WAR
Go to the directory where the WAR files are kept.
cd /FederatedAccessManager-base/SUNWam/war

Run the jar command.
jar -uvf WARfilename.war path_to_modified_file

The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf console.war newfile/index.html

1

2

Updating Modified WARs

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)244

Early Access Documentation

This command replaces the index.html file in console.war with the index.html file located in
/FederatedAccessManager-base/SUNWam/newfile.

Delete the modified file.
rm newfile/index.html

Delete the modified file.

Redeploying Modified Access Manager WAR Files
Once updated, the WAR must be redeployed to its web container. The web container provides
services such as request dispatching, security, concurrency, and life cycle management. The
web container also gives the web components access to the J2EE APIs.

The BEA WebLogic Server 6.1 and Sun Java System Application Server web containers do not
require a WAR to be exploded. The servers themselves are deployed as a WAR. After WAR files are
installed on these servers, you must restart all related servers.

■ “Redeploying a Federated Access Manager WAR On BEA WebLogic Server 6.1” on page 245
■ “Redeploying a Federated Access Manager WAR on Sun Java System Application Server 7.0”

on page 246
■ “Redeploying a Federated Access Manager WAR on IBM WebSphere Application Server” on

page 247

Redeploying a Federated Access Manager WAR On BEA
WebLogic Server 6.1
Run the Java command on the BEA WebLogic 6.1 Server using the following form:

java weblogic.deploy -url protocol://server_host:server_port
-component amconsole:WL61 _server_name
deploy WL61_admin_password deployment_URI /FederatedAccessManager-base/SUNWam/WARname.war

where the following variables are used:

protocol://server_host:server_port The protocol [http | https] and fully-qualified name
of the Federated Access Manager server.

WL61 _server_name The name of the WebLogic server.

WL61_admin_password The WebLogic administrator password.

deployment_URI For console.war, the deployment URI is amconsole.

3

Redeploying Modified Access Manager WAR Files

Chapter 14 • Updating and Redeploying Federated Access Manager WAR Files 245

Early Access Documentation

For services.war, the deployment URI is amserver.

For password.war, the deployment UIR is ampassword.

/FederatedAccessManager-base The directory where Federated Access Manager is
installed.

WARname.war The name of the WAR file to deploy.

[console.war | server.war | password.war]

For more complete information on the Java utility weblogic.deploy and its options, see the
BEA WebLogic Server 6.1 documentation
(http://edocs.bea.com/wls/docs61/index.html).

Redeploying a Federated Access Manager WAR on Sun
Java System Application Server 7.0
On the Application Server, run the asadmin command using the following form:

asadmin deploy -u S1AS_administrator
-w S1AS_administrator_password -H console_server_host
-p S1AS_server_port --type web secure_flag
--contextroot deploy_uri --name deploy_uri
--instance S1AS_instanceAccessManager-base/SUNWam/WARname

where the following variables are used:

S1AS_administrator
Application Server administrator

S1AS_administrator_password
Application Server administrator password

console_server_host
Federated Access Manager server host name

S1AS_server_port
Application Server port number

deploy_uri
For console.war, the deployment URI is amconsole.

For password.war, the deployment URI is ampassword.

For services.war, the deployment URI is amservices.

Redeploying Modified Access Manager WAR Files

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)246

Early Access Documentation

http://edocs.bea.com/wls/docs61/index.html
http://edocs.bea.com/wls/docs61/index.html

S1AS_instance//FederatedAccessManager-base
Application Server directory where Federated Access Manager is installed

WARname.war
The name of the WAR file to deploy.

[console.war | services.war | password.war]

For more information on the asadmin deploy command and its options, see the Sun Java System
Application Server 7.0 Developer’s Guide.

Redeploying a Federated Access Manager WAR on IBM
WebSphere Application Server
For detailed instructions on how to deploy a WAR in the IBM WebSphere Application Server, see
the Application Server documentation.

Redeploying Modified Access Manager WAR Files

Chapter 14 • Updating and Redeploying Federated Access Manager WAR Files 247

Early Access Documentation

http://www-306.ibm.com/software/webservers/appserv/was/support/

248

Early Access Documentation

Customizing the Administration Console

The Sun Federated Access Manager Administration Console is a web-based interface for
creating, managing, and monitoring the identities, web services, and enforcement policies
configured throughout a Federated Access Manager deployment. It is built with the Sun Java
System Application Framework, a Java 2 Enterprise Edition (J2EE) framework used to help
developers build functional web applications. XML files, JavaServer PagesTM (JSP) and
Cascading Style Sheets (CSS) define the look of the console's HTML pages.

This chapter describes the Administration Console, its pluggable architecture, and how to
customize the Legacy mode user interface. It contains the following sections:

■ “About the Administration Console” on page 249
■ “Customizing The Console” on page 251
■ “Console APIs” on page 259
■ “Precompiling the Console JSP” on page 260
■ “Console Samples” on page 260

Note – At this time, no documentation or code samples exist for modifying the Realm mode user
interface. For customized information on modifying the Realm mode user interface in your
environment, contact your Sun Sales Representative.

About the Administration Console
The Administration Console is divided into three frames: Header, Navigation and Data. The
Header frame displays corporate branding information as well as the first and last name of the
currently logged-in user as defined in their profile. It also contains a set of tabs to allow the user
to switch between the management modules, a hyperlink to the Federated Access Manager Help
system, a Search function and a Logout link. The Navigation frame on the left displays the
object hierarchy of the chosen management module, and the Data frame on the right displays
the attributes of the object selected in the Navigation frame.

15C H A P T E R 1 5

249

Early Access Documentation

For information about what the Console does and about the differences between the Realm
mode and Legacy mode console interfaces, see Chapter 1, “The Access Manager Console,” in
Sun Java System Access Manager 7.1 Administration Guide.

■ “Generating The Console Interface” on page 250
■ “Plug-In Modules” on page 251
■ “Accessing the Console” on page 251

Generating The Console Interface
When the Federated Access Manager console receives an HTTP(S) request, it first determines
whether the requesting user has been authenticated. If not, the user is redirected to the
Federated Access Manager login page supplied by the Authentication Service. After successful
authentication, the user is redirected back to the console which reads all of the user’s available
roles, and extracts the applicable permissions and behaviors. The console is then dynamically
constructed for the user based on this information. For example, users with one or more
administrative roles will see the administration console view while those without any
administrative roles will see the end user console view. Roles also control the actions a user can
perform and the identity objects that a user sees. Pertaining to the former, the organization

FIGURE 15–1 Legacy Mode Administration Console

About the Administration Console

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)250

Early Access Documentation

administrator role allows the user read and write access to all objects within that organization
while a help desk administrator role only permits write access to the users’ passwords. With
regards to the latter, a person with a people container administrator role will only see users in
the relevant people container while the organization administrator will see all identity objects.
Roles also control read and write permissions for service attributes as well as the services the
user can access.

Plug-In Modules
An external application can be plugged-in to the console as a module, gaining complete control
of the Navigation and Data frames for its specific functionality. In this case, a tab with the name
of the custom application needs to be added to the Header frame. The application developer
would create the JSPs for both left and right frames, and all view beans, and models associated
with them.

Accessing the Console
The Naming Service defines URLs used to access the internal services of Federated Access
Manager. The URL used to access the Administration Console web application is:

http://AcceessManager-HostName.domain_name:port/
amconsole

The first time the Administration Console (amconsole) is accessed, it brings the user to the
Authentication web application (amserver) for authentication and authorization purposes.
After login, amserver redirects the user to the configured success login URL. The default
successful login URL is:

http(s)://AcceessManager-HostName.domain_name:port/
amconsole/base/AMAdminFrame

Customizing The Console
The Federated Access Manager Legacy mode console uses JSP and CSS to define the look and
feel of the pages used to generate its frames. A majority of the content is generated dynamically
based on where, and at what, the user is looking. In that regard, the modification of the content
is somewhat restricted. Within the Navigation frame, the layout of the controls (the view
menu), the action buttons, and the table with current objects in each JSP can be changed. In the
Data frame, the content displayed is dynamically generated based on the XML service file being
accessed but the layout, colors, and fonts are controlled by the adminstyle.css style sheet.

Customizing The Console

Chapter 15 • Customizing the Administration Console 251

Early Access Documentation

The Default Console Files
An administrator can modify the console by changing tags in the JSPs and CSS's. All of these
files can be found in the /FederatedAccessManager-base/SUNWam/web-src/services/console
directory. The files in this directory provide the default interface. Out of the box, it contains the
following subdirectories:

■ base contains JSP that are not service-specific.
■ css contains the adminstyle.css which defines styles for the console.
■ federation contains JSP related to the Federation Management module.
■ html contains miscellaneous HTML files.
■ images contains images referenced by the JSP.
■ js contains JavaScriptTM files.
■ policy contains JSP related to the Policy Service.
■ service contains JSP related to the Service Management module.
■ session contains JSP related to the Current Sessions (session management) module.
■ user contains JSP related to the Identity Management module.

Note – Console-related JSP contain HTML and custom library tags. The tags are defined in tag
library descriptor files (.tld) found in the
/FederatedAccessManager-base/SUNWam/web-src/WEB-INF directory. Each custom tag
corresponds to a view component in its view bean. While the tags in the JSP can be removed,
new tags can not be added. For more information, see the Sun Java System Application
Framework documentation.

console.war
The console.war contains files used by the Access Manager administration console.

Files You Can Modify
You can modify the following console.war files:

■ web.xml and related XML files used for constructing it are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/.

■ Modifiable JavaScript files are located in
/FederatedAccessManager-base/SUNWam/web-src/services/console/js/.

■ Modifiable JSP are located in the following directories dependant upon the service that
deploys them:
■ /FederatedAccessManager-base/SUNWam/web-src/services/console/auth/

Customizing The Console

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)252

Early Access Documentation

■ /FederatedAccessManager-base/SUNWam/web-src/services/console/federation/
■ /FederatedAccessManager-base/SUNWam/web-src/services/console/policy/
■ /FederatedAccessManager-base/SUNWam/web-src/services/console/service/
■ /FederatedAccessManager-base/SUNWam/web-src/services/console/session/
■ /FederatedAccessManager-base/SUNWam/web-src/services/console/user/

Modifiable image files are located in
/FederatedAccessManager-base/SUNWam/web-src/services/console/images/.

■ Modifiable stylesheets are located in
/FederatedAccessManager-base/SUNWam/web-src/services/console/css/.

Files You Must Not Modify
Do not modify the following console.war files. Modifying these files may cause unintended
Access Manager behaviors.

■ JARs are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/lib/.

■ Tag Library Descriptor (.tld) files are located in
/FederatedAccessManager-base/SUNWam/web-src/services/WEB-INF/.

Creating Custom Organization Files
To customize the console for use by a specific organization, the
/FederatedAccessManager-base/SUNWam/web-src/services/console directory should first be
copied, renamed and placed on the same level as the default directory. The files in this new
directory can then be modified as needed.

Note – There is no standard to follow when naming the new directory. The new name can be any
arbitrarily chosen value.

For example, customized console files for the organization dc=new_org, dc=com might be
found in the /FederatedAccessManager-base/SUNWam/web-src/services/custom_directory
directory.

▼ To Create Custom Organization Files

Change to the directory where the default templates are stored:
cd /FederatedAccessManager-base/SUNWam/web-src/services

1

Customizing The Console

Chapter 15 • Customizing the Administration Console 253

Early Access Documentation

Make a new directory at that level.
The directory name can be any arbitrary value. For this example, it is named
/FederatedAccessManager-base/SUNWam/web-src/services/custom_directory/.

Copy all the JSP files from the consoledirectory into the new directory.
/FederatedAccessManager-base/SUNWam/web-src/services/console contains the default JSP
for Federated Access Manager. Ensure that any image files are also copied into the new
directory.

Customize the files in the new directory.
Modify any of the files in the new directory to reflect the needs of the specific organization.

Modify the AMBase.jspfile.
In our example, this file is found in
/FederatedAccessManager-base/SUNWam/web-src/services/custom_directory/base. The
line String console = "../console"; needs to be changed to String console =

"../new_directory_name ";. The String consoleImages tag also needs to be changed to reflect
a new image directory, if applicable. The contents of this file are copied in “Creating Custom
Organization Files” on page 253.
<!--

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

-->

<% String console = "../console";
String consoleUrl = console + "/";
String consoleImages = consoleUrl + "images";

%>

Change the value of the JSP Directory Name attribute in the Administration Service to match
that of the directory created in “Creating Custom Organization Files”on page 253.
The JSP Directory Name attribute points the Authentication Service to the directory which
contains an organization’s customized console interface. Using the console itself, display the
services registered to the organization for which the console changes will be displayed. If the
Administration Service is not visible, it will need to be registered. For information on
registering services, see the Administration Guide.

Once the new set of console files have been modified, the user would need to log into the
organization where they were made in order to see any changes. Elaborating on our example, if
changes are made to the JSP located in the
/FederatedAccessManager-base/SUNWam/web-src/services/custom_directory directory, the
user would need to login to that organization using the URL:

2

3

4

5

6

Customizing The Console

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)254

Early Access Documentation

http:// server_name.domain_name:port//
service_deploy_uri/UI/Login?org=

custom_directory_organization.

Alternate Customization Procedure
The console can also be modified by simply replacing the default images in
/FederatedAccessManager-base/SUNWam/web-src/services/console/images , with new,
similarly named images.

Miscellaneous Customizations
Included in this section are procedures for several specific customizations available to
administrators of the Federated Access Manager console.

To Modify The Service Configuration Display
A service is a group of attributes that are managed together by the Federated Access Manager
console. Out-of-the-box, Federated Access Manager loads a number of services it uses to
manage its own features. For example, the configuration parameters of the Logging Service are
displayed and managed in the Federated Access Manager console, while code implementations
within Federated Access Manager use the attribute values to run the service.

To Modify The User Profile View
The Federated Access Manager console creates a default User Service view based on
information defined in the amUser.xml service file.

A modified user profile view with functionality more appropriate to the organization’s
environment can be defined by creating a new ViewBean and/or a new JSP. For example, an
organization might want User attributes to be formatted differently than the default vertical
listing provided. Another customization option might be to break up complex attributes into
smaller ones. Currently, the server names are listed in one text field as:

protocol://Federated Access Manager_host. domain:port

Instead, the display can be customized with three text fields:

protocol_chooser_field://server_host_field :port_number_field

A third customization option might be to add JavaScript to the ViewBean to dynamically
update attribute values based on other defined input. The custom JSP would be placed in the
following directory:
/FederatedAccessManager-base/SUNWam/web-src/services/console/user. The ViewBean is

Customizing The Console

Chapter 15 • Customizing the Administration Console 255

Early Access Documentation

placed in the classpath com.iplanet.am.console.user. The value of the attribute User Profile
Display Class in the Administration Service (iplanet-am-admin-console-user-
profile-class in the amAdminConsole.xml service file) would then be changed to the name of
the newly created ViewBean. The default value of this attribute is
com.iplanet.am.console.user.UMUserProfileViewBean.

Display Options For The User Profile Page
There are a number of attributes in the Administration Service that can be selected to display
certain objects on the User Profile page. Display User’s Roles, Display User’s Groups and User
Profile Display Options specify whether to display the roles assigned to a user, the groups to
which a user is a member and the schema attributes, respectively. More information on these
service attributes can be found in the Administration Guide.

To Localize The Console
All textual resource strings used in the console interface can be found in the
amAdminModuleMsgs.properties file, located in
/FederatedAccessManager-base/SUNWam/locale/. The default language is English (en_US).
Modifying this file with messages in a foreign language will localize the console.

To Display Service Attributes
Service attributes are defined in XML service files based on the sms.dtd. In order for a
particular service attribute to be displayed in the console, it must be configured with the any
XML attribute. The any attribute specifies whether the service attribute for which it is defined
will display in the Federated Access Manager console.

To Customize Interface Colors
All the colors of the console are configurable using the Federated Access Manager style sheet
adminstyle.css located in the
/FederatedAccessManager-base/SUNWam/web-src/services/console/css directory. For
instance, to change the background color for the navigation frame, modify the BODY.navFrame
tag; or to change the background color for the data frame, modify the BODY.dataFrame. The
tags take either a text value for standard colors (blue, green, red, yellow, etc.) or a hexadecimal
value (#ff0000, #aadd22, etc.). Replacing the default with another value will change the
background color of the respective frame after the page is reloaded in the browser.
“Miscellaneous Customizations” on page 255 details the tag in adminstyle.css.

EXAMPLE 15–1 BODY.navFramePortion of adminstyle.css

BODY.navFrame {

color: black;

background: #ffffff;

Customizing The Console

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)256

Early Access Documentation

EXAMPLE 15–1 BODY.navFramePortion of adminstyle.css (Continued)

}

To Change The Default Attribute Display Elements
The console auto-generates Data frame pages based on the definition of a service’s attributes in
an XML service definition file. Each service attribute is defined with the XML attributes type,
uitype and syntax. Type specifies the kind of value the attribute will take. uitype specifies the
HTML element displayed by the console. syntax defines the format of the value. The values of
these attributes can be mixed and matched to alter the HTML element used by the console to
display the values of the attributes. For example, by default, an attribute of the single_choice
type displays its choices as a drop down list in which only one choice can be selected. This list
can also be presented as a set of radio buttons if the value of the uitype attribute is changed to
radio. “Miscellaneous Customizations” on page 255 illustrates this concept.

EXAMPLE 15–2 uitypeXML Attribute Sample

<AttributeSchema name="test-attribute"
type="single_choice"
syntax="string"
any="display"
uitype="radio"
i18nKey="d105">
<ChoiceValues>

<ChoiceValue i18nKey="u200">Daily</ChoiceValue>
<ChoiceValue i18nKey="u201">Weekly</ChoiceValue>
<ChoiceValue i18nKey="u202">Monthly</ChoiceValue>

</ChoiceValues>

<DefaultValues>

<Value>Daily</Value>

</DefaultValues>

</AttributeSchema>

“Miscellaneous Customizations” on page 255 is a listing of the possible values for each attribute,
and the corresponding HTML element that each will display based on the different groupings.

Customizing The Console

Chapter 15 • Customizing the Administration Console 257

Early Access Documentation

TABLE 15–1 Service Attribute Values and Corresponding Display Elements

type Value syntax Value uitype Value Element Displayed In Console

single_choice string No value defined pull-down menu choices

radio radio button choices

Single boolean No value defined checkbox

radio radio button

string No value defined text field

link hyperlink

button clickable button

password No value defined text field

paragraph No value defined scrolling text field

list string No value defined Add/Delete name list

name_value_list Add/Edit/Delete name list

multiple_choice string No value defined choice list

To Add A Module Tab
The section “Plug-In Modules” mentions the capability to plug-in external applications as
modules. Once this is accomplished, the module needs to be accessible via the console by
adding a new module tab. Label information for module tabs are found in the
amAdminModuleMsgs.properties console properties file located in
/FederatedAccessManager-base/SUNWam/locale/. To add label information for a new module,
add a key and value pair similar to module105_NewTab=My New Tab. “Miscellaneous
Customizations” on page 255 illustrates the default pairs in the file.

EXAMPLE 15–3 Module Tab Key And Value Pairs

module101_identity=Identity Management

module102_service=Service Configuration

module103_session=Current Sessions

module104_federation=Federation Management

The module name and a URL for the external application also need to be added to the View
Menu Entries attribute in the Administration Service (or
iplanet-am-admin-console-view-menu in the amAdminConsole.xml service file). When a
module tab in the Header frame is clicked, this defined URL is displayed in the Navigation
frame. For example, to define the display information for the tab sample, an entry similar to

Customizing The Console

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)258

Early Access Documentation

module105_NewTab|/amconsole/custom_directory /custom_NavPage would be added to the
View Menu Entries attribute in the Administration Service.

Note – The console retrieves all the entries from this attribute and sorts them by i18n key. This
determines the tab display order in the Header frame.

After making these changes and restarting Access Manager, a new tab will be displayed with the
name My New Tab.

To Display Container Objects
In order to create and manage LDAP organizational units (referred to as containers in the
console), the following attributes need to be enabled (separately or together) in the
Administration Service.
■ Display Containers In Menu—Containers are organizational units as viewed using the

Federated Access Manager console. If this option is selected, the menu choice Containers
will be displayed in the View menu for top-level Organizations, Sub-Organizations and
other containers.

■ Show People Containers—People containers are organizational units containing user
profiles. If this option is selected, the menu choice People Containers will be displayed in the
View menu for Organizations, Containers and Sub-Organizations.

■ Show Group Containers—Group containers are organizational units containing groups. If
this option is selected, the menu choice Group Containers will be displayed in the View
menu for Organizations, Containers and Group Containers.

Viewing any of these display options is also dependent on whether the Enable User
Management attribute is selected in the Administration Service. (This attribute is enabled by
default after a new installation.) More information on these attributes can be found in the
Administration Guide.

Console APIs
The public console API package is named com.iplanet.am.console.base.model. It contains
interfaces that can be used to monitor and react to events that occur in the console. This listener
can be called when the user executes an action on the console that causes an event. An event can
have multiple listeners registered on it. Conversely, a listener can register with multiple events.
Events that might be used to trigger a listener include:
■ Displaying a tab in the Header frame.
■ Creating or deleting identity-related objects.
■ Modifying the properties of an identity-related object.
■ Sending attribute values to the console ViewBean for display purposes.

Console APIs

Chapter 15 • Customizing the Administration Console 259

Early Access Documentation

When a listener is created all the methods of that interface must be implemented thus, the
methods in the AMConsoleListener interface must be implemented. The
AMConsoleListenerAdapter class provides default implementations of those methods and can
be used instead. Creating a console event listener includes the following:

▼ To Create a Console Event Listener
Write a console event listener class or implement the default methods in the
AMConsoleListenerAdapter class.

Compile the code.

Register the listener in the Administration Service.
Access Manager includes a sample implementation of the ConsoleEventListener. The Sun
Java System Access Manager 7.1 Java API Reference also contains more detailed information on
the listener interfaces and class.

Precompiling the Console JSP
Each JSP is compiled when it is first accessed. Because of this, there is a delay when displaying
the HTML page on the browser. To avoid this delay, the system administrator can precompile
the JSP by running the following command:

WebServer_install_directory/servers/bin/https/bin/jspc -webapp

/FederatedAccessManager-base/SUNWam/web-src/services

where, by default, WebServer_install_directory is /opt/SUNWwbsvr.

Console Samples
Sample files have been included to help understand how the Federated Access Manager console
can be customized. The samples include instructions on how to:

Modify User Profile Page
This sample modifies the user interface by adding a hyperlink that allows an existing user to
change their configured password. It is in the ChangeUserPassword directory.

1

2

3

Precompiling the Console JSP

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)260

Early Access Documentation

Create A Tabbed Identity Management Display
This sample creates a custom user profile which displays the profile with three tabs. The sample
is in the UserProfile directory.

ConsoleEventListener
This sample displays the parameters passed to AMConsoleListener class in the amConsole
debug file. It is in the ConsoleEventListener directory.

Add Administrative Function
This sample adds functionality to the Identity Management module that allows an
administrator to move a user from one organization to other. It is in the MoveUser directory.

Add A New Module Tab
This sample adds a new tab into the Header frame. This tab will connect to an external
application and can be configured using the console. It is in the NewTab directory.

Create A Custom User Profile View
This sample creates a custom user profile view to replace the default user profile view. A
different user profile view can be created for each configured organization. A custom class
would need to be written that extends the default user profile view bean. This class would then
be registered in the User Profile Display Class attribute of the Administration Service. There is
an example of how to do this in the samples directory. This sample is in the UserProfile
directory.

These samples are located in /FederatedAccessManager-base/SUNWam/samples/console. Open
the README file in this directory for general instructions. Each specific sample directory also
contains a README file with instructions relevant to that sample.

Note – The console samples are only available when Federated Access Manager is installed on
the SolarisTM operating system.

Console Samples

Chapter 15 • Customizing the Administration Console 261

Early Access Documentation

262

Early Access Documentation

Customizing the Authentication User Interface

The Authentication Service provides the web-based Graphical User Interface (GUI) for all
default and custom authentication modules installed in the Sun JavaTM System Federated Access
Manager deployment. This interface provides a dynamic and customizable means for gathering
authentication credentials by presenting the web-based login requirement pages to a user
requesting access.

The Authentication Service GUI is built on top of JATO (J2EE Assisted Take-Off), a Java 2
Enterprise Edition (J2EE) presentation application framework. This framework is used to help
developers build complete functional Web applications. You can customize this user interface
per client type, realm, locale, or service.

For more information about what the Authentication Service does and how it works, see
Chapter 3, “Authentication,” in Sun Java System Access Manager 7.1 Technical Overview and
Chapter 11, “Deploying a Distributed Authentication UI Server,” in Sun Java System Access
Manager 7.1 Postinstallation Guide.

The following topics are covered in this chapter:

■ “User Interface Files You Can Modify” on page 263
■ “Customizing Branding and Functionality” on page 273
■ “Customizing the Self-Registration Page” on page 275
■ “Updating and Redeploying services.war” on page 277
■ “Customizing the Distributed Authentication User Interface” on page 279

User Interface Files You Can Modify
The authentication GUI dynamically displays the required credentials information depending
upon the authentication module invoked at run time. The “User Interface Files You Can
Modify” on page 263 lists the types of files you can modify to convey custom representations of
Login pages, Logout pages, and error messages. Detailed information is provided in following
sections.

16C H A P T E R 1 6

263

Early Access Documentation

TABLE 16–1 Authentication User Interface Files and Their Locations at Installation

File Type Default Location

“Staging Area for Files to be
Customized” on page 264

/FederatedAccessManager-base/SUNWam/web-src/services

“Java Server Pages” on page 265 /FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default

“XML Files” on page 267 /FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default

“JavaScript Files” on page 270 /FederatedAccessManager-base/SUNWam/web-src/services/js

“Cascading Style Sheets” on page 271 </FederatedAccessManager-base/SUNWam/web-src/services/css

“Images” on page 271 /FederatedAccessManager-base/SUNWam/web-src/services/login_images

“Localization Files” on page 272 /FederatedAccessManager-base/SUNWam/locale

To access the default Login page, use the following URL:

<server_protocol>://<server_host>.<server_domain>:<server_port>/

<service_deploy_uri>/UI/Login

To access the default Logout page, use the following URL:

<server_protocol>://<server_host>.<server_domain>:<server_port>/

<service_deploy_uri>/UI/Logout

Staging Area for Files to be Customized
When Federated Access Manager is installed, a staging area exists in the following location:

/FederatedAccessManager-base/SUNWam/web-src/services

This directory content is identical to the content of the services.war.

The AccessManager-base/SUNWam/web-src/services contains all the files you need to modify
the authentication GUI. When you install Access Manager on Sun Java System Application
Server, on Sun Java System Web Server, or on BEA WebLogic Web Server, services.war (the
services web application) is automatically installed and deployed.

If you install Federated Access Manager on other web containers, you may have to manually
deploy services.war. See the documentation that comes with the web container.

Once you’ve modified the authentication GUI files in the staging area, in order to see the
changes in the actual GUI, you must update and then redeploy services.war. See “Updating
and Redeploying services.war” on page 277.

User Interface Files You Can Modify

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)264

Early Access Documentation

Java Server Pages
All authentication GUI pages are .jsp files with embedded JATO tags. You do not need to
understand JATO to customize Federated Access Manager GUI pages. Java server pages handle
both the UI elements and the disciplines displayed through peer ViewBeans. By default, JSP
pages are installed in the following directory:
/FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default

Java server pages are looked up from the deployed location. In previous Access Manager
versions, the Java server pages were looked up from the installed location.

Customizing the Login Page
The Login page is a common Login page used by most authentication modules except for the
Membership module. For all other modules, at run time the Login page dynamically displays all
necessary GUI elements for the required credentials. For example, the LDAP authentication
module Login page dynamically displays the LDAP module header, LDAP User name, and
Password fields.

You can customize the following Login page UI elements:

■ Module Header text
■ User Name label and field
■ Password label and field
■ Choice value label and field.

The field is a radio button by default, but can be change to a check box.
■ Image (at the module level)
■ Login button

Customizing JSP Templates
Use the JSP templates to customize the look and feel presented in the graphical user interface
(GUI). “Customizing JSP Templates” on page 265 provides descriptions of templates you can
customize. The templates are located in the following directory:

/FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default

TABLE 16–2 Customizable JSP Templates

File Name Purpose

account_expired.jsp Informs the user that their account has expired and should contact the
system administrator.

User Interface Files You Can Modify

Chapter 16 • Customizing the Authentication User Interface 265

Early Access Documentation

TABLE 16–2 Customizable JSP Templates (Continued)
File Name Purpose

auth_error_template.jsp Informs the user when an internal authentication error has occurred.
This usually indicates an authentication service configuration issue.

authException.jsp Informs the user that an error has occurred during authentication.

configuration.jsp Configuration error page that displays during the Self-Registration
process.

disclaimer.jsp This is a customizable disclaimer page used in the Self-registration
authentication module.

Exception.jsp Informs the user that an error has occurred.

invalidAuthlevel.jsp Informs the user that the authentication level invoked was invalid.

invalid_domain.jsp Informs the user that no such domain exists.

invalidPassword.jsp Informs the user that the password entered does not contain enough
characters.

invalidPCookieUserid.jsp Informs the user that a persistent cookie user name does not exist in the
persistent cookie domain.

Login.jsp This is a Login/Password template.

login_denied.jsp Informs the user that no profile has been found in this domain.

login_failed_template.jsp Informs the user that authentication has failed.

Logout.jsp Informs the user that they have logged out.

maxSessions.jsp Informs the user that the maximum sessions have been reached.

membership.jsp A login page for the Self-registration module.

Message.jsp A generic message template for a general error not defined in one of the
other error message pages.

missingReqField.jsp Informs the user that a required field has not been completed.

module_denied.jsp Informs the user that the user does not have access to the module.

module_template.jsp A customizable module page.

new_org.jsp This page is displayed when a user with a valid session in one
organization wants to login to another organization.

noConfig.jsp Informs the user that no module configuration has been defined.

noConfirmation.jsp Informs the user that the password confirmation field has not been
entered.

noPassword.jsp Informs the user that no password has been entered.

User Interface Files You Can Modify

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)266

Early Access Documentation

TABLE 16–2 Customizable JSP Templates (Continued)
File Name Purpose

noUserName.jsp Informs the user that no user name has been entered. It links back to the
login page.

noUserProfile.jsp Informs the user that no profile has been found. It gives them the option
to try again or select New User and links back to the login page.

org_inactive.jsp Informs the user that the organization they are attempting to
authenticate to is no longer active.

passwordMismatch.jsp This page is called when the password and confirming password do not
match.

profileException.jsp Informs the user that an error has occurred while storing the user
profile.

Redirect.jsp This page carries a link to a page that has been moved.

register.jsp A user self-registration page.

session_timeout.jsp Informs the user that their current login session has timed out.

userDenied.jsp Informs the user that they do not possess the necessary role (for
role-based authentication.)

userExists.jsp This page is called if a new user is registering with a user name that
already exists.

user_inactive.jsp Informs the user that they are not active.

userPasswordSame.jsp Called if a new user is registering with a user name field and password
field have the same value.

wrongPassword.jsp Informs the user that the password entered is invalid.

XML Files
XML files describe the authentication module-specific properties based on the Authentication
Module Properties DTD file:
/FederatedAccessManager-base/SUNWam/Auth_Module_Properties.dtd. Federated Access
Manager defines required credentials and callback information for each of the default
authentication modules. By default, Authentication XML files are installed in the following
directory:

/FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default The table
“XML Files” on page 267 provides descriptions of the authentication module configuration
files.

XML files are looked up from the deployed location. In previous Federated Access Manager
versions, the XML files were looked up from the installed location.

User Interface Files You Can Modify

Chapter 16 • Customizing the Authentication User Interface 267

Early Access Documentation

TABLE 16–3 List of Authentication Module Configuration Files

File Name Purpose

AD.xml Defines a Login screen for use with Active Directory
authentication.

Anonymous.xml For anonymous authentication, although there are no
specific credentials required to authenticate.

Application.xml Needed for application authentication.

Cert.xml For certificate-based authentication although there are no
specific credentials required to authenticate.

HTTPBasic.xml Defines one screen with a header only as credentials are
requested via the user’s web browser.

JDBC.xml Defines a Login screen for use with Java Database
Connectivity (JDBC) authentication.

LDAP.xml Defines a Login screen, a Change Password screen and two
error message screens (Reset Password and User Inactive).

Membership.xml Default data interface which can be used to customize for
any domain.

MSISDN.xml Defines a Login screen for use with Mobile Subscriber
ISDN (MSISDN).

NT.xml Defines a Login screen.

RADIUS.xml Defines a Login screen and a RADIUS Password Challenge
screen.

SafeWord.xml Defines two Login screens: one for User Name and the next
for Password.

SAML.xml Defines a Logins screen for Security Assertion Markup
Language (SAML) authentication.

SecurID.xml Defines five Login screens including UserID and Passcode,
PIN mode, and Token Passcode.

Unix.xml Defines a Login screen and an Expired Password screen.

Callbacks Element
The Callbacks element is used to define the information a module needs to gather from the
client requesting authentication. Each Callbacks element signifies a separate screen that can be
called during the authentication process.

User Interface Files You Can Modify

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)268

Early Access Documentation

Nested Elements

The following table describes nested elements for the Callbacks element.

Element Required Description

NameCallback * Requests data from the user; for
example, a user identification.

PasswordCallback * Requests password data to be
entered by the user.

ChoiceCallback * Used when the application user
must choose from multiple values.

ConfirmationCallback * Sends button information such as
text which needs to be rendered on
the module’s screen to the
authentication interface.

HttpCallback * Used by the authentication module
with HTTP-based handshaking
negotiation.

SAMLCallback Used for passing either Web
artifact or SAML POST response
from SAML service to the SAML
authentication module when this
module requests for the respective
credentials. This authentication
module behaves as SAML recipient
for both (Web artifact or SAML
POST response) and retrieves and
validates SAML assertions.

Attributes

The following table describes attributes for the Callbacks element.

length The number or length of callbacks.

order Is the sequence of the group of callbacks.

timeout Number of seconds the user has to enter credentials before the page times out.
Default is 60.

template Defines the UI .jsp template name to be displayed.

image Defines the UI or page-level image attributes for the UI customization

header Text header information to be displayed on the UI. Default is Authentication.

User Interface Files You Can Modify

Chapter 16 • Customizing the Authentication User Interface 269

Early Access Documentation

error Indicates whether authentication framework/module needs to terminate the
authentication process. If yes, then the value is true. Default is false .

ConfirmationCallback Element
The ConfirmtationCallback element is used by the authentication module to send button
information for multiple buttons. An example is the button text which must be rendered on the
UI page. The ConfirmationCallback element also receives the selected button information
from the UI.

Nested Element

ConfirmationCallback has one nested element named OptionValues. The OptionValues
element provides a list or an array of button text information to be rendered on the UI
page.OptionValues takes no attributes.

If there is only one button on the UI page, then the module is not required to send this callback.
If ConfirmationCallback is not provided through the Authentication Module properties XML
file, then anAuthUI.properties will be used to pick and display the button text or label for the
Login button. anAuthUI.properties is the global UI i18n properties file for all modules.

Callbacks length value should be adjusted accordingly after addition of the new callback.

Example:

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> <required button text> </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

JavaScript Files
JavaScript files are parsed within the Login.jsp file. You can add custom functions to the
JavaScript files in the following directory:
/FederatedAccessManager-base/SUNWam/web-src/services/js .

The Authentication Service uses the following JavaScript files:

auth.js Used by Login.jsp for parsing all module files to display login
requirement screens.

browserVersion.js Used by Login.jsp to detect the client type.

User Interface Files You Can Modify

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)270

Early Access Documentation

Cascading Style Sheets
To define the look and feel of the UI, modify the cascading style sheets (CSS) files.
Characteristics such as fonts and font weights, background colors, and link colors are specified
in the CSS files. You must choose the appropriate .css file for your browser in order to
customize the look and feel on the User Interface.

In the appropriate .css file, change the background-color attribute. Examples:

.button-content-enabled { background-color:red; }

button-link:link, a.button-link:visited { color: #000;

background-color: red;

text-decoration: none; }

A number of browser-based CSS files are installed with Federated Access Manager in the
following directory:

/FederatedAccessManager-base/SUNWam/web-src/services/css.

The following table provides a brief description of each CSS file.

TABLE 16–4 Cascading Style Sheets

File Name Purpose

css_generic.css Configured for generic web browsers.

css_ie5win.css Configured specifically for Microsoft® Internet Explorer v.5 for
Windows®.

css_ns4sol.css Configured specifically for NetscapeTM Communicator v. 4 for
SolarisTM.

css_ns4win.css Configured specifically for Netscape Communicator v.4 for
Windows.

styles.css Used in JSP pages as a default style sheet.

Images
The default authentication GUI is branded with Sun Microsystems, Inc. logos and images. By
default, the GIF files are installed in the following directory:

/FederatedAccessManager-base/SUNWam/web-src/services/login_images

These images can be replaced with images relevant to your company. The following table
provides a brief description for each GIF image used for the default GUI.

User Interface Files You Can Modify

Chapter 16 • Customizing the Authentication User Interface 271

Early Access Documentation

TABLE 16–5 Sun Microsystems Branded GIF Images

File Name Purpose

Identity_LogIn.gif Sun Federated Access Manager banner across the top.

Registry_Login.gif No longer used.

bannerTxt_registryServer.gif No longer used.

logo_sun.gif Sun Microsystems logo in the upper right corner.

spacer.gif A one pixel clear image used for layout purposes.

sunOne.gif No longer used.

Localization Files
Localization files are located in the following directory:
/FederatedAccessManager-base/SUNWam/locale

These are i18n properties files global to the Access Manager instance. A localization properties
file, also referred to as an i18n (internationalization) properties file specifies the screen text and
error messages that an administrator or user will see when directed to an authentication
module’s attribute configuration page. Each authentication module has its own properties file
that follows the naming format amAuthmodulename.properties; for example,
amAuthLDAP.properties. They are located in
/FederatedAccessManager-base/SUNWam/locale/. The default character set is ISO-8859-1 so all
values are in English, but Java applications can be adapted to various languages without code
changes by translating the values in the localization properties file.

The following table summarizes the localization properties files configured for each module.
These files can be found in /FederatedAccessManager-base/SUNWam/locale.

TABLE 16–6 List of Localization Properties Files

File Name Purpose

amAuth.properties Defines the parent Core Authentication Service.

amAuthAD.properties Defines the Active Directory Authentication Module.

amAuthAnonymous.properties Defines the Anonymous Authentication Module.

amAuthApplication.properties For Federated Access Manager internal use only. Do not
remove or modify this file.

amAuthCert.properties Defines the Certificate Authentication Module.

User Interface Files You Can Modify

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)272

Early Access Documentation

TABLE 16–6 List of Localization Properties Files (Continued)
File Name Purpose

amAuthConfig.properties Defines the Authentication Configuration Module.

amAuthContext.properties Defines the localized error messages for the AuthContext
Java class.

amAuthContextLocal.properties For Federated Access Manager internal use only. Do not
remove or modify this file.

amAuthHTTPBasic.properties Defines the HTTP Basic Authentication Module.

amAuthJDBC.properties Defines the Java Database Connectivity (JDBC)
Authentication Module.

amAuthLDAP.properties Defines the LDAP Authentication Module.

amAuthMembership.properties Defines the Membership Authentication Module.

amAuthMSISDN.properties Defines the Mobile Subscriber ISDN Authentication
Module.

amAuthNT.properties Defines the Windows NT Authentication Module.

amAuthRadius.properties Defines the RADIUS Authentication Module.

amAuthSafeWord.properties Defines the Safeword Authentication Module.

amAuthSAML.properties Defines the Security Assertion Markup Language (SAML)
Authentication Module.

amAuthSecurID.properties Defines the SecurID Authentication Module.

amAuthUI.properties Defines labels used in the authentication user interface.

amAuthUnix.properties Defines the UNIX Authentication Module.

Customizing Branding and Functionality
You can modify JSP templates and module configuration properties files to reflect branding or
functionality specified for any of the following:

■ Organization of the request
■ SubOrganization of the request.
■ Locale of the request
■ Client Path
■ Client Type information of the request
■ Service Name (serviceName)

Customizing Branding and Functionality

Chapter 16 • Customizing the Authentication User Interface 273

Early Access Documentation

▼ To Modify Branding and Functionality
Go to the directory where default JSP templates are stored.

cd /FederatedAccessManager-base/SUNWam/web-src/services/config/auth

Create a new directory.

Use the appropriate customized directory path based on the level of customization. Use the
following forms:
org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

In these examples,

orgPath represents subOrg1/subOrg2

filePath represents clientPath + serviceName

clientPath represents clientType/sub-clientType

In these paths, SubOrg, Locale, Client Path, Service Name (which represents orgPath and
filePath) are optional. The organization name you specify may match the organization
attribute set in the Directory Server. For example, if the organization attribute value is
SunMicrosystems, then the organization customized directory should also be
SunMicrosystems. If no organization attribute exists, then use the lowercase value of the
organization name (sunmicrosystems).

For example, for the following attributes:

org = SunMicrosystems

locale = en

subOrg = solaris

clientPath = html/ customerName/

serviceName = paycheck

customized directory paths would be:

SunMicrosystems_en/solaris/html/ customerName /paycheck

SunMicrosystems/solaris/html/ customerName /paycheck

default_en/solaris/html/ customerName/paycheck

default/solaris/html/ customerName /paycheck

1

2

Customizing Branding and Functionality

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)274

Early Access Documentation

Copy the default templates.
Copy all the JSP templates (*.jsp) and authentication module configuration properties XML
files (*.xml) from the default directory:

/FederatedAccessManager-base/SUNWam/web-src/services/config/auth/default

to the new directory:

/FederatedAccessManager-base/SUNWam/web-src/services/config/
auth/CustomizedDirectoryPath

Customize the files in the new directory.
The files in the new directory can be customized if necessary, but not this is not required. See
“Customizing the Login Page” on page 265 and “Customizing JSP Templates” on page 265 for
information on what you can modify.

Update and redeploy services.war.
Once you’ve modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy services.war. See “Updating and Redeploying
services.war” on page 277 in this chapter for instructions. See Chapter 14, “Updating and
Redeploying Federated Access Manager WAR Files,” for general information on updating and
redeploying Federated Access Manager .war files.

Restart both Federated Access Manager and the web container server.

Customizing the Self-Registration Page
You can customize the Self-registration page which is part of Membership authentication
module. The default data and interface provided with the Membership authentication module
is generic and can work with any domain. You can configure it to reflect custom data and
information. You can add custom user profile data or fields to register or to create a new user.

▼ To Modify the Self-Registration Page
Customize the Membership.xml file.
By default, the first three data fields are required in the default Membership Module
configuration:

■ User name
■ User Password
■ Confirm User Password

3

4

5

6

1

Customizing the Self-Registration Page

Chapter 16 • Customizing the Authentication User Interface 275

Early Access Documentation

You can specify which data is requested, which is required, and which is optional. The
sample below illustrates how to add a telephone number as requested data.
You can specify or add data which should be requested from a user as part of the User
Profile. By default you can specify or add any attributes from the following objectClasses:

■ top

■ person

■ organizationalPerson

■ inetOrgPerson

■ iplanet-am-user-service

■ inetuser

Administrators can add their own user attributes to the User Profile.

Update and redeploy services.war.
Once you’ve modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy services.war. See “Updating and Redeploying
services.war” on page 277 in this chapter for instructions. See Chapter 14, “Updating and
Redeploying Federated Access Manager WAR Files,” for general information on updating and
redeploying Federated Access Manager .war files.

Restart both Federated Access Manager and the web container server.
<Callbacks length="9" order="16" timeout="300"
header="Self Registration" template="register.jsp" >

<NameCallback isRequired="true" attribute="uid" >

<Prompt> User Name: </Prompt>

</NameCallback>

<PasswordCallback echoPassword="false" isRequired="true"
attribute="userPassword" >

<Prompt> Password: </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" isRequired="true" >

<Prompt> Confirm Password: </Prompt>

</PasswordCallback>

<NameCallback isRequired="true" attribute="givenname" >

<Prompt> First Name: </Prompt>

</NameCallback>

<NameCallback isRequired="true" attribute="sn" >

<Prompt> Last Name: </Prompt>

</NameCallback>

2

3

Customizing the Self-Registration Page

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)276

Early Access Documentation

<NameCallback isRequired="true" attribute="cn" >

<Prompt> Full Name: </Prompt>

</NameCallback>

<NameCallback attribute="mail" >

<Prompt> Email Address: </Prompt>

</NameCallback>

<NameCallback isRequired="true"attribute="telphonenumber">

<Prompt> Tel:</Prompt>

</NameCallback>

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> Register </Value>

</OptionValue>

<OptionValue>

<Value> Cancel </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

</Callbacks>

Updating and Redeploying services.war
If Access Manager is installed on BEA WebLogic, IBM WebSphere, or Sun ONE Application
Server, you must update and redeploy services.war before you can see any changes in the user
interface. Once you’ve made changes to the authentication GUI files, regardless of the brand of
web container you’re using, it is a good practice to update and redeploy the services.war file.
When you update and redeploy services.war, you overwrite the default GUI files with your
changes, and the changed files are placed in their proper locations. The section “Staging Area
for Files to be Customized” on page 264 provides background information on this file.

Updating and Redeploying services.war

Chapter 16 • Customizing the Authentication User Interface 277

Early Access Documentation

▼ To Update services.war
cd AccessManager-base/SUNWam
This is the directory in which the WARs are kept.

jar -uvf WARfilename.war <path_to_modified_file>
The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf services.war newfile/index.html

replaces the index.html file in console.war with the index.html file located in
/FederatedAccessManager-base/SUNWam/newfile.

rm newfile/index.html

Deletes the modified file.

To Redeploy services.war
The services.war will be in the following directory:

/FederatedAccessManager-base/SUNWam

Depending upon the brand of web container you are using, execute one of the following
commands.

On BEA WebLogic
java weblogic.deploy -url ServerURL -component

{ServerDeployURI}: { WL61 Server}
deploy WL61AdminPassword {ServerDeployURI }

{AccessManager-base}/{SUNWam}/services.war

In this example,

ServerURL uses the form protocol:// host:port
Example: http://abc.com:58080

ServerDeployURI represents the server Universal Resource Identifier
Example: amserver

WL61 Server represents the Weblogic Server nam.e
Example: name.com

1

2

3

Updating and Redeploying services.war

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)278

Early Access Documentation

On Sun ONE Application Server
asadmin deploy -u IAS7Admin -w IAS7AdminPassword -H

HostName -p IAS7AdminPort
--type web SECURE_FLAG --contextroot

ServerDeployURI --name amserver --instance IAS7Instance

{AccessManager-base}/{SUNWam}/services.war

On IBM WebSphere
See the Application Server documentation that comes with the IBM WebSphere product.

Customizing the Distributed Authentication User Interface
Federated Access Manager provides a remote Authentication user interface component to
enable secure, distributed authentication across two firewalls. You can install the remote
authentication user interface component on any servlet-compliant web container within the
non-secure layer of an Federated Access Manager deployment. The remote component works
with Authentication client APIs and authentication utility classes to authenticate web users.
The remote component is customizable and uses a JATO presentation framework.

For detailed information on how Distributed Authentication works, see “Distributed
Authentication User Interface” in Sun Java System Access Manager 7.1 Technical Overview and
Chapter 11, “Deploying a Distributed Authentication UI Server,” in Sun Java System Access
Manager 7.1 Postinstallation Guide.

Once the Distributed Authentication component is installed and deployed, you can modify the
JSP templates and module configuration properties files to reflect branding and specific
functionality for any of the following:

Organization/SubOrganization This is the organization or sub-organization of the request.

Locale Locale of the request.

Client Path Client Type information of the request.

Service Name (serviceName) Service name for service-based authentication.

▼ To Customize the Distributed Authentication User
Interface
The Distributed Authentication User Interface package must already be installed. For detailed
installation instructions, see “Installing and Configuring a Distributed Authentication UI
Server Using the Java ES Installer” in Sun Java System Access Manager 7.1 Postinstallation
Guide.

Before You Begin

Customizing the Distributed Authentication User Interface

Chapter 16 • Customizing the Authentication User Interface 279

Early Access Documentation

http://www-306.ibm.com/software/webservers/appserv/was/support/

Explode the Distributed Authentication User Interface WAR.

At the command line, go to the directory where the default JSP templates are stored.
Example:

cd DistributedAuth-base/config/auth

where DistributedAuth-base is the directory where the Distributed Authentication User
Interface package is exploded.

Create a new directory using the appropriate directory path based on the level of
customization.
Use the following form:
org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

where:

orgPath = subOrg1/subOrg2

filePath = clientPath + serviceName

clientPath = clientType/sub-clientType

The following are optional: Sub-org, Locale , Client Path , and Service Name . In the following
example, orgPath and filePath are optional.

For example, given the following:

org = iplanet

locale = en

subOrg = solaris

clientPath = html/nokia/

serviceName = paycheck

the appropriate directory paths for the above are:

iplanet_en/solaris/html/nokia/paycheck

iplanet/solaris/html/nokia/paycheck

default_en/solaris/html/nokia/paycheck

default/solaris/html/nokia/paycheck

Copy all the JSP templates and authentication module configuration properties XML files from
the default directory to the new directory.

1

2

3

4

Customizing the Distributed Authentication User Interface

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)280

Early Access Documentation

cp DistributedAuth-base/config/auth/default/*.jsp
DistributedAuth-base/config/auth/new_directory_path

cp DistributedAuth-base/config/auth/default/*.xml
DistributedAuth-base/config/auth/new_directory_path

(Optional) Modify the files in the new directory to suit your needs.

■ For information about customizing the .jsp files, see “Java Server Pages” on page 265.
■ For information about customizing the .xml files, “XML Files” on page 267.

Create a new .WARfile named amauthdistui_deploy.war from DistributedAuth-base.

Deploy amauthdistui_deploy.war.
The web container administrator deploys the file in the remote web container.

5

6

7

Customizing the Distributed Authentication User Interface

Chapter 16 • Customizing the Authentication User Interface 281

Early Access Documentation

282

Early Access Documentation

Key Management

A public key infrastructure enables users on a public network to securely and privately
exchange data through the use of a public and a private key pair that is shared using a trusted
authority. For example, the PKI allows the data from a client, such as a web browser, to be
encrypted prior to transmission. The private key is used to decrypt text that has been encrypted
with the public key. The public key is made publicly available (as part of a digital certificate) in a
directory which all parties can access. This appendix contains information on how to create a
keystore and generate public and private keys. It includes the following sections:

■ “Public Key Infrastructure Basics” on page 283
■ “keytool Command Line Interface” on page 285
■ “Setting Up a Keystore” on page 286

Public Key Infrastructure Basics
Web containers support the use of keystores to manage keys and certificates. The keystore file is
a database that contains both public and private keys. Public and private keys are created
simultaneously using the same algorithm (for example, RSA). A public key is used for
encrypting or decrypting information. This key is made known to the world with no
restrictions, but it cannot be used to decrypt information that the same key has encrypted. A
private key is never revealed to anyone except it's owner and does not need to be communicated
to third parties. The private key might never leave the machine or hardware token that
originally generated it. The private key can encrypt information that can later be decrypted by
using the public key. Also the private key can be used to decrypt information that was
previously encrypted using the public key.

A public key infrastructure (PKI) is a framework for creating a secure method of exchanging
information on an unsecure network. This ensures that the information being sent is not open
to eavesdropping, tampering, or impersonation. It supports the distribution, management,
expiration, rollover, backup, and revoking of the public and private keys used for public key
cryptography. Public key cryptography is the most common method for encrypting and

AA P P E N D I X A

283

Early Access Documentation

decrypting a message. It secures the data involved in the communications by using a private key
and its public counterpart. Each entity protects its own private key while disseminating its
public key for all to use. Public and private keys operate inversely; an operation performed by
one key can be reversed, or checked, only by its partner key.

Note – The Internet X.509 Public Key Infrastructure Certificate and CRL Profile is a PKI.

Digital Signatures
So, a private key and a public key can be used for simple message encryption and decryption.
This ensures that the message can not be read (as in eavesdropping) but, it does not ensure that
the message has not been tampered with. For this, a one-way hash (a number of fixed length that
is unique for the data to be hashed) is used to generate a digital signature. A digital signature is
basically data that has been encrypted using a one-way hash and the signer's private key. To
validate the integrity of the data, the server receiving the communication uses the signer's
public key to decrypt the hash. It then uses the same hashing algorithm that generated the
original hash (sent with the digital signature) to generate a new one-way hash of the same data.
Finally, the new hash and the received hash are compared. If the two hashes match, the data has
not changed since it was signed and the recipient can be certain that the public key used to
decrypt the digital signature corresponds to the private key used to create the digital signature.
If they don't match, the data may have been tampered with since it was signed, or the signature
may have been created with a private key that doesn't correspond to the public key presented by
the signer. This interaction ensures that any change in the data, even deleting or altering a single
character, results in a different value.

Digital Certificates
A digital certificate is an electronic document used to identify an individual, a server, a
company, or other entity and to bind that entity to a public key by providing information
regarding the entity, the validity of the certificate, and applications and services that can use the
certificate. The process of signing the certificate involves tying the private key to the data being
signed using a mathematical formula. The widely disseminated public counterpart can then be
used to verify that the data is associated with the sender of the data. Digital certificates are issued
by a certificate authority (CA) to authenticate the identity of the certificate-holder both before
the certificate is issued and when the certificate is used. The CA can be either independent third
parties or certificate-issuing server software specific to an enterprise. (Both types issue, verify,
revoke and distribute digital certificates.) The methods used to authenticate an identity are
dependant on the policies of the specific CA. In general, before issuing a certificate, the CA must
use its published verification procedures for that type of certificate to ensure that an entity
requesting a certificate is in fact who it claims to be.

Public Key Infrastructure Basics

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)284

Early Access Documentation

http://www.ietf.org/rfc/rfc2459.txt

Certificates help prevent the use of fake public keys for impersonation. Only the public key
certified by the certificate will work with the corresponding private key possessed by the entity
identified by the certificate. Digital certificates automate the process of distributing public keys
and exchanging secure information. When one is installed on your machine, the public key is
freely available. When another computer wants to exchange information with your computer, it
accesses your digital certificate, which contains your public key, and uses it to validate your
identity and to encrypt the information it wants to share with you. Only your private key can
decrypt this information, so it remains secure from interception or tampering while traveling
across the Internet.

Note – You can get a digital certificate by sending a request for one to a CA. Certificate requests
are generated by the certificate management tool used. In this case, we are using the keytool
command line interface. When keytool generates a certificate request, it also generates a
private key.

keytoolCommand Line Interface
keytool is a key and certificate management utility used to create the keys. It also manages a
.keystore file containing private keys and the associated X.509 certificate chains
authenticating the corresponding public keys, issues certificate requests (which you send to the
appropriate CA), imports certificate replies (obtained from the contacted CA), designates
public keys belonging to other parties as trusted, and generates a unique key alias for each
keystore entry. There are two types of entries in a keystore:

■ A keystore entry holds sensitive cryptographic key information, stored in a protected format
to prevent unauthorized access. Typically, a key stored in this type of entry is a secret or
private key accompanied by a certificate chain for the corresponding public key.

■ A trusted certificate entry contains a single public key certificate belonging to another party.
It is called a trusted certificate because the keystore owner trusts that the public key in the
certificate indeed belongs to the identity identified by the subject of the certificate. The issuer
of the certificate vouches for this, by signing the certificate.

To create a keystore and default key entry in .keystore, you must use keytool, available from
the Java Development Kit (JDK), version 1.3.1 and above. For more details, see keytool — Key
and Certificate Management Tool.

keytool Command Line Interface

Appendix A • Key Management 285

Early Access Documentation

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Setting Up a Keystore
The following procedure illustrates how to create a keystore file and default key entry using
keytool.

▼ To Set Up a Keystore
Be sure to use the keytool provided with the JDK bundled with Access Manager. It is located in
JAVA_HOME/bin/keytool. When installed using the Java Enterprise System installer,
JAVA_HOME is AccessManager-baseSUNWam/java.

Note – The italicized option values in the commands used in this procedure may be changed to
reflect your deployment.

Generate a certificate using one of the following procedures.

■ Generate a keystore with a public and private key pair and a self-signed certificate for your
server using the following command.
keytool -genkey -keyalg rsa -alias test
-dname "cn=sun-unix,ou=SUN Java System Access Manager,o=Sun,c=US"
-keypass 11111111 -keystore .mykeystore
-storepass 11111111 -validity 180

This command will generate a keystore called .mykeystore in the directory from which it is
run. A private key entry with the alias test is created and stored in .mykeystore. If you do
not specify a path to the keystore, a file named .keystore will be generated in your home
directory. If you do not specify an alias for the default key entry, mykey is created as the
default alias. To generate a DSA key, change the value of -keyalg to dsa. This step generates
a self-signed certificate.

■ Create a request and import a signed certificate from a CA (to authenticate your public key)
using the following procedure.

a. Create a request to retrieve a signed certificate from a CA (to authenticate your public
key) using the following command:

keytool -certreq -alias test -file request.csr -keypass 11111111 -keystore .mykeystore -storepass 11111111 -storetype JKS

.mykeystore must also contain a self-signed certificate authenticating the server's
generated public key. This step will generate the certificate request file, request.csr,
under the directory from which the command is run. By submitting request.csr to a
CA, the requestor will be authenticated and a signed certificate authenticating the public
key will be returned. [Remark A–1 Reviewer: Define the root certificate and the server

1

Setting Up a Keystore

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)286

Early Access Documentation

certificate. How do you get both of these from one request?] Save this root certificate to a
file named myroot.cer and save the server certificate generated in the previous step to a
file named mycert.cer.

b. Import the certificate returned from the CA using the following command:
keytool -import -alias test -trustcacerts -file mycert.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

c. Import the certificates of any trusted sites (from which you will receive assertions,
requests and responses) into your keystore using the following command:

keytool -import -file myroot.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

The data to be imported must be provided either in binary encoding format, or in
printable encoding format (also known as Base64) as defined by the Internet RFC 1421
standard. In the latter case, the encoding must be bounded at the beginning by a string
that starts with -----BEGIN and bounded at the end by a string that starts with -----END.

Change to the AccessManager-base/SUNWam/bindirectory and run the following command:
ampassword -e original password

[Remark A–2 Writer: Whose password is this encrypting?] This encrypts the password. The
command will return something like AQICKuNVNc9WXxiUyd8j9o/BR22szk8u69ME.

Create a new file named .storepass and put the encrypted password in it.

Create a new file named .keypass and put the encrypted password in it.

Copy .mykeystore to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.keystore=/etc/opt/SUNWam/lib/keystore.jks, copy
.mykeystore to /etc/opt/SUNWam/lib/ and rename the file to keystore.jks.

Copy .storepass and .keypass to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.storepass=/etc/opt/SUNWam/config/.storepass and
com.sun.identity.saml.xmlsig.keypass=/etc/opt/SUNWam/config/.keypass, copy both
files to /etc/opt/SUNWam/config/.

Define a value for the com.sun.identity.saml.xmlsig.certalias property in
AMConfig.properties.

For this example, the value would be test.

(Optional) If the private key was encrypted using the DSA algorithm, change
xmlsigalgorithm=http://www.w3.org/2000/09/xmldsig#rsa-sha1 in

2

3

4

5

6

7

8

Setting Up a Keystore

Appendix A • Key Management 287

Early Access Documentation

AccessManager-base/locale/amSAML.properties to
xmlsigalgorithm=http://www.w3.org/2000/09/xmldsig#dsa-sha1.

(Optional) Change the canonicalization method for signing or the transform algorithm for
signing by modifying amSAML.properties, located in AccessManager-base/locale/.

a. Change canonicalizationMethod=http://www.w3.org/2001/10/xml-exc-c14n# to any
valid canonicalization method specified in Apache XML security package Version 1.0.5.

Note – If this entry is deleted or left empty, we will use
SAMLConstants.ALGO_ID_C14N_OMIT_COMMENTS (required by the XML Signature
specification) will be used.

b. Change transformAlgorithm=http://www.w3.org/2001/10/xml-exc-c14n# to any valid
transform algorithm specified in Apache XML security package Version 1.0.5.

Note – If this entry is deleted or left empty, the operation will not be performed.

Restart Access Manager.

9

10

Setting Up a Keystore

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)288

Early Access Documentation

Index

A
access

Authentication Web Service, 172
Discovery Service, 183

account mappers, 129
administration console

accessing the console, 251
APIs, 259-260
code samples, list of, 260-261
customizing, 251-259
event listener, 260
legacy mode, 249-251
plug-in modules, 251

AdminUtils, 231
AMClientDetector, 232
AMConfig.properties

Client SDK, 22-33, 32-33, 33-34
AMPasswordUtil, 232
API

Authentication Service, 37-40
Authentication Web Service, 170-172
client detection, 229-230
client for Discovery Service, 179-180
common security, 168-169
common service, 166-168
Data Services Template, 174-175
Discovery Service, 178-183
federation, 121-123
Interaction Service, 185-187
PAOS binding, 187-191
Policy Service, 72-77
SAML 1.x, 141-147

API (Continued)
SOAP Binding Service, 184
WS-Federation, 125

attribute mappers, 130
attributes, Authentication Web Service, 170-171
authentication agent

HTTP, 214-216
SOAP, 216-218

authentication agents, 212-218
authentication context mappers, 130-133
Authentication Service

API, 37-40
cascading style sheets, 271
CertLogin example, 51-52
custom authentication module, 53-59
customizing branding and functionality, 273-275
customizing the user interface, 263-281
distributed authentication user interface, 279-281
files you can modify, 263-273
image files, 271-272
JAAS module, 66-70
Java Server Pages, 265-267
JavaScript files, 270
JCDI module example, 52
JSP templates, 265-267
LDAPLogin example, 51
localization files, 272-273
login page, customizing, 265
post processing SPI, 59-63
self-registration page, customizing, 275-277
SPI, 40-45
user ID, generating, 63-66

289

Early Access Documentation

Authentication Service (Continued)
XML files, 267-270

Authentication Web Service
accessing, 172
API, 170-172
attribute, 170-171
sample, 172
XML service file, 170-171

authorization plug-in, 198-199
Authorizer, 198-199
Authorizer interface, 167
Authorizer interface, 180-182

C
Calendar Service sample, 221
CertLogin, 51-52
client API

Data Services Template, 174
Discovery Service, 179-180

client detection
API, 229-230
data types, 228-229
defined, 225-226
enabling, 225-226

client identity, Client SDK, 33-34
Client SDK, 17-36

about, 17-18
AMConfig.properties, 22-33, 32-33, 33-34
client identity, 33-34
Federated Access Manager properties, 24-32
initialize, 32-33
packages, 17-18
samples, 19-22

client SDK, targets, 35-36
Client SDK

web applications, 35-36
client software development kit, See Client SDK
com.sun.identity.federation.plugins, 122
com.sun.identity.federation.services, 122
com.sun.identity.liberty.wsf.version, 160-166
com.sun.identity.policy, 72-75

Policy, 73
PolicyEvaluator, 74-75

com.sun.identity.policy (Continued)
PolicyEvent, 75
PolicyManager, 73
ProxyPolicyEvaluator, 75

com.sun.identity.policy.client, 75
com.sun.identity.policy.interfaces, 75-76
com.sun.identity.policy.jaas, 76-77

ISPermission, 76-77
ISPolicy, 77

com.sun.identity.saml2.assertion, 128
com.sun.identity.saml2.common, 128
com.sun.identity.saml2.protocol, 128
com.sun.liberty, 122-123
common interfaces, 166-169
common security API, 168-169
console, See administration console
custom authentication module, 53-59
custom keystores, 221-223
customize

federation, 118-121
graphical user interface, 118-121

D
data services

API, 174-175
Liberty Employee Profile Service, 173
Liberty Personal Profile Service, 173

Data Services Template
API, 174-175
client API, 174

Debug utility, 232
default.jsp, 134
Default64ResourceIDMapper, 182-183
DefaultDiscoAuthorizer class, 180-182
DefaultHexResourceIDMapper, 182-183
develop web services, invoke, 157-159
digital certificates, 284-285
digital signatures, 284
DiscoEntryHandler interface, 180
Discovery Service

accessing, 183
and policy creation, 180-182
and security tokens, 175-178

Index

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)290

Early Access Documentation

Discovery Service (Continued)
API, 178-183
client API, 179-180
sample, 183

distributed authentication user interface, See
Authentication Service

documentation
related Access Manager books, 13-15
related Sun JES books, 15

E
employee profile service sample, 173

F
federation

API, 121-123
common interfaces, 166-169
graphical user interface, 118-121
samples, 123

G
graphical user interface, federation, 118-121

H
HTTP authentication agent, 214-216

I
IAuthorizer, 198-199
idpMNIRedirectInit.jsp, 138
idpMNIRequestInit.jsp, 138
idpSingleLogoutInit.jsp, 139-140
idpSingleLogoutRedirect.jsp, 140
idpSSOFederate.jsp, 135
idpSSOInit.jsp, 135-136
Interaction Service, 185-187

interfaces
Authentication Web Service, 170-172
Authorizer, 180-182
DiscoEntryHandler, 180
Discovery Service, 178-183
request handler, 184
ResourceIDMapper, 182-183
session, 104-109

ISPolicy, 76-77, 77
IVerifierOutput, 199

J
JAAS

and Policy Service, 77-78
authentication module, 66-70

Java Authentication and Authorization Service, See
JAAS

Java Authentication Service Provider Interface for
Containers
See also JSR-196

JCDI module, 52
JSP, SAML v2, 134-141
JSR-196, 212-218

K
key management

keystore entry, 285
overview, 283-285
setting up keystore, 286-288
trusted certificate entry, 285

keystore, setting up, 286-288
keystore entry, 285
keystores

configuring custom, 221-223
overview, 221-223

keytool, 285

L
LDAPLogin, 51

Index

291

Early Access Documentation

legacy mode, administration console, 249-251
Liberty Employee Profile Service, 173
Liberty ID-WSF 1.1 profiles, 160-166
Liberty Personal Profile Service, 173
Locale utility, 232
logging

log authorization plug-in, 198-199
log verifier plug-in, 199
LogReaderSample.java, 202-206
LogSample.java, 202
reading records, 196-198
remote Federated Access Manager, 199
remote logging, 199-202
sample programs, 202-206
secure logging, 199
writing records, 194-196

LogReaderSample.java, 202-206
LogSample.java, 202

N
notification

defined, 235-238
enabling, 236-238

O
overview

HTTP authentication agent, 214-216
keystores, 221-223
Liberty Employee Profile Service, 173
Liberty Personal Profile Service, 173
Policy Service, 71-72
SOAP authentication agent, 216-218

P
PAOS binding, 187-191

PAOS or SOAP, 188
sample, 189-191

password API plug-ins, 233-234
password.war, 243

PKI, 283-285
digital certificates, 284-285
digital signatures, 284

Policy, 73
policy creation, and Discovery Service, 180-182
policy evaluation program, 92-94
Policy Service

adding policy-enabled service, 79-82
and JAAS, 77-78
API, 72-77
code samples, 82-86
com.sun.identity.policy, 72-75

Policy, 73
PolicyEvaluator, 74-75
PolicyEvent, 75
PolicyManager, 73
ProxyPolicyEvaluator, 75

com.sun.identity.policy.client, 75
com.sun.identity.policy.interfaces, 75-76
com.sun.identity.policy.jaas, 76-77

ISPermission, 76-77
ISPolicy, 77

conditions, customizing, 86-91
overview, 71-72
policy evaluation program, 92-94
referrals, customizing, 86-91
SPI, 72-77
subjects, customizing, 86-91

PolicyEvaluator, 74-75
PolicyEvent, 75
PolicyManager, 73
post processing SPI, authentication, 59-63
procedures, create policy for

DefaultDiscoAuthorizer, 180-182
profiles, set up Liberty ID-WSF, 160-166
properties, Client SDK, 24-32
ProxyPolicyEvaluator, 75
public key infrastructure, See PKI

R
redeploying WARs, 245-247
RelayState, 134
remote logging, 199-202

Index

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)292

Early Access Documentation

RequestHandler interface, 175
ResourceIDMapper interface, 182-183
ResourceIDMapper interface, 167
response provider, 86-91

S
SAML, samples, 148
SAML 1.x, API, 141-147
SAML v2

adding implementation class, 127-129
com.sun.identity.saml2.assertion, 128
com.sun.identity.saml2.common, 128
com.sun.identity.saml2.protocol, 128
default.jsp, 134
idpMNIRedirectInit.jsp, 138
idpMNIRequestInit.jsp, 138
idpSingleLogoutInit.jsp, 139-140
idpSingleLogoutRedirect.jsp, 140
idpSSOFederate.jsp, 135
idpSSOInit.jsp, 135-136
JavaServer Pages, 134-141
SDK, 127-129
spAssertionConsumer.jsp, 134-135
SPI, 129-133
spMNIRedirect.jsp, 139
spMNIRequestInit.jsp, 138-139
spSingleLogoutInit.jsp, 140-141
spSingleLogoutRedirect.jsp, 141
spSSOInit.jsp, 136-137

samples
Authentication Web Service, 172
Calendar Service, 221
Client SDK, 19-22
Discovery Service, 183
employee profile service, 173
federation, 123
PAOS binding, 189-191
SAML, 148
security tokens, 175-178
Stock Service, 221
web service consumer, 169

SDK, SAML v2, 127-129
secure logging, 199

security tokens
and Discovery Service, 175-178
generating, 175-178

self-registration page, customizing, 275-277
services.war, 243-244
services.war

content and staging area, 264
updating and redeploying, 277-279

Session Service, See sessions
sessions

data, 101-116
interfaces, 104-109
scenario, 101

single sign-on, 101-116
Single Sign-On

code samples, list of, 110-116
non-web based applications, 116

single sign-on, scenario, 101
SOAP authentication agent, 216-218
SOAP Binding Service

API, 184
PAOS or SOAP, 188
SOAPReceiver, 183

SOAPReceiver, 183
spAssertionConsumer.jsp, 134-135
SPI

account mappers, 129
attribute mappers, 130
authentication context mappers, 130-133
Authentication Service, 40-45
Policy Service, 72-77
SAML v2, 129-133

spMNIRedirect.jsp, 139
spMNIRequestInit.jsp, 138-139
spSingleLogoutInit.jsp, 140-141
spSingleLogoutRedirect.jsp, 141
spSSOInit.jsp, 136-137
SSO

See single sign-on
See Single Sign-On

Stock Service sample, 221
SystemProperties, 233

Index

293

Early Access Documentation

T
targets, client SDK, 35-36
ThreadPool, 233
trusted certificate entry, 285

U
updating WARs, 244-245
utilities

AdminUtils, 231
AMClientDetector, 232
AMPasswordUtil, 232
APIs, 231-234
Debug, 232
Locale, 232
password API plug-ins, 233-234
SystemProperties, 233
ThreadPool, 233

V
verifier plug-in, 199

W
WARs

redeploying, 245-247
updating, 244-245

WARs in Access Manager, 240-244
web applications, Client SDK, 35-36
web service consumer sample, 169
web services

develop, 149-159
hosting, 150-157
invoking, 157-159

web services security, 212-218
samples, 221

WS-Federation, API, 125

X
XML service files, Authentication Web

Service, 170-171

Index

Sun Federated Access Manager 8.0 Developer's Guide • June 2008 (Beta)294

Early Access Documentation

	Sun Federated Access Manager 8.0 Developer's Guide
	Preface
	Before You Read This Book
	Related Books
	Access Manager Core Documentation
	Sun Java Enterprise System Product Documentation

	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples
	Sun Welcomes Your Comments

	Enhancing Remote Applications Using the Client Software Development Kit
	About the Client SDK
	Using the Client SDK
	Running the Client SDK Samples
	Web-based Samples
	Command Line Samples

	Using AMConfig.properties with Client SDK
	Federated Access Manager Properties for AMConfig.properties
	Naming Properties
	Debug Properties
	Notification URL Property
	Security Credentials Properties
	Encryption Properties
	Cache Update Properties
	Client Services Properties
	Cookie Property
	Session Service Properties
	Certificate Database Properties
	Policy Client Properties
	Monitoring Framework Property
	Remote Client SDK Property
	Federation Properties

	Initializing the AMConfig.properties Properties
	Using the AMConfig.properties Properties File
	Using the Java API
	Setting Individual Properties

	Setting Up a Client SDK Identity
	To Set Username and Password Properties
	To Set an SSO Token Provider

	Client SDK Use Cases
	SAE API
	Building Custom Web Applications
	Building Stand-Alone Applications
	To Build a Stand-Alone Application

	Targets Defined in clientsdk

	Using the Authentication Interfaces
	Initiating Authentication with the Java Authentication API
	Writing Authentication Modules with the Java Authentication SPI
	Creating an Authentication Module Configuration Properties File
	Writing the Principal Class
	Creating the Authentication Module
	Implementing the init() Method
	Implementing the process() Method
	Implementing the getPrincipal() Method

	Adding Post Processing Features

	Communicating Authentication Data as XML
	XML Messages and remote-auth.dtd
	Authentication Request Message from Application
	Response Message from Federated Access Manager with Session Identifier and Callbacks
	Response Message from Application with User Credentials
	Authentication Status Message from Federated Access Manager With Session Token

	XML/HTTP(s) Interface for Other Applications

	Working with the Authentication API Samples
	Java API Code Samples and Their Locations
	To Compile and Execute the Java API Samples
	To Configure SSL for Java API Samples

	LDAPLogin Example
	CertLogin Example
	To Run the CertLogin Program
	Using certutil for Client Certificate Management

	JCDI Module Example

	Working with the Authentication SPI Samples
	Implementing a Custom Authentication Module
	Compiling and Deploying the LoginModule program
	To Compile the Login Module
	To Deploy the Login Module Sample Program
	To Redeploy the amserver.war File

	Loading the Login Module Sample into Federated Access Manager
	To Load the Login Module Using the Administration Console
	To Load the Login Module Using the Command Line

	Running the LoginModule Sample Program
	To Run the LoginModule on Solaris
	To Run the Login Module on Windows 2000
	To Deploy the Login Module

	Implementing the Authentication Post Processing SPI
	To Compile the ISAuthPostProcess Sample Program on Solaris Sparc/x86 or Linux
	To Deploy the ISAuthPostProcess Sample Program on Solaris Sparc/x86 or Linux
	To Deploy the ISAuthPostProcess Sample Program on Windows 2000
	Configuring the Authentication Post Processing SPI
	To Configure ISAuthPostProcess Sample for an Organization
	To Configure the ISAuthPostProcess Sample for a Service
	To Configure ISAuthPostProcess Sample for a Role

	Generating an Authentication User ID
	Compiling the UserIDGeneratorSample Program
	To Compile the UserIDGeneratorSample on Solaris Sparc/x86 and Linux
	To Compile the UserIDGeneratorSample on Windows 2000

	Deploying the UserIDGeneratorSample Program
	To Deploy the UserIDGeneratorSample Program on Solaris SPARC/x86 or Linux
	To Deploy the UserIDGeneratorSample Program on Windows 2000

	Configuring the UserIDGeneratorSample Program
	To Configure the UserIDGeneratorSample Program
	To Configure UserIDGeneratorSample for an Organization
	To Access an Authentication Module for an Organization

	Implementing A Pure JAAS Module
	Conventions Used in the Samples
	To Run the JAAS Module Sample on Solaris Sparc x86 or Linux
	To Enable SSL
	To Run the Sample on Windows 2000
	To Enable SSL

	Enforcing Authorization with the Policy Service
	About The Policy Service
	About the Policy Service Interfaces
	The com.sun.identity.policy Package
	Policy Management Classes
	PolicyManager
	Policy

	Policy Evaluation Classes
	PolicyEvaluator
	ProxyPolicyEvaluator
	PolicyEvent

	The com.sun.identity.policy.client Package
	The com.sun.identity.policy.interfaces Package
	The com.sun.identity.policy.jaas Package
	ISPermission
	ISPolicy

	Enabling Authorization Using the Java Authentication and Authorization Service
	Adding a Policy-Enabled Service to Federated Access Manager
	To Add a New Policy-Enabled Service to Access Manager

	Using the Policy Code Samples
	Use Cases Illustrated by Policy Code Samples
	Policy Evaluation
	To Run a Policy Evaluation Program for the URL Policy Agent Service
	To Run a Policy Evaluation Program for the URL Policy Agent Service and More
	To Run a Policy Evaluation Program for the Sample Service
	To Run a Policy Evaluation Program for the Sample Service and More

	Using amadmin to Create Policies for the URL Policy Agent Service
	To Use amadmin to Create Policies for the Sample Service
	To Programmatically Construct Policies

	Compiling the Policy Code Samples
	To Compile the Policy Code Samples

	Developing Custom Subjects, Conditions, Referrals, and Response Providers
	To Add a Sample Implementation to the Policy Framework

	Creating Policies for a New Service
	To Load a Policy XML File

	Developing and Running a Policy Evaluation Program
	To Set Policy Evaluation Properties
	To Run a Policy Evaluation Program

	Programmatically Constructing Policies
	To Run the Sample Program PolicyCreator.java

	Tracking Session Data for Single Sign-On
	A Simple Single Sign-On Scenario
	Inside a User Session
	Session Attributes
	Protected And Custom Properties
	Protected Properties
	Custom Properties

	About the Session Service Interfaces
	SSOTokenManager
	SSOToken
	SSOTokenListener

	Using the SSO Code Samples
	Running SSO Code Samples on Solaris
	To Run a Sample Program from Federated Access Manager
	To Run a Sample Program on a Remote Client
	To Run the Sample Code
	To Run a Sample Program on the Remote Client Command Line
	To Test the Command Line

	Developing Non-Web Based Applications

	Implementing the Liberty Alliance Project Identity-Federation Framework
	About the Liberty ID-FF
	Understanding Federation
	Customizing the Federation Graphical User Interface
	Using the Liberty ID-FF Federation API
	com.sun.identity.federation.accountmgmt
	com.sun.identity.federation.common
	com.sun.identity.federation.message
	com.sun.identity.federation.message.common
	com.sun.identity.federation.plugins
	com.sun.identity.federation.services
	com.sun.liberty

	Executing the Federation Samples

	Implementing WS-Federation
	Using the WS-Federation API
	com.sun.identity.wsfederation.plugins
	com.sun.identity.wsfederation.common

	WS-Federation Samples

	Constructing SAML Messages
	SAML v2
	Using the SAML v2 SDK
	Exploring the SAML v2 Packages
	com.sun.identity.saml2.assertion Package
	com.sun.identity.saml2.common Package
	com.sun.identity.saml2.protocol Package

	Setting a Customized Class
	Installing the SAML v2 SDK

	Service Provider Interfaces
	Account Mappers
	IDPAccountMapper
	SPAccountMapper

	Attribute Mappers
	IDPAttributeMapper
	SPAttributeMapper
	Setting Up Attribute Mappers

	Authentication Context Mappers
	IDPAuthnContextMapper
	SPAuthnContextMapper
	Configuring Mappings

	Using Secure Attribute Exchange
	JavaServer Pages
	Default Display Page
	Assertion Consumer Page
	Single Sign-on Pages
	idpSSOFederate.jsp
	idpSSOInit.jsp
	spSSOInit.jsp

	Name Identifier Pages
	idpMNIRequestInit.jsp
	idpMNIRedirect.jsp
	spMNIRequestInit.jsp
	spMNIRedirect.jsp

	Single Logout JavaServer Pages
	idpSingleLogoutInit.jsp
	idpSingleLogoutRedirect.jsp
	spSingleLogoutInit.jsp
	spSingleLogoutRedirect.jsp

	SAML v2 Samples

	SAML 1.x
	Interfaces
	com.sun.identity.saml Package
	AssertionManager Class
	SAMLClient Class

	com.sun.identity.saml.assertion Package
	com.sun.identity.saml.common Package
	com.sun.identity.saml.plugins Package
	ActionMapper Interface
	AttributeMapper Interface
	NameIdentifierMapper Interface
	PartnerAccountMapper Interface
	PartnerSiteAttributeMapper Interface

	com.sun.identity.saml.protocol Package
	AuthenticationQuery Class
	AttributeQuery Class
	AuthorizationDecisionQuery Class

	com.sun.identity.saml.xmlsig Package

	SAML 1.x Samples

	Implementing Web Services
	Developing New Web Services
	To Host a Custom Service
	To Invoke the Custom Service

	Setting Up Liberty ID-WSF 1.1 Profiles
	To Configure Federated Access Manager to Use Liberty ID-WSF 1.1 Profiles

	Common Application Programming Interfaces
	Common Interfaces
	com.sun.identity.liberty.ws.common Package
	com.sun.identity.liberty.ws.interfaces Package

	Common Security API
	com.sun.identity.liberty.ws.security Package
	com.sun.identity.liberty.ws.common.wsse Package

	Web Service Consumer Sample
	Authentication Web Service
	Authentication Web Service Default Implementation
	Mechanism Handlers List
	key Parameter
	class Parameter

	Authentication Web Service API
	com.sun.identity.liberty.ws.authnsvc Package
	com.sun.identity.liberty.ws.authnsvc.mechanism Package
	com.sun.identity.liberty.ws.authnsvc.protocol Package

	Access the Authentication Web Service
	Authentication Web Service Sample

	Data Services
	Liberty Personal Profile Service
	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst Package
	com.sun.identity.liberty.ws.dst.service Package

	Discovery Service
	Generating Security Tokens
	To Configure the Discovery Service to Generate Security Tokens

	Discovery Service APIs
	Client APIs in com.sun.identity.liberty.ws.disco
	com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	To Configure Discovery Service Policy Definitions

	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Access the Discovery Service
	Discovery Service Sample

	SOAP Binding Service
	SOAPReceiver Servlet
	SOAP Binding Service Package

	Interaction Service
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	Comparison of PAOS and SOAP
	PAOS Binding API
	PAOS Binding Sample

	Reading and Writing Log Records
	About the Logging Service
	Using the Logging Interfaces
	Implementing Logging with the Logging API
	Writing Log Records
	Reading Log Records

	Developing Plug-ins with the Logging SPI
	Authorization
	To Implement a Log Authorization Plug-In

	Verification
	To Customize Actions to be Taken in Secure Logging

	Logging to a Second Instance of Federated Access Manager
	Implementing Remote Logging
	If Client Executes in Local or Remote JVM
	If Client Executes in Remote JVM Only
	If SSL is Enabled

	Logging Samples
	LogSample.java
	LogReaderSample.java

	Using the Logging Sample Files
	To Run the Sample Programs on Solaris
	To Run the Sample Programs on Windows 2000

	Securing Web Services
	About Web Services Security
	Authentication Agents
	HTTP Authentication Agent
	SOAP Authentication Agent
	Supported Liberty Alliance Project Security Tokens
	Supported Web Services-Interoperability Basic Security Profile Security Tokens

	The Security Token Service
	Accessing the Security Token Service
	Extending the Security Token Service
	Configuring the Security Token Service

	Testing Web Services Security
	Stock Service Sample
	Calendar Service Sample

	Keystores
	To Configure for a Custom Keystore

	Identifying the Client Type
	About the Client Detection Service
	Enabling Client Detection
	To Enable Client Detection

	Defining Client Data
	HTML
	genericHTML

	Using the Client Detection Interfaces

	Using the Access Manager Utilities
	Utility APIs
	AdminUtils
	AMClientDetector
	AMPasswordUtil
	Debug
	Locale
	SystemProperties
	ThreadPool

	Password API Plug-Ins
	Notify Password Sample
	Password Generator Sample

	The Federated Access Manager Notification Service
	Overview
	Enabling The Notification Service
	To Receive Session Notifications

	Updating and Redeploying Federated Access Manager WAR Files
	WAR Files in J2EE Software Development
	Web Components
	How Web Components are Packaged

	WAR Files in Federated Access Manager
	password.war
	Files You Can Modify
	Files You Must Not Modify

	services.war
	Files You Can Modify
	Files You Must Not Modify

	Updating Modified WARs
	To Update a Modified WAR

	Redeploying Modified Access Manager WAR Files
	Redeploying a Federated Access Manager WAR On BEA WebLogic Server 6.1
	Redeploying a Federated Access Manager WAR on Sun Java System Application Server 7.0
	Redeploying a Federated Access Manager WAR on IBM WebSphere Application Server

	Customizing the Administration Console
	About the Administration Console
	Generating The Console Interface
	Plug-In Modules
	Accessing the Console

	Customizing The Console
	The Default Console Files
	console.war
	Files You Can Modify
	Files You Must Not Modify

	Creating Custom Organization Files
	To Create Custom Organization Files

	Alternate Customization Procedure
	Miscellaneous Customizations
	To Modify The Service Configuration Display
	To Modify The User Profile View
	Display Options For The User Profile Page
	To Localize The Console
	To Display Service Attributes
	To Customize Interface Colors
	To Change The Default Attribute Display Elements
	To Add A Module Tab
	To Display Container Objects

	Console APIs
	To Create a Console Event Listener

	Precompiling the Console JSP
	Console Samples
	Modify User Profile Page
	Create A Tabbed Identity Management Display
	ConsoleEventListener
	Add Administrative Function
	Add A New Module Tab
	Create A Custom User Profile View

	Customizing the Authentication User Interface
	User Interface Files You Can Modify
	Staging Area for Files to be Customized
	Java Server Pages
	Customizing the Login Page
	Customizing JSP Templates

	XML Files
	Callbacks Element
	Nested Elements
	Attributes

	ConfirmationCallback Element
	Nested Element

	JavaScript Files
	Cascading Style Sheets
	Images
	Localization Files

	Customizing Branding and Functionality
	To Modify Branding and Functionality

	Customizing the Self-Registration Page
	To Modify the Self-Registration Page

	Updating and Redeploying services.war
	To Update services.war
	To Redeploy services.war
	On BEA WebLogic
	On Sun ONE Application Server
	On IBM WebSphere

	Customizing the Distributed Authentication User Interface
	To Customize the Distributed Authentication User Interface

	Key Management
	Public Key Infrastructure Basics
	Digital Signatures
	Digital Certificates

	keytool Command Line Interface
	Setting Up a Keystore
	To Set Up a Keystore

	Index

