Early Access Documentation

For Review Purposes Only

Sun Federated Access Manager
8.0 Technical Overview

Beta

»
2 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-3740-10
September 2008

Early Access Documentation

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java, Java et Solaris sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080730@20490

Early Access Documentation

REMARK 1-1
REMARK 2-1

REMARK 6-1

List of Remarks

Reviewer more details to come from Indira PEr reVIEWccoveeievieiiiiniiniinieicineseee s 24
Reviewer Please confirm these. 1 have gotten difterent comments trom difterent reviewers. 58
Reviewer ‘I'here are 13 bullets in graphic and nine steps¢ Huh¢¢¢¢¢ What should be changed¢ From
email with subject: Auth/SSO process question not answered. check against new graphic

93

Early Access Documentation

Early Access Documentation

Partl

Contents

PREFACE ...ttt ettt 11
An Overview of Federated Access ManQgErccccoorueiieineieniniseeieeseiesesssssessesseesesssnnns 17
Introducing Federated ACCess MAnAQGEFccovvreeieininiiierneeeeseessss e ssseseses 19
What is Federated AcCess MANAZET?covcueureiueineucinieieineieieieie s ietsesesstsese st seseaeseessssssans 19
What Does Federated Access Manager DO?ccueueeerereurineeinineeisieieiesesesieesese e ssesssees 20
What Are the Functions of Federated Access Manager?ooeoeeveeeeuneererensesesessseseessesssessennenes 21
ACCESS CONLTOL ...ttt ettt sttt s e sese st eeaen 21
Federation Managementccccceeuerrerieereerereseesiiesssssssesesessessssssssssssssssssssessssssssssssssssssssssssesesns 22
WED SEIVICES SECULILY w.cvuvuviircirieicirincicisecieieie ettt ettt ees 22
TAENTILY WED SEIVICES ..uevriueuiiuieieieisicieireietet ettt sttt 23
What Else Does Federated Access Manager Offer?coeeieiniirinienencenceeeceiseeieseeieeenne 23
Examining Federated ACcess MANAQETccocooiiireeninininiieeeeieseseceee e eseseees 27
Federated Access Manager Client/Server ArchiteCtureocoveveeveernrnesirereeeeesesseseeenns 27
How Federated Access Manager WOTKSc.cvcueeuricueineeinieeineeieieieiseese e sesesesseesesseseseesenes 29
COTE SEIVICES .vuvivvuuiniirieieteteitttrt ettt sttt sttt sttt ettt bbb benenes 31
AULhENTICATION SEIVICE .euvureirierieiieeieeseieisisie ettt ettt st es st ssessesssesssasssssssesesanses 32
POLICY SETVICE .vuvuveereereeieieieirieeesisietetsases st sss s ss s seses e esesssssssesessssssanssssssssssssssssnnsssesesns 35
SESSION SEIVICE ...vuvviuiniiriieieicicetrtrt ettt ettt bbbttt et sne 37
LOZEING SEIVICE ...ttt ettt 40
Identity REPOSITOIY SEIVICE ...cveucuiiueirincieieieirieieiseet ettt ettt 42
FEderation SEIVICEScouueuriiueuriuiieieeteieie ettt sttt ettt a et bennans

Web Services Stack...............
Web Services Security
Identity Web Services

Early Access Documentation

Contents

GLODAL SEIVICES ...cuvveueiiniiiiete ettt ettt ettt neaas 50

REAIIMIS <.ttt bbbttt 51

Additional COMPONENLSvrueuiuceieecirieeeireaeieieeetseeietsese ettt sstese bbbt b seaebeeeaesneacs 54
Data and Data STOTESccovuieeeeriirieriereieieiseee e sse s sse s s sse s ssessssesensees 54
The bootstrap File ... 60
POLICY AZENES evveveeieiieiireeiriie ettt sttt ettt ssess e s st ssssesssansesssasssans 61
AUhentiCatioN AENTS ...c.ouovueveiiieirieieireieteeeiees ettt eae ettt ssasseeasaesseans 62
Federated Access Manager TOOLScocueurieuriniueiniiieirieieieie ettt

(@11 oY) B) T

Service Provider Interfaces for Plug-ins

3 Simplifying Federated Access MANQQEFcccceueieiriiieeceieieiniseeee et sesesssanens 65
Installation and CONfIGUIATIONc.ceuriiueirieieinieiereetr ettt 65
Embedded Configuration Datacccevcueuricirinicinicieeieiseeiesieieieieiseeee ettt eaeseeesesseaes 67
Centralized Agent CONAIGUIATIONo.eveveeeereeeereieieiiiceseeieeseeseesssse s esess e sssssssssssssssesssssssssssssnsnes 68
COmMMON TASKS ..o 70
Third Party INtEZIationcccceueureririieieieieisiririeeeteie ettt ettt se bbbttt eenens 71

Sun Java System Identity MANaZETcccoeuveeueireeeurisenerieieieieesesie s seessasesesssssssessesssssssssseens 72
Computer Associates SIEMINAETc.cueureiuririeiricieireeieeree ettt seasaeseaes 72
Oracle ACCESS MANAZETcuveuiueirineiricieteeeieesee ettt seae ettt eaeaebetaeaeseaes 72

4 Deploying Federated Access Manager

Deployment ATCRITECTUTE 1 ...c.oucueuiieeiieieicieireeiets ettt bttt
Deployment ATCRITECTUIE 2cueuiiueiieeiricieireeieiee ettt ettt
Partll Access Control Using Federated Access Man@gercccccoueuevieeceeerererensesesseeeie e 77
5 UserSessionsand the SeSSion SErvice ..o 79
ADOUL the SESSION SEIVICEvuvuvriuciieeiirieieiricieieictseci ettt ea ettt eesaetneacs 79
User Sessions and SINGLe SIZN-01c.cvureueuricirinieeinicieieieineeietseeieeesesseese e tsesese s seeesesseaes 80
Session Data Structures and Session Token Identiflerscoccceeeveererereressesenneseseesseesesnenes 81

6 Models of the User Session and Single Sign-On Processes

BaSiC USEI SESSION ..uviiveieviericiictiieieteett e eteeste ettt e eteeaeesteeseeteeasesseeseessessessenssessensaessensenseesseseessensesseen

6 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Contents

INitial HTTP REGUESL ..eucevireeeiiecieieieisicieisectee ettt bbb 83
USEr AUTNENTICATION vovuieeieieeicecieieetsieie sttt ettt a et seeeaes 85
Ses8100 ValIdAtIONoovuivriieciiiiccicceci e 87
Policy Evaluation and ENfOrcementcecenecurinceunineicinieieeeseeesiseieieeesesseesessesessesenes 89
LOGZING the RESUILS ...eueueiiieiriecieieets ettt 91
Single SIGN-Omn SESSIONvuiuiiucuiiieiiiieiricieecseeeet ettt taeaeeeaes 93
Cross-Domain Single Sign-On SESSIONccecvrireeieeririnieiriiereiee s seeesssesesessesssssssssssssssssssnes 95

SESSION TEIMUMATION ..cvviviitiiieiceieriitietetee et ete et et et esee e eseebesbesessesseseesesessessessesensenseseessessesensens

User Ends Session

Administrator Ends Session

Federated Access Manager Enforces Timeout RULESc.ccveeureeueincceninccinecienecineceeineenne 98
Session QUOTA CONSIIAINTScvivvieiecrieieiiericeecte ettt et eeesreeeesteersesseeseeseeseessesssessesesssensens 98
7 Authentication and the Authentication Serviceccococoooreennnn e 99

Authentication Service Overview

Authentication SErvice FEAtUTEScceiueurireuririieirieeisiete ettt ettt easaees
CHENT DELECTION ...vvvviereeirieeieieeeieessie ettt s ssess s st ssssessssesessssssessssesssssssssssessssssnsssans
ACCOUNT LOCKING vttt ettt ses ettt sttt eeaeseen 102
Authentication CRAININGccveeueireeiriieireeiecerce ettt ben 103
Fully Qualified Domain Name MappPingccceceeeureeeureeerereseeinseessesesssesssessssssesssssssssssssens 104
Persistent COOKIESccuiuvuuriiieciniiiiciscieee e s 104
SESSION UPELAAE ...oueviniiicieieicieecietc ettt sttt ettt 105
P NI Y e B 7 1 O 105
Securitycceeeveeneee.

Authentication Modules

Authentication Types

Configuring for AUtRENTICATIONcuvvieeirireeiieeei ettt ssse s sssses st sssssesessssesssens 110
Core Authentication Module and Realm Configurationceceeeveievernenenereressnennns 110
Authentication Configuration SEIVICEcovveveeerririrerieeeeeisireesssseesees e eessssssesessesenes 111
Login URLs and Redirection URLSc.ccccueuveueurineueinicininiieinieieseeeisesesetsesesesesesseesessesesseseans 111

Authentication Graphical User INterfacesocveeuricurincecineneeirieieicicsereieseseeeesesseesessesenees 111
Authentication Service User INErfaceocueueueurincueureeirinicirieieiseesereesee et sseaenees

Distributed Authentication User Interface

Authentication Service Programming INterfacescoceveeurcneeinieuninceencneeireeeeeesceeeeseaenes 115

Early Access Documentation

Contents

Partlil

10

11

Authorization and the Policy SErvicecooiiiiin e 117

Authorization and Policy Service OVEIVIEWc.cevecurircueinecirineeinieieineeesesesetseseiessesessssesesseesees 117

POLICY TYPES w.vvvieiriueieeeteieirisi ettt sttt ettt st et s et et s et ns s se s et et eseaeaeasassssesees
INOTTNAL POLICY ettt
RELEITAl POLICY ..uvviuiiiieciricieis ettt

Realms and Access Control ...

Policy Service Programming Interfaces

KACML SEIVICE ettt ittt ettt sttt b ettt a bbb aes
XACML in Federated ACCess MANAZETcc.euveeurureueunieieeneacirieseiseeisesese e ssesessasesesseassees 124
XACML Programming INTEITACEScvuveruerrrerrrireeiieniessessisssessesssssssessssssesssssssssssssssssessssnes 127

Federation Management Using Federated Access Managercccocoeeeeeeenrennrenenennnnas 129

Whatis Federation? ... 131
The Concept of Federation

TAeNtitY FEAETAtION ...cvueueicieicecieiceisect ettt ettt
Provider FEAErationcoccecrinieunicieinecinicietneici ettt st
The CONCEPE O TTUSE wvuvuvuierieeireiriieieireeeeieiseis ettt see st saees

How Federation Works

Federation Management with Federated Access Managerc.cccooovvveececerenenernencnnns 137
Key Federation Management FEATUIESc.covvrieeeieereeieiniiccseieeesess e essssssssessssesessssssssssssnsnes 137
THE FEALET ..ttt ettt st ssaensnnsnnas 138
Virtual FEAErationeocceueueieieiriiiccieieieiete ettt sttt ettt seseees 138
Multi-Federation ProtoCOl HUDcccccuiiiiieieieiceccccce ettt 141

The Federation Framework ATChIteCtUIEoueivveeiviieiiieeieeee ettt sens 142

Choosing a Federation Option
Federation OPLIONScevveeeieeeeeieieiririieeieie ettt sesess st se s s sssassssssessssssessssassssssesesnes
USING SAML ..ttt ettt
ADOUE SAML V2 ittt ettt ettt ees
ADOUL SAML VIX 1ottt ettt ettt e et ettt esenssesesetessaeasasassesa
Using SAML or Federated Access Manager CDSSO
Using the LIDErty ID-FF ...ttt sttt sasaes

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Contents
LiDErty ID-FF FEATUIES ...c.vueuruieciiniieiiieisieieieete ettt et ettt 155
About the Liberty ID-FF PrOCESSccovviueureeueinieirineieineueieeeieiseesessesessesese e sesesesseesessesssees 161
USING WS-FEAETAtION ...vuvuviuieiricicireicieicietstciet ettt ettt eaeseen 164
PartlV Delivering Identity Services, Web Services and Web Services Securityccccevvveennnnn. 169
12 Delivering Identity Web Services
About Identity Web Services
Identity Web Service SYLEScovieiiiriieinicieiricieeeetseet ettt eaeieen
SOAP aNd WSDL ...ttt et e
REST o
Identity Web Services Architecture
13 Accessing and SecuringWeb SErvicescocovvrreeirieieseee e es 175
About the Web Services Stackicucuieiiiniriciiiccricce e sseseeaes 175
Web Services Architecture
Examining Browser Mode ATChItECUTEccoviiueerieruriieririeieieeeie e esseseseeneans 179
Desktop MO ATCRITECTUTEveuiueiiecieieieirieieirceet sttt 182
IMPIEMENTEA SEIVICES ...euvuiviuiiiiniieiriieieite sttt ettt ettt eaebees 184
WED SEIVICES PIOCESS ...oueuviiuieiriniieiiicieitietsteie ettt ettt bttt eaeiees 184
PartV Additional FEAtUres ...ttt sene 187
14 Logging and the Java Enterprise System Monitoring Frameworkccccocoevirnirnnnne. 189
LOGZING OVEIVIEW ..ttt ettt sttt sttt ne s
LOGZING SEIVICE ...vvuiuiiiririeieicieiceirtrteteiccicctt sttt
Log@ing CONTIGUIAIONcucuieeiicieieieieieieiseetsteie sttt ettt seteaes
RECOTAEA EVENLS ..ottt et
LLOG FILES .euetieiieeciee ettt ettt
LOG FALE FOTTNALS «..eucutiuiiicieicecieicieisee ettt ettt
Error and ACCESS LOEScveuiuriieciritieinieisieie sttt sttt ettt

Access Manager Component Logs
Additional Logging Features
SECUIE LOGZINE .evviiiiiririeeeiec ettt

Early Access Documentation

Contents

REMOLE LOGEINE ..ttt bbbttt ees 195
LOG REAAING ...ttt ettt sttt s nsssesssansenaas 196
Java Enterprise System Monitoring Frameworkc.ccevcceneciniceenecnencenecenecisrenenseenees 196
INAEX ... 197

10 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Preface

Sun Federated Access Manager is an access management product that includes a set of software
components to provide the authentication and authorization services needed to support
enterprise applications distributed across a network or Internet environment. This book, Sun
Federated Access Manager 8.0 Technical Overview, describes the features of Federated Access
Manager, explains what it does, and illustrates how it works.

Before You Read This Book

This book is intended for use by I'T administrators and software developers who implement a
web access platform using Sun servers and software. Readers of this guide should be familiar
with the following:

= Web containers in which Federated Access Manager can be deployed:

= Sun Java System Application Server

= SunJava System Web Server

= BEA WebLogic

= IBM WebSphere Application Server
= Technologies:

Lightweight Directory Access Protocol (LDAP)
Java™

JavaServer Pages™ (JSP)

HyperText Transfer Protocol (HTTP)

= HyperText Markup Language (HTML)

= eXtensible Markup Language (XML)

= SOAP

= HyperText Transfer Protocol (HTTP)

= Liberty Alliance Project specifications

Early Access Documentation

Preface

Related Books

Related documentation is available as follows:

12

“Federated Access Manager Core Documentation” on page 12
“Adjunct Product Documentation” on page 13

Federated Access Manager Core Documentation

The Federated Access Manager core documentation set contains the following titles:

The Sun Federated Access Manager 8.0 Early Access (EA) Release Notes will be available
online after the product is released. It gathers an assortment of last-minute information,
including a description of what is new in this current release, known problems and
limitations, installation notes, and how to report issues with the software or the
documentation.

The Sun Federated Access Manager 8.0 Technical Overview (this guide) provides an overview
of how Federated Access Manager components work together to protect enterprise assets
and web-based applications. It also explains basic concepts and terminology.

The XXXXX provides planning and deployment solutions for Sun Java System Access
Manager based on the solution life cycle

The Sun Federated Access Manager 8.0 Installation and Configuration Guide provides
information for installing and configuring Federated Access Manager.

The XXXXX provides information on how to tune Access Manager and its related
components for optimal performance.

The Sun Federated Access Manager 8.0 Administration Guide describes administrative tasks
such as how to create a realm and how to configure a policy. Most of the tasks described can
be performed using the administration console as well as the famadm command line utilities.

The Sun Federated Access Manager Administration Reference is alook-up guide containing
information about the command line interfaces, configuration attributes, internal files, and
error codes.

The Sun Federated Access Manager 8.0 Developer’s Guide offers information on how to
customize Access Manager and integrate its functionality into an organization’s current
technical infrastructure. It also contains details about the programmatic aspects of the
product and its APL

The Sun Federated Access Manager 8.0 C API Reference provides summaries of data types,
structures, and functions that make up the public Access Manager C APIs.

The Federated Access Manager 8.0 Java API Reference provides information about the
implementation of Java packages in Access Manager.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Preface

= The Sun Java System Federated Access Manager Policy Agent 3.0 User’s Guide provides an
overview of the policy functionality and the policy agents available for Federated Access
Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Federated Access Manager page at docs.sun.com. Updated documents will be marked
with a revision date.

Adjunct Product Documentation

Useful information can be found in the documentation for the following products:

Sun Java System Directory Server Enterprise Edition 6.0
Sun Java System Web Server 7.0

Sun Java System Application Server Enterprise Edition 8.2
Sun Java System Web Proxy Server 4.0.4

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com® web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. com in place of docs . sun. com in the search field.

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

= Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

http://docs.sun.com/
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://docs.sun.com/coll/1310.3
http://docs.sun.com/coll/1311.4
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Early Access Documentation

Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the title of this book is Sun Federated Access Manager 8.0 Technical Overview, and
the part number is 820-3740.

Typographic Conventions

14

The following table describes the typographic changes that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output

machine name% you have mail.

AaBbCc123 What you type, contrasted with onscreen ~ machine_name% su
computer output
Password:
AaBbCcl23 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://docs.sun.com

Early Access Documentation

Preface

TABLEP-1 Typographic Conventions (Continued)
Typeface Meaning Example
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized
items appear bold online)

A cache s a copy that is stored locally.

Do not save the file.

Shell Prompts in Command Examples

The following table shows default system prompts and superuser prompts.

TABLEP-2 Shell Prompts

Shell

Prompt

C shell on UNIX and Linux systems

C shell superuser on UNIX and Linux systems

Bourne shell and Korn shell on UNIX and Linux systems

Bourne shell and Korn shell superuser on UNIX and Linux systems

Microsoft Windows command line

machine nameS%
machine name#

$

#

C:\

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-3 Symbol Conventions

Symbol Description Example Meaning
[1] Contains optional arguments 1s [-1] The -1 option is not required.
and command options.
{1} Contains a set of choices fora -d {y|n} The -d option requires that you use

required command option.

${ } Indicates a variable ${com.sun.javaRoot}
reference.

- Joins simultaneous multiple ~ Control-A
keystrokes.

either the y argument or the n
argument.

References the value of the
com.sun. javaRoot variable.

Press the Control key while you press
the A key.

Early Access Documentation

Preface

TABLEP-3 Symbol Conventions (Continued)
Symbol Description Example Meaning
+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.
- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface.

Templates.

16 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

PART I

An Overview of Federated Access Manager

This part of the Sun Federated Access Manager Technical Overview contains introductory
material concerning Federated Access Manager. It includes the following chapters:

= Chapter 1, “Introducing Federated Access Manager”
= Chapter 2, “Examining Federated Access Manager”
= Chapter 3, “Simplifying Federated Access Manager”

Early Access Documentation

18

Early Access Documentation

L K R 4 CHAPTER 1

Introducing Federated Access Manager

Sun Java™ System Federated Access Manager integrates authentication and authorization
services, single sign-on (SSO), and open, standards-based federation protocols (including the
Liberty Alliance Project specifications, WS-Federation and Security Assertion Markup
Language [SAMLY]) to provide a comprehensive solution for protecting network resources by
preventing unauthorized access to web services, applications and web content, and securing
identity data. This introductory chapter contains a high-level description of Federated Access
Manager and what it does. It contains the following sections:

“What is Federated Access Manager?” on page 19

“What Does Federated Access Manager Do?” on page 20

“What Are the Functions of Federated Access Manager?” on page 21
“What Else Does Federated Access Manager Offer?” on page 23

What is Federated Access Manager?

Sun Federated Access Manager is a single product that combines the features of Sun Java System
Access Manager, Sun Java System Federation Manager, and the Sun Java System SAML v2
Plug-in for Federation Services; additionally, it is enhanced with new functionality developed
specifically for this release. Federated Access Manager provides access management by allowing
the implementation of authentication, policy-based authorization, federation, SSO, and web
services security from a single, unified framework. The core application is delivered as a simple
web archive (WAR) that can be easily deployed in a supported web container.

Note - Federated Access Manager is Sun Microsystems' commercial distribution of the open
source code available at OpenSSO.

To assist the core application, policy agents, the Client SDK, and (possibly) other disparate
pieces must be installed remotely and be able to communicate with the Federated Access

http://opensso.org

Early Access Documentation

What Does Federated Access Manager Do?

Manager server. See “What Does Federated Access Manager Do?” on page 20 for a high-level
explanation of the deployment architecture and Chapter 2, “Examining Federated Access
Manager,” for more specific information.

What Does Federated Access Manager Do?

20

The following types of interactions occur daily in a corporate environment.

= Anemployee looks up a colleague’s phone number in the corporate phone directory.
= A manager retrieves employee salary histories to determine an individual’s merit raise.

= Anadministrative assistant adds a new hire to the corporate database, triggering the
company’s health insurance provider to add the new hire to its enrollment.

= An engineer sends an internal URL for a specification document to another engineer who
works for a partner company.

= A customer logs into a company’s web site and looks for a product in their online catalog.
= Avendor submits an invoice to the company’s accounting department.

= A corporate human resources administrator accesses an outsourced benefits application.

For each of these transactions, the company must determine who is allowed to view the
information or use the application. Some information such as product descriptions and
advertising can be made available to everyone in a public online catalog. Other information
such as accounting and human resources data must be restricted to employees only. And other
sensitive information such as pricing models and employee insurance plans is appropriate to
share only with partners, suppliers, and employees. This need for access determination is met
by Sun Federated Access Manager, an access management product with authentication,
authorization, and single sign-on (SSO) services provided out of the box.

When a user or an external application requests access to content stored on a company’s server,
a policy agent (available in a separate download and installed on the same machine as the
resource you want to protect) intercepts the request and directs it to Federated Access Manager
which, in turn, requests credentials (such as a username and password in the case of a user) for
authentication. If the credentials returned match those stored in the appropriate identity data
store, Federated Access Manager determines that the user is authentic. Following
authentication, access to the requested content is determined by the policy agent which
evaluates the policies associated with the authenticated identity. Policies are created using
Federated Access Manager and identify which identities are allowed to access a particular
resource, specifying the conditions under which this authorization is valid. Based upon the
results of the policy evaluation, the policy agent either grants or denies the user access.

Figure 1-1 illustrates a high-level deployment architecture of Federated Access Manager.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

What Are the Functions of Federated Access Manager?

Customers

Business
Partners

Administrator
Employees

Web and Application Servers
Hosting Resources Protected
by Policy Agents

el

Console Components

FIGURE 1-1 High-level Deployment Architecture of Federated Access Manager

What Are the Functions of Federated Access Manager?

The following sections contain an overview of the functions of Federated Access Manager.

“Access Control” on page 21
“Federation Management” on page 22
“Web Services Security” on page 22
“Identity Web Services” on page 23

Access Control

Administration Core ~SNA D

Non-administrator
Employees

Centralized
Configuration
Data

Identity
Repository

Federated Access Manager manages authorized access to network services and resources. By
implementing authentication and authorization, Federated Access Manager (along with an
installed policy agent) ensures that access to protected resources is restricted to authorized
users. In a nutshell, a policy agent intercepts a request for access to a resource and
communicates with Federated Access Manager to authenticate the requestor. If the user is

Chapter 1 « Introducing Federated Access Manager

21

Early Access Documentation

What Are the Functions of Federated Access Manager?

22

successfully authenticated, the policy agent then evaluates the policies associated with the
requested resource and the user to determine if the authenticated user is authorized to access
the resource. If the user is authorized, the policy agent allows access to the resource, also
providing identity data to the resource to personalize the interaction. For more information on
access control, see “Core Services” on page 31 and Part IL

Federation Management

With the introduction of federation protocols into the process of access management, identity
information and entitlements can be communicated across security domains, spanning
multiple trusted partners. By configuring a circle of trust and defining applications and services
as providers in the circle (either identity providers or service providers), users can opt to
associate, connect or bind the various identities they have configured locally for these providers.
The linked local identities are federated and allow the user to log in to one identity provider site
and click through to an affiliated service provider site without having to reauthenticate; in
effect, single sign-on (SSO). Federated Access Manager supports several open federation
technologies including the Security Access Markup Language (SAML) versions 1 and 2,
WS-Federation, and the Liberty Alliance Project Identity Federation Framework (Liberty
ID-FF), therefore encouraging an interoperable infrastructure among providers. For more
information on federation management, see “Core Services” on page 31 and Part III.

Web Services Security

A web service is a component service or application that exposes some type of business or
infrastructure functionality through a language-neutral and platform-independent, network
interface; enterprises might use this web service to build larger service-oriented architectures.
In particular, the service defines its interface (for example, the format of the message being
exchanged) using the Web Services Description Language (WSDL), and communicates using
SOAP and eXtensible Markup Language (XML) messages. The web service client (WSC)
communicates with the web service provider (WSP) through an intermediary — usually a
firewall or load balancer.

Although web services enable open, flexible, and adaptive interfaces, their openness creates
security risks. Without proper security protections, a web service can expose vulnerabilities that
might have dire consequences. Hence, ensuring the integrity, confidentiality and security of
web services through the application of a comprehensive security model is critical for both
enterprises and consumers. A successful security model associates identity data with the web
services and creates secure service-to-service interactions. The security model adopted by
Federated Access Manager identifies the user and preserves that identity through multiple
interactions, maintains privacy and data integrity, uses existing technologies, and logs the
interactions. In Federated Access Manager, the following web service security standards are
implemented:

= Liberty Alliance Project Identity Web Services Framework (Liberty ID-WSF)

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

What Else Does Federated Access Manager Offer?

= 'WS-IBasic Security Profile
= 'WS-Trust (from which the Security Token Service was developed)

For more information on Federated Access Manager web services and web services security, see
“Core Services” on page 31 and Part IV.

Identity Web Services

For some time, Federated Access Manager has provided client interfaces for access to core
features and functionality. These interfaces are used by policy agents and custom applications
developed by customers. With this release, Federated Access Manager now exposes certain
functions as simple identity web services allowing developers to easily invoke them when
developing their applications using one of the supported integrated development environment
(IDE) products. (The IDE generates the stub code that wraps a call to the web service.) Identity
Web Services are available using:

= SOAP and Web Services Description Language (WSDL)
= Representational State Transfer (REST)

They do not require the deployment of an agent or a proxy and include the following

capabilities:

= Authentication to validate user credentials.

= Authorization to permit access to protected resources.

= Provisioning for user attribute management and self registration.
u

Logging to keep track of it all.

For more information on identity services, see “Identity Web Services” on page 48 and Part IV.

What Else Does Federated Access Manager Offer?

Federated Access Manager allows for:

= Ease of Deployment: Federated Access Manager is delivered as a web archive (WAR) that
can be easily deployed as a Java EE application in different web containers. Most
configuration files and required libraries are inside the WAR to avoid the manipulation of
the classpath in the web container's configuration file. The Federated Access Manager WAR
is supported on:

1. Sun Java System Web Server 7.0 — Update 3 and above

2. SunJava System Application Server 9.1 EE Update 2 and above (and Glassfish v2 update
2 and above)

3. BEA WebLogic Application Server 9.2 mp2
4. IBM WebSphere Application Server 6.1

Chapter 1 « Introducing Federated Access Manager 23

Early Access Documentation

What Else Does Federated Access Manager Offer?

24

Oracle Application Server 10g
JBoss 4.2.x

[Remark 1-1 Reviewer: more details to come from Indira per review] Tomcat 5.5.x & 6.x

® N U

Geronimo (supported on the Sun Solaris™ 10 Operating Environment for SPARC, x86 &
x64 and the Sun Solaris 9 Operating Environment for SPARC & x86 systems only)

Note - Geronimo can install Tomcat and Jetty web containers; Federated Access Manager
supports only Tomcat.

See the Sun Federated Access Manager 8.0 Early Access (EA) Release Notes for updates to this
list.

Portability: Federated Access Manager is supported on the following operating systems:
Sun Solaris 10 Operating Environment for SPARC, x86 & x64 systems

Sun Solaris 9 Operating Environment for SPARC & x86 systems

Windows Server 2003 and Windows XP (development only) operating systems
Red Hat Enterprise Linux 4 Server (Base)

Red Hat Enterprise Linux 4 Advanced Platform

Red Hat Enterprise Linux 5 Server (Base)

Red Hat Enterprise Linux 5 Advanced Platform

Windows 2003 Standard Server

Windows 2003 Enterprise Server

10. Windows 2003 Datacenter Server

11. Windows Vista

12. IBM AIX 5.3 (supported with the IBM WebSphere Application Server 6.1 container
only)

Y ® N Uk w D

See the Sun Federated Access Manager 8.0 Early Access (EA) Release Notes for updates to this
list.

Open Standards: Federated Access Manager is built using open standards and
specifications as far as possible. For example, features designed for federation management
and web services security are based on the Security Assertion Markup Language (SAML),
the Liberty Alliance Project specifications, and the WS-Security standards.

Ease of Administration: Federated Access Manager contains a web-based, graphical
administration console as well as command line interfaces for configuration tasks and
administrative operations. Additionally, an embedded, centralized data store allows for one
place to store server and agent configuration data.

Security:

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

What Else Does Federated Access Manager Offer?

1. Runtime security enables an enterprise's resources to be protected as configured and
Federated Access Manager services to be accessed by authorized entities only.

2. Administration security ensures only authorized updates are made to the Federated
Access Manager configuration data.

3. Deployment security implements best practices for installing Federated Access Manager
on different operating systems, web containers, and so forth.

Additionally, all security actions are logged.

Configuration Data Store: Federated Access Manager can write server configuration data
to an embedded configuration data store. You can also point to instances of Sun Java System
Directory Server 5.2 or Directory Server Enterprise Edition 6.x during configuration of
Federated Access Manager for use as a configuration data store. See “Data and Data Stores”
on page 54 for more information.

User Data Store Independence: Federated Access Manager allows you to view and retrieve
user information without making changes to an existing user database. Supported directory
servers include Directory Server 5.1, 5.2 & 6.2, IBM Tivoli Directory 6.1, and Microsoft
Active Directory 2003. See “Data and Data Stores” on page 54 for more information.

Caution - The configuration data store embedded with Federated Access Manager should
only be used as a user data store for proof of concepts and deployments in development.

Web and Non-Web-Based Resources: The core design of Federated Access Manager caters
to SSO for both web and non-web applications.

Performance, Scalability and Availability: Federated Access Manager can be scaled
horizontally and vertically to handle increased workloads, and as security needs change over
time. There is no single point of failure.

Distributed Architecture Server and client components can be deployed across the
enterprise or across domain boundaries as all application programming interfaces (API)
provide remote access to Federated Access Manager based on a service-oriented
architecture.

Flexibility and Extensibility: Many Federated Access Manager services expose a service
provider interface (SPI) allowing expansion of the framework to provide for specific
deployment needs.

Internationalization Federated Access Manager contains a framework for multiple
language support. Customer facing messages, API, command line interfaces, and user
interfaces are localized in the supported languages.

Chapter 1 « Introducing Federated Access Manager 25

Early Access Documentation

26

Early Access Documentation

L K R 4 CHAPTER 2

Examining Federated Access Manager

Federated Access Manager provides a pluggable architecture to deliver access management,
secure web services, and federation capabilities. This chapter contains information on the
internal architecture and features of Federated Access Manager.

= “Federated Access Manager Client/Server Architecture” on page 27
“How Federated Access Manager Works” on page 29

“Core Services” on page 31

“Global Services” on page 50

= “Additional Components” on page 54

Federated Access Manager Client/Server Architecture

Federated Access Manager is written in Java, and leverages many industry standards, including
the HyperText Transfer Protocol (HTTP), the eXtensible Markup Language (XML), the
Security Assertion Markup Language (SAML), and SOAP, to deliver access management, secure
web services, and federation capabilities in a single deployment. It consists of client application
programming interfaces (a Client Software Development Kit [SDK]), a framework of services
that implement the business logic, and service provider interfaces (SPI) that are implemented
by concrete classes and can be used to extend the functionality of Federated Access Manager as
well as retrieve information from data stores. Figure 2-1 illustrates the client/server
architecture of Federated Access Manager.

27

Early Access Documentation

Federated Access Manager Client/Server Architecture

.NET Java C SAML Liberty Web
Applications || Applications || Applications || Applications || Applications Browser
Y Y Y Y Y

Protected
Resource

Administration
CLI

Federated Access Manager Web Services
Administration
Liberty

Authentication Policy ID-WSF Federation Security Console

Tok
XMUAtip(s) | | XMLAHD(S) [| sy sy | | XMLAtD(S) S:N?:e HTML/http(s)

Federated Access Manager Components

Authentication Policy (Authorization) Federation Session Logging

Federated Access Manager Framework

Federated Access Manager SPls

Identity Security
Delegation Repository Federation Token
Management Service

Authenti- Policy Service
cation (Authorization)| | Configuration

i i i i Security
Authenti- Policy Se;rwce_ Delegation Identity Federation Token
cation Authorization | | Configuration Plug-i Repository Pluai gonen
Plug-ins Plug-ins Plug-ins ug-ins Plug-ins ug-ins ,
S 9 Plug-ins

FIGURE 2-1 Client/Server Architecture of Federated Access Manager

Each component of Federated Access Manager uses its own framework to retrieve customer
data from the plug-in layer and to provide data to other components. The Federated Access
Manager framework integrates all of the application logic into one layer that is accessible to all
components and plug-ins. The Client SDK and Identity Web Services are installed on a
machine remote to the Federated Access Manager server that holds a resource to be protected;
they provide remote access to the Federated Access Manager for client applications. (The policy
agent, also installed on the remote machine, is basically a client written using the Client SDK
and Identity Web Services.) Applications on the remote machine access Federated Access

28 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

How Federated Access Manager Works

Manager using the Client SDK. Custom plug-in modules are installed on the machine local to
Federated Access Manager and interact with the Federated Access Manager SPI to retrieve
required information from the appropriate data store and deliver it to the plug-ins and, in turn,
the Federated Access Manager framework for processing.

How Federated Access Manager Works

To gain access to a protected resource, the requestor needs to be authenticated and have the
authorization to access the resource. When someone (using a browser) sends an HTTP request
for access to a protected resource, a policy agent (separately downloaded and installed on the
same machine as the resource you want to protect) intercepts the request and examines it. If no
valid Federated Access Manager session token (to provide proof of authentication) is found, the
policy agent contacts the server which then invokes the authentication and authorization
processes. Figure 2-2 illustrates one way in which the policy agents can be situated to protect an
enterprise's servers by directing HT'TP requests to a centralized Federated Access Manager for
processing.

Chapter2 - Examining Federated Access Manager 29

Early Access Documentation

How Federated Access Manager Works

Web Browser

Firewall

Policy Agent

Policy Agent

Web Container Web Container Web Container

Firewall

|
— Federated Access

D Manager

FIGURE2-2 Basic Federated Access Manager Deployment

Federated Access Manager integrates core features such as access control through
authentication and authorization processes, and federation. These functions can be configured
using the administration console or the famadm command line utility. Figure 2-3 is a high-level
illustration of the interactions that occur between parties (including the policy agent, browser,
and protected application) during authentication and authorization in a Federated Access
Manager deployment.

30 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

O— Get/app——»QO
(O «— Redirect to FAM —0
(O «— GET/login?goto=/app —O)
O«----- Authenticate ----- O

(O (includes SSO Cookie)

(O «——— Is the user authorized to access /app? ——— QO

Core Services

@ Yes! »O
Populate Container
O-- Security Content ™|
1

(O Allow access to /app —»@
(O¢————— Response from /app 4 @)

FIGURE 2-3 Federated Access Manager Authentication and Authorization Interactions

For more information, see Part II.

Core Services

Services developed for Federated Access Manager generally contain both a server component
and a client component. The server component is a simple Java servlet developed to receive
XML requests and return XML responses. (The deployment descriptor web . xml defines the
servlet name and description, the servlet class, initialization parameters, mappings, and other
startup information.) The client component is provided as Java application programming
interfaces (API), and in some cases C API, that allow remote applications and other Federated
Access Manager services to communicate with and consume the particular functionality.

Each core service uses its own framework to retrieve customer and service data and to provide it
to other Federated Access Manager services. The Federated Access Manager framework
integrates all of these service frameworks to form a layer that is accessible to all product
components and plug-ins. The following sections contain information on the Federated Access
Manager core services.

“Authentication Service” on page 32
“Policy Service” on page 35

“Session Service” on page 37
“Logging Service” on page 40

Chapter2 - Examining Federated Access Manager 31

Early Access Documentation

Core Services

32

“Identity Repository Service” on page 42
“Federation Services” on page 44

“Web Services Stack” on page 46

“Web Services Security” on page 47
“Identity Web Services” on page 48

Note - Many services also provide a public SPI that allows the service to be extended. See the Sun
Federated Access Manager 8.0 Developer’s Guide, the Sun Federated Access Manager 8.0 C API
Reference, and the Federated Access Manager 8.0 Java API Reference for information.

Authentication Service

The Authentication Service provides the functionality to request user credentials and validate
them against a specified authentication data store. Upon successful authentication, it creates a
session data structure for the user that can be validated across all web applications participating
in an SSO environment. Several authentication modules are supplied with Federated Access
Manager, and new modules can be plugged-in using the Java Authentication and Authorization
Service (JAAS) SPI.

Note - The Authentication Service is based on the JAAS specification, a set of API that enables
services to authenticate and enforce access controls upon users. See the Java Authentication and
Authorization Service Reference Guide for more information.

Components of the Authentication Service include:

= The Distributed Authentication User Interface allows the Authentication Service user
interface to be deployed separately from Federated Access Manager, if desired. By deploying
this authentication proxy in the DMZ and using the authentication interfaces provided in
the Client SDK to pass user credentials back and forth, you can protect Federated Access
Manager data (for example, the login URL information and hence the host information).
JavaServer Pages (JSP) represent the interface displayed to users for authentication and are
completely customizable.

® The Core Authentication Service executes common processes across all authentication
modules. Key responsibilities of this service include identification of the appropriate plan to
authenticate the user (identify the authentication module, load the appropriate JSP) and
creation of the appropriate session for the authenticated user.

® The Authentication API are remoteable interfaces that don't need to reside on the same
machine as the Federated Access Manager server. This allows remote clients to access the
Authentication Service. remote-auth.dtd defines the structure for the XML communications
that will be used by the Authentication Service, providing definitions to initiate the process,
collect credentials and perform authentication.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://opensso.dev.java.net/source/browse/opensso/products/amserver/xml/dtd/

Early Access Documentation

Core Services

= A number of authentication modules are installed and configured (including, but not
limited to, LDAP, RADIUS, Windows Desktop, Certificate, and Active Directory). A
configured authentication level for each module is globally defined. Mechanisms are also
provided to upgrade a user's session after authenticating the user to an additional
authentication module that satisfies the authentication level of the resource. New modules
can be plugged-in using the JAAS SPL

The Authentication Service interacts with both the database that stores user credentials
(authentication data store) to validate the user, and with the Identity Repository Service
plug-ins to retrieve user profile attributes. When the Authentication Service determines thata
user’s credentials are genuine, a valid user session token is issued, and the user is said to be
authenticated. Figure 2-4 illustrates how the local and remote authentication components
interact within a Federated Access Manager deployment.

Chapter2 - Examining Federated Access Manager 33

Early Access Documentation

Core Services

Remote Server
Distributed Authentication User Interface
I
piode! as JSP Controller Servlet
Authentication pages ontroller servie > -
Client API (Login Servlet)
y - SSO o
View (Login/Logout > Agents [T
view Beans) 4
Client Applicati .| Authentication | | Authentication Client API
ient Applications Il ~jiant Interfaces (AuthContext Class)
A
- _________ T
Federated ' .
I
Access Manager v Authentication User Interface
——
Authentication XML

Model as
Authentication
API

Controller Servlet
(Login Servlet)

Request Handler

Authentication XML
Processing

- View (Login/Logout
AUthULIS beeeeedoeeeeeeeeeere e view Beans)

U Auth ContextLocal (Authentication AP|)

Authentication Middle Tier :
AMLogin

Auth : | -] AuthConfiguration |
Initializations | AuthUtils I Context | LoginScale |

Authentication SPI

AMLogin Authentication Post User Status change | User IDGenerator
Module SPI Processing SPI Event Orientation SPI
| LDAP | ------ | Certificate | ----- | Custom Authentication Module |

FIGURE2-4 Authentication Service Components Within a Federated Access Manager Deployment

More information on the architecture of the Authentication Service can be found in the
Authentication Service Architecture document on the OpenSSO web site.

34 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

https://opensso.dev.java.net/files/documents/3676/26172/auth_arch.pdf

Early Access Documentation

Core Services

Policy Service

Authorization is the process with which Federated Access Manager evaluates the policies
associated with an authenticated user’s identity, and determines whether the user has
permission to access a protected resource. (A policy defines the rules that specify a user's access
privileges to a protected resource.) The Policy Service provides the authorization functionality
using a rules-based engine. It interacts with the Federated Access Manager configuration data
store, a delegation plug-in (which helps to determine the administrator’s scope of privileges),
and Identity Repository Service plug-ins to verify that the user has access privileges from a
recognized authority. Policy can be configured using the administration console, and comprises
the following:

= A Schema for the policy type (normal or referral) that describes the syntax of policy.

= A Rule which defines the policy itself and is made up of a Resource, an Action and a Value.
= Condition(s) to define constraints on the policy.

= Subject(s) to define the user or collection of users which the policy affects.

= A ResponseProvider(s) to send requested attribute values, typically based on the user profile,
with the policy decision.

Figure 2-5 illustrates how the local and remote components of the Policy Service interact within
a Federated Access Manager deployment. Note that the PolicyServiceRequestHandler maps
to the PolicyRequest XML element.

Chapter2 - Examining Federated Access Manager 35

Early Access Documentation

Core Services

36

@

Client Application

Policy Service Client API

Federated Access Manager

| Policy Service Request Handlerl | Policy Management User Interfacel

| Policy Service Local API |

| Policy Service Framework |

| Policy Service SPI |

Subject
Referral

c
e
5=
S
=
o
o

Resource
Cpmparator

)
2 @
=]
o =2
o >
o Q9
Cn
o

FIGURE 2-5 Policy Service Components within a Federated Access Manager Deployment

Policy agents are an integral part of authorization. They are programs, available for installation
separate from Federated Access Manager, that police the web container which hosts the
protected resources. When a user requests access to the protected resource (such as a server or
an application), the policy agent intercepts the request and redirects it to the Federated Access
Manager Authentication Service. Following authentication, the policy agent will enforce the
authenticated user’s assigned policies. Federated Access Manager supports two types of policy
agents:

= The web agent is written in C and can protect any URL-based resource.

= The Java Platform, Enterprise Edition (Java EE) agent enforces URL-based policy and Java
EE-based policy for Java applications on Java EE containers.

Note - When policy agents are implemented, all HTTP requests are implicitly denied unless
explicitly allowed by the presence of two things:

1. A valid session

2. Apolicy allowing access

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Core Services

Note - If the resource is in the Not Enforced list defined for the policy agent, access is allowed
even if there is no valid session.

More information on the architecture of the Policy Service can be found in the Policy Service
Architecture document on the OpenSSO web site. For an overview of the available policy agents
and links to specific information on installation, see the Sun Java System Federated Access
Manager Policy Agent 3.0 User’s Guide.

Session Service

The mission of the Federated Access Manager Session Service is to maintain information about
an authenticated user's session across all web applications participating in a user session.
Additionally, Federated Access Manager provides continuous proof of the user’s identity,
enabling the user to access multiple enterprise resources without having to provide credentials
each time. This enables the following types of user sessions.

= Basic user session. The user provides credentials to log in to one application, and then logs
out of the same application.

=SSO session. The user provides credentials once, and then accesses multiple applications
within the same DNS domain.

= Cross domain SSO (CDSSO) session. The user provides credentials once, and then
accesses applications among multiple DNS domains.

A user session is the interval between the time a user attempts authentication through Federated
Access Manager and is issued a session token, and the moment the session expires, is
terminated by an administrator, or the user logs out. In what might be considered a typical user
session, an employee accesses the corporate benefits administration service. The service,
monitored by Federated Access Manager, prompts the user for a username and password. With
the credentials Federated Access Manager can authenticate, or verify that the user is who he says
he is. Following authentication, Federated Access Manager allows the user access to the service
providing authorization is afirmed. Successful authentication through Federated Access
Manager results in the creation of a session data structure for the user or entity by the Session
Service. Generally speaking, the Session Service performs some or all of the following:

= Generates unique session identifiers, one for each user's session data structure

Note - A session data structure is initially created in the INVALID state with default values for
certain attributes and an empty property list. Once the session is authenticated, the session
state is changed to VALID and session data is updated with the user's identity attributes and
properties.

Chapter2 - Examining Federated Access Manager 37

https://opensso.dev.java.net/files/documents/3676/33708/policy-arch.pdf
https://opensso.dev.java.net/files/documents/3676/33708/policy-arch.pdf

Early Access Documentation

Core Services

= Maintains a master copy of session state information

Note - The session state maintained on the client side is a cached view of the actual session
data structure. This cache can be updated by either the active polling mechanism or the
session notification triggered by the Session Service.

= Implements time-dependent behavior of sessions — for example, enforces timeout limits
= Implements session life cycle events such aslogout and session destruction
= Notifies all participants in the same SSO environment of session state changes

= Enables SSO and cross-domain single sign-on (CDSSO) among applications external to
Federated Access Manager by providing continued proof of identity.

= Allows participating clients to share information across deployments

= Implements high availability facilities

Figure 2-6 illustrates the interactions between the local and remote components of the Session
Service within a Federated Access Manager deployment.

38 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Core Services

|:| Federated Access Manager

————— XML/HTTP Communication

HTTP Communication

--------- In-process Communication
Px/Nx Asynchronous Communication

- X P1: State
Client Machine Session Client APls change
Session polling
Poller F—===1 F =7
p2: Update cache: 5. Cache :
: Result 1
_______ Session 1
2 Session 0 ; l
Requests SSO : - -
Web Apps |-===-=-----4--1, P2~ |-- e Session |- ———_H————__
o pp Interfaces| Client 3: Session
SSOAgent |- -mmmmmmmeademaa e (Session requests
A (Validate/ n2: Update cache | SDK)
Destroy/ Session
Retrieve/ Notification
Update) Listener
1. Access N ——
requested N1: Nightly Session State Change
Legend

Federated Access Manager

- | Session
L) Request
Handler

Master Session) - -
Table

4. Validate/Destroy/
Retrieve/Update session

Session
Monitor

L _] Session
Request
Handler

FIGURE 2-6 Session Service Components within a Federated Access Manager Deployment

Additionally, Figure 2-7 illustrates how the messaging capabilities of Message Queue can be
used to push session information to a persistent store based on the Berkeley DataBase (DB).

Using Federated Access Manager in this manner enables the following key feature:

= Session Failover allows an alternative Federated Access Manager server to pick up a given
user session when the server owning the original session fails.

= Session Constraints allow deployments to specify constraints on a sessions, such as one

session per user.

Chapter2 - Examining Federated Access Manager

39

Early Access Documentation

Core Services

Client Requests

Load Balancer

Firewall

Federated Federated Federated
Access Access Access
Manager-1 Manager-2 Manager-3

' v v

Message Queue Broker Cluster

Message Queue < > Message Queue < > Message Queue
Broker Broker Broker

$ v $

Berkeley DB Client Berkeley DB Client Berkeley DB Client
(amsessiondb) (amsessiondb) (amsessiondb)

Berkeley Berkeley Berkeley
DB DB DB

FIGURE2-7 Session Persistence Deployment Architecture

More information on the architecture of the Session Service can be found in the Session Service
Architecture document on the OpenSSO web site. For more information on session failover, see
Chapter 5, “Implementing Federated Access Manager Session Failover,” in Sun Federated Access
Manager 8.0 Installation and Configuration Guide.

Logging Service

When a user logs in to a resource protected by Federated Access Manager, the Logging Service
records information about the user's activity. The common Logging Service can be invoked by
components residing on the same server as Federated Access Manager as well as those on the
client machine, allowing the actual mechanism of logging (such as destination and formatting)
to be separated from the contents which are specific to each component. You can write custom
log operations and customize log plug-ins to generate log reports for specific auditing purposes.

40 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

https://opensso.dev.java.net/files/documents/3676/23331/session_arch.pdf
https://opensso.dev.java.net/files/documents/3676/23331/session_arch.pdf

Early Access Documentation

Core Services

Administrators can control log levels, authorize the entities that are allowed to create log entries
and configure secure logging (the latter for flat files only). Logged information includes the
name of the host, an IP address, the identity of the creator of the log entry, the activity itself, and
the like. Currently, the fields logged as a log record are controlled by the Configurable Log Fields
selected in the Logging Configuration page located under the System tab of the Federated
Access Manager console. The Logging Service is dependent on the client application (using the
Logging APIs) creating a programmatic LogRecord to provide the values for the log record
fields. The logging interface sends the logging record to the Logging Service which determines
the location for the log record from the configuration. A list of active logs can also be retrieved
using the Logging API. Figure 2-8 illustrates the interactions between the local and remote

components of the Logging Service in a Federated Access Manager deployment.

FIGURE 2-8 Logging Service Components within a Federated Access Manager Deployment

C App/Agent | Java App/Agent Browser
5 JDK 1.4 Logging :_|:|
= > =
5 = .
= c =)
B3 =) °
O g c
: . Admin
Log Service Servlet Java App/Service GUI
JDK 1.4 Logging Framework
(Secure) JDBC Custom
File Handler Handler ¢ o Handler
(Secure) JDBC c o o Custom
ELF Formatter| Formatter Formatter

Secure
Logs

(Flat files or Database)

Chapter2 - Examining Federated Access Manager

Log
Config

41

Early Access Documentation

Core Services

42

A\

Caution - Generally speaking, writing log records can be done remotely, using the Client SDK,
but anything involving the reading API can only be done on the machine on which Federated
Access Manager is installed. Using the reading API uses a great deal of system resources,
especially when database logging is involved.

Logs can be written to flat files or to one of the supported databases (Oracle and MySQL). See
Chapter 14, “Logging and the Java Enterprise System Monitoring Framework,” for more
information.

Identity Repository Service

The Identity Repository Service allows Federated Access Manager to integrate an existing user
data store (such as a corporate LDAP server) into the environment. The Identity Repository
Service is able to access user profiles (as well as group and role assignments if supported) and is
capable of spanning multiple repositories — even of different types. The Identity Repository
Service is configured per realm under the Data Stores tab and its main functions are:

= To specify an identity repository that will store service configurations and attributes for
users, groups and roles.

= To provide a list of identity repositories that can provide user attributes to the Policy Service
and Federation Services frameworks.

= To combine the attributes obtained from different repositories.

= To provide interfaces to create, read, edit, and delete identity objects such as a realm, role,
group, user, and agent.

= To map identity attributes using the Principal Name from the SS0Token object.

Access to the Identity Repository Service is provided by the com. sun.identity.idm Java
package. The AMIdentityRepository class represents a realm that has one or more identity
repositories configured and provides interfaces for searching, creating and deleting identities.
The AMIdentity class represents an individual identity such as a user, group or role and
provides interfaces to set, modify and delete identity attributes and assign and unassign
services. IdRepo is an abstract class that contains the methods that need to be implemented by
plug-ins when building new adapters for repositories not currently supported. The current
implementation supports Sun Java System Directory Server, IBM Tivoli Directory and
Microsoft Active Directory. Figure 2-9 illustrates the design of the Identity Repository Service.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Core Services

FIGURE2-9 Identity Repository Service Design

Note - Administrator roles are also defined by the Identity Repository Service. (This is currently
available only when the Sun Directory Server With FAM Core Services schema is loaded.) For
example, the Realm Administrator can access all data in all configured realms while the
Subrealm Administrator can access data only within the specified realm. For more information,
see XXXXXXX Deployment Planning Guide. For information on realm privileges, see
“Privileges” in Sun Federated Access Manager 8.0 Administration Guide.

Chapter2 - Examining Federated Access Manager 43

Early Access Documentation

Core Services

44

Federation Services

Federated Access Manager provides an open and extensible framework for identity federation
and associated web services that resolve the problems of identity-enabling web services, web
service discovery and invocation, security, and privacy. Federation Services are built on the
following standards:

= Liberty Alliance Project Identity Federation Framework (Liberty ID-FF) 1.1 and 1.2
= OQASIS Security Assertion Markup Language (SAML) 1.0and 1.1

= OQASIS Security Assertion Markup Language (SAML) 2.0

= WS-Federation (Passive Requestor Profile)

Federation Services allows organizations to share identity information (for example, which
organizations and users are trusted, and what types of credentials are accepted) securely. Once
this is enabled securely, federating identities is possible — allowing a user to consolidate the
many local identities configured among multiple service providers. With one federated identity,
the user can log in at one identity provider’s site and move to an affiliated site without having to
re-establish identity. Figure 2-10 illustrates the interactions between local and remote
components of the Federation Services in a Federated Access Manager deployment.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Core Services

e Single | _| H I_
i > Sign-on :
L ! =] o Session/
4-1- Single ~» & o |<>|Authentication
[= =0
IDP/SP |-—-» E Logout > § § Infrastructure
| |
|
L————*g Name ID ——>:
' 3 Management I
| D D
I (@]
‘g Affiliation - S Service/
> | = =B
_p| ® & Metadata
: Rl <::::> Configuration
NamelD | o8 9
: - =
> Mapping ! 5
|
User Agent > % '
- IDP Proxy -
> l
=0
|__> E_ [-
e
| 88
- I ® @
IDF Discovery ——>:
> Introduction I
|
I ‘| H |‘
- Interaction B 5 -
v > I 53 .
-»l S8 |<&>| Auditlog
WSC/WSP Authentication | _>: § 3
> Web Service :
| |
Application | Trusted :
[yl Authority
I Security !
|
A
Client | — i
Libraries | Discovery | |
i—4_»p Service

FIGURE 2-10 Federation Services Components within a Federated Access Manager Deployment

Chapter2 « Examining Federated Access Manager 45

Early Access Documentation

Core Services

46

More information on the Federation Services can be found in the Open Federation Architecture
and the Federation Use Case documentation on the OpenSSO web site. Also, see Part I1T in this
book.

Web Services Stack

The Federated Access Manager Web Services Stack follows a standardized way of integrating
web-based applications using XML, SOAP, and other open standards over an Internet Protocol
(IP) backbone. They enable applications from various sources to communicate with each other
because they are not tied to any one operating system or programming language. Businesses use
web services to communicate with each other and their respective clients without having to
know detailed aspects of each other's IT systems. Federated Access Manager provides web
services that primarily use XML and SOAP over HTTP. These web services are designed to be
centrally provided in an enterprise's network for convenient access by client applications.
Federated Access Manager implements the follow web service specifications.

= Liberty Alliance Project Identity Web Services Framework (Liberty ID-WSF) 1.0, 1.1, and
2.0

= Web Services-Interoperability (WS-I) Basic Security Profile

The following table lists the Federated Access Manager web services.

TABLE2-1 Federated Access Manager Web Services Stack

Web Service Name Description

Authentication Web Service Provides authentication to a web service client (WSC), allowing the WSC to
obtain security tokens for further interactions with other services at the
same provider. Upon successful authentication, the final Simple
Authentication and Security Layer (SASL) response contains the resource
offering for the Discovery Service.

Discovery Service A web service that allows a requesting entity, such as a service provider, to
dynamically determine a principal's registered attribute provider. Typically,
a service provider queries the Discovery Service, which responds by
providing a resource offering that describes the requested attribute
provider. The implementation of the Discovery Service includes Java and
web-based interfaces.

Liberty Personal Profile Service A data service that supports storing and modifying a principal's identity
attributes. Identity attributes might include information such as first name,
last name, home address, and emergency contact information. The Liberty
Personal Profile Service is queried or updated by a WSC acting on behalf of
the principal.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

https://opensso.dev.java.net/files/documents/3676/43872/openfed-arch.pdf
https://opensso.dev.java.net/servlets/ProjectDocumentList?folderID=6337&expandFolder%3B=6337&folderID%3B=7017

Early Access Documentation

Core Services

TABLE2-1 Federated Access Manager Web Services Stack (Continued)
Web Service Name Description
Security Token Service The centralized Security Token Service that issues, renews, cancels, and

validates security tokens.

SOAP Binding Service A set of Java APIs implemented by the developer of a Liberty-enabled
identity service. The APIs are used to send and receive identity-based
messages using SOAP, an XML-based messaging protocol.

Federated Access Manager uses both XML files and Java interfaces to manage web services and
web services configuration data. A Federated Access Manager XML file is based on the structure
defined in the Federated Access Manager Document Type Definition (DTD) files located in
path-to-context-root/fam/WEB- INF. The main sms . dtd file defines the structure for all
Federated Access Manager service files (located in

path-to-context-root/fam/WEB- INF/classes).

A Caution - Do not modify any of the DTD files. The Federated Access Manager API and their
internal parsing functions are based on the default definitions and alterations to them may
hinder the operation of the application.

For more information, see Part I'V.

Web Services Security

In message security, security information is applied at the message layer and travels along with
the web services message. Message layer security differs from transport layer security in that it
can be used to decouple message protection from message transport so that messages remain
protected after transmission, regardless of how many hops they travel on. This message security
is available as Web Services Security in Federated Access Manager and through the installation
of an authentication agent. Web Services Security is the implementation of the WS-Security
specifications and the Liberty Alliance Project Identity Web Services Framework (Liberty
ID-WSF). Web Services Security allows communication with the Security Token Service to
insert security tokens in outgoing messages and evaluate incoming messages for the same.
Towards this end, authentication agents based on the Java Specification Request (JSR) 196 must
be downloaded and installed on the web services client (WSC) machine and the web services
provider (WSP) machine.

Note - JSR 196 agents can be used only on Sun Java System Application Server or Glassfish web
containers.

Chapter2 - Examining Federated Access Manager 47

Early Access Documentation

Core Services

48

To secure web services communications, the requesting party must first be authenticated with a
security token which is added to the SOAP header of the request. Additionally, the WSC needs
to be configured to supply message level security in their SOAP requests and the WSP needs to
be configured to enable message level security in their SOAP responses. Figure 2-11 illustrates
the components used during a secure web services interaction.

Web Service Secured
Request Request
WSC —»| Client [—P Client
: —— Security Pipe < Transport Pipe
Web Service Secured
Request Request
Request Response
JSR 196 SP
(AuthConfigProvider

and ClientAuthModule)

RequestI iResponse

FM WSS Provider | — - wsiT

(:SecureRequest) WSS Provider
(ValidateResponse) <-->

FIGURE2-11 Web Services Security Components within a Federated Access Manager Deployment

Note - The stand alone applications can directly invoke the interfaces (secure request by WSC,
and validate response by WSP) from the WS-Security Library and establish message-level
end-to-end web service security. Standalone Java applications do not need the WS-Security
Provider Plugin.

For more information, see PartIV.

Identity Web Services

Federated Access Manager contains client interfaces for authentication, authorization, session
management, and logging in Java, C, and C++ (using a proprietary XML and SOAP over HTTP
or HTTPs communication). These interfaces are used by policy agents and custom applications.
Development using these interfaces, though, is labor-intensive. Additionally, the interfaces
cause dependencies on Federated Access Manager. Therefore, Federated Access Manager has
now implemented simple interfaces that can be used for:

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Core Services

= Authentication (verification of user credentials, password management)
= Authorization (policy evaluation for access to secured resources)

= Provisioning (self-registration, creating or deleting identity profiles, retrieve or update
identity profile attributes)

= Token validation

= Search (return a list of identity profile attributes that match a search filter)

Note - Identity Web Services also interact with the Logging Service to audit and record Identity
Web Services interactions.

These Identity Services are offered using either SOAP and the Web Services Description
Language (WSDL) or Representational State Transfer (REST). With SOAP Identity Web
Services, you point an integrated development environment (IDE) application project to the
appropriate URL and generate the stub code that wraps the function calls to the services. (You
can also use wscompile.) With REST Identity Web Services, no coding is necessary. It works
right out of box.

Note - Federated Access Manager supports Eclipse, NetBeans, and Visual Studio®.

When Identity Web Services have been implemented, a user interacts with the application
which calls the identity repository to retrieve user profile data for authentication and
personalization, the configuration data store to retrieve policy data for authorization, and the
audit repository for log requests. The application authenticates, authorizes, audits, and finally
creates personalized services for the user by calling either the SOAP/WSDL or REST Identity
Web Service as provided by Federated Access Manager.

Chapter2 - Examining Federated Access Manager 49

Early Access Documentation

Global Services

Resources

Expose authentication, authorization, and audit capabilities as
simple Web services, that is, WSDL or REST.

FIGURE2-12 Basic Identity Web Services Process

For more information, see PartIV.

Global Services

Global services take configuration values and perform functions for Federated Access Manager
on a global basis. The following table lists the global services with brief descriptions.

TABLE2-2 Global Federated Access Manager Services

Service What it Does

Common Federation Configuration Contains configuration attributes for Federation Services.

Liberty ID-FF Service Contains configuration attributes for the Liberty Alliance Project
Configuration Identity Federation Framework.

Liberty ID-WSF Security Service Contains configuration attributes for the Liberty Alliance Project
Identity Web Services Framework.

50 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Realms

Realms

TABLE2-2 Global Federated Access Manager Services (Continued)
Service What it Does
Liberty Interaction Service Contains configuration attributes for the Liberty Alliance Project

Interaction Service — used to get consent from an owner to expose data,
or to get additional data.

Multi-Federation Protocol Contains configuration attributes for multi-federation protocol circles
of trust.

Password Reset Contains configuration attributes for the Password Reset Service.

Policy Configuration Contains configuration attributes for the Policy Service.

SAML v2 Service Configuration Contains configuration attributes for the SAML v2 interactions.

SAML v2 SOAP Binding Contains configuration attributes for SAML v2 SOAP Binding Service.

Security Token Service Contains configuration attributes for the Security Token Service.

Session Contains configuration attributes for the Session Service.

User Contains configuration attributes for user profiles.

A realm is the unit that Federated Access Manager uses to organize configuration information.
Authentication properties, authorization policies, data stores, subjects (including a user, a
group of users, or a collection of protected resources) and other data can be defined within the
realm. The data stored in a realm can include, but is not limited to:

= One or more subjects (a user, a group of users, or a collection of protected resources)
= A definition of one or more data stores to store subject (user) data

= Authentication details identifying, for example, the location of the authentication
repository, and the type of authentication required.

= Policy information that will be used to determine which resources protected by Federated
Access Manager the subjects can access.

= Responder configurations that allows applications to personalize the user experience, once
the user has successfully authenticated and been given access.

= Administration data for realm management

You create a top-level realm when you deploy Federated Access Manager. The top-level realm
(by default opensso) is the root of the Federated Access Manager instance and contains
Federated Access Manager configuration data; it cannot be changed after it is created. In
general, you should use the default root realm to configure identity data stores, and manage
policies and authentication chains. During deployment, Federated Access Manager creates a
Realm Administrator who can perform all operations in the configured root realm, and a Policy
Administrator who can only create and manage policies.

Chapter2 - Examining Federated Access Manager 51

Early Access Documentation

Realms

All other realms are configured under the opensso realm. These sub-realms may contain other
sub-realms and so on. Sub-realms identify sets of users and groups that have different
authentication or authorization requirements. The use of sub-realms should be restricted to the
following two scenarios.

1. Application Policy Delegation The use case for this is when you need to have different
Policy Administrators to create policies for a sub-set of resources. For example, let's assume
a sub-realm is created and named Paycheck. This sub-realm is configured with a policy
referral from the root realm for configuring protection of resources starting with
https://paycheck.sun.com/paycheck. Within the Paycheck sub-realm, a Paycheck
Administrator role or group is created and assigned Policy Administration privileges. These
administrators are now able to login to the sub-realm and create policies for their
applications. By default, the sub-realm inherits the same configuration data store and
authentication chains configured for its parent; if these configurations change in the parent,
a corresponding change would be needed in the sub-realm. Additionally, all users will still
log in to the root realm for access to all the applications. The sub-realm is primarily for the
Policy Administrator to manage policies for the application. An educated guess on the
number of sub-realms that can be supported would be about 100.

2. ISP/ASP/Silo The use case for this scenario is when each sub-realm is to have its own set of
identity data stores, authentication chains, and policies. Ideally the only common thread
between the root and the sub-realm would be the referral policy created in the root realm to
delegate a set of resources to the sub-realm. Users would not be able to log in to the root
realm (unless they are a member) but would have to authenticate to their sub-realm. Also,
agents would have to be configured to redirect user authentication to the particular
sub-realm. With regards to performance, the most resource consuming component would
be when persistent searches created by the data stores connect to the same directory. An
educated guess on the number of sub-realms that can be supported would be about 50.

The Federated Access Manager framework aggregates realm properties as part of the
configuration data. Figure 2-13 illustrates how configuration data can use a hierarchy of realms
to distribute administration responsibilities. Region 1, Region 2, and Region 3 are realms;
Development, Operations, and Sales are realms sub to Region 3.

52 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Realms

Top-level

Realm

— Region 1 Sub-realm

Service Configuration
* Policies
e Authorization Attributes
e |dentity Repository Plug-ins

— Regio

n 2 Sub-realm

— Regio

Service Configuration
¢ Policies
¢ Authorization Attributes

n 3 Sub-realm

Service Configuration
¢ Policies
¢ Authorization Attributes

Development Sub-realm

Service Configuration
¢ Policies
¢ Authorization Attributes

Operations Sub-realm

Service Configuration
¢ Policies
¢ Authorization Attributes

Sales Sub-realm

Service Configuration
¢ Policies
e Authorization Attributes

FIGURE 2-13

Chapter2 -

Realm Hierarchy for Configuration Data

Examining Federated Access Manager

53

Early Access Documentation

Additional Components

Note - Federated Access Manager 8.0 supports the Sun Java System Access Manager Legacy
mode (which contains no realms) with a provided interface.

Additional Components

54

The following sections provide information on additional components used in a Federated
Access Manager deployment.

“Data and Data Stores” on page 54

“The bootstrap File” on page 60

“Policy Agents” on page 61

“Authentication Agents” on page 62
“Federated Access Manager Tools” on page 62
“Client SDK” on page 63

u
u
| |
| |
u
u
= “Service Provider Interfaces for Plug-ins” on page 63

Data and Data Stores

Federated Access Manager services need to interact with a number of different data stores. The
following distinct repositories can be configured.

= A configuration repository provides server and service specific data.
= One or more identity repositories provide user profile information.

= Authentication repositories provide authentication credentials to a particular module of the
Authentication Service.

A common LDAP connection pooling facility allows efficient use of network resources. In the
simplest demonstration environment, a single LDAP repository is sufficient for all data
however, the typical production environment tends to separate configuration data from other
data. The following sections contain more specific information.

= “Configuration Data” on page 54
= “Identity Data” on page 57
= “Authentication Data” on page 60

Configuration Data

The default configuration of Federated Access Manager creates a branch in a fresh installation
of a configuration data store for storing service configuration data and other information
pertinent to the server's operation. Federated Access Manager components and plug-ins access
the configuration data and use it for various purposes including:

= Accessing policy data for policy evaluation.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Additional Components

= Finding location information for identity data stores and Federated Access Manager
services.

= Retrieving authentication configuration information that define how users and groups
authenticate.

= Finding which partner servers can send trusted SAML assertions.

Federated Access Manager supports Sun Java System Directory Server and the open source
OpenDS as configuration data stores. Flat files (supported in previous versions of the product)
are no longer supported but configuration data store failover is — using replication.

Figure 2-14 illustrates how configuration data in the embedded data store is accessed.

Machine

Web Container

Federated Access Manager
Administer

Read

le —P
Request for Console SMS

Server Configuration >

---------- - Bootstrap File CLI —»| SMS

Configuration

i Data
] Store

Bootstrap and
Administer

FIGURE2-14 Accessing Configuration Data

Previous releases of Access Manager and Federation Manager stored product configuration
data in a property file named AMConfig.properties that was installed local to the product
instance directory. This file is deprecated for Federated Access Manager on the server side
although still supported for agents on the client side. See the Sun Federated Access Manager 8.0
Installation and Configuration Guide for more information.

Configuration data comprises the attributes and values in the Federated Access Manager
configuration services, as well as default Federated Access Manager users like amadmin and

Chapter2 - Examining Federated Access Manager 55

Early Access Documentation

Additional Components

anonymous. Following is a partial listing of the XML service files that contribute to the data.
They can be found in the path-to-context-root/fam/WEB-INF/classes directory.

Note - The data in this node branch is private and is mentioned here for information purposes
only.

AgentService.xml
amAdminConsole.xml
amAgent70.xml
amAuth.xml
amAuth-NT.xml
amAuthAD . xml
amAuthAnonymous . xml
amAuthCert.xml
amAuthConfig.xml
amAuthDataStore.xml
amAuthHTTPBasic.xml
amAuthJDBC. xml
amAuthLDAP.xml
amAuthMSISDN. xml
amAuthMembership.xml
amAuthNT . xml
amAuthRADIUS.xml
amAuthSafeWord-NT.xml
amAuthSafeWord.xml
amAuthSecurID.xml
amAuthWindowsDesktopSSO.xml
amClientData.xml
amClientDetection.xml
amConsoleConfig.xml
amDelegation.xml
amEntrySpecific.xml
amFilteredRole.xml
amGl1NSettings.xml
amLogging.xml
amNaming.xml
amPasswordReset.xml
amPlatform.xml
amPolicy.xml
amPolicyConfig.xml
amRealmService.xml
amSession.xml
amUser.xml
amWebAgent.xml

56 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Additional Components

® jdRepoEmbeddedOpenDS.xml
m idRepoService.xml

m jdentitylLocaleService.xml
= yms.xml

A Caution - By default, the Federated Access Manager configuration data is created and
maintained in the embedded configuration data store apart from any identity data. Although
users can be created in the configuration data store this is only recommended for
demonstrations and development environments.

For more information, see “Embedded Configuration Data” on page 67.

Identity Data

An identity repository is a data store where information about users and groups in an
organization is stored. User profiles can contain data such as a first name, a last name, a phone
number, group membership, and an e-mail address; an identity profile template is provided
out-of-the-box but it can be modified to suit specific deployments.

Identity data stores are defined per realm. Because more than one identity data store can be
configured per realm Federated Access Manager can access the many profiles of one identity
across multiple data repositories. Sun Java System Directory Server with Federated Access
Manager Schema, Microsoft Active Directory, IBM Tivoli Directory and the AMSDK data store
are the currently supported identity repositories. Plug-ins can be developed to integrate other
types of repositories (for example, a relational database). Figure 2-15 illustrates a Federated
Access Manager deployment where the identity data and the embedded configuration data are
kept in separate data stores.

verify support officially on Tivoli (Replaces generic LDAP v3), AD, Sun DS with FAM schema
and amsdk

Chapter2 - Examining Federated Access Manager 57

Early Access Documentation

Additional Components

58

Remark 2-1
Reviewer

Client SDK Federated Access
Manager

FIGURE 2-15 Federated Access Manager Deployment with Two Data Stores

Note - The information in an identity repository is maintained by provisioning products
separate from Federated Access Manager. The supported provisioning product is Sun Java
System Identity Manager.

Federated Access Manager provides out-of-the-box plug-in support for some identity
repositories. Each default plug-in configuration includes details about what operations are
supported on the underlying data store. Once a realm is configured to use a plug-in, the
framework can instantiate it and execute the operations on the appropriate identity repository.
Each new plug-in developed must have a corresponding service management schema defining
its configuration attributes. This schema would be integrated as a sub schema into
idRepoService.xml, the service management file for the Identity Repository Service that
controls the identity data stores available under a realm's Data Stores tab. The following
sections contain information on the out-of-the-box plug-ins.

Please confirm these. | have gotten different comments from different reviewers.

= “Generic Lightweight Directory Access Protocol (LDAP) version 3” on page 59
= “LDAPv3 Plug-in for Active Directory” on page 59

= “LDAPv3 Plug-in for Tivoli Directory” on page 59

= “Sun Directory Server With FAM Core Services” on page 59

= “Sun Directory Server With Full Schema (including Legacy)” on page 59

= “Access Manager Repository Plug-in” on page 59

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://www.sun.com/software/products/identity_mgr/index.jsp
http://www.sun.com/software/products/identity_mgr/index.jsp

Early Access Documentation

Additional Components

Generic Lightweight Directory Access Protocol (LDAP) version 3

The Generic LDAPv3 identity repository plug-in can reside on an instance of any directory that
complies with the LDAPv3 specifications. The underlying directory cannot make use of features
that are not part of the LDAP version 3 specification, and no specific DIT structure can be
assumed as LDAPv3 identity repositories are simply DIT branches that contain user and group
entries. Each data store has a name that is unique among a realm's data store names, but not
necessarily unique across all realms. The
com.sun.identity.idm.plugins.ldapv3.LDAPv3Repo class provides the default LDAPv3
identity repository implementation. There are also implementations for Active Directory and
IBM Tivoli Directory

LDAPv3 Plug-in for Active Directory

The Generic LDAPv3 identity repository plug-in was used to develop a default plug-in to write
identity data to an instance of Microsoft® Active Directory®. The administration console
provides a way to configure the directory but the schema needs to be loaded manually.

LDAPv3 Plug-in for Tivoli Directory

The Generic LDAPv3 identity repository plug-in was used to develop a default plug-in to write
identity data to an instance of IBM Tivoli Directory®. The administration console provides a
way to configure the directory but the schema needs to be loaded manually. XXXXXX Where is
this config doc'ed?XXXXX

Sun Directory Server With FAM Core Services

This repository resides in an instance of Sun Java System Directory Server and holds the
identity data. This option is available during the initial configuration of Federated Access
Manager.

Sun Directory Server With Full Schema (including Legacy)

This repository resides in an instance of Sun Java System Directory Server and holds the
configuration data when installing Federated Access Manager in Legacy and Realm mode. This
option must be manually configured.

Access Manager Repository Plug-in

The Access Manager Repository can reside only in Sun Java System Directory Server and is used
with the Sun Directory Server With Access Manager Schema. During installation, the
repository is created in the same instance of Sun Java System Directory Server that holds the
configuration data. The Access Manager Repository Plug-in is designed to work with Sun Java
System Directory Server as it makes use of features specific to the server including roles and class
of service. It uses a DIT structure similar to that of previous versions of Access Manager.

Chapter2 - Examining Federated Access Manager 59

Early Access Documentation

Additional Components

60

Note - This is no longer provided out of the box and many pieces are marked for deprecation.
The Access Manager Repository is compatible with previous versions of Access Manager.

When you configure an instance of Access Manager in realm mode for the first time, the
following occurs:

= An Access Manager Repository is created under the top-level realm.
= The Access Manager Repository is populated with internal Access Manager users.

Note - The Java Enterprise System installer does not set up an Access Manager Repository when
you configure an Access Manager instance in legacy mode. Legacy mode requires an identity
repository that is mixed with the Access Manager information tree under a single directory
suffix.

Authentication Data

Authentication data contains authentication credentials for Federated Access Manager users.
An authentication data store is aligned with a particular authentication module, and might
include:

RADIUS servers

SafeWord authentication servers

RSA ACE/Server systems (supports SecurID authentication)
LDAP directory servers

Note - Identity data may include authentication credentials although authentication data is
generally stored in a separate authentication repository.

ThebootstrapFile

Federated Access Manager uses a file to bootstrap itself. Previously, AMConfig.properties held
configuration information to bootstrap the server but now a file named bootstrap points to the
configuration data store allowing the setup servlet to retrieve the bootstrapping data. After
deploying the Federated Access Manager WAR and running the configuration wizard,
configuration data is written to the configuration data store by the service management API
contained in the Java package, com.sun. identity.sm. The setup servlet creates bootstrap in
the top-level configuration directory. The content in bootstrap can be either of the following:

= Adirectorylocal to Federated Access Manager (for example, /export/SUNwam) indicating
the server was configured with a previous release. The directory is where
AMConfig.properties resides.

= Anencoded URL that points to a directory service using the following format:

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Additional Components

ldap://ds-host: ds-port/server-instance-name? pwd=encrypted-amadmin-password&
embeddedds=path-to-directory-service-installation&basedn=base-dn&
dsmgr=directory-admin&dspwd=encrypted-directory-admin-password

For example:

ldap://ds.samples.com:389/http://owen2.red.sun.com:8080/fam?
pwd=AQIC5wM2LY4SfcxildVZEdt fwar2vhWNkmS8&embeddedds=/fam/opends&
basedn=dc=fam,dc=java,dc=net&dsmgr=cn=Directory Manager
&dspwd=AQIC5wM2LY4SfcxildVZEdt fwar2vhWNkmS8

where

= ds.samples.com:389 is the host name and port of the machine on which the directory is
installed.

= http://owen2.red.sun.com:8080/fam is the instance name.

® AQIC5wM2LY4SfcxildVZEdtfwar2vhWNkmS8 is the encrypted password of the OpenSSO
administrator.

= /fam/opends is the path to the directory installation.
m dc=fam,dc=java,dc=net is the base DN.
= cn=Directory Manager is the directory administrator.

m AQIC5xM2LY4SfcximdVZEdtfwardvhWNkmG7 is the encrypted password for the directory
administrator.

If more than one URL is present in the file and Federated Access Manager is unable to connect
or authenticate to the data store at the first URL, the bootstrapping servlet will try the second
(and so on). Additionally, the number sign [#] can be used to exclude a URL as in:

ldap://ds.samples.com:389/http://owen2.red.sun.com:8080/fam?
pwd=AQIC5wM2LY4SfcxildVZEdtfwar2vhWNkmS8&embeddedds=/fam/opends&
basedn=dc=fam,dc=java,dc=net&dsmgr=cn=Directory+Manager
&dspwd=AQIC5wM2LY4SfcxildVZEdt fwar2vhWNkmS8

Policy Agents

Policy agents are an integral part of SSO and CDSSO sessions. They are programs that police the
web container on which resources are hosted. All policy agents interact with the Authentication
Service in two ways:

= To authenticate itself in order to establish trust. This authentication happens using the
Client SDK.

= To authenticate users having no valid session for access to a protected resource. This
authentication happens as a browser redirect from the Distributed Authentication User
Interface.

Chapter2 - Examining Federated Access Manager 61

Early Access Documentation

Additional Components

62

When a user requests access to a protected resource such as a server or an application, the policy
agent intercepts the request and redirects it to the Federated Access Manager Authentication
Service for authentication. Following this, the policy agent requests the authenticated user's
assigned policy and evaluates it to allow or deny access. (A policy defines the rules that specify a
user's access privileges to a protected resource.) Federated Access Manager supports two types
of policy agents:

= The web agent enforces URL-based policy for C applications.

= The Java EE agent enforces URL-based policy and Java-based policy for Java applications on

Java EE containers.

Both types of agents are available for you to install as programs separate from Federated Access
Manager. Policy agents are basically clients written using the Client SDK and Identity Services.

Note - AIlHTTP requests are implicitly denied unless explicitly allowed by the presence of a
valid session and a policy allowing access. If the resource is defined in the Not Enforced list for
the policy agent, access is allowed even if there is no valid session.

For more information, see J2EE Agent Architecture and Web Agent and C-API Architecture on
the OpenSSO web site. For an overview of the available policy agents and links to specific
information on installation, see the Sun Java System Federated Access Manager Policy Agent 3.0
User’s Guide.

Authentication Agents

Authentication agents plug into web containers to provide message level security for web
services, and supports both Liberty Alliance Project token profiles as well as Web
Services-Interoperability Basic Security Profiles (WS-I BSP). (A profile defines the HTTP
exchanges required to transfer XML requests and responses between web service clients and
providers.) Authentication agents use an instance of Federated Access Manager for all
authentication decisions. Web services requests and responses are passed to the appropriate
authentication modules using standard Java representations based on the transmission
protocol. An HTTP Authentication Agent or a SOAP Authentication Agent can be used. For
more information, see “Web Services Security” on page 47.

Federated Access Manager Tools

Contained within the Federated Access Manager ZIP are famAdminTools.zip and
famSessionTools.zip. The following sections have some information about these tools.

= “famadm Command Line Interface” on page 63
= “Session Failover Tools” on page 63

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

https://opensso.dev.java.net/files/documents/3676/43131/j2eeagent_arch.pdf
https://opensso.dev.java.net/files/documents/3676/34096/webagent_arch.pdf

Early Access Documentation

Additional Components

famadm Command Line Interface

famadm, the command line interface (CLI), provides a second option to administer Federated
Access Manager using the command line. For example, famadm can be used to create a policy or
import and export Liberty ID-FF metadata. famadm is the recommended way for batch
processing. It is in famAdminTools. zip. For more information, see Chapter 4, “Installing the
Federated Access Manager Utilities and Scripts,” in Sun Federated Access Manager 8.0
Installation and Configuration Guide and Part I, “Command Line Interface Reference,” in Sun
Federated Access Manager Administration Reference.

Session Failover Tools

famSessionTools.zip contains scripts and binaries for setting up session failover and
databases. For more information, see Chapter 5, “Implementing Federated Access Manager
Session Failover,” in Sun Federated Access Manager 8.0 Installation and Configuration Guide.

Client SDK

Enterprise resources cannot be protected by Federated Access Manager until the Federated
Access Manager Client SDK is installed on the machine that contains the resource that you
want to protect. (The Client SDK is automatically installed with a policy agent.) The Client SDK
allows you to customize an application by enabling communication with Federated Access
Manager for retrieving user, session, and policy data. For more information, see Chapter 1,
“Enhancing Remote Applications Using the Client Software Development Kit,” in Sun
Federated Access Manager 8.0 Developer’s Guide and the Federated Access Manager 8.0 Java API
Reference.

Service Provider Interfaces for Plug-ins

The Federated Access Manager service provider interfaces (SPI) can be implemented as
plug-ins to provide customer data to the Federated Access Manager framework for back-end
processing. Some customer data comes from external data base applications such as identity
repositories while other customer data comes from the Federated Access Manager plug-ins
themselves. You can develop additional custom plug-ins to work with the SPI. For a complete
list of the SPJ, see the Federated Access Manager 8.0 Java API Reference. Additional information
can be found in the Sun Federated Access Manager 8.0 Developer’s Guide. The following sections
contain brief descriptions.

“Authentication Service SPI” on page 64
“Federation Service SPI” on page 64
“Identity Repository Service SPI” on page 64
“Policy Service SPI” on page 64

“Service Configuration Plug-in” on page 64

Chapter2 - Examining Federated Access Manager 63

Early Access Documentation

Additional Components

64

Authentication Service SPI

The com.sun.identity.authentication.spi package provides interfaces and classes for
writing a supplemental authentication module to plug into Federated Access Manager. The
com.sun.identity.authentication package provides interfaces and classes for writing a
remote client application that can access user data in a specified identity repository to
determine if a user’s credentials are valid.

Federation Service SPI

The com.sun.identity.federation.services package provides plug-ins for customizing the
Liberty ID-FF profiles implemented by Federated Access Manager. The
com.sun.identity.federation.plugins package providesan interface that can be
implemented to perform user specific processing on the service provider side during the
federation process. The com.sun.identity.saml2.plugins package provides the SAML v2
service provider interfaces (SPI). The com.sun.identity.wsfederation.plugins package
provides the WS-Federation based SPI.

Identity Repository Service SPI

The com. sun.identity.idm package contains the IdRepo interface that defines the abstract
methods which need to be implemented or modified by Identity Repository Service plug-ins.
The com.sun.identity.plugin.datastore package contains interfaces that search for and
return identity information such as user attributes and membership status for purposes of
authentication.

Policy Service SPI

The com.sun.identity.policy.interfaces package provides interfaces for writing custom
policy plug-ins for Conditions, Subjects, Referrals, Response Providers and Resources.

Service Configuration Plug-in

The com.sun.identity.plugin.configuration package provides interfaces to store and
manage configuration data required by the core Federated Access Manager components and
other plug-ins.

Note - In previous releases, the functionality provided by the Service Configuration plug-in was
known as the Service Management Service (SMS).

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L K R 4 CHAPTER 3

Simplifying Federated Access Manager

This chapter contains information on the usability and manageability features of Federated
Access Manager. It includes the following sections:

= “Installation and Configuration” on page 65

= “Embedded Configuration Data” on page 67

= “Centralized Agent Configuration” on page 68
= “Common Tasks” on page 70

= “Third Party Integration” on page 71

Installation and Configuration

Previous versions of Sun Microsystems' access management server product were built for
multiple hardware platforms, and different web containers. The complexity of this
development process led to the release of separate platform and container patches. To alleviate
this extraneous development, Federated Access Manager is now available as a single ZIP file
which can be downloaded, unzipped, and quickly deployed; there will be no separate
installations for each hardware platform. The ZIP file will contain the full Federated Access
Manager web archive (WAR), layouts for the generation of other specific WARSs, libraries, the
Java API reference documentation, and samples. (Tools for use with Federated Access Manager,
including the command line interfaces and policy and authentication agents, can be
downloaded separately.) Figure 3-1 illustrates the process for deployment, installation and
configuration of a new Federated Access Manager WAR and a patched WAR.

65

Early Access Documentation

Installation and Configuration

|

Deployer Developer Config’tor Deployer Admin’tor User
New
' Downloaded '~ Customized >[Configured |~>| Deployed]~ Customized Hp Ready-to-
(DEV) | (Admin) Serve
Patch

Patch
Downloaded

Re-Custom
(DEV)

},

FIGURE 3-1

66

Customizing, Patching and Deploying the WAR

Note - When patched, a full patched version of the Federated Access Manager WAR will be
included in the download, assuring that there is always a single download to get the latest bits.

The intent of this new process is to allow the administrator to download Federated Access
Manager and deploy it on the container or platform of choice, using the web container's
administration console or command line interfaces. After the initial launch of the deployed
WAR, the user is directed to a JavaServer Page (JSP) called the Configurator that prompts for
configuration parameters (including, but not limited to, the host name, port number, URL, and
repositories), provides data validation for the parameter values to prevent errors, and
eliminates post-installation configuration tasks. Once successfully configured, any further
changes to the configuration data store must be made using the Federated Access Manager
console or command line interfaces.

Note - When deploying Federated Access Manager against an existing legacy installation, the
Directory Management tab will be enabled in the new console.

For more information including a directory layout of the ZIP, see the Sun Federated Access
Manager 8.0 Installation and Configuration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Embedded Configuration Data

Embedded Configuration Data

Federated Access Manager has implemented an embedded configuration data store to replace
the AMConfig.properties and serverconfig.xml files which had been the storage files for
server configuration data. Previously, each instance of the server installed had separate
configuration files but now when deploying more than one instance of Federated Access
Manager, all server configuration data is stored centrally, in one embedded configuration data
store per instance. After the Federated Access Manager WAR is configured, a sub configuration
is added under the Platform Service to store the data and a bootstrap file that contains the
location of the configuration data store is created in the installation directory. Figure 3-2
illustrates how Federated Access Manager is bootstrapped.

Server Machine

WAR
DS

Bootstrap File

FIGURE3-2 Bootstrapping Federated Access Manager

Post-installation, the configuration data can be reviewed and edited using the administration
console or the famadm command line interface. For more information see the Sun Federated
Access Manager 8.0 Installation and Configuration Guide and the Sun Federated Access
Manager 8.0 Administration Guide.

Note - Federated Access Manager also supports an LDAPv3-based solution that uses an existing
directory server for configuration data storage. This is configured during installation.
Supported directories include Sun Java System Directory Server, Microsoft Active Directory,
and IBM Tivoli Directory.

Chapter 3 - Simplifying Federated Access Manager 67

Early Access Documentation

Centralized Agent Configuration

Centralized Agent Configuration

Policy agents function based on a set of configuration properties. Previously, these properties
were stored in the AMAgent . properties file, residing on the same machine as the agent. With
Centralized Agent Configuration, Federated Access Manager moves most of the agent
configuration properties to the embedded configuration data store. Now agent profiles can be
configured to store properties locally (on the machine to which the agent was deployed) or
centrally (in the embedded configuration data store), making this new function compatible
with both older 2.x agents and newer 3.0 agents. Following is an explanation of the local and
central agent configuration repositories.

= Local agent configuration is supported for backward compatibility. Agent configuration
data is stored in a property file named FAMAgentConfiguration.properties thatis stored
on the agent machine. It is only used by agent profiles configured locally.

= Centralized Agent Configuration stores agent configuration data in a centralized data store
managed by Federated Access Manager. When an agent starts up, it reads its bootstrapping
file to initialize itself. FAMAgentBootstrap.properties is stored on the agent machine and
indicates the location from where the configuration properties need to be retrieved. It is
used by agent profiles configured locally or centrally. Based on the repository setting in
FAMAgentBootstrap.properties, it retrieves the rest of its configuration properties. If the
repository is local, it reads the agent configuration from a local file; if the repository is
remote, it fetches its configuration from Federated Access Manager.

Thus, Centralized Agent Configuration separates the agent configuration properties into two
places: a bootstrapping file stored local to the agent and either alocal (to the agent) or central
(local to Federated Access Manager) agent configuration data store.
FAMAgentBootstrap.properties is the bootstrapping file used by agent profiles configured
locally or centrally. It is stored on the agent machine and indicates the local or central location
from where the agent's configuration properties are retrieved. If the repository is local to the
agent, it reads the configuration data from a local file; if the repository is remote, it fetches its
configuration from Federated Access Manager. Choosing Centralized Agent Configuration
provides an agent administrator with the means to manage multiple agent configurations from
a central place using either the Federated Access Manager console or command line interface.
Figure 3-3 illustrates how an agent retrieves bootstrapping and local configuration data, and
configuration data from the configuration data store.

68 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Centralized Agent Configuration

£
Agaed Local
Bootsirap Agent
Poopesiss Cordg

FIGURE3-3 Retrieving Agent Configuration Data

5

An agent fetches its configuration properties periodically to determine if there have been any
configuration changes. Any agent configuration changes made centrally are conveyed to the
affected agents which will react accordingly based on the nature of the updated properties. If the
properties affected are hot swappable, the agent can start using the new values without a restart
of the underlying agent web container. Notification of the agent when configuration data
changes and polling by the agent for configuration changes can be enabled. Agents can also
receive notifications of session and policy changes.

Note - A agent configuration data change notification does not contain the actual data; it is justa
ping that, when received, tells the agent to make a call to Federated Access Manager and reload
the latest. Session and policy notifications, on the other hand, contain the actual data changes.
Also, when using a load balancer, the notification is sent directly to the agent whose
configuration has been changed. It does not go through the load balancer.

For more information see the Sun Federated Access Manager 8.0 Administration Guide.

Chapter 3 - Simplifying Federated Access Manager 69

Early Access Documentation

Common Tasks

Common Tasks

70

Federated Access Manager has implemented a Common Tasks tab that allows an
administrators to create federation-based objects using console wizards. The wizards offer
simplified provider configuration with metadata input using the URL
http://fam.sun.com:8080/fam/saml2/jsp/exportmetadata.jsp or a metadata file. The
following things can be done using a Common Task wizard:

Create SAML v2 Providers They can be hosted or remote provider; and identity or service
provider. To create them, you just need to provide some basic information about the
providers.

Create Fedlet A Fedlet is a small ZIP file that can be given to a service provider to allow for
immediate federation with an identity provider configured with Federated Access Manager.
Itis ideal for an identity provider that needs to enable a service provider with no federation
solution in place. The service provider simply adds the Fedlet to their application, deploys
their application, and they are federation enabled.

Test Federation Connectivity This task validates your federation configuration. It will
show if federation connections are being made successfully by identifying where the
troubles, if any, are located.

Access Documentation This link opens the OpenSSO documentation page. View
frequently asked questions, tips, product documentation, engineering documentation as
well as links to the community blogs.

Register Your Product This link allows you to register your product with Sun Connection.
You must have a Sun Online Account in order to complete the registration. If you do not
already have one, you may request one as part of this process.

Figure 3—4 is a screen capture of the Common Tasks wizard.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Third Party Integration

WERSBION

U ssr amddmin ambdmin Saner swi-pubel

Sun Federated Access Manager

J Common Tasks

Creale SAMLYZ Providers

Thaea lInke allow you credle SAMLYE providers. They can be hosad or Rmoe providss and

idanlity or service providar, To creade them, you (ust nesd o prosicde some basic inkrmation

abouwl the providers

-l Creml= Hosled ey Pros icls |,..i.. iy
= H yioe Prow

. v e Berylon Peov et ekl

- Regivler Remols kksaily Provider ,.ﬂ"&ﬂ.

2
B Regisier Remols S=rvice Provider !L!
Creghs Fedlel

Fedliel |z el or an Denity provider hat naeds o snable o ssrnce provider that doss nok
e any kind of Edemiion solution in place. A Fediel iz a very small zip Gl= that you can
provicks a denvice provider g0 hay can nesEnmnsoutly Bdambs wilh you, Ths sandce
provicer aimply aodds 1he Fedlet o thelrapplication, dephys thelr applicaion ard thsy o
fedemtion enabled

B Creale Fadel ol

FIGURE3-4 The Common Tasks Wizard

For more information see the Sun Federated Access Manager 8.0 Administration Guide.

Third Party Integration

Federated Access Manager makes it easy to integrate with third-party software. Plug-ins and
other tools have been developed to ease the integration of Federated Access Manager and the
following products.

= “Sun Java System Identity Manager” on page 72
= “Computer Associates SiteMinder” on page 72

Chapter 3 - Simplifying Federated Access Manager 71

Early Access Documentation

Third Party Integration

72

= “Oracle Access Manager” on page 72

For more information, see Sun Java System Federated Access Manager Integration Guide.

Sun Java System Identity Manager

Sun Java System Identity Manager enables an enterprise to manage and audit access to accounts
and resources as well as distribute the access management overhead. A Federated Access
Manager policy agent is deployed on the Identity Manager machine to regulate access to the
Identity Manager server. By mapping Identity Manager objects to Federated Access Manager
users and resources, you may significantly increase operational efficiency. For use cases, a
technical overview, installation and configuration procedures, architecture diagrams and

process flows, see Chapter 1, “Integrating Sun Identity Manager ,” in Sun Java System Federated
Access Manager Integration Guide.

Computer Associates SiteMinder

Computer Associates SiteMinder (originally developed by Netegrity) is one of the industry's
first SSO products — used in a majority of legacy web SSO deployments to protect their intranet
and external applications. Federated Access Manager provides the tools for SSO integration
with SiteMinder in both intranet and federated environments. They include a SiteMinder Agent
and a Federated Access Manager Authentication Module for SiteMinder. They can be found in
the integrations/siteminder directory of the exploded fam.war. For use cases, a technical
overview, installation and configuration procedures, architecture diagrams and process flows,
see Chapter 2, “Integrating CA SiteMinder,” in Sun Java System Federated Access Manager
Integration Guide.

Oracle Access Manager

Oracle Access Manager (originally developed by Oblix) is an SSO product with many of the
same features as Sun Federated Access Manager and Computer Associates SiteMinder. Oracle
Access Manager can be deployed to protect both internal and external applications. Federated
Access Manager provides an Oracle Agent and a custom Federated Access Manager
Authentication Module for Oracle Access Manager. They can be found in the
integrations/oracle directory of the exploded fam.war. For use cases, a technical overview,
installation and configuration procedures, architecture diagrams and process flows, see
Chapter 3, “Integrating Oracle Access Manager,” in Sun Java System Federated Access Manager
Integration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L R 2 4 CHAPTER 4

Deploying Federated Access Manager

Sun Federated Access Manager can be deployed in a number of ways. This chapter contains two

sample deployment architectures.

= “Deployment Architecture 1” on page 73
= “Deployment Architecture 2” on page 74

Deployment Architecture 1

Figure 4-1 illustrates one deployment architecture for Sun Federated Access Manager.

73

Early Access Documentation

Deployment Architecture 2

N

FIGURE4-1 Sample Deployment Architecture 1

For more information, see XXXXXXXX. Deployment Planning Guide.

Deployment Architecture 2

Figure 4-2 illustrates another deployment architecture for Sun Federated Access Manager.

74 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Deployment Architecture 2

r :
Simpla Highly-Available Architecture
(no single point of Tailune)
Haartbaial
. .

FIGURE4-2 Sample Deployment Architecture 2

For more information, see XXXXXXXX. Deployment Planning Guide.

Chapter4 - Deploying Federated Access Manager 75

Early Access Documentation

76

Early Access Documentation

PART 11

Access Control Using Federated Access
Manager

User authentication, authorization for access to protected resources, and programmatically
defining user sessions are all aspects of access management, one of the core functions of
Sun Federated Access Manager. Federated Access Manager offers access management
features programmatically using the Client SDK, over the wire using HTTP and the
Federated Access Manager console, and using an integrated development environment
(IDE) application to incorporate Representational State Transfer (REST) calls and Web
Services Definition Language (WSDL) files. The chapters in this part contain information
on these aspects of access management.

Chapter 5, “User Sessions and the Session Service”

Chapter 6, “Models of the User Session and Single Sign-On Processes”
Chapter 7, “Authentication and the Authentication Service”

Chapter 8, “Authorization and the Policy Service”

77

Early Access Documentation

78

Early Access Documentation

L K R 4 CHAPTER 5

User Sessions and the Session Service

The Session Service in Sun Federated Access Manager tracks a user’s interaction with web
applications through the use of session data structures, session tokens, cookies, and other
objects. This chapter explains these concepts and other components of a user's session and
contains the following sections:

«
|]

«
| |

«
u

About the Session Service” on page 79
User Sessions and Single Sign-on” on page 80
Session Data Structures and Session Token Identifiers” on page 81

About the Session Service

The Session Service in Sun Federated Access Manager tracks a user’s interaction with protected
web applications. For example, the Session Service maintains information about how long a
user has been logged in to a protected application, and enforces timeout limits when necessary.
Additionally, the Session Service:

Generates session identifiers.

Maintains a master copy of session state information.

Implements time-dependent behavior of sessions.

Implements session life cycle events such as logout and session destruction.
Generates session life cycle event notifications.

Generates session property change notifications.

Implements session quota constraints.

Implements session failover.

Enables single sign-on and cross-domain single sign-on among applications external to
Federated Access Manager.

Offers remote access to the Session Service through the Client SDK with which user sessions
can be validated, updated, and destroyed.

79

Early Access Documentation

User Sessions and Single Sign-on

The state of a particular session can be changed by user action or timeout. Figure 5-1 illustrates
how a session is created as invalid before authentication, how it is activated following a
successful authentication, and how it can be invalidated (and destroyed) based on timeout

values.
I
I create
New S:ssion authenitication time-out
(invalid) ,
|
| I
I
I
| authenticated I
| I
v max session time-out :
Active Session ~~ """ T T T T T T T > Expired Session
(valid) ~ "7t osssssssssssoosoes * (invalid) !
. max idle time-out | [
| (no user activity) | purge I
| | delay time |
elapse
| Vo _F_) _______ \ 4
L destroy
logout/destroy

FIGURE5-1 Life Cycle of a Session

User Sessions and Single Sign-on

A user session is the interval between the moment a user attempts to log in to a resource
protected by Federated Access Manager, and the moment the session expires, is terminated by
an administrator, or the user logs out. As an example of a user session, an employee attempts to
access the corporate benefits administration application protected by Federated Access
Manager. A new invalid session is created, and the Authentication Service prompts the user for
a username and password to verify the user's identity. Following a successful authentication, the
Policy Service and policy agent work together to check that the user has the appropriate
permissions to access the protected application and allows or denies access based on the
outcome.

Oftentimes, in the same user session (without logging out of the corporate benefits application),
the same employee might attempt to access a corporate expense reporting application. Because
the expense reporting application is also protected by Federated Access Manager, the Session
Service provides proof of the user’s authentication, and the employee is allowed to access the

80 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Session Data Structures and Session Token Identifiers

expense reporting application (based on the outcome of a second authorization check with the
Policy Service). If access is granted, the employee has accessed more than one applicationin a
single user session without having to reauthenticate. This is called single sign-on (SSO). When
SSO occurs among applications in more than one DNS domain, it is called cross-domain single
sign-on (CDSSO). For a more detailed overview of a basic user session, an SSO session, and a
CDSSO session, see Chapter 6, “Models of the User Session and Single Sign-On Processes”

Session Data Structures and Session Token Identifiers

The Session Service programmatically creates a session data structure to store information
about a user session. The result of a successful authentication results in the validation of a
session data structure for the user or entity and the creation of a session token identifier. The
session data structure minimally stores the following information.

Identifier A unique, universal identifier for the session data structure.

Host Name or IP Address The location from which the client (browser) is making the

request.

Principal Set to the user's distinguished name (DN) or the application's
principal name.

Type USER or APPLICATION

Session State Defines whether the session is valid or invalid.

Maximum Idle Time Maximum number of minutes without activity before the session

will expire and the user must reauthenticate.

Maximum Session Time Maximum number of minutes (activity or no activity) before the
session expires and the user must reauthenticate.

Maximum Caching Time = Maximum number of minutes before the client contacts Access
Manager to refresh cached session information.

A session can also contain additional properties which can be used by other applications. For
example, a session data structure can store information about a user’s identity, or about a user’s
browser preferences. You can configure Federated Access Manager to include the following
types of data in a session:

= Protected properties are only modifiable by the server-side modules (primarily the
Authentication Service).

= Custom properties are modifiable remotely by any application which possesses the session
identifier.

For a detailed summary of information that can be included in a session, see Chapter 10,
“Configuring Federated Access Manager Sessions,” in Sun Federated Access Manager 8.0
Installation and Configuration Guide.

Chapter5 « User Sessions and the Session Service 81

Early Access Documentation

Session Data Structures and Session Token Identifiers

82

The session token, also referred to as a sessionID and programmatically as an SSOToken, is an
encrypted, unique string that identifies the session data structure. As the user visits different
protected resources using the browser, the session token is propagated to these resources and is
used to retrieve the user's credentials. These credentials are then validated by sending a
back-end request (using the Client SDK or a policy agent) to Federated Access Manager which
then returns an error or the session's prior authentication data. Sessions (and hence the
SS0Token) are invalidated when a user logs out, the session expires, or a user in an
administrative role invalidates it. With Federated Access Manager, a session token is carried in a
cookie, an information packet generated by a web server and passed to a web browser. (The
generation of a cookie for a user by a web server does not guarantee that the user is allowed
access to protected resources. The cookie simply points to information in a data store from
which an access decision can be made.)

Note - Access to some Federated Access Manager services, such as the Policy Service and the
Logging Service, require presentation of both the SS0Token of the application as well as the
SSOToken of the user, allowing only designated applications to access these services.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L K R 4 CHAPTER 6

Models of the User Session and Single Sign-On
Processes

This chapter traces events in a basic user session, a single sign-on session (SSO), a cross-domain
single sign-on session (CDSSO), and session termination to give you an overview of the features
and processes being invoked. It contains the following sections:

= “Basic User Session” on page 83
= “Single Sign-On Session” on page 93
= “Cross-Domain Single Sign-On Session” on page 95
= “Session Termination” on page 97
Basic User Session

The following sections describe the process behind a basic user session by tracing what happens
when a user logs in to a resource protected by Federated Access Manager. In these examples, the
server which hosts an application is protected by a policy agent. The Basic User Session includes

the following phases:

= “Initial HTTP Request” on page 83

= “User Authentication” on page 85

= “Session Validation” on page 87

= “Policy Evaluation and Enforcement” on page 89
| |

“Logging the Results” on page 91

Initial HTTP Request

When a user initiates a user session by using a browser to access and log in to a protected
web-based application, the events illustrated in Figure 6-1 occur. The accompanying text
describes the model.

83

Early Access Documentation

Basic User Session

User’s Browser

4
1 .
Firewall
J2EE Container Application
Distributed]
Authentication Policy Agent
User Interface
Federated
Access Manager
Client SDK
Protected Resource Firewall

Authentication 6 Session Policy -

Service @ Service Service
") Federated
Client Detection Naming Logging Access Manager
Service Service Service Configuration
Data

Federated Access Manager

Configuration
Data Store

FIGURE6-1 Initial HTTP Request

1. The user’s browser sends an HTTP request to the protected resource.

2. The policy agent that protects the resource intercepts and inspects the user's request and
finds no session token.

3. The policy agent issues a redirect to its configured authentication URL to begin the
authentication process.

In this example, the authentication URL it is set to the URL of the Distributed
Authentication User Interface.

4. The browser, following the redirect, sends a GET request for authentication credentials to
the Distributed Authentication User Interface.

84 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Basic User Session

5. The Session Service creates a new session (session data structure) and generates a session
token (a randomly-generated string that identifies the session).

6. The Authentication Service sets the session token in a cookie.

The next part of the user session is “User Authentication” on page 85.

User Authentication

When the browser sends the GET request to the Distributed Authentication User Interface, the
events illustrated in Figure 6-2 occur.

Chapter6 - Models of the User Session and Single Sign-On Processes 85

Early Access Documentation

Basic User Session

86

User’s Browser

Firewall

J2EE
Container

Application l

@ Policy Agent
[

Distributed
Authentication
User Interface

Federated
_» Access Manager
| Client SDK

Protected Resource
Firewall

6 Authentication o Session Policy -

@Service ® Service (& Service

Client Detection Naming Logging
0 Service Service Service

Federated
Access Manager
Configuration
Data

Federated Access Manager

Configuration
Data Store

FIGURE6-2 User Authentication

1. Using the parameters in the GET request, the Distributed Authentication User Interface
contacts the Federated Access Manager Authentication Service (which, in turn,
communicates with the Session Service).

2. The Authentication Service determines what should be presented to the user based upon
configuration data and retrieves the appropriate authentication module(s) and callback(s)
information.

For example, if configured to use LDAP Authentication, the Authentication Service
determines that the LDAP Authentication login page should be displayed.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Basic User Session

10.

11.

12.

13.

14.

The collected information is passed to the Distributed Authentication User Interface using
the Client SDK.

The Client Detection Service determines which protocol, such as HTML or WML, to use to
display the login page.

The Distributed Authentication User Interface generates a dynamic presentation extraction
page that contains the appropriate credentials request and callbacks information obtained
from Federated Access Manager.

The session cookie will be included in this communication.
The user’s browser displays the login page.
The user enters information in the fields of the login page.

The browser sends the credentials in an HTTP POST to the Distributed Authentication
User Interface.

The Distributed Authentication User Interface uses the Client SDK to pass the credentials to
the Authentication Service.

The Authentication Service uses the appropriate authentication module to validate the
user’s credentials.

For example, if LDAP authentication is used, the LDAP authentication module verifies that
the username and password provided exist in the LDAP directory.

Assuming authentication is successful, the Authentication Service activates the session by
calling the appropriate methods in the Session Service.

The Authentication Service stores information such aslogin time, Authentication Scheme,
and Authentication Level in the session data structure.

Once the session is activated, the Session Service changes the state of the session token to
valid.

The Distributed Authentication User Interface replies to the protected resource with the
validated SSOToken in a set-cookie header.

Now, the browser makes a second request to the original resource protected by a policy
agent.

This time, the request includes a valid session token created during the authentication
process.

The next part of the user session is “Session Validation” on page 87.

Session Validation

After successful authentication, the user’s browser redirects the initial HTTP request to the
server a second time for validation. The request now contains a session token in the same DNS
domain as Federated Access Manager. The events in Figure 6-3 illustrate this process.

Chapter6 - Models of the User Session and Single Sign-On Processes 87

Early Access Documentation

Basic User Session

User’s Browser

Firewall

Application

o Policy Agent

Federated
Access Manager
Client SDK

Protected Resource

Firewall

Federated

. . . . Access Manager
Client Detection Naming Logging Configuration

Service Service Service Data

Authentication Session Policy
Service Service 0 Service

Federated Access Manager

Configuration
Data Store

FIGURE6-3 Session Validation

1. The policy agent intercepts the second access request.

2. To determine the validity of the session token, the policy agent contacts the Naming Service

to learn where the session token originated.

The Naming Service allows clients to find the URL for internal Federated Access Manager
services. When contacted, the Naming Service decrypts the session token and returns the
corresponding URL which can be used by other services to obtain information about the

user session.

3. The policy agent, using the information provided by the Naming Service, makes a POST

request to the Session Service to validate the included session token.

88 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Basic User Session

4. The Session Service receives the request and determines whether the session token is valid
based on the following criteria:

a. Has the user been authenticated?
b. Does a session data structure associated with the session token exist?

5. Ifall criteria are met, the Session Service responds that the session token is valid.
This assertion is coupled with supporting information about the user session itself.

6. The policy agent creates a Session Listener and registers it with the Session Service, enabling
notification to be sent to the policy agent when a change in the session token state or validity
occurs.

The next part of the user session is “Policy Evaluation and Enforcement” on page 89.

Policy Evaluation and Enforcement

After a session token has been validated, the policy agent determines if the user can be granted
access to the server by evaluating its defined policies. Figure 6-4 illustrates this process.

Chapter6 - Models of the User Session and Single Sign-On Processes 89

Early Access Documentation

Basic User Session

User’s Browser

Firewall
Application
Policy Agent
Federated
Access Manager
Client SDK
Protected Resource
Firewall

Authentication
Service

Client Detection
Service

Federated Access Manager

FIGURE6-4 Policy Evaluation

1. The policy agent sends a request to the Policy Service, asking for decisions regarding

Federated
Access Manager
Configuration
Data

Session o Policy 9

Service Service 9

Naming Logging

Service Service

Configuration
Data Store

resources in its portion of the HTTP namespace.

The request also includes additional environmental information. For example, IP address or
DNS name could be included in the request because they might impact conditions set on a

configuration policy.

2. The Policy Service checks for policies that apply to the request.

Policies are cached in Federated Access Manager. If the policies have not been cached

already, they are loaded from Federated Access Manager.

3. Ifpolicies that apply to the request are found, the Policy Service checks if the user identified

by the session token is a member of any of the Policy Subjects.

90 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Basic User Session

If no policies that match the resource are found, the user will be denied access.

b. Ifpolicies are found that match the resource, and the user is a valid subject, the Policy
Service evaluates the conditions of each policy. For example, Is it the right time of day? or
Are requests coming from the correct network?

= Ifthe conditions are met, the policy applies.
= Ifthe conditions are not met, the policy is skipped.

4. The Policy Service aggregates all policies that apply, encodes a final decision to grant or deny
access, and responds to the policy agent.

The next part of the basic user session is “Logging the Results” on page 91.

Logging the Results

When the policy agent receives a decision from the Policy Service, the events illustrated in
Figure 6-5 occur.

Chapter6 - Models of the User Session and Single Sign-On Processes 91

Early Access Documentation

Basic User Session

User’s Browser

Firewall

Application 5

el D

Federated

Access Manager
Client SDK
Protected Resource i

Firewall

Authentication Session Policy

Service Service Service Federated

Access Manager
Configuration

Client Detection Naming e Logging o

Service Service Service Data

Federated Access Manager Configuration
Data Store

FIGURE6-5 Logging the Policy Evaluation Results

1. The decision and session token are cached by the policy agent so subsequent requests can be
checked using the cache (without contacting Federated Access Manager).

The cache will expire after a (configurable) interval has passed or upon explicit notification
of a change in policy or session status.

2. The policy agent issues a logging request to the Logging Service.

3. The Logging Service logs the policy evaluation results to a flat file (which can be signed) or to
aJDBC store, depending upon the log configuration.

4. The Logging Service notifies the policy agent of the new log.

5. The policy agent allows or denies the user access to the application.

92 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Single Sign-On Session

a. Iftheuser is denied access, the policy agent displays an “access denied” page.

b. Ifthe user is granted access, the resource displays its access page.

Assuming the browser displays the application interface, this basic user session is valid until it is
terminated. See “Session Termination” on page 97 for more information. While logged in, if
the user attempts to log into another protected resource, the “Single Sign-On Session” on

page 93 begins.

Single Sign-On Session

Remark 6-1
Reviewer

with subject: Auth/SSO process question not answered. check against new graphic

SSO is always preceded by a basic user session in which a session is created, its session token is
validated, the user is authenticated, and access is allowed. SSO begins when the authenticated
user requests a protected resource on a second server in the same DNS domain. The following
process describes an SSO session by tracking what happens when an authenticated user accesses
asecond application in the same DNS domain as the first application. Because the Session
Service maintains user session information with input from all applications participating in an
SSO session, in this example, it maintains information from the application the user was
granted access to in “Basic User Session” on page 83.

Chapter6 - Models of the User Session and Single Sign-On Processes 93

Early Access Documentation

Single Sign-On Session

User’s Browser

13
Domain1.example.com Domain2.example.com

Application

Policy Agent

Policy Agent

Application <

Application

3 4 Policy Agent

Application

12
67 9 X10X11 Policy Agent

CDSSO Controller

FIGURE6-6 Single Sign-On Session
1. The user attempts to access a second application hosted on a server in the same domain as
the first application to which authentication was successful.

2. The user’s browser sends an HTTP request to the second application that includes the user’s
session token.

3. The policy agent intercepts the request and inspects it to determine whether a session token
exists.

A session token indicates the user is already authenticated. Since the user was authenticated,
the Authentication Service is not required at this time. The Session Service API retrieve the
session data using the session token identifier imbedded in the cookie.

4. The policy agent sends the session token identifier to the Federated Access Manager Session
Service to determine whether the session is valid or not.

94 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Cross-Domain Single Sign-On Session

For detailed steps, see “Session Validation” on page 87.
5. The Session Service sends a reply to the policy agent indicating whether the session is valid.

= Ifthe session is not valid, the user is redirected to the Authentication page.
m Ifthe session is valid, the Session Service creates a Session Listener.

6. Asthe session is valid, the Session Service creates a Session Listener.

A Session Listener sends notification to the policy agent when a change in the session state
occurs.

7. The policy agent sends a request for a decision regarding resources in it’s portion of the
HTTP namespace to the Policy Service.

8. The Policy Service checks for policies that apply to the request.

9. The Policy Service sends the policy evaluation response (either Access Denied or Access
Granted.) to the policy agent.

= IfPolicy Service does not find policy allowing access to the protected resource, the user is
denied access and the Logging Service logs a denial of access. The user may be redirected
to a specified page indicating that access was denied if configured as such by the
administrator.

= Ifthe Policy Service finds policy allowing access to the protected resource, the user is
granted access and the session is valid until terminated.

10. The policy agent sends a reply to the user indicating whether the user is granted the access.

= Ifthe user is denied access, the policy agent displays an Access Denied page.
= Ifthe user is granted access, the protected resource displays its access page.

Assuming the Policy Service finds policy allowing access to the protected resource, the user is
granted access and the SSO session is valid until terminated. See “Session Termination” on
page 97. While still logged in, if the user attempts to log in to another protected resource
located in a different DNS domain, the “Cross-Domain Single Sign-On Session” on page 95
begins.

Cross-Domain Single Sign-On Session

CDSSO occurs when an authenticated user requests a protected resource on a server in a
different DNS domain. The user in the previous sections, “Basic User Session” on page 83 and
“Single Sign-On Session” on page 93, for example, accessed applications in one DNS domain. In
this scenario, the CDSSO Controller within Federated Access Manager transfers the user’s
session information from the initial domain, making it available to applications in a second
domain.

Chapter6 - Models of the User Session and Single Sign-On Processes 95

Early Access Documentation

Cross-Domain Single Sign-On Session

User’s Browser

— (@) <

Domain1.example.com Domain2.example.com
Application

Policy Agent

Application

(7)

Policy Agent

Application

Policy Agent

Application

Policy Agent

Federated
Access Manager

CDSSO Controller ©)

1. The authenticated user’s browser sends an HTTP request to the application in a different
DNS domain.

2. The policy agent intercepts the request and inspects it to determine if a session token exists
for the domain in which the requested application exists. One of the following occurs:

= Ifasession token is present, the policy agent validates the session.

= Ifno session token is present, the policy agent (which is configured for CDSSO) will
redirect the HTTP request to the CDSSO Controller.

The CDSSO Controller uses Liberty Alliance Project protocols to transfer sessions so the
relevant parameters are included in the redirect.
In this example, no session token for the second domain is found.
3. The policy agent redirects the HTTP request to the CDSSO Controller.
4. The user’s browser allows the redirect to the CDSSO Controller.

96 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Session Termination

Recall that earlier in the user session the session token was set in a cookie in the first domain
which is now part of the redirect.

The CDC Servlet (in the CDSSO Controller) receives the session token from the first
domain, extracts the user's session information, formulates a Liberty POST profile response
containing the information, and returns a response to the browser.

The user’s browser automatically submits the response to the policy agent in the second
domain.

The POST is based upon the Action and the Javascript included in the Body tags onLoad.

The policy agent in the second domain receives the response, extracts the session
information, validates the session, and sets a session token in the cookie for the new DNS
domain.

The process continues with “Policy Evaluation and Enforcement” on page 89 and “Logging the
Results” on page 91. Based on the policy outcome, the user is granted or denied access to the
application.

1.
2.

If the user is denied access, the policy agent displays an “access denied” page.

If the user is granted access, the protected resource displays its access page. The new cookie
can now be used by all agents in the new domain, and the session is valid until it is
terminated.

Session Termination

A user session can be terminated in any of following ways:

= “User Ends Session” on page 97

= “Administrator Ends Session” on page 98

= “Federated Access Manager Enforces Timeout Rules” on page 98
= “Session Quota Constraints” on page 98

User Ends Session

When a user explicitly logs out of Federated Access Manager by clicking on a link to the Logout
Service the following events occur:

1.

The Logout Service receives the Logout request, and:

a. Marks the user’s session as destroyed.
b. Destroys the session.
c. Returns a successful logout page to the user.

The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
senta document instructing the agent that the session is now invalid.

Chapter6 - Models of the User Session and Single Sign-On Processes 97

Early Access Documentation

Session Termination

98

3.

The policy agents flush the session from the cache and the user session ends.

Administrator Ends Session

Federated Access Manager administrators with appropriate permissions can terminate a user
session at any time. When an administrator uses the Sessions tab in the Federated Access
Manager console to end a user’s session, the following events occur:

L.

The Logout Service receives the Logout request, and:

a. Marks the user’s session as destroyed.
b. Destroys the session.

The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
senta document instructing the agent that the session is now invalid.

The policy agents flush the session from cache and the user session ends.

Federated Access Manager Enforces Timeout Rules

When a session timeout limit is reached, the Session Service:

1
2
3.
4
5

Changes the session status to invalid.

Displays a time out message to the user.

Starts the timer for purge operation delay. (The default is 60 minutes.)

Purges or destroys the session when the purge operation delay time is reached.

Displays login page to the user if a session validation request comes in after the purge delay
time is reached.

Session Quota Constraints

Federated Access Manager allows administrators to constrain the amount of sessions one user
can have. If the user has more sessions than the administrator will allow, one (or more) of the
existing sessions can be destroyed.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L K R 4 CHAPTER 7

Authentication and the Authentication Service

The Sun Federated Access Manager Authentication Service determines whether a user is the
person he claims to be. User authentication is the first step in controlling access to web
resources within an enterprise. This chapter explains how the Authentication Service works
with other components to prove that the user’s identity is genuine. Topics covered in this
chapter include:

“Authentication Service Overview” on page 99
“Authentication Service Features” on page 102
“Authentication Modules” on page 106

“Authentication Types” on page 108

“Configuring for Authentication” on page 110
“Authentication Graphical User Interfaces” on page 111
“Authentication Service Programming Interfaces” on page 115

Authentication Service Overview

The function of the Authentication Service is to request information from an authenticating
party, and validate it against the configured identity repository using the specified
authentication module. After successful authentication, the user session is activated and can be
validated across all web applications participating in an SSO environment. For example, when a
user or application attempts to access a protected resource, credentials are requested by one (or
more) authentication modules. Gaining access to the resource requires that the user or
application be allowed based on the submitted credentials. From the user perspective, a
company employee wants to look up a colleague’s phone number. The employee uses a browser
to access the company’s online phone book. To log in to the phone book service, the employee
provides a user name and password. Federated Access Manager compares the user’s input with
data stored in the appropriate identity repository. If Federated Access Manager finds a match
for the user name, and if the given password matches the stored password, the user’s identity is
authenticated.

99

Early Access Documentation

Authentication Service Overview

Note - The “Basic User Session” on page 83 section in the previous chapter contains a detailed
description of the authentication process itself.

The Authentication Service can be accessed by a user with a web browser, by an application
using the Client SDK, or by any other client that correctly implements the Authentication
Service messaging interfaces. The Authentication Service framework has a pluggable
architecture for authentication modules that have different user credential requirements.
Together with the Session Service, the Authentication Service establishes the fundamental
infrastructure for SSO. Generally speaking, the Authentication Service:

= Identifies a requester's credential requirements.

= Generates a dynamic user interface based on the requirements of the authentication module
being called.

= Supports custom, pluggable authentication modules.

= Provides pre- and post-processing SPI.

= Populates and manages system domain cookies.

= Generates time dependent alerts and session termination notifications.

= Provides a remote user interface application for distributed deployments.

= Implements a clean logout interface which destroys the session.

Every time a request is used to access the Authentication Service, the session token identifier is
retrieved and used to get the associated session data structure from the Session Service.
Additionally, the Authentication Service interfaces with the Session Service to:

® [nitiate or create user sessions.
®= Maintain session state information.
® Activate sessions after successful authentication.

= Populate the valid session data structure with all user-authenticated identity data and
properties.

= Destroy sessions after logout.

The following diagram illustrates how the two services work together.

100 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Service Overview

: P
Authentication WorkStation
Client
Clent Applications <<HTML or
i Wirsloss
. Browsar>>
Authenlication |nterfaces
futhenticaton Clent
Libraries
I
T
i HTTP
| XMLHTTP
~ :
I
sl e
Authentication XML Handler (merface Authenication Liser interface

meEE
renw

FIGURE 7-1 Authentication Service and Session Service Interfaces

The Authentication Service also interfaces with other Federated Access Manager services
including the Naming Service, the Identity Repository Service, the Logging Service, and the
Monitoring Service. It also interfaces with the configuration data store and policy agents
protecting system resources. (A policy agent must authenticate itself using the Client SDK
authentication interfaces, and users with no valid session must be authenticated.)

Chapter7 - Authentication and the Authentication Service 101

Early Access Documentation

Authentication Service Features

Authentication Service Features

102

The following sections explain some of the features of the Authentication Service.

“Client Detection” on page 102

“Account Locking” on page 102

“Authentication Chaining” on page 103

“Fully Qualified Domain Name Mapping” on page 104
“Persistent Cookies” on page 104

“Session Upgrade” on page 105

“JAAS Shared State” on page 105

“Security” on page 105

Client Detection

Because the Authentication Service is client-type aware, the initial step in the authentication
process is to identify the type of client making the HTTP(s) request. This feature is known as
client detection. The URL information in the HTTP(s) request is used to retrieve the client’s
characteristics. Based on these characteristics, the appropriate authentication pages are
returned. For example, when a web browser is used for requesting access, an HTML login page
will be displayed. Once the user is authenticated, the client type is added to the session token for
future use. For more information, see Chapter 11, “Identifying the Client Type,” in Sun
Federated Access Manager 8.0 Developer’s Guide.

Note - Federated Access Manager supports all configured client types including cookie-less and
cookie-enabled. Currently, there are some restrictions to mobile client detection.

Account Locking

The Authentication Service provides account locking to prevent a user from completing the
authentication process after a specified number of failures. Federated Access Manager sends
email notifications to administrators when account lockouts occur. Federated Access Manager
supports:

Physical Locking. By default, user accounts are physically unlocked. You can initiate
physical locking by typing inactive as the value of the Lockout Attribute
Name attribute in the Core Authentication Service. Additionally, the
value of the Login Failure Lockout Duration attribute should be set to 0.

physical lock attr name is: inetuserstatus value active/inactive

Memory Locking. ~ You can configure Memory Locking so that a user account is locked in
memory after a specified number of authentication attempts. By

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Service Features

changing the Login Failure Lockout Duration attribute to a value greater
then 0, the user’s account is then locked in memory for the number of
minutes specified and the account is unlocked after the time period
elapses.

To figure out the amount of time the lockout will be in effect, the value of
the Lockout Duration Multiplier attribute is multiplied by the value of the
Login Failure Lockout Duration attribute for subsequent lockout. For
example, if the value of Login Failure Lockout Duration is 5 minutes and
the value of the Lockout Duration Multiplier is 2, the first time a user is
locked out in memory will be 5 minutes. The second time this same user
gets locked out in memory the lockout duration will be 10 minutes (5
minutes x 2). The third time this same user gets locked out in memory the
lockout duration will be 20 minutes (5 minutes x 2 x 2).

The account locking feature is disabled by default. Account locking activities are also logged.
For information on how to enable it, see “Account Locking” in Sun Federated Access
Manager 8.0 Administration Guide.

Note - Only authentication modules that throw an Invalid Password Exception can leverage
the Account Locking feature. Out of the box, these include Active Directory, Data Store, HTTP
Basic, LDAP, and Membership.

Authentication Chaining

Federated Access Manager allows the configuration of an authentication process in which a user
must pass credentials to one or more authentication modules before session validation is
accomplished. This is called authentication chaining. Federated Access Manager uses the Java
Authentication and Authorization Service (JAAS) framework (integrated with the
Authentication Service) to implement authentication chaining. The JAAS framework validates
all user identifiers used during the authentication process, and maps them to one principal.
(The mapping is based on the configuration of the User Alias List attribute in the user's profile.)
If all the maps are correct, the session token is validated. If all the maps are not correct, the user
is denied a valid session token. Once authentication to all modules in the chain succeeds or fails,
control is returned to the Authentication Service from the JAAS framework.

You configure an authentication chain by realm, user, role, or service. Determining validation is
based upon the control flag configured for each authentication module instance defined in the
chain. The flags are:

Requisite Authentication to this module instance is required to succeed. If it succeeds,
authentication continues down the module instance list. If it fails, control
immediately returns to the application.

Chapter7 - Authentication and the Authentication Service 103

Early Access Documentation

Authentication Service Features

104

Required Authentication to this module instance is required to succeed. If any of the
required module instances defined in the chain fails, the whole authentication
chain will fail.

Sufficient ~ The module instance is not required to succeed. If it does succeed, control
immediately returns to the application (authentication does not proceed down
the module instance list). If it fails, authentication continues down the list.

Optional The module instance is not required to succeed. Whether it succeeds or fails,
authentication still continues to proceed down the module instance list.

Note - Role based authentication is only supported for use with the AM SDK data store. This
data store would come from an existing Sun Java System Access Manager 7.x installation or
would have been manually created.

For more information, see “Authentication Modules and Chains” in Sun Federated Access
Manager 8.0 Administration Guide. For an overview of the authentication module instances, see
“Authentication Modules” on page 106.

Fully Qualified Domain Name Mapping

Fully Qualified Domain Name (FQDN) mapping enables the Authentication Service to take
corrective action in the case where a user may have typed in an incorrect URL. This is necessary,
for example, when a user specifies a partial host name or IP address to access protected
resources. This feature can also be used to allow access to one instance of Federated Access
Manager using many different aliases. For example, you might configure one instance of
Federated Access Manager as intranet.example. com for employees and
extranet.example.com for partners. For more information, see “Fully Qualified Domain
Name Mapping” in Sun Federated Access Manager 8.0 Administration Guide.

Persistent Cookies

A persistent cookie is an information packet that is written to the user's hard drive and,
therefore, continues to exist after the web browser is closed. The persistent cookie enables a user
to log into a new browser session without having to reauthenticate. The Authentication Service
can be enabled to write persistent cookies rather than cookies that are written to a web browser's
memory. For more information, see “Persistent Cookie” in Sun Federated Access Manager 8.0
Administration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Service Features

Session Upgrade

The Authentication Service allows for the upgrade of a valid session based on a second,
successful authentication performed by the same user. If a user with a valid session attempts to
authenticate to a second resource secured under the realm to which he is currently
authenticated, and this second authentication request is successful, the Authentication Service
updates the session with the new properties based on the new authentication. If the
authentication fails, the current user session is returned without an upgrade. If the user with a
valid session attempts to authenticate to a resource secured in a different realm, the user will
receive a message asking whether the user would like to authenticate to the new realm. The user
can choose to maintain the current session, or can attempt to authenticate to the new realm.
Successful authentication will result in the old session being destroyed and a new one being
created. For more information, see “Session Upgrade” in Sun Federated Access Manager 8.0
Administration Guide.

Note - Successful authentication for session upgrade does not necessarily destroy the previous
session. If the subsequent AuthContext object is created with the constructor

AuthContext (SSOToken ssoToken, boolean forceAuth) when forceAuth is set to true, the
existing session will be used and a new session will not be created.

JAAS Shared State

The JAAS shared state enables sharing of both a user identifier and a password between
authentication module instances. Options are defined for each authentication module type by
realm, user, service and role. If an authentication fails with the credentials from the shared state,
the authentication module restarts the authentication process by prompting for its required
credentials. If it fails again, the module is marked failed. After a commit, an abort, or alogout,
the shared state will be cleared. For more information, see “JAAS Shared State” in Sun Federated
Access Manager 8.0 Administration Guide.

Security

From a security point of view, here are some general practices implemented in the
Authentication Service.

= SSLis strongly recommended to prevent the user credentials from being stolen through
passive network snooping.

= Thessigning and encryption of some user data is to prevent other software applications,
sharing the same system resources, from subverting it.

Chapter7 - Authentication and the Authentication Service 105

Early Access Documentation

Authentication Modules

= The main user entry points of the Authentication Service (Distributed Authentication User
Interface, Authentication XML Handler Interface for remote clients, the Authentication
Service User Interface) are protected by entry level validation of the size of the requested

data.

= Creation and modification of authentication configuration information is only allowed by
privileged Federated Access Manager administrators.

Authentication Modules

An authentication module is a plug-in that collects user information such as a user ID and
password, and compares the information against entries in a database. If a user provides
information that meets the authentication criteria, the user is validated and, assuming the
appropriate policy configuration, granted access to the requested resource. If the user provides
information that does not meet the authentication criteria, the user is not validated and denied
access to the requested resource. Federated Access Manager is deployed with a number of
authentication modules. Table 7-1 provides a brief description of each.

TABLE7-1 Authentication Service Modules

Authentication Module Name

Description

Active Directory

Uses an Active Directory operation to associate a user identifier and
password with a particular Active Directory entry. You can define
multiple Active Directory authentication configurations for a realm.
Allows both LDAP and Active Directory to coexist under the same
realm.

Anonymous

Enables a user to log in without specifying credentials. You can create
an Anonymous user so that anyone can log in as Anonymous without
having to provide a password. Anonymous connections are usually
customized by the Federated Access Manager administrator so that
Anonymous users have limited access to the server.

Certificate

Enables a user to log in through a personal digital certificate (PDC).
The user is granted or denied access to a resource based on whether or
not the certificate is valid. The module can optionally require the use
of the Online Certificate Status Protocol (OCSP) to determine the
state of a certificate.

Data Store

Enables authentication against one or more configuration data stores
within a realm.

106 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Modules

TABLE 7-1 Authentication Service Modules (Continued)

Authentication Module Name

Description

Federation

Used by the service provider during federation (using SAML v1.x,
SAML v2, WS-Federation, Liberty ID-FF) to create a session after
validating the assertion. This authentication module can not be
invoked like the other modules as it is invoked directly by the
SAMLAwareServlet.

HTTP Basic

Enables authentication to occur with no data encryption. Credentials
are validated internally using either the LDAP or Data Store
authentication module.

Java Database Connectivity (JDBC)

Enables authentication through any Structured Query Language
(SQL) databases that provide JDBC-enabled drivers. The SQL
database connects either directly through a JDBC driver or through a
JNDI connection pool.

LDAP

Enables authentication using LDAP bind, a directory server operation
which associates a user identifier and password with a particular
LDAP entry. You can define multiple LDAP authentication
configurations for a realm.

Membership

Enables user to self-register a user entry. The user creates an account,
personalizes it, and accesses it as a registered user without the help of
an administrator. Implemented similarly to personalized sites such as
my.site.comormysun.sun.com.

MSISDN

The Mobile Station Integrated Services Digital Network (MSISDN)
authentication module enables authentication using a mobile
subscriber ISDN associated with a device such as a cellular telephone.
It is a non-interactive module. The module retrieves the subscriber
ISDN and validates it against the user repository to find a user that
matches the number.

RADIUS

Uses an external Remote Authentication Dial-In User Service
(RADIUS) server to verify identities.

Security Assertion Markup Language

Receives and validates SAML assertions on a target server by using

(SAML) either a web artifact or a POST response.
P
SafeWord® Uses Secure Computing’s SafeWord PremierAccess™ server software
and SafeWord tokens to verify identities.
SecurID™ Uses RSA ACE/Server software and RSA SecurID authenticators to
verify identities.
UNIX® Solaris and Linux modules use a user’s UNIX identification and

password to verify identities.

Chapter7 - Authentication and the Authentication Service 107

Early Access Documentation

Authentication Types

TABLE7-1 Authentication Service Modules (Continued)
Authentication Module Name Description
Windows Desktop Single Sign-On Allows a user who has already authenticated with a key distribution
(SSO) center to be authenticated by Federated Access Manager without

having to provide the login information again. Leverages Kerberos
authentication and is supported wherever Kerberos is supported
(including Windows, Solaris, Linux, and Macintosh).

Windows NT Uses a Microsoft Windows NT™ server to verify identities.

You can use the Federated Access Manager console to enable and configure the authentication
modules. You can also create and configure multiple instances of a particular authentication
module. (An authentication module instance is a child entity that extends the schema of a parent
authentication module and adds its own subschema.) Finally, you can write your own custom
authentication module (or plug-in) to connect to the Federated Access Manager authentication
framework. See Chapter 4, “Managing Authentication,” in Sun Federated Access Manager 8.0
Administration Guide for detailed information about enabling and configuring default
authentication modules and authentication module instances. See Chapter 2, “Using the
Authentication Interfaces,” in Sun Federated Access Manager 8.0 Developer’s Guide for more
information about writing custom authentication modules.

Authentication Types

After granting or denying access to a resource, Federated Access Manager checks for
information about where to redirect the user. A specific order of precedence is used when
checking for this information. The order is based on whether the user was granted or denied
access to the protected resource, and on the type of authentication specified. When you install
Federated Access Manager, a number of authentication types are automatically configured.

Realm-based Authentication. User authenticates to a configured realm or
sub-realm.

Note - This authentication type is equivalent to
organization—based authentication. The query
parameters org and realm would both lead to
realm-based authentication in realm mode,
and organization-based authentication in
legacy mode.

Role-based Authentication. User authenticates to a configured role within a
realm or sub-realm. The user must possess the

108 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Types

Service-based Authentication.

User-based Authentication.

Authentication Level-based Authentication

Module-based Authentication.

Organization-based Authentication.

Chapter7 « Authentication and the Authentication Service

role. A static role is possessed when an attribute
is assigned to a specific user or container. A
filtered role is dynamically generated based on
an attribute contained in the user’s or
container’s entry. For example, all users that
contain a value for the employee attribute can
be included in a role named employees when
the filtered role is created.

Note - Role based authentication is only
supported for use with the AM SDK data store.
This data store would come from an existing
Sun Java System Access Manager 7.x
installation or would have been manually
created.

User authenticates to a specific service or
application registered to a realm or sub-realm.

User authenticates using an authentication
process configured specifically for him or her.

An administrator specifies the security level of
the authentication modules by defining each
with an authentication level. Successful
authentication to a higher authentication level
defines a higher level of trust for the user. Ifa
user attempts to access a service, the service can
determine if the user is allowed access by
checking the authentication level in the user's
session data. If the authentication level is not
high enough, the service redirects the user to go
through an authentication process with a set
authentication level.

Allows a user to specify the module to which
they will authenticate.

User authenticates to an organization or
sub-organization.

109

Early Access Documentation

Configuring for Authentication

Note - This authentication type is equivalent to
realm-based authentication. The query
parameters org and realm would both lead to
realm-based authentication in realm mode,
and organization-based authentication in
legacy mode.

For more information, see “Authentication Types” in Sun Federated Access Manager 8.0
Administration Guide.

Configuring for Authentication

110

The authentication framework includes the following places where you can configure for
authentication:

= “Core Authentication Module and Realm Configuration” on page 110
= “Authentication Configuration Service” on page 111
= “Login URLs and Redirection URLs” on page 111

Explanations of the authentication attributes can be found in the Online Help and the Part II,
“Configuration Attribute Reference,” in Sun Federated Access Manager Administration
Reference.

Core Authentication Module and Realm Configuration

The Core Authentication Module contains general authentication properties that can be
defined globally using the Federated Access Manager console (under the Configuration tab) or
more specifically for each configured realm (under the Access Control tab). Core
authentication properties are added and enabled for the top-level realm during installation. As
new realms are configured under the top-level realm, these properties (and the values defined
globally for them) are dynamically added to each new realm when it is created. Once added,
new values can be defined and configured values can be modified by the realm's administrator.
The values are then used if no overriding value is defined in the specified authentication module
instance or authentication chain. The default values for the Core Authentication Module are
defined in the amAuth. xml file and stored in the configuration data store. For more information,
see “General Authentication Properties” in Sun Federated Access Manager 8.0 Administration
Guide and the Part II, “Configuration Attribute Reference,” in Sun Federated Access Manager
Administration Reference.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Graphical User Interfaces

Authentication Configuration Service

The Authentication Configuration Service describes all the dynamic attributes for service-based
authentication. This service is used for configuring roles. When you assign a service to a role,
you can also assign other attributes such as a success URL or an authentication post-processing
class to the role. For more information, see “Role-based Authentication” in Sun Federated
Access Manager 8.0 Administration Guide.

Login URLs and Redirection URLs

In the last phase of the authentication process, Federated Access Manager either grants or
denies access to the user. If access is granted, Federated Access Manager uses a login URL to
display a page in the browser. If access is denied, Federated Access Manager uses a redirection
URL to display an alternate page in the browser. A typical alternate page contains a brief
message indicating the user has been denied access.

Each authentication type (as discussed in “Authentication Types” on page 108) uses a login
URL or redirection URL based on a specific order of precedence, and on whether the
authentication succeeded or failed. For a detailed description of how Federated Access Manager
proceeds through the order of precedence, see “Authentication Types” in Sun Federated Access
Manager 8.0 Administration Guide.

Authentication Graphical User Interfaces

The Federated Access Manager Authentication Service has two separate graphical user
interfaces that can be used. The following sections contain information on them.

= “Authentication Service User Interface” on page 111
= “Distributed Authentication User Interface” on page 113

Authentication Service User Interface

The Authentication Service implements a user interface that is separate from the Federated
Access Manager administration console. The Authentication Service user interface provides a
dynamic and customizable means for gathering authentication credentials. When a user
requests access to a protected resource, the Authentication Service presents a web-based login
page and prompts the user for the appropriate credentials based on the configured
authentication module or chain. Once the credentials have been passed back to Federated
Access Manager and authentication is deemed successful, the user may gain access to the
protected resource if authorized to do so. The Authentication Service user interface can be used
for the following:

Chapter7 - Authentication and the Authentication Service m

Early Access Documentation

Authentication Graphical User Interfaces

= Administrators can access the administration portion of the Federated Access Manager
console to manage their realm’s identity data.

= Users can access their own profiles to modify personal data.

= Auser can access a resource defined as a redirection URL parameter appended to the login
URL.

= A user can access the resource protected by a policy agent.

Below is a screen capture of the default Authentication Service user interface.

Sun fava”™ System Federated Access Manager

Triks vt v o ie-h Chal ENDos Sulher PEC QRO

Liwar Mame

Pt ol

| wegin. |

i Lhimh i mdages | ke Bem e

L 3 1 SR T

FIGURE7-2 Authentication Service User Interface

Federated Access Manager provides customization support for the Authentication Service user
interface. You can customize JavaServer Pages™ (JSP™) and the file directory level by

112 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Graphical User Interfaces

organization, service, locale, or client type. See Chapter 16, “Customizing the Authentication
User Interface,” in Sun Federated Access Manager 8.0 Developer’s Guide for more information.

Distributed Authentication User Interface

Federated Access Manager also provides a remote authentication user interface component to
enable secure, distributed authentication across two firewalls. A web browser communicates an
HTTP request to the remote authentication user interface which, in turn, presents the
appropriate module login page to the user. The web browser then sends the user login
information through a firewall to the remote authentication user interface which, in turn,
communicates through the second firewall with Federated Access Manager. The Distributed
Authentication User Interface enables a policy agent or an application that is deployed in a
non-secured area to communicate with the Federated Access Manager Authentication Service
installed in a secured area of the deployment. Figure 7-3 illustrates this scenario.

Chapter7 - Authentication and the Authentication Service 113

Early Access Documentation

Authentication Graphical User Interfaces

User’s Browser

—} Web Browser

Firewall
Application +
J2EE Container Acg:c:e"scsyl\‘ltl\zrg%er
Distributed
Authentication Access Manager
Service Interface Client APIs
Protected Resource .
Firewall
Authentication Service -

Web Service Interface
Component Logic
Framework

SPIs Access Manager
Plug-in Modules Information Tree

Access Manager Server Data Store

FIGURE7-3 Distributed Authentication Process

The Distributed Authentication User Interface uses a JATO presentation framework and is
customizable. (See screen capture in “Authentication Service User Interface” on page 111.) You
can install the Distributed Authentication User Interface on any servlet-compliant web
container within the non-secure layer of a Federated Access Manager deployment. The remote
component then works with the Authentication client APIs and authentication utility classes to
authenticate web users. For a more detailed process, see “User Authentication” on page 85. For
detailed installation and configuration instructions, see Chapter 6, “Deploying a Distributed
Authentication UI Server,” in Sun Federated Access Manager 8.0 Installation and Configuration
Guide.

114 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Authentication Service Programming Interfaces

Authentication Service Programming Interfaces

Federated Access Manager provides both Java APIs and C APIs for writing authentication
clients that remote applications can use to gain access to the Authenticate Service.
Communication between the APIs and the Authentication Service occurs by sending XML
messages over HT'TP(S). The Java and C APIs support all authentication types supported by the
browser-based user interface. Clients other than Java and C clients can use the XML/HTTP
interface directly to initiate an authentication request. Additionally, you can add custom
authentication modules to Federated Access Manager by using the service provider interface
(SPI) package, com. iplanet.authentication.spi. This SPTimplements the JAAS
LoginModule, and provides additional methods to access the Authentication Service and
module configuration properties files. Because of this architecture, any custom JAAS
authentication module will work within the Authentication Service. For more information, see
Chapter 2, “Using the Authentication Interfaces,” in Sun Federated Access Manager 8.0
Developer’s Guide and Federated Access Manager 8.0 Java API Reference.

Federated Access Manager also provides a Client SDK that can implement authentication logic
on a remote web server or application server. For information, see Chapter 1, “Enhancing
Remote Applications Using the Client Software Development Kit,” in Sun Federated Access
Manager 8.0 Developer’s Guide.

Chapter7 - Authentication and the Authentication Service 115

Early Access Documentation

116

Early Access Documentation

L K R 4 CHAPTER 8

Authorization and the Policy Service

The Sun Federated Access Manager Policy Service determines if a user has been given
permission by a recognized authority to access a protected resource. The process is referred to
as authorization. This chapter describes how the various parts of the Policy Service work
together to perform authorization. Topics covered include:

“Authorization and Policy Service Overview” on page 117
“Policy Types” on page 119

“Realms and Access Control” on page 122

“Policy Service Programming Interfaces” on page 123
“XACML Service” on page 123

Authorization and Policy Service Overview

A policy is a rule that defines who is authorized to access a resource. A single policy can define
authorization with either binary or non-binary decisions. (A binary decision is yes/no,
true/false or allow/deny. A non-binary decision represents the value of an attribute; for
example, a mail service might include a mailboxQuota attribute with a maximum storage value
set for each user.) In general, the Policy Service allows administrators to configure, modify, and
delete policies. The configured policies are then added to a realm and applied against the
subjects in the realm. The Policy Service can be accessed using the Policy Service API: a
privileged user can define access control policies using the administration API while a protected
application or policy agent can obtain policy decisions using the evaluation APIL The Policy
Service relies on:

= A Policy Administration Point (PAP) implements the functionality to define policies. The
Policy Service is the PAP.

= A Policy Enforcement Point (PEP) to protect an enterprise's resources by enforcing access
control. The PEP uses the policy component of the Client SDK to retrieve policy decisions.
The policy agent is the PEP.

117

Early Access Documentation

Authorization and Policy Service Overview

118

= A Policy Decision Point (PDP) to evaluate policy and make an access determination. The
Policy Service is the PDP.

= A data store in which configured policies are stored and from which they are retrieved. The
Configuration Data Store is the data store.

Access to aresource is always preceded by a basic user session in which the requestor is
authenticated, a session is created by the Authentication Service, and the session token
identifier is validated. (See Chapter 6, “Models of the User Session and Single Sign-On
Processes”) The policy agent protecting the resource then provides the session token identifier,
resource name, desired action, and additional context parameters to the Policy Service which
uses configured policies to determine if the user has been given permission to access the
protected resource by a recognized authority. When the policy agent gets the decision from the
Policy Service, it allows or denies access to the user, enforcing the policy decision provided by
Policy Service. This whole process is referred to as authorization. The Policy Service is defined
by the amPolicy.xml and, generally speaking:

= Provides a means for defining and managing access policies.

= Provides a means for defining custom policy plug-ins by providing names and class
locations.

= Evaluates access policies.

= ActsasaPDP to deliver the result of a policy evaluation.

= Supports the delegation of policy management.

= Provides an SPI for extensibility.

= Provides access from remote clients using the Client SDK.

= Caches and reuses policy decisions, where applicable, to improve performance.

= Allows periodic polling of the Policy Service by a client to update locally cached policy
decisions.

= Dynamically recognizes changes to policies and provides policy decisions that reflect them.

Note - The Policy Configuration Service provides a means to specify how policies are defined
and evaluated. It enables you to specify, for example, which directory to use for subject lookup,
the directory password, which search filters to use, and which subjects, conditions, and
response providers to use. This configuration can be done within a realm or a subrealm and is
accessible using the Federated Access Manager console.

See Chapter 5, “Managing Policies,” in Sun Federated Access Manager 8.0 Administration Guide
and Chapter 3, “Enforcing Authorization with the Policy Service,” in Sun Federated Access
Manager 8.0 Developer’s Guide for more information.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Policy Types

Policy Types

The Policy Service authorizes access to a user based on policies created and stored in the
Federated Access Manager configuration data store. The following sections contain
information on the two types of policies you can create.

= “Normal Policy” on page 119
= “Referral Policy” on page 122

For more information, see Chapter 5, “Managing Policies,” in Sun Federated Access Manager 8.0
Administration Guide.

Normal Policy

A normal policy specifies a protected resource and who is allowed to access it. The protected
resource can be anything hosted on a protected server. Examples of protected resources are
applications, document files, images, or the server itself. A normal policy consists of rules,
subjects, conditions, and response providers. The following sections contain information on
these elements.

= “Rules” on page 119

= “Subjects” on page 119

= “Conditions” on page 121

= “Response Providers” on page 122

Rules

A rule defines the policy itself by specifying a resource, one or more sets of an action, and values
for each action.

= A resource defines the specific object that is being protected. Examples of protected objects
are an HTML page on a web site, or a user’s salary information accessed using a human
resources service.

= Anaction is the name of an operation that can be performed on the resource. Examples of
web page actions are POST and GET. An allowable action for a human resources service
might be canChangeHomeTelephone.

= A value defines the permission for the action. Examples are allow anddeny.

Subjects

A subject specifies the user or collection of users that the policy affects. The following list of
subjects can be assigned to policies.

Access Manager Identity Subjects ~ The identities you create and manage under the Subjects
tab in a configured realm can be added as a value of the
subject.

Chapter8 - Authorization and the Policy Service 119

Early Access Documentation

Policy Types

120

Authenticated Users

Web Services Clients

Any user with a valid session (even if they have
authenticated to a realm that is different from the realm
in which the policy is defined) is a member of this subject.
This is useful if the resource owner would like to allow
access to users from other organizations. To restrict a
resource's access to members of a specific organization,
use the Organization subject.

This implies that a web service client (WSC) identified by
a session token identifier is a member of this subject — as
long as the distinguished name (DN) of any principal
contained in the session token identifier matches any
selected value of this subject.

The following list of subjects can only be specified after they are selected using the Policy
Configuration Service of the appropriate realm.

Federated Access Manager Roles

LDAP Groups

LDAP Roles

LDAP Users

Organization

Any member of a Federated Access Manager role is a
member of this subject. A Federated Access Manager role
is created using Federated Access Manager running in
legacy mode. These roles have object classes mandated by
Federated Access Manager and can only be accessed
through the hosting Federated Access Manager Policy
Service.

Note - This subject can be used when connected to an
AMSDK data store.

Any member of an LDAP group can be added as a value of
this subject.

Any LDAP role can be added as a value of this subject. An
LDAP Role is any role definition that uses the Sun Java
System Directory Server role capability. These roles have
object classes mandated by Directory Server role
definition. The LDAP Role Search filter can be modified in
the Policy Configuration Service to narrow the scope and
improve performance.

Any LDAP user can be added as a value of this subject.

Any member of a realm is a member of this subject.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Policy Types

Conditions

A condition specifies additional constraints that must be satisfied for a policy be applicable. For
example, you can define a condition to limit a user’s network access to a specific time period.
The condition might state that the subject can access the network only between 7:00 in the
morning and 10:00 at night. Federated Access Manager allows for the following list of

conditions.

Active Session Time

Authentication Chain

Authentication Level

Authentication Module Instance

IP Address/DNS Names

Current Session Properties

LDAP Filter Condition

Realm Authentication

Time

Sets a condition based on constraints configured for user
session time such as maximum session time.

The policy is applicable if the user has successfully
authenticated to the authentication chain in the specified
realm. If the realm is not specified, authentication to any
realm at the authentication chain will satisfy the
condition.

The Authentication Level attribute indicates the level of
trust for authentication. The policy is applicable if the
user's authentication level is greater than or equal to the
Authentication Level set in the condition, or if the user's
authentication level is less than or equal to the
Authentication Level set in the condition, depending on
the configuration.

The policy applies if the user has successfully
authenticated to the authentication module in the
specified realm. If the realm is not specified,
authentication to any realm at the authentication module
will satisfy the condition.

Sets a condition based on a range of IP Addresses, or a
DNS name.

Decides whether a policy is applicable to the request based
on values set in the user's Access Manager session.

The policy is applicable when the defined LDAP filter
locates the user entry in the LDAP directory that was
specified in the Policy Configuration service.

The policy applies if the user has authenticated to the
specified realm.

Sets the condition based on time constraints (time, day,
date, time zone).

Chapter8 - Authorization and the Policy Service 121

Early Access Documentation

Realms and Access Control

Response Providers

Response providers are plug-ins that provide policy response attributes. Policy response
attributes typically provide values for attributes in the user profile. The attributes are sent with
policy decisions to the PEP which, in turn, passes them in headers to an application. The
application typically uses these attributes for customizing pages such as a portal page. Federated
Access Manager includes one implementation of the
com.sun.identity.policy.interfaces.ResponseProvider class, the IDResponseProvider.
See Chapter 3, “Enforcing Authorization with the Policy Service,” in Sun Federated Access
Manager 8.0 Developer’s Guide for more information.

Referral Policy

A user with the Top—level Realm Administrator or Policy Administrator roles can create
policy. (A Realm Administrator or Policy Administrator configured for a specific realm have
permission to create policies only for resources delegated to that realm.) A referral policy
enables either administrator to delegate policy configuration tasks. A referral policy delegates
both policy creation and policy evaluation, and consists of one or more rules and one or more
referrals.

= A rule defines the resource of which policy creation or evaluation is being referred.

= A referral defines the identity to which the policy creation or evaluation is being referred.

Referral policies delegate policy management privileges to another entity such as a peer realm, a
subrealm, or even a third-party product. (You can implement custom referrals by using the
Policy APIs.) For example, assume a top-level realm exists named ISP. It contains two
subrealms: companyl and company2. The Top-Level Realm Administrator for ISP can delegate
policy management privileges so that a Realm Administrator in company1 can create and
manage policies only within thecompany1 realm, and a Realm Administrator in company2 can
create and manage policies only within the company2 realm. To do this, the Top-Level Realm
Administrator creates two referral policies, defining the appropriate realm in the rule and the
appropriate administrator in the referral. See “Creating Policies” in Sun Federated Access
Manager 8.0 Administration Guide for more information.

Realms and Access Control

122

When a user logs into an application, Federated Access Manager plug-ins retrieve all user
information, authentication properties, and authorization policies that the Federated Access
Manager framework needs to form a temporary, virtual user identity. The Authentication
Service and the Policy Service use this virtual user identity to authenticate the user and enforce
the authorization policies, respectively. All user information, authentication properties, and
authorization policies is contained within a realm. You create a realm when you want to apply

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

XACML Service

policies to a group of related subjects, services or servers. The Policy Configuration Service
within the realm provides a means to specify how policies are defined and evaluated. It enables
you to specify, for example, which directory to use for subject lookup, the directory password,
which search filters to use, and which subjects, conditions, and response providers to use. For
example, you can create a realm that groups all servers and services that are accessed regularly
by employees in one region. And, within that regional grouping realm, you can group all servers
and services accessed regularly by employees in a specific division such as Human Resources. A
configured policy might state that all Human Resources administrators can access the URL
http://HR.example.com/HRadmins/index.html. You might also add constraints to this
policy: it is applicable only Monday through Friday from 9:00 a.m. through 5:00 p.m. Realms
facilitate the delegation of policy management privileges. These configurations can be done
within a realm or a sub realm and is accessible using the Federated Access Manager console.

Note — Access control realms can be configured to use any supported user database.

Policy Service Programming Interfaces

Federated Access Manager provides both Java APIand C API for writing clients that remote
applications can use to administer policies and evaluate policy decisions. They are used to add,
lookup, modify or replace policies, and to evaluate policy decisions when a principal attempts
an action on a protected resource. Communication between the API and the Policy Service
occurs by sending XML messages over HTTP(S). Additionally, you can extend and customize
the Policy Service using the SPI. The classes are used by service developers and policy
administrators who need to provide additional policy features as well as support for legacy
policies. For example, you can develop customized plug-ins for creating custom policy subjects,
referrals, conditions, and response providers. Lastly, the Client SDK is provided to implement
policy evaluation logic on a remote web server or application server. For information, see
Chapter 1, “Enhancing Remote Applications Using the Client Software Development Kit,” in
Sun Federated Access Manager 8.0 Developer’s Guide, Chapter 3, “Enforcing Authorization with
the Policy Service,” in Sun Federated Access Manager 8.0 Developer’s Guide, the Sun Federated
Access Manager 8.0 C API Reference, and the Federated Access Manager 8.0 Java API Reference.

XACML Service

eXtensible Access Control Markup Language (XACML) is a markup language that provides an
XML syntax for defining policies (who can do what, where can it be done, and when), for
querying whether access to a protected resource can be allowed (requests), and for receiving
responses to those queries (decisions). XACML is built around the standard access control
separation of the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP) as
discussed in “Authorization and Policy Service Overview” on page 117 except you use XACML

Chapter8 - Authorization and the Policy Service 123

Early Access Documentation

XACML Service

124

formatted queries and responses. The XACML PEP is responsible for intercepting all access
requests, collecting the appropriate information (such as who is making the request, which
resource is being accessed, and what action is to be taken), and sending a request for a decision
to the XACML PDP. The XACML PDP (Federated Access Manager) evaluates configured
policies against the information in the decision request. It uses a Context Handler to request the
appropriate policies and attributes in order to render one of the following decisions.

= Permit
= Deny
= Not Applicable (no policy created by this PDP applies to the access request)

= Indeterminate (an error occurred that prevents the PDP from knowing the correct
response)

The following sections contain more information.

= “XACML in Federated Access Manager” on page 124
= “XACML Programming Interfaces” on page 127

XACML in Federated Access Manager

Federated Access Manager implements the SAML v2 Profile of XACML version 2.0 thus
supporting XACMLAuthzDecisionQuery and XACMLAuthzDecisionStatement. In a Federated
Access Manager XACML interaction, after receiving a request for access, the XACML PEP
makes a XACMLAuthzDecisionQuery request and receives a XACMLAuthzDecisionStatement
response that contains the decision. (The policies themselves are not returned.) The XACML
components on the client side include Client SDK interfaces for passing XACML requests and
receiving XACML responses as well as an interface to construct the communications.

Note - The framework relies internally on the Client SDK SAML v2 interfaces for
communication between the PEP and PDP, and includes an implementation of the SAML v2
request handler called the XACML2AuthzDecisionQueryHandler that plugs into the SAML v2
Service framework.

The XACML components on the Federated Access Manager side include out-of-the-box
implementations of XACML mappers for subjects, resources, actions and environment. These
implementations use the Policy Service to compute authorization decisions. Figure 8-1
illustrates how XACML and Federated Access Manager interact with each other. The
communications are explained more fully following the image.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

XACML Service

PEP | PDP
g B I § OB
5 % :‘E % _ %
Ig i |§ : — % =
a0 LR
2 " |
& L
| —4—!-‘_5*
| P S
| - kd
| . e
| & -
| - ol
j = i
| -;” P i N P A :
13 P12
= |
4 |

FIGURE8-1 XACML Process Flow

Chapter8 - Authorization and the Policy Service 125

Early Access Documentation

XACML Service

1. The policy agent protecting a resource constructs a XACML access request using the Client
SDK.

2. The Client SDK wraps the request in a XACMLAuthzDecisionQuery element and sends it to
the SAML v2 query processor on the local machine (also part of the Client SDK).

3. The SAML v2 query processor consults the metadata for the PEP and the PDP, sets
additional elements or attributes in the query, signs it (if necessary) and sends a SOAP
request containing the query to the PDP.

4. The SAML v2 request handler on the PDP side receives the request, consults the metadata
for the PEP and the PDP, verifies the trust relationships, enforces any signing or encryption
requirements, verifies the signature and forwards the query to the
XACMLAuthzDecisionQueryHandler.

5. The XACMLAuthzDecisionQueryHandler consults the appropriate metadata using the
entityID values of the PEP and PDP (included in the request) to find the correct mapper
implementations to use.

6. XACMLAuthzDecisionQueryHandler uses the Resource mapper to map the given Resource
to a resource and service configured with Federated Access Manager.

7. XACMLAuthzDecisionQueryHandler uses the Action mapper to map the given Action to an
action name configured with Federated Access Manager.

8. XACMLAuthzDecisionQueryHandler uses the Environment mapper to map the given
Environment to conditions configured with Federated Access Manager.

9. XACMLAuthzDecisionQueryHandler uses the Federated Access Manager policy evaluator to
get the policy decision.

10. XACMLAuthzDecisionQueryHandler uses the Result mapper to map the decision to an
XACML Result element.

Note - Federated Access Manager is not an XACML policy engine. It has no support for
XACML policies themselves and thus no support for retrieving the policies, only the
decision.

11. XACMLAuthzDecisionQueryHandler wraps the XACML Result in an XACML Response, the
XACML Response in an XACMLAuthzDecisionStatement, the
XACMLAuthzDecisionStatement ina SAML Assertion, the Assertion in a SAML Response,
and hands over the SAML Response to the SAML v2 request handler.

12. The SAML v2 request handler sets additional attributes and elements (based on the SAML
v2 protocol), signs it as required and returns it in a SOAP message to the PEP side.

13. The SAML v2 query processor verifies the trust relationships, the signing requirements, and
the signature as necessary. It then extracts the SAML Response from the SOAP message and
returns it to the XACML portion of the Client SDK.

126 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

XACML Service

14. The Client SDK extracts the XACML Response from the SAML v2 Response and returns it
(and the decision) to the client application.

XACML Programming Interfaces

Federated Access Manager provides Java API for using, and interacting with, the XACML
Service. For information, see Chapter 1, “Enhancing Remote Applications Using the Client
Software Development Kit,” in Sun Federated Access Manager 8.0 Developer’s Guide, Chapter 3,
“Enforcing Authorization with the Policy Service,” in Sun Federated Access Manager 8.0
Developer’s Guide, and the Federated Access Manager 8.0 Java API Reference.

Chapter8 - Authorization and the Policy Service 127

Early Access Documentation

128

Early Access Documentation

PART I11

Federation Management Using Federated
Access Manager

Sun Federated Access Manager provides a framework for implementing a federated
identity infrastructure, enabling single sign-on, provisioning users dynamically, and
sharing identity attributes across security domains. The chapters in this third part of the
Sun Federated Access Manager Technical Overview contains information on federation
management.

= Chapter 9, “What is Federation?”
= Chapter 10, “Federation Management with Federated Access Manager”
= Chapter 11, “Choosing a Federation Option”

129

Early Access Documentation

130

Early Access Documentation

L K R 4 CHAPTER 9

What is Federation?

Federation establishes a standards-based method for sharing and managing identity data and
establishing single sign-on across security domains and organizations. It allows an organization
to offer a variety of external services to trusted business partners as well as corporate services to
internal departments and divisions. Forming trust relationships across security domains allows
an organization to integrate applications offered by different departments or divisions within
the enterprise as well as engage in relationships with cooperating business partners that offer
complementary services. Towards this end, multiple industry standards, such as those
developed by the Organization for the Advancement of Structured Information Standards
(OASIS) and the Liberty Alliance Project, are supported. This chapter contains an overview of
federation.

= “The Concept of Federation” on page 131
= “The Concept of Trust” on page 133
= “How Federation Works” on page 133

The Concept of Federation

As a concept, federation encompasses both identity federation and provider federation.

= “Identity Federation” on page 131
= “Provider Federation” on page 132

Identity Federation

In one dictionary, identity is defined as “a set of information by which one person is definitively
distinguished” This information undoubtedly begins with the document that corroborates a
person's name: a birth certificate. Over time, additional information further defines different
aspects of an individual's identity. The composite of this data constitutes an identity with each

131

Early Access Documentation

The Concept of Federation

132

specific piece providing a distinguishing characteristic. Each of the following represents data
that designates a piece of a person's identity as it relates to the enterprise for which the data was
defined.

An address

A telephone number
One or more diplomas
A driver’s license

A passport

Financial institution accounts
Medical records
Insurance statements
Employment records
Magazine subscriptions
Utility bills

Because the Internet is now one of the primary vehicles for the types of interactions represented
by identity-defining information, people are creating online identities specific to the businesses
with which they are interacting. By creating a user account with an identifier and password, an
email address, personal preferences (such as style of music, or opt-in/opt-out marketing
decisions) and other information specific to the particular business (a bank account number or
ship-to address), a user is able to distinguish their account from others who also use the
enterprise’s services. This distinguishing information is referred to as a local identity because it
is specific to the service provider (a networked entity that provides one or more services to other
entities) for which it has been defined. Sending and receiving email, checking bank balances,
finalizing travel arrangements, accessing utility accounts, and shopping are just a few online
services for which a user might define a local identity. If a user accesses all of these services,
many different local identities have been configured. Considering the number of service
providers for which a user can define a local identity, accessing each one can be a
time-consuming and frustrating experiencing. In addition, although mostlocal identities are
configured independently (and fragmented across the Internet), it might be useful to connect
the information. For example, a user's local identity with a bank could be securely connected to
the same user's local identity with a utility company for easy, online payments. This virtual
phenomenon offers an opportunity for a system in which users can federate these local
identities. Identity federation allows the user to link, connect, or bind the local identities that
have been created for each service provider. The linked local identities, referred to as a federated
identity, allow the user to log in to one service provider site and click through to an affiliated
service provider without having to reauthenticate or reestablish identity; in effect, single
sign-on (SSO).

Provider Federation

Provider federation begins with a circle of trust. A circle of trust is a group of service providers
who contractually agree to exchange authentication information. Each circle of trust must
include at least one identity provider, a service provider that maintains and manages identity

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

How Federation Works

data, and provides authentication services. After the business contracts and policies defining a
circle of trust are in place, the specific protocols, profiles, endpoints, and security mechanisms
being used by each member is collected into a metadata document that is exchanged among all
other members of the circle. Federated Access Manager provides the tools necessary to integrate
the metadata and enable a circle of trust technologically. Authentication within this federation
is honored by all membered providers.

Note - The establishment of contractual trust agreements between providers is beyond the scope
of this guide. See “The Concept of Trust” on page 133 for an overview.

The Concept of Trust

Federating identities assumes existing trust relationships between participants. This trust is
usually defined through business arrangements or contracts that describe the technical,
operational, and legal responsibilities of each party and the consequences for not completing
them. When defined, a trust relationship allows one organization to trust the user
authentication and authorization decisions of another organization. This trust then enables a
user to log in to one site and, if desired, access a trusted site without reauthentication.

Ensure that trust agreements are in force before configuring circles of trust with Federated
Access Manager and going live. The Liberty Alliance Project has created a support document
for helping to establish these trust arrangements. The Liberty Trust Model Guidelines document
islocated on the Support Documents and Utility Schema Files page of the Liberty Alliance
Project web site.

How Federation Works

The goal of federation is to enable individuals and service providers to protect identity data
while conducting network transactions across secure domains. When organizations form a
trust agreement, they agree to exchange user authentication information using specific web
technologies. The trust agreement would be among multiple service providers that offer
web-based services to users and, at least, one identity provider (a service provider that maintains
and manages identity information). Once metadata (a particular provider's federation
configuration information) is exchanged and the trust is established technologically, single
sign-on can be enabled between all the included providers, and users may opt to federate their
multiple identities (depending on the protocol being used). In Federated Access Manager, the
trust agreement is virtually configured as a circle of trust using the console or command line
interface. A circle of trust contains providers (service providers or identity providers) that are
grouped together for the purpose of offering identity federation. Identity federation occurs
when a user chooses to unite distinct service provider and identity provider accounts while
retaining the individual account information with each provider. The user establishes a link

Chapter9 - Whatis Federation? 133

http://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

Early Access Documentation

How Federation Works

that allows the exchange of authentication information between provider accounts. Users can
choose to federate any or all identities they might have. After identity federation, when a user
successfully authenticates to one of the service providers, access to any of the federated accounts
within the circle of trust is allowed without having to reauthenticate. The following figure shows
the subjects involved in federation.

Acircle of trust is a group of providers that
have joined together to exchange
authentication information.

Principal
» Customer
* Employee
* Company

. . Service providers in the
Service Providers P

... N rp— authentication domain offer
« Portal complimentary services.
* Merchant
The principal has a defined ...

local identity with more than
one provider, and has the

option to federate them. Identity Provider

* Authentication
 Federation

* Profile

The identity provider is the center

of the authentication infrastructure.

It is a trusted entity that maintains
core attributes regarding the principal.

FIGURE9-1 Subjects Involved in an Identity Federation

= A principal can have a defined local identity with more than one provider, and it has the
option to federate the local identities. The principal might be an individual user, a group of
individuals, a corporation, or a component of the Liberty architecture.

= A service provider is a commercial or not-for-profit organization that offers a web-based
service such as a news portal, a financial repository, or retail outlet.

= Anidentity provider is a service provider that stores identity profiles and offers incentives to
other service providers for the prerogative of federating their user identities. Identity
providers might also offer services above and beyond those related to identity profile
storage.

= To support identity federation, all service providers and identity providers must join
together into a circle of trust. A circle of trust must contain at least one identity provider and
at least two service providers. (One organization may be both an identity provider and a
service provider.) Providers in a circle of trust must first write trust agreements to define
their relationships. A trust agreement is a contract between organizations that defines how
the circle will work. For more information, see “The Concept of Trust” on page 133.

134 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

How Federation Works

A travel portal is a good example of a circle of trust. Typically, a travel portal is a web site
designed to help you access various travel-related services from one location. The travel portal
forms a partnership with each service provider displayed on its web site. (This might include
hotels, airlines, and car rental agencies.) The user registers with the travel portal which, in effect,
is the identity provider for the circle of trust. After logging in, the user might click through to an
airline service provider to look for a flight. After booking a flight, the user might click through
to an accommodations service provider to look for a hotel. Because of the trust agreements
previously established, the travel portal shares authentication information with the airline
service provider, and the airline service provider with the accommodations service provider.
The user moves from the hotel reservations web site to the airline reservations web site without
having to reauthenticate. All of this is transparent to the user who must, depending on the
underlying federation protocol, choose to federate any or all local identities. The following
figure illustrates the travel portal example.

Chapter9 - Whatis Federation? 135

Early Access Documentation

How Federation Works

Airline 1 Airline 2

Cruise 1

(|
Identity m
h | Provider [

Hotel 1 m o

Rental 1

= =

Hotel 3 Car Rental 2

FIGURE9-2 Federation Within a Travel Portal

136 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L K R 4 CHAPTER 10

Federation Management with Federated
Access Manager

Sun Federated Access Manager provides a pluggable framework for implementing federated
identity infrastructures. The Federation framework places no restrictions on the use of network
technologies, computer hardware, operating systems, programming languages or other
hardware or software entities. It is based on, and conforms to, open industry standards to
achieve interoperability among different vendors on heterogeneous systems, and provides the
facility to log identity interactions and erroneous conditions. The following sections contain
information about the federation framework.

«
]

«
| |

Key Federation Management Features” on page 137
The Federation Framework Architecture” on page 142

Key Federation Management Features

Federated Access Manager creates a comprehensive security and identity management
framework optimized to work with, and extend, an identity provider's existing security
infrastructure. The following list describes some key features:

Exchange of credentials and security tokens across authentication domain partners for
purposes of authentication and single sign-on.

Automatic federation of user accounts across multiple security domains.

Session management across authentication domains to determine when user interactions
must be terminated (single logout).

Import or export the data required to establish basic federated communication between
providers.

Manages and links providers that are available to participate in a circle of trust.
Searches for available end points and identifies each provider's federation capabilities.
Exchanges SAML security assertions among providers in a circle of trust.

Data management choices include an LDAPv3 directory (OpenDS, Sun Java System
Directory Server or Microsoft Active Directory).

137

Early Access Documentation

Key Federation Management Features

138

= Included service provider interfaces (SPIs) to allow customized logic during the federation
process.

= Support for bulk federation and auto federation.

m Support for The Fedlet, a web archive (WAR) of data that can be embedded into a service
provider application.

= Support for Virtual Federation.

= Support for multiple federation protocols in one circle of trust.

The following sections contain additional information on the final three features listed.

= “The Fedlet” on page 138
= “Virtual Federation” on page 138
= “Multi-Federation Protocol Hub” on page 141

The Fedlet

Fedlet is the name given to fedlet.war. The WAR is a very small archive of a few JARs, a
keystore, and metadata (all stored in flat files) that can be embedded into a service provider's
Java EE web application to allow for SSO between an identity provider instance of Federated
Access Manager and the service provider application - WITHOUT installing Federated Access
Manager on the service provider side. The service provider simply downloads the Fedlet,
modifies their application to include the Fedlet JARs and, re-archives and redeploys the
modified application. The service provider is now able to accept an HTTP POST (that contains
a SAML v2 assertion) from the identity provider and retrieve included user attributes to
accomplish SSO. (Currently, the Fedlet only supports the HTTP POST Profile.). XXXXXX
LINK

Virtual Federation

Virtual Federation provides a mechanism for one application to communicate identity
information to a second application in a different domain. In essence, it provides a secure
gateway that enables legacy applications to communicate authentication attributes without
having to deal specifically with federation protocols and processing. Virtual Federation allows:

= Identity provider applications to push user authentication, profile and transaction
information to a local instance of Federated Access Manager which then passes the datato a
remote instance of Federated Access Manager at the service provider using federation
protocols.

= Service provider applications to consume the received information.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Key Federation Management Features

Virtual Federation uses SAML v2 to transfer identity data between the communicating entities.
The Client SDK (which contains Java and .NET interfaces) runs independent of Federated
Access Manager and enables existing applications to handle the SAML v2 interactions. The
following diagram illustrates this scenario.

-3

The following use cases are applicable to Virtual Federation:

FIGURE 10-1 Virtual Federation Architecture

“Authentication at Identity Provider” on page 139
“Virtual Federation at Identity Provider” on page 140
“Virtual Federation at Service Provider” on page 140
“Global Single Logout” on page 140

Authentication at Identity Provider

When a user is already authenticated within an enterprise, the legacy identity provider
application sends a secure HTTP GET/POST message to Federated Access Manager asserting
the identity of the user. Federated Access Manager verifies the authenticity of the message and

Chapter 10 - Federation Management with Federated Access Manager 139

Early Access Documentation

Key Federation Management Features

140

establishes a session for the authenticated user. You can use Virtual Federation to transfer the
user's authentication information to the local instance of Federated Access Manager in order to
create the session.

Virtual Federation at Identity Provider

When a user is already authenticated by, and attempts access to, a legacy identity provider
application, the legacy application sends a secure HTTP POST message to the local instance of
Federated Access Manager asserting the user's identity, and containing a set of attribute/value
pairs related to the user (for example, data from the persistent store representing certain
transactional states in the application). Federated Access Manager verifies the authenticity of
the message, establishes a session for the authenticated user, and populates the session with the
user attributes.

Virtual Federation at Service Provider

When a user is already authenticated by the instance of Federated Access Manager at the
identity provider and invokes an identity provider application that calls for redirection to a
service provider, the identity provider invokes one of the previous use cases and encodes a
SAML v2 SSO URL as a part of the request. The identity provider instance of Federated Access
Manager then initiates SAML v2 SSO with the instance of Federated Access Manager at the
service provider. The service provider's instance of Federated Access Manager then verifies the
SAML v2 assertion and included attributes, and redirects to the service provider application,
securely transferring the user attributes via a secure HT'TP POST message. The service provider
application consumes the attributes, establishes a session, and offers the service to the user.

Global Single Logout

When a user is already authenticated and has established, for example, SSO with the instance of
Federated Access Manager at the service provider, the user might click on a Global Logout link.
The identity provider will then invalidate its local session (if created) and trigger SAML v2
single log out by invoking a provided Federated Access Manager URL. The Federated Access
Manager identity provider executes the SAML v2 single log out, terminating the session on both
provider instances of Federated Access Manager.

Note - An identity provider side application can initiate single logout by sending
sun.cmd=logout attributes via a Virtual Federation interaction to a local instance of Federated
Access Manager acting as the identity provider. In turn, this instance will execute SAML v2
single logout based on the current session.

For more information, see XXXXXX LINK.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Key Federation Management Features

Multi-Federation Protocol Hub

Federated Access Manager allows a configured circle of trust to contain entities speaking
different federation protocols thus supporting cross protocol single sign-on and logout among
hosted identity providers in the same circle of trust. For example, you can create a circle of trust
containing one identity provider instance that communicates with multiple federation protocol
and three service provider instances that speak, respectively, Liberty ID-FE, SAML v2 and
WS-Federation. Figure 10-2 illustrates the process of multi-federation protocol single sign-on
and single logout.

User SAMLv2 ID-FF WS-Fed SAMLv2 ID-FF WS-Fed
Agent SP SP SP IDP IDP IDP
P 1. Setup|COT among all service and idenity prloviders -

P 2. SAML v2 Single Signton .
P 3. ID-FF(Single Sign-on .
P 4. WS-Federation Single Sign-on -
5. Initiate .
S:‘g'e Logout *| g SAML|v2 Single Logdut R
7. Call multi-federation protocol
SLO SPI for ID-FF
8. Invoke
. b 9. ID{FF Single Logout | /D-FF Logout” -
10. Call multi-federation
protocol SLO SPI for WS-Fed
11. Invoke N
WS-Fed llogout g
12. WS-Hed Single Logout
“-----|------q4----- < >
13. Destroy user session(s)
P 14. Single|Logout Status T
h |

FIGURE 10-2 Multi-Federation Protocol Single Sign-on and Single Logout

For more information, see XXXXXX LINK.

Chapter 10 - Federation Management with Federated Access Manager

141

Early Access Documentation

The Federation Framework Architecture

The Federation Framework Architecture

142

Federated Access Manager consists of web-based services [using SOAP, XML over HTTP(S) or
HTML over HTTP(S)], and Java—based application provider interfaces (APIs) and service
provider interfaces (SPIs). The figure below illustrates this architecture. Additionally, the figure
shows an agent embedded into a web container. This agent enables the service provider
applications to participate in the SAML or Liberty-based protocols. The darker boxes are
components provided by Federated Access Manager.

IDP WSC/WSP SAML Partner

I I I J2EE Container

(Service Provider)

Service Provider
Application

J2EE WAR file

Active
Directory

Directory
Server

FIGURE 10-3 Federation Framework Architecture

The components include:

SAML Service Provides SAML related services (versions 1.x and 2.0) including artifact
and POST profile support, and assertion query support.

Federation Services ~ Provides services based on federation specifications. Features include
federation and single sign-on, single logout, federation termination,
name registration, and support for the Common Domain.
Implemented web services include a SOAP binding service, a discovery
service, a personal profile service, and an authentication service.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

The Federation Framework Architecture

Authentication

Session

Logging

APIs

SPIs

Federated Access Manager provides a JAAS-based authentication
framework.

Federated Access Manager provides session management for service
provider applications.

Federated Access Manager provides a logging service. It also provides
activity logs for auditing. Audit logs can be stored in flat files or
JDBC-compliant databases.

Includes a set of APIs for interaction between the SSO, logging, SAML,
federation, and authentication components. Also included are APIs to
build web services for clients and providers.

Includes a set of Service Provider Interfaces (SPIs) into which
applications can insert their custom logic. For instance, there is an SPI
to do post federation processing, and an SPI for post processing after a
successful single logout.

Chapter 10 - Federation Management with Federated Access Manager 143

Early Access Documentation

144

Early Access Documentation

L R 2 4 CHAPTER 11

Choosing a Federation Option

Sun Federated Access Manager supports multiple federation standards, such as those developed
by the Organization for the Advancement of Structured Information Standards (OASIS) and
the Liberty Alliance Project. This chapter contains information on these federation options.

“Federation Options” on page 145
“Using SAML” on page 146

“Using the Liberty ID-FF” on page 154
“Using WS-Federation” on page 164

Federation Options

Federation is used to solve the problem of cooperation across heterogeneous, autonomous
environments. In the beginning, federation meant using the Liberty Alliance Project Identity
Federation Framework (Liberty ID-FF). Since then, other specifications have been developed
with which federation can be accomplished including the Security Assertion Markup Language
(SAML) and WS-Federation. To get started, use SAML v2 whenever possible as it supersedes
both the Liberty ID-FF and SAML v1.x specifications. SAML v1.x was designed to address the
issue of cross-domain single sign-on. It does not solve issues such as privacy, single logout, and
federation termination. The Liberty Alliance Project was formed to develop technical
specifications that would solve business process issues including single sign-on, account linking
and consent, among others.

The SAML v1.x specifications and the Liberty Alliance Project specifications do not compete
with one another. They are complementary. In fact, the Liberty Alliance Project specifications
leverage profiles from the SAML specifications. The decision of whether to use SAML v1.x or
the Liberty specifications depends on your goal. In general, SAML v1.x should suffice for single
sign-on basics. The Liberty Alliance Project specifications can be used for more sophisticated
functions and capabilities, such as global sign-out, attribute sharing, web services. The
following table compares the benefits of the two.

145

Early Access Documentation

Using SAML

TABLE11-1 Comparison of the SAML v1.x and Liberty Alliance Project Specifications

SAMLV1.x Uses Liberty Alliance Project Uses
Cross-domain single sign-on Single sign-on only after user federation
No user federation User federation

No privacy control, best for use within one company Built on top of SAML

User identifier is sent in plain text User identifier is sent as a unique handle

Note - Federated Access Manager has appropriated the terms from the Liberty ID-FF for all
federation protocol implementations in the Federated Access Manager console.

The Liberty ID-FF and SAML v1.x should only be used when integrating with a partner that is
not able to use SAML v2. If you are deploying Federated Access Manager with Microsoft Active
Directory with Federation Services, you must use WS-Federation. More information on these
options can be found in the following sections:

= “Using SAML” on page 146
= “Using the Liberty ID-FF” on page 154
= “Using WS-Federation” on page 164

Using SAML

SAML defines an XML-based framework for exchanging identity information across security
domains for purposes of authentication, authorization and single sign-on. It was designed to be
used within other specifications (the Liberty Alliance Project, the Shibboleth project, and the
Organization for the Advancement of Structured Information Standards have all adopted
aspects of SAML) although the latest release (SAML v2) has incorporated back into the
framework elements from the specifications developed by those very same organizations. The
SAML specifications consist of a number of components, illustrated by Figure 11-1.

146 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using SAML

PROFILES
How SAML protocols, bindidgsr asserttombine to support a defined usg|

BINDINGS
How SAML protocols map omemdard messagymgmmunication protodols.

FIGURE 11-1 Components of the SAML Specifications

The SAML specification defines the assertion security token format as well as profiles that
standardize the HTTP exchanges required to transfer XML requests and responses between an
asserting authority and a trusted partner. An assertion is a package of verified security
information that supplies one or more statements concerning a principal’s authentication
status, access authorization decisions, or identity attributes. (A person identified by an email
address is a principal as might be a printer.) Assertions are issued by an asserting authority (a
platform or application that declares whether a subject has been authenticated into its system),
and received by relying parties (partner sites defined by the authority as trusted). Asserting
authorities use different sources to configure assertion information, including external data
stores or assertions that have already been received and verified.

The most recent SAML v2 specifications are defined more broadly than those developed for
SAML v1.x — with particular attention paid to functionality dealing with federation. Before
SAML v2 was introduced, SAML v1.x was simply a way to exchange identity data. In fact, up to
version 1.1, the Liberty Alliance Project Identity Federation Framework (Liberty ID-FF) was
developed using the SAML 1.0 specification. Liberty ID-FF version 1.2 was also developed using
the SAML v1.1 specification. But, following the release of version 1.2, the Liberty ID-FF was

Chapter 11 « Choosing a Federation Option 147

Early Access Documentation

Using SAML

148

incorporated into the SAML v2 specification. Additionally, SAML v2 adds components of the
Shibboleth initiative. Thus, SAML v2 is a major revision, providing significant additional
functionality and making the previous versions of SAML incompatible with it. Going forward,
SAML v2 will be the basis on which Federated Access Manager implements federation.

Figure 11-2 illustrates the convergence.

SAML v1.0 —p SAML v1.1 p{ SAML v2.0

| 5
— v }

Liberty v1.0 —»| Liberty ID-FF v1.1 —»| Liberty ID-FF v1.2

FIGURE11-2 Liberty ID-FF and SAML Convergence

Note - For more information on this convergence (including how the Shibboleth Project was
also integrated), see the Federation section of Strategic Initiatives on the Liberty Alliance
Project web site.

More information on the SAML implementations can be found in the following sections).

= “About SAML v2” on page 148
= “About SAML v1.x” on page 152
= “Using SAML or Federated Access Manager CDSSO” on page 153

Caution - SAML v1.x and SAML v2 assertions and protocol messages are incompatible.

About SAML v2

Federated Access Manager delivers a solution that allows businesses to establish a framework
for sharing trusted information across a distributed network of partners using the
standards-based SAML v2. Towards this end, HTTP(S)-based service endpoints and SOAP
service endpoints are supplied as well as assertion and protocol object manipulating classes. A
web browser can access all HTTP(S)-based service endpoints and an application can make use
of the SOAP endpoints and API as long as metadata for each participating business on BOTH
sides of the SAML v2 interaction is exchanged beforehand.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://www.projectliberty.org/liberty/strategic_initiatives/federation

Early Access Documentation
Using SAML

Figure 11-3 illustrates the SAML v2 framework which consists of web-based services [using
SOAP, XML over HTTP(S) or HTML over HTTP(S)], and Java™-based application provider
interfaces (API) and service provider interfaces (SPI). Additionally, the figure shows an agent
embedded into a web container in which a service provider application is deployed. This agent
enables the service provider to participate in the SAML v1.x or Liberty ID-FF protocols.

SAML Vv2HTTP(S) SAML v2 SOAP
Assertion Consumer Single Sign-on)
Service (HTTP) Service (HTTP)
. d
» - |
Single Logout Manage Name ID
Service (HTTP or SOAP Service (HTTP or SOAP
SAML v2 SDK
SAML v2 Service ProviderrImtes
SAML v2 e -
CLI Account Mapper|| Attribute Mappgl] |
Context Mappe
SAML v2 Metadata/COT || SAML v2Auth Module
XML XML Datastore] Service e ——— Poli
Signing||Encryptipph SPI Management uthenticaty oLicy
A Persistent
Name ID
v
o | Agents Audit |
v Applicatjon Log -~
D Components Supplied byS&ME v2 Plug-in for ReldmraServicep
D Components SuppliedAbgess Manager or FedemaMamager
D External Components

FIGURE 11-3 SAML v2 Architecture

The following sections contain more information about the SAML v2 framework.

= “Key Features” on page 150
= “Administration” on page 150
= “Application Programming Interfaces” on page 151

Chapter 11 « Choosing a Federation Option 149

Early Access Documentation

Using SAML

= “Service Provider Interfaces” on page 151
= “JavaServer Pages” on page 152

Key Features
The key features of SAML v2 in Federated Access Manager include:

= Single sign-on using the POST profile, the Artifact binding (also referred to as HTTP
redirect), and unsolicited responses (initiated by the identity provider)

= Singlelogout using HTTP redirect and SOAP binding
= Federation termination using HTTP redirect and SOAP binding

= Auto-federation (automatic linking of service provider and identity provider user accounts
based on a common attribute)

= Bulk federation

= Dynamic creation of user accounts

= One time federation (transient NameID format for SSO)

= Basic Authentication, SSL and SSL with client authentication for SOAP binding security
= SAML v2 authentication

= Identity provider discovery

= XML verification, signing, encryption and decryption

= Profile initiation and processing using included JavaServer Pages™ (JSP™)

= Load balancing support

= Assertion failover

= XACML profile for authorization

Note - See “XACML Service” on page 123 for more information.

= Protocol coexistence with the SAML v1.x and the Liberty ID-FF

Administration

In order to communicate using the SAML v2 profiles you need, at least, two instances of
Federated Access Manager. One instance will act for the identity provider and the other will act
for the service provider. Name identifiers are used to communicate regarding a user.

150 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using SAML

Note - SAML v2 single sign-on interactions support both persistent and transient identifiers. A
persistent identifier is saved to a particular user entry as the value of two attributes. A transient
identifier is temporary and no data will be written to the user's data store entry.

To prepare your instances for SAML v2 interactions, you need to exchange a particular
provider's configuration information or metadata between all participating identity and service
providers, and assemble the providers into a circle of trust. Utility APIs can then be used to
communicate with the data store, reading, writing, and managing the relevant properties and
property values. For more information see the Chapter 10, “SAMLv2 Administration,” in Sun
Federated Access Manager 8.0 Administration Guide.

Application Programming Interfaces

The SAML v2 framework contains API that can be used to construct and process assertions,
requests, and responses. The SAML v2 Java API packages include:

= Thecom.sun.identity.saml2.assertion package provides interfaces to construct and
process SAML v2 assertions. It also contains the AssertionFactory, a factory class used to
obtain instances of the objects defined in the assertion schema.

= The com.sun.identity.saml2.common package provides interfaces and classes used to
define common SAML v2 utilities and constants.

= The com.sun.identity.saml2.protocol package provides interfaces used to construct
and process the SAML v2 requests and responses. It also contains the ProtocolFactory, a
factory class used to obtain object instances for concrete elements in the protocol schema.

More information can be found in “Using the SAML v2 SDK” in Sun Federated Access
Manager 8.0 Developer’s Guide and the Federated Access Manager 8.0 Java API Reference.

Service Provider Interfaces

The com.sun.identity.saml2.plugins package provides pluggable interfaces to implement
SAML v2 functionality into your application. Default implementations are provided, buta
customized implementation can be plugged in by modifying the corresponding attribute in the
provider's extended metadata configuration file. The interfaces include mappers for:

= Account mapping (map between the account referred to in the incoming request and the
local user account)

= Attribute mapping (specifies which set of user attributes in an identity provider user account
needs to be included in an assertion, and maps the included attributes to attributes in the
user account defined by the service provider)

= Authentication context mapping (map between Authentication Contexts defined in the
SAML v2 specifications and authentication framework schemes defined in Federated Access
Manager (user/module/service/role/level based authentication)

Chapter 11 « Choosing a Federation Option 151

Early Access Documentation

Using SAML

152

More information can be found in “Service Provider Interfaces” in Sun Federated Access
Manager 8.0 Developer’s Guide and the Federated Access Manager 8.0 Java API Reference.

JavaServer Pages

The SAML v2 framework provides JSP that can be used to initiate single sign-on, single logout
and termination requests from either the identity provider or the service provider using a web
browser. The JSP accept query parameters to allow flexibility in constructing SAML v2 requests;
they can be modified for your deployment. More information can be found in “JavaServer
Pages” in Sun Federated Access Manager 8.0 Developer’s Guide.

About SAML v1.x

Federated Access Manager can be configured to use SAML v1.x to achieve interoperability
between vendor platforms that provide SAML v1.x assertions. Assertions are issued by a SAML
vl.x asserting authority (a platform or application that declares whether a subject has been
authenticated into its system), and received by relying parties (partner sites defined by the
authority as trusted). SAML v1.x authorities use different sources to configure the assertion
information, including external data stores or assertions that have already been received and
verified. SAML v1.x can be used to allow Federated Access Manager to:

= Authenticate users and access trusted partner sites without having to reauthenticate; in
effect, single sign-on.

= Actasa policy decision point (PDP), allowing external applications to access user
authorization information for the purpose of granting or denying access to their resources.
For example, employees of an organization can be allowed to order office supplies from
suppliers if they are authorized to do so.

= Actasboth an attribute authority that allows trusted partner sites to query a subject’s
attributes, and an authentication authority that allows trusted partner sites to query a
subject’s authentication information.

= Validate parties in different security domains for the purpose of performing business
transactions.

= Build Authentication, Authorization Decision, and Attribute Assertions using the SAML
v1l.x APL

= Permit an XML-based digital signature signing and verifying functionality to be plugged in.

Note - Although Liberty ID-FF (as described in “Using the Liberty ID-FF” on page 154)
integrates aspects of the SAML v1.x specifications, its usage of SAML v1.x is independent of the
SAML v1.x framework as described in this section.

Figure 11-4 illustrates how SAML v1.x interacts with the other components in Federated
Access Manager.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using SAML
[] ® A O A
>
(0]
>
3
P =]
o
a] 5|E
® A ® A ® A 1
o ol
€ & 22 &
gl £ 28 g
1))
m 8 1] I 2 8 g g
G} £ o) 5 g © sl < 3sE <
T @ o E El 9 = <(J
= < gl < < z 5
=
2
v L VvV ©¢6 V.6 V 6 V o
SAML SAML SAML
Post Profile Aware Servlet SOAP Receiver
Servlet
v JAXM SOAP Provider

SAML API

Policy Identity

SSO APl AuthN APl Service API

API Repo API

The lighter-shaded boxes are components of the SAML module.

FIGURE 11-4 SAML v1.x Interaction in Federated Access Manager

Using SAML or Federated Access Manager CDSSO

Cross Domain Single Sign On (CDSSO) is a proprietary mechanism from Sun Federated Access
Manager, designed before SAML and the Liberty Alliance Project specifications existed. CDSSO
is still available and, in certain cases, is easier to set up and manage than the latter two
specifications — which solve a broader set of SSO issues than CDSSO. CDSSO requires all
policy agents to be configured to use a single Federated Access Manager server. This means only
one user identity can exist in the entire system whereas, when using SAML/Liberty Alliance

Chapter 11 « Choosing a Federation Option 153

Early Access Documentation

Using the Liberty ID-FF

Project, user identities can exist on multiple systems (service providers or identity providers).
Because of the single identity in CDSSO interactions, issues such as account mapping, attribute
flow and session synchronization are not relevant thus, if you need to implement these features,
use SAML. If the following points are valid to your planned deployment, CDSSO may be a
simpler and more suitable solution than SAML/Liberty Alliance Project:

= Only Sun Federated Access Manager and Sun policy agents are involved.

= Sun policy agents are configured to use the same Federated Access Manager infrastructure
where multiple instances can exist.

= Federated Access Manager uses a single user identity store.

= Multiple instances of Federated Access Manager (configured for high-availability) must
reside in a single DNS domain. Only policy agents can reside in different DNS domains.

For more information on CDSSO, see Chapter 6, “Models of the User Session and Single
Sign-On Processes”

Using the Liberty ID-FF

154

The Liberty Alliance Project was formed to develop technical specifications that would solve
business process issues including single sign-on, federation and consent. The Liberty Alliance
Project Identity Federation Framework (Liberty ID-FF) uses a name identifier to pass identity
data between identity providers and service providers. The name identifier is a randomly
generated character string that is assigned to a principal and used to federate the principal's
accounts at the identity provider and service provider sites. This pseudonym allows all
providers to identify a principal without knowing the user's actual identity. The name identifier
has meaning only in the context of the relationship between providers. SAML v1.x is used for
provider interaction.

Note - Liberty ID-FF was initially defined as an extension of SAML 1.0 (and later SAML 1.1).
The extensions have now been contributed back into SAML v2 which, going forward, will be
the basis on which the Liberty Alliance Project builds additional federated identity applications.
See “Using SAML” on page 146 for more information on this convergence.

The following sections contain information about the Liberty ID-FF and the features
implemented in Federated Access Manager.

= “Liberty ID-FF Features” on page 155
= “About the Liberty ID-FF Process” on page 161

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using the Liberty ID-FF

Liberty ID-FF Features

The following sections contain information about the Liberty ID-FF features implemented in
Federated Access Manager.

= “Federated Single Sign-On” on page 155

= “Authentication and Authentication Context” on page 157

= “The Common Domain for Identity Provider Discovery” on page 159
= “Identifiers and Name Registration” on page 160

= “Global Logout” on page 161

“Dynamic Identity Provider Proxying” on page 161

Federated Single Sign-On

Let's assume that a principal has separate user accounts with a service provider and an identity
provider in the same circle of trust. In order to gain access to these individual accounts, the
principal would authenticate with each provider separately. If federating with the Liberty ID-FF
though, after authenticating with the service provider, the principal may be given the option to
federate the service provider account with the identity provider account. Consenting to the
federation of these accounts links them for SSO, the means of passing a user's credentials
between applications without the user having to reauthenticate. SSO and federated SSO have
different processes. With Federated Access Manager, you can achieve SSO in the following
ways:

= Install a policy agent in a web container to protect the application and pass the HTTP_HEADER
and REMOTE_USER variables to the application to capture the user credentials. You may or
may not need a custom authentication module.

= Customize the application's authentication module to create an SSOToken from the request
object or from the SSO cookie. Afterwards, retrieve the user credentials using the SSO API
and create a session data structure using the application's API.

To set up federated SSO, you must first establish SSO. Following that, enable federation in the
metadata for the service provider entity and the identity provider entity using Federated Access
Manager. Liberty ID-FF providers differentiate between federated users by defining a unique
identifier for each account. (They are not required to use the principal's actual provider account
identifier.) Providers can also choose to create multiple identifiers for a particular principal.
However, identity providers must create one handle per user for service providers that have
multiple web sites so that the handle can be resolved across all of them.

Chapter 11 « Choosing a Federation Option 155

Early Access Documentation

Using the Liberty ID-FF

156

Note - Because both the identity provider entity and the service provider entity in a federation
need to remember the principal's identifier, they create entries that note the value in their
respective user repositories. In most scenarios, the identity provider's identifier is conveyed to a
service provider and not visa versa. For example, if a service provider does not maintain its own
user repository, the identity provider's identifier is used.

Federated Access Manager can accommodate the following SSO and federation-related
functions:

= Providers of either type notify the principal upon identity federation or defederation.
= Providers of either type notify each other regarding a principal's defederation.

= Identity providers notify the appropriate service providers regarding a principal's account
termination.

= Providers of either type display a list of federated identities to the principal.

m Users can terminate federations or defederate identities.

Additionally, Federated Access Manager can accommodate the federation features explained in
the following sections.

= “Auto-Federation” on page 156
= “Bulk Federation” on page 156

Auto-Federation

Auto federation will automatically federate a user's disparate provider accounts based on a
common attribute. During SSO, if it is deemed a user at provider A and a user at provider B
have the same value for the defined common attribute (for example, an email address), the two
accounts will be federated without consent or interaction from the principal. For more
information, see “Auto-Federation” in Sun Federated Access Manager 8.0 Administration Guide.

Bulk Federation

Federating one user's service provider account with their identity provider account generally
requires the principal to visit both providers and link them. An organization though needs the
ability to federate user accounts behind the scenes. Federated Access Manager provides a script
for federating user accounts in bulk. The script allows the administrator to federate many (or
all) of a principal's provider accounts based on metadata passed to the script. Bulk federation is
useful when adding a new service provider to an enterprise so you can federate a group of
existing employees to the new service. For more information, see “Bulk Federation” in Sun
Federated Access Manager 8.0 Administration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using the Liberty ID-FF

Authentication and Authentication Context

SSO is the means by which a provider of either type can convey to another provider that a
principal has been authenticated. Authentication is the process of validating user credentials;
for example, a user identifier accompanied by an associated password. You can authenticate
users with Federated Access Manager in the following ways:

= Useapolicy agent to insert HTTP header variables into the request object. This functions
for web applications only.

= Use the authentication API to validate and retrieve user identity data. This will work with
either web or non-web applications.

Identity providers use local (to the identity provider) session information mapped to a user
agent as the basis for issuing SAML authentication assertions to service providers. Thus, when
the principal uses a user agent to interact with a service provider, the service provider requests
authentication information from the identity provider based on the user agent's session
information. If this information indicates that the user agent's session is presently active, the
identity provider will return a positive authentication response to the service provider.
Federated Access Manager allows providers to exchange the following minimum set of
authentication information with regard to a principal.

= Authentication status (active or not)

® [Instant (time authenticated)

= Authentication method

= Pseudonym (temporary or persistent)

SAML v1.x is used for provider interaction during authentication but not all SAML assertions
are equal. Different authorities issue SAML assertions of different quality. Therefore, the
Liberty ID-FF defines how the consumer of a SAML assertion can determine the amount of
assurance to place in the assertion. This is referred to as the authentication context, information
added to the SAML assertion that gives the assertion consumer the details they need to make an
informed entitlement decision. For example, a principal uses a simple identifier and a
self-chosen password to authenticate to a service provider. The identity provider sends an
assertion to a second service provider that states how the principal was authenticated to the first
service provider. By including the authentication context, the second service provider can place
an appropriate level of assurance on the associated assertion. If the service provider were a
bank, they might require stronger authentication than that which has been used and respond to
the identity provider with a request to authenticate the user again using a more stringent
context. The authentication context information sent in the assertion might include:

= Theinitial user identification mechanism (for example, face-to-face, online, or shared
secret).

= The mechanisms for minimizing compromise of credentials (for example, private key in
hardware, credential renewal frequency, or client-side key generation).

= The mechanisms for storing and protecting credentials (for example, smart card, or
password rules).

Chapter 11 « Choosing a Federation Option 157

Early Access Documentation

Using the Liberty ID-FF

= The authentication mechanisms (for example, password or smart card with PIN).

The Liberty ID-FF specifications define authentication context classes against which an identity
provider can claim conformance. The Liberty ID-FF authentication contexts are listed and
described in the following table.

TABLE11-2 Authentication Context Classes

Class Description

MobileContract Identified when a mobile principal has an identity for which
the identity provider has vouched.

MobileDigitalID Identified by detailed and verified registration procedures, a
user's consent to sign and authorize transactions, and
DigitalID-based authentication.

MobileUnregistered Identified when the real identity of a mobile principal has
not been strongly verified.

Password Identified when a principal authenticates to an identity
provider by using a password over an unprotected HTTP
session.

Password-Protected Transport Identified when a principal authenticates to an identity

provider by using a password over an SSL-protected session.

Previous-Session Identified when an identity provider must authenticate a
principal for a current authentication event and the
principal has previously authenticated to the identity
provider. This affirms to the service provider a time lapse
from the principal's current resource access request.

Note - The context for the previously authenticated session is
not included in this class because the user has not
authenticated during this session. Thus, the mechanism that
the user employed to authenticate in a previous session
should not be used as part of a decision on whether to now
allow access to a resource.

Smartcard Identified when a principal uses a smart card to authenticate
to an identity provider.

Smartcard-PKI Identified when a principal uses a smart card with an
enclosed private key and a PIN to authenticate to an identity
provider.

Software-PKI Identified when a principal uses an X.509 certificate stored

in software to authenticate to the identity provider over an
SSL-protected session.

158 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using the Liberty ID-FF

TABLE 11-2 Authentication Context Classes (Continued)
Class Description
Time-Sync-Token Identified when a principal authenticates through a time
synchronization token.

For more information, see the Liberty ID-FF Authentication Context Specification and .
Additionally, there is an XML schema defined which the identity provider authority can use to
incorporate the context of the authentication in the SAML assertions it issues.

The Common Domain for Identity Provider Discovery

Service providers need a way to determine which identity provider in a circle of trust is used by
a principal requesting authentication. Because circles of trust are configured without regard to
their location, this function must work across DNS-defined domains. A common domain is
configured, and a common domain cookie written, for this purpose.

Let's suppose a circle of trust contains more than one identity provider. In this case, a service
provider trusts more than one identity provider so, when a principal needs authentication, the
service provider with which the principal is communicating must have the means to determine
the correct identity provider. To ascertain a principal’s identity provider, the service provider
invokes a protocol exchange to retrieve the common domain cookie, a cookie written for the
purpose of introducing the identity provider to the service provider. If no common domain
cookie is found, the service provider will present a list of trusted identity providers from which
the principal can choose. After successful authentication, the identity provider writes (using the
configured Writer Service URL) a common domain cookie and, the next time the principal
attempts to access a service, the service provider finds and reads the common domain cookie
(using the configured Reader Service URL), to determine the identity provider. More
information on the Common Domain for Identity Provider Discovery is available in the
following sections, and in “Common Domain Services for Federation Management” in Sun
Federated Access Manager 8.0 Administration Guide.

= “The Common Domain” on page 159
= “The Common Domain Cookie” on page 160
= “The Writer Service and the Reader Service” on page 160

The Common Domain

The common domain is established for use only within the scope of identity provider discovery
in a defined circle of trust. In Federated Access Manager deployments, the identity provider
discovery WAR is deployed in a web container installed in a predetermined and preconfigured
common domain so that the common domain cookie is accessible to all providers in the circle of
trust. For example, if an identity provider is available at http: //www.Bank. com, a service
provider is available at http: //www.Store. com, and the defined common domain is
RetailGroup.com, the addresses will be Bank.RetailGroup.comand Store.RetailGroup.com,

Chapter 11 « Choosing a Federation Option 159

https://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

Early Access Documentation

Using the Liberty ID-FF

160

respectively. If the HTTP server in the common domain is operated by the service provider, the
service provider will redirect the user agent to the appropriate identity provider.

The Common Domain Cookie

After an identity provider authenticates a principal, the identity provider sets a URL-encoded
cookie defined in a predetermined domain common to all identity providers and service
providers in the circle of trust. The common domain cookie is named _liberty_idp for Liberty
ID-FFand _saml_idp for SAML v2. After successful authentication, a principal’s identity
provider appends their particular encoded identifier to a list in the cookie. If their identifier is
already present in the list, the identity provider may remove the initial appearance and append
itagain. The intent is that the service provider reads the last identifier on the cookie’s list to find
the principal’s most recently established identity provider.

Note - The identifiers in the common domain cookie are a list of SuccinctID elements encoded
in the Base64 format. One element maps to each identity provider in the circle of trust. Service
providers then use this SuccinctID element to find the user's preferred identity provider.

The Writer Service and the Reader Service

After a principal authenticates with a particular identity provider, the identity provider
redirects the principal's browser to the configured Writer Service URL using a parameter that
indicates they are the identity provider for this principal. The Writer Service then writes a
cookie using the parameter. Thereafter, all providers configured in this common domain will be
able to tell which identity provider is used by this principal. Thus, the next time the principal
attempts to access a service hosted by a service provider in the same common domain, the
service provider retrieves and reads the common domain cookie, using the configured Reader
Service URL, to determine the identity provider.

The Writer Service URL and the Reader Service URL can be defined for use with the Liberty
ID-FF or the SAML v2 federation protocol. The URLs are defined when you create a circle of
trust for federation. The Common Domain for Identity Provider Discovery for Liberty ID-FF is
based on the Identity Provider Introduction Profile detailed in the Liberty ID-FF Bindings and
Profiles Specifications. The Common Domain for Identity Provider Discovery for SAML v2 is an
implementation of the Identity Provider Discovery Profile as described in the Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0 specification.

Identifiers and Name Registration

Federated Access Manager supports name identifiers that are unique across all providers in a
circle of trust. This identifier can be used to obtain information for or about the principal
without requiring the user to consent to a long-term relationship with the service provider.
When beginning federation, the identity provider generates an opaque value that serves as the
initial name identifier that both the service provider and the identity provider use to refer to the

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Early Access Documentation

Using the Liberty ID-FF

principal when communicating with each other. After federation, the identity provider or the
service provider may register a different opaque value. If a service provider registers a different
opaque value for the principal, the identity provider must use the new identifier when
communicating with the service provider about the principal. The reasons for changing an
identifier would be implementation-specific. The initial name identifier defined by the identity
provider is always used to refer to the principal unless a new name identifier is registered.

Global Logout

A principal may establish authenticated sessions with both an identity provider and individual
service providers, based on authentication assertions supplied by the identity provider. When
the principal logs out of a service provider session, the service provider sends a logout message
to the identity provider that provided the authentication for that session. When this happen, or
the principal manually logs out of a session at an identity provider, the identity provider sends a
logout message to each service provider to which it provided authentication assertions under
the relevant session. The one exception is the service provider that sent the logout request to the
identity provider.

Dynamic Identity Provider Proxying

An identity provider can choose to proxy an authentication request to an identity provider in
another authentication domain if it knows that the principal has been authenticated with this
identity provider. The proxy behavior is defined by the local policy of the proxying identity
provider. However, a service provider can override this behavior and choose not to proxy. This
function can be implemented as a form of authentication when, for instance, a roaming mobile
user accesses a service provider that is not part of the mobile home network. For more
information see “Dynamic Identity Provider Proxying” in Sun Federated Access Manager 8.0
Administration Guide.

About the Liberty ID-FF Process

The Liberty ID-FF is designed to work with heterogeneous platforms, various networking
devices (including personal computers, mobile phones, and personal digital assistants), and
emerging technologies. The process of Liberty ID-FF federation begins with authentication. A
user attempting to access a resource protected by Federated Access Manager are redirected to
the proprietary Authentication Service via an Federated Access Manager login page. After the
user provides credentials, the Authentication Service allows or denies access to the resource
based on the outcome.

Note - For more information about the proprietary Authentication Service, see the Chapter 7,
“Authentication and the Authentication Service.”

Chapter 11 « Choosing a Federation Option 161

Early Access Documentation

Using the Liberty ID-FF

162

When the user attempts access to a resource that belongs to a trusted member provider of a
configured circle of trust, the process of user authentication begins with the search for a valid
Federated Access Manager session token from the proprietary Authentication Service. The
process can go in one of two directions based on whether a session token is found.

= Ifno session token is found, the principal is redirected to a location defined by the pre-login
URL to establish a valid session.

= Ifasession token is found, the principal is granted (or denied) access to the requested page.
Assuming access is granted, the requested page contains a link so the principal may federate
the Federated Access Manager identity with the identity local to the requested site. If the
principal clicks this link, federation begins.

Figure 11-5 illustrates these divergent paths. The process shown is the default process when no
application has been deployed. When an application is deployed and using Federated Access
Manager, the process will change based on the query parameters and preferences passed to
Federated Access Manager from the participating application. For more information, see “The
Pre-login URL’ in Sun Federated Access Manager 8.0 Administration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using the Liberty ID-FF

D User Interaction User attempts to
access protected
. Access Manager Components web resource

. Liberty-based Components

Yes

)]

Is
Federation
cookie
present?

Pre-Login Processes

Federation

cookie
value=yes?

Yes
User presents
credentials

Send
authentication
request to IDP

Did IDP User clicks link,
send valid enables
response? Federation

Yes

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
, User ,
1 selects 1
1 IDP 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

v

Send
Federation
request

FIGURE 11-5 Default Process of Federation

Chapter 11 « Choosing a Federation Option 163

Early Access Documentation

Using WS-Federation

Asillustrated, the pre-login process establishes a valid Federated Access Manager session.
When a principal attempts to access a service provider site and no Federated Access Manager
session token is found, Federated Access Manager searches for a federation cookie. A federation
cookie is implemented by Federated Access Manager and is called fedCookie. It can have a value
of either yes or no, based on the principal’s federation status.

Note - A federation cookie is not defined in the Liberty Alliance Project specifications.

At this point, the pre-login process may take one of the following paths:

= Ifafederation cookie is found and its value is no, a Federated Access Manager login page is
displayed and the principal submits credentials to the proprietary Authentication Service.
When authenticated by Federated Access Manager, the principal is redirected to the
requested page, which might contain a link to allow for identity federation. If the principal
clicks this link, federation begins.

= Ifafederation cookie is found and its value is yes, the principal has already federated an
identity but has not been authenticated by an identity provider within the circle of trust for
this Federated Access Manager session. Authentication to Federated Access Manager is
achieved on the back end by sending a request to the principal’s identity provider. After
authentication, the principal is directed back to the requested page.

= Ifno federation cookie is found, a passive authentication request (one that does not allow
identity provider interaction with the principal) is sent to the principal’s identity provider. If
an affirmative authentication is received back from the identity provider, the principal is
directed to the Federated Access Manager Authentication Service, where a session token is
granted. The principal is then redirected to the requested page. If the response from the
identity provider is negative (for example, if the session has timed out), the principal is sent
to a common login page to complete either a local login or Liberty ID-FF federation.

Using WS-Federation

164

WS-Federation is part of the larger Web Services Security (WS-Security) framework which
provides a means for applying security to web services through the use of security tokens.
WS-Security describes how to attach signature and encryption headers as well as security
tokens (including binary security tokens such as X.509 certificates and Kerberos tickets) to
SOAP messages. WS-Trust, another specification in the WS-Security framework, provides for
federation by defining a Security Token Service (STS) and a protocol for requesting and issuing
the security tokens. WS-Federation, as implemented in Federated Access Manager, uses the
Federated Access Manager Security Token Service (modelled on the WS-Trust specification) to
allow providers in different security realms to broker trust using information on identities,
identity attributes and authentication, and provider federation. A principal requests a token
from the Security Token Services. This token, which may represent the principal's primary
identity, a pseudonym, or the appropriate attributes, is presented to the service provider for

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Using WS-Federation

authentication and authorization. WS-Federation uses several security tokens as well as the
mechanism for associating them with messages. This release of Federated Access Manager has
implemented the following features of the WS-Federation specification.

= The Web (Passive) Profile defines single sign-on, single logout, attribute and pseudonym
token exchanges for passive requestors; for example, a web browser that supports HT'TP. For
the passive mechanisms to provide a single or reduced sign-on, there needs to be a service
that will verify that the claimed requestor is really the requestor. Initial verification MUST
occur in a secure environment; for example, using SSL/TLS or HTTP/S. The token is
abstract and the token exchange is based on the Security Token Service model of WS-Trust.

= Tokens based on the Web Services-Interoperability Basic Security Profile (WS-1 BSP) define
security that is implemented inside a SOAP message; and security implemented at the
transport layer, using HTTPS. The protocol covers how you generate or handle security
tokens.

The WS-Federation implementation in Federated Access Manager is based on the application's
SAML v2 code and uses WS-Federation 1.1 metadata. Authentication request parameters are
represented directly as GET parameters, and the authentication response is a WS-Trust
RequestSecurityTokenResponse element.

Note - There is no authentication context mapping, persistent or transient NamelID identifiers
or auto-federation in the Federated Access Manager implementation of WS-Federation.

The entry points for all WS-Federation functionality will be implemented as servlets. JavaServer
Pages (JSP) are used only for HTML content (for example, the HTML form used to send the
WS-Federation single response from the identity provider to the service provider). The
following figure illustrates the flow of messages between Federated Access Manager (acting as
the service provider) and the Active Directory (acting as the identity provider).

Chapter 11 « Choosing a Federation Option 165

Early Access Documentation

Using WS-Federation

Single Sign-On - ADFS as IP/STS, OpenSSO as RP:

Requestor IP/STS RP
Browser (ADFES) {(OpenS50) {

GET resource

A2 Redirect to opens

GET (OpenS5C) authN request)

N

{optional — determine realm)

302 Rediregt to IP/STS

d.
GET (W5-Fed RS
T Negoraie|Alternatively:
b. - 5.1 return login forr
- 5.2 POST login form with username/]
sET (with krb toke
166 Sun Federated Acce Maggl 8.0 c-ll;M(Ler i'eﬂr-rﬂpte ber 2008 (Beta)

c. | with W5-Fed RSTR

Early Access Documentation

Using WS-Federation

In a WS-Federation interaction, the request by an unauthenticated user attempting to access a
protected web site is redirected to the Active Directory for Federation Services (ADFES) identity
provider. After the user is authenticated (either by a back-end single sign-on or by entering
credentials), ADFS posts a form containing a signed SAML assertion to the service provider.
The service provider validates the assertion, copies the attributes into the user's session, and
gives the appropriate access.

Note - Microsoft Active Directory Federation Services supports single sign-on via
WS-Federation.

Chapter 11 « Choosing a Federation Option 167

Early Access Documentation

168

Early Access Documentation

PART IV

Delivering Identity Services, Web Services
and Web Services Security

This fourth part of the Sun Federated Access Manager Technical Overview contains
information on implementing identity services, web services and web services security. It
contains the following chapters:

= Chapter 12, “Delivering Identity Web Services”
= Chapter 13, “Accessing and Securing Web Services”

169

Early Access Documentation

170

Early Access Documentation

L R 2 4 CHAPTER 12

Delivering Identity Web Services

Federated Access Manager provides client interfaces for authentication, authorization, session,
identity management and auditing in Java, in C (C++) and in HTTP(S)/XML. These interfaces
are used by web and Java EE policy agents as well as custom applications developed externally.
Now, Federated Access Manager also delivers web services that expose these identity functions
as simple web services. This chapter contains information on the following topics:

= “About Identity Web Services” on page 171
= “Identity Web Service Styles” on page 172
= “Identity Web Services Architecture” on page 174

About Identity Web Services

A web service is a black-box component that can be accessed using exposed endpoints.
Federated Access Manager uses this concept to expose the following security and identity
related functions as Identity Web Services:

authenticate (user credential verification)

authorize (an authenticated identity's access permission)
attributes (an authenticated identity's profile)

log (record and audit actions)

Identity Web Services allow developers to easily invoke these functions without any knowledge
of Federated Access Manager, resolving the problems of enabling web service discovery and
invocation, security, privacy and ease-of-deployment. Keeping Identity Web Services simple
allows an application developer to consume them by pointing an integrated development
environment (IDE) to the service's URL and allowing it to generate the stub code that wraps a
call to the service. Identity Web Services are supported on:

= NetBeans
= Eclipse
= Visual Studio

171

Early Access Documentation

Identity Web Service Styles

Note - Identity Web Services does not require the Client SDK or deployment of an agent or
proxy to protect a resource.

Within Identity Web Services the user enters authentication credentials using a JavaServer
Pages (JSP). The user data is then forwarded to the composite application which authenticates
the web service request. The application may then authorize the operation and obtain the user's
profile. See “Identity Web Service Styles” on page 172 for more information.

Identity Web Service Styles

172

Federated Access Manager Identity Web Services have been developed in two styles. The
decision on which style to use is the initial choice when designing your application. The styles
are:

= The SOAP and Web Services Description Language (WSDL) style is the traditional
approach preferred by the service-oriented architecture (SOA) business intelligence
community. See “SOAP and WSDL” on page 172.

= The REpresentational State Transfer (REST) style is a newer approach preferred by the Web
2.0 community. (A REST service is referred to as RESTful.) See “REST” on page 173.

Note - developers. sun.com has an excellent three part article called Securing Applications with
Identity Services which contains IDE configuration information and procedures.

SOAP and WSDL

SOAP, WSDL, and XML Schema have become the standard for exchanging XML-based
messages among applications. To implement this style, the IDE must obtain the WSDL,
generate the client stubs, and set up the JavaServer Pages (JSP) for the Identity Web Services.
Once completed, the SOAP Identity Web Services are accessible with the following URLs:

m http://host_machine.domain:8080/opensso/identityservices/IdentityServices
® http://host_machine.domain:8080/opensso/identityservices?WSDL
This style may be appropriate when:

= A formal contract must be established to describe the interface that the web service offers. A
WSDL is needed to describe the web service interfaces including details such as messages,
operations, bindings, and location.

= The architecture must address complex requirements including security, financial
transactions, provider trust and the like.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

http://developers.sun.com/identity/reference/techart/id-svcs.html
http://developers.sun.com/identity/reference/techart/id-svcs.html

Early Access Documentation

Identity Web Service Styles

= The architecture needs to handle asynchronous processing and invocation. The
infrastructure provided by standards such as WSRM and APIs such as JAX-WS can be
leveraged out of the box.

REST

The internet is comprised of resources. Clients may access resources with a URL. When
requested, a representation of the resource (an HTML page) is returned. The result of the user
clicking a link on the page is that another resource is accessed (possibly an image, video, or
another HTML page). Each new representation places the client into a state that is different
from the previous state. Thus, the client application changes state with each accessed resource
representation. REST is a design architecture in which a web service is viewed as a resource
identified by a URL. The web service client then accesses it using a globally defined set of remote
methods that describe the action to be performed. REST is not a standard; you can only
understand it, and design web services in the REST style. REST does, though, use standards

including:

= HTTP

= URLs

= Resource representations (XML, HTML, GIE JPEG, and others)
| |

MIME types (text/xml, text/html, image/gif, image/jpeg, and others)

RESTful services are accessed using a generic interface; in Federated Access Manager it is the
GET, POST, PUT, and DELETE HTTP methods. The RESTful Identity Web Service is
accessible at http://host_machine.domain:8080/opensso/identity. Because these web
services are exposed using the HTTP methods, they can be accessed from a browser. This style
may be appropriate when:

= The web services are completely stateless. A good test is to consider whether the interaction
can survive a restart of the server.

= Bandwidth needs to be limited. REST is particularly useful for limited-profile devices such
as PDAs and mobile phones, where the XML payload must be restricted.

= Aggregation into existing web sites is needed. Web services can be exposed with XML and
consumed by HTML without significantly reinventing the existing web site architecture.

Note - Federated Access Manager REST interfaces currently support only username and
password authentication.

Chapter 12 - Delivering Identity Web Services 173

Early Access Documentation

Identity Web Services Architecture

Identity Web Services Architecture

In an Identity Web Service interaction, the user interacts with an application which then calls
either of the Identity Web Services to authenticate and authorize the identity, create
personalized services, and log the actions. When contacted at the respective URL, Federated
Access Manager obtains the user profile from the appropriate identity repository for
authentication and the policy configuration from the appropriate configuration data store, and
writes the actions to the configured log file. Figure 12-1 illustrates the components of the
Identity Web Services.

&

IT Administrators

&

Employees

=

Partners

=

é Federated Access Manager)
Customers Authentication Policy Session SAML
— Service Service Service Service
Identity Realms . .
Repository Delegation Is'g?ﬁg;% Illalbv?lré¥=
Service Service

FIGURE 12-1 Components within the Identity Services Interactions

174 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

L K R 4 CHAPTER 13

Accessing and Securing Web Services

In Federated Access Manager, the Federation framework enables the secure exchange of
authentication and authorization information by providing an interface for creating,
modifying, and deleting circles of trust and configuring entity providers and identity providers
(both remote and hosted types) as entity providers. Additionally, the implemented web services
define a stack that supports the Federation framework. This chapter contains general
information on the implemented web services in the following sections:

“About the Web Services Stack” on page 175
“Web Services Architecture” on page 177
“Implemented Services” on page 184

“Web Services Process” on page 184

About the Web Services Stack

Federated Access Manager fully implements the Liberty Alliance Project Identity-Web Service
Framework (Liberty ID-WSF) 1.x specifications and exposes the Web Services Stack as a
pluggable framework that can be leveraged for security. Bootstrapping of the framework is
accomplished by finding a resource offering for an authenticated user using the Discovery
Service. Federated Access Manager supports bootstrapping using SAML v2, Liberty ID-FF, or
the Authentication Web Service using either of the following modes:

= Inbrowser mode, clients leverage SAML v2 or Liberty ID-FF for bootstrapping.

= In desktop mode, clients leverage the Authentication Web Service for bootstrapping.

Figure 13-1 illustrates the design of the Web Services Stack. Tools and API are provided for web
service providers to implement the stack and application developers to consume the services.

Federated Access Manager also provides the hooks to quickly integrate an existing
infrastructure with a Liberty Alliance Project infrastructure.

175

Early Access Documentation

About the Web Services Stack

176

Web Services
Client
{SOAFP Client AP1)

4
v

S08P
Security SOAP Receiver
Mechanim [S

Request
> Hender [T

!

i Parsonal Custom
Discovery Prefile Web
Service Servize Service

FIGURE 13-1 Web Services Stack Design

Note - Any web service developed using the Federated Access Manager Web Services Stack must
register with the SOAP Binding Service which provides validation of SOAP messages and
generates the SSOToken for further authorization.

Here is an overview of the interactions between the Web Services Stack and clients.

1. A customer is browsing a merchant site and initiates a purchase.

2. The merchant authenticates the customer, masking the customer's identity and preserving
privacy.

3. The merchant uses the Discovery Service to determine the customer's payment service and
requests payment on behalf of the principal.

4. The payment service validates the transaction and, before charging the customer, garners
user consent using the Interaction Service.

5. With a successful purchase, the merchant returns the confirmation and delivers the item or
service.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Web Services Architecture

Web Services Architecture

Figure 13-2 illustrates the architecture of the web services stack and how a web service client
(WSC) communicates with the web service provider (WSP) which, in this case, is Federated
Access Manager.

Chapter 13 « Accessing and Securing Web Services 177

Early Access Documentation

Web Services Architecture

User

Web Service Consumer
Agent

Contains Client Components and Client APIs ¢

Personal | Employee Custom
Profile Profile Data
.. . . . tom
Discovery Authentication| Service Service Service (Izjl:esngty
Service Web Service

Service

Data Service Templates

SOAP APIs

Web Service Provider

SOAP/HTTP(S)
Contains Service and Service APIs

SOAP Receiver APls

Trusted
Authority

Discovery

Authentication
Web

Data Service Templates

Custom
Identity

Employee
Profile
Service

Service Service Service

Services

Management Authentication

Metadata

FIGURE 13-2 Web Services Architecture

178 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Web Services Architecture

The Web Services Stack can be used in either browser or desktop mode. The following sections
describe these modes.

= “Examining Browser Mode Architecture” on page 179
= “Desktop Mode Architecture” on page 182

Examining Browser Mode Architecture

In browser mode, the service provider (SP) and identity provider (IDP) authenticate an identity
using SAML v2. Federated Access Manager can be an SP or an IDP or hosting web service here
in this deployment. The SP and the are in the same domain in this deployment. The web service
provider registers it's service resource offering with the discovery service before it offers services
to various clients. The registration could be done through discovery service protocol or out of
band. The Federation Access Manager can be deployed in various roles for this deployment as
mentioned in the architecture diagram. The following interaction diagram show cases the
typical interaction various entities in this deployment use case.

The browser based clients leverages the SAML2 or ID-FF protocols to bootstrap into IDWSF
framework.

Chapter 13 « Accessing and Securing Web Services 179

Early Access Documentation

Web Services Architecture

Fam SAML2 SEOMTTF

Sarvice Prowider Trust &ut

?

i
fl:ll'_'lF'J'Dia:nu &

I5C0Vary
patstrap

P
e

Yab Senvices Fliant M

Oi
E

| :
: ‘g SOARPHTTR :
Fal
; Client S0k g :

FIGURE 13-3 Browser Mode Architecture

180 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Web Services Architecture

Browser 8C Wws Sorvie
w 5 Prawic
1. User access wab
2. WED redirects (o Sanice
Prowider
-
&, Eu.w'n:u Provider mdirecls 1o
- Idenitity Pmowvidar
4. IDP prasents a login page
|
5 Liser entem his credentisls
5. Aftar successful
will hiave sers ds
offerimg and cracangic
EY=TL o
0. WED myKHS EI_ IHL'|I.H:I5l
o descovely sanvice (o
get wab sanvice resource
offaring
7. Discovery Senice raturns
web semice offermg and may
b= sacurity ioken
=
Bowsc makes a reqguyest to
Wab Samiea Using spounly
ik
B Web semvice
retums rasponse
1 Finally war rehumns the m:nga:;redamm
response to the user P
=i

FIGURE 13-4 Browser Mode Flow

Chapter 13 « Accessing and Securing Web Services 181

Early Access Documentation

Web Services Architecture

Desktop Mode Architecture

The desktop clients could leverage Liberty Authentication Service to boot strap into ID-WSE
Bootstrapping meaning for ID-WSF is to find the Liberty Discovery Service Resource Offering
of an authenticated user.

F &b
~ Trust Aoihority TrustiReqistar
— = [Dlizcovery Seryice =
Authn Service]
m
5
= il
WWeb Serrices Chent 5 =h
........ "E_ A A SR A AR R
3 é
B :
SOARHTTR
FAM

Cliant SOl

FIGURE 13-5 Desktop Mode Architecture

182 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Web Services Architecture

Hroweser

1. User access wah
aerice clisnd

MWSC

2WWEC presents a login page

|

3 Use anters wedaniizls

-

10. Finallywee retums ihe

response o ithe user

-

WER

Auth
Serdil

4. WSC Authenticate
grjainat Linerty Authn

E
Sermvice

-l

G, After success{ul authenication, it
relurns user's discave
affering and eredeantia
Senrice

-

Y IesauIce
to ace=ss discn

B YYSE makesa raruam

o discovary service
et web s=rvice res
affering

ba
urce

-l

7. Discovery Servicy
web semvice offaring
be zzcurity ioken.

relums
and may

Bawsc makes a requlest to

wWEb sEpice using 5

token
B

O Wigh saryice
PelUrn s respon e
upah credentisl
validation

FIGURE 13-6 Desktop Mode Flow

Chapter 13 « Accessing and Securing Web Services

curity

183

Early Access Documentation

Implemented Services

Implemented Services

Federated Access Manager includes the following web services:

Authentication Web Service
Provides authentication to a WSC, allowing the WSC to obtain security tokens for further
interactions with other services at the same provider. Upon successful authentication, the
final Simple Authentication and Security Layer (SASL) response contains the resource
offering for the Discovery Service.

Discovery Service
A web service that allows a requesting entity, such as a service provider, to dynamically
determine a principal's registered attribute provider. Typically, a service provider queries the
Discovery Service, which responds by providing a resource offering that describes the
requested attribute provider. The implementation of the Discovery Service includes Java and
web-based interfaces.

SOAP Binding
A set of Java APIs used by the developer of a Liberty-enabled identity service. The APIs are
used to send and receive identity-based messages using SOAP, an XML-based messaging
protocol.

Liberty Personal Profile Service
A data service that supports storing and modifying a principal's identity attributes. Identity
attributes might include information such as first name, last name, home address, and
emergency contact information. The Liberty Personal Profile Service is queried or updated
by a WSC acting on behalf of the principal.

Web Services Process

184

The following figure provides a high-level view of the process between the various components
in the web services stack. In this example:

m The web browser represents a user.

= The service provider also acts as a web services consumer (WSC), invoking a web service on
behalf of the user. The service provider relies on the identity provider for authentication.

= The identity provider acts as an authentication provider by authenticating the user. It also
acts as a trusted authority, issuing security tokens through the Discovery Service.

= The web services provider (WSP) serves requests from web services clients such as the
Liberty Personal Profile Service.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Web Services Process

@
>
>

6 H Web Browser

10— 2 A 4
Service Provider 3 Identity Provider
===
Web Services 7 Web Services Provider/ Web Services Provider/
Consumer Discovery Service Liberty Personal
8 Profile Service

e Y

FIGURE 13-7 Web Services Stack Process

The following process assume that the user, the identity provider, and the service provider have

already been federated.

1. The user attempts to access a resource hosted on the service provider server.

2. The service provider redirects the user to the identity provider for authentication.

3. The identity provider authenticates the user successfully and sends the single sign-on
assertion to the requesting service provider.

4. The service provider verifies the assertion and the user is issued a session token.

5. The service provider redirects the user to the requested resource.

6. The user requests access to another service hosted on the WSC server.

For example, it might need that value of an attribute from the user’s Liberty Personal Profile
Service.

7. The WSC sends a query to the Discovery Service to determine where the user’s Liberty
Personal Profile Service instance is hosted.

The WSC bootstraps the Discovery Service with the resource offering from the assertion
obtained earlier.

8. The Discovery Service returns a response to the WSC containing the endpoint for the user’s
Liberty Personal Profile Service instance and a security token that the WSC can use to access
it.

9. The WSC sends a query to the Liberty Personal Profile Service instance.

Chapter 13 « Accessing and Securing Web Services 185

Early Access Documentation

Web Services Process

186

The query asks for the user’s personal profile attributes, such as home phone number. The
required authentication mechanism specified in the Liberty Personal Profile Service
resource offering must be followed.

10. The Liberty Personal Profile Service instance authenticates and validates authorization for
the requested user or the WSC, or both.
If user interaction is required for some attributes, the Interaction Service will be invoked to
query the user for consents or for attribute values. The Liberty Personal Profile Service
instance returns a response to the WSC after collecting all required data.

11. The WSC processes the Liberty Personal Profile Service response, and renders the service
pages containing the information.

For detailed information about all these components, see the XXXXXX Sun Java System Access
Manager 7.1 Federation and SAML Administration Guide.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

PART V

Additional Features

This final section of the Sun Federated Access Manager Technical Overview contains
information on the Logging Service and third-party product information. It contains the
following chapters:

= Chapter 14, “Logging and the Java Enterprise System Monitoring Framework”

187

Early Access Documentation

188

Early Access Documentation

L K R 4 CHAPTER 14

Logging and the Java Enterprise System
Monitoring Framework

Sun Federated Access Manager provides its own logging feature that records information such
as user login, user logout, session creation, and policy evaluation. This chapter describes how
Access Manager logging works, and provides some information about the Java Enterprise
System Monitoring Framework. It contains the following sections:

A Caution - See common criteria logging paper by Burt Fujii

= “Logging Overview” on page 189

= “LogFiles” on page 191

= “Access Manager Component Logs” on page 194

= “Additional Logging Features” on page 195

= “Java Enterprise System Monitoring Framework” on page 196

Logging Overview

The Logging Service enables Access Manager services to record information such as access
denials, access approvals, authentication events, and authorization violations. Administrators
can use the logs to track user actions, analyze traffic patterns, audit system usage, review
authorization violations, and troubleshoot. The logged information from all Access Manager
services is recorded in one centralized directory. The default location for all Access Manager log
files is /var/opt/SUNWam/logs. Logging client APIs enable external applications to access the
Logging framework. This section contains the following:

= “Logging Service” on page 190
= “Logging Configuration” on page 190
= “Recorded Events” on page 190

189

Early Access Documentation

Logging Overview

190

Logging Service

The Logging Service stores the attributes and values for the logging function. A global service
configuration file named amLogging.xml defines the Logging attributes. Examples of Logging
Service attributes are maximum log size, log location, and log format (flat file or relational
database). The attribute values are applied across the Access Manager deployment and
inherited by every configured realm. By default, amLogging.xml is located in the directory
/etc/opt/SUNWam/config/xml when Access Manager is installed in a Solaris environment.
(When installed on Windows, the directory is jes-install-dir\identity\config\xml; on HP-UX
the directory is /etc/opt/sun/identity/config/xml.) The structure of amLogging.xml is
defined by file sms . dtd.

Logging Configuration

When Access Manager starts or when any logging configuration data is changed using the
Access Manager console, the logging configuration data is loaded (or reloaded) into the Logging
Service. This data includes the log message format, log file name, maximum log size, and the
number of history files. Applications can use the client APIs to access the Logging features from
alocal or remote server. The client APIs use an XML-over-HTTP layer to send logging requests
to the Logging component on the server where Access Manager is installed.

Recorded Events

The client passes the Logging Service logs information to the
com.sun.identity.log.LogRecord class. The following table summarizes the items logged by
default in the LogRecord.

TABLE14-1 Events Recorded in LogRecord

Event Description

Time The date (YYYY-MM-DD) and time (HH:MM: SS) at which the log message was
recorded. This field is not configurable.

Data Variable data pertaining to the log records's MESSAGE ID. This field is not
configurable.

Module Name Name of the Access Manager service or application being logged. Additional
information on the value of this field can be found in “Adding Log Data” on page
88.

Domain Access Manager domain to which the user belongs.

Log Level The Java 2 Platform, Standard Edition (J2SE) version 1.4 log level of the log record.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Log Files

Log Files
TABLE 14-1 Events Recorded in LogRecord (Continued)
Event Description
Login ID ID of the user as the subject of the log record. The user ID is taken from the session
token.
IP Address IP address from which the operation was performed.
Logged By User who writes the log record. The information is taken from the session token

passed during logger.log(logRecord, ssoToken).

Host Name Host name associated with the IP Address above.
MessageID Non-internationalized message identifier for this log record's message.
ContextID Identifier associated with a particular login session.

The following sections contain information about Access Manager log files:

= “Log File Formats” on page 191
= “Error and Access Logs” on page 193

Log File Formats

Access Manager can record events in either of the following formats:

= “Flat File Format” on page 191
= “Relational Database Format” on page 192

Flat File Format

The default flat file format is the W3C Extended Log Format (ELF). Access Manager uses this
format to record the default fields in each log record. See “Recorded Events” on page 190 for a
list of default fields and their descriptions. The following example illustrates an authentication
log record formatted for a flat file. The fields are in this order: Time, Data, ModuleName,
MessagelID, Domain, ContextID, LogLevel, LoginID, IPAddr, LoggedBy, and HostName.

EXAMPLE 14-1 Flat File Record From amAuthentication.access

"2005-08-01 16:20:28" "Login Success" LDAP AUTHENTICATION-100
dc=example,dc=com e7aacd4e717ddalbdol INFO

uid=amAdmin,ou=People,dc=example,dc=com 192.18.187.152

"cn=exampleuser,ou=Example Users,dc=example,dc=com" exampleHost

Chapter 14 - Logging and the Java Enterprise System Monitoring Framework 191

Early Access Documentation

Log Files

192

Relational Database Format

When Access Manager uses a relational database to log messages, the messages are stored in a
database table. Access Manager uses Java Database Connectivity (JDBC) to access the database
table. JDBC provides connectivity to a wide range of SQL databases. JDBC also provides access
to other tabular data sources such as spreadsheets or flat files. Oracle® and MySQL databases are
currently supported.

For log records generated by Access Manager, the Data and MessageID fields are used slightly
differently than in previous versions of Access Manager. Starting with this version of Access
Manager, the MessageID field is introduced as a template for types of log messages. For
example, in previous versions, Access Manager would generate the following message in the
Data field:

Data: "Created group
cn=agroupSubscriptionl , ou=Groups,dc=iplanet,dc=com"

In this version of Access Manager, two log records are recorded for the one event:

Data: agroupSubscriptionl|group|/
MessagelID: CONSOLE-1

and

Data: agroupSubscriptionl|groupl/
MessagelID: CONSOLE-2

These log records reflect the use of identities and realms. In this example, CONSOLE - 1 indicates
an attempt to create an identity object, and CONSOLE - 2 indicates the attempt to create an
identity object was successful. The root organization notation (dc=iplanet, dc=com) is replaced
with a forward slash (/). The variable parts of the messages (agroupSubscriptionl, group, and /)
are separated by a pipe character (|), and continue to go into the Data field of each log record.
The MessagID string is not internationalized in order to facilitate machine-readable analysis of
the log records in any locale.

The following table summarizes the schema for a relational database.

TABLE14-2 Relational Database Log Format

Column Name Data Type Description

TIME VARCHAR(30) Date of the log in the format YYYY-MM-DD HH: MM: SS.

DATA VARCHAR(1024) The variable data part of the log record pertaining to the
MESSAGE ID. For MySQL, the Data Type is VARCHAR(255).

MODULENAME VARCHAR(255) Name of the Access Manager component invoking the log
record.

Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Log Files
TABLE 14-2 Relational Database Log Format (Continued)
Column Name DataType Description
DOMAIN VARCHAR(255) Access Manager domain of the user.
LOGLEVEL VARCHAR(255) JDK 1.4 log level of the log record.
LOGINID VARCHAR(255) Login ID of the user who performed the logged operation.
IPADDR VARCHAR(255) IP Address of the machine from which the logged operation
was performed.
LOGGEDBY VARCHAR(255) Login ID of the user who writes the log record.
HOSTNAME VARCHAR(255) Host name of machine from which the logged operation was
performed.
MESSAGE ID VARCHAR(255) Non-internationalized message identifier for this log record's
message.
CONTEXT ID VARCHAR(255) Identifier associated with a particular login session.
Error and Access Logs

There are two types of Access Manager log files:

= Access log files
= Errorlog files

Access log files record general auditing information concerning the Access Manager
deployment. An access log may contain a single record for an event such as a successful
authentication, or multiple records for the same event. For example, when an administrator
uses the console to change an attribute value, the Logging Service logs the attempt to change in
one record but, the Logging Service also logs the results of the execution of the change in a
second record. Error log files record errors that occur within the application. While an operation
error is recorded in the error log, the operation attempt is recorded in the access log file.

Flat log files are appended with the .error or .access extension. Database column names end
with ERROR or _ACCESS. For example, a flat file logging console events is named
amConsole.access while a database column logging the same events is named
AMCONSOLE_ACCESS or amConsole access.

Note - The period (.) separator in a log filename is converted to an underscore (_) in database
formats. Also in databases, table names may be converted to all upper case. For example,
amConsole.access may be converted to AMCONSOLE_ACCESS, or it may be converted to
amConsole_access.

Chapter 14 - Logging and the Java Enterprise System Monitoring Framework 193

Early Access Documentation

Access Manager Component Logs

Access Manager Component Logs

The log files record a number of events for each of the Access Manager components using the
Logging Service. Administrators typically review these log files on a regular basis. The default
location for all Access Manager log files is /var/opt/SUNWam/logs when Access Manager is
installed in a Solaris environment. (When installed on Windows, the directory is
jes-install-dir\identity\logs; on HP-UX the directoryis /var/opt/sun/identity/logs.) The
following table provides a brief description of the log files produced by each Access Manager
component.

TABLE 14-3 Access Manager Component Logs

Component Log Filename Information Logged

Session B 3mSSO.access Session management attributes values such as login time,
logout time, and time out limits. Also session creations and
terminations.

Administration B amConsole.access User actions performed through the administration console

Console ® amConsole.error such as creation, deletion and modification of

identity-related objects, realms, and policies.
amConsole.access logs successful console events while
amConsole.error logs error events.

Authentication B amAuthentication.acceddser logins and log outs, both successful and failed.

B amAuthentication.error

Federation ® amFederation.access Federation-related events such as the creation of an
B amFederation.error authentication domain or the creation of a hosted provider
entity.

B amLiberty.access
® amLiberty.error

Authorization ® amPolicy.access Policy-related events such as policy creation, deletion, or
(Policy) " amPolicy.error modification, and policy evaluation. amPolicy.access logs
policy allows, amPolicy.error logs policy error events, and

B amAuthlLog
amAuthLog logs policy denies.

Policy Agent amAgent Exceptions regarding resources that were either accessed by
auser or denied access to a user. amAgent logs reside on the
server where the policy agent is installed. Agent events are
logged on the Access Manager machine in the

Authentication logs.
SAML B amSAML.access SAML-related events such as assertion and artifact creation
B amSAML.error or removal, response and request details, and SOAP errors.

194 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Additional Logging Features

TABLE 14-3 Access Manager Component Logs (Continued)
Component Log Filename Information Logged
Command-line B amAdmin.access Event successes and errors that occur during operations
® amAdmin.error using the command line tools. Examples are: loading a

service schema, creating policy, and deleting users.

Password Reset B amPasswordReset.accesdPassword reset events.

For detailed reference information about events recorded in each type of Access Manager log,
see the Sun Java System Access Manager 7.1 Administration Guide.

Additional Logging Features

You can enable a number of logging features for added functionality. The additional features
include:

= “Secure Logging” on page 195
= “Remote Logging” on page 195
= “LogReading” on page 196

Secure Logging

This feature adds an extra measure of security to the Logging Service. When secure logging is
enabled, the Logging component can detect unauthorized changes to the security logs. No
special coding is required to leverage this feature. However, secure logging uses a certificate that
you must create and install in the container that runs Access Manager. When secure logging is
enabled, a Manifest Analysis and Certification (MAC) is generated and stored for every log
record, and a special signature record is periodically inserted in the log. The signature record
represents the signature for the contents of the log written up to that point. The combination of
the certificate and the signature record ensures that the logs have not been tampered. For
detailed information about enabling secure logging, see the Sun Java System Access Manager 7.1
Administration Guide.

Remote Logging

Remote logging allows a client using the Client APIs to create log records on an instance of
Access Manager deployed on a remote machine. Remote logging is useful in the following
situations:

= When the login URL in the Naming Service of an Access Manager instance points to a
remote Access Manager instance, and a trust relationship between the two instances has
been configured.

Chapter 14 - Logging and the Java Enterprise System Monitoring Framework 195

Early Access Documentation

Java Enterprise System Monitoring Framework

= When the Access Manager APIs are installed in a remote Access Manager instance, and a
client application or a simple Java class running on the Access Manager server uses the
logging APIs.

= When logging APIs are used by Access Manager agents.

Log Reading

Access Manager provides Logging APIs for writing your own custom log reading program. You
can set up queries to retrieve specific records from the log file or database. This is useful for
auditing purposes. For more information, see the Sun Java System Access Manager 7.1
Developer’s Guide.

Java Enterprise System Monitoring Framework

Access Manager 7.1 integrates with the Java Enterprise System (JES) monitoring framework
through Java Management Extensions (JMX). JMX technology provides the tools for building
distributed, web-based, modular, and dynamic solutions for managing and monitoring devices,
applications, and service-driven networks. Typical uses of the JMX technology include:
consulting and changing application configuration, accumulating statistics about application
behavior, notification of state changes and erroneous behaviors. Data is delivered to centralized
monitoring console. Access Manager 7.1 uses the Java ES Monitoring Framework to capture
statistics and service-related data such as:

Number of attempted, successful, and failed authentications

Number of active sessions, statistics from session failover DB

Session failover database statistics

Policy caching statistics

Policy evaluation transaction times

Number of assertions for a given provider in a SAML/Federation deployment

For comprehensive information about how the JES monitoring framework works and how you
can use the monitoring framework with Access Manager, see the Sun Java Enterprise System 5
Update 1 Monitoring Guide.

196 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Index

A

access control, Federated Access Manager, 21-22

access logs, 193-194
Access Manager, legacy mode, 54

Access Manager Repository Plug-in, identity repository

plug-in, 59-60
account locking
and authentication, 102-103
memory locking, 102
physical locking, 102
action, normal policy, 119
Active Directory authentication, 106
active session time, policy, 121
administration tools, description, 63
agent, See policy agents
agents
See authentication agent
See policy agent
amLogging.xml, 190
Anonymous authentication, 106
API, SAMLv2, 151
application programming interfaces, See API
architecture
Federated Access Manager, 27-29
federation, 142-143
plug-ins layer, 63-64
SAMLvl.x, 152-153
auditing, See logging
authentication agent, overview, 62
authentication chain, policy, 121
authentication chaining, 103-104
authentication configuration service, 111

authentication context, overview, 157-159
authentication data, 54-60, 60
authentication level, policy, 121
authentication level-based authentication, 109
authentication module instance, policy, 121
authentication modules, 106-108

Active Directory, 106

Anonymous, 106

Certificate, 106

Data Store, 106

Federation, 107

HTTP Basic, 107

JDBC, 107

Membership, 107

MSISDN, 107

RADIUS, 107

SafeWord, 107

SAML, 107

SecurID, 107

UNIX, 107

Windows Desktop SSO, 108

Windows NT, 108
Authentication Service

account locking, 102-103

authentication chaining, 103-104

authentication configuration service, 111

authentication level-based authentication, 109

authentication type configurations, 108-110

client detection, 102

configuration, 110-111

core authentication module, 110

description, 32-34

197

Early Access Documentation

Index

Authentication Service (Continued)
distributed authentication user interface, 113-114
features, 102-106
FQDN name mapping, 104
JAAS shared state, 105
login URLs, 111
module-based authentication, 109
modules, 106-108
organization-based authentication, 109
overview, 99-101
persistent cookie, 104
process, 85-87
realm-based authentication, 108
realm configuration, 110
redirection URLs, 111
role-based authentication, 108
service-based authentication, 109
session upgrade, 105
SPI, 64
user-based authentication, 109
user interface, 111-113

authentication type configurations, 108-110

Authentication Web Service, 184
description, 46

authorization
See Policy Service
and XACML, 123-127
overview, 117-118

auto-federation, 156

B

basic user session, 83-93
initial HTTP request, 83-85

bootstrap, 60-61

bulk federation, 156

C

CDSSO, See cross-domain single sign-on
centralized configuration data, bootstrap, 60-61
Certificate authentication, 106

circle of trust

definition, 132-133,133-135
client detection, and authentication, 102
Client Detection Service, in authentication, 85-87
Client SDK, description, 63
common domain, 159-160

reader service, 160

writer service, 160
common domain cookie, 160
conditions, policy, 121
configuration, Authentication Service, 110-111
configuration data, 54-60
configuration data store, bootstrap, 60-61
cookies

and sessions, 81-82

common domain, 160
core authentication module, 110
cross-domain single sign-on

definition, 37-40, 80

process, 95-97
current session properties, policy, 121

D

data
authentication, 60
configuration, 54-57
identity, 57-60
types of, 54-60

Data Store authentication, 106

data stores, 54-60

definitions
circle of trust, 133-135
federation, 131-133
identity, 131-132
identity federation, 131-132
identity provider, 133-135
principal, 133-135
provider, 133-135
provider federation, 132-133
service provider, 133-135
trust, 133

Discovery Service, 184
description, 46

198 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Index

distributed authentication
definition, 113-114
in authentication, 85-87
documentation, 12-13
adjunct products, 13
DTD
files used, 46-47
modifying files, 46-47
dynamic identity provider proxying, Liberty
ID-FE 161

E
error logs, 193-194

F
failover, configuration data store, 60-61
famadm, description, 63
famAdminTools.zip, description, 63
famSessionTools.zip, description, 63
features, Authentication Service, 102-106
Federated Access Manager

access control, 21-22

architecture, 27-29

configuration data, 54-57

data stores, 54-60

federation management, 22

functions, 21-23

identity data, 57-60

identity services, 23

infrastructure, 54-64

introduction, 19-20

legacy mode, 54

overview, 20

process, 29-31

services, 31-50

web services security, 22-23
federated identity, 131-132
federation, 133-135, 145-167

architecture, 142-143

common domain, 159-160

definition, 131-133

federation (Continued)
identity federation and single sign-on, 155-156
SPI, 64
Federation authentication, 107
federation management, Federated Access
Manager, 22
federation options
Liberty ID-FE, 145-146
SAMLv1.x, 145-146,146-154
SAML V2, 145-146,146-154
Federation Services, description, 44-46
flat files, logging, 191
FQDN name mapping, and authentication, 104
functions, Federated Access Manager, 21-23

G
General Policy Service, 117-118
global logout, Liberty ID-FF, 161

H
HTTP Basic authentication, 107
HTTP request, and authentication, 83-85

|
identifiers, Liberty ID-FF, 160-161
identity, definition, 131-132
identity data, 54-60
identity federation, 133-135, 155-156
definition, 131-132
identity providers, definition, 133-135
Identity Repository Service
See identity data
description, 42-44
identity repository service, plug-in, 64
identity services, Federated Access Manager, 23
information tree, See configuration data
infrastructure, Federated Access Manager, 54-64
introduction, Federated Access Manager, 19-20
IP address/DNS names, policy, 121

199

Early Access Documentation

Index

J

JAAS framework, and authentication, 103-104
JAAS shared state, and authentication, 105
JavaServer Pages, See JSP

JDBC, 192-193

JDBC authentication, 107

JSP,SAMLv2, 152

L
LDAP authentication, 107
LDAP filter, policy, 121
LDAPv3, identity repository plug-in, 59
legacy mode, Federated Access Manager, 54
Liberty Alliance Project Identity Federation
Framework, See Liberty ID-FF
Liberty ID-FF, 154-164
and single sign-on, 161-164
auto-federation, 156
bulk federation, 156
convergence with SAML, 148-152
dynamic identity provider proxying, 161
federation option, 145-146
global logout, 161
identifiers and name registration, 160-161
pre-login process, 161-164
process, 161-164
SAML v1l.x comparison, 145-146
Liberty Personal Profile Service, 184
description, 46
local identity, 131-132
log reading, 196
logging
access logs, 193-194
amLogging.xmll, 190
component log filenames, 194
error logs, 193-194
flat files, 191
log reading, 196
overview, 189-191
process, 91-93
recorded events, 190-191
relational databases, 192-193
remote logging, 195-196

logging (Continued)

secure logging, 195
Logging Service, description, 40-42
login URLSs, and authentication, 111

M

Membership authentication, 107
memory locking, and authentication, 102
module-based authentication, 109
MSISDN authentication, 107

N
name registration, Liberty ID-FE, 160-161
Naming Service, and session validation, 87-89
normal policy

condition, 121

policy types, 119-122

rule, 119

subject, 119-120

o

organization-based authentication, 109
overview

See authentication agent

See policy agent

authentication and authentication context, 157-159

Authentication Service, 99-101
Federated Access Manager, 20
Policy Service, 117-118

session service, 79-80
XACML, 123-127

P

PDP,in SAML, 152

persistent cookie, and authentication, 104
physical locking, and authentication, 102

200 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Index

plug-ins
Access Manager Repository Plug-in, 59-60
architecture, 63-64
authentication
See authentication modules
identity repository service, 64
LDAPv3, 59
policy response providers, 122
Policy Service, 64
service configuration, 64
policy
and XACML, 123-127
conditions, 121
definition, 117-118
General Policy Service, 117-118
Policy Configuration Service, 117-118
rule, 119
subject, 119-120
Policy Administration Point, definition, 117-118
policy agent, overview, 61-62
policy agents, 35-37
Policy Configuration Service, 117-118
Policy Decision Point
and XACML, 123-127
definition, 117-118
Policy Enforcement Point
and XACML, 123-127
definition, 117-118
policy evaluation, process, 89-91
Policy Service, 35-37
definition, 117-127
description, 35-37
normal policy, 119-122
overview, 117-118
plug-in, 64
policy evaluation, 89-91
policy response provider plug-in, 122
referral policy, 122
XACML, 123-127
policy types, 119-122
normal policy, 119-122
referral policy, 122
pre-login process, Liberty ID-FE, 161-164
principal, definition, 133-135

process
See Federated Access Manager
Liberty ID-FF, 161-164
provider federation, definition, 132-133
providers, 133-135

R
RADIUS authentication, 107
reader service, 160
realm authentication, policy, 121
realm-based authentication, 108
realm configuration, authentication, 110
realms, 51-54

and access control, 122-123
redirection URLs, and authentication, 111
referral policy, 122
relational databases, logging, 192-193
remote logging, 195-196
resource, normal policy, 119
role-based authentication, 108
rule, policy, 119

S
SafeWord authentication, 107

SAML, convergence with Liberty ID-FE, 148-152

SAML authentication, 107
SAMLvl.x
architecture, 152-153
federation, 146-154
federation option, 145-146
Liberty ID-FF comparison, 145-146
SAMLv2, 148-152
administration, 150-151
API, 151
basic configuration, 150-151
features, 150
federation, 146-154
federation option, 145-146
JSP, 152
SPI, 151-152
secure logging, 195

201

Early Access Documentation

Index

SecurID authentication, 107
Security Token Service
and Web Services Security, 47-48
description, 47
service-based authentication, 109
service configuration plug-in, 64
Service Management Service, 64
service provider interface, See SPI
service provider interfaces, See SPI
service providers, definition, 133-135
services
Authentication Service, 32-34
Federated Access Manager, 31-50
Federation Services, 44-46
Identity Repository Service, 42-44
Logging Service, 40-42
Policy Service, 35-37
Security Token Service, 47-48
Session Service, 37-40
Web Services Security, 47-48
session
See user session
basic user session, 83-93
initial HTTP request, 83-85
session ID, See session token
session object, See session data structure
Session Service, description, 37-40
session service, overview, 79-80
session termination, 97-98
session token, 81-82
session tools, description, 63
session upgrade, and authentication, 105
session validation, process, 87-89
single sign-on, 155-156
definition, 37-40, 80
process, 93-95
single sign—on, and Liberty ID-FE, 161-164
SOAP Binding, 184
SOAP Binding Service, description, 47
SPI, 63-64
Authentication Service, 64
federation, 64
SAMLv2, 151-152
SSO, See single sign-on

subject, normal policy, 119-120

T
time, policy, 121
tools, 62-63

trust, definition, 133
trust agreements, 133

U
UNIX authentication, 107
user authentication, process, 85-87
user-based authentication, 109
user session
cookies, 81-82
definition, 80
logging results, 91-93
policy evaluation, 89-91
session data structure, 81-82
session termination, 97-98
session token, 81-82
session validation, 87-89
user authentication, 85-87

'}

value, normal policy, 119

w
web services
implemented services, 184
process, 184-186
Web Services Security, description, 47-48
web services security, Federated Access
Manager, 22-23
web services stack, definition, 46-47
Windows Desktop SSO authentication, 108
Windows NT authentication, 108
writer service, 160

202 Sun Federated Access Manager 8.0 Technical Overview « September 2008 (Beta)

Early Access Documentation

Index

X
XACML, and authorization, 123-127
XML, files used, 46-47

203

Early Access Documentation

204

	Sun Federated Access Manager 8.0 Technical Overview
	Preface
	Before You Read This Book
	Related Books
	Federated Access Manager Core Documentation
	Adjunct Product Documentation

	Searching Sun Product Documentation
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions

	An Overview of Federated Access Manager
	Introducing Federated Access Manager
	What is Federated Access Manager?
	What Does Federated Access Manager Do?
	What Are the Functions of Federated Access Manager?
	Access Control
	Federation Management
	Web Services Security
	Identity Web Services

	What Else Does Federated Access Manager Offer?

	Examining Federated Access Manager
	Federated Access Manager Client/Server Architecture
	How Federated Access Manager Works
	Core Services
	Authentication Service
	Policy Service
	Session Service
	Logging Service
	Identity Repository Service
	Federation Services
	Web Services Stack
	Web Services Security
	Identity Web Services

	Global Services
	Realms
	Additional Components
	Data and Data Stores
	Configuration Data
	Identity Data
	Generic Lightweight Directory Access Protocol (LDAP) version 3
	LDAPv3 Plug-in for Active Directory
	LDAPv3 Plug-in for Tivoli Directory
	Sun Directory Server With FAM Core Services
	Sun Directory Server With Full Schema (including Legacy)
	Access Manager Repository Plug-in

	Authentication Data

	The bootstrap File
	Policy Agents
	Authentication Agents
	Federated Access Manager Tools
	famadm Command Line Interface
	Session Failover Tools

	Client SDK
	Service Provider Interfaces for Plug-ins
	Authentication Service SPI
	Federation Service SPI
	Identity Repository Service SPI
	Policy Service SPI
	Service Configuration Plug-in

	Simplifying Federated Access Manager
	Installation and Configuration
	Embedded Configuration Data
	Centralized Agent Configuration
	Common Tasks
	Third Party Integration
	Sun Java System Identity Manager
	Computer Associates SiteMinder
	Oracle Access Manager

	Deploying Federated Access Manager
	Deployment Architecture 1
	Deployment Architecture 2

	Access Control Using Federated Access Manager
	User Sessions and the Session Service
	About the Session Service
	User Sessions and Single Sign-on
	Session Data Structures and Session Token Identifiers

	Models of the User Session and Single Sign-On Processes
	Basic User Session
	Initial HTTP Request
	User Authentication
	Session Validation
	Policy Evaluation and Enforcement
	Logging the Results

	Single Sign-On Session
	Cross-Domain Single Sign-On Session
	Session Termination
	User Ends Session
	Administrator Ends Session
	Federated Access Manager Enforces Timeout Rules
	Session Quota Constraints

	Authentication and the Authentication Service
	Authentication Service Overview
	Authentication Service Features
	Client Detection
	Account Locking
	Authentication Chaining
	Fully Qualified Domain Name Mapping
	Persistent Cookies
	Session Upgrade
	JAAS Shared State
	Security

	Authentication Modules
	Authentication Types
	Configuring for Authentication
	Core Authentication Module and Realm Configuration
	Authentication Configuration Service
	Login URLs and Redirection URLs

	Authentication Graphical User Interfaces
	Authentication Service User Interface
	Distributed Authentication User Interface

	Authentication Service Programming Interfaces

	Authorization and the Policy Service
	Authorization and Policy Service Overview
	Policy Types
	Normal Policy
	Rules
	Subjects
	Conditions
	Response Providers

	Referral Policy

	Realms and Access Control
	Policy Service Programming Interfaces
	XACML Service
	XACML in Federated Access Manager
	XACML Programming Interfaces

	Federation Management Using Federated Access Manager
	What is Federation?
	The Concept of Federation
	Identity Federation
	Provider Federation

	The Concept of Trust
	How Federation Works

	Federation Management with Federated Access Manager
	Key Federation Management Features
	The Fedlet
	Virtual Federation
	Authentication at Identity Provider
	Virtual Federation at Identity Provider
	Virtual Federation at Service Provider
	Global Single Logout

	Multi-Federation Protocol Hub

	The Federation Framework Architecture

	Choosing a Federation Option
	Federation Options
	Using SAML
	About SAML v2
	Key Features
	Administration
	Application Programming Interfaces
	Service Provider Interfaces
	JavaServer Pages

	About SAML v1.x
	Using SAML or Federated Access Manager CDSSO

	Using the Liberty ID-FF
	Liberty ID-FF Features
	Federated Single Sign-On
	Auto-Federation
	Bulk Federation

	Authentication and Authentication Context
	The Common Domain for Identity Provider Discovery
	The Common Domain
	The Common Domain Cookie
	The Writer Service and the Reader Service

	Identifiers and Name Registration
	Global Logout
	Dynamic Identity Provider Proxying

	About the Liberty ID-FF Process

	Using WS-Federation

	Delivering Identity Services, Web Services and Web Services Security
	Delivering Identity Web Services
	About Identity Web Services
	Identity Web Service Styles
	SOAP and WSDL
	REST

	Identity Web Services Architecture

	Accessing and Securing Web Services
	About the Web Services Stack
	Web Services Architecture
	Examining Browser Mode Architecture
	Desktop Mode Architecture

	Implemented Services
	Web Services Process

	Additional Features
	Logging and the Java Enterprise System Monitoring Framework
	Logging Overview
	Logging Service
	Logging Configuration
	Recorded Events

	Log Files
	Log File Formats
	Flat File Format
	Relational Database Format

	Error and Access Logs

	Access Manager Component Logs
	Additional Logging Features
	Secure Logging
	Remote Logging
	Log Reading

	Java Enterprise System Monitoring Framework

	Index

