OpenStack Image Service API v2

.0 Reference

APl v2 (April 21, 2014)

BUILT FOR

openstack" a Op ensta Ckw

docs.openstack.org

http://docs.openstack.org

Image Service API 2.0 Reference April 21, 2014 API v2

OpenStack Image Service APl v2.0 Reference

APl v2 (2014-04-21)
Copyright © 2010-2013 OpenStack Foundation All rights reserved.

This document is for software developers who develop applications by using the OpenStack™ Image
Service Application Programming Interface (API) v2.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Image Service API 2.0 Reference April 21, 2014 API v2

Table of Contents

1. OpenStack Image Service APl v2 REFErencecoovviviiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeeeeee 1
OpenStack Image Service APl v2 REfErenceeueviiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeees 1
General APL INTOrmMationooouiiniii e 1
Metadata AP ... 3
Binary Data APl ... 16
Appendix A: CURL EXaMPIES ...oooeiiiiiiiiiiiiiiiieieieeeeeee ettt 16
Appendix B: HTTP PATCH media typesccoeeuruuuiiiieieeeeeeiiicee e eeeeeeee e e e 18

Image Service API 2.0 Reference April 21, 2014 API v2

1. OpenStack Image Service APl v2
Reference

Table of Contents

OpenStack Image Service APl v2 REFEIENCE ... 1
General APl INTOIMETIONuiiiiiiiiiiiiiiiieee ettt ettt e e eeeeeeeseeeeeeeeeseneneeenennnnnnnes 1
oY= o - = T 2 PRSP 3
BINAry Data APl ... e e 16
APPENIX Az CURL EXAMPIES ...oeiiiiiiiiiiiiiiiiiiteetteaetatetaeeteaaeaeesssesesssssssssssssssssssssssssssssssssnnes 16
Appendix B: HTTP PATCH media tYPes . .ccuuvuuuiiiiiiee ettt e et e e e e eeees 18

OpenStack Image Service APl v2 Reference

The Image Service API v2 provides methods for storing and retrieving disk and server
images.

General API Information

Versioning

Two-part versioning scheme

The Image Service API v2 follows the lead of the v1 APl and use a major version and a
minor version. For example, 'v2.3' would break down to major version 2 and minor version
3.

Backwards-compatibility

The interface will not be reduced with subsequent minor version releases, it will only be
expanded. For example, everything in v2.1 will be available in v2.2.

Property Protections

Version 2.2 of the Images APl acknowledges the ability of a cloud provider to employ
property protections, an optional feature whereby CRUD protections may be applied to
image properties. Thus, in particular deployments, non-admin users may not be able to
view, update, or delete some image properties. Additionally, non-admin users may be
forced to follow a particular naming convention when creating custom image properties.
It is left to the cloud provider to communicate policies concerning property protections to
users.

HTTP Response Status Codes

The following HTTP status codes are all valid responses:

* 200 - generic successful response, expect a body

Image Service API 2.0 Reference April 21, 2014 API v2

* 201 - entity created, expect a body and a Location header
e 204 - successful response without body

e 301 - redirection

400 - invalid request (syntax, value, etc)

401 - unauthenticated client

403 - authenticated client unable to perform action

409 - that action is impossible due to some (possibly permanent) circumstance
* 415 - unsupported media type

Responses that don't have a 200-level response code are not guaranteed to have a body.
If a response does happen to return a body, it is not part of this spec and cannot be
depended upon.

Authentication and Authorization

This spec does not govern how one might authenticate or authorize clients of the v2
Images API. Implementors are free to decide how to identify clients and what authorization
rules to apply.

Note that the HTTP status codes 401 and 403 are included in this specification as valid
response codes.

Request/Response Content Format

The v2 Images API primarily accepts and serves JSON-encoded data. In certain cases it also
accepts and serves binary image data. Most requests that send JSON-encoded data must
have the proper media type in their Content-Type header: 'application/json'. HTTP PATCH
requests must use the patch media type defined for the entity they intend to modify.
Requests that upload image data should use the media type 'application/octet-stream'.

Each call only responds in one format, so clients should not worry about sending an Accept
header. It will be ignored. Assume a response will be formatted as 'application/json' unless
otherwise stated in this spec.

Image Entities

An image entity is represented by a JSON-encoded data structure and its raw binary data.

An image entity has an identifier (ID) that is guaranteed to be unique within the endpoint
to which it belongs. The ID is used as a token in request URIs to interact with that specific
image.

An image is always guaranteed to have the following attributes: id, status, visibility,
protected, tags, created_at, file and self. The other attributes defined in the i mage schema
below are guaranteed to be defined, but will only be returned with an image entity if they
have been explicitly set.

Image Service API 2.0 Reference April 21, 2014 API v2

A client may set arbitrarily-named attributes on their images if the i mage json-schema
allows it. These user-defined attributes will appear like any other image attributes. See
documentation of the additionalProperties json-schema attribute.

JSON Schemas

The necessary json-schema documents will be provided at predictable URIs. A consumer
should be able to validate server responses and client requests based on the published
schemas. The schemas contained in this document are only examples and should not be
used to validate your requests. A client should always fetch schemas from the server.

Metadata API

The following calls allow you to create, modify, and delete image metadata records. For
binary image data, see Binary Data API.

Get Images Schema

GET /v2/schemas/images
Request body ignored.

Response body will contain a json-schema document representing an i mages entity (a
container of i mage entities). For example:

{
"nanme": "inmages",
"properties": {
"i mages": {
"itenms": {
"type": "array",
"name": "inage"

"properties": {

"id': {"type": "string"},
"name": {"type": "string"}
"visibility": {"enum': ["public", "private"]},
"status": {"type": "string"},
"protected": {"type": "bool ean"},
"tags": {

"type": "array",

"items": {"type": "string"}
}
"checksum': {"type": "string"},
"size": {"type": "integer"},
"created_at": {"type": "string"},
"updated_at": {"type": "string"},
"file": {"type": "string"}
"self": {"type": "string"}
"schema": {"type": "string"}

},
"addi tional Properties": {"type": "string"},
“links": [
{"href": "{self}", "rel": "self"},
{"href": "{file}", "rel": "encl osure"},

http://tools.ietf.org/html/draft-zyp-json-schema-03#section-5.4
http://tools.ietf.org/html/draft-zyp-json-schema-03

Image Service API 2.0 Reference April 21, 2014 API v2

{"href": "{schena}", "rel": "describedby"}

b,
Be
"schema": {"type": "string"},
"next": {"type": "string"},
“first": {"type": "string"}

Ji -

"links": [
{"href": "{first}", "rel™: "first"},
{"href": "{next}", "rel": "next"},
{"href": "{schema}", "rel": "describedby"}

]

}

Get Image Schema

GET /v2/schemas/image
Request body ignored.

Response body will contain a json-schema document representing an i mage. For example:

“nane": "image",
"properties": {
"id': {"type": "string"},
"name": {"type": "string"},
"visibility": {"enunt: ["public", "private"]},
"status": {"type": "string"},
"protected": {"type": "bool ean"},
"tags": {
"type": "array",
"itenms": {"type": "string"}
Be
"checksum': {"type": "string"},
"size": {"type": "integer"},
"created_at": {"type": "string"},
"updated_at": {"type": "string"},
"file": {"type": "string"},
"self": {"type": "string"},
"schema": {"type": "string"}
B
"addi tional Properties": {"type": "string"},
"links": [
{"href": "{self}", "rel": "self"},
{"href": "“{file}", "rel": "enclosure"}
{"href": "{schenm}", "rel": "describedby"}

}
Create an Image
POST /v2/images

Request body must be JSON-encoded and conform to the i mage JSON schema. For
example:

Image Service API 2.0 Reference April 21, 2014 API v2

{
"id": "e7db3b45-8db7-47ad-8109- 3f b55c2c24f d",
"nanme": "Uountu 12.10",
"tags": ["ubuntu", "quantal "]

}

Successful HTTP response will be 201 Created with a Location header containing the newly-
created URI for the image. Response body will represent the created i mage entity. For
example:

"id": "e7db3b45-8db7-47ad-8109- 3f b55c2c24fd",
"nanme": "Uountu 12.10",

"status": "queued",
"visibility": "public",
"tags": ["ubuntu", "quantal "],

"created_at": "2012-08-11T17: 15: 527",

"updated_at": "2012-08-11T17: 15: 527"

"self": "/v2/imges/ e7db3b45-8db7-47ad- 8109- 3f b55c2c24f d",
"file": "/v2/images/e7db3b45-8db7-47ad-8109- 3f b55c2c24fd/file",
"schema": "/v2/schemas/i mge"

}

Update an Image

PATCH /v2/images/<IMAGE_ID>

Request body must conform to the 'application/openstack-images-v2.1-json-
patch' media type, documented in Appendix B. Using PATCH /v2/images/
e7db3b45-8db7-47ad-8109-3fb55c2c24fd as an example:

{"op": "replace", "path": "/name", "value": "Fedora 17"},
{"op": "replace", "path": "/tags", "value": ["fedora", "beefy"]}

]

Response body will represent the updated i mage entity. For example:

{
"id": "e7db3b45-8db7-47ad- 8109- 3f b55c2c24f d",
"nanme": "Fedora 17",
"status": "queued",
"visibility": "public",
"tags": ["fedora", "beefy"],
"created_at": "2012-08-11T17: 15: 527",
"updated_at": "2012-08-11T17: 15: 527"
"self": "/v2/images/ e7db3b45-8db7-47ad- 8109- 3f b55c2c24f d",
“file": "/v2/images/ e7db3b45-8db7-47ad-8109- 3f b55c2c24fd/fil e",
"schema": "/v2/schenas/i mage"
}

The PATCH method can also be used to add or remove image properties. To add a custom
user-defined property such as "login-user" to an image, use the following example request.

Image Service API 2.0 Reference April 21, 2014 API v2

[
]

{"op": "add", "path": "/login-user", "value": "kvothe"}

Similarly, to remove a property such as "login-user" from an image, use the following
example request.

[
]

{"op": "renove", "path": "/l ogin-user"}
See Appendix B for more details about the 'application/openstack-images-v2.1-json-patch’
media type.
Property Protections

Version 2.2 of the Images APl acknowledges the ability of a cloud provider to employ
property protections. Thus, there may be image properties that may not be updated or
deleted by non-admin users.

Add an Image Tag
PUT /v2/images/<IMAGE_ID>/tags/<TAG>

The the tag you want to add should be encoded into the request URI. For example, to tag
image e7db3b45-8db7-47ad-8109-3fb55c2c24fd with 'miracle’, you would PUT /v2/images/
e7db3b45-8db7-47ad-8109-3fb55c2c24fd/tags/miracle. The request body is ignored.

An image tag may be up to 255 characters in length. See the 'image' json-schema to
determine which characters are allowed.

An image can only be tagged once with a specific string. Multiple attempts to tag an image
with the same string will result in a single instance of that string being added to the image's
tags list.

An HTTP status of 204 will be returned.

Delete an Image Tag

DELETE /v2/images/<IMAGE_ID>/tags/<TAG>

The tag you want to delete should be encoded into the request URI. For example, to
remove the tag 'miracle' from image e7db3b45-8db7-47ad-8109-3fb55c2c24fd, you would
DELETE /v2/images/e7db3b45-8db7-47ad-8109-3fb55c2c24fd/tags/miracle. The request
body is ignored.

An HTTP status of 204 will be returned. Subsequent attempts to delete the tag will result in
a 404.

List All Images

GET /v2/images

Image Service API 2.0 Reference

April 21, 2014

APl v2

Request body ignored.

Response body will be a list of images available to the client. For example:

"i mages": [

{

"id": "da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",
"name": "cirros-0.3.0-x86_64-uec-randi sk",

"status":

"active",

"visibility": "public",
"size": 2254249,

"checksuni':

"tags": ["ping", "pong"],

"created at":
"updat ed_at":

"2cec138d7dae2aa59038ef 8c9aec2390",

"2012-08-10T19: 23: 502",
"2012-08-10T19: 23: 502",
sel f": "/v2/imges/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",

"file": "/v2/imges/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea/ fi |l e",

"schemn":

"id": "0d5bcbc7-b066-4217-83f4-7111a60a399a",
"nanme": "cirros-0.3.0-x86_64-uec",

"status":

"/v2/ schemas/ i mage"

"active",

visibility": "public",

"size": 25165824,

"checksuni':

"tags™: (1,

"created_at":
"updat ed_at":

"2f81976cael5cl16ef 0010c51e3a6¢163",

"2012-08-10T19: 23: 502",
"2012-08-10T19: 23: 502",
"self": "/v2/imges/ 0d5bcbc7-b066-4217-83f 4-7111a60a399a",

"file": "/v2/imges/ 0d5bchc7-b066-4217-83f 4-7111a60a399a/fil e",

schema" :

"id": "e6421c88-bled-4407-8824-b57298249091",
"nane": "cirros-0.3.0-x86_64-uec-kernel",

"status":

"/v2/ schemas/ i nage"

"active",

"visibility": "public",
"size": 4731440,

checksunt':

“tags": [,

"created_at":
"updat ed_at":

"cf b203e7267a28e435dbch05af 5910a9",

"2012-08-10T19: 23: 492",
"2012- 08-10T19: 23: 492",
"self": "/v2/images/e6421c88- bled-4407-8824-b57298249091",

"file": "/v2/images/e6421c88-bled-4407-8824-p57298249091/file",

"schemn":

}
]

"/v2/ schemas/ i mage"

irst": "/v2/imges?limt=3",

"next": "/v2/inmages?limt=3&rarker=e6421c88-bled-4407- 8824- b57298249091",
"schema": "/v2/schenmas/i mages"

}

Pagination

This call is designed to return a subset of the larger collection of images while providing a
link that can be used to retrieve the next. You should always check for the presence of a
'next' link and use it as the URI in a subsequent HTTP GET request. You should follow this

Image Service API 2.0 Reference April 21, 2014 API v2

pattern until there a 'next' link is no longer provided. The next link will preserve any query
parameters you send in your initial request. The first' link can be used to jump back to the
first page of the collection.

If you prefer to paginate through images manually, the API provides two query
parameters: 'limit' and 'marker’. The limit parameter is used to request a specific page size.
Expect a response to a limited request to return between zero and limit items. The marker
parameter is used to indicate the id of the last-seen image. The typical pattern of limit and
marker is to make an initial limited request then to use the id of the last image from the
response as the marker parameter in a subsequent limited request.

Filtering

The list operation accepts several types of query parameters intended to filter the results of
the returned collection.

A client can provide direct comparison filters using most image attributes (i.e.
name=Ubuntu, visibility=public, etc). A client cannot filter on tags or anything defined as a
'link" in the json-schema (i.e. self, file, schema).

The 'size_min' and 'size_max' query parameters can be used to do greater-than and less-
than filtering of images based on their 'size' attribute ('size' is measured in bytes and refers
to the size of an image when stored on disk). For example, sending a size_min filter of
1048576 and size_max of 4194304 would filter the container to include only images that
are between one and four megabytes in size.

Sorting

The results of this operation can be ordered using the 'sort_key' and 'sort_dir' parameters.
The API uses the natural sorting of whatever image attribute is provided as the 'sort_key'.
All image attributes can be used as the sort_key (except tags and link attributes).

The sort_dir parameter indicates in which direction to sort. Acceptable values are

'asc’ (ascending) and 'desc' (descending). Defaults values for sort_key and sort_dir are
'created_at' and 'desc'.

Property Protections

Version 2.2 of the Images APl acknowledges the ability of a cloud provider to employ
property protections. Thus, there may be image properties that will not appear in the list
images response for non-admin users.

Get an Image
GET /v2/images/<IMAGE_ID>
Request body ignored.

Response body will be a single image entity. Using GET /v2/image/
da3b75d9-3f4a-40e7-8a2c-bfab23927dea as an example:

"id": "da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",
"nane": "cirros-0.3.0-x86_64-uec-randi sk",

Image Service API 2.0 Reference April 21, 2014 API v2

"status": "active",

"visibility": "public",

"size": 2254249,

"checksun': "2cec138d7dae2aa59038ef 8c9aec2390",

“tags": ["ping", "pong"],

"created_at": "2012-08-10T19: 23: 502",

"updated_at": "2012-08-10T19: 23: 502",

"self": "/v2/images/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",
"file": "/v2/images/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea/fil e",
"schema": "/v2/schenas/i mage"

}

Property Protections

Version 2.2 of the Images APl acknowledges the ability of a cloud provider to employ
property protections. Thus, there may be some image properties that will not appear in the
image detail response for non-admin users.

Delete an Image

DELETE /v2/images/<IMAGE_ID>
Encode the ID of the image into the request URI. Request body is ignored.

Images with the 'protected' attribute set to true (boolean) cannot be deleted and the
response will have an HTTP 403 status code. You must first set the 'protected' attribute to
false (boolean) and then perform the delete.

The response will be empty with an HTTP 204 status code.

Image Sharing

The OpenStack Image Service APl v2 allows users to share images with each other.

Let the "producer” be a tenant who owns image 71c¢675ab-d94f-49cd-a114-e12490b328d9,
and let the "consumer" be a tenant who would like to boot an instance from that image.

The producer can share the image with the consumer by making the consumer a member
of that image.

To prevent spamming, the consumer must accept the image before it will be included in
the consumer's image list.

The consumer can still boot from the image, however, if the consumer knows the image ID.
In summary:

* The image producer may add or remove image members, but may not modify the
member status of an image member.

* Animage consumer may change his or her member status, but may not add or remove
him or herself as an image member.

* A consumer may boot an instance from a shared image regardless of whether he/she has
"accepted" the image.

Image Service API 2.0 Reference April 21, 2014 API v2

Producer-Consumer Communication

No provision is made in this API for producer-consumer communication. All such
communication must be done independently of the API.

An example workflow is:

1. The producer posts the availability of specific images on a public website.

2. A potential consumer provides the producer with his/her tenant ID and email address.
3. The producer uses the Images v2 API to share the image with the consumer.

4. The producer notifies the consumer via email that the image has been shared and what
its UUID is.

5. If the consumer wishes the image to appear in his/her image list, the Images v2 APl is
used to change the image status to accept ed.

6. If the consumer subsequently wishes to hide the image, the Images v2 APl may be
used to change the member status to r ej ect ed. If the consumer wishes to hide the
image, but is open to the possibility of being reminded by the producer that the image is
available, the Images v2 APl may be used to change the member status to pendi ng.

Note that as far as this APl is concerned, the member status has only two effects:

* If the member status is not accept ed, the image will not appear in the consumer's
default image list.

* The consumer's image list may be filtered by status to see shared images in the various
member statuses. For example, the consumer can discover images that have been shared
with him or her by filtering on vi si bi | i t y=shar ed&renber _st at us=pendi ng.

Image Sharing Schemas
JSON schema documents are provided at the URIs listed below.

Recall that the schemas contained in this document are only examples and should not be
used to validate your requests.

Get Image Member Schema
GET /v2/schemas/member
Request body ignored.
Response body contains a json-schema document representing an image nenber entity.

The response from the API should be considered authoritative. The schema is reproduced
here solely for your convenience:

"nanme": "nmenber",
"properties": {
"created_at": {

10

Image Service API 2.0 Reference April 21, 2014 API v2

"description": "Date and tinme of image nenber creation",
"type": "string"

b

"image_id": {

"description": "An identifier for the inmage",
"pattern": "~([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){4}-([0-9a-fA-F]) {12} $",
"type": "string"
}

"menber _id": {
"description": "An identifier for the i nrage nenber (tenantld)",
"type": "string"
Je
"status": {
"description": "The status of this image menber",
"enunt': [
"pendi ng",
"accept ed",
"rejected"

]

ype": "string"
e
"updated_at": {
"description": "Date and tinme of |ast nodification of inage
nmenber ",
"type": "string"
Ie

"schema": {
"type": "string"
}
}
Get Image Members Schema
GET /v2/schemas/members
Request body ignored.

Response body contains a json-schema document representing an image nenber s entity (a
container of menber entities).

The response from the API should be considered authoritative. The schema is reproduced
here solely for your convenience:

{
"nane": "nenbers"
"properties": {
"menbers": {
"items": {
"nanme": "nenber",
“"properties": {
"created_at": {
"description": "Date and tinme of inage menber
creation",
"type": "string"
Ji -
"image_id": {
"description": "An identifier for the i mage",

11

Image Service API 2.0 Reference April 21, 2014 API v2

"pattern": "~([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-
fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){12}$"
"type": "string"
}

"menber _id": {
"description": "An identifier for the i mage nmenber
(tenantld)",
"type": "string"
}

tatus": {
"description": "The status of this inmage nenber",
"enum': [
"pendi ng",
"accepted",
"rejected"

]

ype": "string"
},
"updated_at": {

"description": "Date and time of |ast nodification of
i mage nenber”,

"type": "string"
b

"schema": {

"type": "string"

}
}

ype": "array"

I
"schema": {
"type": "string"
}
,
"links": [
{

"href": "{schema}"
"rel": "describedby"

}
Image Producer Calls

The following calls are germane to a user who wishes to act as a producer of shared
images.

Create an Image Member
POST /v2/images/<IMAGE_ID>/members

The request body must be JSON in the following format:

{
}

"menber": "<VEMBER | D>"

where the MEMBER_ID is the ID of the tenant with whom the image is to be shared.

12

Image Service API 2.0 Reference April 21, 2014 API v2

The member status of a newly created image member is pendi ng.
If the user making the call is not the image owner, the response is HTTP status code 404.

The response conforms to the JSON schema available at /v2/schemas/member, for
example,

"created_at": "2013-09-19T20: 36: 532",
"image_id": "71c675ab-d94f -49cd-all4- e12490b328d9",
"menber _i d": "8989447062e04a818baf 9e073f d04f a7",
"schema": "/v2/schemas/nenber"”,
"status": "pending",
"updated_at": "2013-09-19T20: 36: 532"

}

Delete an Image Member
DELETE /v2/images/<IMAGE_ID>/members/<MEMBER_ID>
A successful response is 204 (No Content).

The call returns HTTP status code 404 if MEMBER_ID is not an image member of the
specified image.

The call returns HTTP status code 404 if the user making the call is not the image owner.
Image Consumer Calls

The following calls pertain to a user who wishes to act as a consumer of shared images.
Update an Image Member

PUT /v2/images/<IMAGE_ID>/members/<MEMBER_ID>

The body of the request is a JSON object specifying the member status to which the image

member should be updated:

{

}
where STATUS_VALUE is one of { pendi ng, accept ed, orrej ect ed }.

“status": "<STATUS VALUE>"

The response conforms to the JSON schema available at /v2/schemas/member, for
example,

"created_at": "2013-09-20T19: 22: 197",

"image_i d": "a96belle-8536-4910-92ch- de50aalodf e6",
"menber _id": "8989447062e04a818baf 9e073f d04f a7",
"schema": "/v2/schenas/ nenber",

"status": "accepted",

"updated_at": "2013-09-20T20: 15: 312"

13

Image Service API 2.0 Reference April 21, 2014 API v2

If the call is made by the image owner, the response is HTTP status code 403 (Forbidden).

If the call is made by a user who is not the image owner and whose tenant ID does not
match the MEMBER_ID, the response is HTTP status code 404.

Image Member Status Values
There are three image member status values:

* pendi ng: When a member is created, its status is set to pendi ng. The image is not
visible in the member's image-list, but the member can still boot instances from the
image.

» accept ed: When a member's status is accept ed, the image is visible in the member's
image-list. The member can boot instances from the image.

* rej ect ed: When a member's status is r ej ect ed, the member has decided that he or
she does not wish to see the image. The image is not visible in the member's image-list,
but the member can still boot instances from the image.

Calls for Both Producers and Consumers

These calls are applicable to users acting either as producers or consumers of shared
images.

Show Image Member
GET /v2/images/<IMAGE_ID>/members/<MEMBER_ID>

The response conforms to the JSON schema available at /v2/schemas/member, for
example,

"created_at": "2014-02-20T04: 15: 177",

"image_id": "634985e5-0f 2e- 488e- bd7c- 928d9a8ea82a",
"menber _id": "46al2bf d09c8459483c03el1b0d71bda8",
"schemn": "/v2/schemas/ nmenber",

"status": "pending",

"updated_at": "2014-02-20T04: 15: 172"

}

The image owner (the producer) may make this call successfully for each image member.
An image member (a consumer) may make this call successfully only when MEMBER_ID
matches that consumer's tenant ID. For any other MEMBER_ID, the consumer receives a
404 response.

List Image Members
GET /v2/images/<IMAGE_ID>/members

The response conforms to the JSON schema available at /v2/schemas/members, for
example,

14

Image Service API 2.0 Reference April 21, 2014 API v2

}

"menmbers": [

1

{
"created_at": "2013-09-20T19: 16: 532"
"image_i d": "a96belle- 8536-4910-92cb- de50aalodf e6",
"menber _i d": "818baf 9e073f d04f a78989447062e04a",
"schemn": "/v2/schemms/ nmenber",
"status": "pending",
"updated_at": "2013-09-20T19: 16: 532"

B

{
"created_at": "2013-09-20T19: 22: 192"
"image_i d": "a96belle- 8536-4910-92cb- de50aalodf e6",
"menber i d": "8989447062e04a818baf 9e073f d04f a7",
"schemn": "/v2/schenmms/ nmenber",
"status": "pending",
"updated_at": "2013-09-20T19: 22: 192"

}

"schema": "/v2/schemas/nenbers"

If the call is made by a user with whom the image has been shared, the member-list will
contain only the information for that user. For example, if the call is made by tenant
8989447062e04a818baf9e073fd04fa7, the response is:

}

"menmbers": [

]

{
"created at": "2013-09-20T19: 22: 197"
"image_i d": "a96belle-8536-4910-92ch- de50aal9df e6",
"menber _id": "8989447062e04a818baf 9e073f d04f a7",
"schemn": "/v2/schemns/ nmenber",
"status": "pending",
"updated_at": "2013-09-20T19: 22: 192"

}

chemn": "/v2/schemas/ nenbers"

If the call is made by a user with whom the image is not shared, the response is a 404.

List Shared Images

Shared images are listed as part of the normal image list call. In this section we emphasize
some useful filtering options.

vi si bi | i t y=shar ed: show only images shared with me where my member status is
'accepted'

vi si bi lity=shar ed&renber _st at us=accept ed: same as above

vi si bi l'i ty=shar ed&renber _st at us=pendi ng: show only images shared with me
where my member status is 'pending’

vi si bi lity=shared&renber _st at us=r ej ect ed: show only images shared with
me where my member status is 'rejected'

15

Image Service API 2.0 Reference April 21, 2014 API v2

* visi bility=shared&enber_stat us=al | : show all images shared with me
regardless of my member status

* owner =<OANER | D>: show only images shared with me by the user whose tenant ID is
OWNER_ID

Binary Data API

The following API calls are used to upload and download raw image data. For image
metadata, see Metadata API.

Store Image File
PUT /v2/images/<IMAGE_ID>/file
NOTE: An image record must exist before a client can store binary image data with it.
Request Content-Type must be 'application/octet-stream'. Complete contents of request
body will be stored and become accessible in its entirety by issuing a GET request to the

same URI.

Response status will be 204.

Get Image File
GET /v2/images/<IMAGE_ID>/file
Request body ignored.

Response body will be the raw binary data that represents the actual virtual disk. The
Content-Type header will be 'application/octet-stream'.

The Content-MD5 header will contain an MD5 checksum of the image data. Clients are
encouraged to verify the integrity of the image data they receive using this checksum.

If no image data has been stored, an HTTP status of 204 will be returned.

Appendix A: cURL Examples

This section is intended to provide a series of commands a typical client of the API might
use to create and modify an image.

These commands assume the implementation of the v2 Images API is using the OpenStack
Identity Service for authentication and authorization. The X-Auth-Token header is used to
communicate the authentication token provided by that separate identity service.

The strings $0S_| MAGE_URL and $OS_AUTH_TOKEN represent variables defined
in the client's environment. $OS_| MAGE_URL is the full path to your image
service endpoint, for example, htt p: / /| ocal host : 9292. $O0S_AUTH_TOKEN

16

http://www.ietf.org/rfc/rfc1864.txt

Image Service API 2.0 Reference April 21, 2014 API v2

represents an auth token generated by the OpenStack Identity Service, for example,
6583f b17c27b48b4b4a6033f e9ccOf eO.

Create an Image

%curl -i -X POST -H "X-Aut h- Token: $0S_AUTH TOKEN' \
-H "Content-Type: application/json" \
-d '{"pname": "UWbuntu 12.10", "tags": ["ubuntu", "12.10", "quantal "]}' \
$0S_| MAGE_URL/ v2/ i mages

HTTP/ 1.1 201 Created

Content - Lengt h: 451

Cont ent - Type: application/json; charset=UTF-8

Location: http://I|ocal host:9292/v2/i mages/ 7b97f 37c- 899d- 44e8- aaa0- 543edbc4eaad
Date: Tue, 14 Aug 2012 00: 46: 48 GVII

{
"id": "7b97f 37c-899d- 44e8- aaal- 543edbc4eaad"”,

"nane": "Uountu 12.10",

"status": "queued",

"visibility": "private",

"protected": false,

"tags": ["ubuntu", "12.10", "quantal "],

"created_at": "2012-08-14TO0O0: 46: 487",

"updated_at": "2012-08-14T00: 46: 487",

"file": "/v2/images/ 7b97f 37c- 899d- 44e8- aaal- 543edbc4eaad/file",
"self": "/v2/images/ 7b97f 37c- 899d- 44e8- aaal- 543edbc4eaad",
"schema": "/v2/schenas/i mage"

}

Update the Image

% curl -i -X PATCH -H " X- Aut h- Token: $0OS_AUTH TOKEN' \
-H "Content-Type: application/openstack-imges-v2.1-json-patch"
-d '[{"op": "add", "path": "/login-user", "value": "root"}]' \

$OS_| MAGE_URL/ v2/ i mages/ 7b97f 37c- 899d- 44e8- aaa0- 543edbc4eaad

HTTP/ 1.1 200 OK

Cont ent - Lengt h: 477

Cont ent - Type: application/json; charset=UTF-8
Date: Fri, 15 Nov 2013 00: 46: 50 GV

{
"id": "7b97f 37c-899d- 44e8- aaal- 543edbc4eaad",

"nanme": "Ubuntu 12. 10",

"status": "queued",

"visibility": "private",

"protected": fal se,

"tags": ["ubuntu", "12.10", "quantal "],

"l ogi n_user": "root",

"created at": "2013-11-15TO00: 46: 487",

"updated_at": "2013-11-15T00: 46: 50Z",

“file": "/v2/images/ 7b97f 37c- 899d- 44e8- aaal- 543edbc4eaad/file",
"self": "/v2/images/ 7b97f 37c- 899d- 44e8- aaal- 543edbc4eaad",
"schema": "/v2/schenmas/imge"

17

Image Service API 2.0 Reference April 21, 2014

)
Upload Binary Image Data

%curl -i -X PUT -H "X-Aut h- Token: $0S_AUTH TOKEN' \
-H "Content-Type: application/octet-streant \
-d @ hone/ gl ance/ ubunt u-12. 10. gcow2 \
$OS_| MAGE_URL/ v2/ i mages/ 7b97f 37c- 899d- 44e8- aaa0- 543edbc4eaad/fil e

HTTP/ 1.1 100 Conti nue

HTTP/ 1.1 201 Created
Content-Length: O
Date: Tue, 14 Aug 2012 00: 46: 59 GV

Download Binary Image Data

%curl -i -X GET -H "X-Aut h- Token: $0S_AUTH TOKEN' \
$OS_| MAGE_URL/ v2/ i mages/ 7b97f 37c- 899d- 44e8- aaa0- 543edbc4eaad/fil e

HTTP/ 1.1 200 OK

Cont ent - Type: application/octet-stream

Cont ent - Mi5: 912ec803b2ce49e4a541068d495ab570
Tr ansf er - Encodi ng: chunked

Date: Thu, 14 Aug 2012 00: 47: 10 GMI

Delete Image

% curl -i -X DELETE -H "X- Aut h- Token: $0S_AUTH TOKEN' \
$OS_| MAGE_URL/ v2/ i mages/ 7b97f 37c- 899d- 44e8- aaa0- 543edbc4eaad

HTTP/ 1.1 204 No Content
Content-Length: O
Date: Tue, 14 Aug 2012 00:47:12 GV

Appendix B: HTTP PATCH media types

Overview

The HTTP PATCH request must provide a media type for the server to determine how the
patch should be applied to an image resource. An unsupported media type will result in an
HTTP error response with the 415 status code. For image resources, two media types are
supported:

* appl i cation/ openst ack-i mages-v2. 1-j son- patch
e appl i cati on/ openst ack-i mages-v2. 0-j son- patch

The appl i cati on/ openst ack-i mages-v2. 1-j son- pat ch media type is intended
to provide a useful and compatible subset of the functionality defined in JavaScript Object

18

Image Service API 2.0 Reference April 21, 2014 API v2

Notation (JSON) Patch RFC6902, which defines the appl i cati on/j son- pat ch+j son
media type.

The appl i cati on/ openst ack-i mages-v2. 0-j son- pat ch media type is based on
draft 4 of the standard. Its use is deprecated.

Restricted JSON Pointers

The 'application/openstack-images-v2.1-json-patch’' media type defined in this appendix
adopts a restricted form of JSON-Pointers. A restricted JSON pointer is a Unicode string
containing a sequence of exactly one reference token, prefixed by a /' (%x2F) character.

[Ead |

If a reference token contains
70" and '"1' respectively.

(%Xx7E) or'/' (%x2F) characters, they must be encoded as

Its ABNF syntax is:

restricted-json-pointer = "/" reference-token
ref erence-token = *(unescaped / escaped)
unescaped = %00-2E / %30-7D / 9% 7F- 10FFFF
escaped = "~" ("0" / "1")

Restricted JSON Pointers are evaluated as ordinary JSON pointers per JSON-Pointer.

For example, given the i mage entity

{
"id": "da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",
"nanme": "cirros-0.3.0-x86_64-uec-randi sk",
"status": "active",
"visibility": "public",
"size": 2254249,
"checksunt': "2cecl138d7dae2aa59038ef 8c9aec2390",
"~/ .ssh/": "present",
“tags": ["ping", "pong"],
"created_at": "2012-08-10T19: 23: 502",
"updated_at": "2012-08-10T19: 23: 50Z"
"self": "/v2/images/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea",
"file": "/v2/images/ da3b75d9- 3f 4a- 40e7- 8a2c- bf ab23927dea/fil e",
"schema": "/v2/schenas/i mage"
}

the following restricted JSON pointers evaluate to the accompanying values:

"/ nane" "cirros-0.3.0-x86_64-uec-randi sk"
"/size" 2254249
"/tagS" [II pl r.]gll, " pongll]

"/ ~0~1.ssh~1" "present"

Operations

The 'application/openstack-images-v2.1-json-patch’ media type supports a subset of the
operations defined in the 'application/json-patch+json' media type. The operation to
perform is expressed as the value of the "op" member of the operation object.

19

http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/draft-ietf-appsawg-json-patch-04
http://tools.ietf.org/html/draft-pbryan-zyp-json-pointer
http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-03#ref-Unicode
http://tools.ietf.org/html/draft-pbryan-zyp-json-pointer

Image Service API 2.0 Reference April 21, 2014 API v2

* The operations supported are: "add", "remove", "replace".
* Itis an error condition if an operation object contains no recognized operation member.

The location within the target image where the requested operation is to be performed is
specified by using the "path" member of the operation object.

* The member value is a string containing a restricted JSON pointer value that references
the location where the operation is to be performed within the target image.

Where appropriate (that is, for the "add" and "replace" operations), the operation object
must contain a third data member, "value".

* The member value is the actual value to add (or to use in the replace operation)
expressed in JSON notation. (For example, strings must be quoted, numeric values are
unquoted.)

The payload for a PATCH request must be a /ist of json objects, each of which adheres to
one of the formats described below.

e add

The "add" operation adds a new value at a specified location in the target image. The
location must reference an image property to add to an existing image. The operation
object contains a "value" member that specifies the value to be added.

Example:

{ "op": "add", "path": "/Ilogin-nane", "value": "kvothe"}
* remove

The "remove" operation removes the specified image property in the target image. It is an
error condition if no image property exists at the specified location.

Example:

{ "op": "renove", "path": "/l ogin-nane" }
* replace

The "replace" operation replaces the value of the specified image property in the target
image with a new value. The operation object contains a "value" member that specifies the
replacement value.

Example:

{ "op": "replace", "path": "/Ilogin-nane", "value": "kote" }

This operation is functionally identical to expressing a "remove" operation for an image
property, followed immediately by an "add" operation at the same location with the
replacement value.

20

Image Service API 2.0 Reference April 21, 2014 API v2

It is an error condition if the specified image property does not exist for the target image.

21

	OpenStack Image Service API v2.0 Reference
	Table of Contents
	1. OpenStack Image Service API v2 Reference
	OpenStack Image Service API v2 Reference
	General API Information
	Versioning
	HTTP Response Status Codes
	Authentication and Authorization
	Request/Response Content Format
	Image Entities
	JSON Schemas

	Metadata API
	Get Images Schema
	Get Image Schema
	Create an Image
	Update an Image
	Add an Image Tag
	Delete an Image Tag
	List All Images
	Get an Image
	Delete an Image
	Image Sharing
	Producer-Consumer Communication
	Image Sharing Schemas
	Get Image Member Schema
	Get Image Members Schema

	Image Producer Calls
	Create an Image Member
	Delete an Image Member

	Image Consumer Calls
	Update an Image Member
	Image Member Status Values

	Calls for Both Producers and Consumers
	Show Image Member
	List Image Members
	List Shared Images

	Binary Data API
	Store Image File
	Get Image File

	Appendix A: cURL Examples
	Create an Image
	Update the Image
	Upload Binary Image Data
	Download Binary Image Data
	Delete Image

	Appendix B: HTTP PATCH media types
	Overview
	Restricted JSON Pointers
	Operations

