
TM

docs.openstack.org

http://docs.openstack.org

OpenStack High Availability
Guide

April 26, 2014 current

ii

OpenStack High Availability Guide
Florian Haas

current (2014-04-26)
Copyright © 2012, 2013 OpenStack Contributors All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

OpenStack High Availability
Guide

April 26, 2014 current

iii

Table of Contents
1. Introduction to OpenStack High Availability .. 1

Stateless vs. Stateful services ... 2
Active/Passive .. 2
Active/Active ... 2

2. HA Using Active/Passive .. 4
The Pacemaker Cluster Stack ... 4

Installing Packages .. 5
Setting up Corosync .. 5
Starting Corosync .. 7
Starting Pacemaker ... 8
Setting basic cluster properties .. 8

Cloud Controller Cluster Stack ... 9
Highly available MySQL ... 9
Highly available RabbitMQ .. 12

API Node Cluster Stack .. 16
Configure the VIP .. 16
Highly available OpenStack Identity ... 16
Highly available OpenStack Image API ... 18
Highly available Cinder API .. 19
Highly available OpenStack Networking Server .. 21
Highly available Ceilometer Central Agent ... 22
Configure Pacemaker Group .. 23

Network Controller Cluster Stack ... 23
Highly available Neutron L3 Agent .. 24
Highly available Neutron DHCP Agent ... 24
Highly available Neutron Metadata Agent ... 25
Manage network resources ... 26

3. HA Using Active/Active ... 27
Database ... 27

MySQL with Galera ... 27
Galera Monitoring Scripts .. 29
Other ways to provide a Highly Available database .. 29

RabbitMQ ... 30
Install RabbitMQ ... 30
Configure RabbitMQ ... 30
Configure OpenStack Services to use RabbitMQ ... 31

HAproxy Nodes ... 32
OpenStack Controller Nodes .. 34

Running OpenStack API & schedulers .. 34
Memcached ... 35

OpenStack Network Nodes ... 36
Running Neutron DHCP Agent .. 36
Running Neutron L3 Agent ... 36
Running Neutron Metadata Agent .. 36

OpenStack High Availability
Guide

April 26, 2014 current

1

1. Introduction to OpenStack High
Availability

Table of Contents
Stateless vs. Stateful services ... 2
Active/Passive .. 2
Active/Active ... 2

High Availability systems seek to minimize two things:

• System downtime — occurs when a user-facing service is unavailable beyond a specified
maximum amount of time, and

• Data loss — accidental deletion or destruction of data.

Most high availability systems guarantee protection against system downtime and data
loss only in the event of a single failure. However, they are also expected to protect against
cascading failures, where a single failure deteriorates into a series of consequential failures.

A crucial aspect of high availability is the elimination of single points of failure (SPOFs). A
SPOF is an individual piece of equipment or software which will cause system downtime or
data loss if it fails. In order to eliminate SPOFs, check that mechanisms exist for redundancy
of:

• Network components, such as switches and routers

• Applications and automatic service migration

• Storage components

• Facility services such as power, air conditioning, and fire protection

Most high availability systems will fail in the event of multiple independent (non-
consequential) failures. In this case, most systems will protect data over maintaining
availability.

High-availability systems typically achieve uptime of 99.99% or more, which roughly equates
to less than an hour of cumulative downtime per year. In order to achieve this, high
availability systems should keep recovery times after a failure to about one to two minutes,
sometimes significantly less.

OpenStack currently meets such availability requirements for its own infrastructure services,
meaning that an uptime of 99.99% is feasible for the OpenStack infrastructure proper.
However, OpenStack does not guarantee 99.99% availability for individual guest instances.

Preventing single points of failure can depend on whether or not a service is stateless.

OpenStack High Availability
Guide

April 26, 2014 current

2

Stateless vs. Stateful services
A stateless service is one that provides a response after your request, and then requires
no further attention. To make a stateless service highly available, you need to provide
redundant instances and load balance them. OpenStack services that are stateless include
nova-api, nova-conductor, glance-api, keystone-api, neutron-api and nova-scheduler.

A stateful service is one where subsequent requests to the service depend on the results
of the first request. Stateful services are more difficult to manage because a single action
typically involves more than one request, so simply providing additional instances and load
balancing will not solve the problem. For example, if the Horizon user interface reset itself
every time you went to a new page, it wouldn’t be very useful. OpenStack services that are
stateful include the OpenStack database and message queue.

Making stateful services highly available can depend on whether you choose an active/
passive or active/active configuration.

Active/Passive
In an active/passive configuration, systems are set up to bring additional resources online
to replace those that have failed. For example, OpenStack would write to the main
database while maintaining a disaster recovery database that can be brought online in the
event that the main database fails.

Typically, an active/passive installation for a stateless service would maintain a redundant
instance that can be brought online when required. Requests are load balanced using a
virtual IP address and a load balancer such as HAProxy.

A typical active/passive installation for a stateful service maintains a replacement resource
that can be brought online when required. A separate application (such as Pacemaker or
Corosync) monitors these services, bringing the backup online as necessary.

Active/Active
In an active/active configuration, systems also use a backup but will manage both the main
and redundant systems concurrently. This way, if there is a failure the user is unlikely to
notice. The backup system is already online, and takes on increased load while the main
system is fixed and brought back online.

Typically, an active/active installation for a stateless service would maintain a redundant
instance, and requests are load balanced using a virtual IP address and a load balancer such
as HAProxy.

A typical active/active installation for a stateful service would include redundant services
with all instances having an identical state. For example, updates to one instance of a
database would also update all other instances. This way a request to one instance is the
same as a request to any other. A load balancer manages the traffic to these systems,
ensuring that operational systems always handle the request.

These are some of the more common ways to implement these high availability
architectures, but they are by no means the only ways to do it. The important thing is to

OpenStack High Availability
Guide

April 26, 2014 current

3

make sure that your services are redundant, and available; how you achieve that is up
to you. This document will cover some of the more common options for highly available
systems.

OpenStack High Availability
Guide

April 26, 2014 current

4

2. HA Using Active/Passive

Table of Contents
The Pacemaker Cluster Stack ... 4

Installing Packages .. 5
Setting up Corosync .. 5
Starting Corosync .. 7
Starting Pacemaker ... 8
Setting basic cluster properties .. 8

Cloud Controller Cluster Stack ... 9
Highly available MySQL ... 9
Highly available RabbitMQ .. 12

API Node Cluster Stack .. 16
Configure the VIP .. 16
Highly available OpenStack Identity ... 16
Highly available OpenStack Image API ... 18
Highly available Cinder API .. 19
Highly available OpenStack Networking Server .. 21
Highly available Ceilometer Central Agent ... 22
Configure Pacemaker Group .. 23

Network Controller Cluster Stack ... 23
Highly available Neutron L3 Agent .. 24
Highly available Neutron DHCP Agent ... 24
Highly available Neutron Metadata Agent ... 25
Manage network resources ... 26

The Pacemaker Cluster Stack
OpenStack infrastructure high availability relies on the Pacemaker cluster stack, the state-
of-the-art high availability and load balancing stack for the Linux platform. Pacemaker is
storage and application-agnostic, and is in no way specific to OpenStack.

Pacemaker relies on the Corosync messaging layer for reliable cluster communications.
Corosync implements the Totem single-ring ordering and membership protocol. It also
provides UDP and InfiniBand based messaging, quorum, and cluster membership to
Pacemaker.

Pacemaker interacts with applications through resource agents (RAs), of which it supports
over 70 natively. Pacemaker can also easily use third-party RAs. An OpenStack high-
availability configuration uses existing native Pacemaker RAs (such as those managing
MySQL databases or virtual IP addresses), existing third-party RAs (such as for RabbitMQ),
and native OpenStack RAs (such as those managing the OpenStack Identity and Image
Services).

http://www.clusterlabs.org
http://www.corosync.org

OpenStack High Availability
Guide

April 26, 2014 current

5

Installing Packages
On any host that is meant to be part of a Pacemaker cluster, you must first establish
cluster communications through the Corosync messaging layer. This involves installing the
following packages (and their dependencies, which your package manager will normally
install automatically):

• pacemaker Note that the crm shell should be downloaded separately.

• crmsh

• corosync

• cluster-glue

• fence-agents (Fedora only; all other distributions use fencing agents from cluster-
glue)

• resource-agents

Setting up Corosync
Besides installing the corosync package, you will also have to create a configuration
file, stored in /etc/corosync/corosync.conf. Most distributions ship an example
configuration file (corosync.conf.example) as part of the documentation bundled
with the corosync package. An example Corosync configuration file is shown below:

Corosync configuration file (corosync.conf).

totem {
 version: 2

 # Time (in ms) to wait for a token
 token: 10000

 # How many token retransmits before forming a new
 # configuration
 token_retransmits_before_loss_const: 10

 # Turn off the virtual synchrony filter
 vsftype: none

 # Enable encryption
 secauth: on

 # How many threads to use for encryption/decryption
 threads: 0

 # This specifies the redundant ring protocol, which may be

 # none, active, or passive.
 rrp_mode: active

 # The following is a two-ring multicast configuration.
 interface {
 ringnumber: 0
 bindnetaddr: 192.168.42.0
 mcastaddr: 239.255.42.1

OpenStack High Availability
Guide

April 26, 2014 current

6

 mcastport: 5405
 }
 interface {
 ringnumber: 1
 bindnetaddr: 10.0.42.0
 mcastaddr: 239.255.42.2
 mcastport: 5405
 }
}

amf {
 mode: disabled
}

service {

 # Load the Pacemaker Cluster Resource Manager
 ver: 1
 name: pacemaker
}

aisexec {
 user: root
 group: root
}

logging {
 fileline: off
 to_stderr: yes
 to_logfile: no
 to_syslog: yes
 syslog_facility: daemon
 debug: off
 timestamp: on
 logger_subsys {
 subsys: AMF
 debug: off
 tags: enter|leave|trace1|trace2|trace3|trace4|trace6
 }
}

The token value specifies the time, in milliseconds, during which the Corosync token
is expected to be transmitted around the ring. When this timeout expires, the token
is declared lost, and after token_retransmits_before_loss_const lost tokens
the non-responding processor (cluster node) is declared dead. In other words, token
× token_retransmits_before_loss_const is the maximum time a node is
allowed to not respond to cluster messages before being considered dead. The default
for token is 1000 (1 second), with 4 allowed retransmits. These defaults are intended
to minimize failover times, but can cause frequent "false alarms" and unintended
failovers in case of short network interruptions. The values used here are safer, albeit
with slightly extended failover times.
With secauth enabled, Corosync nodes mutually authenticate using a 128-byte
shared secret stored in /etc/corosync/authkey, which may be generated with
the corosync-keygen utility. When using secauth, cluster communications are
also encrypted.
In Corosync configurations using redundant networking (with more than one
interface), you must select a Redundant Ring Protocol (RRP) mode other than
none. active is the recommended RRP mode.

OpenStack High Availability
Guide

April 26, 2014 current

7

There are several things to note about the recommended interface configuration:

• The ringnumber must differ between all configured interfaces, starting with 0.

• The bindnetaddr is the network address of the interfaces to bind to. The example
uses two network addresses of /24 IPv4 subnets.

• Multicast groups (mcastaddr) must not be reused across cluster boundaries. In
other words, no two distinct clusters should ever use the same multicast group. Be
sure to select multicast addresses compliant with RFC 2365, "Administratively Scoped
IP Multicast".

• For firewall configurations, note that Corosync communicates over UDP only, and
uses mcastport (for receives) and mcastport-1 (for sends).

The service declaration for the pacemaker service may be placed in the
corosync.conf file directly, or in its own separate file, /etc/corosync/
service.d/pacemaker.

Once created, the corosync.conf file (and the authkey file if the secauth option is
enabled) must be synchronized across all cluster nodes.

Starting Corosync

Corosync is started as a regular system service. Depending on your distribution, it may ship
with a LSB (System V style) init script, an upstart job, or a systemd unit file. Either way, the
service is usually named corosync:

• /etc/init.d/corosync start (LSB)

• service corosync start (LSB, alternate)

• start corosync (upstart)

• systemctl start corosync (systemd)

You can now check the Corosync connectivity with two tools.

The corosync-cfgtool utility, when invoked with the -s option, gives a summary of the
health of the communication rings:

corosync-cfgtool -s
Printing ring status.
Local node ID 435324542
RING ID 0
 id = 192.168.42.82
 status = ring 0 active with no faults
RING ID 1
 id = 10.0.42.100
 status = ring 1 active with no faults

The corosync-objctl utility can be used to dump the Corosync cluster member list:

corosync-objctl runtime.totem.pg.mrp.srp.members
runtime.totem.pg.mrp.srp.435324542.ip=r(0) ip(192.168.42.82) r(1) ip(10.0.42.
100)
runtime.totem.pg.mrp.srp.435324542.join_count=1

http://www.ietf.org/rfc/rfc2365.txt
http://www.ietf.org/rfc/rfc2365.txt

OpenStack High Availability
Guide

April 26, 2014 current

8

runtime.totem.pg.mrp.srp.435324542.status=joined
runtime.totem.pg.mrp.srp.983895584.ip=r(0) ip(192.168.42.87) r(1) ip(10.0.42.
254)
runtime.totem.pg.mrp.srp.983895584.join_count=1
runtime.totem.pg.mrp.srp.983895584.status=joined

You should see a status=joined entry for each of your constituent cluster nodes.

Starting Pacemaker

Once the Corosync services have been started, and you have established that the cluster
is communicating properly, it is safe to start pacemakerd, the Pacemaker master control
process:

• /etc/init.d/pacemaker start (LSB)

• service pacemaker start (LSB, alternate)

• start pacemaker (upstart)

• systemctl start pacemaker (systemd)

Once Pacemaker services have started, Pacemaker will create a default empty cluster
configuration with no resources. You may observe Pacemaker’s status with the crm_mon
utility:

============
Last updated: Sun Oct 7 21:07:52 2012
Last change: Sun Oct 7 20:46:00 2012 via cibadmin on node2
Stack: openais
Current DC: node2 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
0 Resources configured.
============

Online: [node2 node1]

Setting basic cluster properties

Once your Pacemaker cluster is set up, it is recommended to set a few basic cluster
properties. To do so, start the crm shell and change into the configuration menu
by entering configure. Alternatively. you may jump straight into the Pacemaker
configuration menu by typing crm configure directly from a shell prompt.

Then, set the following properties:

property no-quorum-policy="ignore" \ #

 pe-warn-series-max="1000" \ #
 pe-input-series-max="1000" \
 pe-error-series-max="1000" \

 cluster-recheck-interval="5min" #

Setting no-quorum-policy="ignore" is required in 2-node Pacemaker clusters for
the following reason: if quorum enforcement is enabled, and one of the two nodes

OpenStack High Availability
Guide

April 26, 2014 current

9

fails, then the remaining node can not establish a majority of quorum votes necessary
to run services, and thus it is unable to take over any resources. The appropriate
workaround is to ignore loss of quorum in the cluster. This is safe and necessary only
in 2-node clusters. Do not set this property in Pacemaker clusters with more than two
nodes.
Setting pe-warn-series-max, pe-input-series-max and pe-error-
series-max to 1000 instructs Pacemaker to keep a longer history of the inputs
processed, and errors and warnings generated, by its Policy Engine. This history is
typically useful in case cluster troubleshooting becomes necessary.
Pacemaker uses an event-driven approach to cluster state processing. However,
certain Pacemaker actions occur at a configurable interval, cluster-recheck-
interval, which defaults to 15 minutes. It is usually prudent to reduce this to a
shorter interval, such as 5 or 3 minutes.

Once you have made these changes, you may commit the updated configuration.

Cloud Controller Cluster Stack
The Cloud Controller sits on the management network and needs to talk to all other
services.

Highly available MySQL

MySQL is the default database server used by many OpenStack services. Making the MySQL
service highly available involves

• configuring a DRBD device for use by MySQL,

• configuring MySQL to use a data directory residing on that DRBD device,

• selecting and assigning a virtual IP address (VIP) that can freely float between cluster
nodes,

• configuring MySQL to listen on that IP address,

• managing all resources, including the MySQL daemon itself, with the Pacemaker cluster
manager.

Note

MySQL/Galera is an alternative method of configuring MySQL for high
availability. It is likely to become the preferred method of achieving MySQL
high availability once it has sufficiently matured. At the time of writing,
however, the Pacemaker/DRBD based approach remains the recommended
one for OpenStack environments.

Configuring DRBD

The Pacemaker based MySQL server requires a DRBD resource from which it mounts the /
var/lib/mysql directory. In this example, the DRBD resource is simply named mysql:

http://codership.com/products/mysql_galera

OpenStack High Availability
Guide

April 26, 2014 current

10

mysql DRBD resource configuration (/etc/drbd.d/mysql.res).

resource mysql {
 device minor 0;
 disk "/dev/data/mysql";
 meta-disk internal;
 on node1 {
 address ipv4 10.0.42.100:7700;
 }
 on node2 {
 address ipv4 10.0.42.254:7700;
 }
}

This resource uses an underlying local disk (in DRBD terminology, a backing device) named
/dev/data/mysql on both cluster nodes, node1 and node2. Normally, this would be
an LVM Logical Volume specifically set aside for this purpose. The DRBD meta-disk is
internal, meaning DRBD-specific metadata is being stored at the end of the disk device
itself. The device is configured to communicate between IPv4 addresses 10.0.42.100 and
10.0.42.254, using TCP port 7700. Once enabled, it will map to a local DRBD block device
with the device minor number 0, that is, /dev/drbd0.

Enabling a DRBD resource is explained in detail in the DRBD User’s Guide. In brief, the
proper sequence of commands is this:

drbdadm create-md mysql

drbdadm up mysql

drbdadm -- --force primary mysql

Initializes DRBD metadata and writes the initial set of metadata to /dev/data/
mysql. Must be completed on both nodes.
Creates the /dev/drbd0 device node, attaches the DRBD device to its backing store,
and connects the DRBD node to its peer. Must be completed on both nodes.
Kicks off the initial device synchronization, and puts the device into the primary
(readable and writable) role. See Resource roles (from the DRBD User’s Guide) for
a more detailed description of the primary and secondary roles in DRBD. Must be
completed on one node only, namely the one where you are about to continue with
creating your filesystem.

Creating a file system

Once the DRBD resource is running and in the primary role (and potentially still in the
process of running the initial device synchronization), you may proceed with creating the
filesystem for MySQL data. XFS is the generally recommended filesystem:

mkfs -t xfs /dev/drbd0

You may also use the alternate device path for the DRBD device, which may be easier to
remember as it includes the self-explanatory resource name:

mkfs -t xfs /dev/drbd/by-res/mysql

Once completed, you may safely return the device to the secondary role. Any ongoing
device synchronization will continue in the background:

drbdadm secondary mysql

http://www.drbd.org/users-guide-8.3/s-first-time-up.html
http://www.drbd.org/users-guide-8.3/ch-admin.html#s-roles

OpenStack High Availability
Guide

April 26, 2014 current

11

Preparing MySQL for Pacemaker high availability

In order for Pacemaker monitoring to function properly, you must ensure that MySQL’s
database files reside on the DRBD device. If you already have an existing MySQL database,
the simplest approach is to just move the contents of the existing /var/lib/mysql
directory into the newly created filesystem on the DRBD device.

Warning

You must complete the next step while the MySQL database server is shut
down.

node1:# mount /dev/drbd/by-res/mysql /mnt
node1:# mv /var/lib/mysql/* /mnt
node1:# umount /mnt

For a new MySQL installation with no existing data, you may also run the
mysql_install_db command:

node1:# mount /dev/drbd/by-res/mysql /mnt
node1:# mysql_install_db --datadir=/mnt
node1:# umount /mnt

Regardless of the approach, the steps outlined here must be completed on only one cluster
node.

Adding MySQL resources to Pacemaker

You may now proceed with adding the Pacemaker configuration for MySQL resources.
Connect to the Pacemaker cluster with crm configure, and add the following cluster
resources:

primitive p_ip_mysql ocf:heartbeat:IPaddr2 \
 params ip="192.168.42.101" cidr_netmask="24" \
 op monitor interval="30s"
primitive p_drbd_mysql ocf:linbit:drbd \
 params drbd_resource="mysql" \
 op start timeout="90s" \
 op stop timeout="180s" \
 op promote timeout="180s" \
 op demote timeout="180s" \
 op monitor interval="30s" role="Slave" \
 op monitor interval="29s" role="Master"
primitive p_fs_mysql ocf:heartbeat:Filesystem \
 params device="/dev/drbd/by-res/mysql" \
 directory="/var/lib/mysql" \
 fstype="xfs" \
 options="relatime" \
 op start timeout="60s" \
 op stop timeout="180s" \
 op monitor interval="60s" timeout="60s"
primitive p_mysql ocf:heartbeat:mysql \
 params additional_parameters="--bind-address=50.56.179.138"
 config="/etc/mysql/my.cnf" \
 pid="/var/run/mysqld/mysqld.pid" \
 socket="/var/run/mysqld/mysqld.sock" \
 log="/var/log/mysql/mysqld.log" \

OpenStack High Availability
Guide

April 26, 2014 current

12

 op monitor interval="20s" timeout="10s" \
 op start timeout="120s" \
 op stop timeout="120s"
group g_mysql p_ip_mysql p_fs_mysql p_mysql
ms ms_drbd_mysql p_drbd_mysql \
 meta notify="true" clone-max="2"
colocation c_mysql_on_drbd inf: g_mysql ms_drbd_mysql:Master
order o_drbd_before_mysql inf: ms_drbd_mysql:promote g_mysql:start

This configuration creates

• p_ip_mysql, a virtual IP address for use by MySQL (192.168.42.101),

• p_fs_mysql, a Pacemaker managed filesystem mounted to /var/lib/mysql on
whatever node currently runs the MySQL service,

• ms_drbd_mysql, the master/slave set managing the mysql DRBD resource,

• a service group and order and colocation constraints to ensure resources are
started on the correct nodes, and in the correct sequence.

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required. For example, you may enter
edit p_ip_mysql from the crm configure menu and edit the resource to match your
preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the MySQL service, and its dependent
resources, on one of your nodes.

Configuring OpenStack services for highly available MySQL

Your OpenStack services must now point their MySQL configuration to the highly available,
virtual cluster IP address — rather than a MySQL server’s physical IP address as you normally
would.

For OpenStack Image, for example, if your MySQL service IP address is 192.168.42.101 as
in the configuration explained here, you would use the following line in your OpenStack
Image registry configuration file (glance-registry.conf):

sql_connection = mysql://glancedbadmin:<password>@192.168.42.101/glance

No other changes are necessary to your OpenStack configuration. If the node currently
hosting your database experiences a problem necessitating service failover, your OpenStack
services may experience a brief MySQL interruption, as they would in the event of a
network hiccup, and then continue to run normally.

Highly available RabbitMQ

RabbitMQ is the default AMQP server used by many OpenStack services. Making the
RabbitMQ service highly available involves:

• configuring a DRBD device for use by RabbitMQ,

• configuring RabbitMQ to use a data directory residing on that DRBD device,

OpenStack High Availability
Guide

April 26, 2014 current

13

• selecting and assigning a virtual IP address (VIP) that can freely float between cluster
nodes,

• configuring RabbitMQ to listen on that IP address,

• managing all resources, including the RabbitMQ daemon itself, with the Pacemaker
cluster manager.

Note

There is an alternative method of configuring RabbitMQ for high availability.
That approach, known as active-active mirrored queues, happens to be the
one preferred by the RabbitMQ developers — however it has shown less than
ideal consistency and reliability in OpenStack clusters. Thus, at the time of
writing, the Pacemaker/DRBD based approach remains the recommended one
for OpenStack environments, although this may change in the near future as
RabbitMQ active-active mirrored queues mature.

Configuring DRBD

The Pacemaker based RabbitMQ server requires a DRBD resource from which it mounts
the /var/lib/rabbitmq directory. In this example, the DRBD resource is simply named
rabbitmq:

rabbitmq DRBD resource configuration (/etc/drbd.d/rabbitmq.res).

resource rabbitmq {
 device minor 1;
 disk "/dev/data/rabbitmq";
 meta-disk internal;
 on node1 {
 address ipv4 10.0.42.100:7701;
 }
 on node2 {
 address ipv4 10.0.42.254:7701;
 }
}

This resource uses an underlying local disk (in DRBD terminology, a backing device) named
/dev/data/rabbitmq on both cluster nodes, node1 and node2. Normally, this would
be an LVM Logical Volume specifically set aside for this purpose. The DRBD meta-disk is
internal, meaning DRBD-specific metadata is being stored at the end of the disk device
itself. The device is configured to communicate between IPv4 addresses 10.0.42.100 and
10.0.42.254, using TCP port 7701. Once enabled, it will map to a local DRBD block device
with the device minor number 1, that is, /dev/drbd1.

Enabling a DRBD resource is explained in detail in the DRBD User’s Guide. In brief, the
proper sequence of commands is this:

drbdadm create-md rabbitmq

drbdadm up rabbitmq

drbdadm -- --force primary rabbitmq

Initializes DRBD metadata and writes the initial set of metadata to /dev/data/
rabbitmq. Must be completed on both nodes.

http://www.rabbitmq.com/ha.html
http://www.drbd.org/users-guide-8.3/s-first-time-up.html

OpenStack High Availability
Guide

April 26, 2014 current

14

Creates the /dev/drbd1 device node, attaches the DRBD device to its backing store,
and connects the DRBD node to its peer. Must be completed on both nodes.
Kicks off the initial device synchronization, and puts the device into the primary
(readable and writable) role. See Resource roles (from the DRBD User’s Guide) for
a more detailed description of the primary and secondary roles in DRBD. Must be
completed on one node only, namely the one where you are about to continue with
creating your filesystem.

Creating a file system

Once the DRBD resource is running and in the primary role (and potentially still in the
process of running the initial device synchronization), you may proceed with creating the
filesystem for RabbitMQ data. XFS is generally the recommended filesystem:

mkfs -t xfs /dev/drbd1

You may also use the alternate device path for the DRBD device, which may be easier to
remember as it includes the self-explanatory resource name:

mkfs -t xfs /dev/drbd/by-res/rabbitmq

Once completed, you may safely return the device to the secondary role. Any ongoing
device synchronization will continue in the background:

drbdadm secondary rabbitmq

Preparing RabbitMQ for Pacemaker high availability

In order for Pacemaker monitoring to function properly, you must ensure that RabbitMQ’s
.erlang.cookie files are identical on all nodes, regardless of whether DRBD is mounted
there or not. The simplest way of doing so is to take an existing .erlang.cookie from
one of your nodes, copying it to the RabbitMQ data directory on the other node, and also
copying it to the DRBD-backed filesystem.

node1:# scp -a /var/lib/rabbitmq/.erlang.cookie node2:/var/lib/rabbitmq/
node1:# mount /dev/drbd/by-res/rabbitmq /mnt
node1:# cp -a /var/lib/rabbitmq/.erlang.cookie /mnt
node1:# umount /mnt

Adding RabbitMQ resources to Pacemaker

You may now proceed with adding the Pacemaker configuration for RabbitMQ resources.
Connect to the Pacemaker cluster with crm configure, and add the following cluster
resources:

primitive p_ip_rabbitmp ocf:heartbeat:IPaddr2 \
 params ip="192.168.42.100" cidr_netmask="24" \
 op monitor interval="10s"
primitive p_drbd_rabbitmq ocf:linbit:drbd \
 params drbd_resource="rabbitmq" \
 op start timeout="90s" \
 op stop timeout="180s" \
 op promote timeout="180s" \
 op demote timeout="180s" \
 op monitor interval="30s" role="Slave" \

http://www.drbd.org/users-guide-8.3/ch-admin.html#s-roles

OpenStack High Availability
Guide

April 26, 2014 current

15

 op monitor interval="29s" role="Master"
primitive p_fs_rabbitmq ocf:heartbeat:Filesystem \
 params device="/dev/drbd/by-res/rabbitmq" \
 directory="/var/lib/rabbitmq" \
 fstype="xfs" options="relatime" \
 op start timeout="60s" \
 op stop timeout="180s" \
 op monitor interval="60s" timeout="60s"
primitive p_rabbitmq ocf:rabbitmq:rabbitmq-server \
 params nodename="rabbit@localhost" \
 mnesia_base="/var/lib/rabbitmq" \
 op monitor interval="20s" timeout="10s"
group g_rabbitmq p_ip_rabbitmq p_fs_rabbitmq p_rabbitmq
ms ms_drbd_rabbitmq p_drbd_rabbitmq \
 meta notify="true" master-max="1" clone-max="2"
colocation c_rabbitmq_on_drbd inf: g_rabbitmq ms_drbd_rabbitmq:Master
order o_drbd_before_rabbitmq inf: ms_drbd_rabbitmq:promote g_rabbitmq:start

This configuration creates

• p_ip_rabbitmp, a virtual IP address for use by RabbitMQ (192.168.42.100),

• p_fs_rabbitmq, a Pacemaker managed filesystem mounted to /var/lib/rabbitmq
on whatever node currently runs the RabbitMQ service,

• ms_drbd_rabbitmq, the master/slave set managing the rabbitmq DRBD resource,

• a service group and order and colocation constraints to ensure resources are
started on the correct nodes, and in the correct sequence.

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required. For example, you may enter
edit p_ip_rabbitmq from the crm configure menu and edit the resource to match
your preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the RabbitMQ service, and its dependent
resources, on one of your nodes.

Configuring OpenStack services for highly available RabbitMQ

Your OpenStack services must now point their RabbitMQ configuration to the highly
available, virtual cluster IP address — rather than a RabbitMQ server’s physical IP address as
you normally would.

For OpenStack Image, for example, if your RabbitMQ service IP address is 192.168.42.100
as in the configuration explained here, you would use the following line in your OpenStack
Image API configuration file (glance-api.conf):

rabbit_host = 192.168.42.100

No other changes are necessary to your OpenStack configuration. If the node currently
hosting your RabbitMQ experiences a problem necessitating service failover, your
OpenStack services may experience a brief RabbitMQ interruption, as they would in the
event of a network hiccup, and then continue to run normally.

OpenStack High Availability
Guide

April 26, 2014 current

16

API Node Cluster Stack
The API node exposes OpenStack API endpoints onto external network (Internet). It needs
to talk to the Cloud Controller on the management network.

Configure the VIP
First of all, we need to select and assign a virtual IP address (VIP) that can freely float
between cluster nodes.

This configuration creates p_ip_api, a virtual IP address for use by the API node
(192.168.42.103) :

primitive p_api-ip ocf:heartbeat:IPaddr2 \
 params ip="192.168.42.103" cidr_netmask="24" \
 op monitor interval="30s"

Highly available OpenStack Identity
OpenStack Identity is the Identity Service in OpenStack and used by many services. Making
the OpenStack Identity service highly available in active / passive mode involves

• configuring OpenStack Identity to listen on the VIP address,

• managing OpenStack Identity daemon with the Pacemaker cluster manager,

• configuring OpenStack services to use this IP address.

Note

Here is the documentation for installing OpenStack Identity service.

Adding OpenStack Identity resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d
mkdir openstack
cd openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
keystone
chmod a+rx *

You may now proceed with adding the Pacemaker configuration for OpenStack Identity
resource. Connect to the Pacemaker cluster with crm configure, and add the following
cluster resources:

primitive p_keystone ocf:openstack:keystone \
 params config="/etc/keystone/keystone.conf" os_password="secret"
 os_username="admin" os_tenant_name="admin" os_auth_url="http://192.168.42.
103:5000/v2.0/" \
 op monitor interval="30s" timeout="30s"

This configuration creates p_keystone, a resource for managing the OpenStack Identity
service.

http://docs.openstack.org/trunk/install-guide/install/apt/content/ch_installing-openstack-identity-service.html

OpenStack High Availability
Guide

April 26, 2014 current

17

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required. For example, you may enter
edit p_ip_keystone from the crm configure menu and edit the resource to match
your preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the OpenStack Identity service, and its
dependent resources, on one of your nodes.

Configuring OpenStack Identity service

You need to edit your OpenStack Identity configuration file (keystone.conf) and
change the bind parameters:

On Havana:

bind_host = 192.168.42.103

On Icehouse, the admin_bind_host option lets you use a private network for the admin
access.

public_bind_host = 192.168.42.103
admin_bind_host = 192.168.42.103

To be sure all data will be highly available, you should be sure that you store everything in
the MySQL database (which is also highly available):

[catalog]
driver = keystone.catalog.backends.sql.Catalog
...
[identity]
driver = keystone.identity.backends.sql.Identity
...

Configuring OpenStack Services to use the Highly Available OpenStack
Identity

Your OpenStack services must now point their OpenStack Identity configuration to the
highly available, virtual cluster IP address — rather than a OpenStack Identity server’s
physical IP address as you normally would.

For example with OpenStack Compute, if your OpenStack Identity service IP address is
192.168.42.103 as in the configuration explained here, you would use the following line in
your API configuration file (api-paste.ini):

auth_host = 192.168.42.103

You also need to create the OpenStack Identity Endpoint with this IP.

NOTE : If you are using both private and public IP addresses, you should create two Virtual
IP addresses and define your endpoint like this:

keystone endpoint-create --region $KEYSTONE_REGION --service-id $service-id
 --publicurl 'http://PUBLIC_VIP:5000/v2.0' --adminurl 'http://192.168.42.
103:35357/v2.0' --internalurl 'http://192.168.42.103:5000/v2.0'

If you are using the Horizon Dashboard, you should edit the local_settings.py file:

OpenStack High Availability
Guide

April 26, 2014 current

18

OPENSTACK_HOST = 192.168.42.103

Highly available OpenStack Image API
OpenStack Image Service offers a service for discovering, registering, and retrieving virtual
machine images. Making the OpenStack Image API service highly available in active /
passive mode involves

• configuring OpenStack Image to listen on the VIP address,

• managing OpenStack Image API daemon with the Pacemaker cluster manager,

• configuring OpenStack services to use this IP address.

Note

Here is the documentation for installing OpenStack Image API service.

Adding OpenStack Image API resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
glance-api
chmod a+rx *

You may now proceed with adding the Pacemaker configuration for OpenStack Image API
resource. Connect to the Pacemaker cluster with crm configure, and add the following
cluster resources:

primitive p_glance-api ocf:openstack:glance-api \
 params config="/etc/glance/glance-api.conf" os_password="secrete"
 os_username="admin" os_tenant_name="admin" os_auth_url="http://192.168.42.
103:5000/v2.0/" \
 op monitor interval="30s" timeout="30s"

This configuration creates

• p_glance-api, a resource for manage OpenStack Image API service

crm configure supports batch input, so you may copy and paste the above into your
live pacemaker configuration, and then make changes as required. For example, you may
enter edit p_ip_glance-api from the crm configure menu and edit the resource
to match your preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the OpenStack Image API service, and its
dependent resources, on one of your nodes.

Configuring OpenStack Image API service

Edit /etc/glance/glance-api.conf:

We have to use MySQL connection to store data:
sql_connection=mysql://glance:password@192.168.42.101/glance

http://docs.openstack.org/trunk/install-guide/install/apt/content/ch_installing-openstack-image.html

OpenStack High Availability
Guide

April 26, 2014 current

19

We bind OpenStack Image API to the VIP:
bind_host = 192.168.42.103

Connect to OpenStack Image Registry service:
registry_host = 192.168.42.103

We send notifications to High Available RabbitMQ:
notifier_strategy = rabbit
rabbit_host = 192.168.42.102

Configuring OpenStack Services to use High Available OpenStack Image
API

Your OpenStack services must now point their OpenStack Image API configuration to the
highly available, virtual cluster IP address — rather than an OpenStack Image API server’s
physical IP address as you normally would.

For OpenStack Compute, for example, if your OpenStack Image API service IP address is
192.168.42.104 as in the configuration explained here, you would use the following line in
your nova.conf file:

glance_api_servers = 192.168.42.103

You need also to create the OpenStack Image API Endpoint with this IP.

Note

If you are using both private and public IP addresses, you should create two
Virtual IP addresses and define your endpoint like this:

keystone endpoint-create --region $KEYSTONE_REGION --service-id $service-id --
publicurl 'http://PUBLIC_VIP:9292' --adminurl 'http://192.168.42.103:9292' --
internalurl 'http://192.168.42.103:9292'

Highly available Cinder API

Cinder is the block storage service in OpenStack. Making the Cinder API service highly
available in active / passive mode involves

• configuring Cinder to listen on the VIP address,

• managing Cinder API daemon with the Pacemaker cluster manager,

• configuring OpenStack services to use this IP address.

Note

Here is the documentation for installing Cinder service.

Adding Cinder API resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack

http://docs.openstack.org/trunk/install-guide/install/apt/content/cinder-install.html

OpenStack High Availability
Guide

April 26, 2014 current

20

wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
cinder-api
chmod a+rx *

You may now proceed with adding the Pacemaker configuration for Cinder API resource.
Connect to the Pacemaker cluster with crm configure, and add the following cluster
resources:

primitive p_cinder-api ocf:openstack:cinder-api \
 params config="/etc/cinder/cinder.conf" os_password="secrete" os_username=
"admin" \
 os_tenant_name="admin" keystone_get_token_url="http://192.168.42.103:5000/
v2.0/tokens" \
 op monitor interval="30s" timeout="30s"

This configuration creates

• p_cinder-api, a resource for manage Cinder API service

crm configure supports batch input, so you may copy and paste the above into your
live pacemaker configuration, and then make changes as required. For example, you may
enter edit p_ip_cinder-api from the crm configure menu and edit the resource
to match your preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the Cinder API service, and its dependent
resources, on one of your nodes.

Configuring Cinder API service

Edit /etc/cinder/cinder.conf:

We have to use MySQL connection to store data:
sql_connection=mysql://cinder:password@192.168.42.101/cinder

We bind Cinder API to the VIP :
osapi_volume_listen = 192.168.42.103

We send notifications to High Available RabbitMQ:
notifier_strategy = rabbit
rabbit_host = 192.168.42.102

Configuring OpenStack Services to use High Available Cinder API

Your OpenStack services must now point their Cinder API configuration to the highly
available, virtual cluster IP address — rather than a Cinder API server’s physical IP address as
you normally would.

You need to create the Cinder API Endpoint with this IP.

Note

If you are using both private and public IP, you should create two Virtual IPs
and define your endpoint like this:

keystone endpoint-create --region $KEYSTONE_REGION --service-id $service-id --
publicurl 'http://PUBLIC_VIP:8776/v1/%(tenant_id)s' --adminurl 'http://192.

OpenStack High Availability
Guide

April 26, 2014 current

21

168.42.103:8776/v1/%(tenant_id)s' --internalurl 'http://192.168.42.103:8776/
v1/%(tenant_id)s'

Highly available OpenStack Networking Server
OpenStack Networking is the network connectivity service in OpenStack. Making the
OpenStack Networking Server service highly available in active / passive mode involves

• configuring OpenStack Networking to listen on the VIP address,

• managing OpenStack Networking API Server daemon with the Pacemaker cluster
manager,

• configuring OpenStack services to use this IP address.

Note

Here is the documentation for installing OpenStack Networking service.

Adding OpenStack Networking Server resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
neutron-server
chmod a+rx *

You may now proceed with adding the Pacemaker configuration for OpenStack
Networking Server resource. Connect to the Pacemaker cluster with crm configure, and
add the following cluster resources:

primitive p_neutron-server ocf:openstack:neutron-server \
 params os_password="secrete" os_username="admin" os_tenant_name="admin" \
 keystone_get_token_url="http://192.168.42.103:5000/v2.0/tokens" \
 op monitor interval="30s" timeout="30s"

This configuration creates p_neutron-server, a resource for manage OpenStack
Networking Server service

crm configure supports batch input, so you may copy and paste the above into your
live pacemaker configuration, and then make changes as required. For example, you may
enter edit p_neutron-server from the crm configure menu and edit the resource
to match your preferred virtual IP address.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the OpenStack Networking API service, and
its dependent resources, on one of your nodes.

Configuring OpenStack Networking Server

Edit /etc/neutron/neutron.conf :

We bind the service to the VIP:
bind_host = 192.168.42.103

http://docs.openstack.org/trunk/install-guide/install/apt/content/ch_installing-openstack-networking.html

OpenStack High Availability
Guide

April 26, 2014 current

22

We bind OpenStack Networking Server to the VIP:
bind_host = 192.168.42.103

We send notifications to Highly available RabbitMQ:
notifier_strategy = rabbit
rabbit_host = 192.168.42.102

[database]
We have to use MySQL connection to store data:
connection = mysql://neutron:password@192.168.42.101/neutron

Configuring OpenStack Services to use Highly available OpenStack
Networking Server

Your OpenStack services must now point their OpenStack Networking Server configuration
to the highly available, virtual cluster IP address — rather than an OpenStack Networking
server’s physical IP address as you normally would.

For example, you should configure OpenStack Compute for using Highly Available
OpenStack Networking Server in editing nova.conf file:

neutron_url = http://192.168.42.103:9696

You need to create the OpenStack Networking Server Endpoint with this IP.

NOTE : If you are using both private and public IP addresses, you should create two Virtual
IP addresses and define your endpoint like this:

keystone endpoint-create --region $KEYSTONE_REGION --service-id $service-id --
publicurl 'http://PUBLIC_VIP:9696/' --adminurl 'http://192.168.42.103:9696/'
 --internalurl 'http://192.168.42.103:9696/'

Highly available Ceilometer Central Agent

Ceilometer is the metering service in OpenStack. Central Agent polls for resource utilization
statistics for resources not tied to instances or compute nodes.

Note

Due to limitations of a polling model, a single instance of this agent can be
polling a given list of meters. In this setup, we install this service on the API
nodes also in the active / passive mode.

Making the Ceilometer Central Agent service highly available in active / passive mode
involves managing its daemon with the Pacemaker cluster manager.

Note

You will find at this page the process to install the Ceilometer Central Agent.

Adding the Ceilometer Central Agent resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack

http://docs.openstack.org/developer/ceilometer/install/manual.html#installing-the-central-agent

OpenStack High Availability
Guide

April 26, 2014 current

23

wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
ceilometer-agent-central
chmod a+rx *

You may then proceed with adding the Pacemaker configuration for the Ceilometer
Central Agent resource. Connect to the Pacemaker cluster with crm configure, and add
the following cluster resources:

primitive p_ceilometer-agent-central ocf:openstack:ceilometer-agent-central \
 params config="/etc/ceilometer/ceilometer.conf" \
 op monitor interval="30s" timeout="30s"

This configuration creates

• p_ceilometer-agent-central, a resource for manage Ceilometer Central Agent
service

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the Ceilometer Central Agent service, and its
dependent resources, on one of your nodes.

Configuring Ceilometer Central Agent service

Edit /etc/ceilometer/ceilometer.conf :

We use API VIP for Identity Service connection :
os_auth_url=http://192.168.42.103:5000/v2.0

We send notifications to High Available RabbitMQ :
notifier_strategy = rabbit
rabbit_host = 192.168.42.102

[database]
We have to use MySQL connection to store datas :
sql_connection=mysql://ceilometer:password@192.168.42.101/ceilometer

Configure Pacemaker Group
Finally, we need to create a service group to ensure that virtual IP is linked to the API
services resources :

group g_services_api p_api-ip p_keystone p_glance-api p_cinder-api \
 p_neutron-server p_glance-registry p_ceilometer-agent-central

Network Controller Cluster Stack
The Network controller sits on the management and data network, and needs to be
connected to the Internet if a VM needs access to it.

Note

Both nodes should have the same hostname since the Neutron scheduler will be
aware of one node, for example a virtual router attached to a single L3 node.

OpenStack High Availability
Guide

April 26, 2014 current

24

Highly available Neutron L3 Agent

The Neutron L3 agent provides L3/NAT forwarding to ensure external network access
for VMs on tenant networks. High Availability for the L3 agent is achieved by adopting
Pacemaker.

Note

Here is the documentation for installing Neutron L3 Agent.

Adding Neutron L3 Agent resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
neutron-agent-l3
chmod a+rx neutron-l3-agent

You may now proceed with adding the Pacemaker configuration for Neutron L3 Agent
resource. Connect to the Pacemaker cluster with crm configure, and add the following
cluster resources:

primitive p_neutron-l3-agent ocf:openstack:neutron-agent-l3 \
 params config="/etc/neutron/neutron.conf" \
 plugin_config="/etc/neutron/l3_agent.ini" \
 op monitor interval="30s" timeout="30s"

This configuration creates

• p_neutron-l3-agent, a resource for manage Neutron L3 Agent service

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required.

Once completed, commit your configuration changes by entering commit from the
crm configure menu. Pacemaker will then start the Neutron L3 Agent service, and its
dependent resources, on one of your nodes.

Note

This method does not ensure a zero downtime since it has to recreate all the
namespaces and virtual routers on the node.

Highly available Neutron DHCP Agent

Neutron DHCP agent distributes IP addresses to the VMs with dnsmasq (by default). High
Availability for the DHCP agent is achieved by adopting Pacemaker.

Note

Here is the documentation for installing Neutron DHCP Agent.

http://docs.openstack.org/trunk/config-reference/content/section_adv_cfg_l3_agent.html
http://docs.openstack.org/trunk/config-reference/content/section_adv_cfg_dhcp_agent.html

OpenStack High Availability
Guide

April 26, 2014 current

25

Adding Neutron DHCP Agent resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
neutron-agent-dhcp
chmod a+rx neutron-dhcp-agent

You may now proceed with adding the Pacemaker configuration for Neutron DHCP Agent
resource. Connect to the Pacemaker cluster with crm configure, and add the following
cluster resources:

primitive p_neutron-dhcp-agent ocf:openstack:neutron-dhcp-agent \
 params config="/etc/neutron/neutron.conf" \
 plugin_config="/etc/neutron/dhcp_agent.ini" \
 op monitor interval="30s" timeout="30s"

This configuration creates

• p_neutron-dhcp-agent, a resource for manage Neutron DHCP Agent service

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the Neutron DHCP Agent service, and its
dependent resources, on one of your nodes.

Highly available Neutron Metadata Agent

Neutron Metadata agent allows Nova API Metadata to be reachable by VMs on tenant
networks. High Availability for the Metadata agent is achieved by adopting Pacemaker.

Note

Here is the documentation for installing Neutron Metadata Agent.

Adding Neutron Metadata Agent resource to Pacemaker

First of all, you need to download the resource agent to your system:

cd /usr/lib/ocf/resource.d/openstack
wget https://raw.github.com/madkiss/openstack-resource-agents/master/ocf/
neutron-metadata-agent
chmod a+rx neutron-metadata-agent

You may now proceed with adding the Pacemaker configuration for Neutron Metadata
Agent resource. Connect to the Pacemaker cluster with crm configure, and add the
following cluster resources:

primitive p_neutron-metadata-agent ocf:openstack:neutron-metadata-agent \
 params config="/etc/neutron/neutron.conf" \
 plugin_config="/etc/neutron/metadata_agent.ini" \
 op monitor interval="30s" timeout="30s"

http://docs.openstack.org/trunk/config-reference/content/networking-options-metadata.html

OpenStack High Availability
Guide

April 26, 2014 current

26

This configuration creates

• p_neutron-metadata-agent, a resource for manage Neutron Metadata Agent
service

crm configure supports batch input, so you may copy and paste the above into your live
pacemaker configuration, and then make changes as required.

Once completed, commit your configuration changes by entering commit from the crm
configure menu. Pacemaker will then start the Neutron Metadata Agent service, and its
dependent resources, on one of your nodes.

Manage network resources

You may now proceed with adding the Pacemaker configuration for managing all network
resources together with a group. Connect to the Pacemaker cluster with crm configure,
and add the following cluster resources:

group g_services_network p_neutron-l3-agent p_neutron-dhcp-agent \
 p_neutron-metadata_agent

OpenStack High Availability
Guide

April 26, 2014 current

27

3. HA Using Active/Active

Table of Contents
Database ... 27

MySQL with Galera ... 27
Galera Monitoring Scripts .. 29
Other ways to provide a Highly Available database ... 29

RabbitMQ ... 30
Install RabbitMQ ... 30
Configure RabbitMQ ... 30
Configure OpenStack Services to use RabbitMQ ... 31

HAproxy Nodes ... 32
OpenStack Controller Nodes .. 34

Running OpenStack API & schedulers .. 34
Memcached ... 35

OpenStack Network Nodes ... 36
Running Neutron DHCP Agent .. 36
Running Neutron L3 Agent ... 36
Running Neutron Metadata Agent .. 36

Database
The first step is installing the database that sits at the heart of the cluster. When we’re
talking about High Availability, however, we’re talking about not just one database, but
several (for redundancy) and a means to keep them synchronized. In this case, we’re going
to choose the MySQL database, along with Galera for synchronous multi-master replication.

The choice of database isn’t a foregone conclusion; you’re not required to use MySQL. It is,
however, a fairly common choice in OpenStack installations, so we’ll cover it here.

MySQL with Galera
Rather than starting with a vanilla version of MySQL and then adding Galera to it, you
will want to install a version of MySQL patched for wsrep (Write Set REPlication) from
https://launchpad.net/codership-mysql/0.7. Note that the installation requirements are a
bit touchy; you will want to make sure to read the README file so you don’t miss any steps.

Next, download Galera itself from https://launchpad.net/galera/+download. Go ahead
and install the *.rpms or *.debs, taking care of any dependencies that your system doesn’t
already have installed.

Once you’ve completed the installation, you’ll need to make a few configuration changes:

In the system-wide my.conf file, make sure mysqld isn’t bound to 127.0.0.1, and that /
etc/mysql/conf.d/ is included. Typically you can find this file at /etc/my.cnf:

[mysqld]
...

https://launchpad.net/codership-mysql/0.7
https://launchpad.net/galera/+download

OpenStack High Availability
Guide

April 26, 2014 current

28

!includedir /etc/mysql/conf.d/
...
#bind-address = 127.0.0.1

When adding a new node, you must configure it with a MySQL account that can access the
other nodes so that it can request a state snapshot from one of those existing nodes. First
specify that account information in /etc/mysql/conf.d/wsrep.cnf:

wsrep_sst_auth=wsrep_sst:wspass

Next connect as root and grant privileges to that user:

$ mysql -e "SET wsrep_on=OFF; GRANT ALL ON *.* TO wsrep_sst@'%' IDENTIFIED BY
 'wspass'";

You’ll also need to remove user accounts with empty usernames, as they cause problems:

$ mysql -e "SET wsrep_on=OFF; DELETE FROM mysql.user WHERE user='';"

You’ll also need to set certain mandatory configuration options within MySQL itself. These
include:

query_cache_size=0
binlog_format=ROW
default_storage_engine=innodb
innodb_autoinc_lock_mode=2
innodb_doublewrite=1

Finally, make sure that the nodes can access each other through the firewall. This might
mean adjusting iptables, as in:

iptables --insert RH-Firewall-1-INPUT 1 --proto tcp --source <my IP>/24 --
destination <my IP>/32 --dport 3306 -j ACCEPT
iptables --insert RH-Firewall-1-INPUT 1 --proto tcp --source <my IP>/24 --
destination <my IP>/32 --dport 4567 -j ACCEPT

It might also mean configuring any NAT firewall between nodes to allow direct
connections, or disabling SELinux or configuring it to allow mysqld to listen to sockets at
unprivileged ports.

Now you’re ready to actually create the cluster.

Creating the cluster

In creating a cluster, you first start a single instance, which creates the cluster. The rest
of the MySQL instances then connect to that cluster. For example, if you started on
10.0.0.10 by executing the command:

service mysql start wsrep_cluster_address=gcomm://

you could then connect to that cluster on the rest of the nodes by referencing the address
of that node, as in:

service mysql start wsrep_cluster_address=gcomm://10.0.0.10

You also have the option to set the wsrep_cluster_address in the /etc/mysql/
conf.d/wsrep.cnf file, or within the client itself. (In fact, for some systems, such as
MariaDB or Percona, this may be your only option.) For example, to check the status of the
cluster, open the MySQL client and check the status of the various parameters:

OpenStack High Availability
Guide

April 26, 2014 current

29

mysql> SET GLOBAL wsrep_cluster_address='<cluster address string>';
mysql> SHOW STATUS LIKE 'wsrep%';

You should see a status that looks something like this:

mysql> show status like 'wsrep%';
+----------------------------+--------------------------------------+
| Variable_name | Value |
+----------------------------+--------------------------------------+
wsrep_local_state_uuid	111fc28b-1b05-11e1-0800-e00ec5a7c930
wsrep_protocol_version	1
wsrep_last_committed	0
wsrep_replicated	0
wsrep_replicated_bytes	0
wsrep_received	2
wsrep_received_bytes	134
wsrep_local_commits	0
wsrep_local_cert_failures	0
wsrep_local_bf_aborts	0
wsrep_local_replays	0
wsrep_local_send_queue	0
wsrep_local_send_queue_avg	0.000000
wsrep_local_recv_queue	0
wsrep_local_recv_queue_avg	0.000000
wsrep_flow_control_paused	0.000000
wsrep_flow_control_sent	0
wsrep_flow_control_recv	0
wsrep_cert_deps_distance	0.000000
wsrep_apply_oooe	0.000000
wsrep_apply_oool	0.000000
wsrep_apply_window	0.000000
wsrep_commit_oooe	0.000000
wsrep_commit_oool	0.000000
wsrep_commit_window	0.000000
wsrep_local_state	4
wsrep_local_state_comment	Synced (6)
wsrep_cert_index_size	0
wsrep_cluster_conf_id	1
wsrep_cluster_size	1
wsrep_cluster_state_uuid	111fc28b-1b05-11e1-0800-e00ec5a7c930
wsrep_cluster_status	Primary
wsrep_connected	ON
wsrep_local_index	0
wsrep_provider_name	Galera
wsrep_provider_vendor	Codership Oy
wsrep_provider_version	21.1.0(r86)
wsrep_ready	ON
+----------------------------+--------------------------------------+
38 rows in set (0.01 sec)

Galera Monitoring Scripts

(Coming soon)

Other ways to provide a Highly Available database

MySQL with Galera is by no means the only way to achieve database HA. MariaDB (https://
mariadb.org/) and Percona (http://www.percona.com/) also work with Galera. You also

https://mariadb.org/
https://mariadb.org/
http://www.percona.com/

OpenStack High Availability
Guide

April 26, 2014 current

30

have the option to use Postgres, which has its own replication, or some other database HA
option.

RabbitMQ
RabbitMQ is the default AMQP server used by many OpenStack services. Making the
RabbitMQ service highly available involves the following steps:

• Install RabbitMQ

• Configure RabbitMQ for HA queues

• Configure OpenStack services to use Rabbit HA queues

Install RabbitMQ
This setup has been tested with RabbitMQ 2.7.1.

On Ubuntu / Debian

RabbitMQ is packaged on both distros:

apt-get install rabbitmq-server rabbitmq-plugins

Official manual for installing RabbitMQ on Ubuntu / Debian

On Fedora / RHEL

RabbitMQ is packaged on both distros:

yum install erlang

Official manual for installing RabbitMQ on Fedora / RHEL

Configure RabbitMQ
Here we are building a cluster of RabbitMQ nodes to construct a RabbitMQ broker.
Mirrored queues in RabbitMQ improve the availability of service since it will be resilient
to failures. We have to consider that while exchanges and bindings will survive the loss of
individual nodes, queues and their messages will not because a queue and its contents is
located on one node. If we lose this node, we also lose the queue.

We consider that we run (at least) two RabbitMQ servers. To build a broker, we need
to ensure that all nodes have the same erlang cookie file. To do so, stop RabbitMQ
everywhere and copy the cookie from rabbit1 server to other server(s):

scp /var/lib/rabbitmq/.erlang.cookie \
root@rabbit2:/var/lib/rabbitmq/.erlang.cookie

Then, start RabbitMQ on nodes. If RabbitMQ fails to start, you can’t continue to the next
step.

Now, we are building the HA cluster. From rabbit2, run these commands:

rabbitmqctl stop_app
rabbitmqctl cluster rabbit@rabbit1

http://www.rabbitmq.com/install-debian.html
http://www.rabbitmq.com/install-rpm.html

OpenStack High Availability
Guide

April 26, 2014 current

31

rabbitmqctl start_app

To verify the cluster status :

rabbitmqctl cluster_status

Cluster status of node rabbit@rabbit2 ...
[{nodes,[{disc,[rabbit@rabbit1]},{ram,[rabbit@rabbit2]}]},{running_nodes,
[rabbit@rabbit2,rabbit@rabbit1]}]

If the cluster is working, you can now proceed to creating users and passwords for queues.

Note for RabbitMQ version 3

Queue mirroring is no longer controlled by the x-ha-policy argument when declaring a
queue. OpenStack can continue to declare this argument, but it won’t cause queues to be
mirrored. We need to make sure that all queues (except those with auto-generated names)
are mirrored across all running nodes:

rabbitmqctl set_policy HA '^(?!amq\.).*' '{"ha-mode": "all"}'

More information about High availability in RabbitMQ

Configure OpenStack Services to use RabbitMQ
We have to configure the OpenStack components to use at least two RabbitMQ nodes.

Do this configuration on all services using RabbitMQ:

RabbitMQ HA cluster host:port pairs:

rabbit_hosts=rabbit1:5672,rabbit2:5672

How frequently to retry connecting with RabbitMQ:

rabbit_retry_interval=1

How long to back-off for between retries when connecting to RabbitMQ:

rabbit_retry_backoff=2

Maximum retries with trying to connect to RabbitMQ (infinite by default):

rabbit_max_retries=0

Use durable queues in RabbitMQ:

rabbit_durable_queues=false

Use H/A queues in RabbitMQ (x-ha-policy: all):

rabbit_ha_queues=true

If you change the configuration from an old setup which did not use HA queues, you
should interrupt the service:

rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl start_app

Services currently working with HA queues: OpenStack Compute, OpenStack Block Storage,
OpenStack Networking, Telemetry.

http://www.rabbitmq.com/ha.html

OpenStack High Availability
Guide

April 26, 2014 current

32

HAproxy Nodes
HAProxy is a very fast and reliable solution offering high availability, load balancing, and
proxying for TCP and HTTP-based applications. It is particularly suited for web sites crawling
under very high loads while needing persistence or Layer 7 processing. Supporting tens of
thousands of connections is clearly realistic with today’s hardware.

For installing HAproxy on your nodes, you should consider its official documentation. Also,
you have to consider that this service should not be a single point of failure, so you need at
least two nodes running HAproxy.

Here is an example for HAproxy configuration file:

global
 chroot /var/lib/haproxy
 daemon
 group haproxy
 maxconn 4000
 pidfile /var/run/haproxy.pid
 user haproxy

defaults
 log global
 maxconn 8000
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 1m
 timeout server 1m
 timeout check 10s

listen dashboard_cluster
 bind <Virtual IP>:443
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:443 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:443 check inter 2000 rise 2 fall 5

listen galera_cluster
 bind <Virtual IP>:3306
 balance source
 option httpchk
 server controller1 10.0.0.4:3306 check port 9200 inter 2000 rise 2 fall 5
 server controller2 10.0.0.5:3306 check port 9200 inter 2000 rise 2 fall 5
 server controller3 10.0.0.6:3306 check port 9200 inter 2000 rise 2 fall 5

listen glance_api_cluster
 bind <Virtual IP>:9292
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:9292 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:9292 check inter 2000 rise 2 fall 5

http://haproxy.1wt.eu/#docs

OpenStack High Availability
Guide

April 26, 2014 current

33

listen glance_registry_cluster
 bind <Virtual IP>:9191
 balance source
 option tcpka
 option tcplog
 server controller1 10.0.0.1:9191 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:9191 check inter 2000 rise 2 fall 5

listen keystone_admin_cluster
 bind <Virtual IP>:35357
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:35357 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2.42:35357 check inter 2000 rise 2 fall 5

listen keystone_public_internal_cluster
 bind <Virtual IP>:5000
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:5000 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:5000 check inter 2000 rise 2 fall 5

listen nova_ec2_api_cluster
 bind <Virtual IP>:8773
 balance source
 option tcpka
 option tcplog
 server controller1 10.0.0.1:8773 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8773 check inter 2000 rise 2 fall 5

listen nova_compute_api_cluster
 bind <Virtual IP>:8774
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:8774 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8774 check inter 2000 rise 2 fall 5

listen nova_metadata_api_cluster
 bind <Virtual IP>:8775
 balance source
 option tcpka
 option tcplog
 server controller1 10.0.0.1:8775 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8775 check inter 2000 rise 2 fall 5

listen cinder_api_cluster
 bind <Virtual IP>:8776
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:8776 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8776 check inter 2000 rise 2 fall 5

OpenStack High Availability
Guide

April 26, 2014 current

34

listen ceilometer_api_cluster
 bind <Virtual IP>:8777
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:8774 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8774 check inter 2000 rise 2 fall 5

listen spice_cluster
 bind <Virtual IP>:6082
 balance source
 option tcpka
 option tcplog
 server controller1 10.0.0.1:6080 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:6080 check inter 2000 rise 2 fall 5

listen neutron_api_cluster
 bind <Virtual IP>:9696
 balance source
 option tcpka
 option httpchk
 option tcplog
 server controller1 10.0.0.1:9696 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:9696 check inter 2000 rise 2 fall 5

listen swift_proxy_cluster
 bind <Virtual IP>:8080
 balance source
 option tcplog
 option tcpka
 server controller1 10.0.0.1:8080 check inter 2000 rise 2 fall 5
 server controller2 10.0.0.2:8080 check inter 2000 rise 2 fall 5

After each change of this file, you should restart HAproxy.

OpenStack Controller Nodes
OpenStack Controller Nodes contains:

• All OpenStack API services

• All OpenStack schedulers

• Memcached service

Running OpenStack API & schedulers

API Services

All OpenStack projects have an API service for controlling all the resources in the Cloud. In
Active / Active mode, the most common setup is to scale-out these services on at least two
nodes and use load-balancing and virtual IP (with HAproxy & Keepalived in this setup).

Configuring API OpenStack services

OpenStack High Availability
Guide

April 26, 2014 current

35

To configure our Cloud using Highly available and scalable API services, we need to ensure
that:

• Using Virtual IP when configuring OpenStack Identity Endpoints.

• All OpenStack configuration files should refer to Virtual IP.

In case of failure

The monitor check is quite simple since it just establishes a TCP connection to the API port.
Comparing to the Active / Passive mode using Corosync & Resources Agents, we don’t
check if the service is actually running). That’s why all OpenStack API should be monitored
by another tool (i.e. Nagios) with the goal to detect failures in the Cloud Framework
infrastructure.

Schedulers

OpenStack schedulers are used to determine how to dispatch compute, network and
volume requests. The most common setup is to use RabbitMQ as messaging system already
documented in this guide. Those services are connected to the messaging backend and can
scale-out :

• nova-scheduler

• nova-conductor

• cinder-scheduler

• neutron-server

• ceilometer-collector

• heat-engine

Please refer to the RabbitMQ section for configure these services with multiple messaging
servers.

Memcached
Most of OpenStack services use an application to offer persistence and store ephemeral
datas (like tokens). Memcached is one of them and can scale-out easily without specific
trick.

To install and configure it, you can read the official documentation.

Memory caching is managed by Oslo-incubator for so the way to use multiple memcached
servers is the same for all projects.

Example with two hosts:

memcached_servers = controller1:11211,controller2:11211

By default, controller1 will handle the caching service but if the host goes down, controller2
will do the job. More informations about memcached installation are in the OpenStack
Compute Manual.

http://code.google.com/p/memcached/wiki/NewStart

OpenStack High Availability
Guide

April 26, 2014 current

36

OpenStack Network Nodes
OpenStack Network Nodes contains:

• Neutron DHCP Agent

• Neutron L2 Agent

• Neutron L3 Agent

• Neutron Metadata Agent

• Neutron LBaaS Agent

Note

The Neutron L2 Agent does not need to be highly available. It has to be
installed on each Data Forwarding Node and controls the virtual networking
drivers as Open-vSwitch or Linux Bridge. One L2 agent runs per node and
controls its virtual interfaces. That’s why it cannot be distributed and highly
available.

Running Neutron DHCP Agent

OpenStack Networking service has a scheduler that lets you run multiple agents across
nodes. Also, the DHCP agent can be natively highly available. For details, see OpenStack
Configuration Reference.

Running Neutron L3 Agent

The Neutron L3 Agent is scalable thanks to the scheduler that allows distribution of virtual
routers across multiple nodes. But there is no native feature to make these routers highly
available. At this time, the Active / Passive solution exists to run the Neutron L3 agent in
failover mode with Pacemaker. See the Active / Passive section of this guide.

Running Neutron Metadata Agent

There is no native feature to make this service highly available. At this time, the Active /
Passive solution exists to run the Neutron Metadata agent in failover mode with
Pacemaker. See the Active / Passive section of this guide.

http://docs.openstack.org/trunk/config-reference/content/app_demo_multi_dhcp_agents.html
http://docs.openstack.org/trunk/config-reference/content/app_demo_multi_dhcp_agents.html

	OpenStack High Availability Guide
	Table of Contents
	1. Introduction to OpenStack High Availability
	Stateless vs. Stateful services
	Active/Passive
	Active/Active

	2. HA Using Active/Passive
	The Pacemaker Cluster Stack
	Installing Packages
	Setting up Corosync
	Starting Corosync
	Starting Pacemaker
	Setting basic cluster properties

	Cloud Controller Cluster Stack
	Highly available MySQL
	Configuring DRBD
	Creating a file system
	Preparing MySQL for Pacemaker high availability
	Adding MySQL resources to Pacemaker
	Configuring OpenStack services for highly available MySQL

	Highly available RabbitMQ
	Configuring DRBD
	Creating a file system
	Preparing RabbitMQ for Pacemaker high availability
	Adding RabbitMQ resources to Pacemaker
	Configuring OpenStack services for highly available RabbitMQ

	API Node Cluster Stack
	Configure the VIP
	Highly available OpenStack Identity
	Adding OpenStack Identity resource to Pacemaker
	Configuring OpenStack Identity service
	Configuring OpenStack Services to use the Highly Available OpenStack Identity

	Highly available OpenStack Image API
	Adding OpenStack Image API resource to Pacemaker
	Configuring OpenStack Image API service
	Configuring OpenStack Services to use High Available OpenStack Image API

	Highly available Cinder API
	Adding Cinder API resource to Pacemaker
	Configuring Cinder API service
	Configuring OpenStack Services to use High Available Cinder API

	Highly available OpenStack Networking Server
	Adding OpenStack Networking Server resource to Pacemaker
	Configuring OpenStack Networking Server
	Configuring OpenStack Services to use Highly available OpenStack Networking Server

	Highly available Ceilometer Central Agent
	Adding the Ceilometer Central Agent resource to Pacemaker
	Configuring Ceilometer Central Agent service

	Configure Pacemaker Group

	Network Controller Cluster Stack
	Highly available Neutron L3 Agent
	Adding Neutron L3 Agent resource to Pacemaker

	Highly available Neutron DHCP Agent
	Adding Neutron DHCP Agent resource to Pacemaker

	Highly available Neutron Metadata Agent
	Adding Neutron Metadata Agent resource to Pacemaker

	Manage network resources

	3. HA Using Active/Active
	Database
	MySQL with Galera
	Creating the cluster

	Galera Monitoring Scripts
	Other ways to provide a Highly Available database

	RabbitMQ
	Install RabbitMQ
	On Ubuntu / Debian
	On Fedora / RHEL

	Configure RabbitMQ
	Configure OpenStack Services to use RabbitMQ

	HAproxy Nodes
	OpenStack Controller Nodes
	Running OpenStack API & schedulers
	API Services
	Schedulers

	Memcached

	OpenStack Network Nodes
	Running Neutron DHCP Agent
	Running Neutron L3 Agent
	Running Neutron Metadata Agent

