
OpenStack Security Guide April 26, 2014 current

i

TM

OpenStack Security Guide
current (2014-04-26)
Copyright © 2013 OpenStack Foundation Some rights reserved.

This book provides best practices and conceptual information about securing an
OpenStack cloud.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenStack Security Guide April 26, 2014 current

iii

Table of Contents
Preface .. 11

Conventions ... 11
Document change history .. 11

1. Acknowledgments ... 1
2. Why and how we wrote this book ... 3

Objectives .. 3
How .. 3
How to contribute to this book ... 7

3. Introduction to OpenStack ... 9
Cloud types ... 9
OpenStack service overview ... 11

4. Security Boundaries and Threats ... 15
Security Domains ... 15
Bridging Security Domains .. 17
Threat Classification, Actors and Attack Vectors 19

5. Introduction to Case Studies .. 25
Case Study : Alice the private cloud builder 25
Case Study : Bob the public cloud provider 25

6. System Documentation Requirements .. 27
System Roles & Types ... 27
System Inventory ... 27
Network Topology ... 28
Services, Protocols and Ports .. 28

7. Case Studies: System Documentation .. 31
Alice's Private Cloud ... 31
Bob's Public Cloud .. 31

8. Management Introduction ... 33
9. Continuous Systems Management .. 35

Vulnerability Management ... 35
Configuration Management ... 37
Secure Backup and Recovery .. 38
Security Auditing Tools .. 39

10. Integrity Life-cycle .. 41
Secure Bootstrapping ... 41
Runtime Verification .. 45

11. Management Interfaces ... 49
Dashboard ... 49
OpenStack API ... 50
Secure Shell (SSH) .. 51
Management Utilities ... 52
Out-of-Band Management Interface ... 52

OpenStack Security Guide April 26, 2014 current

iv

12. Case Studies: Management Interfaces ... 55
Alice's Private Cloud ... 55
Bob's Public Cloud .. 56

13. Introduction to SSL/TLS .. 57
Certification Authorities ... 58
SSL/TLS Libraries .. 59
Cryptographic Algorithms, Cipher Modes, and Protocols 59
Summary ... 59

14. Case Studies: PKI and Certificate Management 61
Alice's Private Cloud ... 61
Bob's Public Cloud .. 61

15. SSL Proxies and HTTP Services .. 63
Examples ... 63
nginx ... 67
HTTP Strict Transport Security .. 68

16. API Endpoint Configuration Recommendations 71
Internal API Communications ... 71
Paste and Middleware ... 72
API Endpoint Process Isolation & Policy .. 73

17. Case Studies: API Endpoints ... 75
Alice's Private Cloud ... 75
Bob's Public Cloud .. 75

18. Identity .. 77
Authentication ... 77
Authentication Methods .. 78
Authorization ... 80
Policies ... 81
Tokens ... 83
Future .. 84

19. Dashboard ... 85
Basic Web Server Configuration ... 85
HTTPS .. 86
HTTP Strict Transport Security (HSTS) ... 86
Front end Caching ... 86
Domain Names .. 86
Static Media ... 87
Secret Key .. 88
Session Backend ... 88
Allowed Hosts .. 88
Cookies .. 89
Password Auto Complete ... 89
Cross Site Request Forgery (CSRF) .. 89
Cross Site Scripting (XSS) .. 89

OpenStack Security Guide April 26, 2014 current

v

Cross Origin Resource Sharing (CORS) .. 90
Horizon Image Upload ... 90
Upgrading ... 90
Debug .. 90

20. Compute .. 91
Virtual Console Selection .. 91

21. Object Storage ... 95
First thing to secure – the network .. 96
Securing services – general ... 98
Securing storage services .. 99
Securing proxy services ... 100
Object storage authentication .. 102
Other notable items ... 102

22. Case Studies: Identity Management .. 103
Alice's Private Cloud ... 103
Bob's Public Cloud .. 103

23. State of Networking ... 105
24. Networking Architecture .. 107

OS Networking Service placement on Physical Servers 108
25. Networking Services ... 111

L2 Isolation using VLANs and Tunneling 111
Network Services .. 112
Network Services Extensions ... 114
Networking Services Limitations ... 115

26. Securing OpenStack Networking Services 117
OpenStack Networking Service Configuration 118

27. Networking Services Security Best Practices 119
Tenant Network Services Workflow .. 119
Networking Resource Policy Engine .. 119
Security Groups .. 120
Quotas ... 120

28. Case Studies: Networking ... 123
Alice's Private Cloud ... 123
Bob's Public Cloud .. 123

29. Message Queuing Architecture ... 125
30. Messaging Security ... 127

Messaging Transport Security ... 127
Queue Authentication and Access Control 128
Message Queue Process Isolation & Policy 130

31. Case Studies: Messaging ... 133
Alice's Private Cloud ... 133
Bob's Public Cloud .. 133

32. Database Backend Considerations .. 135

OpenStack Security Guide April 26, 2014 current

vi

Security References for Database Backends 135
33. Database Access Control .. 137

OpenStack Database Access Model .. 137
Database Authentication and Access Control 139
Require User Accounts to Require SSL Transport 140
Authentication with X.509 Certificates .. 140
OpenStack Service Database Configuration 141
Nova Conductor ... 141

34. Database Transport Security ... 143
Database Server IP Address Binding ... 143
Database Transport .. 143
MySQL SSL Configuration ... 144
PostgreSQL SSL Configuration .. 144

35. Case Studies: Database ... 147
Alice's Private Cloud ... 147
Bob's Public Cloud .. 147

36. Data Privacy Concerns .. 149
Data Residency .. 149
Data Disposal ... 150

37. Data Encryption ... 155
Object Storage Objects .. 155
Block Storage Volumes & Instance Ephemeral Filesystems 156
Network Data .. 156

38. Key Management ... 159
References: .. 159

39. Case Studies: Tenant Data .. 161
Alice's Private Cloud ... 161
Bob's Public Cloud .. 161

40. Hypervisor Selection ... 163
Hypervisors in OpenStack ... 163
Selection Criteria .. 164

41. Hardening the Virtualization Layers .. 173
Physical Hardware (PCI Passthrough) .. 173
Virtual Hardware (QEMU) .. 174
sVirt: SELinux + Virtualization ... 177

42. Case Studies: Instance Isolation ... 181
Alice's Private Cloud ... 181
Bob's Public Cloud .. 181

43. Security Services for Instances ... 183
Entropy To Instances .. 183
Scheduling Instances to Nodes ... 184
Trusted Images .. 186
Instance Migrations .. 189

OpenStack Security Guide April 26, 2014 current

vii

44. Case Studies: Instance Management ... 193
Alice's Private Cloud ... 193
Bob's Public Cloud .. 193

45. Forensics and Incident Response ... 195
Monitoring Use Cases ... 195
References ... 197

46. Case Studies: Monitoring and Logging .. 199
Alice's Private Cloud ... 199
Bob's Public Cloud .. 199

47. Compliance Overview ... 201
Security Principles ... 201

48. Understanding the Audit Process .. 203
Determining Audit Scope ... 203
Internal Audit .. 204
Prepare for External Audit ... 204
External Audit .. 205
Compliance Maintenance ... 205

49. Compliance Activities .. 207
Information Security Management System (ISMS) 207
Risk Assessment ... 207
Access & Log Reviews .. 208
Backup and Disaster Recovery .. 208
Security Training .. 208
Security Reviews ... 208
Vulnerability Management ... 209
Data Classification .. 209
Exception Process ... 209

50. Certification & Compliance Statements ... 211
Commercial Standards .. 211
SOC 3 .. 213
ISO 27001/2 ... 213
HIPAA / HITECH ... 213
Government Standards .. 215

51. Privacy ... 217
52. Case Studies: Compliance ... 219

Alice's Private Cloud ... 219
Bob's Public Cloud .. 220

A. Community support ... 221
Documentation .. 221
ask.openstack.org .. 222
OpenStack mailing lists ... 223
The OpenStack wiki ... 223
The Launchpad Bugs area .. 223

OpenStack Security Guide April 26, 2014 current

viii

The OpenStack IRC channel .. 224
Documentation feedback ... 225
OpenStack distribution packages .. 225

Glossary ... 227

OpenStack Security Guide April 26, 2014 current

ix

List of Figures
21.1. An example diagram from the OpenStack Object Storage
Administration Guide (2013) .. 96
21.2. Object storage network architecture with a management node
(OSAM) ... 98

OpenStack Security Guide April 26, 2014 current

11

Preface
Conventions ... 11
Document change history .. 11

Conventions
The OpenStack documentation uses several typesetting conventions.

Notices

Notices take three forms:

Note

The information in a note is usually in the form of a handy tip
or reminder.

Important

The information in an important notice is something you must
be aware of before proceeding.

Warning

The information in warnings is critical. Warnings provide
additional information about risk of data loss or security issues.

Command prompts

Commands prefixed with the # prompt are to be executed by the root
user. These examples can also be executed by using the sudo command, if
available.

Commands prefixed with the $ prompt can be executed by any user,
including root.

Document change history
This version of the guide replaces and obsoletes all previous versions. The
following table describes the most recent changes:

OpenStack Security Guide April 26, 2014 current

12

Revision Date Summary of Changes

December 2, 2013 • Chapter on Object Storage added.

October 17, 2013 • Havana release.

July 2, 2013 • Initial creation...

OpenStack Security Guide April 26, 2014 current

1

1. Acknowledgments
The OpenStack Security Group would like to acknowledge contributions
from the following organizations who were instrumental in making this
book possible. These are:

OpenStack Security Guide April 26, 2014 current

2

OpenStack Security Guide April 26, 2014 current

3

2. Why and how we wrote this
book

Objectives .. 3
How .. 3
How to contribute to this book ... 7

As OpenStack adoption continues to grow and the product matures,
security has become a priority. The OpenStack Security Group has
recognized the need for a comprehensive and authoritative security guide.
The OpenStack Security Guide has been written to provide an overview of
security best practices, guidelines, and recommendations for increasing the
security of an OpenStack deployment. The authors bring their expertise
from deploying and securing OpenStack in a variety of environments.

The guide augments the OpenStack Operations Guide and can be
referenced to harden existing OpenStack deployments or to evaluate the
security controls of OpenStack cloud providers.

Objectives
• Identify the security domains in OpenStack

• Provide guidance to secure your OpenStack deployment

• Highlight security concerns and potential mitigations in present day
OpenStack

• Discuss upcoming security features

• To provide a community driven facility for knowledge capture and
dissemination

How
As with the OpenStack Operations Guide, we followed the book sprint
methodology. The book sprint process allows for rapid development
and production of large bodies of written work. Coordinators from
the OpenStack Security Group re-enlisted the services of Adam Hyde as

http://docs.openstack.org/ops/

OpenStack Security Guide April 26, 2014 current

4

facilitator. Corporate support was obtained and the project was formally
announced during the OpenStack summit in Portland, Oregon.

The team converged in Annapolis, MD due to the close proximity of some
key members of the group. This was a remarkable collaboration between
public sector intelligence community members, silicon valley startups and
some large, well-known technology companies. The book sprint ran during
the last week in June 2013 and the first edition was created in five days.

The team included:

• Bryan D. Payne, Nebula

Dr. Bryan D. Payne is the Director of Security Research at Nebula and
co-founder of the OpenStack Security Group (OSSG). Prior to joining
Nebula, he worked at Sandia National Labs, the National Security
Agency, BAE Systems, and IBM Research. He graduated with a Ph.D.
in Computer Science from the Georgia Tech College of Computing,
specializing in systems security.

• Robert Clark, HP

Robert Clark is the Lead Security Architect for HP Cloud Services and
co-founder of the OpenStack Security Group (OSSG). Prior to being
recruited by HP, he worked in the UK Intelligence Community. Robert
has a strong background in threat modeling, security architecture and
virtualization technology. Robert has a master's degree in Software
Engineering from the University of Wales.

• Keith Basil, Red Hat

OpenStack Security Guide April 26, 2014 current

5

Keith Basil is a Principal Product Manager for Red Hat OpenStack and is
focused on Red Hat's OpenStack product management, development
and strategy. Within the US public sector, Basil brings previous
experience from the design of an authorized, secure, high-performance
cloud architecture for Federal civilian agencies and contractors.

• Cody Bunch, Rackspace

Cody Bunch is a Private Cloud architect with Rackspace. Cody has co-
authored an update to "The OpenStack Cookbook" as well as books on
VMware automation.

• Malini Bhandaru, Intel

Malini Bhandaru is a security architect at Intel. She has a varied
background, having worked on platform power and performance at
Intel, speech products at Nuance, remote monitoring and management
at ComBrio, and web commerce at Verizon. She has a Ph.D. in Artificial
Intelligence from the University of Massachusetts, Amherst.

• Gregg Tally, Johns Hopkins University Applied Physics Laboratory

Gregg Tally is the Chief Engineer at JHU/APL's Cyber Systems Group
within the Asymmetric Operations Department. He works primarily in
systems security engineering. Previously, he has worked at SPARTA,
McAfee, and Trusted Information Systems where he was involved in
cyber security research projects.

• Eric Lopez, VMware

Eric Lopez is Senior Solution Architect at VMware's Networking and
Security Business Unit where he helps customers implement OpenStack
and VMware NSX (formerly known as Nicira's Network Virtualization
Platform). Prior to joining VMware (through the company's acquisition
of Nicira), he worked for Q1 Labs, Symantec, Vontu, and Brightmail.
He has a B.S in Electrical Engineering/Computer Science and Nuclear
Engineering from U.C. Berkeley and MBA from the University of San
Francisco.

• Shawn Wells, Red Hat

Shawn Wells is the Director, Innovation Programs at Red Hat, focused
on improving the process of adopting, contributing to, and managing
open source technologies within the U.S. Government. Additionally,
Shawn is an upstream maintainer of the SCAP Security Guide project

OpenStack Security Guide April 26, 2014 current

6

which forms virtualization and operating system hardening policy
with the U.S. Military, NSA, and DISA. Formerly an NSA civilian,
Shawn developed SIGINT collection systems utilizing large distributed
computing infrastructures.

• Ben de Bont, HP

Ben de Bont is the CSO for HP Cloud Services. Prior to his current
role Ben led the information security group at MySpace and the
incident response team at MSN Security. Ben holds a master's degree in
Computer Science from the Queensland University of Technology.

• Nathanael Burton, National Security Agency

Nathanael Burton is a Computer Scientist at the National Security
Agency. He has worked for the Agency for over 10 years working
on distributed systems, large-scale hosting, open source initiatives,
operating systems, security, storage, and virtualization technology. He
has a B.S. in Computer Science from Virginia Tech.

• Vibha Fauver

Vibha Fauver, GWEB, CISSP, PMP, has over fifteen years of experience
in Information Technology. Her areas of specialization include
software engineering, project management and information security.
She has a B.S. in Computer & Information Science and a M.S. in
Engineering Management with specialization and a certificate in
Systems Engineering.

• Eric Windisch, Cloudscaling

Eric Windisch is a Principal Engineer at Cloudscaling where he has
been contributing to OpenStack for over two years. Eric has been in
the trenches of hostile environments, building tenant isolation and
infrastructure security through more than a decade of experience
in the web hosting industry. He has been building cloud computing
infrastructure and automation since 2007.

• Andrew Hay, CloudPassage

Andrew Hay is the Director of Applied Security Research at
CloudPassage, Inc. where he leads the security research efforts for the
company and its server security products purpose-built for dynamic
public, private, and hybrid cloud hosting environments.

• Adam Hyde

OpenStack Security Guide April 26, 2014 current

7

Adam facilitated this Book Sprint. He also founded the Book Sprint
methodology and is the most experienced Book Sprint facilitator
around. Adam founded FLOSS Manuals—a community of some 3,000
individuals developing Free Manuals about Free Software. He is also the
founder and project manager for Booktype, an open source project for
writing, editing, and publishing books online and in print.

During the sprint we also had help from Anne Gentle, Warren Wang, Paul
McMillan, Brian Schott and Lorin Hochstein.

This Book was produced in a 5 day book sprint. A book sprint is an
intensely collaborative, facilitated process which brings together
a group to produce a book in 3-5 days. It is a strongly facilitated
process with a specific methodology founded and developed by Adam
Hyde. For more information visit the book sprint web page at http://
www.booksprints.net.

After initial publication, the following added new content:

• Rodney D. Beede, Seagate Technology

Rodney D. Beede is the Cloud Security Engineer for Seagate Technology.
He contributed the missing chapter on securing OpenStack Object
Storage (Swift). He holds a M.S. in Computer Science from the University
of Colorado.

How to contribute to this book
The initial work on this book was conducted in an overly air-
conditioned room that served as our group office for the entirety of the
documentation sprint.

Learn more about how to contribute to the OpenStack docs: http://
wiki.openstack.org/Documentation/HowTo.

http://www.booksprints.net
http://www.booksprints.net
http://wiki.openstack.org/Documentation/HowTo
http://wiki.openstack.org/Documentation/HowTo

OpenStack Security Guide April 26, 2014 current

9

3. Introduction to OpenStack
Cloud types ... 9
OpenStack service overview ... 11

This guide provides security insight into OpenStack deployments. The
intended audience is cloud architects, deployers, and administrators. In
addition, cloud users will find the guide both educational and helpful
in provider selection, while auditors will find it useful as a reference
document to support their compliance certification efforts. This guide is
also recommended for anyone interested in cloud security.

Each OpenStack deployment embraces a wide variety of technologies,
spanning Linux distributions, database systems, messaging queues,
OpenStack components themselves, access control policies, logging
services, security monitoring tools, and much more. It should come as no
surprise that the security issues involved are equally diverse, and their in-
depth analysis would require several guides. We strive to find a balance,
providing enough context to understand OpenStack security issues and
their handling, and provide external references for further information.
The guide could be read from start to finish or sampled as necessary like a
reference.

We briefly introduce the kinds of clouds: private, public, and hybrid before
presenting an overview of the OpenStack components and their related
security concerns in the remainder of the chapter.

Cloud types
OpenStack is a key enabler in adoption of cloud technology and has
several common deployment use cases. These are commonly known
as Public, Private, and Hybrid models. The following sections use the
National Institute of Standards and Technology (NIST) definition of cloud
to introduce these different types of cloud as they apply to OpenStack.

Public cloud

According to NIST, a public cloud is one in which the infrastructure is
open to the general public for consumption. OpenStack public clouds are
typically run by a service provider and can be consumed by individuals,
corporations, or any paying customer. A public cloud provider may expose
a full set of features such as software-defined networking, block storage,

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

OpenStack Security Guide April 26, 2014 current

10

in addition to multiple instance types. Due to the nature of public clouds,
they are exposed to a higher degree of risk. As a consumer of a public
cloud you should validate that your selected provider has the necessary
certifications, attestations, and other regulatory considerations. As a public
cloud provider, depending on your target customers, you may be subject
to one or more regulations. Additionally, even if not required to meet
regulatory requirements, a provider should ensure tenant isolation as well
as protecting management infrastructure from external attacks.

Private cloud

At the opposite end of the spectrum is the private cloud. As NIST defines
it, a private cloud is provisioned for exclusive use by a single organization
comprising multiple consumers, such as business units. It may be owned,
managed, and operated by the organization, a third-party, or some
combination of them, and it may exist on or off premises. Private cloud use
cases are diverse, as such, their individual security concerns vary.

Community cloud

NIST defines a community cloud as one whose infrastructure is
provisioned for the exclusive use by a specific community of consumers
from organizations that have shared concerns. For example, mission,
security requirements, policy, and compliance considerations. It may be
owned, managed, and operated by one or more of the organizations in
the community, a third-party, or some combination of them, and it may
exist on or off premises.

Hybrid cloud

A hybrid cloud is defined by NIST as a composition of two or more distinct
cloud infrastructures, such as private, community, or public, that remain
unique entities, but are bound together by standardized or proprietary
technology that enables data and application portability, such as cloud
bursting for load balancing between clouds. For example an online retailer
may have their advertising and catalogue presented on a public cloud
that allows for elastic provisioning. This would enable them to handle
seasonal loads in a flexible, cost-effective fashion. Once a customer begins
to process their order, they are transferred to the more secure private
cloud backend that is PCI compliant.

For the purposes of this document, we treat Community and Hybrid
similarly, dealing explicitly only with the extremes of Public and Private

OpenStack Security Guide April 26, 2014 current

11

clouds from a security perspective. Your security measures depend where
your deployment falls upon the private public continuum.

OpenStack service overview
OpenStack embraces a modular architecture to provide a set of core
services that facilitates scalability and elasticity as core design tenets.
This chapter briefly reviews OpenStack components, their use cases and
security considerations.

Compute

OpenStack Compute service (nova) provides services to support the
management of virtual machine instances at scale, instances that host
multi-tiered applications, dev/test environments, "Big Data" crunching
Hadoop clusters, and/or high performance computing.

The Compute service facilitates this management through an abstraction
layer that interfaces with supported hypervisors, which we address later on
in more detail.

Later in the guide, we focus generically on the virtualization stack as it
relates to hypervisors.

For information about the current state of feature support, see OpenStack
Hypervisor Support Matrix.

The security of Compute is critical for an OpenStack deployment.
Hardening techniques should include support for strong instance isolation,
secure communication between Compute sub-components, and resiliency
of public-facing API endpoints.

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix

OpenStack Security Guide April 26, 2014 current

12

Object Storage

The OpenStack Object Storage Service (Swift) provides support for
storing and retrieving arbitrary data in the cloud. The Object Storage
Service provides both a native API and an Amazon Web Services S3
compatible API. The service provides a high degree of resiliency through
data replication and can handle petabytes of data.

It is important to understand that object storage differs from traditional
file system storage. It is best used for static data such as media files (MP3s,
images, videos), virtual machine images, and backup files.

Object security should focus on access control and encryption of data in
transit and at rest. Other concerns may relate to system abuse, illegal or
malicious content storage, and cross authentication attack vectors.

Block Storage

The OpenStack Block Storage service (Cinder) provides persistent block
storage for compute instances. The Block Storage service is responsible for
managing the life-cycle of block devices, from the creation and attachment
of volumes to instances, to their release.

Security considerations for block storage are similar to that of object
storage.

OpenStack Networking

The OpenStack Networking Service (Neutron, previously called Quantum)
provides various networking services to cloud users (tenants) such as IP
address management, DNS, DHCP, load balancing, and security groups
(network access rules, like firewall policies). It provides a framework for
software defined networking (SDN) that allows for pluggable integration
with various networking solutions.

OpenStack Networking allows cloud tenants to manage their guest
network configurations. Security concerns with the networking service
include network traffic isolation, availability, integrity and confidentiality.

Dashboard

The OpenStack Dashboard Service (Horizon) provides a web-based
interface for both cloud administrators and cloud tenants. Through this

OpenStack Security Guide April 26, 2014 current

13

interface administrators and tenants can provision, manage, and monitor
cloud resources. Horizon is commonly deployed in a public facing manner
with all the usual security concerns of public web portals.

Identity Service

The OpenStack Identity Service (Keystone) is a shared service that
provides authentication and authorization services throughout the entire
cloud infrastructure. The Identity Service has pluggable support for
multiple forms of authentication.

Security concerns here pertain to trust in authentication, management of
authorization tokens, and secure communication.

Image Service

The OpenStack Image Service (Glance) provides disk image management
services. The Image Service provides image discovery, registration, and
delivery services to the Compute service, as needed.

Trusted processes for managing the life cycle of disk images are required,
as are all the previously mentioned issues with respect to data security.

Other supporting technology

OpenStack relies on messaging for internal communication between
several of its services. By default, OpenStack uses message queues
based on the Advanced Message Queue Protocol (AMQP). Similar to
most OpenStack services, it supports pluggable components. Today the
implementation backend could be RabbitMQ, Qpid, or ZeroMQ.

As most management commands flow through the message queueing
system, it is a primary security concern for any OpenStack deployment.
Message queueing security is discussed in detail later in this guide.

Several of the components use databases though it is not explicitly called
out. Securing the access to the databases and their contents is yet another
security concern, and consequently discussed in more detail later in this
guide.

OpenStack Security Guide April 26, 2014 current

15

4. Security Boundaries and Threats
Security Domains ... 15
Bridging Security Domains .. 17
Threat Classification, Actors and Attack Vectors 19

A cloud can be abstracted as a collection of logical components by virtue
of their function, users, and shared security concerns, which we call
security domains. Threat actors and vectors are classified based on their
motivation and access to resources. Our goal is to provide you a sense of
the security concerns with respect to each domain depending on your risk/
vulnerability protection objectives.

Security Domains
A security domain comprises users, applications, servers or networks that
share common trust requirements and expectations within a system.
Typically they have the same authentication and authorization (AuthN/Z)
requirements and users.

Although you may desire to break these domains down further (we later
discuss where this may be appropriate), we generally refer to four distinct
security domains which form the bare minimum that is required to deploy
any OpenStack cloud securely. These security domains are:

1. Public

2. Guest

3. Management

4. Data

We selected these security domains because they can be mapped
independently or combined to represent the majority of the possible
areas of trust within a given OpenStack deployment. For example, some
deployment topologies combine both guest and data domains onto one
physical network versus others, which have these networks physically
separated. In each case, the cloud operator should be aware of the
appropriate security concerns. Security domains should be mapped out
against your specific OpenStack deployment topology. The domains and
their trust requirements depend upon whether the cloud instance is public,
private, or hybrid.

OpenStack Security Guide April 26, 2014 current

16

Public

The public security domain is an entirely untrusted area of the cloud
infrastructure. It can refer to the Internet as a whole or simply to networks
over which you have no authority. Any data that transits this domain
with confidentiality or integrity requirements should be protected using
compensating controls.

This domain should always be considered untrusted.

Guest

Typically used for compute instance-to-instance traffic, the guest security
domain handles compute data generated by instances on the cloud but
not services that support the operation of the cloud, such as API calls.

Public cloud providers and private cloud providers who do not have
stringent controls on instance use or who allow unrestricted internet

OpenStack Security Guide April 26, 2014 current

17

access to VMs should consider this domain to be untrusted. Private cloud
providers may want to consider this network as internal and therefore
trusted only if they have controls in place to assert that they trust instances
and all their tenants.

Management

The management security domain is where services interact. Sometimes
referred to as the "control plane", the networks in this domain transport
confidential data such as configuration parameters, usernames, and
passwords. Command and Control traffic typically resides in this domain,
which necessitates strong integrity requirements. Access to this domain
should be highly restricted and monitored. At the same time, this domain
should still employ all of the security best practices described in this guide.

In most deployments this domain is considered trusted. However, when
considering an OpenStack deployment, there are many systems that
bridge this domain with others, potentially reducing the level of trust
you can place on this domain. See the section called “Bridging Security
Domains” [17] for more information.

Data

The data security domain is concerned primarily with information
pertaining to the storage services within OpenStack. Much of the data that
crosses this network has high integrity and confidentiality requirements
and depending on the type of deployment there may also be strong
availability requirements.

The trust level of this network is heavily dependent on deployment
decisions and as such we do not assign this any default level of trust.

Bridging Security Domains
A bridge is a component that exists inside more than one security domain.
Any component that bridges security domains with different trust levels or
authentication requirements must be carefully configured. These bridges
are often the weak points in network architecture. A bridge should always
be configured to meet the security requirements of the highest trust level
of any of the domains it is bridging. In many cases the security controls for
bridges should be a primary concern due to the likelihood of attack.

OpenStack Security Guide April 26, 2014 current

18

The diagram above shows a compute node bridging the data and
management domains, as such the compute node should be configured to
meet the security requirements of the management domain. Similarly the
API Endpoint in this diagram is bridging the untrusted public domain and
the management domain, and should be configured to protect against
attacks from the public domain propagating through to the management
domain.

OpenStack Security Guide April 26, 2014 current

19

In some cases deployers may want to consider securing a bridge to a
higher standard than any of the domains in which it resides. Given the
above example of an API endpoint, an adversary could potentially target
the API endpoint from the public domain, leveraging it in the hopes of
compromising or gaining access to the management domain.

The design of OpenStack is such that separation of security domains is
difficult - as core services will usually bridge at least two domains, special
consideration must be given when applying security controls to them.

Threat Classification, Actors and Attack
Vectors

Most types of cloud deployment, public or private, are exposed to some
form of attack. In this chapter we categorize attackers and summarize
potential types of attacks in each security domain.

Threat Actors
A threat actor is an abstract way to refer to a class of adversary that
you may attempt to defend against. The more capable the actor, the

OpenStack Security Guide April 26, 2014 current

20

more expensive the security controls that are required for successful
attack mitigation and prevention. Security is a tradeoff between cost,
usability and defense. In some cases it will not be possible to secure a
cloud deployment against all of the threat actors we describe here. Those
deploying an OpenStack cloud will have to decide where the balance lies
for their deployment / usage.

• Intelligence Services — Considered by this guide as the most capable
adversary. Intelligence Services and other state actors can bring
tremendous resources to bear on a target. They have capabilities
beyond that of any other actor. It is very difficult to defend against
these actors without incredibly stringent controls in place, both human
and technical.

• Serious Organized Crime — Highly capable and financially driven groups
of attackers. Able to fund in-house exploit development and target
research. In recent years the rise of organizations such as the Russian
Business Network, a massive cyber-criminal enterprise has demonstrated
how cyber attacks have become a commodity. Industrial espionage falls
within the SOC group.

• Highly Capable Groups — This refers to 'Hacktivist' type organizations
who are not typically commercially funded but can pose a serious threat
to service providers and cloud operators.

• Motivated Individuals — Acting alone, these attackers come in many
guises, such as rogue or malicious employees, disaffected customers, or
small-scale industrial espionage.

• Script Kiddies — Automated vulnerability scanning/exploitation. Non-
targeted attacks. Often only a nuisance, compromise by one of these
actors presents a major risk to an organization's reputation.

OpenStack Security Guide April 26, 2014 current

21

Public / Private Considerations

Private clouds are typically deployed by enterprises or institutions inside
their networks and behind their firewalls. Enterprises will have strict
policies on what data is allowed to exit their network and may even
have different clouds for specific purposes. Users of a private cloud are
typically employees of the organization that owns the cloud and are
able to be held accountable for their actions. Employees often attend
training sessions before accessing the cloud and will likely take part in
regular scheduled security awareness training. Public clouds by contrast
cannot make any assertions about their users, cloud use-cases or user
motivations. This immediately pushes the guest security domain into a
completely untrusted state for public cloud providers.

A notable difference in the attack surface of public clouds is that they must
provide internet access to their services. Instance connectivity, access to
files over the internet and the ability to interact with the cloud controlling
fabric such as the API endpoints and dashboard are must-haves for the
public cloud.

OpenStack Security Guide April 26, 2014 current

22

Privacy concerns for public and private cloud users are typically
diametrically opposed. The data generated and stored in private clouds
is normally owned by the operator of the cloud, who is able to deploy
technologies such as data loss prevention (DLP) protection, file inspection,
deep packet inspection and prescriptive firewalling. In contrast, privacy is
one of the primary barriers to adoption for the public cloud, as many of
these controls do not exist.

Outbound attacks and reputational risk

Careful consideration should be given to potential outbound abuse from
a cloud deployment. Whether public or private, clouds tend to have
lots of resource available. An attacker who has established a point of
presence within the cloud, either through hacking in or via entitled access
(rogue employee), can bring these resources to bear against the internet
at large. Clouds with Compute services make for ideal DDoS and brute
force engines. This is perhaps a more pressing issue for public clouds as
their users are largely unaccountable, and can quickly spin up numerous
disposable instances for outbound attacks. Major damage can be inflicted
upon a company's reputation if it becomes known for hosting malicious
software or launching attacks on other networks. Methods of prevention
include egress security groups, outbound traffic inspection, customer
education and awareness, and fraud and abuse mitigation strategies.

Attack Types

The diagram shows the types of attacks that may be expected from the
actors described in the previous section. Note that there will always be
exceptions to this diagram but in general, this describes the sorts of attack
that could be typical for each actor.

OpenStack Security Guide April 26, 2014 current

23

The prescriptive defense for each form of attack is beyond the scope of
this document. The above diagram can assist you in making an informed
decision about which types of threats, and threat actors, should be
protected against. For commercial public cloud deployments this might
include prevention against serious crime. For those deploying private
clouds for government use, more stringent protective mechanisms should
be in place, including carefully protected facilities and supply chains. In
contrast those standing up basic development or test environments will
likely require less restrictive controls (middle of the spectrum).

OpenStack Security Guide April 26, 2014 current

25

5. Introduction to Case Studies
Case Study : Alice the private cloud builder .. 25
Case Study : Bob the public cloud provider ... 25

This guide refers to two running case studies, which are introduced here
and referred to at the end of each chapter.

Case Study : Alice the private cloud
builder

Alice deploys a private cloud for use by a government department in the
US. The cloud must comply with relevant standards, such as FedRAMP. The
security paperwork requirements for this cloud are very high. It must have
no direct access to the internet: its API endpoints, compute instances, and
other resources must be exposed to only systems within the department's
network, which is entirely air-gapped from all other networks. The cloud
can access other network services on the Organization's Intranet. For
example, the authentication and logging services.

Case Study : Bob the public cloud
provider

Bob is a lead architect for a company that deploys a large greenfield public
cloud. This cloud provides IaaS for the masses and enables any consumer
with a valid credit card access to utility computing and storage, but the
primary focus is enterprise customers. Data privacy concerns are a big
priority for Bob as they are seen as a major barrier to large-scale adoption
of the cloud by organizations.

OpenStack Security Guide April 26, 2014 current

27

6. System Documentation
Requirements

System Roles & Types ... 27
System Inventory ... 27
Network Topology ... 28
Services, Protocols and Ports .. 28

The system documentation for an OpenStack cloud deployment should
follow the templates and best practices for the Enterprise Information
Technology System in your organization. Organizations often have
compliance requirements which may require an overall System Security
Plan to inventory and document the architecture of a given system. There
are common challenges across the industry related to documenting the
dynamic cloud infrastructure and keeping the information up-to-date.

System Roles & Types
The two broadly defined types of nodes that generally make up an
OpenStack installation are:

• Infrastructure nodes. The nodes that run the cloud related services such
as the OpenStack Identity Service, the message queuing service, storage,
networking, and other services required to support the operation of the
cloud.

• Compute, storage, or other resource nodes. Provide storage capacity or
virtual machines for your cloud.

System Inventory
Documentation should provide a general description of the OpenStack
environment and cover all systems used (production, development,
test, etc.). Documenting system components, networks, services, and
software often provides the bird's-eye view needed to thoroughly cover
and consider security concerns, attack vectors and possible security domain
bridging points. A system inventory may need to capture ephemeral
resources such as virtual machines or virtual disk volumes that would
otherwise be persistent resources in a traditional IT system.

OpenStack Security Guide April 26, 2014 current

28

Hardware Inventory

Clouds without stringent compliance requirements for written
documentation might benefit from having a Configuration Management
Database (CMDB). CMDBs are normally used for hardware asset tracking
and overall life-cycle management. By leveraging a CMDB, an organization
can quickly identify cloud infrastructure hardware. For example, compute
nodes, storage nodes, and network devices that exist on the network but
that might not be adequately protected and/or forgotten. OpenStack
provisioning system might provide some CMDB-like functions especially if
auto-discovery features of hardware attributes are available.

Software Inventory

Just as with hardware, all software components within the OpenStack
deployment should be documented. Components here should include
system databases; OpenStack software components and supporting
sub-components; and, supporting infrastructure software such as load-
balancers, reverse proxies, and network address translators. Having an
authoritative list like this may be critical toward understanding total
system impact due to a compromise or vulnerability of a specific class of
software.

Network Topology
A Network Topology should be provided with highlights specifically calling
out the data flows and bridging points between the security domains.
Network ingress and egress points should be identified along with any
OpenStack logical system boundaries. Multiple diagrams may be needed
to provide complete visual coverage of the system. A network topology
document should include virtual networks created on behalf of tenants by
the system along with virtual machine instances and gateways created by
OpenStack.

Services, Protocols and Ports
The Service, Protocols and Ports table provides important additional
detail of an OpenStack deployment. A table view of all services running
within the cloud infrastructure can immediately inform, guide, and help
check security procedures. Firewall configuration, service port conflicts,
security remediation areas, and compliance requirements become easier

OpenStack Security Guide April 26, 2014 current

29

to manage when you have concise information available. Consider the
following table:

Referencing a table of services, protocols and ports can help in
understanding the relationship between OpenStack components. It is
highly recommended that OpenStack deployments have information
similar to this on record.

OpenStack Security Guide April 26, 2014 current

31

7. Case Studies: System
Documentation

Alice's Private Cloud ... 31
Bob's Public Cloud .. 31

In this case study we discuss how Alice and Bob would address their system
documentation requirements. The documentation suggested above
includes hardware and software records, network diagrams, and system
configuration details.

Alice's Private Cloud
Alice needs detailed documentation to satisfy FedRamp requirements.
 She sets up a configuration management database (CMDB) to store
information regarding all of the hardware, firmware, and software
versions used throughout the cloud. She also creates a network diagram
detailing the cloud architecture, paying careful attention to the security
domains and the services that span multiple security domains.

Alice also needs to record each network service running in the cloud, what
interfaces and ports it binds to, the security domains for each service, and
why the service is needed. Alice decides to build automated tools to log
into each system in the cloud over secure shell (SSH) using the Python
Fabric library. The tools collect and store the information in the CMDB,
which simplifies the audit process.

Bob's Public Cloud
In this case, Bob will approach these steps the same as Alice.

http://fabfile.org
http://fabfile.org

OpenStack Security Guide April 26, 2014 current

33

8. Management Introduction
A cloud deployment is a living system. Machines age and fail, software
becomes outdated, vulnerabilities are discovered. When errors or
omissions are made in configuration, or when software fixes must be
applied, these changes must be made in a secure, but convenient, fashion.
These changes are typically solved through configuration management.

Likewise, it is important to protect the cloud deployment from being
configured or manipulated by malicious entities. With many systems in a
cloud employing compute and networking virtualization, there are distinct
challenges applicable to OpenStack which must be addressed through
integrity lifecycle management.

Finally, administrators must perform command and control over the cloud
for various operational functions. It is important these command and
control facilities are understood and secured.

OpenStack Security Guide April 26, 2014 current

35

9. Continuous Systems
Management

Vulnerability Management ... 35
Configuration Management ... 37
Secure Backup and Recovery .. 38
Security Auditing Tools .. 39

A cloud will always have bugs. Some of these will be security problems.
For this reason, it is critically important to be prepared to apply security
updates and general software updates. This involves smart use of
configuration management tools, which are discussed below. This also
involves knowing when an upgrade is necessary.

Vulnerability Management
For announcements regarding security relevant changes, subscribe to
the OpenStack Announce mailing list. The security notifications are
also posted through the downstream packages for example through
Linux distributions that you may be subscribed to as part of the package
updates.

The OpenStack components are only a small fraction of the software
in a cloud. It is important to keep up to date with all of these other
components, too. While the specific data sources will be deployment
specific, the key idea is to ensure that a cloud administrator subscribes to
the necessary mailing lists for receiving notification of any related security
updates. Often this is as simple as tracking an upstream Linux distribution.

Note

OpenStack releases security information through two channels.

• OpenStack Security Advisories (OSSA) are created by
the OpenStack Vulnerability Management Team (VMT).
They pertain to security holes in core OpenStack services.
More information on the VMT can be found here: https://
wiki.openstack.org/wiki/Vulnerability_Management

• OpenStack Security Notes (OSSN) were created by the
OpenStack Security Group (OSSG) to support the work of

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-announce
https://wiki.openstack.org/wiki/Vulnerability_Management
https://wiki.openstack.org/wiki/Vulnerability_Management

OpenStack Security Guide April 26, 2014 current

36

the VMT. OSSN address issues in supporting software and
common deployment configurations. They're referenced
throughout this guide. Security Notes are archived at
https://launchpad.net/ossn/

Triage

After you are notified of a security update, the next step is to determine
how critical this update is to a given cloud deployment. In this case, it is
useful to have a pre-defined policy. Existing vulnerability rating systems
such as the common vulnerability scoring system (CVSS) v2 do not properly
account for cloud deployments.

In this example we introduce a scoring matrix that places vulnerabilities
in three categories: Privilege Escalation, Denial of Service and Information
Disclosure. Understanding the type of vulnerability and where it occurs in
your infrastructure will enable you to make reasoned response decisions.

Privilege Escalation describes the ability of a user to act with the privileges
of some other user in a system, bypassing appropriate authorization
checks. For example, a standard Linux user running code or performing
an operation that allows them to conduct further operations with the
privileges of the root users on the system.

Denial of Service refers to an exploited vulnerability that may cause service
or system disruption. This includes both distributed attacks to overwhelm
network resources, and single-user attacks that are typically caused
through resource allocation bugs or input induced system failure flaws.

Information Disclosure vulnerabilities reveal information about your
system or operations. These vulnerabilities range from debugging
information disclosure, to exposure of critical security data, such as
authentication credentials and passwords.

 Attacker Position / Privilege Level

 External Cloud User Cloud Admin Control Plane

Privilege
Elevation (3
levels)

Critical n/a n/a n/a

Privilege
Elevation (2
levels)

Critical Critical n/a n/a

Privilege
Elevation (1
level)

Critical Critical Critical n/a

https://launchpad.net/ossn/

OpenStack Security Guide April 26, 2014 current

37

Denial of
Service

High Medium Low Low

Information
Disclosure

Critical / High Critical / High Medium /
Low

Low

This table illustrates a generic approach to measuring the impact of a
vulnerability based on where it occurs in your deployment and the effect.
For example, a single level privilege escalation on a Compute API node
potentially allows a standard user of the API to escalate to have the same
privileges as the root user on the node.

We suggest that cloud administrators use this table as a model to help
define which actions to take for the various security levels. For example, a
critical-level security update might require the cloud to be upgraded on a
specified time line, whereas a low-level update might be more relaxed.

Testing the Updates

You should test any update before you deploy it in a production
environment. Typically this requires having a separate test cloud setup that
first receives the update. This cloud should be as close to the production
cloud as possible, in terms of software and hardware. Updates should be
tested thoroughly in terms of performance impact, stability, application
impact, and more. Especially important is to verify that the problem
theoretically addressed by the update, such as a specific vulnerability, is
actually fixed.

Deploying the Updates

Once the updates are fully tested, they can be deployed to the production
environment. This deployment should be fully automated using the
configuration management tools described below.

Configuration Management
A production quality cloud should always use tools to automate
configuration and deployment. This eliminates human error, and allows
the cloud to scale much more rapidly. Automation also helps with
continuous integration and testing.

When building an OpenStack cloud it is strongly recommended to
approach your design and implementation with a configuration
management tool or framework in mind. Configuration management

OpenStack Security Guide April 26, 2014 current

38

allows you to avoid the many pitfalls inherent in building, managing, and
maintaining an infrastructure as complex as OpenStack. By producing
the manifests, cookbooks, or templates required for a configuration
management utility, you are able to satisfy a number of documentation
and regulatory reporting requirements. Further, configuration
management can also function as part of your BCP and DR plans wherein
you can rebuild a node or service back to a known state in a DR event or
given a compromise.

Additionally, when combined with a version control system such as Git or
SVN, you can track changes to your environment over time and re-mediate
unauthorized changes that may occur. For example, a nova.conf file
or other configuration file falls out of compliance with your standard,
your configuration management tool can revert or replace the file and
bring your configuration back into a known state. Finally a configuration
management tool can also be used to deploy updates; simplifying the
security patch process. These tools have a broad range of capabilities that
are useful in this space. The key point for securing your cloud is to choose a
tool for configuration management and use it.

There are many configuration management solutions; at the time of this
writing there are two in the marketplace that are robust in their support
of OpenStack environments: Chef and Puppet. A non-exhaustive listing of
tools in this space is provided below:

• Chef

• Puppet

• Salt Stack

• Ansible

Policy Changes

Whenever a policy or configuration management is changed, it is good
practice to log the activity, and backup a copy of the new set. Often, such
policies and configurations are stored in a version controlled repository
such as git.

Secure Backup and Recovery
It is important to include Backup procedures and policies in the overall
System Security Plan. For a good overview of OpenStack's Backup and

OpenStack Security Guide April 26, 2014 current

39

Recovery capabilities and procedures, please refer to the OpenStack
Operations Guide.

Security Considerations

• Ensure only authenticated users and backup clients have access to the
backup server.

• Use data encryption options for storage and transmission of backups.

• Use a dedicated and hardened backup servers. The logs for the backup
server must be monitored daily and accessible by only few individuals.

• Test data recovery options regularly. One of the things that can be
restored from secured backups is the images. In case of a compromise,
the best practice would be to terminate running instances immediately
and then relaunch the instances from the images in the secured backup
repository.

References

• OpenStack Operations Guide on backup and recovery

• http://www.sans.org/reading_room/whitepapers/backup/security-
considerations-enterprise-level-backups_515

• OpenStack Security Primer

Security Auditing Tools
Security auditing tools can complement the configuration management
tools. Security auditing tools automate the process of verifying that
a large number of security controls are satisfied for a given system
configuration. These tools help to bridge the gap from security
configuration guidance documentation (for example, the STIG and NSA
Guides) to a specific system installation. For example, SCAP can compare
a running system to a pre-defined profile. SCAP outputs a report detailing
which controls in the profile were satisfied, which ones failed, and which
ones were not checked.

Combining configuration management and security auditing tools creates
a powerful combination. The auditing tools will highlight deployment
concerns. And the configuration management tools simplify the process
of changing each system to address the audit concerns. Used together

http://docs.openstack.org/trunk/openstack-ops/content/backup_and_recovery.html
http://www.sans.org/reading_room/whitepapers/backup/security-considerations-enterprise-level-backups_515
http://www.sans.org/reading_room/whitepapers/backup/security-considerations-enterprise-level-backups_515
http://www.music-piracy.com/?p=494
https://fedorahosted.org/scap-security-guide/

OpenStack Security Guide April 26, 2014 current

40

in this fashion, these tools help to maintain a cloud that satisfies security
requirements ranging from basic hardening to compliance validation.

Configuration management and security auditing tools will introduce
another layer of complexity into the cloud. This complexity brings
additional security concerns with it. We view this as an acceptable risk
trade-off, given their security benefits. Securing the operational use of
these tools is beyond the scope of this guide.

OpenStack Security Guide April 26, 2014 current

41

10. Integrity Life-cycle
Secure Bootstrapping ... 41
Runtime Verification .. 45

We define integrity life cycle as a deliberate process that provides
assurance that we are always running the expected software with the
expected configurations throughout the cloud. This process begins
with secure bootstrapping and is maintained through configuration
management and security monitoring. This chapter provides
recommendations on how to approach the integrity life-cycle process.

Secure Bootstrapping
Nodes in the cloud -- including compute, storage, network, service, and
hybrid nodes -- should have an automated provisioning process. This
ensures that nodes are provisioned consistently and correctly. This also
facilitates security patching, upgrading, bug fixing, and other critical
changes. Since this process installs new software that runs at the highest
privilege levels in the cloud, it is important to verify that the correct
software is installed. This includes the earliest stages of the boot process.

There are a variety of technologies that enable verification of these
early boot stages. These typically require hardware support such as the
trusted platform module (TPM), Intel Trusted Execution Technology
(TXT), dynamic root of trust measurement (DRTM), and Unified Extensible
Firmware Interface (UEFI) secure boot. In this book, we will refer to all of
these collectively as secure boot technologies. We recommend using secure
boot, while acknowledging that many of the pieces necessary to deploy
this require advanced technical skills in order to customize the tools for
each environment. Utilizing secure boot will require deeper integration
and customization than many of the other recommendations in this
guide. TPM technology, while common in most business class laptops
and desktops for several years, and is now becoming available in servers
together with supporting BIOS. Proper planning is essential to a successful
secure boot deployment.

A complete tutorial on secure boot deployment is beyond the scope of
this book. Instead, here we provide a framework for how to integrate
secure boot technologies with the typical node provisioning process. For
additional details, cloud architects should refer to the related specifications
and software configuration manuals.

OpenStack Security Guide April 26, 2014 current

42

Node Provisioning

Nodes should use Preboot eXecution Environment (PXE) for provisioning.
This significantly reduces the effort required for redeploying nodes.
The typical process involves the node receiving various boot stages (i.e.,
progressively more complex software to execute) from a server.

We recommend using a separate, isolated network within the
management security domain for provisioning. This network will handle
all PXE traffic, along with the subsequent boot stage downloads depicted
above. Note that the node boot process begins with two insecure
operations: DHCP and TFTP. Then the boot process downloads over SSL
the remaining information required to deploy the node. This information
might include an initramfs and a kernel. This concludes by downloading
the remaining information needed to deploy the node. This may be an
operating system installer, a basic install managed by Chef or Puppet, or
even a complete file system image that is written directly to disk.

While utilizing SSL during the PXE boot process is somewhat more
challenging, common PXE firmware projects, such as iPXE, provide this
support. Typically this involves building the PXE firmware with knowledge
of the allowed SSL certificate chain(s) so that it can properly validate the
server certificate. This raises the bar for an attacker by limiting the number
of insecure, plain text network operations.

http://www.opscode.com/chef/
https://puppetlabs.com/

OpenStack Security Guide April 26, 2014 current

43

Verified Boot
In general, there are two different strategies for verifying the boot
process. Traditional secure boot will validate the code run at each step in
the process, and stop the boot if code is incorrect. Boot attestation will
record which code is run at each step, and provide this information to
another machine as proof that the boot process completed as expected.
In both cases, the first step is to measure each piece of code before it is
run. In this context, a measurement is effectively a SHA-1 hash of the code,
taken before it is executed. The hash is stored in a platform configuration
register (PCR) in the TPM.

Note: SHA-1 is used here because this is what the TPM chips support.

Each TPM has at least 24 PCRs. The TCG Generic Server Specification,
v1.0, March 2005, defines the PCR assignments for boot-time integrity
measurements. The table below shows a typical PCR configuration.
The context indicates if the values are determined based on the node
hardware (firmware) or the software provisioned onto the node. Some
values are influenced by firmware versions, disk sizes, and other low-level
information. Therefore, it is important to have good practices in place
around configuration management to ensure that each system deployed is
configured exactly as desired.

Register What Is Measured Context

PCR-00 Core Root of Trust
Measurement (CRTM),
Bios code, Host platform
extensions

Hardware

PCR-01 Host Platform
Configuration

Hardware

PCR-02 Option ROM Code Hardware

PCR-03 Option ROM
Configuration and Data

Hardware

PCR-04 Initial Program Loader
(IPL) Code. For example,
master boot record.

Software

PCR-05 IPL Code Configuration
and Data

Software

PCR-06 State Transition and
Wake Events

Software

PCR-07 Host Platform
Manufacturer Control

Software

PCR-08 Platform specific,
often Kernel, Kernel
Extensions, and Drivers

Software

OpenStack Security Guide April 26, 2014 current

44

PCR-09 Platform specific, often
Initramfs

Software

PCR-10 to PCR-23 Platform specific Software

At the time of this writing, very few clouds are using secure boot
technologies in a production environment. As a result, these technologies
are still somewhat immature. We recommend planning carefully in terms
of hardware selection. For example, ensure that you have a TPM and Intel
TXT support. Then verify how the node hardware vendor populates the
PCR values. For example, which values will be available for validation.
Typically the PCR values listed under the software context in the table
above are the ones that a cloud architect has direct control over. But even
these may change as the software in the cloud is upgraded. Configuration
management should be linked into the PCR policy engine to ensure that
the validation is always up to date.

Each manufacturer must provide the BIOS and firmware code for their
servers. Different servers, hypervisors, and operating systems will choose
to populate different PCRs. In most real world deployments, it will be
impossible to validate every PCR against a known good quantity ("golden
measurement"). Experience has shown that, even within a single vendor's
product line, the measurement process for a given PCR may not be
consistent. We recommend establishing a baseline for each server and
monitoring the PCR values for unexpected changes. Third-party software
may be available to assist in the TPM provisioning and monitoring process,
depending upon your chosen hypervisor solution.

The initial program loader (IPL) code will most likely be the PXE firmware,
assuming the node deployment strategy outlined above. Therefore, the
secure boot or boot attestation process can measure all of the early stage
boot code, such as, bios, firmware, and the like, the PXE firmware, and
the node kernel. Ensuring that each node has the correct versions of these
pieces installed provides a solid foundation on which to build the rest of
the node software stack.

Depending on the strategy selected, in the event of a failure the node
will either fail to boot or it can report the failure back to another entity in
the cloud. For secure boot, the node will fail to boot and a provisioning
service within the management security domain must recognize this and
log the event. For boot attestation, the node will already be running
when the failure is detected. In this case the node should be immediately
quarantined by disabling its network access. Then the event should be
analyzed for the root cause. In either case, policy should dictate how to
proceed after a failure. A cloud may automatically attempt to re-provision
a node a certain number of times. Or it may immediately notify a cloud

OpenStack Security Guide April 26, 2014 current

45

administrator to investigate the problem. The right policy here will be
deployment and failure mode specific.

Node Hardening

At this point we know that the node has booted with the correct kernel
and underlying components. There are many paths for hardening a given
operating system deployment. The specifics on these steps are outside
of the scope of this book. We recommend following the guidance from
a hardening guide specific to your operating system. For example, the
security technical implementation guides (STIG) and the NSA guides are
useful starting places.

The nature of the nodes makes additional hardening possible. We
recommend the following additional steps for production nodes:

• Use a read-only file system where possible. Ensure that writeable file
systems do not permit execution. This can be handled through the
mount options provided in /etc/fstab.

• Use a mandatory access control policy to contain the instances, the node
services, and any other critical processes and data on the node. See the
discussions on sVirt / SELinux and AppArmor below.

• Remove any unnecessary software packages. This should result in a very
stripped down installation because a compute node has a relatively
small number of dependencies.

Finally, the node kernel should have a mechanism to validate that the
rest of the node starts in a known good state. This provides the necessary
link from the boot validation process to validating the entire system. The
steps for doing this will be deployment specific. As an example, a kernel
module could verify a hash over the blocks comprising the file system
before mounting it using dm-verity.

Runtime Verification
Once the node is running, we need to ensure that it remains in a good
state over time. Broadly speaking, this includes both configuration
management and security monitoring. The goals for each of these areas
are different. By checking both, we achieve higher assurance that the
system is operating as desired. We discuss configuration management in
the management section, and security monitoring below.

http://iase.disa.mil/stigs/
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/
https://code.google.com/p/cryptsetup/wiki/DMVerity

OpenStack Security Guide April 26, 2014 current

46

Intrusion Detection System

Host-based intrusion detection tools are also useful for automated
validation of the cloud internals. There are a wide variety of host-based
intrusion detection tools available. Some are open source projects that are
freely available, while others are commercial. Typically these tools analyze
data from a variety of sources and produce security alerts based on rule
sets and/or training. Typical capabilities include log analysis, file integrity
checking, policy monitoring, and rootkit detection. More advanced -- often
custom -- tools can validate that in-memory process images match the on-
disk executable and validate the execution state of a running process.

One critical policy decision for a cloud architect is what to do with the
output from a security monitoring tool. There are effectively two options.
The first is to alert a human to investigate and/or take corrective action.
This could be done by including the security alert in a log or events feed
for cloud administrators. The second option is to have the cloud take
some form of remedial action automatically, in addition to logging the
event. Remedial actions could include anything from re-installing a node to
performing a minor service configuration. However, automated remedial
action can be challenging due to the possibility of false positives.

False positives occur when the security monitoring tool produces a security
alert for a benign event. Due to the nature of security monitoring tools,
false positives will most certainly occur from time to time. Typically a
cloud administrator can tune security monitoring tools to reduce the false
positives, but this may also reduce the overall detection rate at the same
time. These classic trade-offs must be understood and accounted for when
setting up a security monitoring system in the cloud.

The selection and configuration of a host-based intrusion detection tool
is highly deployment specific. We recommend starting by exploring the
following open source projects which implement a variety of host-based
intrusion detection and file monitoring features.

• OSSEC

• Samhain

• Tripwire

• AIDE

Network intrusion detection tools complement the host-based tools.
OpenStack doesn't have a specific network IDS built-in, but OpenStack's

http://www.ossec.net/
http://la-samhna.de/samhain/
http://sourceforge.net/projects/tripwire/
http://aide.sourceforge.net/

OpenStack Security Guide April 26, 2014 current

47

networking component, Neutron, provides a plug-in mechanism to enable
different technologies via the Neutron API. This plug-in architecture will
allow tenants to develop API extensions to insert and configure their own
advanced networking services like a firewall, an intrusion detection system,
or a VPN between the VMs.

Similar to host-based tools, the selection and configuration of a network-
based intrusion detection tool is deployment specific. Snort is the leading
open source networking intrusion detection tool, and a good starting
place to learn more.

There are a few important security considerations for network and host-
based intrusion detection systems.

• It is important to consider the placement of the Network IDS on
the cloud (for example, adding it to the network boundary and/or
around sensitive networks). The placement depends on your network
environment but make sure to monitor the impact the IDS may have
on your services depending on where you choose to add it. Encrypted
traffic, such as SSL, cannot generally be inspected for content by a
Network IDS. However, the Network IDS may still provide some benefit
in identifying anomalous unencrypted traffic on the network.

• In some deployments it may be required to add host-based IDS on
sensitive components on security domain bridges. A host-based IDS may
detect anomalous activity by compromised or unauthorized processes
on the component. The IDS should transmit alert and log information on
the Management network.

http://www.snort.org/

OpenStack Security Guide April 26, 2014 current

49

11. Management Interfaces
Dashboard ... 49
OpenStack API ... 50
Secure Shell (SSH) .. 51
Management Utilities ... 52
Out-of-Band Management Interface ... 52

It is necessary for administrators to perform command and control over
the cloud for various operational functions. It is important these command
and control facilities are understood and secured.

OpenStack provides several management interfaces for operators and
tenants:

• OpenStack dashboard (Horizon)

• OpenStack API

• Secure Shell (SSH)

• OpenStack Management Utilities (for example, nova-manage,
glance-manage)

• Out-of-Band Management Interfaces (IPMI, etc.)

Dashboard
The OpenStack dashboard (Horizon) provides administrators and tenants
a web-based graphical interface to provision and access cloud-based
resources. The dashboard communicates with the back-end services via
calls to the OpenStack API (discussed above).

Capabilities

• As a cloud administrator, the dashboard provides an overall view of the
size and state of your cloud. You can create users and tenants/projects,
assign users to tenant/projects and set limits on the resources available
for them.

• The dashboard provides tenant-users a self-service portal to provision
their own resources within the limits set by administrators.

OpenStack Security Guide April 26, 2014 current

50

• The dashboard provides GUI support for routers and load-balancers. For
example, the dashboard now implements all of the main Networking
features.

• It is an extensible Django web application that allows easy plug-in
of third-party products and services, such as billing, monitoring, and
additional management tools.

• The dashboard can also be branded for service providers and other
commercial vendors.

Security Considerations

• The dashboard requires cookies and JavaScript to be enabled in the web
browser.

• The web server that hosts dashboard should be configured for SSL to
ensure data is encrypted.

• Both the Horizon web service and the OpenStack API it uses to
communicate with the back-end are susceptible to web attack vectors
such as denial of service and must be monitored.

• It is now possible (though there are numerous deployment/security
implications) to upload an image file directly from a user’s hard disk to
OpenStack Image Service through the dashboard. For multi-GB images it
is still strongly recommended that the upload be done using the Glance
CLI

• Create and manage security groups through dashboard. The security
groups allows L3-L4 packet filtering for security policies to protect virtual
machines

References

Grizzly Release Notes

OpenStack API
The OpenStack API is a RESTful web service endpoint to access, provision
and automate cloud-based resources. Operators and users typically access
the API through command-line utilities (for example, nova or glance),
language-specific libraries, or third-party tools.

https://wiki.openstack.org/wiki/ReleaseNotes/Grizzly

OpenStack Security Guide April 26, 2014 current

51

Capabilities

• To the cloud administrator, the API provides an overall view of the size
and state of the cloud deployment and allows the creation of users,
tenants/projects, assigning users to tenants/projects, and specifying
resource quotas on a per tenant/project basis.

• The API provides a tenant interface for provisioning, managing, and
accessing their resources.

Security Considerations

• The API service should be configured for SSL to ensure data is encrypted.

• As a web service, OpenStack API is susceptible to familiar web site attack
vectors such as denial of service attacks.

Secure Shell (SSH)
It has become industry practice to use secure shell (SSH) access for the
management of Linux and Unix systems. SSH uses secure cryptographic
primitives for communication. With the scope and importance of SSH
in typical OpenStack deployments, it is important to understand best
practices for deploying SSH.

Host Key Fingerprints

Often overlooked is the need for key management for SSH hosts. As
most or all hosts in an OpenStack deployment will provide an SSH service,
it is important to have confidence in connections to these hosts. It
cannot be understated that failing to provide a reasonably secure and
accessible method to verify SSH host key fingerprints is ripe for abuse and
exploitation.

All SSH daemons have private host keys and, upon connection, offer a
host key fingerprint. This host key fingerprint is the hash of an unsigned
public key. It is important these host key fingerprints are known in
advance of making SSH connections to those hosts. Verification of host key
fingerprints is instrumental in detecting man-in-the-middle attacks.

Typically, when an SSH daemon is installed, host keys will be generated.
It is necessary that the hosts have sufficient entropy during host key

OpenStack Security Guide April 26, 2014 current

52

generation. Insufficient entropy during host key generation can result in
the possibility to eavesdrop on SSH sessions.

Once the SSH host key is generated, the host key fingerprint should be
stored in a secure and queriable location. One particularly convenient
solution is DNS using SSHFP resource records as defined in RFC-4255. For
this to be secure, it is necessary that DNSSEC be deployed.

Management Utilities
The OpenStack Management Utilities are open-source Python command-
line clients that make API calls. There is a client for each OpenStack service
(for example, nova, glance). In addition to the standard CLI client, most
of the services have a management command-line utility which makes
direct calls to the database. These dedicated management utilities are
slowly being deprecated.

Security Considerations
• The dedicated management utilities (*-manage) in some cases use the

direct database connection.

• Ensure that the .rc file which has your credential information is secured.

References
OpenStack End User Guide section command-line clients overview

OpenStack End User Guide section Download and source the OpenStack
RC file

Out-of-Band Management Interface
OpenStack management relies on out-of-band management interfaces
such as the IPMI protocol to access into nodes running OpenStack
components. IPMI is a very popular specification to remotely manage,
diagnose, and reboot servers whether the operating system is running or
the system has crashed.

Security Considerations
• Use strong passwords and safeguard them, or use client-side SSL

authentication.

http://docs.openstack.org/user-guide/content/section_cli_overview.html
http://docs.openstack.org/user-guide/content/cli_openrc.html
http://docs.openstack.org/user-guide/content/cli_openrc.html

OpenStack Security Guide April 26, 2014 current

53

• Ensure that the network interfaces are on their own
private(management or a separate) network. Segregate management
domains with firewalls or other network gear.

• If you use a web interface to interact with the BMC/IPMI, always use the
SSL interface, such as https or port 443. This SSL interface should NOT
use self-signed certificates, as is often default, but should have trusted
certificates using the correctly defined fully qualified domain names
(FQDNs).

• Monitor the traffic on the management network. The anomalies might
be easier to track than on the busier compute nodes.

Out of band management interfaces also often include graphical machine
console access. It is often possible, although not necessarily default,
that these interfaces are encrypted. Consult with your system software
documentation for encrypting these interfaces.

References

Hacking servers that are turned off

https://isc.sans.edu/diary/IPMI%3A+Hacking+servers+that+are+turned+%22off%22/13399

OpenStack Security Guide April 26, 2014 current

55

12. Case Studies: Management
Interfaces

Alice's Private Cloud ... 55
Bob's Public Cloud .. 56

Previously we discussed typical OpenStack management interfaces
and associated backplane issues. We will now approach these issues by
returning to our Alice and Bob case study. Specifically, we will look into
how both Alice and Bob will address:

• Cloud Administration

• Self Service

• Data Replication & Recovery

• SLA & Security Monitoring.

Alice's Private Cloud
When building her private cloud, while air-gapped, Alice still needs to
consider her service management interfaces. Before deploying her private
cloud, Alice has completed her system documentation. Specifically she
has identified which OpenStack services will exist in each security domain.
From there Alice has further restricted access to management interfaces
by deploying a combination of IDS, SSL encryption, and physical network
isolation. Additionally, Alice requires high availability and redundant
services. Thus, Alice sets up redundant infrastructure for various OpenStack
API services.

Alice also needs to provide assurances that the physical servers and
hypervisors have been built from a known secure state into a well-defined
configuration. To enable this, Alice uses a combination of a Configuration
Management platform to configure each machine according to the
standards and regulations she must comply with. It will also enable Alice
to report periodically on the state of her cloud and perform remediation
to a known state should anything be out of the ordinary. Additionally,
Alice provides hardware assurances by using a PXE system to build her
nodes from a known set of base images. During the boot process, Alice
provides further assurances by enabling Intel TXT and related trusted boot
technologies provided by the hardware.

OpenStack Security Guide April 26, 2014 current

56

Bob's Public Cloud
As a public cloud provider, Bob is concerned with both the continuous
availability of management interfaces and the security of transactions
to the management interfaces. To that end Bob implements multiple
redundant OpenStack API endpoints for the services his cloud will
run. Additionally on the public network Bob uses SSL to encrypt all
transactions between his customers and his cloud interfaces. To isolate his
cloud operations Bob has physically isolated his management, instance
migration, and storage networks.

To ease scaling and reduce management overhead Bob implements a
configuration management system. For customer data assurances, Bob
offers a backup as a service product as requirements will vary between
customers. Finally, Bob does not provide a "baremetal" or the ability
to schedule an entire node, so to reduce management overhead and
increase operational efficiency Bob does not implement any node boot
time security.

OpenStack Security Guide April 26, 2014 current

57

13. Introduction to SSL/TLS

Certification Authorities ... 58
SSL/TLS Libraries .. 59
Cryptographic Algorithms, Cipher Modes, and Protocols 59
Summary ... 59

OpenStack services receive requests on behalf of users on public networks
as well as from other internal services over management networks. Inter-
service communications can also occur over public networks depending on
deployment and architecture choices.

While it is commonly accepted that data over public networks should be
secured using cryptographic measures, such as Secure Sockets Layer or
Transport Layer Security (SSL/TLS) protocols, it is insufficient to rely on
security domain separation to protect internal traffic. Using a security-
in-depth approach, we recommend securing all domains with SSL/TLS,
including the management domain services. It is important that should a
tenant escape their VM isolation and gain access to the hypervisor or host
resources, compromise an API endpoint, or any other service, they must
not be able to easily inject or capture messages, commands, or otherwise
affect or control management capabilities of the cloud. SSL/TLS provides
the mechanisms to ensure authentication, non-repudiation, confidentiality,
and integrity of user communications to the OpenStack services and
between the OpenStack services themselves.

Public Key Infrastructure (PKI) is the set of hardware, software, and
policies to operate a secure system which provides authentication, non-
repudiation, confidentiality, and integrity. The core components of PKI
are:

• End Entity - user, process, or system that is the subject of a certificate

• Certification Authority (CA) - defines certificate policies, management,
and issuance of certificates

• Registration Authority (RA) - an optional system to which a CA delegates
certain management functions

• Repository - Where the end entity certificates and certificate revocation
lists are stored and looked up - sometimes referred to as the "certificate
bundle"

OpenStack Security Guide April 26, 2014 current

58

• Relying Party - The end point that is trusting that the CA is valid.

PKI builds the framework on which to provide encryption algorithms,
cipher modes, and protocols for securing data and authentication. We
strongly recommend securing all services with Public Key Infrastructure
(PKI), including the use of SSL/TLS for API endpoints. It is impossible for
the encryption or signing of transports or messages alone to solve all
these problems. Hosts themselves must be secure and implement policy,
namespaces, and other controls to protect their private credentials and
keys. However, the challenges of key management and protection do not
reduce the necessity of these controls, or lessen their importance.

Certification Authorities
Many organizations have an established Public Key Infrastructure
with their own certification authority (CA), certificate policies, and
management for which they should use to issue certificates for internal
OpenStack users or services. Organizations in which the public security
domain is Internet facing will additionally need certificates signed by a
widely recognized public CA. For cryptographic communications over
the management network, it is recommended one not use a public CA.
Instead, we expect and recommend most deployments deploy their own
internal CA.

It is recommended that the OpenStack cloud architect consider using
separate PKI deployments for internal systems and customer facing
services. This allows the cloud deployer to maintain control of their PKI
infrastructure and among other things makes requesting, signing and
deploying certificates for internal systems easier. Advanced configurations
may use separate PKI deployments for different security domains. This
allows deployers to maintain cryptographic separation of environments,
ensuring that certificates issued to one are not recognised by another.

Certificates used to support SSL/TLS on internet facing cloud endpoints (or
customer interfaces where the customer is not expected to have installed
anything other than standard operating system provided certificate
bundles) should be provisioned using Certificate Authorities that are
installed in the operating system certificate bundle. Typical well known
vendors include Verisign and Thawte but many others exist.

There are many management, policy, and technical challenges around
creating and signing certificates as such is an area where cloud architects
or operators may wish to seek the advice of industry leaders and vendors
in addition to the guidance recommended here.

OpenStack Security Guide April 26, 2014 current

59

SSL/TLS Libraries
Various components, services, and applications within the OpenStack
ecosystem or dependencies of OpenStack are implemented and can be
configured to use SSL/TLS libraries. The SSL/TLS and HTTP services within
OpenStack are typically implemented using OpenSSL which has been
proven to be fairly secure and has a module that has been validated for
FIPS 140-2. However, keep in mind that each application or service can still
introduce weaknesses in how they use the OpenSSL libraries.

Cryptographic Algorithms, Cipher Modes,
and Protocols

We recommend only using TLS v1.1 or v1.2. SSLv3 and TLSv1.0 may be
used for compatibility but we recommend using caution and only enabling
these protocols if you have a strong requirement to do so. Other SSL/TLS
versions, explicitly older versions, should not be used. These older versions
include SSLv1 and SSLv2. As this book does not intend to be a thorough
reference on cryptography we do not wish to be prescriptive about what
specific algorithms or cipher modes you should enable or disable in your
OpenStack services. However, there are some authoritative references we
would like to recommend for further information:

• National Security Agency, Suite B Cryptography

• OWASP Guide to Cryptography

• OWASP Transport Layer Protection Cheat Sheet

• SoK: SSL and HTTPS: Revisiting past challenges and evaluating certificate
trust model enhancements

• The Most Dangerous Code in the World: Validating SSL Certificates in
Non-Browser Software

• OpenSSL and FIPS 140-2

Summary
Given the complexity of the OpenStack components and the number
of deployment possibilities, you must take care to ensure that each
component gets the appropriate configuration of SSL certificates, keys,

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.ieee-security.org/TC/SP2013/papers/4977a511.pdf
http://www.ieee-security.org/TC/SP2013/papers/4977a511.pdf
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
http://www.openssl.org/docs/fips/fipsnotes.html

OpenStack Security Guide April 26, 2014 current

60

and CAs. The following services will be discussed in later sections of this
book where SSL and PKI is available (either natively or possible via SSL
proxy):

• Compute API endpoints

• Identity API endpoints

• Networking API endpoints

• Storage API endpoints

• Messaging server

• Database server

• Dashboard

Throughout this book we will use SSL as shorthand to refer to these
recommendations for SSL/TLS protocols.

OpenStack Security Guide April 26, 2014 current

61

14. Case Studies: PKI and
Certificate Management

Alice's Private Cloud ... 61
Bob's Public Cloud .. 61

In this case study we discuss how Alice and Bob would address deployment
of PKI certification authorities (CA) and certificate management.

Alice's Private Cloud
Alice as a cloud architect within a government agency knows that her
agency operates its own certification authority. Alice contacts the PKI
office in her agency that manages her PKI and certificate issuance.
Alice obtains certificates issued by this CA and configures the services
within both the public and management security domains to use these
certificates. Since Alice's OpenStack deployment exists entirely on a
disconnected from the Internet network, she makes sure to remove all
default CA bundles that contain external public CA providers to ensure the
OpenStack services only accept client certificates issued by her agency's CA.

Bob's Public Cloud
Bob is architecting a public cloud and needs to ensure that the publicly
facing OpenStack services are using certificates issued by a major public
CA. Bob acquires certificates for his public OpenStack services and
configures the services to use PKI and SSL and includes the public CAs in his
trust bundle for the services. Additionally, Bob also wants to further isolate
the internal communications amongst the services within the management
security domain. Bob contacts the team within his organization that is
responsible for managing his organizations PKI and issuance of certificates
using their own internal CA. Bob obtains certificates issued by this internal
CA and configures the services that communicate within the management
security domain to use these certificates and configures the services to only
accept client certificates issued by his internal CA.

OpenStack Security Guide April 26, 2014 current

63

15. SSL Proxies and HTTP Services
Examples ... 63
nginx ... 67
HTTP Strict Transport Security .. 68

OpenStack endpoints are HTTP services providing APIs to both end-
users on public networks and to other OpenStack services within the
same deployment operating over the management network. It is highly
recommended these requests, both those internal and external, operate
over SSL.

In order for API requests to be encrypted by SSL it's necessary to position
the API services behind a proxy that will establish and terminate SSL
sessions. The following table offers a non-exhaustive list of software
services that can proxy SSL traffic for API requests:

• Pound

• Stud

• nginx

• Apache httpd

• Hardware appliance SSL acceleration proxies

It is important to be mindful of the size of requests that will be processed
by any chosen SSL proxy.

Examples
Below we provide some sample recommended configuration settings for
enabling SSL in some of the more popular web servers/SSL terminators.
Note that we have SSL v3 enabled in some of these examples as this will be
required in many deployments for client compatibility.

Before we delve into the configurations, we briefly discuss the ciphers'
configuration element and its format. A more exhaustive treatment on
available ciphers and the OpenSSL cipher list format can be found at:
ciphers.

ciphers = "HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM"

or

http://www.apsis.ch/pound
https://github.com/bumptech/stud
http://nginx.org/
http://www.apache.org/
https://www.openssl.org/docs/apps/ciphers.html

OpenStack Security Guide April 26, 2014 current

64

ciphers = "kEECDH:kEDH:kRSA:HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!
LOW:!MEDIUM"

Cipher string options are separated by ":", while "!" provides negation of
the immediately following element. Element order indicates preference
unless overridden by qualifiers such as HIGH. Let us take a closer look at
the elements in the above sample strings.

kEECDH:kEDH Ephemeral Elliptic Curve Diffie-Hellman (abbreviated
as EECDH and ECDHE).

Ephemeral Diffie-Hellman (abbreviated either as EDH
or DHE) uses prime field groups.

Both approaches provide Perfect Forward Secrecy
(PFS).

Ephemeral Elliptic Curves require the server to
be configured with a named curve, and provide
better security than prime field groups and at lower
computational cost. However, prime field groups are
more widely implemented, and thus typically both are
included in list.

kRSA Cipher suites using the RSA exchange, authentication
or either respectively.

HIGH Selects highest possible security cipher in the
negotiation phase. These typically have keys of length
128 bits or longer.

!RC4 No RC4. RC4 has flaws in the context of TLS/SSL V3.
See On the Security of RC4 in TLS and WPA.

!MD5 No MD5. MD5 is not collision resistant, and thus not
acceptable for Message Authentication Codes (MAC)
or signatures.

!aNULL:!eNULL Disallows clear text

!EXP Disallows export encryption algorithms, which by
design tend to were weak, typically using 40 and 56
bit keys.

US Export restrictions on cryptography systems have
been lifted and no longer need to be supported.

http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

OpenStack Security Guide April 26, 2014 current

65

!LOW:!MEDIUM Disallows low (keys 56 or 64 bits long) and medium
(128 bit long keys) ciphers because of their
vulnerability to brute force attacks (example 2-
DES). This constraint leaves acceptable Triple Data
Encryption Standard (Triple DES) also known as Triple
Data Encryption Algorithm (TDEA) and the Advanced
Encryption Standard (AES), each of which has keys
greater than equal to 128 bits and thus more secure.

Protocols Protocols are enabled/disabled through
SSL_CTX_set_options. We recommend disabling SSLv2
and enabling TLS or SSLv3 (which was standardised as
TLS with a few changes).

Pound - with AES-NI acceleration

see pound(8) for details
daemon 1
##
global options:
User "swift"
Group "swift"
#RootJail "/chroot/pound"
Logging: (goes to syslog by default)
0 no logging
1 normal
2 extended
3 Apache-style (common log format)
LogLevel 0
turn on dynamic scaling (off by default)
Dyn Scale 1
check backend every X secs:
Alive 30
client timeout
#Client 10
allow 10 second proxy connect time
ConnTO 10
use hardware-acceleration card supported by openssl(1):
SSLEngine "aesni"
poundctl control socket
Control "/var/run/pound/poundctl.socket"
##
listen, redirect and ... to:
redirect all swift requests on port 443 to local swift proxy
ListenHTTPS
 Address 0.0.0.0
 Port 443
 Cert "/etc/pound/cert.pem"

OpenStack Security Guide April 26, 2014 current

66

 ## Certs to accept from clients
 ## CAlist "CA_file"
 ## Certs to use for client verification
 ## VerifyList "Verify_file"
 ## Request client cert - don't verify
 ## Ciphers "AES256-SHA"
 ## allow PUT and DELETE also (by default only GET, POST and
 HEAD)?:
 NoHTTPS11 0
 ## allow PUT and DELETE also (by default only GET, POST and
 HEAD)?:
 xHTTP 1
 Service
 BackEnd
 Address 127.0.0.1
 Port 80
 End
 End
End

Stud

This stud example enables SSL v3 for client compatibility. The ciphers line
can be tweaked based on your needs, however this is a reasonable starting
place.

SSL x509 certificate file.
pem-file = "
SSL protocol.
ssl = on
List of allowed SSL ciphers.
OpenSSL's high-strength ciphers which require authentication
NOTE: forbids clear text, use of RC4 or MD5 or LOW and MEDIUM
 strength ciphers
ciphers = "HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM"
Enforce server cipher list order
prefer-server-ciphers = on
Number of worker processes
workers = 4
Listen backlog size
backlog = 1000
TCP socket keepalive interval in seconds
keepalive = 3600
Chroot directory
chroot = ""
Set uid after binding a socket
user = "www-data"
Set gid after binding a socket
group = "www-data"

OpenStack Security Guide April 26, 2014 current

67

Quiet execution, report only error messages
quiet = off
Use syslog for logging
syslog = on
Syslog facility to use
syslog-facility = "daemon"
Run as daemon
daemon = off
Report client address using SENDPROXY protocol for haproxy
Disabling this until we upgrade to HAProxy 1.5
write-proxy = off

nginx
This nginx example requires TLS v1.1 or v1.2 for maximum security. The
ssl_ciphers line can be tweaked based on your needs, however this is a
reasonable starting place.

server {
 listen : ssl;
 ssl_certificate ;
 ssl_certificate_key ;
 ssl_protocols TLSv1.1 TLSv1.2;
 ssl_ciphers HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM

 server_name _;
 keepalive_timeout 5;

 location / {

 }
}

Apache

<VirtualHost <ip address>:80>
 ServerName <site FQDN>
 RedirectPermanent / https://<site FQDN>/
</VirtualHost>
<VirtualHost <ip address>:443>
 ServerName <site FQDN>
 SSLEngine On
 SSLProtocol +SSLv3 +TLSv1 +TLSv1.1 +TLSv1.2,
 SSLCipherSuite HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM
 SSLCertificateFile /path/<site FQDN>.crt
 SSLCACertificateFile /path/<site FQDN>.crt
 SSLCertificateKeyFile /path/<site FQDN>.key

OpenStack Security Guide April 26, 2014 current

68

 WSGIScriptAlias / <WSGI script location>
 WSGIDaemonProcess horizon user=<user> group=<group> processes=
3 threads=10
 Alias /static <static files location>
 <Directory <WSGI dir>>
 # For http server 2.2 and earlier:
 Order allow,deny
 Allow from all

 # Or, in Apache http server 2.4 and later:
 # Require all granted
 </Directory>
</VirtualHost>

Compute API SSL endpoint in Apache2, which needs to be paired with a
short WSGI script.

<VirtualHost <ip address>:8447>
 ServerName <site FQDN>
 SSLEngine On
 SSLProtocol +SSLv3 +TLSv1 +TLSv1.1 +TLSv1.2,
 SSLCipherSuite HIGH:!RC4:!MD5:!aNULL:!eNULL:!EXP:!LOW:!MEDIUM
 SSLCertificateFile /path/<site FQDN>.crt
 SSLCACertificateFile /path/<site FQDN>.crt
 SSLCertificateKeyFile /path/<site FQDN>.key
 WSGIScriptAlias / <WSGI script location>
 WSGIDaemonProcess osapi user=<user> group=<group> processes=3
 threads=10
 <Directory <WSGI dir>>
 # For http server 2.2 and earlier:
 Order allow,deny
 Allow from all

 # Or, in Apache http server 2.4 and later:
 # Require all granted
 </Directory>
</VirtualHost>

HTTP Strict Transport Security
We recommend that all production deployments use HSTS. This header
prevents browsers from making insecure connections after they have
made a single secure one. If you have deployed your HTTP services
on a public or an untrusted domain, HSTS is especially important. To
enable HSTS, configure your web server to send a header like this with all
requests:

OpenStack Security Guide April 26, 2014 current

69

Strict-Transport-Security: max-age=31536000; includeSubDomains

Start with a short timeout of 1 day during testing, and raise it to one year
after testing has shown that you haven't introduced problems for users.
Note that once this header is set to a large timeout, it is (by design) very
difficult to disable.

OpenStack Security Guide April 26, 2014 current

71

16. API Endpoint Configuration
Recommendations

Internal API Communications ... 71
Paste and Middleware ... 72
API Endpoint Process Isolation & Policy .. 73

This chapter provides recommendations for improving the security of both
public and internal endpoints.

Internal API Communications
OpenStack provides both public facing and private API endpoints. By
default, OpenStack components use the publicly defined endpoints.
The recommendation is to configure these components to use the API
endpoint within the proper security domain.

Services select their respective API endpoints based on the OpenStack
service catalog. The issue here is these services may not obey the
listed public or internal API end point values. This can lead to internal
management traffic being routed to external API endpoints.

Configure Internal URLs in Identity Service
Catalog

The Identity Service catalog should be aware of your internal URLs.
While this feature is not utilized by default, it may be leveraged through
configuration. Additionally, it should be forward-compatible with
expectant changes once this behavior becomes the default.

To register an internal URL for an endpoint:

$ keystone endpoint-create \
 --region RegionOne \
 --service-id=1ff4ece13c3e48d8a6461faebd9cd38f \
 --publicurl='https://public-ip:8776/v1/%(tenant_id)s' \
 --internalurl='https://management-ip:8776/v1/%(tenant_id)s' \
 --adminurl='https://management-ip:8776/v1/%(tenant_id)s'

OpenStack Security Guide April 26, 2014 current

72

Configure Applications for Internal URLs

Some services can be forced to use specific API endpoints. Therefore, it is
recommended that each OpenStack service communicating to the API of
another service must be explicitly configured to access the proper internal
API endpoint.

Each project may present an inconsistent way of defining target
API endpoints. Future releases of OpenStack seek to resolve these
inconsistencies through consistent use of the Identity Service catalog.

Configuration Example #1: Nova

[DEFAULT]
cinder_catalog_info='volume:cinder:internalURL'
glance_protocol='https'
neutron_url='https://neutron-host:9696'
neutron_admin_auth_url='https://neutron-host:9696'
s3_host='s3-host'
s3_use_ssl=True

Configuration Example #2: Cinder

glance_host='https://glance-server'

Paste and Middleware
Most API endpoints and other HTTP services in OpenStack utilize the
Python Paste Deploy library. This is important to understand from a
security perspective as it allows for manipulation of the request filter
pipeline through the application's configuration. Each element in this chain
is referred to as middleware. Changing the order of filters in the pipeline
or adding additional middleware may have unpredictable security impact.

It is not uncommon that implementors will choose to add additional
middleware to extend OpenStack's base functionality. We recommend
implementors make careful consideration of the potential exposure
introduced by the addition of non-standard software components to their
HTTP request pipeline.

Additional information on Paste Deploy may be found at http://
pythonpaste.org/deploy/.

http://pythonpaste.org/deploy/
http://pythonpaste.org/deploy/

OpenStack Security Guide April 26, 2014 current

73

API Endpoint Process Isolation & Policy
API endpoint processes, especially those that reside within the public
security domain should be isolated as much as possible. Where
deployments allow, API endpoints should be deployed on separate hosts
for increased isolation.

Namespaces

Many operating systems now provide compartmentalization support.
Linux supports namespaces to assign processes into independent domains.
System compartmentalization is covered in more detail in other parts of
the guide.

Network Policy

API endpoints typically bridge multiple security domains, as such particular
attention should be paid to the compartmentalization of the API
processes. See the Security Domain Bridging section for additional
information in this area.

With careful modeling, network ACLs and IDS technologies can be use to
enforce explicit point to point communication between network services.
As critical cross domain service, this type of explicit enforcement works
well for OpenStack's message queue service.

Policy enforcement can be implemented through the configuration of
services, host-based firewalls (such as IPTables), local policy (SELinux or
AppArmor), and optionally enforced through global network policy.

Mandatory Access Controls

API endpoint processes should be isolated from each other and other
processes on a machine. The configuration for those processes should be
restricted to those processes not only by Discretionary Access Controls, but
through Mandatory Access Controls. The goal of these enhanced access
control is to aid in the containment and escalation of API endpoint security
breaches. With mandatory access controls, such breaches will severely limit
access to resources and provide earlier alerting on such events.

OpenStack Security Guide April 26, 2014 current

75

17. Case Studies: API Endpoints
Alice's Private Cloud ... 75
Bob's Public Cloud .. 75

In this case study we discuss how Alice and Bob would address endpoint
configuration to secure their private and public clouds. Alice's cloud is not
publicly accessible, but she is still concerned about securing the endpoints
against improper use. Bob's cloud, being public, must take measures to
reduce the risk of attacks by external adversaries.

Alice's Private Cloud
Alice's organization requires that the security architecture protect the
access to the public and private endpoints, so she elects to use the Apache
SSL proxy on both public and internal services. Alice's organization has
implemented its own certificate authority. Alice contacts the PKI office in
her agency that manages her PKI and certificate issuance. Alice obtains
certificates issued by this CA and configures the services within both the
public and management security domains to use these certificates. Since
Alice's OpenStack deployment exists entirely on a disconnected from the
Internet network, she makes sure to remove all default CA bundles that
contain external public CA providers to ensure the OpenStack services only
accept client certificates issued by her agency's CA. Alice has registered all
of the services in the Keystone Services Catalog, using the internal URLs for
access by internal services. She has installed host-based intrusion detection
on all of the API endpoints.

Bob's Public Cloud
Bob must also protect the access to the public and private endpoints, so
he elects to use the Apache SSL proxy on both public and internal services.
On the public services, he has configured the certificate key files with
certificates signed by a well-known Certificate Authority. He has used his
organization's self-signed CA to sign certificates in the internal services on
the Management network. Bob has registered his services in the Keystone
Services Catalog, using the internal URLs for access by internal services.
Bob's public cloud runs services on SELinux, which he has configured with
a mandatory access control policy to reduce the impact of any publicly
accessible services that may be compromised. He has also configured the
endpoints with a host-based IDS.

OpenStack Security Guide April 26, 2014 current

77

18. Identity
Authentication ... 77
Authentication Methods .. 78
Authorization .. 80
Policies ... 81
Tokens ... 83
Future .. 84

The OpenStack Identity Service (Keystone) supports multiple methods
of authentication, including username & password, LDAP, and external
authentication methods. Upon successful authentication, The Identity
Service provides the user with an authorization token used for subsequent
service requests.

Transport Layer Security TLS/SSL provides authentication between services
and persons using X.509 certificates. Although the default mode for SSL
is server-side only authentication, certificates may also be used for client
authentication.

Authentication

Invalid Login Attempts

The Identity Service does not provide a method to limit access to accounts
after repeated unsuccessful login attempts. Repeated failed login attempts
are likely brute-force attacks (Refer figure Attack-types). This is a more
significant issue in Public clouds.

Prevention is possible by using an external authentication system that
blocks out an account after some configured number of failed login
attempts. The account then may only be unlocked with further side-
channel intervention.

If prevention is not an option, detection can be used to mitigate
damage.Detection involves frequent review of access control logs to
identify unauthorized attempts to access accounts. Possible remediation
would include reviewing the strength of the user password, or blocking
the network source of the attack via firewall rules. Firewall rules on the
keystone server that restrict the number of connections could be used to
reduce the attack effectiveness, and thus dissuade the attacker.

OpenStack Security Guide April 26, 2014 current

78

In addition, it is useful to examine account activity for unusual login times
and suspicious actions, with possibly disable the account. Often times this
approach is taken by credit card providers for fraud detection and alert.

Multi-factor Authentication

Employ multi-factor authentication for network access to privileged user
accounts. The Identity Service supports external authentication services
through the Apache web server that can provide this functionality. Servers
may also enforce client-side authentication using certificates.

This recommendation provides insulation from brute force, social
engineering, and both spear and mass phishing attacks that may
compromise administrator passwords.

Authentication Methods

Internally Implemented Authentication Methods

The Identity Service can store user credentials in an SQL Database, or may
use an LDAP-compliant directory server. The Identity database may be
separate from databases used by other OpenStack services to reduce the
risk of a compromise of the stored credentials.

When authentication is provided via username and password, the Identity
Service does not enforce policies on password strength, expiration,
or failed authentication attempts as recommended by NIST Special
Publication 800-118 (draft). Organizations that desire to enforce stronger
password policies should consider using Keystone Identity Service
Extensions or external authentication services.

LDAP simplifies integration of Identity authentication into an
organization's existing directory service and user account management
processes.

Authentication and authorization policy in OpenStack may be delegated
to an external LDAP server. A typical use case is an organization that seeks
to deploy a private cloud and already has a database of employees, the
users. This may be in an LDAP system. Using LDAP as a source of authority
authentication, requests to Identity Service are delegated to the LDAP
service, which will authorize or deny requests based on locally set policies.
A token is generated on successful authentication.

OpenStack Security Guide April 26, 2014 current

79

Note that if the LDAP system has attributes defined for the user such
as admin, finance, HR etc, these must be mapped into roles and groups
within Identity for use by the various OpenStack services. The etc/
keystone.conf file provides the mapping from the LDAP attributes to
Identity attributes.

The Identity Service MUST NOT be allowed to write to LDAP services
used for authentication outside of the OpenStack deployment as this
would allow a sufficiently privileged keystone user to make changes to
the LDAP directory. This would allow privilege escalation within the wider
organization or facilitate unauthorized access to other information and
resources. In such a deployment, user provisioning would be out of the
realm of the OpenStack deployment.

Note

There is an OpenStack Security Note (OSSN) regarding
keystone.conf permissions.

There is an OpenStack Security Note (OSSN) regarding
potential DoS attacks.

External Authentication Methods

Organizations may desire to implement external authentication
for compatibility with existing authentication services or to enforce
stronger authentication policy requirements. Although passwords are
the most common form of authentication, they can be compromised
through numerous methods, including keystroke logging and password
compromise. External authentication services can provide alternative forms
of authentication that minimize the risk from weak passwords.

These include:

• Password Policy Enforcement: Requires user passwords to conform to
minimum standards for length, diversity of characters, expiration, or
failed login attempts.

• Multi-factor authentication: The authentication service requires the user
to provide information based on something they have, such as a one-
time password token or X.509 certificate, and something they know,
such as a password.

• Kerberos

https://bugs.launchpad.net/ossn/+bug/1168252
https://bugs.launchpad.net/ossn/+bug/1168252
https://bugs.launchpad.net/ossn/+bug/1155566
https://bugs.launchpad.net/ossn/+bug/1155566

OpenStack Security Guide April 26, 2014 current

80

Authorization
The Identity Service supports the notion of groups and roles. Users belong
to groups. A group has a list of roles. OpenStack services reference the
roles of the user attempting to access the service. The OpenStack policy
enforcer middleware takes into consideration the policy rule associated
with each resource and the user's group/roles and tenant association to
determine if he/she has access to the requested resource.

The Policy enforcement middleware enables fine-grained access control to
OpenStack resources. Only admin users can provision new users and have
access to various management functionality. The cloud tenant would be
able to only spin up instances, attach volumes, etc.

Establish Formal Access Control Policies

Prior to configuring roles, groups, and users, document your required
access control policies for the OpenStack installation. The policies
should be consistent with any regulatory or legal requirements for the
organization. Future modifications to access control configuration should
be done consistently with the formal policies. The policies should include
the conditions and processes for creating, deleting, disabling, and enabling
accounts, and for assigning privileges to the accounts. Periodically review
the policies and ensure that configuration is in compliance with approved
policies.

Service Authorization

As described in the OpenStack Cloud Administrator Guide, cloud
administrators must define a user for each service, with a role of Admin.
This service user account provides the service with the authorization to
authenticate users.

The Compute and Object Storage services can be configured to use
either the "tempAuth" file or Identity Service to store authentication
information. The "tempAuth" solution MUST NOT be deployed in a
production environment since it stores passwords in plain text.

The Identity Service supports client authentication for SSL which may be
enabled. SSL client authentication provides an additional authentication
factor, in addition to the username / password, that provides greater
reliability on user identification. It reduces the risk of unauthorized access
when user names and passwords may be compromised. However, there is

http://docs.openstack.org/admin-guide-cloud/content/index.html

OpenStack Security Guide April 26, 2014 current

81

additional administrative overhead and cost to issue certificates to users
that may not be feasible in every deployment.

Note

We recommend that you use client authentication with SSL for
the authentication of services to the Identity Service.

The cloud administrator should protect sensitive configuration files for
unauthorized modification. This can be achieved with mandatory access
control frameworks such as SELinux, including /etc/keystone.conf
and X.509 certificates.

For client authentication with SSL, you need to issue certificates. These
certificates can be signed by an external authority or by the cloud
administrator. OpenStack services by default check the signatures of
certificates and connections fail if the signature cannot be checked. If
the administrator uses self-signed certificates, the check might need to
be disabled. To disable these certificates, set insecure=False in the
[filter:authtoken] section in the /etc/nova/api.paste.ini
file. This setting also disables certificates for other components.

Administrative Users

We recommend that admin users authenticate using Identity Service and
an external authentication service that supports 2-factor authentication,
such as a certificate. This reduces the risk from passwords that may be
compromised. This recommendation is in compliance with NIST 800-53
IA-2(1) guidance in the use of multi factor authentication for network
access to privileged accounts.

End Users

The Identity Service can directly provide end-user authentication, or can
be configured to use external authentication methods to conform to an
organization's security policies and requirements.

Policies
Each OpenStack service has a policy file in json format, called policy.json.
The policy file specifies rules, and the rule that governs each resource. A
resource could be API access, the ability to attach to a volume, or to fire up
instances.

OpenStack Security Guide April 26, 2014 current

82

The policies can be updated by the cloud administrator to further control
access to the various resources. The middleware could also be further
customized. Note that your users must be assigned to groups/roles that
you refer to in your policies.

Below is a snippet of the Block Storage service policy.json file.

{
 "context_is_admin":[
 [
 "role:admin"
]
],
 "admin_or_owner":[
 [
 "is_admin:True"
],
 [
 "project_id:%(project_id)s"
]
],
 "default":[
 [
 "rule:admin_or_owner"
]
],
 "admin_api":[
 [
 "is_admin:True"
]
],
 "volume:create":[

],
 "volume:get_all":[

],
 "volume:get_volume_metadata":[

],
 "volume:get_snapshot":[

],
 "volume:get_all_snapshots":[

],
 "volume_extension:types_manage":[
 [
 "rule:admin_api"
]
],

OpenStack Security Guide April 26, 2014 current

83

 "volume_extension:types_extra_specs":[
 [
 "rule:admin_api"
]
],
 "...":[
 [
 "...:..."
]
]
}

Note the default rule specifies that the user must be either an admin or
the owner of the volume. It essentially says only the owner of a volume or
the admin may create/delete/update volumes. Certain other operations
such as managing volume types are accessible only to admin users.

Tokens
Once a user is authenticated, a token is generated and used internally in
OpenStack for authorization and access. The default token lifespan is 24
hours. It is recommended that this value be set lower but caution needs
to be taken as some internal services will need sufficient time to complete
their work. The cloud may not provide services if tokens expire too early.
An example of this would be the time needed by the Compute service to
transfer a disk image onto the hypervisor for local caching.

The following example shows a PKI token. Note that, in practice, the token
id value is about 3500 bytes. We shorten it in this example.

{
 "token":{
 "expires":"2013-06-26T16:52:50Z",
 "id":"MIIKXAY...",
 "issued_at":"2013-06-25T16:52:50.622502",
 "tenant":{
 "description":null,
 "enabled":true,
 "id":"912426c8f4c04fb0a07d2547b0704185",
 "name":"demo"
 }
 }
}

Note that the token is often passed within the structure of a larger context
of an Identity Service response. These responses also provide a catalog of
the various OpenStack services. Each service is listed with its name, access
endpoints for internal, admin, and public access.

OpenStack Security Guide April 26, 2014 current

84

The Identity Service supports token revocation. This manifests as an API to
revoke a token, to list revoked tokens and individual OpenStack services
that cache tokens to query for the revoked tokens and remove them from
their cache and append the same to their list of cached revoked tokens.

Future
Domains are high-level containers for projects, users and groups. As
such, they can be used to centrally manage all Keystone-based identity
components. With the introduction of account Domains, server, storage
and other resources can now be logically grouped into multiple Projects
(previously called Tenants) which can themselves be grouped under a
master account-like container. In addition, multiple users can be managed
within an account Domain and assigned roles that vary for each Project.

Keystone's V3 API supports multiple domains. Users of different domains
may be represented in different authentication backends and even have
different attributes that must be mapped to a single set of roles and
privileges, that are used in the policy definitions to access the various
service resources.

Where a rule may specify access to only admin users and users belonging
to the tenant, the mapping may be trivial. In other scenarios the cloud
administrator may need to approve the mapping routines per tenant.

OpenStack Security Guide April 26, 2014 current

85

19. Dashboard

Basic Web Server Configuration ... 85
HTTPS .. 86
HTTP Strict Transport Security (HSTS) ... 86
Front end Caching ... 86
Domain Names .. 86
Static Media ... 87
Secret Key .. 88
Session Backend ... 88
Allowed Hosts .. 88
Cookies .. 89
Password Auto Complete ... 89
Cross Site Request Forgery (CSRF) .. 89
Cross Site Scripting (XSS) .. 89
Cross Origin Resource Sharing (CORS) .. 90
Horizon Image Upload ... 90
Upgrading ... 90
Debug .. 90

Horizon is the OpenStack dashboard that provides users a self-
service portal to provision their own resources within the limits set by
administrators. These include provisioning users, defining instance flavors,
uploading VM images, managing networks, setting up security groups,
starting instances, and accessing the instances via a console.

The dashboard is based on the Django web framework, therefore secure
deployment practices for Django apply directly to Horizon. This guide
provides a popular set of Django security recommendations, further
information can be found by reading the Django deployment and security
documentation.

The dashboard ships with reasonable default security settings, and has
good deployment and configuration documentation.

Basic Web Server Configuration
The dashboard should be deployed as a Web Services Gateway Interface
(WSGI) application behind an HTTPS proxy such as Apache or nginx. If
Apache is not already in use, we recommend nginx since it is lighter weight
and easier to configure correctly.

https://docs.djangoproject.com/en/1.5/#security
https://docs.djangoproject.com/en/1.5/#security
http://docs.openstack.org/developer/horizon/topics/deployment.html

OpenStack Security Guide April 26, 2014 current

86

When using nginx, we recommend gunicorn as the wsgi host with an
appropriate number of synchronous workers. We strongly advise against
deployments using fastcgi, scgi, or uWSGI. We strongly advise against the
use of synthetic performance benchmarks when choosing a wsgi server.

When using Apache, we recommend mod_wsgi to host dashboard.

HTTPS
The dashboard should be deployed behind a secure HTTPS server using
a valid, trusted certificate from a recognized certificate authority (CA).
Private organization-issued certificates are only appropriate when the root
of trust is pre-installed in all user browsers.

HTTP requests to the dashboard domain should be configured to redirect
to the fully qualified HTTPS URL.

HTTP Strict Transport Security (HSTS)
It is highly recommended to use HTTP Strict Transport Security (HSTS).

NOTE: If you are using an HTTPS proxy in front of your web server, rather
than using an HTTP server with HTTPS functionality, follow the Django
documentation on modifying the SECURE_PROXY_SSL_HEADER variable.

See the chapter on PKI/SSL Everywhere for more specific
recommendations and server configurations for HTTPS configurations,
including the configuration of HSTS.

Front end Caching
Since dashboard is rendering dynamic content passed directly from
OpenStack API requests, we do not recommend front end caching layers
such as varnish. In Django, static media is directly served from Apache or
nginx and already benefits from web host caching.

Domain Names
Many organizations typically deploy web applications at subdomains of an
overarching organization domain. It is natural for users to expect a domain
of the form openstack.example.org. In this context, there are often

http://docs.gunicorn.org/en/latest/deploy.html
https://docs.djangoproject.com/en/1.5/howto/deployment/wsgi/modwsgi/
https://docs.djangoproject.com/en/1.5/ref/settings/#secure-proxy-ssl-header
https://docs.djangoproject.com/en/1.5/ref/settings/#secure-proxy-ssl-header

OpenStack Security Guide April 26, 2014 current

87

many other applications deployed in the same second-level namespace,
often serving user-controlled content. This name structure is convenient
and simplifies name server maintenance.

We strongly recommend deploying horizon to a second-level
domain, such as https://example.com, and advise against
deploying horizon on a shared subdomain of any level, for
example https://openstack.example.org or https://
horizon.openstack.example.org. We also advise against deploying
to bare internal domains like https://horizon/.

This recommendation is based on the limitations browser same-origin-
policy. The recommendations in this guide cannot effectively protect
users against known attacks if dashboard is deployed on a domain
which also hosts user-generated content, such as scripts, images, or
uploads of any kind, even if the user-generated content is on a different
subdomain. This approach is used by most major web presences, such as
googleusercontent.com, fbcdn.com, github.io, and twimg.com, to ensure
that user generated content stays separate from cookies and security
tokens.

Additionally, if you decline to follow this recommendation above about
second-level domains, it is vital that you avoid the cookie backed session
store and employ HTTP Strict Transport Security (HSTS). When deployed
on a subdomain, dashboard's security is only as strong as the weakest
application deployed on the same second-level domain.

Static Media
Dashboard's static media should be deployed to a subdomain of the
dashboard domain and served by the web server. The use of an external
content delivery network (CDN) is also acceptable. This subdomain should
not set cookies or serve user-provided content. The media should also be
served with HTTPS.

Django media settings are documented at https://
docs.djangoproject.com/en/1.5/ref/settings/#static-root.

Dashboard's default configuration uses django_compressor to compress
and minify css and JavaScript content before serving it. This process should
be statically done before deploying dashboard, rather than using the
default in-request dynamic compression and copying the resulting files
along with deployed code or to the CDN server. Compression should be
done in a non-production build environment. If this is not practical, we

https://docs.djangoproject.com/en/1.5/ref/settings/#static-root
https://docs.djangoproject.com/en/1.5/ref/settings/#static-root
http://django-compressor.readthedocs.org/

OpenStack Security Guide April 26, 2014 current

88

recommend disabling resource compression entirely. Online compression
dependencies (less, nodejs) should not be installed on production
machines.

Secret Key
Dashboard depends on a shared SECRET_KEY setting for some security
functions. It should be a randomly generated string at least 64 characters
long. It must be shared across all active Horizon instances. Compromise of
this key may allow a remote attacker to execute arbitrary code. Rotating
this key invalidates existing user sessions and caching. Do not commit this
key to public repositories.

Session Backend
Horizon's default session backend
(django.contrib.sessions.backends.signed_cookies) stores user data in
signed but unencrypted cookies stored in the browser. This approach
allows the most simple session backend scaling since each Horizon instance
is stateless, but it comes at the cost of storing sensitive access tokens in the
client browser and transmitting them with every request. This backend
ensures that session data has not been tampered with, but the data itself
is not encrypted other than the encryption provided by HTTPS.

If your architecture allows it, we recommend using
django.contrib.sessions.backends.cache as your session backend with
memcache as the cache. Memcache must not be exposed publicly, and
should communicate over a secured private channel. If you choose to
use the signed cookies backend, refer to the Django documentation
understand the security trade-offs.

For further details, consult the Django session backend documentation.

Allowed Hosts
Configure the ALLOWED_HOSTS setting with the domain or domains
where Horizon is available. Failure to configure this setting (especially if
not following the recommendation above regarding second level domains)
opens Horizon to a number of serious attacks. Wild card domains should
be avoided.

For further details, see the Django documentation on settings.

https://docs.djangoproject.com/en/1.5/topics/http/sessions/#configuring-the-session-engine
https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts

OpenStack Security Guide April 26, 2014 current

89

Cookies
Session Cookies should be set to HTTPONLY:

SESSION_COOKIE_HTTPONLY = True

Never configure CSRF or session cookies to have a wild card domain with
a leading dot. Horizon's session and CSRF cookie should be secured when
deployed with HTTPS:

Code CSRF_COOKIE_SECURE = True
SESSION_COOKIE_SECURE = True

Password Auto Complete
We recommend that implementers do not change the default password
auto complete behavior. Users choose stronger passwords in environments
that allow them to use the secure browser password manager.
Organizations which forbid the browser password manager should
enforce this policy at the desktop level.

Cross Site Request Forgery (CSRF)
Django has a dedicated middleware for cross-site request forgery (CSRF).

Dashboard is designed to discourage developers from introducing cross-
site scripting vulnerabilities with custom dashboards. However, it is
important to audit custom dashboards, especially ones that are javascript-
heavy for inappropriate use of the @csrf_exempt decorator. Dashboards
which do not follow these recommended security settings should be
carefully evaluated before restrictions are relaxed.

Cross Site Scripting (XSS)
Unlike many similar systems, OpenStack dashboard allows the entire
Unicode character set in most fields. This means developers have less
latitude to make escaping mistakes that open attack vectors for cross-site
scripting (XSS).

Dashboard provides tools for developers to avoid creating XSS
vulnerabilities, but they only work if developers use them correctly.

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/#how-it-works

OpenStack Security Guide April 26, 2014 current

90

Audit any custom dashboards, paying particular attention to use of the
mark_safe function, use of is_safe with custom template tags, the safe
template tag, anywhere auto escape is turned off, and any JavaScript
which might evaluate improperly escaped data.

Cross Origin Resource Sharing (CORS)
Configure your web server to send a restrictive CORS header with each
response, allowing only the Horizon domain and protocol:

Access-Control-Allow-Origin: https://example.com/

Never allow the wild card origin.

Horizon Image Upload
We recommend that implementers disable
HORIZON_IMAGES_ALLOW_UPLOAD unless they have implemented a
plan to prevent resource exhaustion and denial of service.

Upgrading
Django security releases are generally well tested and aggressively
backwards compatible. In almost all cases, new major releases of Django
are also fully backwards compatible with previous releases. Dashboard
implementers are strongly encouraged to run the latest stable release of
Django with up-to-date security releases.

Debug
Make sure DEBUG is set to False in production. In Django, DEBUG displays
stack traces and sensitive web server state information on any exception.

http://docs.openstack.org/developer/horizon/topics/deployment.html#file-uploads
http://docs.openstack.org/developer/horizon/topics/deployment.html#file-uploads

OpenStack Security Guide April 26, 2014 current

91

20. Compute
Virtual Console Selection .. 91

The Compute service (nova) is one of the more complex OpenStack
services. It runs in many locations throughout the cloud and interacts
with a variety of internal services. For this reason, most of our
recommendations regarding best practices for Compute service
configuration are distributed throughout this book. We provide specific
details in the sections on Management, API Endpoints, Messaging, and
Database.

Virtual Console Selection
One decision a cloud architect will need to make regarding Compute
service configuration is whether to use VNC or SPICE. Below we provide
some details on the differences between these options.

Virtual Network Computer (VNC)

OpenStack can be configured to provide remote desktop console access
to instances for tenants and/or administrators using the Virtual Network
Computer (VNC) protocol.

Capabilities

• The OpenStack Dashboard (Horizon) can provide a VNC console for
instances directly on the web page using the HTML5 noVNC client.
 This requires the nova-novncproxy service to bridge from the public
network to the management network.

• The nova command-line utility can return a URL for the VNC console
for access by the nova Java VNC client. This requires the nova-
xvpvncproxy service to bridge from the public network to the
management network.

Security Considerations

• The nova-novncproxyand nova-xvpvncproxy services by default open
public-facing ports that are token authenticated.

OpenStack Security Guide April 26, 2014 current

92

• By default, the remote desktop traffic is not encrypted. Havana is
expected to have VNC connections secured by Kerberos.

References
Secure Connections to VNC ports

Simple Protocol for Independent Computing
Environments (SPICE)

As an alternative to VNC, OpenStack provides remote desktop access
to guest virtual machines using the Simple Protocol for Independent
Computing Environments (SPICE) protocol.

Capabilities

• SPICE is supported by the OpenStack Dashboard (Horizon) directly on
the instance web page. This requires the nova-spicehtml5proxy service.

• The nova command-line utility can return a URL for SPICE console for
access by a SPICE-html client.

Limitations

• Although SPICE has many advantages over VNC, the spice-html5
browser integration currently doesn't really allow admins to take
advantage of any of the benefits. To take advantage of SPICE features
like multi-monitor, USB pass through, etc. admins are recommended to
use a standalone SPICE client within the Management Network.

Security Considerations

• The nova-spicehtml5proxy service by default opens public-facing ports
that are token authenticated.

• The functionality and integration are still evolving. We will access the
features in the next release and make recommendations.

• As is the case for VNC, at this time we recommend using SPICE from the
management network in addition to limiting use to few individuals.

References

SPICE Console

http://blog.malchuk.ru/2013/05/21/47
http://docs.openstack.org/trunk/config-reference/content/spice-console.html

OpenStack Security Guide April 26, 2014 current

93

Red Hat bug 913607

SPICE support in RDO Grizzly

https://bugzilla.redhat.com/show_bug.cgi?id=913607
http://openstack.redhat.com/forum/discussion/67/resolved-spice-support-in-rdo-grizzly/p1

OpenStack Security Guide April 26, 2014 current

95

21. Object Storage

First thing to secure – the network .. 96
Securing services – general ... 98
Securing storage services .. 99
Securing proxy services ... 100
Object storage authentication .. 102
Other notable items ... 102

OpenStack Object Storage (Swift) is a service that provides storage and
retrieval of data over HTTP. Objects (blobs of data) are stored in an
organizational hierarchy that offers anonymous read-only access or ACL
defined access based on the authentication mechanism.

A consumer can store objects, modify them, or access them using the
HTTP protocol and REST APIs. Backend components of Object Storage
use different protocols for keeping the information synchronized in a
redundant cluster of services. For more details on the API and the backend
components see the OpenStack Storage documentation.

For this document the components will be grouped into the following
primary groups:

1. Proxy services

2. Auth services

3. Storage services

• Account service

• Container service

• Object service

http://docs.openstack.org/api/openstack-object-storage/1.0/content/

OpenStack Security Guide April 26, 2014 current

96

Figure 21.1. An example diagram from the OpenStack Object
Storage Administration Guide (2013)

Note

An Object Storage environment does not have to necessarily
be on the Internet and could also be a private cloud with
the "Public Switch" being part of the organization's internal
network infrastructure.

First thing to secure – the network
The first aspect of a secure architecture design for Object Storage is in the
networking component. The Storage service nodes use rsync between
each other for copying data to provide replication and high availability. In
addition, the proxy service communicates with the Storage service when
relaying data back and forth between the end-point client and the cloud
environment.

OpenStack Security Guide April 26, 2014 current

97

Caution

None of these use any type of encryption or authentication at
this layer/tier.

This is why you see a "Private Switch" or private network ([V]LAN) in
architecture diagrams. This data domain should be separate from other
OpenStack data networks as well. For further discussion on security
domains please see Chapter 4, “Security Boundaries and Threats” [15].

Tip

Rule: Use a private (V)LAN network segment for your Storage
services in the data domain.

This necessitates that the Proxy service nodes have dual interfaces (physical
or virtual):

1. One as a "public" interface for consumers to reach

2. Another as a "private" interface with access to the storage nodes

The following figure demonstrates one possible network architecture.

OpenStack Security Guide April 26, 2014 current

98

Figure 21.2. Object storage network architecture with a
management node (OSAM)

Securing services – general

Service runas user
It is recommended that you configure each service to run under a non-root
(UID 0) service account. One recommendation is the username "swift" with
primary group "swift."

File permissions
/etc/swift contains information about the ring topology and environment
configuration. The following permissions are recommended:

 #chown -R root:swift /etc/swift/*
 #find /etc/swift/ -type f -exec chmod 640 {} \;
 #find /etc/swift/ -type d -exec chmod 750 {} \;

This restricts only root to be able to modify configuration files while
allowing the services to read them via their group membership in "swift."

OpenStack Security Guide April 26, 2014 current

99

Securing storage services
The following are the default listening ports for the various storage
services:

Service Name Port Type

Account service 6002 TCP

Container service 6001 TCP

Object service 6000 TCP

Rsync 873 TCP

Authentication does not happen at this level in Object Storage. If someone
was able to connect to a Storage service node on one of these ports they
could access or modify data without authentication. In order to secure
against this issue you should follow the recommendations given previously
about using a private storage network.

Object storage "account" terminology
An Object Storage "Account" is not a user account or credential. The
following explains the relations:

OpenStack Object Storage Account Collection of containers; not user accounts or
authentication. Which users are associated
with the account and how they may access it
depends on the authentication system used.
See authentication systems later. Referred to in
this document as OSSAccount.

OpenStack Object Storage Containers Collection of objects. Metadata on the
container is available for ACLs. The meaning
of ACLs is dependent on the authentication
system used.

OpenStack Object Storage Objects The actual data objects. ACLs at the object level
are also possible with metadata. It is dependent
on the authentication system used.

Tip

Another way of thinking about the above would be: A single
shelf (Account) holds zero or more -> buckets (Containers)
which each hold zero or more -> objects. A garage (Object
Storage cloud environment) may have multiple shelves
(Accounts) with each shelf belonging to zero or more users.

At each level you may have ACLs that dictate who has what type of access.
ACLs are interpreted based on what authentication system is in use. The

OpenStack Security Guide April 26, 2014 current

100

two most common types of authentication providers used are Keystone
and SWAuth. Custom authentication providers are also possible. Please see
the Object Storage Authentication section for more information.

Securing proxy services
A Proxy service node should have at least two interfaces (physical or
virtual): one public and one private. The public interface may be protected
via firewalls or service binding. The public facing service is an HTTP web
server that processes end-point client requests, authenticates them, and
performs the appropriate action. The private interface does not require
any listening services but is instead used to establish outgoing connections
to storage service nodes on the private storage network.

Use SSL/TLS

The built-in or included web server that comes with Swift supports SSL,
but it does not support transmission of the entire SSL certificate chain. This
causes issues when you use a third party trusted and signed certificate,
such as Verisign, for your cloud. The current work around is to not
use the built-in web server but an alternative web server instead that
supports sending both the public server certificate as well as the CA signing
authorities intermediate certificate(s). This allows for end-point clients that
have the CA root certificate in their trust store to be able to successfully
validate your cloud environment's SSL certificate and chain. An example of
how to do this with mod_wsgi and Apache is given below. Also consult the
Apache Deployment Guide

apt-get install libapache2-mod-wsgi

Modify file /etc/apache2/envvars with

export APACHE_RUN_USER=swift
export APACHE_RUN_GROUP=swift

An alternative is to modify your Apache conf file with

User swift
Group swift

Create a swift directory in your Apache document root:

mkdir /var/www/swift/

Create the file $YOUR_APACHE_DOC_ROOT/swift/proxy-
server.wsgi:

http://docs.openstack.org/developer/swift/apache_deployment_guide.html

OpenStack Security Guide April 26, 2014 current

101

from swift.common.wsgi import init_request_processor
 application, conf, logger, log_name = \
 init_request_processor('/etc/swift/proxy-server.
conf','proxy-server')

HTTP listening port

You should run your Proxy service web server as a non-root (no UID
0) user such as "swift" mentioned before. The use of a port greater
than 1024 is required to make this easy and avoid running any part
of the web container as root. Doing so is not a burden as end-point
clients are not typically going to type in the URL manually into a web
browser to browse around in the object storage. Additionally, for
clients using the HTTP REST API and performing authentication they
will normally automatically grab the full REST API URL they are to use
as provided by the authentication response. OpenStack’s REST API
allows for a client to authenticate to one URL and then be told to
use a completely different URL for the actual service. Example: Client
authenticates to https://identity.cloud.example.org:55443/
v1/auth and gets a response with their authentication key and Storage
URL (the URL of the proxy nodes or load balancer) of https://
swift.cloud.example.org:44443/v1/AUTH_8980.

The method for configuring your web server to start and run as a non-root
user varies by web server and OS.

Load balancer

If the option of using Apache is not feasible or for performance you wish
to offload your SSL work you may employ a dedicated network device load
balancer. This is also the common way to provide redundancy and load
balancing when using multiple proxy nodes.

If you choose to offload your SSL ensure that the network link between
the load balancer and your proxy nodes is on a private (V)LAN segment
such that other nodes on the network (possibly compromised) cannot
wiretap (sniff) the unencrypted traffic. If such a breach were to occur
the attacker could gain access to end-point client or cloud administrator
credentials and access the cloud data.

The authentication service you use, such as Keystone or SWAuth, will
determine how you configure a different URL in the responses to end-
clients so they use your load balancer instead of an individual Proxy service
node.

OpenStack Security Guide April 26, 2014 current

102

Object storage authentication
Object Storage uses wsgi to provide a middleware for authentication of
end-point clients. The authentication provider defines what roles and
user types exist. Some use traditional username and password credentials
while others may leverage API key tokens or even client-side x.509 SSL
certificates. Custom providers can be integrated in using the wsgi model.

Keystone

Keystone is the commonly used Identity provider in OpenStack. It may
also be used for authentication in Object Storage. Coverage of securing
Keystone is already provided in Chapter 18, “Identity” [77].

SWAuth

SWAuth is another alternative to Keystone. In contrast to Keystone it
stores the user accounts, credentials, and metadata in object storage
itself. More information can be found on the SWAuth website at http://
gholt.github.io/swauth/.

Other notable items
In /etc/swift/swift.conf on every service node there is a
"swift_hash_path_suffix" setting. This is provided to reduce the chance of
hash collisions for objects being stored and avert one user overwriting the
data of another user.

This value should be initially set with a cryptographically secure random
number generator and consistent across all service nodes. Ensure that it
is protected with proper ACLs and that you have a backup copy to avoid
data loss.

http://gholt.github.io/swauth/
http://gholt.github.io/swauth/

OpenStack Security Guide April 26, 2014 current

103

22. Case Studies: Identity
Management

Alice's Private Cloud ... 103
Bob's Public Cloud .. 103

In this case study we discuss how Alice and Bob would address
configuration of OpenStack core services. These include the Keystone
Identity service, Dashboard, and Compute services. Alice will be concerned
with integration into the existing government directory services, while Bob
will need to provide access to the public.

Alice's Private Cloud
Alice's enterprise has a well-established directory service with two-
factor authentication for all users. She configures Keystone to support
an external authentication service supporting authentication with
government-issued access cards. She also uses an external LDAP server
to provide role information for the users that is integrated with the
access control policy. Due to FedRAMP compliance requirements, Alice
implements two-factor authentication on the Management network for all
administrator access.

Alice also deploys the Dashboard to manage many aspects of the cloud.
She deploys the Dashboard with HSTS to ensure that only HTTPS is used.
 The Dashboard resides within an internal subdomain of the private
network domain name system.

Alice decides to use SPICE instead of VNC for the virtual console. She
wants to take advantage of the emerging capabilities in SPICE.

Bob's Public Cloud
Bob must support authentication by the general public, so he elects to use
provide for username / password authentication. He has concerns about
brute force attacks attempting to crack user passwords, so he also uses
an external authentication extension that throttles the number of failed
login attempts. Bob's Management network is separate from the other
networks within his cloud, but can be reached from his corporate network
via ssh. As recommended earlier, Bob requires administrators to use two-

OpenStack Security Guide April 26, 2014 current

104

factor authentication on the Management network to reduce the risk
from compromised administrator passwords.

Bob also deploys the Dashboard to manage many aspects of the cloud.
 He deploys the Dashboard with HSTS to ensure that only HTTPS is
used. He has ensured that the Dashboard is deployed on a second-level
domain due to the limitations of the same-origin policy. He also disables
HORIZON_IMAGES_ALLOW_UPLOAD to prevent resource exhaustion.

Bob decides to use VNC for his virtual console for its maturity and security
features.

OpenStack Security Guide April 26, 2014 current

105

23. State of Networking
OpenStack Networking in the Grizzly release enables the end-user or
tenant to define, utilize, and consume networking resources in new ways
that had not been possible in previous OpenStack Networking releases.
OpenStack Networking provides a tenant-facing API for defining network
connectivity and IP addressing for instances in the cloud in addition to
orchestrating the network configuration. With the transition to an API-
centric networking service, cloud architects and administrators should take
into consideration best practices to secure physical and virtual network
infrastructure and services.

OpenStack Networking was designed with a plug-in architecture that
provides extensibility of the API via open source community or third-
party services. As you evaluate your architectural design requirements,
it is important to determine what features are available in OpenStack
Networking core services, any additional services that are provided by
third-party products, and what supplemental services are required to be
implemented in the physical infrastructure.

This section is a high-level overview of what processes and best practices
should be considered when implementing OpenStack Networking. We
will talk about the current state of services that are available, what future
services will be implemented, and the current limitations in this project.

OpenStack Security Guide April 26, 2014 current

107

24. Networking Architecture

OS Networking Service placement on Physical Servers 108

OpenStack Networking is a standalone service that often involves
deploying several processes across a number of nodes. These processes
interact with each other and with other OpenStack services. The main
process of the OpenStack Networking service is neutron-server, a Python
daemon that exposes the OpenStack Networking API and passes tenant
requests to a suite of plug-ins for additional processing.

OpenStack Networking components encompasses the following elements:

• neutron server (neutron-server and neutron-*-plugin): This
service runs on the network node to service the Networking API and
its extensions. It also enforces the network model and IP addressing
of each port. The neutron-server and plugin agents require access to a
database for persistent storage and access to a message queue for inter-
communication.

• plugin agent (neutron-*-agent): Runs on each compute node to
manage local virtual switch (vswitch) configuration. The agents to be
run will depend on which plugin you are using. This service requires
message queue access. Optional depending on plugin.

• DHCP agent (neutron-dhcp-agent): Provides DHCP services to
tenant networks. This agent is the same across all plug-ins and is
responsible for maintaining DHCP configuration. The neutron-dhcp-
agent requires message queue access.

• l3 agent (neutron-l3-agent): Provides L3/NAT forwarding for
external network access of VMs on tenant networks. Requires message
queue access. Optional depending on plug-in.

• network provider services (SDN server/services). Provide additional
networking services that are provided to tenant networks. These SDN
services may interact with the neutron-server, neutron-plugin, and/or
plugin-agents via REST APIs or other communication channels.

The figure that follows provides an architectural and networking flow
diagram of the OpenStack Networking components:

OpenStack Security Guide April 26, 2014 current

108

OS Networking Service placement on
Physical Servers

In this guide, we focus primarily on a standard architecture that includes
a cloud controller host, a network host, and a set of compute hypervisors
for running VMs.

OpenStack Security Guide April 26, 2014 current

109

Network Connectivity of Physical Servers

A standard OpenStack Networking setup has up to four distinct physical
data center networks:

• Management network Used for internal communication between
OpenStack Components. The IP addresses on this network should
be reachable only within the data center and is considered the
Management Security Domain.

• Guest network Used for VM data communication within the cloud
deployment. The IP addressing requirements of this network depend on
the OpenStack Networking plug-in in use and the network configuration
choices of the virtual networks made by the tenant. This network is
considered the Guest Security Domain.

• External network Used to provide VMs with Internet access in some
deployment scenarios. The IP addresses on this network should be
reachable by anyone on the Internet and is considered to be in the
Public Security Domain.

• API network Exposes all OpenStack APIs, including the OpenStack
Networking API, to tenants. The IP addresses on this network should be
reachable by anyone on the Internet. This may be the same network as

OpenStack Security Guide April 26, 2014 current

110

the external network, as it is possible to create a subnet for the external
network that uses IP allocation ranges to use only less than the full
range of IP addresses in an IP block. This network is considered the
Public Security Domain.

For additional information see the Networking chapter in the OpenStack
Cloud Administrator Guide.

http://docs.openstack.org/admin-guide-cloud/content/ch_networking.html

OpenStack Security Guide April 26, 2014 current

111

25. Networking Services
L2 Isolation using VLANs and Tunneling ... 111
Network Services .. 112
Network Services Extensions ... 114
Networking Services Limitations ... 115

In the initial architectural phases of designing your OpenStack Network
infrastructure it is important to ensure appropriate expertise is available to
assist with the design of the physical networking infrastructure, to identify
proper security controls and auditing mechanisms.

OpenStack Networking adds a layer of virtualized network services -
giving tenants the capability to architect their own, virtual networks.
These virtualized services are not as currently as mature as their traditional
networking counterparts. It is important to be aware of the current
state of these virtualized services and what controls may need to be
implemented at the virtualized and traditional network boundary.

L2 Isolation using VLANs and Tunneling
OpenStack networking can employ two different mechanisms for traffic
segregation on a per tenant/network combination: VLANs (IEEE 802.1Q
tagging) or L2 tunnels using GRE encapsulation. Which method you choose
for traffic segregation and isolation is determined by the scope and scale
of your OpenStack deployment.

VLANs

VLANs are realized as packets on a specific physical network containing
IEEE 802.1Q headers with a specific VLAN ID (VID) field value. VLAN
networks sharing the same physical network are isolated from each other
at L2, and can even have overlapping IP address spaces. Each distinct
physical network supporting VLAN networks is treated as a separate VLAN
trunk, with a distinct space of VID values. Valid VID values are 1 through
4094.

VLAN configuration complexity depends on your OpenStack design
requirements. In order to allow OpenStack Networking to efficiently use
VLANs, you must allocate a VLAN range (one for each tenant) and turn
each compute node physical switch port into a VLAN trunk port.

OpenStack Security Guide April 26, 2014 current

112

Note

NOTE: If you intend for your network to support more than
4094 tenants VLAN is probably not the correct option for you
as multiple 'hacks' are required to extend the VLAN tags to
more than 4094 tenants.

L2 Tunneling

Network tunneling encapsulates each tenant/network combination with
a unique "tunnel-id" that is used to identify the network traffic belonging
to that combination. The tenant's L2 network connectivity is independent
of physical locality or underlying network design. By encapsulating traffic
inside IP packets, that traffic can cross Layer-3 boundaries, removing the
need for preconfigured VLANs and VLAN trunking. Tunneling adds a layer
of obfuscation to network data traffic, reducing the visibility of individual
tenant traffic from a monitoring point of view.

OpenStack Networking currently only supports GRE encapsulation with
planned future support of VXLAN due in the Havana release.

The choice of technology to provide L2 isolation is dependent upon
the scope and size of tenant networks that will be created in your
deployment. If your environment has limited VLAN ID availability or will
have a large number of L2 networks, it is our recommendation that you
utilize tunneling.

Network Services
The choice of tenant network isolation affects how the network security
and control boundary is implemented for tenant services. The following
additional network services are either available or currently under
development to enhance the security posture of the OpenStack network
architecture.

Access Control Lists

OpenStack Compute supports tenant network traffic access controls
directly when deployed with the legacy nova-network service, or may
defer access control to the OpenStack Networking service.

Note, legacy nova-network security groups are applied to all virtual
interface ports on an instance using IPTables.

OpenStack Security Guide April 26, 2014 current

113

Security groups allow administrators and tenants the ability to specify
the type of traffic, and direction (ingress/egress) that is allowed to pass
through a virtual interface port. Security groups rules are stateful L2-L4
traffic filters.

It is our recommendation that you enable security groups via OpenStack
Networking.

L3 Routing and NAT
OpenStack Networking routers can connect multiple L2 networks, and can
also provide a gateway that connects one or more private L2 networks
to a shared external network, such as a public network for access to the
Internet.

The L3 router provides basic Network Address Translation (NAT)
capabilities on gateway ports that uplink the router to external networks.
This router SNATs (Static NAT) all traffic by default, and supports floating
IPs, which creates a static one-to-one mapping from a public IP on the
external network to a private IP on one of the other subnets attached to
the router.

It is our recommendation to leverage per tenant L3 routing and Floating
IPs for more granular connectivity of tenant VMs.

Quality of Service (QoS)
The ability to set QoS on the virtual interface ports of tenant instances is
a current deficiency for OpenStack Networking. The application of QoS
for traffic shaping and rate-limiting at the physical network edge device
is insufficient due to the dynamic nature of workloads in an OpenStack
deployment and can not be leveraged in the traditional way. QoS-
as-a-Service (QoSaaS) is currently in development for the OpenStack
Networking Havana release as an experimental feature. QoSaaS is
planning to provide the following services:

• Traffic shaping via DSCP markings

• Rate-limiting on a per port/network/tenant basis.

• Port mirroring (via open source or third-party plug-ins)

• Flow analysis (via open source or third-party plug-ins)

Tenant traffic port mirroring or Network Flow monitoring is currently
not an exposed feature in OpenStack Networking. There are third-party

OpenStack Security Guide April 26, 2014 current

114

plug-in extensions that do provide Port Mirroring on a per port/network/
tenant basis. If Open vSwitch is used on the networking hypervisor, it is
possible to enable sFlow and port mirroring, however it will require some
operational effort to implement.

Load Balancing

An experimental feature in the Grizzly release of OpenStack Networking
is Load-Balancer-as-a-service (LBaaS). The LBaaS API gives early adopters
and vendors a chance to build implementations of the technology. The
reference implementation however, is still experimental and should
likely not be run in a production environment. The current reference
implementation is based on HA-Proxy. There are third-party plug-ins
in development for extensions in OpenStack Networking to provide
extensive L4-L7 functionality for virtual interface ports.

Firewalls

FW-as-a-Service (FWaaS) is currently in development for the OpenStack
Networking Havana release as an experimental feature. FWaaS will
address the need to manage and leverage the rich set of security
features provided by typical firewall products which are typically far more
comprehensive than what is currently provided by security groups. There
are third-party plug-ins in development for extensions in OpenStack
Networking to support this.

It is critical during the design of an OpenStack Networking infrastructure
to understand the current features and limitations of network services that
are available. Understanding where the boundaries of your virtual and
physical networks will help you add the required security controls in your
environment.

Network Services Extensions
Here is a list of known plug-ins provided by the open source community or
by SDN companies that work with OpenStack Networking:

Big Switch Controller plug-in, Brocade Neutron plug-in Brocade Neutron
plug-in, Cisco UCS/Nexus plug-in, Cloudbase Hyper-V plug-in, Extreme
Networks plug-in, Juniper Networks Neutron plug-in, Linux Bridge plug-in,
Mellanox Neutron plug-in, MidoNet plug-in, NEC OpenFlow plug-in, Open
vSwitch plug-in, PLUMgrid plug-in, Ruijie Networks plug-in, Ryu OpenFlow
Controller plug-in, VMware NSX plug-in.

OpenStack Security Guide April 26, 2014 current

115

Networking Services Limitations
OpenStack Networking has the following known limitations:

• Overlapping IP addresses — If nodes that run either neutron-l3-
agent or neutron-dhcp-agent use overlapping IP addresses, those
nodes must use Linux network namespaces. By default, the DHCP and
L3 agents use Linux network namespaces. However, if the host does not
support these namespaces, run the DHCP and L3 agents on different
hosts.

If network namespace support is not present, a further limitation of the
L3 Agent is that only a single logical router is supported.

• Multi-Host DHCP-agent — OpenStack Networking supports multiple l3-
agent and dhcp-agents with load balancing. However, tight coupling of
the location of the virtual machine is not supported.

• No IPv6 Support for L3 agents — The neutron-l3-agent, used by many
plug-ins to implement L3 forwarding, supports only IPv4 forwarding.

OpenStack Security Guide April 26, 2014 current

117

26. Securing OpenStack
Networking Services

OpenStack Networking Service Configuration 118

In order to secure OpenStack Networking, an understanding of the
workflow process for tenant instance creation needs to be mapped to
security domains.

There are four main services that interact with OpenStack Networking. In a
typical OpenStack deployment these services map to the following security
domains:

• OpenStack Dashboard: Public and Management

• OpenStack Identity: Management

• OpenStack Compute Node: Management and Guest

• OpenStack Network Node: Management, Guest, and possibly Public
depending upon neutron-plugin in use.

• SDN Services Node: Management, Guest and possibly Public depending
upon product used.

OpenStack Security Guide April 26, 2014 current

118

In order to isolate sensitive data communication between the OpenStack
Networking services and other OpenStack core services, we strongly
recommend that these communication channels be configured to only
allow communications over an isolated management network.

OpenStack Networking Service
Configuration

Restrict Bind Address of the API server: neutron-
server

To restrict the interface or IP address on which the OpenStack Networking
API service binds a network socket for incoming client connections, specify
the bind_host and bind_port in the neutron.conf file as shown:

Address to bind the API server
bind_host = <ip address of server>

Port the bind the API server to
bind_port = 9696

Restrict DB and RPC communication of the
OpenStack Networking services:

Various components of the OpenStack Networking services use either the
messaging queue or database connections to communicate with other
components in OpenStack Networking.

It is recommended that you follow the guidelines provided in the Database
Authentication and Access Control chapter in the Database section for all
components that require direct DB connections.

It is recommended that you follow the guidelines provided in the Queue
Authentication and Access Control chapter in the Messaging section for all
components that require RPC communication.

OpenStack Security Guide April 26, 2014 current

119

27. Networking Services Security
Best Practices

Tenant Network Services Workflow .. 119
Networking Resource Policy Engine .. 119
Security Groups .. 120
Quotas ... 120

This section discusses OpenStack Networking configuration best practices
as they apply to tenant network security within your OpenStack
deployment.

Tenant Network Services Workflow
OpenStack Networking provides users real self services of network
resources and configurations. It is important that Cloud Architects and
Operators evaluate their design use cases in providing users the ability to
create, update, and destroy available network resources.

Networking Resource Policy Engine
A policy engine and its configuration file, policy.json, within
OpenStack Networking provides a method to provide finer grained
authorization of users on tenant networking methods and objects. It is
important that cloud architects and operators evaluate their design and
use cases in providing users and tenants the ability to create, update,
and destroy available network resources as it has a tangible effect on
tenant network availability, network security, and overall OpenStack
security. For a more detailed explanation of OpenStack Networking policy
definition, please refer to the Authentication and authorization section in
the OpenStack Cloud Administrator Guide.

It is important to review the default networking resource policy and modify the policy appropriately for your security posture.

If your deployment of OpenStack provides multiple external access points
into different security domains it is important that you limit the tenant's
ability to attach multiple vNICs to multiple external access points -- this
would bridge these security domains and could lead to unforeseen security
compromise. It is possible mitigate this risk by utilizing the host aggregates
functionality provided by OpenStack Compute or through splitting the

http://docs.openstack.org/admin-guide-cloud/content/section_networking_auth.html

OpenStack Security Guide April 26, 2014 current

120

tenant VMs into multiple tenant projects with different virtual network
configurations.

Security Groups
The OpenStack Networking Service provides security group functionality
using a mechanism that is more flexible and powerful than the security
group capabilities built into OpenStack Compute. Thus, when using
OpenStack Networking, nova.conf should always disable built-in security
groups and proxy all security group calls to the OpenStack Networking
API. Failure to do so will result in conflicting security policies being
simultaneously applied by both services. To proxy security groups to
OpenStack Networking, use the following configuration values:

• firewall_driver : must be set to 'nova.virt.firewall.NoopFirewallDriver' so
that nova-compute does not perform iptables-based filtering itself.

• security_group_api : must be set to 'neutron' so that all security group
requests are proxied to the OpenStack Network Service.

Security groups and security group rules allow administrators and tenants
the ability to specify the type of traffic and direction (ingress/egress) that
is allowed to pass through a virtual interface port. A security group is a
container for security group rules. When a virtual interface port is created
in OpenStack Networking it is associated with a security group. If a security
group is not specified, the port will be associated with a 'default' security
group. By default this group will drop all ingress traffic and allow all
egress. Rules can be added to this group in order to change the behaviour.

When using the security group API through OpenStack Compute, security
groups are applied to all virtual interface ports on an instance. The reason
for this is that OpenStack Compute security group APIs are instance based
and not virtual interface port based as OpenStack Networking.

Quotas
Quotas provide the ability to limit the number of network resources
available to tenants. You can enforce default quotas for all tenants.

/etc/neutron/neutron.conf
[QUOTAS]
resource name(s) that are supported in quota features
quota_items = network,subnet,port

OpenStack Security Guide April 26, 2014 current

121

default number of resource allowed per tenant, minus for
 unlimited
#default_quota = -1

number of networks allowed per tenant, and minus means
 unlimited
quota_network = 10

number of subnets allowed per tenant, and minus means
 unlimited
quota_subnet = 10

number of ports allowed per tenant, and minus means unlimited
quota_port = 50

number of security groups allowed per tenant, and minus means
 unlimited
quota_security_group = 10

number of security group rules allowed per tenant, and minus
 means unlimited
quota_security_group_rule = 100

default driver to use for quota checks
quota_driver = neutron.quota.ConfDriver

OpenStack Networking also supports per-tenant quotas limit via a
quota extension API. To enable per-tenant quotas, you need to set
quota_driver in neutron.conf.

quota_driver = neutron.db.quota_db.DbQuotaDriver

OpenStack Security Guide April 26, 2014 current

123

28. Case Studies: Networking
Alice's Private Cloud ... 123
Bob's Public Cloud .. 123

In this case study we discuss how Alice and Bob would address providing
networking services to the user.

Alice's Private Cloud
A key objective of Alice's cloud is to integrate with the existing auth
services and security resources. The key design parameters for this private
cloud are a limited scope of tenants, networks and workload type. This
environment can be designed to limit what available network resources
are available to the tenant and what are the various default quotas and
security policies are available. The network policy engine can be modified
to restrict creation and changes to network resources. In this environment,
Alice might want to leverage nova-network in the application of security
group polices on a per instance basis vs. Neutron's application of security
group polices on a per port basis. L2 isolation in this environment would
leverage VLAN tagging. The use of VLAN tags will allow great visibility
of tenant traffic by leveraging existing features and tools of the physical
infrastructure.

Bob's Public Cloud
A major business driver for Bob is to provide an advanced networking
services to his customers. Bob's customers would like to deploy multi-
tiered application stacks. This multi-tiered application are either existing
enterprise application or newly deployed applications. Since Bob's public
cloud is a multi-tenancy enterprise service, the choice to use for L2 isolation
in this environment is to use overlay networking. Another aspect of Bob's
cloud is the self-service aspect where the customer can provision available
networking services as needed. These networking services encompass L2
networks, L3 Routing, Network ACL and NAT. It is important that per-
tenant quota's be implemented in this environment.

An added benefit with utilizing OpenStack Networking is when new
advanced networking services become available, these new features can
be easily provided to the end customers.

OpenStack Security Guide April 26, 2014 current

125

29. Message Queuing Architecture
Message queuing services facilitate inter-process communication in
OpenStack. OpenStack supports these message queuing service back ends:

• RabbitMQ

• Qpid

• ZeroMQ or 0MQ

Both RabbitMQ and Qpid are Advanced Message Queuing Protocol
(AMQP) frameworks, which provide message queues for peer-to-peer
communication. Queue implementations are typically deployed as a
centralized or decentralized pool of queue servers. ZeroMQ provides direct
peer-to-peer communication through TCP sockets.

Message queues effectively facilitate command and control functions
across OpenStack deployments. Once access to the queue is permitted no
further authorization checks are performed. Services accessible through
the queue do validate the contexts and tokens within the actual message
payload. However, you must note the expiration date of the token
because tokens are potentially re-playable and can authorize other services
in the infrastructure.

OpenStack does not support message-level confidence, such as message
signing. Consequently, you must secure and authenticate the message
transport itself. For high-availability (HA) configurations, you must perform
queue-to-queue authentication and encryption.

With ZeroMQ messaging, IPC sockets are used on individual machines.
Because these sockets are vulnerable to attack, ensure that the cloud
operator has secured them.

OpenStack Security Guide April 26, 2014 current

127

30. Messaging Security
Messaging Transport Security ... 127
Queue Authentication and Access Control .. 128
Message Queue Process Isolation & Policy .. 130

This chapter discusses security hardening approaches for the three most
common message queuing solutions use in OpenStack: RabbitMQ, Qpid,
and ZeroMQ.

Messaging Transport Security
AMQP based solutions (Qpid and RabbitMQ) support transport-level
security using SSL. ZeroMQ messaging does not natively support SSL, but
transport-level security is possible using labelled IPSec or CIPSO network
labels.

We highly recommend enabling transport-level cryptography for your
message queue. Using SSL for the messaging client connections provides
protection of the communications from tampering and eavesdropping in-
transit to the messaging server. Below is guidance on how SSL is typically
configured for the two popular messaging servers Qpid and RabbitMQ.
When configuring the trusted certificate authority (CA) bundle that your
messaging server uses to verify client connections, it is recommended that
this be limited to only the CA used for your nodes, preferably an internally
managed CA. The bundle of trusted CAs will determine which client
certificates will be authorized and pass the client-server verification step of
the setting up the SSL connection. Note, when installing the certificate and
key files, ensure that the file permissions are restricted, for example chmod
0600, and the ownership is restricted to the messaging server daemon
user to prevent unauthorized access by other processes and users on the
messaging server.

RabbitMQ Server SSL Configuration

The following lines should be added to the system-wide RabbitMQ
configuration file, typically /etc/rabbitmq/rabbitmq.config:

[
 {rabbit, [
 {tcp_listeners, [] },

OpenStack Security Guide April 26, 2014 current

128

 {ssl_listeners, [{"<ip address or hostname of management
 network interface", 5671}] },
 {ssl_options, [{cacertfile,"/etc/ssl/cacert.pem"},
 {certfile,"/etc/ssl/rabbit-server-cert.
pem"},
 {keyfile,"/etc/ssl/rabbit-server-key.pem"},
 {verify,verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

Note, the 'tcp_listeners' option is set to '[]' to prevent it from listening an
on non-SSL port. 'ssl_listeners' option should be restricted to only listen on
the management network for the services.

For more information on RabbitMQ SSL configuration see:

• RabbitMQ Configuration

• RabbitMQ SSL

Qpid Server SSL Configuration

The Apache Foundation has a messaging security guide for Qpid. See:

• Apache Qpid SSL

Queue Authentication and Access Control
RabbitMQ and Qpid offer authentication and access control mechanisms
for controlling access to queues. ZeroMQ offers no such mechanisms.

Simple Authentication and Security Layer (SASL) is a framework for
authentication and data security in Internet protocols. Both RabbitMQ and
Qpid offer SASL and other pluggable authentication mechanisms beyond
simple usernames and passwords that allow for increased authentication
security. While RabbitMQ supports SASL, support in OpenStack does not
currently allow for requesting a specific SASL authentication mechanism.
RabbitMQ support in OpenStack allows for either username and password
authentication over an unencrypted connection or username and
password in conjunction with X.509 client certificates to establish the
secure SSL connection.

We recommend configuring X.509 client certificates on all the OpenStack
service nodes for client connections to the messaging queue and where

http://www.rabbitmq.com/configure.html
http://www.rabbitmq.com/ssl.html
http://qpid.apache.org/books/0.22/AMQP-Messaging-Broker-CPP-Book/html/chap-Messaging_User_Guide-Security.html#sect-Messaging_User_Guide-Security-Encryption_using_SSL

OpenStack Security Guide April 26, 2014 current

129

possible (currently only Qpid) perform authentication with X.509 client
certificates. When using usernames and passwords, accounts should be
created per-service and node for finer grained auditability of access to the
queue.

The SSL libraries in use by these queuing servers should also be considered
prior to deployment. Qpid uses Mozilla's NSS library, whereas RabbitMQ
uses Erlang's SSL module which uses OpenSSL.

Authentication Configuration Example - RabbitMQ

On the RabbitMQ server, delete the default 'guest' user:

rabbitmqctl delete_user quest

On the RabbitMQ server, for each OpenStack service or node that
communicates with the message queue set up user accounts and
privileges:

rabbitmqctl add_user compute01 password
rabbitmqctl set_permissions compute01 ".*"".*"".*"

For additional configuration information see:

• RabbitMQ Access Control

• RabbitMQ Authentication

• RabbitMQ Plugins

• RabbitMQ SASL External Auth

OpenStack Service Configuration - RabbitMQ

[DEFAULT]
rpc_backend=nova.openstack.common.rpc.impl_kombu
rabbit_use_ssl=True
rabbit_host=
rabbit_port=5671
rabbit_user=compute01
rabbit_password=password
kombu_ssl_keyfile=/etc/ssl/node-key.pem
kombu_ssl_certfile=/etc/ssl/node-cert.pem
kombu_ssl_ca_certs=/etc/ssl/cacert.pem

http://www.rabbitmq.com/access-control.html
http://www.rabbitmq.com/authentication.html
http://www.rabbitmq.com/plugins.html
http://hg.rabbitmq.com/rabbitmq-auth-mechanism-ssl/file/rabbitmq_v3_1_3/README

OpenStack Security Guide April 26, 2014 current

130

Authentication Configuration Example - Qpid

For configuration information see:

• Apache Qpid Authentication

• Apache Qpid Authorization

OpenStack Service Configuration - Qpid

[DEFAULT]
rpc_backend=nova.openstack.common.rpc.impl_qpid
qpid_protocol=ssl
qpid_hostname=<ip or hostname of management network interface of
 messaging server>
qpid_port=5671qpid_username=compute01

qpid_password=password

Optionally, if using SASL with Qpid specify the SASL mechanisms in use by
adding:

qpid_sasl_mechanisms=<space separated list of SASL mechanisms to
 use for auth>

Message Queue Process Isolation & Policy
Each project provides a number of services which send and consume
messages. Each binary which sends a message is expected to consume
messages, if only replies, from the queue.

Message queue service processes should be isolated from each other and
other processes on a machine.

Namespaces

Network namespaces are highly recommended for all services running
on OpenStack Compute Hypervisors. This will help prevent against the
bridging of network traffic between VM guests and the management
network.

When using ZeroMQ messaging, each host must run at least one ZeroMQ
message receiver to receive messages from the network and forward

http://qpid.apache.org/books/0.22/AMQP-Messaging-Broker-CPP-Book/html/chap-Messaging_User_Guide-Security.html#sect-Messaging_User_Guide-Security-User_Authentication
http://qpid.apache.org/books/0.22/AMQP-Messaging-Broker-CPP-Book/html/chap-Messaging_User_Guide-Security.html#sect-Messaging_User_Guide-Security-Authorization

OpenStack Security Guide April 26, 2014 current

131

messages to local processes via IPC. It is possible and advisable to run an
independent message receiver per project within an IPC namespace, along
with other services within the same project.

Network Policy

Queue servers should only accept connections from the management
network. This applies to all implementations. This should be implemented
through configuration of services and optionally enforced through global
network policy.

When using ZeroMQ messaging, each project should run a separate
ZeroMQ receiver process on a port dedicated to services belonging to that
project. This is equivalent to the AMQP concept of control exchanges.

Mandatory Access Controls

The configuration for these processes should be restricted to those
processes, not only by Directory Access Controls, but through Mandatory
Access Controls. The goal of such restrictions is to prevent isolation from
other processes running on the same machine(s).

OpenStack Security Guide April 26, 2014 current

133

31. Case Studies: Messaging
Alice's Private Cloud ... 133
Bob's Public Cloud .. 133

The message queue is a critical piece of infrastructure that supports a
number of OpenStack services but is most strongly associated with the
Compute service. Due to the nature of the message queue service, Alice
and Bob have similar security concerns. One of the larger concerns that
remains is that many systems have access to this queue and there is no
way for a consumer of the queue messages to verify which host or service
placed the messages on the queue. An attacker who is able to successfully
place messages on the queue is able to create and delete VM instances,
attach the block storage of any tenant and a myriad of other malicious
actions. There are a number of solutions on the horizon to fix this, with
several proposals for message signing and encryption making their way
through the OpenStack development process.

Alice's Private Cloud
In this case Alice's controls mimic those Bob has deployed for the public
cloud.

Bob's Public Cloud
Bob assumes that at some point infrastructure or networks underpinning
the Compute service may become compromised. Due to this, he recognizes
the importance of locking down access to the message queue. To do
this Bob deploys his RabbitMQ servers with SSL and X.509 client auth for
access control. This in turn limits the capabilities of an attacker who has
compromised a system that does not have queue access.

Additionally, Bob adds strong network ACL rulesets to enforce which
endpoints can communicate with the message servers. This second control
provides some additional assurance should the other protections fail.

OpenStack Security Guide April 26, 2014 current

135

32. Database Backend
Considerations

Security References for Database Backends .. 135

The choice of database server is an important consideration in the
security of an OpenStack deployment. While security considerations are
not the only basis on which a database server must be chosen, security
considerations are the only ones within the scope of this book. In practice,
OpenStack only supports two database types: PostgreSQL and MySQL.

PostgreSQL has a number of desirable security features such as Kerberos
authentication, object-level security, and encryption support. The
PostgreSQL community has done well to provide solid guidance,
documentation, and tooling to promote positive security practices.

MySQL has a large community, wide-spread adoption, and provides
high availability options. MySQL also has the ability to provide enhanced
client authentication by way of plug-in authentication mechanisms.
Forked distributions in the MySQL community provide many options for
consideration. It is important to choose a specific implementation of
MySQL based on a thorough evaluation of the security posture and the
level of support provided for the given distribution.

Security References for Database
Backends

Those deploying MySQL or PostgreSQL are advised to refer to existing
security guidance. Some references are listed below:

MySQL:

• OWASP MySQL Hardening

• MySQL Pluggable Authentication

• Security in MySQL

PostgreSQL:

• OWASP PostgreSQL Hardening

https://www.owasp.org/index.php/OWASP_Backend_Security_Project_MySQL_Hardening
http://dev.mysql.com/doc/refman/5.5/en/pluggable-authentication.html
http://downloads.mysql.com/docs/mysql-security-excerpt-5.1-en.pdf
https://www.owasp.org/index.php/OWASP_Backend_Security_Project_PostgreSQL_Hardening

OpenStack Security Guide April 26, 2014 current

136

• Total security in a PostgreSQL database

http://www.ibm.com/developerworks/opensource/library/os-postgresecurity

OpenStack Security Guide April 26, 2014 current

137

33. Database Access Control

OpenStack Database Access Model .. 137
Database Authentication and Access Control 139
Require User Accounts to Require SSL Transport 140
Authentication with X.509 Certificates ... 140
OpenStack Service Database Configuration .. 141
Nova Conductor ... 141

Each of the core OpenStack services (Compute, Identity, Networking, Block
Storage) store state and configuration information in databases. In this
chapter, we discuss how databases are used currently in OpenStack. We
also explore security concerns, and the security ramifications of database
backend choices.

OpenStack Database Access Model
All of the services within an OpenStack project access a single database.
There are presently no reference policies for creating table or row based
access restrictions to the database.

There are no general provisions for granular control of database
operations in OpenStack. Access and privileges are granted simply based
on whether a node has access to the database or not. In this scenario,
nodes with access to the database may have full privileges to DROP,
INSERT, or UPDATE functions.

Granular Access Control

By default, each of the OpenStack services and their processes access the
database using a shared set of credentials. This makes auditing database
operations and revoking access privileges from a service and its processes
to the database particularly difficult.

OpenStack Security Guide April 26, 2014 current

138

Nova Conductor

The compute nodes are the least trusted of the services in OpenStack
because they host tenant instances. The nova-conductor service
has been introduced to serve as a database proxy, acting as an
intermediary between the compute nodes and the database. We discuss its
ramifications later in this chapter.

We strongly recommend:

• All database communications be isolated to a management network

• Securing communications using SSL

• Creating unique database user accounts per OpenStack service endpoint
(illustrated below)

OpenStack Security Guide April 26, 2014 current

139

Database Authentication and Access
Control

Given the risks around access to the database, we strongly recommend
that unique database user accounts be created per node needing access
to the database. Doing this facilitates better analysis and auditing for
ensuring compliance or in the event of a compromise of a node allows
you to isolate the compromised host by removing access for that node to
the database upon detection. When creating these per service endpoint
database user accounts, care should be taken to ensure that they are
configured to require SSL. Alternatively, for increased security it is
recommended that the database accounts be configured using X.509
certificate authentication in addition to usernames and passwords.

Privileges

A separate database administrator (DBA) account should be created and
protected that has full privileges to create/drop databases, create user
accounts, and update user privileges. This simple means of separation of

OpenStack Security Guide April 26, 2014 current

140

responsibility helps prevent accidental misconfiguration, lowers risk and
lowers scope of compromise.

The database user accounts created for the OpenStack services and for
each node should have privileges limited to just the database relevant to
the service where the node is a member.

Require User Accounts to Require SSL
Transport

Configuration Example #1: (MySQL)

GRANT ALL ON dbname.* to 'compute01'@'hostname' IDENTIFIED BY
 'password' REQUIRE SSL;

Configuration Example #2: (PostgreSQL)

In file pg_hba.conf:

hostssl dbname compute01 hostname md5

Note this command only adds the ability to communicate over SSL and
is non-exclusive. Other access methods that may allow unencrypted
transport should be disabled so that SSL is the sole access method.

The 'md5' parameter defines the authentication method as a hashed
password. We provide a secure authentication example in the section
below.

Authentication with X.509 Certificates
Security may be enhanced by requiring X.509 client certificates for
authentication. Authenticating to the database in this manner provides
greater identity assurance of the client making the connection to the
database and ensures that the communications are encrypted.

Configuration Example #1: (MySQL)

GRANT ALL on dbname.* to 'compute01'@'hostname' IDENTIFIED BY
 'password' REQUIRE SUBJECT

OpenStack Security Guide April 26, 2014 current

141

'/C=XX/ST=YYY/L=ZZZZ/O=cloudycloud/CN=compute01' AND ISSUER
'/C=XX/ST=YYY/L=ZZZZ/O=cloudycloud/CN=cloud-ca';

Configuration Example #2: (PostgreSQL)

hostssl dbname compute01 hostname cert

OpenStack Service Database
Configuration

If your database server is configured to require X.509 certificates for
authentication you will need to specify the appropriate SQLAlchemy
query parameters for the database backend. These parameters specify the
certificate, private key, and certificate authority information for use with
the initial connection string.

Example of an :sql_connection string for X.509 certificate
authentication to MySQL:

sql_connection = mysql://compute01:password@localhost/nova?
charset=utf8&ssl_ca=/etc/mysql/cacert.pem&ssl_cert=/etc/mysql/
server-cert.pem&ssl_key=/etc/mysql/server-key.pem

Nova Conductor
OpenStack Compute offers a sub-service called nova-conductor
which proxies database connections, with the primary purpose of having
the nova compute nodes interfacing with nova-conductor to meet
data persistence needs as opposed to directly communicating with the
database.

Nova-conductor receives requests over RPC and performs actions on behalf
of the calling service without granting granular access to the database, its
tables, or data within. Nova-conductor essentially abstracts direct database
access away from compute nodes.

This abstraction offers the advantage of restricting services to executing
methods with parameters, similar to stored procedures, preventing a large
number of systems from directly accessing or modifying database data.
This is accomplished without having these procedures stored or executed
within the context or scope of the database itself, a frequent criticism of
typical stored procedures.

OpenStack Security Guide April 26, 2014 current

142

Unfortunately, this solution complicates the task of more fine-grained
access control and the ability to audit data access. Because the nova-
conductor service receives requests over RPC, it highlights the
importance of improving the security of messaging. Any node with access
to the message queue may execute these methods provided by the nova-
conductor and effectively modifying the database.

Finally, it should be noted that as of the Grizzly release, gaps exist
where nova-conductor is not used throughout OpenStack Compute.
Depending on one's configuration, the use of nova-conductor may not
allow deployers to avoid the necessity of providing database GRANTs to
individual compute host systems.

Note, as nova-conductor only applies to OpenStack Compute,
direct database access from compute hosts may still be necessary for
the operation of other OpenStack components such as Telemetry
(Ceilometer), Networking, and Block Storage.

Implementors should weigh the benefits and risks of both configurations
before enabling or disabling the nova-conductor service. We are not
yet prepared to recommend the use of nova-conductor in the Grizzly
release. However, we do believe that this recommendation will change as
additional features are added into OpenStack.

To disable the nova-conductor, place the following into your
nova.conf file (on your compute hosts):

[conductor]
use_local = true

OpenStack Security Guide April 26, 2014 current

143

34. Database Transport Security
Database Server IP Address Binding ... 143
Database Transport .. 143
MySQL SSL Configuration ... 144
PostgreSQL SSL Configuration .. 144

This chapter covers issues related to network communications to and
from the database server. This includes IP address bindings and encrypting
network traffic with SSL.

Database Server IP Address Binding
To isolate sensitive database communications between the services and
the database, we strongly recommend that the database server(s) be
configured to only allow communications to and from the database over
an isolated management network. This is achieved by restricting the
interface or IP address on which the database server binds a network
socket for incoming client connections.

Restricting Bind Address for MySQL

In my.cnf:

[mysqld]
...
bind-address <ip address or hostname of management network
 interface>

Restricting Listen Address for PostgreSQL

In postgresql.conf:

listen_addresses = <ip address or hostname of management network
 interface>

Database Transport
In addition to restricting database communications to the management
network, we also strongly recommend that the cloud administrator

OpenStack Security Guide April 26, 2014 current

144

configure their database backend to require SSL. Using SSL for the
database client connections protects the communications from tampering
and eavesdropping. As will be discussed in the next section, using SSL also
provides the framework for doing database user authentication via X.509
certificates (commonly referred to as PKI). Below is guidance on how SSL
is typically configured for the two popular database backends MySQL and
PostgreSQL.

Note

NOTE: When installing the certificate and key files, ensure that
the file permissions are restricted, for example chmod 0600,
and the ownership is restricted to the database daemon user
to prevent unauthorized access by other processes and users
on the database server.

MySQL SSL Configuration
The following lines should be added in the system-wide MySQL
configuration file:

In my.cnf:

[[mysqld]]
...
ssl-ca=/path/to/ssl/cacert.pem
ssl-cert=/path/to/ssl/server-cert.pem
ssl-key=/path/to/ssl/server-key.pem

Optionally, if you wish to restrict the set of SSL ciphers used for the
encrypted connection. See http://www.openssl.org/docs/apps/
ciphers.html for a list of ciphers and the syntax for specifying the cipher
string:

ssl-cipher='cipher:list'

PostgreSQL SSL Configuration
The following lines should be added in the system-wide PostgreSQL
configuration file, postgresql.conf.

ssl = true

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

OpenStack Security Guide April 26, 2014 current

145

Optionally, if you wish to restrict the set of SSL ciphers used for the
encrypted connection. See http://www.openssl.org/docs/apps/
ciphers.html for a list of ciphers and the syntax for specifying the cipher
string:

ssl-ciphers = 'cipher:list'

The server certificate, key, and certificate authority (CA) files should be
placed in the $PGDATA directory in the following files:

• $PGDATA/server.crt - Server certificate

• $PGDATA/server.key - Private key corresponding to server.crt

• $PGDATA/root.crt - Trusted certificate authorities

• $PGDATA/root.crl - Certificate revocation list

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

OpenStack Security Guide April 26, 2014 current

147

35. Case Studies: Database
Alice's Private Cloud ... 147
Bob's Public Cloud .. 147

In this case study we discuss how Alice and Bob would address database
selection and configuration for their respective private and public clouds.

Alice's Private Cloud
Alice's organization has high availability concerns, so she has elected to
use MySQL for the database. She further places the database on the
Management network and uses SSL with mutual authentication among
the services to ensure secure access. Given there will be no external access
of the database, she uses certificates signed with the organization's self-
signed root certificate on the database and its access endpoints. Alice
creates separate user accounts for each database user, and configures the
database to use both passwords and X.509 certificates for authentication.
She elects not to use the nova-conductor sub-service due to the desire
for fine-grained access control policies and audit support.

Bob's Public Cloud
Bob is concerned about strong separation of his tenants' data, so he has
elected to use the Postgres database , known for its stronger security
features. The database resides on the Management network and uses
SSL with mutual authentication with the services. Since the database
is on the Management network, the database uses certificates signed
with the company's self-signed root certificate. Bob creates separate user
accounts for each database user, and configures the database to use both
passwords and X.509 certificates for authentication. He elects not to use
the nova-conductor sub-service due to a desire for fine-grained access
control.

OpenStack Security Guide April 26, 2014 current

149

36. Data Privacy Concerns
Data Residency .. 149
Data Disposal ... 150

OpenStack is designed to support multitenancy and those tenants will
most probably have different data requirements. As a cloud builder
and operator you need to ensure your OpenStack environment can
address various data privacy concerns and regulations. In this chapter
we will address the following topics around Data Privacy as it pertains to
OpenStack implementations:

• Data Residency

• Data Disposal

Data Residency
The privacy and isolation of data has consistently been cited as the primary
barrier to cloud adoption over the past few years. Concerns over who
owns data in the cloud and whether the cloud operator can be ultimately
trusted as a custodian of this data have been significant issues in the past.

Numerous OpenStack services maintain data and metadata belonging to
tenants or reference tenant information.

Tenant data stored in an OpenStack cloud may include the following
items:

• Swift objects

• Compute instance ephemeral filesystem storage

• Compute instance memory

• Cinder volume data

• Public keys for Compute Access

• Virtual Machine Images in Glance

• Machine snapshots

• Data passed to OpenStack Compute's configuration-drive extension

OpenStack Security Guide April 26, 2014 current

150

Metadata stored by an OpenStack cloud includes the following non-
exhaustive items:

• Organization name

• User's "Real Name"

• Number or size of running instances, buckets, objects, volumes, and
other quota-related items

• Number of hours running instances or storing data

• IP addresses of users

• Internally generated private keys for compute image bundling

Data Disposal
OpenStack operators should strive to provide a certain level of tenant
data disposal assurance. Best practices suggest that the operator sanitize
cloud system media (digital and non-digital) prior to disposal, release out
of organization control or release for reuse. Sanitization methods should
implement an appropriate level of strength and integrity given the specific
security domain and sensitivity of the information.

"Sanitization is the process used to remove information
from system media such that there is reasonable assurance
that the information cannot be retrieved or reconstructed.
Sanitization techniques, including clearing, purging, and
destroying media information, prevent the disclosure of
organizational information to unauthorized individuals
when such media is reused or released for disposal." [NIST
Special Publication 800-53 Revision 3]

General data disposal and sanitization guidelines as adopted from NIST
recommended security controls. Cloud Operators should:

1. Track, document and verify media sanitization and disposal actions.

2. Test sanitation equipment and procedures to verify proper
performance.

3. Sanitize portable, removable storage devices prior to connecting such
devices to the cloud infrastructure.

4. Destroy cloud system media that cannot be sanitized.

OpenStack Security Guide April 26, 2014 current

151

In an OpenStack deployment you will need to address the following:

• Secure data erasure

• Instance memory scrubbing

• Block Storage volume data

• Compute instance ephemeral storage

• Bare metal server sanitization

Data not securely erased

Within OpenStack some data may be deleted, but not securely erased
in the context of the NIST standards outlined above. This is generally
applicable to most or all of the above-defined metadata and information
stored in the database. This may be remediated with database and/or
system configuration for auto vacuuming and periodic free-space wiping.

Instance memory scrubbing

Specific to various hypervisors is the treatment of instance memory. This
behavior is not defined in OpenStack Compute, although it is generally
expected of hypervisors that they will make a best effort to scrub memory
either upon deletion of an instance, upon creation of an instance, or both.

Xen explicitly assigns dedicated memory regions to instances and scrubs
data upon the destruction of instances (or domains in Xen parlance). KVM
depends more greatly on Linux page management; A complex set of rules
related to KVM paging is defined in the KVM documentation.

It is important to note that use of the Xen memory balloon feature is likely
to result in information disclosure. We strongly recommended to avoid use
of this feature.

For these and other hypervisors, we recommend referring to hypervisor-
specific documentation.

Cinder volume data

Plugins to OpenStack Block Storage will store data in a variety of ways.
Many plug-ins are specific to a vendor or technology, whereas others
are more DIY solutions around filesystems such as LVM or ZFS. Methods

http://www.linux-kvm.org/page/Memory

OpenStack Security Guide April 26, 2014 current

152

to securely destroy data will vary from one plugin to another, from one
vendor's solution to another, and from one filesystem to another.

Some backends such as ZFS will support copy-on-write to prevent data
exposure. In these cases, reads from unwritten blocks will always return
zero. Other backends such as LVM may not natively support this, thus
the Block Storage plug-in takes the responsibility to override previously
written blocks before handing them to users. It is important to review
what assurances your chosen volume backend provides and to see what
mediations may be available for those assurances not provided.

Finally, while not a feature of OpenStack, vendors and implementors may
choose to add or support encryption of volumes. In this case, destruction
of data is as simple as throwing away the key.

Compute instance ephemeral storage
The creation and destruction of ephemeral storage will be somewhat
dependent on the chosen hypervisor and the OpenStack Compute plug-in.

The libvirt plug-in for compute may maintain ephemeral storage directly
on a filesystem, or in LVM. Filesystem storage generally will not overwrite
data when it is removed, although there is a guarantee that dirty extents
are not provisioned to users.

When using LVM backed ephemeral storage, which is block-based, it is
necessary that the OpenStack Compute software securely erases blocks to
prevent information disclosure. There have in the past been information
disclosure vulnerabilities related to improperly erased ephemeral block
storage devices.

Filesystem storage is a more secure solution for ephemeral block storage
devices than LVM as dirty extents cannot be provisioned to users.
However, it is important to be mindful that user data is not destroyed, so it
is suggested to encrypt the backing filesystem.

Bare metal server sanitization
A bare metal server driver for Nova was under development and has since
moved into a separate project called Ironic. At the time of this writing,
Ironic does not appear to address sanitization of tenant data resident the
physical hardware.

Additionally, it is possible for tenants of a bare metal system to modify
system firmware. TPM technology, described in ##link:Management/Node

https://wiki.openstack.org/wiki/Ironic

OpenStack Security Guide April 26, 2014 current

153

Bootstrapping##, provides a solution for detecting unauthorized firmware
changes.

OpenStack Security Guide April 26, 2014 current

155

37. Data Encryption
Object Storage Objects .. 155
Block Storage Volumes & Instance Ephemeral Filesystems 156
Network Data .. 156

The option exists for implementors to encrypt tenant data wherever it is
stored on disk or transported over a network. This is above and beyond
the general recommendation that users encrypt their own data before
sending it to their provider.

The importance of encrypting data on behalf of tenants is largely
related to the risk assumed by a provider that an attacker could access
tenant data. There may be requirements here in government, as well
as requirements per-policy, in private contract, or even in case law in
regard to private contracts for public cloud providers. It is recommended
that a risk assessment and legal consul advised before choosing tenant
encryption policies.

Per-instance or per-object encryption is preferable over, in descending
order, over per-project, per-tenant, per-host, and per-cloud aggregations.
This recommendation is inverse to the complexity and difficulty of
implementation. Presently, in some projects it is difficult or impossible
to implement encryption as loosely granular as even per-tenant. We
recommend implementors make a best-effort in encrypting tenant data.

Often, data encryption relates positively to the ability to reliably destroy
tenant and per-instance data, simply by throwing away the keys. It should
be noted that in doing so, it becomes of great importance to destroy those
keys in a reliable and secure manner.

Opportunities to encrypt data for users are present:

• Object Storage objects

• Block Storage volumes & Instance Ephemeral Filesystems

• Network data

Object Storage Objects
The ability to encrypt objects in Object Storage is presently limited to
disk-level encryption per node. However, there does exist third-party

OpenStack Security Guide April 26, 2014 current

156

extensions and modules for per-object encryption. These modules have
been proposed upstream, but have not per this writing been formally
accepted. Below are some pointers:

https://github.com/Mirantis/swift-encrypt

http://www.mirantis.com/blog/on-disk-encryption-prototype-for-
openstack-swift/

Block Storage Volumes & Instance
Ephemeral Filesystems

The ability to encrypt volumes depends on the service backends chosen.
Some backends may not support this at all.

As both block storage and compute support LVM backed storage, we
can easily provide an example applicable to both systems. In deployments
using LVM, encryption may be performed against the backing physical
volumes. An encrypted block device would be created using the standard
Linux tools, with the LVM physical volume (PV) created on top of the
decrypted block device using pvcreate. Then, the vgcreate or vgmodify
tool may be used to add the encrypted physical volume to an LVM volume
group (VG).

A feature aimed for the Havana release provides encryption of the VM's
data before it is written to disk. This allows the privacy of data to be
maintained while residing on the storage device. The idea is similar to how
self-encrypting drives work. This feature presents a normal block storage
device to the VM but encrypts the bytes in the virtualization host before
writing them to the disk. The block server operates exactly as it does when
reading and writing unencrypted blocks, except special handling will be
required for Block Storage features such as snapshots and live migration.
Note that this feature uses an independent key manager.

Network Data
Tenant data for compute could be encrypted over IPSec or other tunnels.
This is not functionality common or standard in OpenStack, but is an
option available to motivated and interested implementors.

Block storage supports a variety of mechanisms for supplying mountable
volumes. It is outside the scope of this guide to specify recommendations

https://github.com/Mirantis/swift-encrypt
http://www.mirantis.com/blog/on-disk-encryption-prototype-for-openstack-swift/
http://www.mirantis.com/blog/on-disk-encryption-prototype-for-openstack-swift/

OpenStack Security Guide April 26, 2014 current

157

for each Block Storage backend driver. For the purpose of performance,
many storage protocols are unencrypted. Some protocols such as iSCSI can
provide authentication and encrypted sessions, it is our recommendation
to enable these features.

OpenStack Security Guide April 26, 2014 current

159

38. Key Management
References: .. 159

To address the often mentioned concern of tenant data privacy and
limiting cloud provider liability, there is greater interest within the
OpenStack community to make data encryption more ubiquitous. It is
relatively easy for an end-user to encrypt their data prior to saving it to
the cloud, and this is a viable path for tenant objects such as media files,
database archives among others. However, when client side encryption is
used for virtual machine images, block storage etc, client intervention is
necessary in the form of presenting keys to unlock the data for further use.
To seamlessly secure the data and yet have it accessible without burdening
the client with having to manage their keys and interactively provide them
calls for a key management service within OpenStack. Providing encryption
and key management services as part of OpenStack eases data-at-rest
security adoption, addresses customer concerns about the privacy and
misuse of their data with the added advantage of limiting cloud provider
liability. Provider liability is of concern in multi-tenant public clouds with
respect to handing over tenant data during a misuse investigation.

A key management service is in the early stages of being developed and
has a way to go before becoming an official component of OpenStack.
Refer to https://github.com/cloudkeep/barbican/wiki/_pages for details.

It shall support the creation of keys, and their secure saving (with a service
master-key). Some of the design questions still being debated are how
much of the Key Management Interchange Protocol (KMIP) to support,
key formats, and certificate management. The key manager will be
pluggable to facilitate deployments that need a third-party Hardware
Security Module (HSM).

OpenStack Block Storage, Cinder, is the first service looking to integrate
with the key manager to provide volume encryption.

References:
• Barbican

• KMIP

https://github.com/cloudkeep/barbican/wiki/_pages
https://github.com/cloudkeep/barbican
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip

OpenStack Security Guide April 26, 2014 current

161

39. Case Studies: Tenant Data
Alice's Private Cloud ... 161
Bob's Public Cloud .. 161

Returning to Alice and Bob, we will use this section to dive into their
particular tenant data privacy requirements. Specifically, we will look into
how Alice and Bob both handle tenant data, data destruction, and data
encryption.

Alice's Private Cloud
As stated during the introduction to Alice's case study, data protection
is of an extremely high priority. She needs to ensure that a compromise
of one tenant's data does not cause loss of other tenant data. She also
has strong regulator requirements that require documentation of data
destruction activities. Alice does this using the following:

• Establishing procedures to sanitize tenant data when a program or
project ends

• Track the destruction of both the tenant data and metadata via
ticketing in a CMDB

• For Volume storage:

• Physical Server Issues

• To provide secure ephemeral instance storage, Alice implements qcow2
files on an encrypted filesystem.

Bob's Public Cloud
As stated during the introduction to Bob's case study, tenant privacy is of
an extremely high priority. In addition to the requirements and actions
Bob will take to isolate tenants from one another at the infrastructure
layer, Bob also needs to provide assurances for tenant data privacy. Bob
does this using the following:

• Establishing procedures to sanitize customer data when a customer
churns

• Track the destruction of both the customer data and metadata via
ticketing in a CMDB

OpenStack Security Guide April 26, 2014 current

162

• For Volume storage:

• Physical Server Issues

• To provide secure ephemeral instance storage, Bob implements qcow2
files on an encrypted filesystems.

OpenStack Security Guide April 26, 2014 current

163

40. Hypervisor Selection
Hypervisors in OpenStack ... 163
Selection Criteria .. 164

Virtualization provides flexibility and other key benefits that enable
cloud building. However, a virtualization stack also needs to be secured
appropriately to reduce the risks associated with hypervisor breakout
attacks. That is, while a virtualization stack can provide isolation between
instances, or guest virtual machines, there are situations where that
isolation can be less than perfect. Making intelligent selections for
virtualization stack as well as following the best practices outlined in
this chapter can be included in a layered approach to cloud security.
Finally, securing your virtualization stack is critical in order to deliver on
the promise of multi-tenant, either between customers in a public cloud,
between business units in a private cloud, or some mixture of the two in a
hybrid cloud.

In this chapter, we discuss the hypervisor selection process. In the chapters
that follow, we provide the foundational information needed for securing
a virtualization stack.

Hypervisors in OpenStack
Whether OpenStack is deployed within private data centers or as a
public cloud service, the underlying virtualization technology provides
enterprise-level capabilities in the realms of scalability, resource efficiency,
and uptime. While such high-level benefits are generally available across
many OpenStack-supported hypervisor technologies, there are significant
differences in each hypervisor's security architecture and features,
particularly when considering the security threat vectors which are unique
to elastic OpenStack environments. As applications consolidate into
single Infrastructure-as-a-Service (IaaS) platforms, instance isolation at the
hypervisor level becomes paramount. The requirement for secure isolation
holds true across commercial, government, and military communities.

Within the framework of OpenStack you can choose from any number of
hypervisor platforms and corresponding OpenStack plug-ins to optimize
your cloud environment. In the context of the OpenStack Security guide,
we will be highlighting hypervisor selection considerations as they pertain
to feature sets that are critical to security. However, these considerations
are not meant to be an exhaustive investigation into the pros and cons

OpenStack Security Guide April 26, 2014 current

164

of particular hypervisors. NIST provides additional guidance in Special
Publication 800-125, "Guide to Security for Full Virtualization Technologies".

Selection Criteria
As part of your hypervisor selection process, you will need to consider
a number of important factors to help increase your security posture.
Specifically, we will be looking into the following areas:

• Team Expertise

• Product or Project maturity

• Certifications, Attestations

• Additional Security Features

• Hypervisor vs. Baremetal

• Hardware Concerns

• Common Criteria

Additionally, the following security-related criteria are highly encouraged
to be evaluated when selecting a hypervisor for OpenStack deployments:

• Has the hypervisor undergone Common Criteria certification? If so, to
what levels?

• Is the underlying cryptography certified by a third-party?

Team Expertise
Most likely, the most important aspect in hypervisor selection is the
expertise of your staff in managing and maintaining a particular
hypervisor platform. The more familiar your team is with a given product,
its configuration, and its eccentricities, the less likely will there be
configuration mistakes. Additionally, having staff expertise spread across
an organization on a given hypervisor will increase availability of your
systems, allow for developing a segregation of duties, and mitigate
problems in the event that a team member is unavailable.

Product or Project Maturity
The maturity of a given hypervisor product or project is critical to your
security posture as well. Product maturity will have a number of effects

OpenStack Security Guide April 26, 2014 current

165

once you have deployed your cloud, in the context of this security guide
we are interested in the following:

• Availability of expertise

• Active developer and user communities

• Timeliness and Availability of updates

• Incidence response

One of the biggest indicators of a hypervisor's maturity is the size and
vibrancy of the community that surrounds it. As this concerns security, the
quality of the community will affect the availability of expertise should you
need additional cloud operators. It is also a sign of how widely deployed
the hypervisor is, in turn leading to the battle readiness of any reference
architectures and best practices.

Further, the quality of community, as it surrounds an open source
hypervisor like KVM or Xen, will have a direct impact on the timeliness
of bug fixes and security updates. When investigating both commercial
and open source hypervisors, you will want to look into their release and
support cycles as well as the time delta between the announcement of
a bug or security issue and a patch or response. Lastly, the supported
capabilities of OpenStack compute vary depending on the hypervisor
chosen. Refer to the OpenStack Hypervisor Support Matrix for OpenStack
compute feature support by hypervisor.

Certifications and Attestations
One additional consideration when selecting a hypervisor is the availability
of various formal certifications and attestations. While they may not
be requirements for your specific organization, these certifications
and attestations speak to the maturity, production readiness, and
thoroughness of the testing a particular hypervisor platform has been
subjected to.

Common Criteria
Common Criteria is an internationally standardized software evaluation
process, used by governments and commercial companies to validate
software technologies perform as advertised. In the government sector,
NSTISSP No. 11 mandates that U.S. Government agencies only procure
software which has been Common Criteria certified, a policy which
has been in place since July 2002. It should be specifically noted that

https://wiki.openstack.org/wiki/HypervisorSupportMatrix

OpenStack Security Guide April 26, 2014 current

166

OpenStack has not undergone Common Criteria certification, however
many of the available hypervisors have.

In addition to validating a technologies capabilities, the Common Criteria
process evaluates how technologies are developed.

• How is source code management performed?

• How are users granted access to build systems?

• Is the technology cryptographically signed before distribution?

The KVM hypervisor has been Common Criteria certified through the U.S.
Government and commercial distributions, which have been validated
to separate the runtime environment of virtual machines from each
other, providing foundational technology to enforce instance isolation.
In addition to virtual machine isolation, KVM has been Common Criteria
certified to

"provide system-inherent separation mechanisms to the
resources of virtual machines. This separation ensures
that large software component used for virtualizing and
simulating devices executing for each virtual machine
cannot interfere with each other. Using the SELinux multi-
category mechanism, the virtualization and simulation
software instances are isolated. The virtual machine
management framework configures SELinux multi-category
settings transparently to the administrator"

While many hypervisor vendors, such as Red Hat, Microsoft, and VMWare
have achieved Common Criteria Certification their underlying certified
feature set differs. It is recommended to evaluate vendor claims to ensure
they minimally satisfy the following requirements:

Identification and Authentication Identification and authentication
using pluggable authentication
modules (PAM) based upon user
passwords. The quality of the
passwords used can be enforced
through configuration options.

Audit The system provides the capability
to audit a large number of events
including individual system calls as
well as events generated by trusted
processes. Audit data is collected
in regular files in ASCII format. The
system provides a program for the
purpose of searching the audit
records.

OpenStack Security Guide April 26, 2014 current

167

The system administrator can define
a rule base to restrict auditing to the
events they are interested in. This
includes the ability to restrict auditing
to specific events, specific users,
specific objects or a combination of
all of this.

Audit records can be transferred to a
remote audit daemon.

Discretionary Access Control Discretionary Access Control (DAC)
restricts access to file system objects
based on Access Control Lists (ACLs)
that include the standard UNIX
permissions for user, group and
others. Access control mechanisms
also protect IPC objects from
unauthorized access.

The system includes the ext4 file
system, which supports POSIX ACLs.
This allows defining access rights to
files within this type of file system
down to the granularity of a single
user.

Mandatory Access Control Mandatory Access Control (MAC)
restricts access to objects based
on labels assigned to subjects
and objects. Sensitivity labels are
automatically attached to processes
and objects. The access control policy
enforced using these labels is derived
from the BellLaPadula access control
model.

SELinux categories are attached to
virtual machines and its resources.
The access control policy enforced
using these categories grant virtual
machines access to resources if the
category of the virtual machine
is identical to the category of the
accessed resource.

The TOE implements non-hierarchical
categories to control access to virtual
machines.

Role-Based Access Control Role-based access control (RBAC)
allows separation of roles to eliminate
the need for an all-powerful system
administrator.

Object Reuse File system objects as well as memory
and IPC objects will be cleared before
they can be reused by a process
belonging to a different user.

OpenStack Security Guide April 26, 2014 current

168

Security Management The management of the security
critical parameters of the system is
performed by administrative users.
A set of commands that require root
privileges (or specific roles when
RBAC is used) are used for system
management. Security parameters
are stored in specific files that are
protected by the access control
mechanisms of the system against
unauthorized access by users that are
not administrative users.

Secure Communication The system supports the definition
of trusted channels using SSH.
Password based authentication is
supported. Only a restricted number
of cipher suites are supported for
those protocols in the evaluated
configuration.

Storage Encryption The system supports encrypted
block devices to provide storage
confidentiality via dm_crypt.

TSF Protection While in operation, the kernel
software and data are protected by
the hardware memory protection
mechanisms. The memory and
process management components
of the kernel ensure a user process
cannot access kernel storage or
storage belonging to other processes.

Non-kernel TSF software and
data are protected by DAC and
process isolation mechanisms. In
the evaluated configuration, the
reserved user ID root owns the
directories and files that define the
TSF configuration. In general, files
and directories containing internal
TSF data, such as configuration
files and batch job queues, are also
protected from reading by DAC
permissions.

The system and the hardware and
firmware components are required
to be physically protected from
unauthorized access. The system
kernel mediates all access to the
hardware mechanisms themselves,
other than program visible CPU
instruction functions.

In addition, mechanisms for
protection against stack overflow
attacks are provided.

OpenStack Security Guide April 26, 2014 current

169

Cryptography Standards
Several cryptography algorithms are available within OpenStack for
identification and authorization, data transfer and protection of data
at rest. When selecting a hypervisor, the following are recommended
algorithms and implementation standards to ensure the virtualization
layer supports:

Algorithm Key Length Intended
Purpose

Security
Function

Implementation
Standard

AES 128 bits,192
bits,

256 bits

Encryption /
Decryption

Protected
Data Transfer,
Protection for
Data at Rest

RFC 4253

TDES 168 bits Encryption /
Decryption

Protected
Data Transfer

RFC 4253

RSA 1024
bits,2048 bits,

3072 bits

Authentication,Key
Exchange

Identification
and
Authentication,
Protected
Data Transfer

U.S. NIST FIPS
PUB 186-3

DSA L=1024,N=160
bits

Authentication,Key
Exchange

Identification
and
Authentication,
Protected
Data Transfer

U.S. NIST FIPS
PUB 186-3

Serpent 128, 196,
or256 bit

Encryption /
Decryption

Protection of
Data at Rest

http://
www.cl.cam.ac.uk/
~rja14/
Papers/
serpent.pdf

Twofish 128, 196,
or256 bit

Encryption /
Decryption

Protection of
Data at Rest

http://
www.schneier.com/
paper-
twofish-
paper.html

SHA-1 - MessageDigest Protection
of Data at
Rest,Protected
Data Transfer

U.S. NIST FIPS
180-3

SHA-2(224-,
256-,

384-, 512 bit)

- MessageDigest Protection
for Data at
Rest,Identification
and
Authentication

U.S. NIST FIPS
180-3

FIPS 140-2

In the United States the National Institute of Science and Technology
(NIST) certifies cryptographic algorithms through a process known the

http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.schneier.com/paper-twofish-paper.html
http://www.schneier.com/paper-twofish-paper.html
http://www.schneier.com/paper-twofish-paper.html
http://www.schneier.com/paper-twofish-paper.html
http://www.schneier.com/paper-twofish-paper.html

OpenStack Security Guide April 26, 2014 current

170

Cryptographic Module Validation Program. NIST certifies algorithms for
conformance against Federal Information Processing Standard 140-2 (FIPS
140-2), which ensures:

Products validated as conforming to FIPS 140-2 are
accepted by the Federal agencies of both countries
[United States and Canada] for the protection of sensitive
information (United States) or Designated Information
(Canada). The goal of the CMVP is to promote the use
of validated cryptographic modules and provide Federal
agencies with a security metric to use in procuring
equipment containing validated cryptographic modules.

When evaluating base hypervisor technologies, consider if the hypervisor
has been certified against FIPS 140-2. Not only is conformance against FIPS
140-2 mandated per U.S. Government policy, formal certification indicates
that a given implementation of a cryptographic algorithm has been
reviewed for conformance against module specification, cryptographic
module ports and interfaces; roles, services, and authentication; finite
state model; physical security; operational environment; cryptographic key
management; electromagnetic interference/electromagnetic compatibility
(EMI/EMC); self-tests; design assurance; and mitigation of other attacks.

Hardware Concerns

Further, when evaluating a hypervisor platform the supportability of the
hardware the hypervisor will run on should be considered. Additionally,
consider the additional features available in the hardware and how
those features are supported by the hypervisor you chose as part of the
OpenStack deployment. To that end, hypervisors will each have their own
hardware compatibility lists (HCLs). When selecting compatible hardware
it is important to know in advance which hardware-based virtualization
technologies are important from a security perspective.

Description Technology Explanation

I/O MMU VT-d / AMD-Vi Required for protecting
PCI-passthrough

Intel Trusted Execution
Technology

Intel TXT / SEM Required for dynamic
attestation services

PCI-SIG I/O virtualization SR-IOV, MR-IOV, ATS Required to allow secure
sharing of PCI Express
devices

Network virtualization VT-c Improves performance
of network I/O on
hypervisors

OpenStack Security Guide April 26, 2014 current

171

Hypervisor vs. Baremetal

To wrap up our discussion around hypervisor selection, it is important
to call out the differences between using LXC (Linux Containers) or
Baremetal systems vs using a hypervisor like KVM. Specifically, the focus
of this security guide will be largely based on having a hypervisor and
virtualization platform. However, should your implementation require the
use of a baremetal or LXC environment, you will want to pay attention to
the particular differences in regard to deployment of that environment.
In particular, you will need to provide your end users with assurances that
the node has been properly sanitized of their data prior to re-provisioning.
Additionally, prior to reusing a node, you will need to provide assurances
that the hardware has not been tampered or otherwise compromised.

It should be noted that while OpenStack has a baremetal project, a
discussion of the particular security implications of running baremetal is
beyond the scope of this book.

Finally, due to the time constraints around a book sprint, the team chose
to use KVM as the hypervisor in our example implementations and
architectures.

Note

There is an OpenStack Security Note pertaining to the use of
LXC in Nova.

Additional Security Features

Another thing to look into when selecting a hypervisor platform is the
availability of specific security features. In particular, we are referring to
features like Xen Server's XSM or Xen Security Modules, sVirt, Intel TXT,
and AppArmor. The presence of these features will help increase your
security profile as well as provide a good foundation.

The following table calls out these features by common hypervisor
platforms.

 KSM XSM sVirt TXT AppArmorcGroups MAC
Policy

KVM X X X x x x

Xen X X x

ESXi X

https://bugs.launchpad.net/ossn/+bug/1098582
https://bugs.launchpad.net/ossn/+bug/1098582

OpenStack Security Guide April 26, 2014 current

172

Hyper-V

KSM: Kernel Samepage Merging

XSM: Xen Security Modules

xVirt: Mandatory Access Control for Linux-based virtualization

TXT: Intel Trusted Execution Technology

AppArmor: Linux security module implementing MAC

cgroups: Linux kernel feature to control resource usage

MAC Policy: Mandatory Access Control; may be implemented with SELinux
or other operating systems

* Features in this table may not be applicable to all hypervisors or directly
mappable between hypervisors.

http://www.linux-kvm.org/page/KSM
http://wiki.xen.org/wiki/Xen_Security_Modules_:_XSM-FLASK
http://selinuxproject.org/page/SVirt
http://www.intel.com/txt
http://wiki.apparmor.net/index.php/Main_Page
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

OpenStack Security Guide April 26, 2014 current

173

41. Hardening the Virtualization
Layers

Physical Hardware (PCI Passthrough) .. 173
Virtual Hardware (QEMU) .. 174
sVirt: SELinux + Virtualization ... 177

In the beginning of this chapter we discuss the use of both physical and
virtual hardware by instances, the associated security risks, and some
recommendations for mitigating those risks. We conclude the chapter
with a discussion of sVirt, an open source project for integrating SELinux
mandatory access controls with the virtualization components.

Physical Hardware (PCI Passthrough)
Many hypervisors offer a functionality known as PCI passthrough. This
allows an instance to have direct access to a piece of hardware on the
node. For example, this could be used to allow instances to access video
cards offering the compute unified device architecture (CUDA) for high
performance computation. This feature carries two types of security risks:
direct memory access and hardware infection.

Direct memory access (DMA) is a feature that permits certain hardware
devices to access arbitrary physical memory addresses in the host
computer. Often video cards have this capability. However, an instance
should not be given arbitrary physical memory access because this would
give it full view of both the host system and other instances running on the
same node. Hardware vendors use an input/output memory management
unit (IOMMU) to manage DMA access in these situations. Therefore, cloud
architects should ensure that the hypervisor is configured to utilize this
hardware feature.

• KVM: How to assign devices with VT-d in KVM

• Xen: VTd Howto

Note

The IOMMU feature is marketed as VT-d by Intel and AMD-
Vi by AMD.

A hardware infection occurs when an instance makes a malicious
modification to the firmware or some other part of a device. As this device

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://wiki.xen.org/wiki/VTd_HowTo

OpenStack Security Guide April 26, 2014 current

174

is used by other instances, or even the host OS, the malicious code can
spread into these systems. The end result is that one instance can run
code outside of its security domain. This is a potential problem in any
hardware sharing scenario. The problem is specific to this scenario because
it is harder to reset the state of physical hardware than virtual hardware.

Solutions to the hardware infection problem are domain specific. The
strategy is to identify how an instance can modify hardware state then
determine how to reset any modifications when the instance is done using
the hardware. For example, one option could be to re-flash the firmware
after use. Clearly there is a need to balance hardware longevity with
security as some firmwares will fail after a large number of writes. TPM
technology, described in link:Management/Node Bootstrapping,
provides a solution for detecting unauthorized firmware changes.
Regardless of the strategy selected, it is important to understand the risks
associated with this kind of hardware sharing so that they can be properly
mitigated for a given deployment scenario.

Additionally, due to the risk and complexities associated with PCI
passthrough, it should be disabled by default. If enabled for a specific
need, you will need to have appropriate processes in place to ensure the
hardware is clean before re-issue.

Virtual Hardware (QEMU)
When running a virtual machine, virtual hardware is a software layer
that provides the hardware interface for the virtual machine. Instances
use this functionality to provide network, storage, video, and other
devices that may be needed. With this in mind, most instances in your
environment will exclusively use virtual hardware, with a minority that
will require direct hardware access. The major open source hypervisors
use QEMU for this functionality. While QEMU fills an important need for
virtualization platforms, it has proven to be a very challenging software
project to write and maintain. Much of the functionality in QEMU is
implemented with low-level code that is difficult for most developers to
comprehend. Furthermore, the hardware virtualized by QEMU includes
many legacy devices that have their own set of quirks. Putting all of this
together, QEMU has been the source of many security problems, including
hypervisor breakout attacks.

For the reasons stated above, it is important to take proactive steps to
harden QEMU. We recommend three specific steps: minimizing the code
base, using compiler hardening, and using mandatory access controls, such
as sVirt, SELinux, or AppArmor.

OpenStack Security Guide April 26, 2014 current

175

Minimizing the Qemu Code base

One classic security principle is to remove any unused components from
your system. QEMU provides support for many different virtual hardware
devices. However, only a small number of devices are needed for a given
instance. Most instances will use the virtio devices. However, some legacy
instances will need access to specific hardware, which can be specified
using glance metadata:

glance image-update \
 --property hw_disk_bus=ide \
 --property hw_cdrom_bus=ide \
 --property hw_vif_model=e1000 \
 f16-x86_64-openstack-sda

A cloud architect should decide what devices to make available to cloud
users. Anything that is not needed should be removed from QEMU. This
step requires recompiling QEMU after modifying the options passed to the
QEMU configure script. For a complete list of up-to-date options simply run
./configure --help from within the QEMU source directory. Decide
what is needed for your deployment, and disable the remaining options.

Compiler Hardening

The next step is to harden QEMU using compiler hardening options.
Modern compilers provide a variety of compile time options to improve
the security of the resulting binaries. These features, which we will describe
in more detail below, include relocation read-only (RELRO), stack canaries,
never execute (NX), position independent executable (PIE), and address
space layout randomization (ASLR).

Many modern linux distributions already build QEMU with compiler
hardening enabled, so you may want to verify your existing executable
before proceeding with the information below. One tool that can assist
you with this verification is called checksec.sh.

• RELocation Read-Only (RELRO): Hardens the data sections of an
executable. Both full and partial RELRO modes are supported by gcc.
For QEMU full RELRO is your best choice. This will make the global offset
table read-only and place various internal data sections before the
program data section in the resulting executable.

• Stack Canaries: Places values on the stack and verifies their presence to
help prevent buffer overflow attacks.

http://www.trapkit.de/tools/checksec.html

OpenStack Security Guide April 26, 2014 current

176

• Never eXecute (NX): Also known as Data Execution Prevention (DEP),
ensures that data sections of the executable can not be executed.

• Position Independent Executable (PIE): Produces a position independent
executable, which is necessary for ASLR.

• Address Space Layout Randomization (ASLR) : This ensures that both
code and data regions will be randomized. Enabled by the kernel (all
modern linux kernels support ASLR), when the executable is built with
PIE.

Putting this all together, and adding in some additional useful protections,
we recommend the following compiler options for gcc when compiling
QEMU:

CFLAGS="-arch x86_64 -fstack-protector-all -Wstack-protector --
param ssp-buffer-size=4 -pie -fPIE -ftrapv -D_FORTIFY_SOURCE=2
O2 -Wl,-z,relro,-z,now"

We recommend testing your QEMU executable file after it is compiled to
ensure that the compiler hardening worked properly.

Most cloud deployments will not want to build software such as QEMU by
hand. It is better to use packaging to ensure that the process is repeatable
and to ensure that the end result can be easily deployed throughout the
cloud. The references below provide some additional details on applying
compiler hardening options to existing packages.

• DEB packages: Hardening Walkthrough

• RPM packages: How to create an RPM package

Mandatory Access Controls

Compiler hardening makes it more difficult to attack the QEMU process.
However, if an attacker does succeed, we would like to limit the impact
of the attack. Mandatory access controls accomplish this by restricting
the privileges on QEMU process to only what is needed. This can be
accomplished using sVirt / SELinux or AppArmor. When using sVirt,
SELinux is configured to run every QEMU process under a different security
context. AppArmor can be configured to provide similar functionality. We
provide more details on sVirt in the instance isolation section below.

http://wiki.debian.org/HardeningWalkthrough
http://fedoraproject.org/wiki/How_to_create_an_RPM_package

OpenStack Security Guide April 26, 2014 current

177

sVirt: SELinux + Virtualization
With unique kernel-level architecture and National Security Agency (NSA)
developed security mechanisms, KVM provides foundational isolation
technologies for multi tenancy. With developmental origins dating back
to 2002, the Secure Virtualization (sVirt) technology is the application of
SELinux against modern day virtualization. SELinux, which was designed to
apply separation control based upon labels, has been extended to provide
isolation between virtual machine processes, devices, data files and system
processes acting upon their behalf.

OpenStack's sVirt implementation aspires to protect hypervisor hosts and
virtual machines against two primary threat vectors:

• Hypervisor threats A compromised application running within a virtual
machine attacks the hypervisor to access underlying resources. For
example, the host OS, applications, or devices within the physical
machine. This is a threat vector unique to virtualization and represents
considerable risk as the underlying real machine can be compromised
due to vulnerability in a single virtual application.

• Virtual Machine (multi-tenant) threats A compromised application
running within a VM attacks the hypervisor to access/control another
virtual machine and its resources. This is a threat vector unique to
virtualization and represents considerable risk as a multitude of virtual
machine file images could be compromised due to vulnerability in a
single application. This virtual network attack is a major concern as the
administrative techniques for protecting real networks do not directly
apply to the virtual environment.

Each KVM-based virtual machine is a process which is labeled by SELinux,
effectively establishing a security boundary around each virtual machine.
This security boundary is monitored and enforced by the Linux kernel,
restricting the virtual machine's access to resources outside of its boundary
such as host machine data files or other VMs.

OpenStack Security Guide April 26, 2014 current

178

As shown above, sVirt isolation is provided regardless of the guest
Operating System running inside the virtual machine -- Linux or Windows
VMs can be used. Additionally, many Linux distributions provide SELinux
within the operating system, allowing the virtual machine to protect
internal virtual resources from threats.

Labels and Categories

KVM-based virtual machine instances are labelled with their own SELinux
data type, known as svirt_image_t. Kernel level protections prevent
unauthorized system processes, such as malware, from manipulating the
virtual machine image files on disk. When virtual machines are powered
off, images are stored as svirt_image_t as shown below:

system_u:object_r:svirt_image_t:SystemLow image1
system_u:object_r:svirt_image_t:SystemLow image2
system_u:object_r:svirt_image_t:SystemLow image3
system_u:object_r:svirt_image_t:SystemLow image4

The svirt_image_t label uniquely identifies image files on disk, allowing for
the SELinux policy to restrict access. When a KVM-based Compute image
is powered on, sVirt appends a random numerical identifier to the image.
sVirt is technically capable of assigning numerical identifiers to 524,288
virtual machines per hypervisor node, however OpenStack deployments
are highly unlikely to encounter this limitation.

This example shows the sVirt category identifier:

system_u:object_r:svirt_image_t:s0:c87,c520 image1

OpenStack Security Guide April 26, 2014 current

179

system_u:object_r:svirt_image_t:s0:419,c172 image2

Booleans

To ease the administrative burden of managing SELinux, many enterprise
Linux platforms utilize SELinux Booleans to quickly change the security
posture of sVirt.

Red Hat Enterprise Linux-based KVM deployments utilize the following
sVirt booleans:

sVirt SELinux Boolean Description

virt_use_common Allow virt to use serial/parallel
communication ports.

virt_use_fusefs Allow virt to read FUSE mounted files.

virt_use_nfs Allow virt to manage NFS mounted
files.

virt_use_samba Allow virt to manage CIFS mounted
files.

virt_use_sanlock Allow confined virtual guests to
interact with the sanlock.

virt_use_sysfs Allow virt to manage device
configuration (PCI).

virt_use_usb Allow virt to use USB devices.

virt_use_xserver Allow virtual machine to interact with
the X Window System.

OpenStack Security Guide April 26, 2014 current

181

42. Case Studies: Instance Isolation
Alice's Private Cloud ... 181
Bob's Public Cloud .. 181

In this case study we discuss how Alice and Bob would ensure that their
instances are properly isolated. First we consider hypervisor selection, and
then techniques for hardening QEMU and applying mandatory access
controls.

Alice's Private Cloud
Alice chooses Xen for the hypervisor in her cloud due to a strong internal
knowledge base and a desire to use the Xen security modules (XSM) for
fine-grained policy enforcement.

Alice is willing to apply a relatively large amount of resources to software
packaging and maintenance. She will use these resources to build a
highly customized version of QEMU that has many components removed,
thereby reducing the attack surface. She will also ensure that all compiler
hardening options are enabled for QEMU. Alice accepts that these
decisions will increase long-term maintenance costs.

Alice writes XSM policies (for Xen) and SELinux policies (for Linux domain
0, and device domains) to provide stronger isolation between the
instances. Alice also uses the Intel TXT support in Xen to measure the
hypervisor launch in the TPM.

Bob's Public Cloud
Bob is very concerned about instance isolation since the users in a public
cloud represent anyone with a credit card, meaning they are inherently
untrusted. Bob has just started hiring the team that will deploy the cloud,
so he can tailor his candidate search for specific areas of expertise. With
this in mind, Bob chooses a hypervisor based on its technical features,
certifications, and community support. KVM has an EAL 4+ common
criteria rating, with a labeled security protection profile (LSPP) to provide
added assurance for instance isolation. This, combined with the strong
support for KVM within the OpenStack community drives Bob's decision to
use KVM.

Bob weighs the added cost of repackaging QEMU and decides that he
cannot commit those resources to the project. Fortunately, his Linux

OpenStack Security Guide April 26, 2014 current

182

distribution has already enabled the compiler hardening options. So he
decides to use this QEMU package. Finally, Bob leverages sVirt to manage
the SELinux polices associated with the virtualization stack.

OpenStack Security Guide April 26, 2014 current

183

43. Security Services for Instances
Entropy To Instances .. 183
Scheduling Instances to Nodes ... 184
Trusted Images .. 186
Instance Migrations .. 189

One of the virtues of running instances in a virtualized environment is
that it opens up new opportunities for security controls that are not
typically available when deploying onto bare metal. There are several
technologies that can be applied to the virtualization stack that bring
improved information assurance for cloud tenants.

Deployers or users of OpenStack with strong security requirements may
want to consider deploying these technologies. Not all are applicable in
every situation, indeed in some cases technologies may be ruled out for
use in a cloud because of prescriptive business requirements. Similarly
some technologies inspect instance data such as run state which may be
undesirable to the users of the system.

In this chapter we explore these technologies and describe the situations
where they can be used to enhance security for instances or underlying
instances. We also seek to highlight where privacy concerns may exist.
These include data pass through, introspection, or providing a source
of entropy. In this section we highlight the following additional security
services:

• Entropy to Instances

• Scheduling Instances to Nodes

• Trusted Images

• Instance Migrations

Entropy To Instances
We consider entropy to refer to the quality and source of random data
that is available to an instance. Cryptographic technologies typically rely
heavily on randomness, requiring a high quality pool of entropy to draw
from. It is typically hard for a virtual machine to get enough entropy to
support these operations. Entropy starvation can manifest in instances

OpenStack Security Guide April 26, 2014 current

184

as something seemingly unrelated for example, slow boot times because
the instance is waiting for ssh key generation. Entropy starvation may also
motivate users to employ poor quality entropy sources from within the
instance, making applications running in the cloud less secure overall.

Fortunately, a cloud architect may address these issues by providing a
high quality source of entropy to the cloud instances. This can be done
by having enough hardware random number generators (HRNG) in the
cloud to support the instances. In this case, "enough" is somewhat domain
specific. For everyday operations, a modern HRNG is likely to produce
enough entropy to support 50-100 compute nodes. High bandwidth
HRNGs, such as the RdRand instruction available with Intel Ivy Bridge and
newer processors could potentially handle more nodes. For a given cloud,
an architect needs to understand the application requirements to ensure
that sufficient entropy is available.

Once the entropy is available in the cloud, the next step is getting that
entropy into the instances. Tools such as the entropy gathering daemon
(EGD) provide a way to fairly and securely distribute entropy through a
distributed system. Support exists for using the EGD as an entropy source
for LibVirt.

Compute support for these features is not generally available, but it would
only require a moderate amount of work for implementors to integrate
this functionality.

Scheduling Instances to Nodes
Before an instance is created, a host for the image instantiation must be
selected. This selection is performed by the nova-scheduler which
determines how to dispatch compute and volume requests.

The filter scheduler is the default scheduler for OpenStack Compute,
although other schedulers exist (see the section Scheduling in the
OpenStack Configuration Reference). The filter scheduler works in
collaboration with 'filters' to decide where an instance should be started.
This process of host selection allows administrators to fulfill many different
security requirements. Depending on the cloud deployment type for
example, one could choose to have tenant instances reside on the same
hosts whenever possible if data isolation was a primary concern, conversely
one could attempt to have instances for a tenant reside on as many
different hosts as possible for availability or fault tolerance reasons. The
following diagram demonstrates how the filter scheduler works:

http://egd.sourceforge.net/
http://docs.openstack.org/trunk/config-reference/content/section_compute-scheduler.html

OpenStack Security Guide April 26, 2014 current

185

The use of scheduler filters may be used to segregate customers, data,
or even discard machines of the cloud that cannot be attested as secure.
This generally applies to all OpenStack projects offering a scheduler. When
building a cloud, you may choose to implement scheduling filters for a
variety of security-related purposes.

Below we highlight a few of the filters that may be useful in a
security context, depending on your requirements, the full set of filter
documentation is documented in the Filter Scheduler section of the
OpenStack Configuration Reference.

Tenant Driven Whole Host Reservation

There currently exists a blueprint for whole host reservation - This would
allow a tenant to exclusively reserve hosts for only it's instances, incurring
extra costs.

Host Aggregates

While not a filter in themselves, host aggregates allow administrators
to assign key-value pairs to groups of machines. This allows cloud
administrators, not users, to partition up their compute host resources.
Each node can have multiple aggregates (see the Host Aggregates section

http://docs.openstack.org/trunk/config-reference/content/filter-scheduler.html
https://blueprints.launchpad.net/nova/+spec/whole-host-allocation
http://docs.openstack.org/trunk/config-reference/content/host-aggregates.html

OpenStack Security Guide April 26, 2014 current

186

of the OpenStack Configuration Reference for more information on
creating and managing aggregates).

AggregateMultiTenancyIsolation
Isolates tenants to specific host aggregates. If a host is in an aggregate
that has the metadata key filter_tenant_id it will only create
instances from that tenant (or list of tenants). A host can be in multiple
aggregates. If a host does not belong to an aggregate with the metadata
key, it can create instances from all tenants.

DifferentHostFilter
Schedule the instance on a different host from a set of instances. To take
advantage of this filter, the requester must pass a scheduler hint, using
different_host as the key and a list of instance uuids as the value. This
filter is the opposite of the SameHostFilter.

GroupAntiAffinityFilter
The GroupAntiAffinityFilter ensures that each instance in a group is on a
different host. To take advantage of this filter, the requester must pass a
scheduler hint, using group as the key and a list of instance uuids as the
value.

Trusted Compute Pools
There exists a scheduler filter which integrates with the Open Attestation
Project (OATS) to define scheduler behavior according to the attestation
of PCRs received from a system using Intel TXT.

It is unclear if this feature is compatible with AMD's similar SEM, although
the OpenAttestation agent relies on the vendor-agnostic TrouSerS library.

Trusted Images
With regards to images, users will be working with pre-installed images
or images that they upload themselves. In both cases, users will want to
ensure that the image they are ultimately running has not been tampered
with. This requires some source of truth such as a checksum for the known
good version of an image as well as verification of the running image. This
section describes the current best practices around image handling, while
also calling out some of the existing gaps in this space.

https://github.com/OpenAttestation/OpenAttestation
https://github.com/OpenAttestation/OpenAttestation
http://trousers.sourceforge.net/

OpenStack Security Guide April 26, 2014 current

187

Image Creation Process
The OpenStack Documentation provides guidance on how to create and
upload an image to Glance. Additionally it is assumed that you have a
process by which you install and harden operating systems. Thus, the
following items will provide additional guidance on how to ensure your
images are built securely prior to upload. There are a variety of options
for obtaining images. Each has specific steps that help validate the image's
provenance.

The first option is to obtain boot media from a trusted source.

mkdir -p /tmp/download_directorycd /tmp/download_directory

wget http://mirror.anl.gov/pub/ubuntu-iso/CDs/precise/ubuntu-12.
04.2-server-amd64.iso
wget http://mirror.anl.gov/pub/ubuntu-iso/CDs/precise/SHA256SUMS
wget http://mirror.anl.gov/pub/ubuntu-iso/CDs/precise/
SHA256SUMS.gpg
gpg --keyserver hkp://keyserver.ubuntu.com --recv-
keys 0xFBB75451
gpg --verify SHA256SUMS.gpg SHA256SUMSsha256sum -c SHA256SUMS
 2>&1 | grep OK

The second option is to use the OpenStack Virtual Machine Image Guide.
In this case, you will want to follow your organizations OS hardening
guidelines or those provided by a trusted third-party such as the RHEL6
STIG.

The final option is to use an automated image builder. The following
example uses the Oz image builder. The OpenStack community has
recently created a newer tool worth investigating: disk-image-builder. We
have not evaluated this tool from a security perspective.

Example of RHEL 6 CCE-26976-1 which will help implement NIST 800-53
Section AC-19(d) in Oz.

<template>
<name>centos64</name>
<os>
 <name>RHEL-6</name>
 <version>4</version>
 <arch>x86_64</arch>
 <install type='iso'>
 <iso>http://trusted_local_iso_mirror/isos/x86_64/RHEL-6.4-
x86_64-bin-DVD1.iso</iso>

http://docs.openstack.org/trunk/image-guide/content/
http://iase.disa.mil/stigs/os/unix/red_hat.html
http://iase.disa.mil/stigs/os/unix/red_hat.html

OpenStack Security Guide April 26, 2014 current

188

 </install>
 <rootpw>CHANGE THIS TO YOUR ROOT PASSWORD</rootpw>
</os>
<description>RHEL 6.4 x86_64</description>
<repositories>
 <repository name='epel-6'>
 <url>http://download.fedoraproject.org/pub/epel/6/
$basearch</url>
 <signed>no</signed>
 </repository>
</repositories>
<packages>
 <package name='epel-release'/>
 <package name='cloud-utils'/>
 <package name='cloud-init'/>
</packages>
<commands>
 <command name='update'>
 yum update
 yum clean all
 sed -i '/^HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0
 echo -n > /etc/udev/rules.d/70-persistent-net.rules
 echo -n > /lib/udev/rules.d/75-persistent-net-generator.rules
 chkconfig --level 0123456 autofs off
 service autofs stop
 </command>
</commands>
</template>

Note, it is the recommendation of this guide to shy away from the manual
image building process as it is complex and prone to error. Further, using
an automated system like Oz or disk-image-builder for image building, or a
configuration management utility like Chef or Puppet for post boot image
hardening gives you the ability to produce a consistent image as well as
track compliance of your base image to its respective hardening guidelines
over time.

If subscribing to a public cloud service, you should check with the cloud
provider for an outline of the process used to produce their default
images. If the provider allows you to upload your own images, you will
want to ensure that you are able to verify that your image was not
modified before you spin it up. To do this, refer to the following section on
Image Provenance.

Image Provenance and Validation

Unfortunately, it is not currently possible to force Compute to validate
an image hash immediately prior to starting an instance. To understand

OpenStack Security Guide April 26, 2014 current

189

the situation, we begin with a brief overview of how images are handled
around the time of image launch.

Images come from the glance service to the nova service on a node. This
transfer should be protected by running over SSL. Once the image is on
the node, it is verified with a basic checksum and then it's disk is expanded
based on the size of the instance being launched. If, at a later time, the
same image is launched with the same instance size on this node, it will be
launched from the same expanded image. Since this expanded image is
not re-verified before launching, it could be tampered with and the user
would not have any way of knowing, beyond a manual inspection of the
files in the resulting image.

We hope that future versions of Compute and/or the Image Service will
offer support for validating the image hash before each instance launch.
An alternative option that would be even more powerful would be allow
users to sign an image and then have the signature validated when the
instance is launched.

Instance Migrations
OpenStack and the underlying virtualization layers provide for the live
migration of images between OpenStack nodes allowing you to seamlessly
perform rolling upgrades of your OpenStack compute nodes without
instance downtime. However, live migrations also come with their fair
share of risk. To understand the risks involved, it is important to first
understand how a live migration works. The following are the high level
steps preformed during a live migration.

1. Start instance on destination host

2. Transfer memory

3. Stop the guest & sync disks

4. Transfer state

5. Start the guest

Live Migration Risks

At various stages of the live migration process the contents of an instances
run time memory and disk are transmitted over the network in plain text.

OpenStack Security Guide April 26, 2014 current

190

Thus there are several risks that need to be addressed when using live
migration. The following in-exhaustive list details some of these risks:

• Denial of Service (DoS) : If something fails during the migration process,
the instance could be lost.

• Data Exposure : Memory or disk transfers must be handled securely.

• Data Manipulation : If memory or disk transfers are not handled
securely, then an attacker could manipulate user data during the
migration.

• Code Injection : If memory or disk transfers are not handled securely,
then an attacker could manipulate executables, either on disk or in
memory, during the migration.

Live Migration Mitigations

There are several methods to mitigate some of the risk associated with live
migrations, the following list details some of these:

• Disable Live Migration

• Isolated Migration Network

• Encrypted Live Migration

Disable Live Migration

At this time, live migration is enabled in OpenStack by default. Live
migrations can be disabled by adding the following lines to the nova
policy.json file:

"compute_extension:admin_actions:migrate": "!",
"compute_extension:admin_actions:migrateLive": "!",

Migration Network

As a general practice, live migration traffic should be restricted to the
management security domain. Indeed live migration traffic, due to its plain
text nature and the fact that you are transferring the contents of disk and
memory of a running instance, it is recommended you further separate
live migration traffic onto a dedicated network. Isolating the traffic to a
dedicated network can reduce the risk of exposure.

OpenStack Security Guide April 26, 2014 current

191

Encrypted Live Migration

If your use case involves keeping live migration enabled, then libvirtd
can provide tunneled, encrypted live migrations. That said, this feature
is not currently exposed in OpenStack Dashboard, nor the nova-client
commands and can only be accessed through manual configuration of
libvirtd. Encrypted live migration modifies the live migration process by
first copying the instance data from the running hypervisor to libvirtd.
From there an encrypted tunnel is created between the libvirtd processes
on both hosts. Finally, the destination libvirtd process copies the instance
back to the underlying hypervisor.

OpenStack Security Guide April 26, 2014 current

193

44. Case Studies: Instance
Management

Alice's Private Cloud ... 193
Bob's Public Cloud .. 193

In this case study we discuss how Alice and Bob would architect their
clouds with respect to instance entropy, scheduling instances, trusted
images, and instance migrations.

Alice's Private Cloud
Alice has a need for lots of high quality entropy in the instances. For this
reason, she decides to purchase hardware with Intel Ivy Bridge chip sets
that support the RdRand instruction on each compute node. Using the
entropy gathering daemon (EGD) and LibVirt's EGD support, Alice ensures
that this entropy pool is distributed to the instances on each compute
node.

For instance scheduling, Alice uses the trusted compute pools to ensure
that all cloud workloads are deployed to nodes that presented a proper
boot time attestation. Alice decides to disable user permissions for image
uploading to help ensure that the images used in the cloud are generated
in a known and trusted manner by the cloud administrators.

Finally, Alice disables instance migrations as this feature is less critical
for the high performance application workloads expected to run in this
cloud. This helps avoid the various security concerns related to instance
migrations.

Bob's Public Cloud
Bob is aware that entropy will be a concern for some of his customers,
such as those in the financial industry. However, due to the added cost
and complexity, Bob has decided to forgo integrating hardware entropy
into the first iteration of his cloud. He adds hardware entropy as a fast-
follow to do for a later improvement for the second generation of his
cloud architecture.

Bob is interested in ensuring that customers receive a high quality of
service. He is concerned that providing too much explicit user control over

OpenStack Security Guide April 26, 2014 current

194

instance scheduling could negatively impact the quality of service. So he
disables this feature. Bob provides images in the cloud from a known
trusted source for users to use. Additionally, he also allows users to upload
their own images. However, users cannot generally share their images.
This helps prevent a user from sharing a malicious image, which could
negatively impact the security of other users in the cloud.

For migrations, Bob wants to enable secure instance migrations in order to
support rolling upgrades with minimal user downtime. Bob ensures that
all migrations occur on an isolated VLAN. He plans to defer implementing
encrypted migrations until this is better supported in Nova client tools.
However, he makes a note to track this carefully and switch to encrypted
migrations as soon as possible.

OpenStack Security Guide April 26, 2014 current

195

45. Forensics and Incident
Response

Monitoring Use Cases .. 195
References ... 197

A lot of activity goes on within a cloud environment. It is a mix of
hardware, operating systems, virtual machine managers, the OpenStack
services, cloud-user activity such as creating instances and attaching
storage, the network underlying the whole, and finally end-users using the
applications running on the various instances.

The generation and collection of logs is an important component of
securely monitoring an OpenStack infrastructure. Logs provide visibility
into the day-to-day actions of administrators, tenants, and guests, in
addition to the activity in the compute, networking, and storage and other
components that comprise your OpenStack deployment.

The basics of logging: configuration, setting log level, location of the log
files, and how to use and customize logs, as well as how to do centralized
collections of logs is well covered in the OpenStack Operations Guide.

Logs are not only valuable for proactive security and
continuous compliance activities, but they are also a valuable information
source for investigating and responding to incidents.

For instance, analyzing the access logs of Identity Service or its
replacement authentication system would alert us to failed logins, their
frequency, origin IP, whether the events are restricted to select accounts
etc. Log analysis supports detection.

On detection, further action may be to black list an IP, or recommend
strengthening user passwords, or even de-activating a user account if it is
deemed dormant.

Monitoring Use Cases
Monitoring events is more pro-active and provides real-time detection and
response. There are several tools to aid in monitoring.

In the case of an OpenStack cloud instance, we need to monitor the
hardware, the OpenStack services, and the cloud resource usage. The last

http://docs.openstack.org/ops/

OpenStack Security Guide April 26, 2014 current

196

stems from wanting to be elastic, to scale to the dynamic needs of the
users.

Here are a few important use cases to consider when implementing log
aggregation, analysis and monitoring. These use cases can be implemented
and monitored through various commercial and open source tools,
homegrown scripts, etc. These tools and scripts can generate events
that can then be sent to the administrators through email or integrated
dashboard. It is important to consider additional use cases that may apply
to your specific network and what you may consider anomalous behavior.

• Detecting the absence of log generation is an event of high value. Such
an event would indicate a service failure or even an intruder who has
temporarily switched off logging or modified the log level to hide their
tracks.

• Application events such as start and/or stop that were unscheduled
would also be events to monitor and examine for possible security
implications.

• OS events on the OpenStack service machines such as user logins,
restarts also provide valuable insight into use/misuse

• Being able to detect the load on the OpenStack servers also enables
responding by way of introducing additional servers for load balancing
to ensure high availability.

• Other events that are actionable are networking bridges going down, ip
tables being flushed on compute nodes and consequential loss of access
to instances resulting in unhappy customers.

• To reduce security risks from orphan instances on a user/tenant/
domain deletion in the Identity service there is discussion to generate
notifications in the system and have OpenStack components respond to
these events as appropriate such as terminating instances, disconnecting
attached volumes, reclaiming CPU and storage resources etc.

A cloud will host many virtual instances, and monitoring these instances
goes beyond hardware monitoring and log files which may just contain
CRUD events.

Security monitoring controls such as intrusion detection software, antivirus
software, and spyware detection and removal utilities can generate logs
that show when and how an attack or intrusion took place. Deploying
these tools on the cloud machines provides value and protection. Cloud

OpenStack Security Guide April 26, 2014 current

197

users, those running instances on the cloud may also want to run such
tools on their instances.

References
http://www.mirantis.com/blog/openstack-monitoring/

http://blog.sflow.com/2012/01/host-sflow-distributed-agent.html

http://blog.sflow.com/2009/09/lan-and-wan.html

http://blog.sflow.com/2013/01/rapidly-detecting-large-flows-sflow-vs.html

http://www.mirantis.com/blog/openstack-monitoring/
http://blog.sflow.com/2012/01/host-sflow-distributed-agent.html
http://blog.sflow.com/2009/09/lan-and-wan.html
http://blog.sflow.com/2013/01/rapidly-detecting-large-flows-sflow-vs.html

OpenStack Security Guide April 26, 2014 current

199

46. Case Studies: Monitoring and
Logging

Alice's Private Cloud ... 199
Bob's Public Cloud .. 199

In this case study we discuss how Alice and Bob would address monitoring
and logging in the public vs a private cloud. In both instances, time
synchronization and a centralized store of logs become extremely
important for performing proper assessments and troubleshooting of
anomalies. Just collecting logs is not very useful, a robust monitoring
system must be built to generate actionable events.

Alice's Private Cloud
In the private cloud, Alice has a better understanding of the tenants
requirements and accordingly can add appropriate oversight and
compliance on monitoring and logging. Alice should identify critical
services and data and ensure that logging is turned at least on those
services and is being aggregated to a central log server. She should start
with simple and known use cases and implement correlation and alerting
to limit the number of false positives. To implement correlation and
alerting, she sends the log data to her organization's existing SIEM tool.
Security monitoring should be an ongoing process and she should continue
to define use cases and alerts as she has better understanding of the
network traffic activity and usage over time.

Bob's Public Cloud
When it comes to logging, as a public cloud provider, Bob is interested
in logging both for situational awareness as well as compliance. That
is, compliance that Bob as a provider is subject to as well as his ability
to provide timely and relevant logs or reports on the behalf of his
customers for their compliance audits. With that in mind, Bob configures
all of his instances, nodes, and infrastructure devices to perform time
synchronization with an external, known good time device. Additionally,
Bob's team has built a Django based web applications for his customers
to perform self-service log retrieval from Bob's SIEM tool. Bob also uses
this SIEM tool along with a robust set of alerts and integration with his
CMDB to provide operational awareness to both customers and cloud
administrators.

OpenStack Security Guide April 26, 2014 current

201

47. Compliance Overview
Security Principles ... 201

An OpenStack deployment may require compliance activities for many
purposes, such as regulatory and legal requirements, customer need,
privacy considerations, and security best practices. Compliance, when done
correctly, unifies and strengthens the other security topics discussed in this
guide. This chapter has several objectives:

• Review common security principles.

• Discuss common control frameworks and certification resources to
achieve industry certifications or regulator attestations.

• Act as a reference for auditors when evaluating OpenStack
deployments.

• Introduce privacy considerations specific to OpenStack and cloud
environments.

Security Principles
Industry standard security principles provide a baseline for compliance
certifications and attestations. If these principles are considered and
referenced throughout an OpenStack deployment, certification activities
may be simplified.

1. Layered Defenses: Identify where risks exist in a cloud architecture and
apply controls to mitigate the risks. In areas of significant concern,
layered defences provide multiple complementary controls to further
mitigate risk. For example, to ensure adequate isolation between cloud
tenants, we recommend hardening QEMU, using a hypervisor with
SELinux support, enforcing mandatory access control policies, and
reducing the overall attack surface. The foundational principle is to
harden an area of concern with multiple layers of defense such that if
any one layer is compromised, other layers will exist to offer protection
and minimize exposure.

2. Fail Securely: In the case of failure, systems should be configured to
fail into a closed secure state. For example, SSL certificate verification
should fail closed by severing the network connection if the CNAME
doesn't match the server's DNS name. Software often fails open in this

OpenStack Security Guide April 26, 2014 current

202

situation, allowing the connection to proceed without a CNAME match,
which is less secure and not recommended.

3. Least Privilege: Only the minimum level of access for users and system
services is granted. This access is based upon role, responsibility and job
function. This security principal of least privilege is written into several
international government security policies, such as NIST 800-53 Section
AC-6 within the United States.

4. Compartmentalize: Systems should be segregated in a such way that if
one machine, or system-level service, is compromised the security of the
other systems will remain intact. Practically, the enablement and proper
usage of SELinux helps accomplish this goal.

5. Promote Privacy: The amount of information that can be gathered
about a system and its users should be minimized.

6. Logging Capability: Appropriate logging is implemented to monitor
for unauthorized use, incident response and forensics. It is highly
recommended that selected audit subsystems be Common Criteria
certified, which provides non-attestable event records in most countries.

OpenStack Security Guide April 26, 2014 current

203

48. Understanding the Audit
Process

Determining Audit Scope ... 203
Internal Audit .. 204
Prepare for External Audit ... 204
External Audit .. 205
Compliance Maintenance ... 205

Information system security compliance is reliant on the completion of two
foundational processes:

1. Implementation and Operation of Security ControlsAligning the
information system with in-scope standards and regulations involves
internal tasks which must be conducted before a formal assessment.
Auditors may be involved at this state to conduct gap analysis, provide
guidance, and increase the likelihood of successful certification.

2. Independent Verification and ValidationDemonstration to a neutral
third-party that system security controls are implemented and operating
effectively, in compliance with in-scope standards and regulations, is
required before many information systems achieve certified status.
Many certifications require periodic audits to ensure continued
certification, considered part of an overarching continuous monitoring
practice.

Determining Audit Scope
Determining audit scope, specifically what controls are needed and how to
design or modify an OpenStack deployment to satisfy them, should be the
initial planning step.

When scoping OpenStack deployments for compliance purposes, consider
prioritizing controls around sensitive services, such as command and
control functions and the base virtualization technology. Compromises of
these facilities may impact an OpenStack environment in its entirety.

Scope reduction helps ensure OpenStack architects establish high quality
security controls which are tailored to a particular deployment, however it
is paramount to ensure these practices do not omit areas or features from
security hardening. A common example is applicable to PCI-DSS guidelines,
where payment related infrastructure may be scrutinized for security
issues, but supporting services are left ignored, and vulnerable to attack.

OpenStack Security Guide April 26, 2014 current

204

When addressing compliance, you can increase efficiency and reduce work
effort by identifying common areas and criteria that apply across multiple
certifications. Much of the audit principles and guidelines discussed in
this book will assist in identifying these controls, additionally a number
of external entities provide comprehensive lists. The following are some
examples:

The Cloud Security Alliance Cloud Controls Matrix (CCM) assists both
cloud providers and consumers in assessing the overall security of a cloud
provider. The CSA CMM provides a controls framework that map to many
industry-accepted standards and regulations including the ISO 27001/2,
ISACA, COBIT, PCI, NIST, Jericho Forum and NERC CIP.

The SCAP Security Guide is another useful reference. This is still an
emerging source, but we anticipate that this will grow into a tool with
controls mappings that are more focused on the US federal government
certifications and recommendations. For example, the SCAP Security Guide
currently has some mappings for security technical implementation guides
(STIGs) and NIST-800-53.

These control mappings will help identify common control criteria across
certifications, and provide visibility to both auditors and auditees on
problem areas within control sets for particular compliance certifications
and attestations.

Internal Audit
Once a cloud is deployed, it is time for an internal audit. This is the time
compare the controls you identified above with the design, features, and
deployment strategies utilized in your cloud. The goal is to understand
how each control is handled and where gaps exist. Document all of the
findings for future reference.

When auditing an OpenStack cloud it is important to appreciate the
multi-tenant environment inherent in the OpenStack architecture. Some
critical areas for concern include data disposal, hypervisor security, node
hardening, and authentication mechanisms.

Prepare for External Audit
Once the internal audit results look good, it is time to prepare for an
external audit. There are several key actions to take at this stage, these are
outlined below:

https://cloudsecurityalliance.org/research/ccm/
https://fedorahosted.org/scap-security-guide/

OpenStack Security Guide April 26, 2014 current

205

• Maintain good records from your internal audit. These will prove useful
during the external audit so you can be prepared to answer questions
about mapping the compliance controls to a particular deployment.

• Deploy automated testing tools to ensure that the cloud remains
compliant over time.

• Select an auditor.

Selecting an auditor can be challenging. Ideally, you are looking for
someone with experience in cloud compliance audits. OpenStack
experience is another big plus. Often it is best to consult with people
who have been through this process for referrals. Cost can vary
greatly depending on the scope of the engagement and the audit firm
considered.

External Audit
This is the formal audit process. Auditors will test security controls in
scope for a specific certification, and demand evidentiary requirements
to prove that these controls were also in place for the audit window (for
example SOC 2 audits generally evaluate security controls over a 6-12
months period). Any control failures are logged, and will be documented
in the external auditors final report. Dependent on the type of OpenStack
deployment, these reports may be viewed by customers, so it is important
to avoid control failures. This is why audit preparation is so important.

Compliance Maintenance
The process doesn't end with a single external audit. Most certifications
require continual compliance activities which means repeating the audit
process periodically. We recommend integrating automated compliance
verification tools into a cloud to ensure that it is compliant at all times.
This should be in done in addition to other security monitoring tools.
Remember that the goal is both security and compliance. Failing on either
of these fronts will significantly complicate future audits.

OpenStack Security Guide April 26, 2014 current

207

49. Compliance Activities

Information Security Management System (ISMS) 207
Risk Assessment ... 207
Access & Log Reviews .. 208
Backup and Disaster Recovery .. 208
Security Training .. 208
Security Reviews ... 208
Vulnerability Management ... 209
Data Classification .. 209
Exception Process ... 209

There are a number of standard activities that will greatly assist with the
compliance process. In this chapter we outline some of the most common
compliance activities. These are not specific to OpenStack, however we
provide references to relevant sections in this book as useful context.

Information Security Management
System (ISMS)

An Information Security Management System (ISMS) is a comprehensive
set of policies and processes that an organization creates and maintains
to manage risk to information assets. The most common ISMS for cloud
deployments is ISO/IEC 27001/2, which creates a solid foundation of
security controls and practices for achieving more stringent compliance
certifications.

Risk Assessment
A Risk Assessment framework identifies risks within an organization or
service, and specifies ownership of these risks, along with implementation
and mitigation strategies. Risks apply to all areas of the service, from
technical controls to environmental disaster scenarios and human
elements, for example a malicious insider (or rogue employee). Risks can
be rated using a variety of mechanisms, for example likelihood vs impact.
An OpenStack deployment risk assessment can include control gaps that
are described in this book.

http://www.27000.org/iso-27001.htm

OpenStack Security Guide April 26, 2014 current

208

Access & Log Reviews
Periodic access and log reviews are required to ensure authentication,
authorization, and accountability in a service deployment. Specific
guidance for OpenStack on these topics are discussed in-depth in the
logging section.

Backup and Disaster Recovery
Disaster Recovery (DR) and Business Continuity Planning (BCP) plans are
common requirements for ISMS and compliance activities. These plans
must be periodically tested as well as documented. In OpenStack key
areas are found in the management security domain, and anywhere that
single points of failure (SPOFs) can be identified. See the section on secure
backup and recovery for additional details.

Security Training
Annual, role-specific, security training is a mandatory requirement for
almost all compliance certifications and attestations. To optimise the
effectiveness of security training, a common method is to provide role
specific training, for example to developers, operational personnel, and
non-technical employees. Additional cloud security or OpenStack security
training based on this hardening guide would be ideal.

Security Reviews
As OpenStack is a popular open source project, much of the codebase and
architecture has been scrutinized by individual contributors, organizations
and enterprises. This can be advantageous from a security perspective,
however the need for security reviews is still a critical consideration
for service providers, as deployments vary, and security is not always
the primary concern for contributors. A comprehensive security review
process may include architectural review, threat modelling, source
code analysis and penetration testing. There are many techniques and
recommendations for conducting security reviews that can be found
publicly posted. A well-tested example is the Microsoft SDL, created as part
of the Microsoft Trustworthy Computing Initiative.

http://www.microsoft.com/security/sdl/process/release.aspx

OpenStack Security Guide April 26, 2014 current

209

Vulnerability Management
Security updates are critical to any IaaS deployment, whether private
or public. Vulnerable systems expand attack surfaces, and are obvious
targets for attackers. Common scanning technologies and vulnerability
notification services can help mitigate this threat. It is important that scans
are authenticated and that mitigation strategies extend beyond simple
perimeter hardening. Multi-tenant architectures such as OpenStack are
particularly prone to hypervisor vulnerabilities, making this a critical part
of the system for vulnerability management. See the section on instance
isolation for additional details.

Data Classification
Data Classification defines a method for classifying and handling
information, often to protect customer information from accidental
or deliberate theft, loss, or inappropriate disclosure. Most commonly
this involves classifying information as sensitive or non-sensitive, or as
personally identifiable information (PII). Depending on the context of the
deployment various other classifying criteria may be used (government,
health-care etc). The underlying principle is that data classifications are
clearly defined and in-use. The most common protective mechanisms
include industry standard encryption technologies. See the data security
section for additional details.

Exception Process
An exception process is an important component of an ISMS. When certain
actions are not compliant with security policies that an organization has
defined, they must be logged. Appropriate justification, description and
mitigation details need to be included, and signed off by appropriate
authorities. OpenStack default configurations may vary in meeting various
compliance criteria, areas that fail to meet compliance requirements
should be logged, with potential fixes considered for contribution to the
community.

OpenStack Security Guide April 26, 2014 current

211

50. Certification & Compliance
Statements

Commercial Standards .. 211
SOC 3 .. 213
ISO 27001/2 ... 213
HIPAA / HITECH ... 213
Government Standards .. 215

Compliance and security are not exclusive, and must be addressed
together. OpenStack deployments are unlikely to satisfy compliance
requirements without security hardening. The listing below provides an
OpenStack architect foundational knowledge and guidance to achieve
compliance against commercial and government certifications and
standards.

Commercial Standards
For commercial deployments of OpenStack, it is recommended that SOC
1/2 combined with ISO 2700 1/2 be considered as a starting point for
OpenStack certification activities. The required security activities mandated
by these certifications facilitate a foundation of security best practices
and common control criteria that can assist in achieving more stringent
compliance activities, including government attestations and certifications.

After completing these initial certifications, the remaining certifications
are more deployment specific. For example, clouds processing credit card
transactions will need PCI-DSS, clouds storing health care information
require HIPAA, and clouds within the federal government may require
FedRAMP/FISMA, and ITAR, certifications.

SOC 1 (SSAE 16) / ISAE 3402

Service Organization Controls (SOC) criteria are defined by the American
Institute of Certified Public Accountants (AICPA). SOC controls assess
relevant financial statements and assertions of a service provider, such
as compliance with the Sarbanes-Oxley Act. SOC 1 is a replacement for
Statement on Auditing Standards No. 70 (SAS 70) Type II report. These
controls commonly include physical data centers in scope.

http://www.aicpa.org/
http://www.aicpa.org/

OpenStack Security Guide April 26, 2014 current

212

There are two types of SOC 1 reports:

• Type 1 – report on the fairness of the presentation of management's
description of the service organization's system and the suitability of the
design of the controls to achieve the related control objectives included
in the description as of a specified date.

• Type 2 – report on the fairness of the presentation of management's
description of the service organization's system and the suitability of the
design and operating effectiveness of the controls to achieve the related
control objectives included in the description throughout a specified
period

For more details see the AICPA Report on Controls at a Service
Organization Relevant to User Entities’ Internal Control over Financial
Reporting.

SOC 2

Service Organization Controls (SOC) 2 is a self attestation of controls that
affect the security, availability, and processing integrity of the systems a
service organization uses to process users' data and the confidentiality and
privacy of information processed by these system. Examples of users are
those responsible for governance of the service organization; customers
of the service organization; regulators; business partners; suppliers and
others who have an understanding of the service organization and its
controls.

There are two types of SOC 2 reports:

• Type 1 – report on the fairness of the presentation of management's
description of the service organization's system and the suitability of the
design of the controls to achieve the related control objectives included
in the description as of a specified date.

• Type 2 – report on the fairness of the presentation of management's
description of the service organization's system and the suitability of the
design and operating effectiveness of the controls to achieve the related
control objectives included in the description throughout a specified
period.

For more details see the AICPA Report on Controls at a Service
Organization Relevant to Security, Availability, Processing Integrity,
Confidentiality or Privacy.

http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC1Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC1Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC1Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx

OpenStack Security Guide April 26, 2014 current

213

SOC 3
Service Organization Controls (SOC) 3 is a trust services report for service
organizations. These reports are designed to meet the needs of users
who want assurance on the controls at a service organization related to
security, availability, processing integrity, confidentiality, or privacy but do
not have the need for or the knowledge necessary to make effective use
of a SOC 2 Report. These reports are prepared using the AICPA/Canadian
Institute of Chartered Accountants (CICA) Trust Services Principles,
Criteria, and Illustrations for Security, Availability, Processing Integrity,
Confidentiality, and Privacy. Because they are general use reports, SOC 3
Reports can be freely distributed or posted on a website as a seal.

For more details see the AICPA Trust Services Report for Service
Organizations.

ISO 27001/2
The ISO/IEC 27001/2 standards replace BS7799-2, and are specifications
for an Information Security Management System (ISMS). An ISMS is a
comprehensive set of policies and processes that an organization creates
and maintains to manage risk to information assets. These risks are
based upon the confidentiality, integrity, and availability (CIA) of user
information. The CIA security triad has been used as a foundation for
much of the chapters in this book.

For more details see ISO 27001.

HIPAA / HITECH
The Health Insurance Portability and Accountability Act (HIPAA) is a
United States congressional act that governs the collection, storage, use
and destruction of patient health records. The act states that Protected
Health Information (PHI) must be rendered "unusable, unreadable, or
indecipherable" to unauthorized persons and that encryption for data 'at-
rest' and 'inflight' should be addressed.

HIPAA is not a certification, rather a guide for protecting healthcare data.
 Similar to the PCI-DSS, the most important issues with both PCI and HIPPA
is that a breach of credit card information, and health data, does not
occur. In the instance of a breach the cloud provider will be scrutinized for

http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC3Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC3Report.aspx
http://www.27000.org/iso-27001.htm

OpenStack Security Guide April 26, 2014 current

214

compliance with PCI and HIPPA controls. If proven compliant, the provider
can be expected to immediately implement remedial controls, breach
notification responsibilities, and significant expenditure on additional
compliance activities. If not compliant, the cloud provider can expect on-
site audit teams, fines, potential loss of merchant ID (PCI), and massive
reputation impact.

Users or organizations that possess PHI must support HIPAA requirements
and are HIPAA covered entities. If an entity intends to use a service, or in
this case, an OpenStack cloud that might use, store or have access to that
PHI, then a Business Associate Agreement must be signed. The BAA is a
contract between the HIPAA covered entity and the OpenStack service
provider that requires the provider to handle that PHI in accordance with
HIPAA requirements. If the service provider does not handle the PHI, such
as with security controls and hardening, then they are subject to HIPAA
fines and penalties.

OpenStack architects interpret and respond to HIPAA statements,
with data encryption remaining a core practice. Currently this would
require any protected health information contained within an OpenStack
deployment to be encrypted with industry standard encryption algorithms.
Potential future OpenStack projects such as object encryption will facilitate
HIPAA guidelines for compliance with the act.

For more details see the Health Insurance Portability And Accountability
Act.

PCI-DSS

The Payment Card Industry Data Security Standard (PCI DSS) is defined
by the Payment Card Industry Standards Council, and created to increase
controls around card holder data to reduce credit card fraud. Annual
compliance validation is assessed by an external Qualified Security Assessor
(QSA) who creates a Report on Compliance (ROC), or by a Self-Assessment
Questionnaire (SAQ) dependent on volume of card-holder transactions.

OpenStack deployments which stores, processes, or transmits payment
card details are in scope for the PCI-DSS. All OpenStack components
that are not properly segmented from systems or networks that handle
payment data fall under the guidelines of the PCI-DSS. Segmentation in
the context of PCI-DSS does not support multi-tenancy, but rather physical
separation (host/network).

For more details see PCI security standards.

https://www.pcisecuritystandards.org/security_standards/

OpenStack Security Guide April 26, 2014 current

215

Government Standards

FedRAMP

"The Federal Risk and Authorization Management Program (FedRAMP)
is a government-wide program that provides a standardized approach
to security assessment, authorization, and continuous monitoring for
cloud products and services". NIST 800-53 is the basis for both FISMA
and FedRAMP which mandates security controls specifically selected to
provide protection in cloud environments. FedRAMP can be extremely
intensive from specificity around security controls, and the volume of
documentation required to meet government standards.

For more details see http://www.gsa.gov/portal/category/102371.

ITAR

The International Traffic in Arms Regulations (ITAR) is a set of United
States government regulations that control the export and import of
defense-related articles and services on the United States Munitions List
(USML) and related technical data. ITAR is often approached by cloud
providers as an "operational alignment" rather than a formal certification.
This typically involves implementing a segregated cloud environment
following practices based on the NIST 800-53 framework, as per FISMA
requirements, complemented with additional controls restricting access to
"U.S. Persons" only and background screening.

For more details see http://pmddtc.state.gov/regulations_laws/
itar_official.html.

FISMA

The Federal Information Security Management Act requires that
government agencies create a comprehensive plan to implement
numerous government security standards, and was enacted within the E-
Government Act of 2002. FISMA outlines a process, which utilizing multiple
NIST publications, prepares an information system to store and process
government data.

This process is broken apart into three primary categories:

• System CategorizationThe information system will receive a security
category as defined in Federal Information Processing Standards

http://www.fedramp.gov
http://www.gsa.gov/portal/category/102371
http://pmddtc.state.gov/regulations_laws/itar_official.html
http://pmddtc.state.gov/regulations_laws/itar_official.html

OpenStack Security Guide April 26, 2014 current

216

Publication 199 (FIPS 199). These categories reflect the potential impact
of system compromise.

• Control SelectionBased upon system security category as defined in
FIPS 199, an organization utilizes FIPS 200 to identify specific security
control requirements for the information system. For example, if a
system is categorized as “moderate” a requirement may be introduced
to mandate “secure passwords.”

• Control TailoringOnce system security controls are identified, an
OpenStack architect will utilize NIST 800-53 to extract tailored control
selection. For example, specification of what constitutes a “secure
password.”

OpenStack Security Guide April 26, 2014 current

217

51. Privacy
Privacy is an increasingly important element of a compliance program.
Businesses are being held to a higher standard by their customers, who
have increased interest in understanding how their data is treated from a
privacy perspective.

An OpenStack deployment will likely need to demonstrate compliance
with an organization’s Privacy Policy, with the U.S. – E.U. Safe Harbor
framework, the ISO/IEC 29100:2011 privacy framework or with other
privacy-specific guidelines. In the U.S. the AICPA has defined 10 privacy
areas of focus, OpenStack deployments within a commercial environment
may desire to attest to some or all of these principles.

To aid OpenStack architects in the protection of personal data, it is
recommended that OpenStack architects review the NIST publication
800-122, titled "Guide to Protecting the Confidentiality of Personally
Identifiable Information (PII)." This guide steps through the process of
protecting:

"any information about an individual maintained by an
agency, including (1) any information that can be used
to distinguish or trace an individual‘s identity, such as
name, social security number, date and place of birth,
mother‘s maiden name, or biometric records; and (2) any
other information that is linked or linkable to an individual,
such as medical, educational, financial, and employment
information"

Comprehensive privacy management requires significant preparation,
thought and investment. Additional complications are introduced
when building global OpenStack clouds, for example navigating the
differences between U.S. and more restrictive E.U. privacy laws. In
addition, extra care needs to be taken when dealing with sensitive PII that
may include information such as credit card numbers or medical records.
This sensitive data is not only subject to privacy laws but also regulatory
and governmental regulations. By deferring to established best practices,
including those published by governments, a holistic privacy management
policy may be created and practiced for OpenStack deployments.

http://www.aicpa.org/interestareas/informationtechnology/resources/privacy/generallyacceptedprivacyprinciples/
http://www.aicpa.org/interestareas/informationtechnology/resources/privacy/generallyacceptedprivacyprinciples/

OpenStack Security Guide April 26, 2014 current

219

52. Case Studies: Compliance
Alice's Private Cloud ... 219
Bob's Public Cloud .. 220

In this case study we discuss how Alice and Bob would address common
compliance requirements. The preceding chapter refers to a wide variety
of compliance certifications and standards. Alice will address compliance in
a private cloud, while Bob will be focused on compliance for a public cloud.

Alice's Private Cloud
Alice is building an OpenStack private cloud for the United States
government, specifically to provide elastic compute environments
for signal processing. Alice has researched government compliance
requirements, and has identified that her private cloud will be required
to certify against FISMA and follow the FedRAMP accreditation process,
which is required for all federal agencies, departments and contractors
to become a Certified Cloud Provider (CCP). In this particular scenario for
signal processing, the FISMA controls required will most likely be FISMA
High, which indicates possible "severe or catastrophic adverse effects"
should the information system become compromised. In addition to
FISMA Moderate controls Alice must ensure her private cloud is FedRAMP
certified, as this is a requirement for all agencies that currently utilize, or
host federal information within a cloud environment.

To meet these strict government regulations Alice undertakes a number
of activities. Scoping of requirements is particularly important due to the
volume of controls that must be implemented, which will be defined in
NIST Publication 800-53.

All technology within her private cloud must be FIPS certified technology,
as mandated within NIST 800-53 and FedRAMP. As the U.S. Department
of Defense is involved, Security Technical Implementation Guides (STIGs)
will come into play, which are the configuration standards for DOD IA and
IA-enabled devices / systems. Alice notices a number of complications here
as there is no STIG for OpenStack, so she must address several underlying
requirements for each OpenStack service; for example, the networking
SRG and Application SRG will both be applicable (list of SRGs). Other
critical controls include ensuring that all identities in the cloud use PKI, that
SELinux is enabled, that encryption exists for all wire-level communications,
and that continuous monitoring is in place and clearly documented.

http://iase.disa.mil/srgs/index.html

OpenStack Security Guide April 26, 2014 current

220

Alice is not concerned with object encryption, as this will be the tenants
responsibility rather than the provider.

If Alice has adequately scoped and executed these compliance activities,
she may begin the process to become FedRAMP compliant by hiring
an approved third-party auditor. Typically this process takes up to 6
months, after which she will receive an Authority to Operate and can offer
OpenStack cloud services to the government.

Bob's Public Cloud
Bob is tasked with compliance for a new OpenStack public cloud
deployment, that is focused on providing cloud services to both small
developers and startups, as well as large enterprises. Bob recognizes that
individual developers are not necessarily concerned with compliance
certifications, but to larger enterprises certifications are critical. Specifically
Bob desires to achieve SOC 1, SOC 2 Security, as well as ISO 27001/2 as
quickly as possible. Bob references the Cloud Security Alliance Cloud
Control Matrix (CCM) to assist in identifying common controls across these
three certifications (such as periodic access reviews, auditable logging and
monitoring services, risk assessment activities, security reviews, etc). Bob
then engages an experienced audit team to conduct a gap analysis on the
public cloud deployment, reviews the results and fills any gaps identified.
Bob works with other team members to ensure that these security controls
and activities are regularly conducted for a typical audit period (~6-12
months).

At the end of the audit period Bob has arranged for an external audit
team to review in-scope security controls at randomly sampled points
of time over a 6 month period. The audit team provides Bob with an
official report for SOC 1 and SOC 2, and separately for ISO 27001/2. As
Bob has been diligent in ensuring security controls are in place for his
OpenStack public cloud, there are no additional gaps exposed on the
report. Bob can now provide these official reports to his customers under
NDA, and advertise that he is SOC 1, SOC 2 and ISO 27001/2 compliant on
his website.

OpenStack Security Guide April 26, 2014 current

221

Appendix A. Community support

Table of Contents
Documentation .. 221
ask.openstack.org .. 222
OpenStack mailing lists ... 223
The OpenStack wiki ... 223
The Launchpad Bugs area .. 223
The OpenStack IRC channel .. 224
Documentation feedback ... 225
OpenStack distribution packages .. 225

The following resources are available to help you run and use OpenStack.
The OpenStack community constantly improves and adds to the main
features of OpenStack, but if you have any questions, do not hesitate
to ask. Use the following resources to get OpenStack support, and
troubleshoot your installations.

Documentation
For the available OpenStack documentation, see docs.openstack.org.

To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack
Documentation Mailing List, or report a bug.

The following books explain how to install an OpenStack cloud and its
associated components:

• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu 12.04/14.04 (LTS)

The following books explain how to configure and run an OpenStack
cloud:

• Cloud Administrator Guide

http://docs.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://docs.openstack.org/trunk/install-guide/install/apt-debian/content/
http://docs.openstack.org/trunk/install-guide/install/zypper/content/
http://docs.openstack.org/trunk/install-guide/install/yum/content/
http://docs.openstack.org/trunk/install-guide/install/apt/content/
http://docs.openstack.org/admin-guide-cloud/content/

OpenStack Security Guide April 26, 2014 current

222

• Configuration Reference

• Operations Guide

• High Availability Guide

• Security Guide

• Virtual Machine Image Guide

The following books explain how to use the OpenStack dashboard and
command-line clients:

• API Quick Start

• End User Guide

• Admin User Guide

• Command-Line Interface Reference

The following documentation provides reference and guidance
information for the OpenStack APIs:

• OpenStack API Complete Reference (HTML)

• API Complete Reference (PDF)

• OpenStack Block Storage Service API v2 Reference

• OpenStack Compute API v2 and Extensions Reference

• OpenStack Identity Service API v2.0 Reference

• OpenStack Image Service API v2 Reference

• OpenStack Networking API v2.0 Reference

• OpenStack Object Storage API v1 Reference

The Training Guides offer software training for cloud administration and
management.

ask.openstack.org
During the set up or testing of OpenStack, you might have questions
about how a specific task is completed or be in a situation where a
feature does not work correctly. Use the ask.openstack.org site to ask

http://docs.openstack.org/trunk/config-reference/content/
http://docs.openstack.org/ops/
http://docs.openstack.org/high-availability-guide/content/
http://docs.openstack.org/sec/
http://docs.openstack.org/image-guide/content/
http://docs.openstack.org/api/quick-start/content/
http://docs.openstack.org/user-guide/content/
http://docs.openstack.org/user-guide-admin/content/
http://docs.openstack.org/cli-reference/content/
http://api.openstack.org/api-ref.html
http://api.openstack.org/api-ref-guides/bk-api-ref.pdf
http://docs.openstack.org/api/openstack-block-storage/2.0/content/
http://docs.openstack.org/api/openstack-compute/2/content/
http://docs.openstack.org/api/openstack-identity-service/2.0/content/
http://docs.openstack.org/api/openstack-image-service/2.0/content/
http://docs.openstack.org/api/openstack-network/2.0/content/
http://docs.openstack.org/api/openstack-object-storage/1.0/content/
http://docs.openstack.org/training-guides/content/
http://ask.openstack.org

OpenStack Security Guide April 26, 2014 current

223

questions and get answers. When you visit the http://ask.openstack.org
site, scan the recently asked questions to see whether your question has
already been answered. If not, ask a new question. Be sure to give a clear,
concise summary in the title and provide as much detail as possible in the
description. Paste in your command output or stack traces, links to screen
shots, and any other information which might be useful.

OpenStack mailing lists
A great way to get answers and insights is to post your question or
problematic scenario to the OpenStack mailing list. You can learn from
and help others who might have similar issues. To subscribe or view
the archives, go to http://lists.openstack.org/cgi-bin/mailman/listinfo/
openstack. You might be interested in the other mailing lists for specific
projects or development, which you can find on the wiki. A description of
all mailing lists is available at http://wiki.openstack.org/MailingLists.

The OpenStack wiki
The OpenStack wiki contains a broad range of topics but some of the
information can be difficult to find or is a few pages deep. Fortunately, the
wiki search feature enables you to search by title or content. If you search
for specific information, such as about networking or nova, you can find
a large amount of relevant material. More is being added all the time, so
be sure to check back often. You can find the search box in the upper-right
corner of any OpenStack wiki page.

The Launchpad Bugs area
The OpenStack community values your set up and testing efforts and
wants your feedback. To log a bug, you must sign up for a Launchpad
account at https://launchpad.net/+login. You can view existing bugs
and report bugs in the Launchpad Bugs area. Use the search feature to
determine whether the bug has already been reported or already been
fixed. If it still seems like your bug is unreported, fill out a bug report.

Some tips:

• Give a clear, concise summary.

• Provide as much detail as possible in the description. Paste in your
command output or stack traces, links to screen shots, and any other
information which might be useful.

http://ask.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/
https://launchpad.net/+login

OpenStack Security Guide April 26, 2014 current

224

• Be sure to include the software and package versions that
you are using, especially if you are using a development
branch, such as, "Juno release" vs git commit
bc79c3ecc55929bac585d04a03475b72e06a3208.

• Any deployment-specific information is helpful, such as whether you are
using Ubuntu 14.04 or are performing a multi-node installation.

The following Launchpad Bugs areas are available:

• Bugs: OpenStack Block Storage (cinder)

• Bugs: OpenStack Compute (nova)

• Bugs: OpenStack Dashboard (horizon)

• Bugs: OpenStack Identity (keystone)

• Bugs: OpenStack Image Service (glance)

• Bugs: OpenStack Networking (neutron)

• Bugs: OpenStack Object Storage (swift)

• Bugs: Bare Metal (ironic)

• Bugs: Data Processing Service (sahara)

• Bugs: Database Service (trove)

• Bugs: Orchestration (heat)

• Bugs: Telemetry (ceilometer)

• Bugs: Queue Service (marconi)

• Bugs: OpenStack API Documentation (api.openstack.org)

• Bugs: OpenStack Documentation (docs.openstack.org)

The OpenStack IRC channel
The OpenStack community lives in the #openstack IRC channel on the
Freenode network. You can hang out, ask questions, or get immediate
feedback for urgent and pressing issues. To install an IRC client or use a
browser-based client, go to http://webchat.freenode.net/. You can also

https://bugs.launchpad.net/nova
https://bugs.launchpad.net/nova
https://bugs.launchpad.net/horizon
https://bugs.launchpad.net/keystone
https://bugs.launchpad.net/glance
https://bugs.launchpad.net/neutron
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/ironic
https://bugs.launchpad.net/sahara
https://bugs.launchpad.net/trove
https://bugs.launchpad.net/heat
https://bugs.launchpad.net/ceilometer
https://bugs.launchpad.net/marconi
https://bugs.launchpad.net/openstack-api-site
https://bugs.launchpad.net/openstack-manuals
http://webchat.freenode.net

OpenStack Security Guide April 26, 2014 current

225

use Colloquy (Mac OS X, http://colloquy.info/), mIRC (Windows, http://
www.mirc.com/), or XChat (Linux). When you are in the IRC channel
and want to share code or command output, the generally accepted
method is to use a Paste Bin. The OpenStack project has one at http://
paste.openstack.org. Just paste your longer amounts of text or logs in
the web form and you get a URL that you can paste into the channel. The
OpenStack IRC channel is #openstack on irc.freenode.net. You
can find a list of all OpenStack IRC channels at https://wiki.openstack.org/
wiki/IRC.

Documentation feedback
To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack
Documentation Mailing List, or report a bug.

OpenStack distribution packages
The following Linux distributions provide community-supported packages
for OpenStack:

• Debian: http://wiki.debian.org/OpenStack

• CentOS, Fedora, and Red Hat Enterprise Linux: http://
openstack.redhat.com/

• openSUSE and SUSE Linux Enterprise Server: http://en.opensuse.org/
Portal:OpenStack

• Ubuntu: https://wiki.ubuntu.com/ServerTeam/CloudArchive

http://colloquy.info/
http://www.mirc.com/
http://www.mirc.com/
http://paste.openstack.org
http://paste.openstack.org
https://wiki.openstack.org/wiki/IRC
https://wiki.openstack.org/wiki/IRC
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://wiki.debian.org/OpenStack
http://openstack.redhat.com/
http://openstack.redhat.com/
http://en.opensuse.org/Portal:OpenStack
http://en.opensuse.org/Portal:OpenStack
https://wiki.ubuntu.com/ServerTeam/CloudArchive

OpenStack Security Guide April 26, 2014 current

227

Glossary
access control list

A list of permissions attached to an object. An ACL specifies which users or
system processes have access to objects. It also defines which operations can be
performed on specified objects. Each entry in a typical ACL specifies a subject and
an operation. For instance, the ACL entry (Alice, delete) for a file gives
Alice permission to delete the file.

ACL
See access control list.

API
Application programming interface.

BMC
Baseboard Management Controller. The intelligence in the IPMI architecture,
which is a specialized micro-controller that is embedded on the motherboard
of a computer and acts as a server. Manages the interface between system
management software and platform hardware.

CA
Certificate Authority or Certification Authority. In cryptography, an entity that
issues digital certificates. The digital certificate certifies the ownership of a public
key by the named subject of the certificate. This enables others (relying parties)
to rely upon signatures or assertions made by the private key that corresponds
to the certified public key. In this model of trust relationships, a CA is a trusted
third party for both the subject (owner) of the certificate and the party relying
upon the certificate. CAs are characteristic of many public key infrastructure (PKI)
schemes.

Chef
An operating system configuration management tool supporting OpenStack
deployments.

CMDB
Configuration Management Database.

DAC
Discretionary access control. Governs the ability of subjects to access objects,
while enabling users to make policy decisions and assign security attributes. The
traditional UNIX system of users, groups, and read-write-execute permissions is
an example of DAC.

OpenStack Security Guide April 26, 2014 current

228

DHCP
Dynamic Host Configuration Protocol. A network protocol that configures
devices that are connected to a network so that they can communicate on that
network by using the Internet Protocol (IP). The protocol is implemented in a
client-server model where DHCP clients request configuration data such as, an
IP address, a default route, and one or more DNS server addresses from a DHCP
server.

Django
A web framework used extensively in horizon.

DNS
Domain Name Server. A hierarchical and distributed naming system for
computers, services, and resources connected to the Internet or a private
network. Associates a human-friendly names to IP addresses.

Puppet
An operating system configuration-management tool supported by OpenStack.

Qpid
Message queue software supported by OpenStack; an alternative to RabbitMQ.

RabbitMQ
The default message queue software used by OpenStack.

SPICE
The Simple Protocol for Independent Computing Environments (SPICE) provides
remote desktop access to guest virtual machines. It is an alternative to VNC.
SPICE is supported by OpenStack.

Virtual Network Computing (VNC)
Open source GUI and CLI tools used for remote console access to VMs. Supported
by Compute.

ZeroMQ
Message queue software supported by OpenStack. An alternative to RabbitMQ.
Also spelled 0MQ.

	OpenStack Security Guide
	Table of Contents
	Preface
	Conventions
	Document change history

	1. Acknowledgments
	2. Why and how we wrote this book
	Objectives
	How
	How to contribute to this book

	3. Introduction to OpenStack
	Cloud types
	Public cloud
	Private cloud
	Community cloud
	Hybrid cloud

	OpenStack service overview
	Compute
	Object Storage
	Block Storage
	OpenStack Networking
	Dashboard
	Identity Service
	Image Service
	Other supporting technology

	4. Security Boundaries and Threats
	Security Domains
	Public
	Guest
	Management
	Data

	Bridging Security Domains
	Threat Classification, Actors and Attack Vectors
	Threat Actors
	Public / Private Considerations
	Outbound attacks and reputational risk
	Attack Types

	5. Introduction to Case Studies
	Case Study : Alice the private cloud builder
	Case Study : Bob the public cloud provider

	6. System Documentation Requirements
	System Roles & Types
	System Inventory
	Hardware Inventory
	Software Inventory

	Network Topology
	Services, Protocols and Ports

	7. Case Studies: System Documentation
	Alice's Private Cloud
	Bob's Public Cloud

	8. Management Introduction
	9. Continuous Systems Management
	Vulnerability Management
	Triage
	Testing the Updates
	Deploying the Updates

	Configuration Management
	Policy Changes

	Secure Backup and Recovery
	Security Considerations
	References

	Security Auditing Tools

	10. Integrity Life-cycle
	Secure Bootstrapping
	Node Provisioning
	Verified Boot
	Node Hardening

	Runtime Verification
	Intrusion Detection System

	11. Management Interfaces
	Dashboard
	Capabilities
	Security Considerations
	References

	OpenStack API
	Capabilities
	Security Considerations

	Secure Shell (SSH)
	Host Key Fingerprints

	Management Utilities
	Security Considerations
	References

	Out-of-Band Management Interface
	Security Considerations
	References

	12. Case Studies: Management Interfaces
	Alice's Private Cloud
	Bob's Public Cloud

	13. Introduction to SSL/TLS
	Certification Authorities
	SSL/TLS Libraries
	Cryptographic Algorithms, Cipher Modes, and Protocols
	Summary

	14. Case Studies: PKI and Certificate Management
	Alice's Private Cloud
	Bob's Public Cloud

	15. SSL Proxies and HTTP Services
	Examples
	Pound - with AES-NI acceleration
	Stud

	nginx
	Apache

	HTTP Strict Transport Security

	16. API Endpoint Configuration Recommendations
	Internal API Communications
	Configure Internal URLs in Identity Service Catalog
	Configure Applications for Internal URLs
	Configuration Example #1: Nova
	Configuration Example #2: Cinder

	Paste and Middleware
	API Endpoint Process Isolation & Policy
	Namespaces
	Network Policy
	Mandatory Access Controls

	17. Case Studies: API Endpoints
	Alice's Private Cloud
	Bob's Public Cloud

	18. Identity
	Authentication
	Invalid Login Attempts
	Multi-factor Authentication

	Authentication Methods
	Internally Implemented Authentication Methods
	External Authentication Methods

	Authorization
	Establish Formal Access Control Policies
	Service Authorization
	Administrative Users
	End Users

	Policies
	Tokens
	Future

	19. Dashboard
	Basic Web Server Configuration
	HTTPS
	HTTP Strict Transport Security (HSTS)
	Front end Caching
	Domain Names
	Static Media
	Secret Key
	Session Backend
	Allowed Hosts
	Cookies
	Password Auto Complete
	Cross Site Request Forgery (CSRF)
	Cross Site Scripting (XSS)
	Cross Origin Resource Sharing (CORS)
	Horizon Image Upload
	Upgrading
	Debug

	20. Compute
	Virtual Console Selection
	Virtual Network Computer (VNC)
	Capabilities
	Security Considerations
	References
	Simple Protocol for Independent Computing Environments (SPICE)
	Capabilities
	Limitations
	Security Considerations
	References

	21. Object Storage
	First thing to secure – the network
	Securing services – general
	Service runas user
	File permissions

	Securing storage services
	Object storage "account" terminology

	Securing proxy services
	Use SSL/TLS
	HTTP listening port
	Load balancer

	Object storage authentication
	Keystone
	SWAuth

	Other notable items

	22. Case Studies: Identity Management
	Alice's Private Cloud
	Bob's Public Cloud

	23. State of Networking
	24. Networking Architecture
	OS Networking Service placement on Physical Servers
	Network Connectivity of Physical Servers

	25. Networking Services
	L2 Isolation using VLANs and Tunneling
	VLANs
	L2 Tunneling

	Network Services
	Access Control Lists
	L3 Routing and NAT
	Quality of Service (QoS)
	Load Balancing
	Firewalls

	Network Services Extensions
	Networking Services Limitations

	26. Securing OpenStack Networking Services
	OpenStack Networking Service Configuration
	Restrict Bind Address of the API server: neutron-server
	Restrict DB and RPC communication of the OpenStack Networking services:

	27. Networking Services Security Best Practices
	Tenant Network Services Workflow
	Networking Resource Policy Engine
	Security Groups
	Quotas

	28. Case Studies: Networking
	Alice's Private Cloud
	Bob's Public Cloud

	29. Message Queuing Architecture
	30. Messaging Security
	Messaging Transport Security
	RabbitMQ Server SSL Configuration
	Qpid Server SSL Configuration

	Queue Authentication and Access Control
	Authentication Configuration Example - RabbitMQ
	OpenStack Service Configuration - RabbitMQ
	Authentication Configuration Example - Qpid
	OpenStack Service Configuration - Qpid

	Message Queue Process Isolation & Policy
	Namespaces
	Network Policy
	Mandatory Access Controls

	31. Case Studies: Messaging
	Alice's Private Cloud
	Bob's Public Cloud

	32. Database Backend Considerations
	Security References for Database Backends

	33. Database Access Control
	OpenStack Database Access Model
	Granular Access Control
	Nova Conductor

	Database Authentication and Access Control
	Privileges

	Require User Accounts to Require SSL Transport
	Configuration Example #1: (MySQL)
	Configuration Example #2: (PostgreSQL)

	Authentication with X.509 Certificates
	Configuration Example #1: (MySQL)
	Configuration Example #2: (PostgreSQL)

	OpenStack Service Database Configuration
	Nova Conductor

	34. Database Transport Security
	Database Server IP Address Binding
	Restricting Bind Address for MySQL
	Restricting Listen Address for PostgreSQL

	Database Transport
	MySQL SSL Configuration
	PostgreSQL SSL Configuration

	35. Case Studies: Database
	Alice's Private Cloud
	Bob's Public Cloud

	36. Data Privacy Concerns
	Data Residency
	Data Disposal
	Data not securely erased
	Instance memory scrubbing
	Cinder volume data
	Compute instance ephemeral storage
	Bare metal server sanitization

	37. Data Encryption
	Object Storage Objects
	Block Storage Volumes & Instance Ephemeral Filesystems
	Network Data

	38. Key Management
	References:

	39. Case Studies: Tenant Data
	Alice's Private Cloud
	Bob's Public Cloud

	40. Hypervisor Selection
	Hypervisors in OpenStack
	Selection Criteria
	Product or Project Maturity
	Certifications and Attestations
	Common Criteria
	Cryptography Standards
	FIPS 140-2

	Hardware Concerns
	Hypervisor vs. Baremetal
	Additional Security Features

	41. Hardening the Virtualization Layers
	Physical Hardware (PCI Passthrough)
	Virtual Hardware (QEMU)
	Minimizing the Qemu Code base
	Compiler Hardening
	Mandatory Access Controls

	sVirt: SELinux + Virtualization
	Labels and Categories
	Booleans

	42. Case Studies: Instance Isolation
	Alice's Private Cloud
	Bob's Public Cloud

	43. Security Services for Instances
	Entropy To Instances
	Scheduling Instances to Nodes
	Host Aggregates
	AggregateMultiTenancyIsolation
	DifferentHostFilter
	GroupAntiAffinityFilter
	Trusted Compute Pools

	Trusted Images
	Image Creation Process
	Image Provenance and Validation

	Instance Migrations
	Live Migration Risks
	Live Migration Mitigations
	Disable Live Migration
	Migration Network
	Encrypted Live Migration

	44. Case Studies: Instance Management
	Alice's Private Cloud
	Bob's Public Cloud

	45. Forensics and Incident Response
	Monitoring Use Cases
	References

	46. Case Studies: Monitoring and Logging
	Alice's Private Cloud
	Bob's Public Cloud

	47. Compliance Overview
	Security Principles

	48. Understanding the Audit Process
	Determining Audit Scope
	Internal Audit
	Prepare for External Audit
	External Audit
	Compliance Maintenance

	49. Compliance Activities
	Information Security Management System (ISMS)
	Risk Assessment
	Access & Log Reviews
	Backup and Disaster Recovery
	Security Training
	Security Reviews
	Vulnerability Management
	Data Classification
	Exception Process

	50. Certification & Compliance Statements
	Commercial Standards
	SOC 1 (SSAE 16) / ISAE 3402
	SOC 2

	SOC 3
	ISO 27001/2
	HIPAA / HITECH
	PCI-DSS

	Government Standards
	FedRAMP
	ITAR
	FISMA

	51. Privacy
	52. Case Studies: Compliance
	Alice's Private Cloud
	Bob's Public Cloud

	Appendix A. Community support
	Documentation
	ask.openstack.org
	OpenStack mailing lists
	The OpenStack wiki
	The Launchpad Bugs area
	The OpenStack IRC channel
	Documentation feedback
	OpenStack distribution packages

	Glossary

