
Mirantis OpenStack Monitoring
Guide

version 9.2

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page i

Contents
Copyright notice 1
Preface 2

Intended Audience 2
Documentation History 2

Introduction 3
Assumptions 3
Intended audience 3
Document scope 4

Common monitoring practices 5
Monitoring domains 5
Monitoring activities 6

Services, processes, and cluster checks 6
Metering 8
Logs processing 8
Logs indexing 9
OpenStack notifications processing 9
Diagnosing versus alerting 10
Time synchronization 10

Monitoring activities details 11
Keystone 11
Nova 12
Network 16

Neutron 16
DHCP agent 17
Open vSwitch 17

Glance 18
Cinder 19
Horizon 21
Heat 22
Ceilometer 23
Sahara 24

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page ii

Murano 26
Murano RabbitMQ instance 27

Libvirt 28
HAProxy 29
RabbitMQ 31
MySQL 33
Memcached 35

HA cluster 37
Corosync/Pacemaker 37

Free space monitoring 37
State verification 38

Storage clusters 40
Ceph 40
Swift 44

Hardware and system monitoring 46
IPMI 46
Disks monitoring 47
Operating system monitoring 48

Host monitoring 48
Disk usage monitoring 49
Soft RAID monitoring 49
Filesystem usage monitoring 49
CPU usage monitoring 49
RAM usage monitoring 50
Swap usage monitoring 50
Process statistics monitoring 51
Network Interface Card (NIC) monitoring 51
Firewall (iptables) monitoring 52

Appendix 53
Virtual machine monitoring 53

Guest agent 54
VM network traffic 54

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page iii

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 1

Preface
This documentation provides information on how to use Fuel to deploy OpenStack
environments. The information is for reference purposes and is subject to change.

Intended Audience
This documentation is intended for OpenStack administrators and developers; it assumes that
you have experience with network and cloud concepts.

Documentation History
The following table lists the released revisions of this documentation:

Revision Date Description
February 6, 2017 9.2 GA

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 2

Introduction
This document does not attempt to tout a particular solution or monitoring system for
OpenStack. Instead, it strives to provide best practices and provide specific guidelines about
how to monitor OpenStack effectively irrespectively of the technology being used. This includes
specific examples about how to collect and process key metrics to increase your operational
visibility, check various health indicators to detect critical failure conditions, index and search
the logs for root cause analysis and troubleshooting. Also, it must be highlighted from the start
that this document provides guidelines for monitoring the OpenStack infrastructure and host
services. It is not a guide for the monitoring the virtual machines nor the applications running on
top of them.
The expected outcome is two-fold:

• Gain insights into what is critically important to watch in OpenStack so that operators can
be alerted in near real-time to anticipate and react to undesirable situations.

• Provide a comprehensive set of guidelines to implement your own monitoring system. In
that sense, this document can also be viewed as a specification you can use to implement
your own solution using technologies like Zabbix or the LMA Toolchain that are provided as
Fuel plugins for Mirantis OpenStack 6.1 onward.

In addition, we think that an effective monitoring solution for OpenStack should have the
following main characteristics.

• Provide near real-time insights and alerting.
• Support discovery and configuration management automation so that the error prone

manual setup can be completely avoided.
• The monitoring system supports its own self-monitoring and high availability.

Assumptions
We assume that the reader is already familiar with the concepts, architecture principles, and
day-to-day administration tasks of Mirantis OpenStack. It further assumes that you have
deployed Mirantis OpenStack following the recommendations in the Mirantis OpenStack Planning
Guide, as well as deployed your environment using Neutron with VLAN or GRE or networking
segmentation.

Intended audience
The primary audience of this document are the architects and technical staff involved in the
design and deployment of an OpenStack cloud. The other audiences are the members of the
operations staff that are in charge of managing and maintaining the OpenStack cloud in a
healthy state on a daily basis. This includes:
Line of Business Owner

The Line of Business Owner needs to know how "things" are running and if there are any
problems that may affect the SLA. This person focuses on marketing and business, not IT,
and, thus, is interested in top level indicators to know about services health.

Operational support

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 3

https://software.mirantis.com/fuel-plugins/

Provides support to customers encountering issues. Is generally organized with a service
desk and two support levels for problem escalation. The support relies on monitoring
solutions to perform diagnostics and also should benefit from preventive alerts.

Subject Matter Expert
Investigates and resolves a domain-specific problem. Validates the resolution. Uses the
monitoring system to troubleshoot and observe the cloud infrastructure behavior.

Document scope
This guide is about how to monitor an OpenStack cloud from the perspective of the operations
staff with a focus on the infrastructure. As a result, this guide is not directly intended to serve
the monitoring needs of a cloud user whether it has access to the administrator role or not
because as a cloud user you do not have root access to the servers and host operating systems.
The scope therefore includes some hardware monitoring through IPMI, monitoring of the host
operating system, monitoring of the cloud management system and processes that are part of
its ecosystem.
The processes supporting the cloud management system are roughly of two kind:

• The OpenStack service API endpoints, like nova-api, which receive the user requests.
• The OpenStack service workers connected to the AMQP bus, like nova-scheduler, which

process the user requests.
The OpenStack services depend on a number of additional programs that are not part of the
OpenStack code base itself but which nonetheless are critically important to monitor as we will
see below. This includes but is not limited to Libvirt, MySQL, RabbitMQ, Memcached, HAProxy,
Corosync, and Pacemaker.
The scope also includes the host operating systems, the servers and devices such as the disks
and network interface cards. Some amount of hardware health checks via IPMI are performed to
monitor the status of equipments such as the fans and CPU temperature in an attempt to help
with anticipating hardware failures.
The scope of this document does not include the monitoring of the end-user applications as well
as the monitoring of the hardware equipments that are vendor-specific or too complex to be
practically addressed in this document. This includes but is not limited to the following
equipment categories.
The network gears

The monitoring of the network gears such as switches and routers is vendor-specific and too
large to be addressed here.

The storage gears
The monitoring of the storage gears like SANs and NASs is vendor-specific and too large to
be addressed here.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 4

Common monitoring practices
This chapter describes the common monitoring practices we recommend that you use to design
and implement an effective monitoring solution for OpenStack.

Monitoring domains
An effective monitoring solution is comprised of distinct activities aimed at addressing the
different problem domains that the operations staff will have to handle. These activities are
summarized below.
Availability Monitoring

Availability monitoring, in its broadest sense, is a monitoring activity that is responsible for
ensuring that the resources for compute, storage, and networking, as well as the services
mediating their access (via the service API endpoints), are effectively available for end-users
to consume while meeting the performance requirements of the SLA. In terms of availability
monitoring, we use relevant indicators (or metrics); they provide information on how many
resources are currently available in the cloud infrastructure as well as the process checks
ensuring that the services delivering the access are up and running. Those indicators are
obtained from running synthetic transactions, parsing the logs, metrics collectors deployed
throughout the system, and so forth.

Performance Monitoring
Performance monitoring is supposes measuring how fast a particular resource can be served
by the cloud infrastructure in response to a user request. For example, measuring how
much time it takes to create an instance or a volume. Key metrics for performance
monitoring can be obtained not only from synthetic transactions simulating an end-user
interaction with a service endpoint but also from analysing the logs, instrumenting the code,
and extracting performance metrics from the OpenStack notifications.
OpenStack performance and availability monitoring are the two main monitoring issues
developed in this document since they directly relate to the SLA.

Resource Usage Monitoring
Resource usage monitoring is only partially addressed here. We view it as a derivative
activity by which a cloud operator can retrieve how much resources were consumed by a
particular user or tenant during a particular time period for chargeback. Resource usage
monitoring supposes measuring consumable resources of the cloud via the APIs. Another
key difference between resource usage monitoring and availability monitoring is that
resource usage monitoring does not have to be performed in real-time. Readers interested
in resource usage monitoring for OpenStack should take a look at the Ceilometer project.

Alerting
Alerting is a process by which the monitoring system notifies the cloud operator about an
undesirable situation. The situation is typically described in an alarm like manner, for
example, when the value of a key indicator crosses a threshold or unexpectedly changes a
value from OK to NOT OK. An unexpected change of state, if not the direct manifestation of
a problem, is often a precursor of it. Besides, alerting should have the following properties:

• Provide a comprehensive description of the problem.
• Provide information about which service is affected.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 5

• Provide a severity level.
• Provide the ability to be disabled to avoid false positives during maintenance.
• Provide the ability to combine alarms to express more complex situations.
• Provide the ability to refer to time-series statistics like median, standard deviation and

percentiles.
Furthermore, we recommend that the health status of any OpenStack service is expressed
using three different values:

• Healthy - when both the HA functions of the controller cluster are still being ensured
and no critical errors are being reported by the monitoring system for a service.

• Degraded - when one or more critical errors are reported by the monitoring system for a
service but the HA functions of the controller cluster are still being ensured.

• Failed - when both the HA functions of the controller cluster are not being ensured
anymore and one or more critical errors are being reported by the monitoring system
for a service.

A critical error should always be reported in an alert.
The immediacy of the operations staff’s response to an alert depends on the actual status of
the HA cluster. It can be any of the following:

• Immediate - when a service is failed. It is a critical situation and so, the alert should be
sent to the operations staff for human intervention.

• Deferred - when a service is degraded. While a degraded service may have a negative
impact on the quality of service, the nominal function of the cloud service should
continue to be ensured by the system and so, the handling of the alert could be safely
prioritized through a ticketing system.

Obviously, not all errors are critical. An effective monitoring solution should put a great deal
of care at defining the proper level of alerting (smart alerting), in order to avoid flooding the
operations staff with benign notifications that are not reflective of a critical situation. This
document strives to provide some hints about how to set your alarms with threshold values
and status checks but your mileage may vary depending on your particular OpenStack
environment. Rally is a load generator for OpenStack that you could use to calibrate the
alarms of your monitoring system.

Monitoring activities
As stated earlier, this document is not prescriptive of a particular monitoring system or solution.
Instead, it strives to describe common monitoring practices with problem domains and activities
to address them that are key to get clear operational insights in order to take actions when
problems occur. In this chapter, we try to describe what those activities are as clearly as
possible.

Services, processes, and cluster checks
Service checks

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 6

Checking the availability of the OpenStack services from the point of view of the user is
absolutely necessary in order to make sure that all the services respond to the user
requests as expected.
Those service checks should be performed on a regular basis using synthetic transactions
that perform various HTTP requests against the OpenStack service endpoints. The service
checks should return an availability status that is either pass or failed.
The synthetic transactions should use a dedicated project (tenant) and user so that it is
always possible to differentiate between the load generated by the service checks versus
the load generated by the genuine activity.
The service checks should be performed against the service endpoints using the HAProxy’s
Virtual IP (VIP) to ensure that both the service APIs and as the HAProxy, which distributes the
load above them, are traversed by the HTTP requests.
The service checks should strive to minimize the observer effect by using lightweight and
non-intrusive (read only) requests. The service checks should also avoid using requests that
propagate to other services than the service being watched. A general rule of thumb to
avoid overloading the system is to use a non-aggressive polling interval as a tradeoff
between being alerted of errors quickly and generating a load that is too heavy.
The service checks should also strive to record the response time of synthetic transactions
in order to establish a performance baseline and produce statistics (average, mean,
percentile, standard deviation) that can be used to detect anomalies.

Process checks
Process checks can be performed either remotely (via SSH) or locally using a monitoring
agent running on each of the OpenStack nodes. The goal of process checks is to ensure that
all the processes participating in the support of an OpenStack role, such as controller, are
indeed up and running. Those processes include the service endpoints (nova-api), the
service workers connected to the AMQP bus (nova-scheduler), as well as the various
processes supporting the auxiliary functions such as RabbitMQ, MySQL and so forth.
The process checks should also ensure that the OpenStack processes are bound to their
respective networking ports.

Cluster checks
Fuel deploys high-availability OpenStack reference architecture that ensures that all
components of an OpenStack environment are redundant. For example, the service
endpoints are distributed in an active/active HA cluster along with an HAProxy running on
top of them on each controller node. There is only one active HAProxy at a time that is
responsible for detecting service endpoints failures and distributing the load between them.
The high availability of the HAProxy itself is supported by an active/passive HA cluster based
on Corosync and Pacemaker. Corosync and Pacemaker are collectively responsible for
ensuring the transparent failover of the HAProxy and VIP when the master node is failed.
Same thing for the MySQL database. So a correct appraisal of the OpenStack services'
availability status depends on the HA cluster healthiness appraisal. That is why we stated
earlier that the criticality of an OpenStack error should be evaluated differently depending
on whether the HA functions of the cloud infrastructure are still being ensured by the HA
cluster or not. In a nutshell, the HA functions are not being ensured anymore when there is
no more failover node available in the cluster or when the HA cluster itself is broken.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 7

Metering
Metering is usually done at the source of measurement point with the help of a monitoring agent
running on each node being measured. The goal of metering is to collect operational data
metrics which are collections of numeric values organized in groups of consecutive,
chronologically ordered lists. Each data input consists of a recorded measurement value, a
timestamp at which the measurement took place, and a set of properties describing it. When
data inputs from a metric are segmented into fixed intervals and summarized by a mathematical
transformation in some meaningful way, they can be stored as time series and interpreted on
two-dimensional plots.
The benefits of using time series for monitoring are in their ability to accurately illustrate the
process of change in the context of historical data. They are indispensable as they answer the
question when and what has changed in an OpenStack cloud.

Logs processing
In addition to performing health checks and collecting metrics, a common monitoring practice is
to exploit the information that is available in the logs that are produced by the system. Valuable
operational data can be extracted from those unstructured messages which should be indexed
for search and troubleshooting. The log messages that are produced by the Mirantis OpenStack
distribution are sent to syslog at the INFO level by default. Fuel allows to easily configure
OpenStack to send all the logs to an external rsyslog server. Those logs contain information
about the severity level, the program that issued the log, the service (Nova, Glance, Cinder, …)
that issued the log syslogfacility, metadata info like tenant_id and request_id that are useful for
aggregation and correlation, error codes like the HTTP error codes of the service endpoints,
performance info like the HTTP response time, and so forth.
Ideally, we should have one syslog facility per service but there are only eight local facilities.

Note
The HTTP requests response time is meaningful only for synchronous transactions.
Asynchronous transactions like those involved in the creation of an instance or volume
will only account for the time it takes for the service API endpoint to authenticate and
transmit the request to the AMQP bus, and as such, is not reflective of the actual time it
takes to process a request end-to-end.

Operations metrics can be derived from those logs for diagnostic and alerting purposes. This
includes but is not limited to:

• Operations errors. A sudden spike of errors in the logs, like those found in service API
endpoint logs (HTTP return code 5xx), should be monitored since they may be the
manifestation of a critical condition.

• HTTP transactions time. The HTTP transactions time should be monitored since it directly
affects the end user experience.

• Logs rate. A sudden drop-off of the logs rate should be monitored since it can indicate
something went wrong in the system or users do not have access to the cloud any more.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 8

Logs indexing
Another common practice is to index all the logs in a central database like Elasticsearch with
Kibana running on top of it to easily search and correlate those logs for root cause analysis and
troubleshooting. With complex distributed systems like OpenStack, it is no longer possible to use
ad hoc tools like grep and awk to search the logs for troubleshooting.

Note
The LMA Toolchain provides a Fuel plugin that allows deploying ElasticSearch and Kibana
you can use to search and correlate the OpenStack logs and notifications.

OpenStack notifications processing
The OpenStack notifications are another source of valuable operational data information that
can be exploited by a monitoring system. The OpenStack notifications, as opposed to logs, are
structured messages that are sent to the AMQP bus through the notifications topic with an info
priority by default. Some OpenStack services send notifications with a warning and error priority.
Notifications contain rich data sets that can be exploited to extract performance metrics and
operations status for the service workers at different levels of the stack. Most of the OpenStack
services publish notifications to the AMQP bus. See the list of notifications for details.

Note
Currently, if you enable the notifications, you also need to take care of effectively
consuming them otherwise the queue will grow indefinitely.

In addition to the built-in notifications, there is a possibility to configure each service endpoint to
emit notifications of type http.request and http.response for all HTTP transactions. This is
achieved by adding the notification middleware in the WSGI pipeline.
The LMA Collector plugin, that can be deployed on the controller nodes, taps into the AMQP bus
to collect and process the notifications. Out of those notifications, the LMA Collector plugin
creates new metrics that can be sent to a time-series database. It includes:

• Nova instance creation time
• Cinder volume creation time

Other asynchronous operations like Glance image creation time or
Neutron network/port creation time can be computed the same way.

Note
The LMA Toolchain provides a Fuel plugin that allows to deploy InfluxDB and Grafana to
plot those metrics.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 9

https://github.com/stackforge/fuel-plugin-elasticsearch-kibana
https://wiki.openstack.org/wiki/SystemUsageData
https://github.com/openstack/oslo.messaging/blob/master/oslo_messaging/notify/middleware.py
https://github.com/stackforge/fuel-plugin-influxdb-grafana

Diagnosing versus alerting
The operational data gathering, that results from the common monitoring practices described
above, should serve two different purposes that should not be confused. One is to identify the
root cause of a problem. Hereafter, this is referred to as diagnosing. The other one is to send
real-time notifications to the operator when something is broken that needs to be repaired.
Hereafter, this is referred to as alerting. But those alerts have to be smart. As stated multiple
times it is pointless and ineffective to flood the operator with alerts that are not reflective of a
situation that requires the operator’s attention whether it is immediate or deferred.

Time synchronization
Lastly, it is utterly important that all the OpenStack nodes and the monitoring system be on the
exact same time clock. Without a proper time synchronisation across the system it will be
impossible to make any kind of sensible root cause analysis, metrics time-series will be useless,
it will cause all sorts of high availability and operations management problems. It is also a good
practice to set up the UTC time zone for all the nodes. Usually, the Network Time Protocol(NTP)
is used to synchronize the system clocks with remote NTP time servers. The ntpd daemon must
run on each node and should be configured to use several external time servers. The Linux
distributions provide packages with pre-configured NTP servers but it is necessary to use a pool
of geographically closest NTP servers. The monitoring system should check that the ntpd server
is alive and kicking to ensure that the OpenStack cloud is time synchronized across all the
nodes.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 10

Monitoring activities details
In this chapter we are getting into the details of how the monitoring activities introduced above
can be implemented. It is worth restating that a common trait of those monitoring activities is to
collect and process the operational data that should increase the operational visibility about
how an OpenStack cloud behaves over time. In other words, get the level of insights that is
required to make value judgments about what should be done to keep your OpenStack cloud
kicking and healthy.

Note
The LMA Collector, available as a Fuel plugin, does all the heavy lifting work of collecting
and processing those operational data for you. Please refer to the LMA Collector
documentation to understand how it works and how it can be used. Now, you have the
choice between using the LMA Collector directly or build your own solution based on the
guidelines described below.

The chapter is organized in sections where each section covers a particular OpenStack service
or auxiliary component like RabbitMQ for the AMQP bus or Corosync/Pacemaker for the HA
cluster. Then, each section is further divided into subsections describing:

• The process checks, which gives you a list of all processes involved in the support of a
particular service function, including details about the role of the node, where the process
is running, the incoming connections and a port number and their dependencies. As we
have seen above, a failed process check should always be reported as a critical error, but
the ensuing alert will not necessarily require an immediate attention.

• The service API checks, which gives you a list of the API endpoints that you should monitor
with an example of synthetic transaction you can use to verify that the service responds
properly to user requests. A failed service API check should always be reported as a critical
error and the ensuing alert should call for immediate attention.

• The operational data metrics, which aims to increase your operational visibility along with a
simple method to retrieve their values. Those metrics can be used for both diagnosis and
alerting purposes.

Keystone
Keystone is an OpenStack service that provides identity, token, catalog, and policy services to
users and to other OpenStack services. As such, the availability of all the OpenStack services
depends on the availability of Keystone.
Process Checks

Process name Incoming
connections Role Dependencies HA mode

keystone-all HTTP 5000
(public) and
35357 (admin)

controller db, memcached,
Apache

active/active

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 11

https://github.com/stackforge/fuel-plugin-lma-collector
http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide.html
http://fuel-plugin-lma-collector.readthedocs.org/en/latest/
http://fuel-plugin-lma-collector.readthedocs.org/en/latest/

API checks
Check the proper functioning of authentication and token revocation operations:

• POST /v2.0/tokens
• DELETE /v2.0/tokens/{token-id} or DELETE /v3/auth/tokens

Collected Metrics

Metrics Source Purpose
authentication
errors

log:
POST /v2.0/tokens HTTP/1.1" 401
330 0.205647
401 error code indicates an
authentication error

alert:
When a sudden spike of errors is
detected. A high authentication
errors rate can be the symptom of a
brute-force attack.

authentication
response time

log:
POST /v2.0/tokens HTTP/1.1" 200
4199 0.092479
where 0.092479 is the response
time in seconds

alert:
When the value is beyond standard
deviation or top percentiles
threshold depending on the
data-points distribution.

token validation
errors

logs
GET /v3/auth/tokens HTTP/1.1" 404
7317 0.071319
#404 indicates a token validation
error

alert:
When a sudden spike of errors is
detected.

token validation
response time

logs:
GET /v3/auth/tokens HTTP/1.1" 200
7317 0.071319
0.071319 is the response time in
seconds

alert:
When the value is beyond standard
deviation or top percentiles
threshold depending on the
data-points distribution.

number of users poll API:
GET /v2.0/users

diag

number of
tenants

poll API:
GET /v2.0/tenants

diag

API errors Logs or HAProxy:
All HTTP 500 error code.

alert:
When a sudden spike of errors is
detected.

Nova
Nova is the OpenStack service for Compute, a cloud computing fabric controller, the main part
of a cloud system. Nova is composed of several processes, each assuring a particular function.
The Nova processes are distributed on the controller node(s) and compute nodes.
Process checks

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 12

Process name Incoming
connections Role Dependencies HA mode

nova-api HTTP 8774
(Nova API), 8773
(Nova EC2 API)

controller amqp active/active

nova-scheduler RPC controller amqp active/active
nova-conductor RPC controller db, amqp active/active
nova-consoleauth RPC controller amqp active/active
nova-console RPC controller amqp active/active
nova-novncproxy RPC controller amqp active/active
nova-cert RPC controller amqp active/active
nova-compute RPC controller libvirt not available

API checks
Check the proper functioning of the API with a read operation. Example:

• list of flavors

• GET /v2/<tenant-id>/flavors
A more intrusive operation checks if it’s possible to create and delete a keypair:

• create and delete a keypair

• POST /v2/<tenant-id>os-keypairs '{"keypair": {"name": "test-mon"}}'
• DELETE /v2/<tenant-id>os-keypairs/test-mon

Collected Metrics

Metrics Source Purpose
Total number of
instances in error
state

poll SQL:
select count(*) from instances where
vm_state='error' and deleted=0
or poll API:
/v2/{tenant_id}/servers/detail/?all_tenan
t=1

diag
That should probably not
trigger an alert, since
those errors may be due
to the user mistakes.

Total number of
instances in running
state

poll SQL:
select count(*) from instances where
deleted=0 and vm_state='active'
poll API: /v2/{tenant_id}/servers/detail/?
all_tenant=1

Alert:
Too few running instances
could be a symptom of a
deeper problem.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 13

Total number of
instances per state,
where state can be:
deleted, paused,
resumed, rescued,
resized,
shelved_offloaded, or
suspended.

poll SQL:
select instances.vm_state,
count(instances.id) from instances
where deleted=0 group by vm_state
or poll API:
GET /v2/{tenant_id}/servers/detail/?all_t
enant=1

diag

Number of compute
nodes in operational
state

poll API GET /v2/{tenant_id}/os-services
or SQL:
select count(services.id) from services
where disabled=0 and deleted=0 and
services.binary = ‘nova-compute’ and ti
mestampdiff(SECOND,updated_at,utc_ti
mestamp())<60;

Alert:
Too few running instances
could a symptom of a
deeper problem.

Number of compute
nodes in not
operational state

poll API: GET /v2/{tenant_id}/os-services
or SQL:
select count(services.id) from services
where disabled=0 and deleted=0 and
services.binary = ‘nova-compute’ and ti
mestampdiff(SECOND,updated_at,utc_ti
mestamp())>60;

diag

Number of services
offline

poll API: GET /v2/{tenant_id}/os-services
or poll SQL: select count(*) from services
where disabled=1 and deleted=0 and ti
mestampdiff(SECOND,updated_at,utc_ti
mestamp())>60

diag

Number of services
available per
function: conductor,
scheduler

poll API: GET /v2/{tenant_id}/os-services
poll SQL: select services.binary,
count(services.id) from services where
disabled=0 and deleted=0 and
timestampdiff (SECOND,updated_at,utc_
timestamp())>60 group by
services.binary;

diag

Number of running
instances per
compute node

API: GET
/v2/{tenant-id}/os-hypervisors/detail

diag

Total number of
VCPUs

poll SQL:
select ifnull(sum(vcpus), 0) from
compute_nodes where deleted=0
poll API:
/v2/{tenant_id}/os-hypervisors/statistics

diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 14

Total number of
VCPUs used

poll SQL:
select ifnull(sum(vcpus), 0) from
instances where deleted=0 and
vm_state='active'
poll API:
/v2/{tenant_id}/os-hypervisors/statistics

diag

Total number of free
VCPUs

calculated from previous metrics
poll API:
/v2/{tenant_id}/os-hypervisors/statistics

Alert:
Too few running instances
could be a symptom of a
deeper problem.

Total memory
available

poll SQL:
select ifnull(sum(memory_mb), 0) from
compute_nodes where deleted=0
poll API:
/v2/{tenant_id}/os-hypervisors/statistics

diag

Total memory used
by instances

poll SQL:
select ifnull(sum(memory_mb), 0) from
instances where deleted=0 and
vm_state='active'
poll API:
/v2/{tenant_id}/os-hypervisors/statistics

diag

Total free memory calculated from previous metrics
or poll API:
/v2/{tenant_id}/os-hypervisors/statistics

diag

API response time Logs:
see examples below

Alert:
When the value is beyond
standard deviation or top
percentiles threshold
depending on the
data-points distribution.

API errors Logs or HAProxy:
All HTTP 500 error code.
Log example: POST
/v2/{tenant-id}/os-volumes_boot
HTTP/1.1" status: 500 len: 354 time:
32.3032150 #where status: 500
indicates error

Alert:
When a sudden spike of
errors is detected.

Note
The main advantage of using SQL queries versus using API checks is execution speed and
lower overhead. The disadvantage of using SQL queries is that your checks won’t work
anymore when the SQL schema changes.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 15

Examples of log entries containing response times:
Synchronous operations response time is logged in nova-api.log. Example of nova key pair
creation log entry:

2015-03-02 12:33:59.898 6819 INFO nova.osapi_compute.wsgi.server
[req-c0391ca2-e0e2-41bf-af64-0df222654620 None] 192.168.0.5 "POST
/v2/{tenant-id}/os-keypairs HTTP/1.1" status: 200 len: 2473 time: 1.4112680

HTTP response code is logged in nova-api.log. Example of an instance creation log entry:
2015-03-02 12:43:59.898 6819 INFO nova.osapi_compute.wsgi.server
[req-c0391ca2-e0e2-41bf-af64-0df222654620 None] 192.168.0.5 "POST
/v2/{tenant-id}/servers HTTP/1.1" status: 202 len: 780 time: 2.4308009
202 (ACCEPTED) return code indicates the request has been accepted for processing.

Network
Neutron
Neutron is the OpenStack service providing network connectivity as a service between network
interfaces (vNICs) managed by other OpenStack services like Nova.

Note
Neutron plugins load balancer, firewall, and ipsec monitoring are not covered in this
version of the document.

Process Checks

Process name
Incoming
connectio

ns
Role Dependen

cies HA mode

neutron-server HTTP 9696 controller db, amqp active/active
neutron-dhcp-agent RPC active

controller
amqp,
dnsmasq

active/passive

neutron-l3-agent RPC active
controller

db, iptables active/passive

neutron-metadata-agent RPC compute amqp, db active/active
neutron-ns-metadata-prox
y

RPC controller amqp, db active/passive

neutron-openvswitch-age
nt

RPC all nodes amqp, ovs active/passive

dnsmasq UDP port 67 controller active/passive, see
DHCP agent below

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 16

API checks
Check the proper functioning of the API with a read operation. Example:

• list subnets

• GET /v2.0/subnets

Collected Metrics

Metric Source Purpose
Number of networks poll API

GET /v2.0/networks
Alert:
Too few active networks
could be the symptom of
a deeper problem.

Number of subnets poll API
GET /v2.0/subnets

diag

Number of routers poll API
GET /v2.0/routers

diag

Number of ports poll API
GET /v2.0/ports

diag

API errors Logs or HAProxy:
All HTTP 500 error code.
Log example: INFO neutron.wsgi
[{req-id} None] 192.168.0.1 - -
[11/Mar/2015 19:17:22] "POST
/v2.0/networks.json HTTP/1.1" 500 324
0.178729
where 500 indicates an error

Alert:
When a sudden spike of
errors is detected.

DHCP agent
The neutron-dhcp-agent relies on dnsmasq to handle the DHCP requests which provide network
configuration to instances.
We recommend you perform the following checks to detect anomalies:

• There must be at least one dnsmasq process per tenant network when DHCP is enabled.
• Too many DHCPNAK entries in dnsmasq logs could be the symptom of connectivity issues

with the instances.

Open vSwitch
Open vSwitch is a central component of tenant networking. You should check that the following
processes are up and running.

Process name Role HA mode

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 17

ovsdb-server all nodes not available
ovs-vswitchd all nodes not available

Also, a good practice for diagnosis is to collect the number of dropped packets and packets in
the error state per interface. We recommend, however, not to consider those errors as critical
ones since they do not necessarily represent a service failure.

ovs-vsctl get Interface br-tun statistics
{collisions=0,
rx_bytes=648,
rx_crc_err=0,
rx_dropped=0,
rx_errors=0,
rx_frame_err=0,
rx_over_err=0,
rx_packets=8,
tx_bytes=0,
tx_dropped=0,
tx_errors=0,
tx_packets=0}

The Open vSwitch logs are stored in the /var/log/openvswitch/ directory.

Glance
Glance is the OpenStack service allowing users to upload and discover data assets that are
meant to be used with other services. This currently includes images and metadata definitions
used by the nova service.
Process checks

Process name Incoming
connections Role Dependencies HA mode

glance-api 9292 controller db, amqp active/active
glance-registry 9191 controller db, amqp,

storage
active/active

Glance can use different storage backends: Swift or Ceph that are used by default in HA
deployments.
API checks
Check the proper functioning of the API with a read operation. Example:

• list images

• GET /v1/images
A more intrusive test checks the complete creation of an image:

• create an image by uploading a small image (a few megabytes in size)

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 18

• POST /v1/images
• get image details

• GET /v1/images/{image_id}
• delete an image

• DELETE /v1/images/{image_id}

Collected Metrics

Metrics Source Purpose
Number of active
images public/private

poll API
GET /v2/images

diag
and/or alert:
Too few active images
could be the symptom of
a deeper problem.

Number of images
per status (active,
queued, saving)

poll API
GET /v2/images

diag

Total size of active
images

poll API
GET /v2/images?visibility=public&status
=active

diag

API errors Logs or HAProxy:
All HTTP 500 error code.
Examples of a log entry containing a
failed image upload error:
2015-03-02 12:44:12.438 1212 INFO
glance.wsgi.server [{request-id}
{user-id} {tenant-id} - - -] 192.168.0.1 -
- [04/ Mar/2015 12:38:55] "POST
/v1/images HTTP/1.1" 500 877
49.117649

Alert:
When a sudden spike of
errors is detected.

Cinder
Cinder is the OpenStack service for block storage. It allows users to manage block storage
resources that could be attached to the instances.
Process checks

Process name Incoming
connections Role Dependencies HA mode

cinder-api 8776 controller db, amqp active/active
cinder-scheduler RPC controller amqp active/active

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 19

cinder-volume RPC storage-cinder db, amqp,
storage

active/active
(Ceph backend)
n/a (LVM
backend)

Cinder can use different block storage backends like LVM or Ceph.
API checks
Check the proper functioning of the API with a read operation. For example:

• list volume

• GET /v2/{tenant_id}/volumes
A more intrusive test may want to check the complete creation of a volume:

• create a volume

• POST /v2/{tenant_id}/volumes
• get volume details

• GET /v2/{tenant_id}/volumes/{volume_id}
• delete a volume

• DELETE /v2/{tenant_id}/volumes/{volume_id}
Collected Metrics

Metrics Source Purpose
number of volumes in error
state

poll SQL:
select count(*) from volumes
where status=’error’

Alert:
When the value of error state
ratio is beyond a certain
threshold.

number of volumes deleting poll SQL:
select count(*) from volumes
where status='deleting'

diag

number of snapshots in
progress

poll SQL:
select count(*) from
snapshots where progress
NOT LIKE '100%'

diag

number of snapshots deleting poll SQL:
select count(*) from
snapshots where
status='deleting'

diag

total number of volumes poll SQL:
select count(*) from volumes
where deleted != 1;

diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 20

total size of active volumes poll SQL:
select sum(size) from
volumes where deleted != 1
and status = 'available';

diag

API errors Logs or HAProxy:
All with HTTP 500 error code.

alert:
When a sudden spike of
errors is detected.

Horizon
Horizon is a canonical implementation of the OpenStack dashboard, which provides a
web-based user interface to OpenStack services including Nova, Swift, Keystone, and others.
Horizon is often the main, if not the only, interface to the OpenStack services, and it is critical to
ensure that it is always available and responsive to users.
The Apache HTTP server hosts the Horizon dashboard that is implemented as a WSGI
application. The HTTP server running the Horizon dashboard is deployed behind the HAProxy
load balancer which distributes the load across the controller nodes cluster. This application
does not use the OpenStack database. It is simply a web interface facade for the OpenStack
services API endpoints.
Process checks

Process name Incoming
connections Role Dependencie

s HA mode

apache2 or httpd HTTP 80 controller n/a active/active

Interface checks

• A synthetic HTTP transaction process performing login/logout sequences against the
Horizon’s VIP should be executed on a regular basis to ensure it is responding properly to
user requests.

Collected Horizon Metrics
Horizon metrics should be extracted from the Apache server(s) logs in order to detect errors.

Metrics Source Purpose
number of logins logs:

dashboard-openstack_auth.forms
: INFO Login successful for user
"admin".

alert:
The absence of logins during a
certain period may indicate that
users do not have access to
Horizon anymore.

login errors logs:
dashboard-openstack_auth.forms
: WARNING Login failed for user
"xxx".

alert:
When a sudden spike of errors is
detected. Could indicate a brute
force attack situation.

Collected Apache Metrics

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 21

Apache server should be sized and configured according to the expected load. Here are some
metrics we suggest that you collect:

Metrics Source Purpose
number of
requests/sec

server-status diag

number of bytes
served/sec

server-status diag

number of busy
workers

server-status diag

number of idle
workers

server-status alert:
The continuous observation of
zero idle workers may be the
symptom of a server that is too
busy or improperly configured.

Note
Server-status must be enabled in the Apache’s configuration to provide information on the
server’s activity and performance.

Heat
Heat is the OpenStack service to orchestrate the deployment of multiple composite cloud
applications using the Heat Orchestration Template (HOT) and also compatible with the AWS
CloudFormation template format through both an OpenStack-native ReST API and a
CloudFormation-compatible Query API.
Process checks

Process name Incoming
connections Role Dependencies HA mode

heat-api 8004 controller db, amqp active/active
heat-engine RPC controller db, amqp, other

OpenStack
services

active/active

heat-api-cfn 8000 controller db, amqp active/active

Note
The heat-api-cloudwatch service is not addressed here as it is deprecated by the Heat
team.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 22

http://httpd.apache.org/docs/2.2/mod/mod_status.html
http://docs.openstack.org/developer/heat/template_guide/hot_guide.html

Collected Metrics

Metric Source Purpose
number of active stacks API

GET /v1/{tenant_id}/stacks
diag

number of stacks in error API
GET /v1/{tenant_id}/stacks

diag

number of stacks in progress API
GET /v1/{tenant_id}/stacks

diag

API errors Logs or HAProxy:
All HTTP 500 error code.

Alert:
When a sudden spike of
errors is detected.

Ceilometer
Ceilometer is the OpenStack telemetry project which aims to provide a unique point of
information to acquire all of the resource usage measurements that operators need for
chargeback and billing.

Process checks

Process name
Incoming
connectio

ns
Role Dependencies HA mode

ceilometer-api HTTP 8777 controller storage active/active
ceilometer-agent-central RPC controller amqp active/passive
ceilometer-agent-compute RPC compute amqp active/passive
ceilometer-agent-notificati
on

RPC controller amqp active/active

ceilometer-collector RPC controller amqp,storage active/active
ceilometer-alarm-evaluato
r

RPC controller ceilometer api,
storage

active/active

ceilometer-alarm-notifier RPC controller amqp, external
system

active/active

ceilometer-agent-central and ceilometer-agent-compute are replaced by a single process named
ceilometer-polling.

Note
Since several storage backends can be used by Ceilometer, the monitoring of these
backends is not addressed in this document. See Ceilometer backends list.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 23

http://docs.openstack.org/admin-guide-cloud/telemetry-system-architecture.html#supported-databases

API checks
Check the proper functioning of the API with a read operation like listing of samples:

• GET /v2/samples

Note
When requesting the API, you must use the limit option not to overload the service by
retrieving too much data.

Collected Metrics

Metrics Source Purpose
API errors Logs or HAProxy:

All HTTP 500 error code.
Alert:
When a sudden spike of errors is
detected.

Sahara
Sahara is the OpenStack Data processing service. Sahara performs two types of activities in
OpenStack:

• Hadoop cluster provisioning
• Executing Elastic Data Processing (EDP) jobs

Sahara runs as a single process service on each controller in MOS 6.x. This, however, will
change in MOS 7.x.
Process checks

Process name Incoming
connections Role Dependencies HA mode

sahara-all HTTP 8386 controller db active/active

API checks
Check the proper functioning of the API with a read operation. For example:

• list provisioning plugins

• GET /v1.1/<tenant-id>/plugins

Collected Metrics for Cluster related activities

Metrics Source Purpose

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 24

Total number of Sahara
clusters in Active state

poll SQL:
select count(*) from clusters
where status="Active";

diag

Total number of Sahara
clusters in Error state

poll SQL:
select count(*) from clusters
where status="Error";

Alert:
Too many clusters in Error
state may be a sign of the
provisioning engine failure or
failures in other OpenStack
services.

Total number of Sahara
clusters doing provisioning at
the moment

poll SQL:
select count(*) from clusters
where status not in ("Active",
"Error");

Alert:
Too many clusters in
provisioning state may be a
sign of a slow network
throughput or even missing
network connectivity
between VMs.
It may also be a sign of a
corrupted image being used
for the clusters.

Total number of VMs used in
Sahara clusters

poll SQL
select count(*) from
instances;

diag

Total number of Cinder
Volumes attached to Sahara
VMs

poll SQL (cross project)
select count(*) from
cinder.volumes where
instance_uuid in (select
instance_id from
sahara.instances) and
attach_status="attached";

diag

Total number of Security
Group Rules generated by
Sahara

poll SQL (neutron)
select count(*) from
neutron.securitygrouprules
where security_group_id in
(select id from
neutron.securitygroups
where description LIKE
"%Auto security group
created by Sahara%");

diag

Total number of Floating IPs
attached to Sahara VMs

poll SQL:
select count(*) from
instances where
management_ip is not NULL;

diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 25

Total number of Glance
Images uploaded for Sahara
clusters

poll SQL (glance):
select count(*) from
glance.image_properties
where
name="_sahara_username"
and deleted=0;

diag

Collected Metrics for Elastic Data Processing (EDP) related activities

Metrics Source Purpose
Total number of EDP jobs
that have finished
successfully

poll SQL:
select count(*) from
job_executions where info
like '%"status":
"SUCCEEDED"%';

diag

Total number of EDP jobs
that have failed

poll SQL:
select count(*) from
sahara.job_executions where
info like '%"status":
"KILLED"%' or info like
'%"status": "Error"%';

Alert:
Too many errors in EDP may
be a sign of deeper problems.

Total number of EDP jobs
that are running at the
moment

poll SQL:
select count(*) from
sahara.job_executions where
not info like '%"status":
"KILLED"%' and not info like
'%"status": "Error"%' and not
info like '%"status":
"SUCCEEDED"%';

diag

Murano
Murano is an OpenStack service which provides a catalog of applications that can be readily
deployed in an OpenStack cloud. Murano orchestrates the deployment of those applications
automatically using other OpenStack services.
Process checks

Process name Incoming
connections Role Dependencies HA mode

murano-api HTTP 8082 controller db, amqp active/active
murano-engine RPC controller murano-api,

heat, neutron,
amqp

active/active

In MOS 7.0, Neutron will be an optional dependency. If not found in Keystone, Murano will fall
back to use Nova Network.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 26

May be configured to use an additional instance of RabbitMQ. Note that the RabbitMQ instance
used by Murano resides on the primary controller node and listens on port 55572 on the public
network.
API checks
Check the proper functioning of the API with a read operation. For example:

• list available packages:
/v1/catalog/packages

• check if the package with Core Murano library is registered:
/v1/catalog/packages?fqn=io.murano
This API call should return a JSON object with “packages” property set to a json-array
containing at least one object.

Collected Metrics

Metrics Source Purpose
API errors Logs or HAProxy:

All HTTP 500 error code.
Alert:
When a sudden spike of
errors is detected.

Number of environments Poll SQL:
select count(id) from
environment;

diag

Number of successful
deployments

Poll SQL:
select count(id) from session
where state='deployed'

diag

Number of running
deployments

Poll SQL:
select count(id) from session
where state='deploying'

diag

Number of deployments
which failed to complete or
failed to be deleted

Poll SQL:
select count(id) from session
where state like '%failure'

diag

Number of running
deployments which have not
been updated for more than
2 hours

Poll SQL:
select count(id) from session
where state='deploying' and
updated < (now() - INTERVAL
2 HOUR)

Alert:
Deployment in deploying
state which has not been
updated for a long period of
time likely indicates a job
which has hung up and needs
some attention.

Total number of application
packages in catalog

Poll SQL:
select count(id) from
package;

diag

Murano RabbitMQ instance

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 27

Process checks:
Murano RabbitMQ instance runs as a named instance - murano@localhost.

Process name Incoming
connections Role HA mode

beam TCP 41056, 55572 controller no

The command below returns the status of the Murano RabbitMQ instance:

rabbitmqctl -n murano@localhost status

And the following command returns the pid of the Murano RabbitMQ instance if it exists:

ps axf | grep beam | grep 'murano@localhost' | grep -oP '(?<=(^\s))(\d+)'

Libvirt
Libvirt provides a common layer on top of hypervisors or containers like KVM and LXC. Nova
uses libvirt to manage instances. The libvirt daemon must be started on all compute nodes,
otherwise no instances can be spawned.

Process name Incoming
connections Role HA mode

libvirtd internal RPC protocol,
XML format

compute n/a

Collected Metrics
Collecting statistics about hypervisors can be done either by requesting them directly from
libvirt or by using the following Nova API /os-hypervisors/detail and /os-hypervisors/statistics,
which is the recommended approach. These metrics are described above in the Nova section.
Furthermore, libvirt provides per instance statistics like CPU, Disk, and Network IO which are
further discussed in appendix. These statistics are mainly useful if they are associated with their
respective user, tenant, and cloud resource ID. To associate them, it is necessary to either
request Nova API and perform the mapping between libvirt instance ID and OpenStack ID (prior
to Juno), or more effectively, by using the libvirt instance metadata set by Nova and providing all
the necessary information:

 # virsh edit instance-00000002

 <name>instance-00000002</name>
 <uuid>01c2d829-e480-4568-92c2-7dc0432a2549</uuid>
 <metadata>
 <nova:instance xmlns:nova="http://openstack.org/xmlns/libvirt/nova/1.0"
 <nova:package version="2014.2.2"/>
 <nova:name>z</nova:name>
 <nova:creationTime>2015-06-05 08:52:12</nova:creationTime>

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 28

 <nova:flavor name="m1.micro">
 <nova:memory>64</nova:memory>
 <nova:disk>0</nova:disk>
 <nova:swap>0</nova:swap>
 <nova:ephemeral>0</nova:ephemeral>
 <nova:vcpus>1</nova:vcpus>
 </nova:flavor>
 <nova:owner/>
 <nova:root type="image" uuid="fff4ed5c-1ec6-4263-bc6a-0c5bfb9e9f62"/>
 </nova:instance>
 </metadata>
...

Libvirt logs are under the /var/log/libvirt/ directory.

HAProxy
HAproxy is the HTTP load balancer in front of all OpenStack services endpoints and a TCP load
balancer for MySQL.
Process checks

Process name Incoming
connections Role HA mode

haproxy All API requests
through HTTP port
and MySQL
requests through
TCP port

active controller active/passive

Performing checks against the HAProxy process through the VIP requires one to know which
node is the active (master) controller node in the Corosync/Pacemaker cluster. This is detailed
below in the Corosync/Pacemaker HA cluster section.
The active controller handles all the OpenStack services requests through HAProxy which in
turn, distributes the load across the API endpoints of the controller cluster.
Collected Metrics
It is critical to monitor the status of the backend from the point of view of HAProxy. A backend is
in down state when all the API endpoints behind the load-balancer are failed, and, therefore,
should be reported immediately to the operator in an alert.

Metrics Source Purpose
backend connections
errors

haproxy socket Alert: When a sudden spike of errors is
detected.

number of current
sessions

haproxy socket diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 29

number of denied
requests

haproxy socket diag
Can be useful for security audit

number of denied
responses

haproxy socket diag
Can be useful for security audit

bytes in/out haproxy socket diag
max queued requests haproxy socket diag
number of queued
requests

haproxy socket Alert: Beyond a certain threshold, the number
of queued requests can be a symptom of a
performance bottleneck in the workflow

queue limit haproxy socket diag
request errors haproxy socket Alert: When a sudden spike of errors is

detected

HAProxy provides a CLI to collect statistics for its frontends and backends. Several statistics are
available.
For example, you can use the command below to detect that the backend is in down state. Here,
the nova-api stopped responding:

echo "show stat" | socat /var/lib/haproxy/stats stdio | grep BACKEND \
| awk -F , '{print $1, $2, $18}' | grep DOWN
nova-api node-10 DOWN

As another example, you can use the command below to get a list of the API endpoints with
their respective status:

echo "show stat" | socat /var/lib/haproxy/stats stdio | grep BACKEND \
| awk -F , '{print $1, $2, $18}'
horizon BACKEND UP
keystone-1 BACKEND UP
keystone-2 BACKEND UP
nova-api-1 BACKEND DOWN
nova-api-2 BACKEND UP
nova-metadata-api BACKEND UP
cinder-api BACKEND UP
glance-api BACKEND UP
neutron BACKEND UP
glance-registry BACKEND UP
mysql BACKEND UP
swift BACKEND UP
heat-api BACKEND UP
heat-api-cfn BACKEND UP
heat-api-cloudwatch BACKEND UP
nova-novncproxy BACKEND UP

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 30

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#9

With the command below, you can see that the glance-api endpoints on node-7 and node-10 are
down while the backend is still up. However, the HA status of the Glance service as a whole is no
longer ensured and therefore should be reported immediately to the operator in an alert.

echo "show stat" | socat /var/lib/haproxy/stats stdio | awk -F , \
'{print $1, $2, $18}' | grep glance-api

glance-api FRONTEND OPEN
glance-api node-6 UP
glance-api node-7 DOWN
glance-api node-10 DOWN
glance-api BACKEND UP

Finally, the command below can be used to collect all the HAProxy statistics:

echo "show stat" | socat /var/lib/haproxy/stats stdio

RabbitMQ
All OpenStack services depend on RabbitMQ message queues to communicate and distribute the
workload across workers. Therefore, it is critical to monitor the healthiness of this component to
ensure there are no communication issues or performance bottlenecks especially between the
API endpoints and the workers. Furthermore, in order to appraise correctly the availability status
of the message queues you need to take into account that RabbitMQ operates in a cluster of
highly available queues.
Process checks
RabbitMQ is composed of two processes which run in pairs located on each controller node of
the HA cluster.

Process name Incoming
connections Role HA mode

epmd
beam

TCP 4369
TCP 41055, 5673
HTTP 15672
(management port
used to monitor
servers)

controller active/active

Note
In order to enable the monitoring of RabbitMQ, the management plugin must be installed
to expose RabbitMQ’s management Rest API. As for the service checks, a dedicated user
should be used to query the Rest API or use rabbitmqctl command line. For example, the
following command returns the status of the cluster:

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 31

https://www.rabbitmq.com/clustering.html
https://www.rabbitmq.com/ha.html
https://www.rabbitmq.com/management.html

rabbitmqctl cluster_status

RabbitMQ Cluster status

Check Source Purpose
Unmirror queues API management: In

response from resource
/queues, check for each
queue with x-ha-policy
arguments that
synchronised_slave_nodes is
more than 0.

Alert: Slaves are not
synchronized.

Missing nodes in cluster API management: Check the
running status for each node,
resource /nodes.

Alert: One or more nodes are
not being viewed as running.
This should not happen
unless they are in
maintenance.

Number of queues without
consumer

API management: The
number of consumers is
directly accessible within the
response from resources
/queues/<name>.

Alert: Queues without
consumers should not
happen. This could be a
symptom of a resource leak
situation.

Collected Metrics

Metric Source Purpose
Total number of nodes in
cluster

API management diag

Number of connections API management diag
Number of consumers API management Alert: Zero consumers should

never happen. Something is
probably deeply broken.

Number of exchanges API management Alert: Zero exchanges should
never happen. Something is
probably deeply broken.

Number of queues API management Alert: Zero queues should
never happen. Something is
probably deeply broken.

Metrics per queue

Metric Source Purpose

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 32

Number of ready messages API management Alert: When the value is
beyond standard deviation or
top percentiles threshold
depending on the data-points
distribution. This could be the
symptom of a resource
congestion situation.

Number of consumers API management diag
Number of published
messages

API management diag

Number of delivered
messages

API management diag

Number of acked messages API management diag
Number of memory used API management diag
Errors /var/log/rabbitmq/*.log Alert: When a sudden spike

of errors is detected.

MySQL
The MySQL database running on the OpenStack controller nodes is a central component
because it is used by almost all the OpenStack components as their primary data persistence
storage. Therefore, it is critical to monitor the healthiness of this component on each of the
controller nodes in the cluster.
Process checks

Process name Incoming
connections Role Dependencies HA mode

mysqld TCP 3306 controller storage active/passive

In addition to checking the existence of the process, it is necessary to check the availability
status of the MySQL database. This can be verified using the command:

mysqladmin ping

Collected Metrics

Metrics Source Purpose
bytes received (bytes/sec) poll SQL diag
bytes sent (bytes/sec) poll SQL diag
begin operations poll SQL diag
commit operations poll SQL diag
delete operations poll SQL diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 33

insert operations poll SQL diag
rollback operations poll SQL diag
select operations poll SQL Alert: The absence of select

operations could indicate that
the connection to the
database is broken unless
the MySQL server is in
maintenance.

update operations poll SQL diag
number of queries poll SQL diag
slow queries poll SQL diag
Database physical size
(Mbyte)

poll SQL:
SELECT table_schema
"database", sum(data_length
+ index_length) / 1024 /
1024 "size_mb" FROM
information_schema.TABLES
GROUP BY table_schema
order by 2 desc;

diag

These poll SQL metrics can be collected using the following SQL command:

SHOW GLOBAL STATUS WHERE Variable_name=<NAME>;

See MySQL server status variables for details.

Note
You should pay attention to MySQL logs to detect slow queries for diagnostic purposes.
You can activate slow queries log with the following configuration parameters:
slow_query_log=1, long_query_time=5, and slow_query_log_file=<filename>.

Metrics related to the MySQL cluster
The high availability of the MySQL database is supported in active/passive mode with one
master and several slave nodes. To ensure that the MySQL cluster remains highly available, you
should continuously monitor that slave nodes are ready to take over in case of a master node
failure.

Metrics Source Purpose
wsrep_ready SQL possible values: ON/OFF Alert: node not ready if OFF
wsrep_cluster_size SQL: number of nodes diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 34

http://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html

wsrep_replicated_bytes SQL: bytes sent to other
nodes

diag

wsrep_received_bytes SQL: bytes received from
other nodes

diag

wsrep_cluster_status SQL: Primary/Non-
Primary/Disconnected

Alert: A node is disconnected
from the cluster.

wsrep_local_commits SQL number of commit diag
errors /var/log/mysqld.log Alert: When a sudden spike

of errors is detected.

These metrics can be collected with the SQL command:

SHOW STATUS WHERE Variable_name REGEXP 'wsrep.*';

Memcached
Memcache is an in-memory storage server. It is mainly used by Keystone to store tokens. The
availability of memcache is therefore critical to ensure that the authentication requests
performed by the OpenStack services can be satisfied.
The consoleauth Nova service also uses memcache to share authorization tokens and to ensure
the high availability of the service.
Process checks
Memcached process checks should be performed for each controller node.

Process name Incoming
connections Role HA mode

memcached TCP port 11211 controller active/active

Memcache statistics per server can be collected with the command:

echo -e "<command>\nquit" | nc 127.0.0.1 11211

where command is one of “stats” or “stats items”

Refer to the memcached documentation for the complete list of stats available. Below is a
selected list of metrics:

Metrics Source Purpose
curr_item command stats: number of

current items
diag

total_item command stats items: total
number of items

diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 35

https://github.com/memcached/memcached/blob/master/doc/protocol.txt

cmd_get command stats: number of
get

diag

cmd_set command stats: number of
set

diag

get_hits command stats: number of
hits

diag

get_misses command stats: number of
get misses

Alert: high number of misses
indicates a misconfiguration
somewhere (TTL too short or
memory starvation)

curr_connections command stats: number of
current connections

diag

total_connections command stats: counter total
of connections

diag

evictions command stats: number of
valid items removed from
cache to free memory for
new items

Alert: should never happen.
Requires to increase the
memory size

bytes_read command stats: bytes read
from cache

diag

bytes_written command stats: bytes write
in cache

diag

limit_maxbytes command stats: max bytes to
use for storage

diag

threads command stats: number of
threads

diag

conn_yields command stats: connection
yield

diag
when > 0 consider increasing
the connection limit

maxbytes command stats: maximum
memory bytes to use

diag

maxconns command stats: maximum
connection

diag

evicted command stats: counter of
evicted items

diag

outofmemory command stats: number of
times the server fails to store
a new item due to a lack of
memory available

Alert: Unable to store item
should never happen

errors /var/log/memcached.log Alert: When a sudden spike
of errors is detected

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 36

HA cluster
Corosync/Pacemaker
The Mirantis OpenStack HA cluster for the controller nodes is implemented using Pacemaker
and Corosync. Corosync provides messaging and membership services while Pacemaker
performs resources management. Resources management includes detecting and recovering
the nodes and resources under its control from a failure.
For Corosync you should perform regular checks to verify that the ring is in the
active with no faults state as shown below:

corosync-cfgtool -s
Printing ring status.
Local node ID 33597632
RING ID 0
id= 192.168.0.2
status= ring 0 active with no faults

Pacemaker is responsible for handling the failover of some of OpenStack services in the HA
cluster in case of a hardware or software failure. To achieve this goal, Pacemaker monitors the
state of the resources under its control (every 30 seconds by default) to return a health status
for each of those resources.

Free space monitoring
Pacemaker provides a free space monitoring alarm that enables you to plan storage capacity
expansion and prevent the out-of-memory errors on the controller node.

Note
The Pacemaker free space monitoring alarm does not replace a fully-fledged monitoring
solution and only provides basic notification capabilities.

When a controller node runs out of disk space, all services managed by Pacemaker on that node
stop and the node becomes unavailable. If you have a highly-available configuration, the cloud
continues to operate using remaining controller nodes without noticeable data plane downtime.
Pacemaker automatically attempts to stop the services before the disks are completelly full.
However, if all controller nodes fill their disks, then Pacemaker performs a graceful shutdown of
the controller nodes which results in the control plane downtime, as well as inavailability of
virtual instances. The shutdwon controller nodes will come back online automatically after the
cloud administrator addresses the disk issues. However, the cloud administrator must manually
clean the alarms on the affected controller nodes using the following command:
crm node status-attr <hostname> delete "#health_disk".

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 37

State verification
With Pacemaker, you should perform regular checks to verify that its resources are in the
started state on at least one node when HA is handled in active/passive mode, and that at least
one resource is in the started state on each of the cluster nodes when HA is handled in
active/active mode. You can make that verification with the crm status command as shown
below:

crm status

Example of the output for the above command:

============
Last updated: Tue Jun 23 08:47:23 2015
Last change: Mon Jun 22 17:24:32 2015
Stack: corosync
Current DC: node-1.domain.tld (1) - partition with quorum
Version: 1.1.12-561c4cf
3 Nodes configured
43 Resources configured
============

Online: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]

Clone Set: clone_p_vrouter [p_vrouter]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
vip__management (ocf::fuel:ns_IPaddr2): Started node-1.domain.tld
vip__public_vrouter (ocf::fuel:ns_IPaddr2): Started node-1.domain.tld
vip__management_vrouter (ocf::fuel:ns_IPaddr2): Started node-1.domain.tld
vip__public (ocf::fuel:ns_IPaddr2): Started node-2.domain.tld
Master/Slave Set: master_p_conntrackd [p_conntrackd]
 Masters: [node-1.domain.tld]
 Slaves: [node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_haproxy [p_haproxy]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_dns [p_dns]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_mysql [p_mysql]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Master/Slave Set: master_p_rabbitmq-server [p_rabbitmq-server]
 Masters: [node-1.domain.tld]
 Slaves: [node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_heat-engine [p_heat-engine]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_neutron-plugin-openvswitch-agent [p_neutron-plugin-openvswitch-agent]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_neutron-dhcp-agent [p_neutron-dhcp-agent]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_neutron-metadata-agent [p_neutron-metadata-agent]

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 38

 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_neutron-l3-agent [p_neutron-l3-agent]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_p_ntp [p_ntp]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]
Clone Set: clone_ping_vip__public [ping_vip__public]
 Started: [node-1.domain.tld node-2.domain.tld node-3.domain.tld]

Here, the crm status command provides an easy method to inform the monitoring system that
the HA cluster is comprised of three controller nodes (node-1, node-2, and node-3), and that
node-1 is the actual master node. It also tells the monitoring system that the VIPs for the public
and management interfaces are started on the master node and that the HAProxy is started on
all the nodes of the HA cluster.
The crm_resource command can also be used to verify on which node a particular resource is
active. Execution of the command below, for example, tells the monitoring system that the
Neutron DHCP agent is active on node-1:

crm_resource --locate --quiet --resource p_neutron-dhcp-agent
node-1

Use the --resource vip_public option to find out on which node the public VIP is active:

crm_resource --locate --quiet --resource vip__public
node-2

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 39

Storage clusters
Ceph
Ceph is a unified and distributed storage system that can be used as a storage backend for
Cinder volumes and Glance images.

Note
Ceph Filesystem monitoring is not covered in this document since its capabilities are not
natively supported by Mirantis OpenStack. Mirantis OpenStack uses a single Ceph cluster
named ceph.

Process Checks

Process name Incoming
connections Role Dependencies HA mode

ceph-mon n/a controller active/active
ceph-osd n/a storage data replication

mechanisms
apache/httpd HTTP 6780 controller apache

mod_fastcgi
active/active

Collected Metrics

Metrics Details Purpose
cluster health command: ceph health alert: When the status is something

else than HEALTH_OK
cluster total space
available (Mbyte)

command: ceph df diag

cluster space used
(Mbyte)

command: ceph df diag

cluster free space calculated from previous
metrics

alert: Not enough disk space before
more storage capacity can be
physically provisioned

total number of monitor command: ceph mon
dump

diag

number of monitor in
Quorum

command: ceph mon
dump

diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 40

number of OSD daemons
per state

command: ceph osd
dump, where states are
UP or DOWN and IN or
OUT

diag

rate Kbytes read/write
(per pool)

command: ceph osd pool diag

operation/second (per
pool)

command: ceph osd pool diag

number of object (per
pool)

command: ceph osd pool diag

total number of Placement
Groups (PG) per status

command: ceph pg dump diag

filesystem commit latency
(per OSD daemon)

command: ceph pg dump diag

filesystem apply latency
(per OSD daemon)

command: ceph pg dump diag

KByte used (per OSD
daemon)

command: ceph pg dump diag

cluster write latency command: rados bench diag

Ceph Cluster Health Checks
ceph health
The monitoring system should perform regular checks to verify that the Ceph cluster is healthy.
This can be achieved using the ceph health command:

ceph health
HEALTH_OK

Anything else than HEALTH_OK should be reported in an alert like the following:

HEALTH_WARN clock skew detected on mon.node-16, mon.node-17

ceph df

ceph df
GLOBAL:
 SIZE AVAIL RAW USED %RAW USED
 380G 368G 12560M 3.22
POOLS:
 NAME ID USED %USED MAX AVAIL OBJECTS
 data 0 0 0 184G 0
 metadata 1 0 0 184G 0
 rbd 2 0 0 184G 0

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 41

 images 3 13696k 0 184G 5
 volumes 4 0 0 184G 0
 compute 5 0 0 184G 0

ceph mon dump

ceph mon dump --format json
{
 "created": "0.000000",
 "epoch": 3,
 "fsid": "bbec22eb-b852-4f6f-89f8-9d7fcceb062a",
 "modified": "2015-03-19 14:41:32.374329",
 "mons": [
 {
 "addr": "192.168.0.3:6789/0",
 "name": "node-28",
 "rank": 0
 },
 {
 "addr": "192.168.0.4:6789/0",
 "name": "node-29",
 "rank": 1
 },
 {
 "addr": "192.168.0.5:6789/0",
 "name": "node-30",
 "rank": 2
 }
],
 "quorum": [
 0,
 1,
 2
]
}

ceph osd dump

ceph osd dump (output truncated)
...
osd.0 up in weight 1 up_from 7 up_thru 23 down_at 0 ...
osd.1 up in weight 1 up_from 10 up_thru 23 down_at 0 ...
osd.2 up in weight 1 up_from 15 up_thru 23 down_at 0 ...
osd.3 up in weight 1 up_from 18 up_thru 23 down_at 0 ...
osd.4 up in weight 1 up_from 23 up_thru 23 down_at 0 ...
osd.5 up in weight 1 up_from 23 up_thru 23 down_at 0 ...

ceph osd pool

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 42

ceph osd pool stats -f json
[
 {
 "client_io_rate": {
 "op_per_sec": 1,
 "read_bytes_sec": 242,
 "write_bytes_sec": 2982616
 },
 "pool_id": 4,
 "pool_name": "volumes",
 "recovery": {},
 "recovery_rate": {}
 },
...

ceph pg dump

ceph pg dump -f json (output truncated)
{
 "full_ratio": "0.950000",
 "last_osdmap_epoch": 25,
 "last_pg_scan": 4,
 "near_full_ratio": "0.850000",
 "osd_stats": [
 {
 "fs_perf_stat": {
 "apply_latency_ms": 3,
 "commit_latency_ms": 2
 },
 "hb_in": [
 1,
 2,
 3,
 4,
 5
],
 "hb_out": [],
 "kb": 66497820,
 "kb_avail": 64344180,
 "kb_used": 2153640,
 "num_snap_trimming": 0,
 "op_queue_age_hist": {
 "histogram": [],
 "upper_bound": 1
 },
 "osd": 0,
 "snap_trim_queue_len": 0

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 43

 },
...

rados bench
The write latency can be obtained with the rados command. It writes objects in different pools.
You should keep the frequency of these checks lightweight to avoid overwhelming the cluster.
For example:

rados -p data bench 5 write -t 2 --run-name monit_perf
where command options are:
-p data: use the pool named ‘data’
bench: the rados command ‘bench’
5 : run the bench for 5 seconds
write: perform write operations
-t 2 : number of concurrent thread

Note
Another way to collect metrics related to OSD daemons is to grab from each node the
OSD daemon's socket. This command retrieves all metrics available, but the output is
really verbose and not all metrics are useful to monitor:
echo '{"prefix": "perf dump"}\0' | socat /var/run/\ ceph/<cluster>-osd.<ID>.asok stdio

Swift
Swift is the OpenStack project, which provides highly available, distributed and eventually
consistent storage services for objects. It is used by default as a storage backend to store
Glance images.
Process Checks

Process name Incoming
connection Role HA mode

swift-proxy-server HTTP 8080 controller active/active
swift-object-replicator n/a controller active/active
swift-object-server HTTP 6000 controller active/active
swift-container-serve
r

HTTP 6001 controller active/active

swift-container-replic
ator

n/a controller active/active

swift-account-server HTTP 6002 controller active/active

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 44

swift-account-replicat
or

n/a controller active/active

API Checks
Check the availability of the service through synthetic HTTP transactions against the Swift API
endpoint:

• create a container
• upload a small (few kilobytes) object
• delete the container and object

Collected Metrics
The Swift project is made to collect metrics natively. Indeed, it is the only OpenStack project that
is natively instrumented to send metrics to statsd or any statsd enabled data acquisition service
like Heka. It provides real-time operational data about the object storage cluster activity and
errors across all components. Please check the documentation for further information about how
to enable statsd metrics in the Swift developer documentation.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 45

https://github.com/etsy/statsd/
https://github.com/mozilla-services/heka
http://docs.openstack.org/developer/swift/admin_guide.html#reporting-metrics-to-statsd

Hardware and system monitoring
An effective monitoring solution for OpenStack should also check the host operating system and
the underlying infrastructure on top of which your cloud is running.
As we stated earlier in this document, we are not going to address the monitoring of the
network and storage equipments, because these topics are too broad and vendor specific to be
addressed here. However, we recommend that you perform some amount of server monitoring
to anticipate hardware failures using IPMI since it is a relatively standard interface that is
supported by most hardware vendors.

IPMI
IPMI is a standard driven by Intel that has been widely adopted by the server manufacturers. It
provides hardware Sensors Data Records to collect information such as:

• Components temperature
• Fan rotation
• Components voltage
• Power supply status (redundancy check)
• Power status (on or off)

The IPMI System Event Log provides a timed journal of all events that occurred in the server.
Each threshold crossing of previous sensors is logged with a severity level that can be one of the
following: recoverable, non-critical, critical, unrecoverable. See the IPMI specifications for further
details.
Other events can also be logged, such as:

• Memory Error-Correcting-Code memory (ECC) detection that can be reported in an alert if
they happen too often.

• Chassis intrusion detections that can be reported in an alert for security reasons.
Most Linux distributions provide the ipmitool package that allows to interact with the IPMI
interface.
Retrieve the SDR records for voltage by running:

/usr/bin/ipmitool -I lan -L operator -U root -H <ip> \
-P <password> sdr type "Voltage" list

VTT | 30h | ok | 7.10 | 0.99 Volts
CPU1 Vcore | 21h | ok | 3.3 | 0.83 Volts
CPU2 Vcore | 22h | ns | 3.4 | Disabled
VDIMM AB | 61h | ok | 32.1 | 1.49 Volts
VDIMM CD | 62h | ok | 32.2 | 1.49 Volts
VDIMM EF | 63h | ns | 32.3 | Disabled
VDIMM GH | 64h | ns | 32.4 | Disabled
+1.1 V | 31h | ok | 7.11 | 1.09 Volts
+1.5 V | 32h | ok | 7.12 | 1.47 Volts

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 46

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html

3.3V | 33h | ok | 7.13 | 3.26 Volts
+3.3VSB | 34h | ok | 7.14 | 3.36 Volts
5V | 35h | ok | 7.15 | 5.06 Volts
+5VSB | 36h | ok | 7.16 | 5.06 Volts
12V | 37h | ok | 7.17 | 12.30 Volt
VBAT | 38h | ok | 7.18 | 3.22 Volts

To get the system events logs, run:

/usr/bin/ipmitool -I lan -L operator -U root -H <ip> -P <password> sel list

17 | 01/27/2015 | 11:31:21 | OS Boot | C: boot completed | Asserted
18 | 01/27/2015 | 11:41:08 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
19 | 01/27/2015 | 12:07:14 | Physical Security #0x51 \
| General Chassis intrusion | Asserted
1a | 01/27/2015 | 17:37:46 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
1b | 01/28/2015 | 06:27:27 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
1c | 01/28/2015 | 12:03:13 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
1d | 01/28/2015 | 17:39:00 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
1e | 01/28/2015 | 23:14:46 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
1f | 01/29/2015 | 04:50:33 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
20 | 01/29/2015 | 10:26:19 | Memory | Correctable ECC | Asserted | CPU 0 DIMM 8
3e | 02/01/2015 | 17:14:54 | VBAT | 38h | lcr | 7.18 | 2.54 Volts

Get the power status:

/usr/bin/ipmitool -I lan -L operator -U root -H <ip> \
-P <password> power status
Chassis Power is on

Note
When coupled with the Ironic project, Ceilometer has the ability to collect IPMI sensors.

Disks monitoring
The disks are often the primary cause of server failures. You should monitor the disks of your
servers to detect and whenever possible anticipate the occurrence of those failures. First signs
of problems with your disks are generally reported by the kernel. Usually, disks errors are logged
in /var/log/kern.log or /var/log/messages, but the location may differ depending on your Linux
distribution.
A recommended approach is to watch your system logs for bad drives using programs like
Logstash or Heka or even dedicated tools like swift-drive-audit that can be run using Cron.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 47

http://docs.openstack.org/developer/ceilometer/sourcecode/ceilometer/ceilometer.ipmi.platform.ipmi_sensor.html
https://www.elastic.co/products/logstash
http://hekad.readthedocs.org/
http://docs.openstack.org/developer/swift/admin_guide.html#detecting-failed-drives
http://en.wikipedia.org/wiki/Cron

Another approach to check the status of your disks is to rely on the S.M.A.R.T interface when it is
supported although some differences may be found between Hard Disk Drives (HDD) and Solid
State Disks (SSD) devices.
Many attributes/counters are available through the S.M.A.R.T interface but your mileage may
vary depending on the disk manufacturer.
It is hard to anticipate disk failures in a deterministic way. The handling of disk failures is
generally addressed on a case-by-case basis using S.M.A.R.T attributes that can be indicative of
a dysfunctioning and as such conductive of future problems.
For HDD:

• Uncorrectable sector/event count
• Reallocated sector/event count
• Spin retry count
• Temperature: should usually be lower than 50°C

And for SDD:

• Media Wearout Indicator: indicator of the cells health, where 0 is the worst value. When the
value reaches around 20 you should consider changing the disk.

• Temperature: should usually be lower than 50°C
Linux distributions provide the smartmontools package to play with the S.M.A.R.T interface.
To read the attributes of your sda disk run:

smartctl -a /dev/sda

The smartctl command displays a health status or pending alerts when used with the -H option.

smartctl -H /dev/sda
=== START OF READ SMART DATA SECTION ===
SMART overall-health self-assessment test result: PASSED

Operating system monitoring
Getting access to an operating system’s health status and key metrics is largely supported by all
Linux distributions through a variety of tools and monitoring applications including Nagios,
Zabbix, Collectd, Diamond, Ganglia, Sensu, and others.
Below is the list of key metrics that we think are critical to collect in the context of OpenStack
monitoring. Whenever possible we try to provide alerting criteria that should be applied to these
metrics, but they largely depend on the node’s role (workload characterisation) and hardware
characteristics of the servers.

Host monitoring

Metrics Unit Purpose

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 48

http://en.wikipedia.org/wiki/S.M.A.R.T.
http://static.googleusercontent.com/media/research.google.com/en//archive/disk_failures.pdf
https://www.smartmontools.org/
http://www.nagios.org/
http://www.zabbix.com/
http://collectd.org/
https://github.com/BrightcoveOS/Diamond/wiki/
http://ganglia.sourceforge.net/
https://sensuapp.org/

node uptime check second diag
OS version string diag
kernel version string diag
host is alive (simple ping) bool alert: When host is down

Disk usage monitoring

Metrics Unit Purpose
read bytes/sec diag
write bytes/sec diag
operation read operation/sec diag
read time millisecond diag
write time millisecond diag

Soft RAID monitoring

Checks Alert criteria
pool state missing member
synchronization synchronization running

Filesystem usage monitoring

Metrics Purpose
free space Alert: static thresholds like <10% or <5% free space in the

file system can generate false positives. It is instead
recommended to set a smarter alarm that is based on the
trend observed from historical data so that you are alerted
only when it is projected that the file system becomes full
within the next 24 hours for example.

used space diag
free inodes Alert: Below 10% free inodes may indicate too many small

files or zero sized files on disk. An exhaustion of inodes
raises the error no space left regardless of whether there is
still plenty of free space on the file system or not.

used inodes diag

CPU usage monitoring

Metric Purpose

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 49

% CPU user diag
% CPU system diag
% CPU wait Alert: Above 10% of CPU wait could be suspicious

depending on the node’s role which calls for further
investigations. For example, a CPU wait above around 10%
on the compute nodes is probably not a desirable situation
because it means that the local disk(s) are a performance
bottleneck for the hypervisor.

% CPU idle Alert: Below 20% CPU idle could be an issue depending on
the node’s role which calls for further investigations. For
example, below 20% CPU idle on controller nodes is
probably not a desirable situation because it means that
the cloud management system is overloaded. However,
below 20% CPU idle on the compute nodes may be
considered as normal and even expected depending on
the operator’s overcommitment policies.

system load (5, 10, 15) diag
context switches diag: It is important to take a closer look at the rate of

context switches. A rate that is too high should be
interpreted as an anomaly that may result from having too
many processes running on a node or from running poorly
parallelized applications that are too heavily competing for
shared resources.

RAM usage monitoring
Setting alarms for RAM usage is not necessarily appropriate, because it could generate false
positives. This is due to the fact that some applications allocate more memory than they
currently need, for example, to support caches. And so, in order to correctly identify a condition
of memory shortage in an alarm, you would have to take into account how the applications
actually use the memory, which is not really possible in practice.

Metrics Unit Purpose
free megabytes diag
used megabytes diag
cached megabytes diag
buffered megabytes diag

Swap usage monitoring
Same thing for the swap usage. Swap usage may be an indication of a memory shortage
situation when you observe a steady increase of swap space usage over a relatively long period
of time. But, probably, not in terms of usage percentage, because files may stay in swap for a
long period of time without any further access to them.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 50

Metrics Unit Purpose
free megabytes diag
used megabytes diag
cached megabytes diag
io in/out megabytes diag

Process statistics monitoring
It is generally a good idea to collect process statics to be stored in a time-series database for
trend analysis and anomaly detection using statistical models.

Metrics Purpose
number of processes running diag
number of processes paging diag
number of processes blocked diag
number of processes sleeping diag
number of processes zombies diag
number of processes stopped diag
fork rate megabytes diag

More fine-grained statistics could be collected for key processes like those supporting the
OpenStack services:

Metrics Purpose
number of threads diag
memory usage (Mbytes) diag
cpu usage (user/system) diag

Network Interface Card (NIC) monitoring
Collected metrics

Metrics Purpose
bandwidth Alert: When bandwidth is consumed steadily approaching the nominal

bandwidth of the network link.
errors Alert: When errors rate is too high.

Status checks

Checks Purpose
link status diag
bonding status diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 51

Note
Bonding can be achieved with Linux bonding or Open vSwitch.
Linux bonding status information is found in /sys/class/net/<bondX>/operate. See as an
example how Nagios performs linux bonding checks.
Open vSwitch bonding status information is displayed with the ovs-appctl bond/show.

Firewall (iptables) monitoring

Checks Source Purpose
status iptables -L Alert: When firewall is not enabled

It is generally a good idea to collect firewall metrics for diagnostic. The iptstate command allows
the number of connections and TCP sessions metrics collection.

Metrics Purpose
dropped packets diag
number of connection TCP diag
number of connection UDP diag
number of connection ICMP diag
number of TCP sessions SYN diag
number of TCP sessions TIME_WAIT diag
number of TCP sessions ESTABLISHED diag
number of TCP sessions CLOSE diag

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 52

http://exchange.nagios.org/directory/Plugins/Operating-Systems/Linux/check_linux_bonding/details

Appendix
We put additional materials in this appendix that are out of the scope but which could,
nonetheless, be of interest.

Virtual machine monitoring
It is possible to collect guests statistics from libvirt, see libvirt-domain for details.

1. Block IO

• read_reqs
• read_bytes
• write_reqs
• write_bytes

2. Network IO

• rx_bytes
• rx_packets
• rx_errors
• rx_drops
• tx_bytes
• tx_packets
• tx_errors
• tx_drops

3. CPU

• cputime
• vcputime
• systemtime
• usertime

Note
The VCPU time is global and cumulative and is reported in nanoseconds since the last
boot. To calculate a VCPU usage percentage you need to divide vcputime by the number
of VCPUS divided by the wallclock time of the sampling interval.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 53

http://libvirt.org/html/libvirt-libvirt-domain.html

Guest agent
A guest agent allows running scripts or applications inside an instance while it runs.
Unfortunately, there is no support of the guest agent with KVM hypervisor at the moment, only
XEN driver supports it.

VM network traffic
The traffic across VMs can be monitored from the virtual switches by enabling monitoring
sampling with sFlow on each Open vSwitch server.
The basic principle is to sample network traffic and send all the samples to the sFlow collector
for analysis. Known open source software that supports sFlow include pmacct, Ganglia, and
Ntop.
NetFlow is a commercial standard embedded in many physical devices with the main difference
that it does not sampling network traffic, which is more resource-intensive than sFlow but also
more accurate.

Mirantis OpenStack Monitoring Guide 9.2

©2017, Mirantis Inc. Page 54

http://www.inmon.com/technology/
http://www.sflow.org/products/collectors.php
http://www.pmacct.net/
http://ganglia.sourceforge.net/
http://www.ntop.org/

	Copyright notice
	Preface
	Intended Audience
	Documentation History

	Introduction
	Assumptions
	Intended audience
	Document scope

	Common monitoring practices
	Monitoring domains
	Monitoring activities
	Services, processes, and cluster checks
	Metering
	Logs processing
	Logs indexing
	OpenStack notifications processing
	Diagnosing versus alerting
	Time synchronization

	Monitoring activities details
	Keystone
	Nova
	Network
	Neutron
	DHCP agent
	Open vSwitch

	Glance
	Cinder
	Horizon
	Heat
	Ceilometer
	Sahara
	Murano
	Murano RabbitMQ instance

	Libvirt
	HAProxy
	RabbitMQ
	MySQL
	Memcached

	HA cluster
	Corosync/Pacemaker
	Free space monitoring
	State verification

	Storage clusters
	Ceph
	Swift

	Hardware and system monitoring
	IPMI
	Disks monitoring
	Operating system monitoring
	Host monitoring
	Disk usage monitoring
	Soft RAID monitoring
	Filesystem usage monitoring
	CPU usage monitoring
	RAM usage monitoring
	Swap usage monitoring
	Process statistics monitoring
	Network Interface Card (NIC) monitoring
	Firewall (iptables) monitoring

	Appendix
	Virtual machine monitoring
	Guest agent

	VM network traffic

