
Mirantis OpenStack Planning
Guide

version 9.2

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page i

Contents
Copyright notice 1
Preface 2

Intended Audience 2
Documentation History 2

Introduction 3
OpenStack environment architecture 3
Introduction to Fuel 4
Overview of the planning process 5

Fuel system requirements 6
Network requirements 6

Public and floating IP address requirements 6
Routing requirements 7
Switching requirements 7

Fuel Master node hardware requirements 8
Storage on the Fuel Master node 8
Fuel Slave nodes hardware recommendations 9

Fuel reference architecture overview 10
Nodes and roles 10
Highly-available environment architecture 11
Node configuration 12
Highly-available MySQL database 15
Server load balancing using HAProxy 16
Cluster resource management using Pacemaker and Corosync 16

Plan the network 18
Logical networks 18
Networking Templates 19
Specifying IP address ranges for logical networks 20
Virtual IP addresses for load balancing 20
Multiple cluster networks 20
Network topologies 22
Additional networking functionality 24

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page ii

Known limitations 24
Plan the storage 27

Storage components overview 27
Plan block storage 27
Plan object storage 28
Storage plugins 29

Plan the monitoring tools 30
Monitor the OpenStack environment using the OpenStack Telemetry service 30
Custom transformed metrics 31
Plan the OpenStack Telemetry service back end 32
Optimize the MongoDB database 33
Modify MongoDB indexes 33

Plan a Hadoop cluster 35
Node requirements 35
Hardware requirements 35
Limitations 36
System prerequisites 36

Plan the orchestration 40
Orchestration (Heat) overview 40

Plan the vSphere integration 41
Overview 41
Deploy an environment with VMware vCenter and KVM/QEMU 42
Prerequisites 42
Known limitations 43

Plan the Fuel plugins 44
Fuel plugins overview 44
Fuel plugin validation 44

Calculate hardware resources 45
Example conventions 45
Calculate CPU 46
Calculate memory 47
Calculate storage 48

Calculate storage performance 48

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page iii

Ephemeral storage 49
Block and object storage 50
Calculate object storage 50
Calculate ephemeral storage 51

Calculate network 53
Calculate network 54
Calculate floating and public IP addresses 54
Calculate IP addresses for Neutron 55
Calculate IP addresses for Nova-network 56

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page iv

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 1

Preface
This documentation provides information on how to use Fuel to deploy OpenStack
environments. The information is for reference purposes and is subject to change.

Intended Audience
This documentation is intended for OpenStack administrators and developers; it assumes that
you have experience with network and cloud concepts.

Documentation History
The following table lists the released revisions of this documentation:

Revision Date Description
February 6, 2017 9.2 GA

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 2

Introduction
OpenStack is an extensible, versatile, and flexible cloud management platform. It is a portfolio
of cloud infrastructure services — compute, storage, networking, and other core resources that
are exposed through REST APIs. It enables a wide range of control over these services, both
from the perspective of an integrated Infrastructure as a Service (IaaS) controlled by
applications and as a set of tools that enable automated manipulation of the infrastructure
itself.
This document will help cloud administrators to understand the OpenStack components and
architecture they can deploy using Fuel, as well as estimate future scaling requirements. This
document presumes that you are familiar with basic OpenStack concepts.
This section includes the following topics:

OpenStack environment architecture
Using Fuel, you can deploy multiple highly-available OpenStack environments. An OpenStack
environment consists of physical servers, or node servers, of the following types:
Controller

Controller nodes manage all operations within an OpenStack environment. To achieve high
availability, deploy at least three controller nodes for quorum. However, if you do not have
enough hardware to deploy three controllers, you can start with one controller node and add
more nodes later. Similarly, if you later need to expand your controller cluster, you add
more controller nodes.

Compute
Compute nodes provide processing resources to accommodate virtual machine workloads.
The virtual machines, or instances, that you create in Horizon, run on the compute nodes.
Such components as neutron-agent and ceilometer-agent-compute may also run on the
compute nodes. The nova-compute service controls the lifecycle of virtual machines and
typically runs on the compute nodes. However, if you deploy an OpenStack environment
with VMware vCenter as a hypervisor, nova-compute runs on the controller nodes.

Storage
The storage needs of your environment can be addressed either by provisioning dedicated
storage nodes or by assigning a storage role to the controller node. Fuel deploys the
following storage options:

• Cinder Logical Volume Manager (LVM)
Provides persistent block storage to virtual machines over iSCSI or iSCSI over RDMA.
If you configure a dedicated storage node, the cinder-volume service runs on the
storage node.

• Ceph
Combines object and block storage. You can use Ceph RADOS Block Device (RBD)
as storage for Ceph volumes, Glance images, and/or ephemeral volumes. You can
also deploy Ceph RadosGW for objects. If you create a separate Ceph storage
node, it runs the Ceph object storage daemon (OSD).

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 3

Warning
We highly recommend that you do not place Ceph OSD on controllers as it
severely degrades the controller's performance. Use separate storage nodes
if you have enough hardware.

• Swift
Provides object storage that Glance can use to store virtual machine images and
snapshots. If you do not select any other storage options when you provision an
OpenStack environment, Fuel deploys Swift by default. Applications that you
deployed in your OpenStack environment may also use Swift object storage.

Selection of a storage back end for your OpenStack environment depends on multiple
factors. For more information, see: Plan the Storage.

Seealso

• Fuel reference architecture overview

Introduction to Fuel
Fuel is a deployment automation tool with a user-friendly web UI that helps you to quickly
provision an OpenStack environment. Fuel is a part of Mirantis OpenStack — a productized
snapshot of the open source technologies. Fuel includes scripts that dramatically facilitate and
speed up the process of cloud deployment, without requiring you to completely familiarize
yourself with the intricate processes required to install the OpenStack environment components.
Fuel includes the following components:
Fuel Master node

A standalone physical or virtual machine server from which you provision your OpenStack
environments.

Fuel Slave nodes
Servers, or node servers, that can be controller, compute, storage, or other nodes.

Fuel deploys an OpenStack architecture that was thoroughly tested and proved to be effective
on many deployments. One of the main advantages of the architecture is high availability and
load balancing. All components that Fuel deploys on the controller node are highly-available. For
example, to achieve high availability in stateless OpenStack services, such as nova-api,
nova-conductor, and so on, Fuel uses Pacemaker/Corosync <http://clusterlabs.org/>. For more
information, see: Fuel reference architecture overview.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 4

Note
If the architecture that Fuel deploys does not meet your business requirements, standard
configuration can be adjusted according to your needs. For more information, contact
Managed Services for Mirantis OpenStack

Overview of the planning process
The following table will help you to plan your deployment correctly:

Step description Additional information
Review system requirements and
verify that your environment meets
the requirements.

See Fuel system requirements

Review Fuel reference architecture. See: Fuel reference architecture overview
Select a network topology. See: Plan the network
Prepare an IP address management
plan and network association.

Identify the network addresses and VLAN IDs for your
Public, Admin (PXE), Management, and Storage
networks. Prepare a logical network diagram.

Select storage. See: Plan the storage
Determine how many nodes to
deploy and which roles to assign to
each and the high availability to
implement.

See: Nodes and roles

Plan monitoring facilities See: Plan the monitoring tools
If you want to run Hadoop, plan to
install Sahara.

See: Plan a Hadoop cluster

If you want to use VMware vSphere
as a hypervisor, plan the vSphere
integration.

See: Plan the vSphere integration

Calculate the server and network
hardware needed.

See: Calculate hardware resources

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 5

https://www.mirantis.com/services/managed-services/

Fuel system requirements
This section provides system requirements for the Fuel Master node and recommendations for
Fuel Slave nodes. Fuel Slave nodes are the OpenStack and other nodes. Therefore, hardware
configuration that you will have to use for Fuel Slave nodes will vary depending on the type of
cloud that you build.
This section includes the following topics:

Network requirements
The server on which you install the Fuel Master node must have access to the Internet to
download packages required to install the operating system on the Fuel Slave nodes and later
update the packages, as well as the Fuel software. If for security or other reasons the Fuel
Master node does not have an Internet connection, then you must configure a local repository
mirror and point Fuel to use this repository.
All nodes in your OpenStack environment must be able to communicate with each other. Your
network configuration greatly depends on your environment requirements and the network
topology that you select. For more information, see: Plan the network.
This section includes the following topics:

Public and floating IP address requirements
This section describes the OpenStack requirements for public and floating IP addresses. The
requirements differ depending on the selected network topology.
The following table provides the floating and public IP address requirements for Neutron:

Public and floating IP requirements for Neutron:

IP range Description
Public IP range Required:

• 1 IP address per controller node. This IP address is assigned to
the external network (br-ex).

• 2 IP addresses for environment's virtual IP addresses
• 1 IP address for the default gateway

Optional:

• If you use Neutron DVR, it requires one additional IP address
for each Compute node in case you plan to use Floating IPs in
the deployment.

• If you deployed Zabbix, 1 IP address per Zabbix node.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 6

Floating IP range Required:

• 1 IP address per tenant, including the Admin tenant. This IP
addresses are assigned to the virtual machine interfaces
through the tenant's virtual router. Therefore, one Floating IP
is assigned to the Admin tenant automatically as part of the
OpenStack deployment process.

• 1 IP address per virtual machine connected to the external
network. These IP addresses are assigned on demand and
may be released from the virtual machines and returned back
to the pool of unassigned Floating IP addresses.

Seealso

• Calculate floating and public IP addresses
• OpenStack Networking Guide

Routing requirements
If you deploy a single node group, you do not need to meet any routing requirements. However,
if you deploy multiple node groups, your environment must meet the following requirements:

• Node groups must communicate with each other through routers.
• Each network in each node group must have a gateway.

When you configure routing for your OpenStack network, consider the following
recommendations:

• Use the default routing through a router in the Public network
• Use the management network to access your management infrastructure, including L3

connectivity, if required.
• Isolate Storage and Private networks from all other L3 networks.

If you plan to use IPv6 addresses, verify that your environment meets these additional routing
requirements:

• The provider's network router supports IPv6 routing.
• The tenant's network router is connected to the Fuel Public network and provides the

functionality to configure static routes to the virtual routers in the OpenStack environment.

Switching requirements
Before deploying an OpenStack environment, you must configure network switches. Since
terminology and configuration vary for each vendor, this section provides general
vendor-agnostic information about how traffic should flow. For detailed information on how to
set up networks, read the OpenStack Networking Guide.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 7

Disregarding the type of the switch and vendor that you use, set the following configuration for
Admin (PXE) network:

1. Configure all access ports to allow non-tagged PXE booting connections from each Fuel
Slave node to the Fuel Master node.

2. Set the switch port assigned for PXE requests on all nodes to Access mode.
3. Isolate the PXE boot network from any other L2 network segments. Since Fuel runs its own

DHCP server, it may conflict with DHCP servers from other L2 network segments which may
result in both company infrastructure and Fuel being nonoperational.

4. Configure each of the switch ports connected to the Fuel Slave nodes as STP Edge port or
spanning-tree port fast trunk to avoid DHCP timeouts. For different switch port vendors, this
terminology may vary.

Fuel Master node hardware requirements
When planning hardware for the Fuel Master node, verify that your hardware meets the
following minimum requirements:
For a production environment:

• Quad-core CPU
• 4 GB RAM
• 10 Gigabit network port
• IPMI access through an independent management network
• 50 GB (depends on the number of deployed nodes)

See: Storage on the Fuel Master node
For a testing environment:

• Dual-core CPU
• 2 GB RAM
• 1 Gigabit network port
• 50 GB disk
• Physical console access

Storage on the Fuel Master node
In a default OpenStack environment deployed by Fuel, compute nodes send logs to the Fuel
Master node. Therefore, you must assign a sufficient amount of disk space to store these logs.
During installation, Fuel automatically creates a separate /var partition to store logging
information and allocates 40% of disk size to it. Depending on the size of your cloud, the log
rotation interval, and the detail of logging, you may need different disk sizes. For example, in a
production environment that includes 200 compute nodes, with the log rotation interval of one
month, allocate 2 - 4 TB of disk space for logging.
A typical production OpenStack environment includes a monitoring plane, such as StackLight,
and logging is configured to use the log aggregator of the monitoring plane. Therefore, the Fuel

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 8

Master node does not require additional disk space to store logs. However, you have to assign a
required amount of disk space for logs on the monitoring nodes.

Seealso

• Monitoring Guide

Fuel Slave nodes hardware recommendations
Determining the appropriate hardware for the Slave nodes depends on the node type, the
workloads that you plan to run on the nodes, and whether you combine different OpenStack
components on one node or run them separately. Typically, you need a two-socket server with
the CPU, memory, and disk space that meet your project requirements. Read the OpenStack
Architecture Design Guide for recommendations on how to plan an OpenStack deployment.
General guidelines for the Fuel Slave nodes:

• Controller nodes
Use at least three controller nodes for high availability. High availability is
recommended for all production environments. However, you can start with a single
controller node for testing purposes and add more nodes later. The controller nodes
must form a quorum. Therefore, for all deployments, the total number of controller
nodes must be odd. Further resource scaling depends on your use case and requires
extensive assessment of your environment and business needs.

• Compute nodes
The number and hardware configuration of the compute nodes depend on the
following:

• Number of virtual machines
• Applications that you plan to run on these virtual machines
• Types of workloads

• Storage nodes
The number and capacity of the storage nodes highly depend on the type of the
storage, redundancy, and workloads that you run on the compute nodes. Therefore, the
storage configuration for every deployment will vary significantly.

Seealso

• OpenStack Architecture Design Guide
• OpenStack Operations Guide

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 9

Fuel reference architecture overview
This section provides information about the OpenStack environments that Fuel enables you to
deploy. Since OpenStack is a highly adaptable platform, you can choose virtually any
component including databases, Linux distributions, OpenStack components, and so on.
However, Fuel does not allow you to deploy all of them. Instead, Fuel enables you to deploy best
of breed, versatile, and robust OpenStack reference architecture that will address the
requirements of various types of clouds.
In highly-available architecture that Fuel deploys, all components including controller nodes,
databases, message queues, and so on, have redundant instances that ensure reliability and
continuous availability of user data and applications. For in-depth explanation of high availability
in OpenStack, read the OpenStack High Availability Guide available at
http://docs.openstack.org/.
This section includes the following topics:

Nodes and roles
When planning your OpenStack deployment, you must determine a proper mix of node types
and roles for each node. You assign roles to each node server when you deploy an OpenStack
environment.
The planning of nodes and roles involves determining the level of HA you want to implement, as
well as hardware planning.
Some general guiding principles:
If you deploy a production-grade OpenStack environment, spread the roles and the workload
over as many servers as possible to have a fully redundant, highly-available OpenStack
environment and to avoid performance bottlenecks.
For testing purposes, you can deploy your OpenStack environment on VirtualBox. For more
information, see Fuel QuickStart Guide.
OpenStack can be deployed on smaller hardware configurations by combining multiple roles on
the nodes and mapping multiple logical networks to a single physical NIC.
Some plugins require specific roles. Check the requirements of all plugins that you plan to use.
To maximize performance, carefully choose your hardware components and make sure that the
performance features of the selected hardware are supported and enabled.
Node requirements
For a testing requirement, you need at least three controller nodes and one compute node.
In a production environment, Mirantis recommends that you separate storage nodes from
controller nodes. This helps avoid resource contention, isolates failure domains, and allows to
optimize hardware configurations for specific workloads.
To achieve this, you need a minimum of five nodes when using Swift and Cinder storage back
ends, or seven nodes for a fully redundant Ceph storage cluster:

• Three controller nodes.
• One Cinder node or three Ceph OSD nodes.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 10

http://docs.openstack.org/

• One compute node.

Note
You do not need Cinder storage nodes if you use Ceph RBD as storage backend for Cinder
volumes.

Highly-available environment architecture
A highly-available deployment must include at least three controller nodes, as well as replicas of
other servers.
You can combine compute, storage, and network nodes to reduce the hardware requirements
for the environment, although this may degrade the performance and robustness of the
environment.

Controller Node #1 Controller Node #2 Controller Node #3

RabbitMQ Cluster

MySQL Galera

Neutron (Active)

HAProxy (Active)

Pacemaker Cluster

RabbitMQ Cluster

MySQL Galera

Neutron (Standby)

HAProxy (Standby)

Pacemaker Cluster

RabbitMQ Cluster

MySQL Galera

Neutron (Standby)

HAProxy (Standby)

Pacemaker Cluster

Cinder Node

Cinder Volume

Ceph Node

Ceph OSD

Compute Node

Compute

OpenStack services are interconnected by RESTful HTTP-based APIs and AMQP-based RPC
messages.
Redundancy for stateless OpenStack API services is implemented through the combination of
Virtual IP (VIP) management using Pacemaker and load balancing using HAProxy.
Stateful OpenStack components, such as the state database and messaging server, rely on their
respective active/active and active/passive modes for HA.
For example, RabbitMQ uses built-in clustering capabilities, while the database uses
MySQL/Galera replication.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 11

MySQL/Galera

pacemaker

RabbitMQ

HAProxy

HAProxy
glance-registry (HA)

HAProxy

Swift

glance-api (HA)

HAProxy

nova-scheduler

cinder-api (HA)keystone-api (HA)nova-api (HA)

Horizon (HA)

neutron-api (HA)

pacemaker

HAProxy

neutron agents

Node configuration
Fuel uses custom Pacemaker scripts to deploy HAProxy inside a dedicated network namespace.
Controller nodes

Controller nodes are the main components of your highly-available OpenStack environment.
Controller nodes manage all operations within an OpenStack environment. Multiple
controller nodes provide redundancy.
A recommended implementation of a highly available cluster architecture uses
quorum-based techinques. A basic quorum-based techinque requires a simple majority of
nodes: floor(N/2)+1 nodes. This means that keeping a functioning cluster with one failed
controller node requires a minimum of three nodes. Keeping a functioning cluster with two
failed controller nodes requires a minimum of five nodes and so on.
See also Highly-available MySQL database.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 12

HAProxyE I

Controller Node 1

pacemaker

neutron agents
(active)

mysql-wsrep

horizon

cinder-api

neutron-api

keystone-api

glance-api

nova-api

nova-scheduler

glance-registry

rabbitmq

HAProxyE I

Controller Node 2

pacemaker

neutron agents
(hot standby)

mysql-wsrep

horizon

cinder-api

neutron-api

keystone-api

glance-api

nova-api

nova-scheduler

glance-registry

rabbitmq

MySQL Galera Cluster
(Active/Active)

RabbitMQ Cluster
(Active/Active)

E

I

External IP

Internal IP

Every OpenStack controller node runs HAProxy, which performs the following:

• Manages a single External Virtual IP (VIP) for all controller nodes.
• Provides HTTP and TCP requests load balancing to the OpenStack API services,

RabbitMQ, and MySQL.

Note
OpenStack services use Oslo messaging and are directly connected to the RabbitMQ
nodes. Therefore, they do not require HAProxy.

When you access an OpenStack cloud through the Horizon dashboard or through the REST
API:

1. Your request is sent to the controller node that holds the external VIP.
2. HAProxy terminates the connection.
3. HAProxy then handles a new request by sending the request to the original or other

controller node depending on the current controller workload.
Each component or service that runs on the controller nodes has its own HA mechanism:

• Stateless OpenStack services, such as nova-api, glance-api, keystone-api, neutron-api,
nova-scheduler, cinder-api, do not require any special attention besides load balancing.

• Horizon, as a typical web application, requires sticky sessions to be enabled at the load
balancer.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 13

https://wiki.openstack.org/wiki/Oslo/Messaging

• RabbitMQ provides active/active high availability for the OpenStack Telemetry service
using mirrored queues. RabbitMQ is deployed with custom resource agent scripts for
Pacemaker. You can enable HA for RPC queues as well if required. However, it may
impact performance in large deployments.

• MySQL databases achieve high availability through MySQL/Galera cluster and custom
resource agent scripts for Pacemaker.

• Neutron agents are active/passive and are managed by custom resource agent scripts
for Pacemaker.

• Ceph monitors implement their own quorum-based HA mechanism and require time
synchronization between all nodes. Clock drift higher than 50ms may break the quorum
or even crash the Ceph service.

Compute nodes
Compute nodes are the servers on which your users create virtual machines (VMs) and host
applications. Compute nodes communicate with the controller nodes and the essential
services such as RabbitMQ and MySQL.

HAProxyE I

Controller Node Compute Node(s)

nova-compute

neutron-openvswitch-agent

Open vSwitch

Storage nodes
Storage nodes provide storage for persistent and temporary data. Fuel provides the
following storage options:

• Cinder Logical Volume Manager (LVM)
Cinder LVM does not implement data redundancy across nodes. If a Cinder node is
degraded, volumes stored on the storage node cannot be recovered from the data
stored on other Cinder nodes. If you need your block storage to be resilient, use Ceph
for volumes.

• Ceph
Ceph implements its own HA. You must have a sufficient number of controller nodes
running the Ceph Monitor service to form a quorum, and enough Ceph OSD nodes to
satisfy the object replication factor.

controller 3

controller

ceph-mon

controller 2

controller

ceph-mon

controller 1

controller

ceph-mon

nova

ceph client

compute 1

compute n
. . .

ceph-osd

ceph-osd

storage 1

storage n
. . . sto

ra
g
e
 n

e
tw

o
rk

management network

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 14

http://ceph.com/docs/master/rados/troubleshooting/troubleshooting-mon/
http://ceph.com/docs/master/rados/operations/pools/

• Swift
Swift API relies on the same HAProxy setup with VIP on the controller nodes as the other
REST APIs. In a testing environment, you can deploy Swift Storage and Proxy services
on the controller nodes. In a production environment, you need dedicated nodes: two
for Swift Proxy and a minimum of three for Swift Storage.

HAProxyE I

Controller Node

Swift Nodes

swift

Swift Proxies

swift-proxy

Highly-available MySQL database
OpenStack services, such as Nova, Neutron, Cinder, Glance, and Keystone require reliable
databases. To ensure high availability for these services, Fuel implements the MySQL/Galera
clustering technology.
MySQL with Galera implements true active/active high availability. Fuel configures
MySQL/Galera to have a single active node that processes read and write operations.
MySQL/Galera includes the following features:

• The standby masters do not have the "slave lag" that is typical for MySQL master/slave
topologies. This is because Galera employs synchronous replication and ensures that each
cluster node is identical.

• Mirantis OpenStack uses Pacemaker and HAProxy to manage MySQL/Galera:

• Pacemaker manages the individual MySQL/Galera nodes, HAProxy, and the Virtual IP
Address (VIP).

• HAProxy runs in the dedicated network namespace and manages connections between
the MySQL/Galera active master, backup masters, and the MySQL clients connecting to
the VIP.

• Only one MySQL/Galera master is active in the VIP. This single direction synchronous
replication provides better performance.

Failover initiates the following actions:

1. The node that is tied to the VIP serves new data updates and increases its global transaction
ID number (seqno).

2. Each other node in the Galera cluster then synchronizes its data with the node that has the
seqno value greater than its current values.

3. If the status of any node falls behind the Galera cache, an entire replica is distributed to
that node. This causes one of the master nodes to switch to the Donor role, allowing an
out-of-sync node to catch up.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 15

Server load balancing using HAProxy
HAProxy provides load balancing, proxying, and HA. Each OpenStack controller runs HAProxy
which manages a single External Virtual IP (VIP) for all controller nodes and provides HTTP and
TCP load balancing of requests that go to OpenStack API services, RabbitMQ, and MySQL.
Fuel configures HAProxy frontend for MySQL/Galera to use only one active node, while the other
nodes in the cluster remain passive.
See HAProxy documentation.

Cluster resource management using Pacemaker and
Corosync
Fuel implements highly-available cluster services through Corosync and Pacemaker.
At its essence, Corosync enables servers to communicate as a cluster, and Pacemaker provides
the ability to control the cluster’s behavior.
Corosync functions as a communication and quorum service through the Cluster Information
Base (CIB) component of Pacemaker and the pcs tool. The main Cororsync configuration file is
located in /etc/corosync/corosync.conf.
Corosync uses the Totem Single-Ring Ordering and Membership protocol, or the Totem protocol,
to provide connectivity between the OpenStack nodes, ensure the cluster has quorum, as well
as provide a data layer for services that use Virtual Synchrony.
The Totem protocol provides the following functionality:

• Ensures connectivity between cluster nodes.
• Decides if a cluster is quorate to provide services.
• Provides data layer for services that use features of Virtual Synchrony.

The following text is an example of the configuration section in the corosync.conf file:

totem {
 version: 2
 token: 3000
 token_retransmits_before_loss_const: 10
 join: 60
 consensus: 3600
 vsftype: none
 max_messages: 20
 clear_node_high_bit: yes
 rrp_mode: none
 secauth: off
 threads: 0
 interface {
 ringnumber: 0
 bindnetaddr: 10.107.0.8
 mcastaddr: 239.1.1.2

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 16

http://haproxy.1wt.eu/#docs

 mcastport: 5405
 }
}

Corosync uses UDP unicast transport and configures a "redundant ring" for communication. Fuel
deploys controllers with one redundant ring. Fuel uses the default Corosync configuration. You
can modify the default configuration in Fuel Puppet manifests.
Pacemaker functions in Fuel as the cluster resource manager for Neutron, HAProxy, virtual IP
addresses, some OpenStack and other services. You can put your own services under
Pacemaker control to leverage the use of Pacemaker as a cluster resource manager.
This is realized through Open Cluster Framework agent scripts.
The scripts performs the following:

• Starts, stops, and monitors Neutron services.
• Manages HAProxy.
• Manages virtual IP addresses.
• Manages MySQL replication.

Components of the script are located in the following directories:

• /usr/lib/ocf/resource.d/mirantis/ocf-neutron-[metadata|ovs|dhcp|l3]-agent
• /usr/lib/ocf/resource.d/fuel/mysql
• /usr/lib/ocf/resource.d/ocf/haproxy

The workflow of the scripts includes:

1. MySQL agent starts.
2. HAProxy and virtual IP addresses are set up.
3. Open vSwitch, metadata, L3, and DHCP agents start as Pacemaker clones on all the nodes.

The MySQL high-availability script primarily targets to perform automatic failover with the
minimum possible downtime. The script must have a working Corosync in which it forms a
quorum of replication epochs and then selects a master node which has the newest epoch.
By default, a five minute interval is configured for every cluster member to boot and participate
in the election.
Every node is self-aware, which means that if nobody pushes a higher epoch retrieved from
Corosync, it will become a master.

Seealso

• man corosync.conf or Corosync documentation
• Using Rules to Determine Resource Location

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 17

http://linux-ha.org/wiki/OCF_Resource_Agents
http://clusterlabs.org/doc/
http://clusterlabs.org/doc/en-US/Pacemaker/1.1/html/Pacemaker_Explained/_using_rules_to_determine_resource_location.html

Plan the network
In this section you can find the description of architectural and configuration aspects to be taken
into account when planning your network environment. Such as default logical networks and
toplogies that Fuel deploys, as well as a possibilities to extend standard network functionality.
This section includes the following topics:

Logical networks
This section describes default (predefined) networks and their behaviour. Fuel enables you to
create and modify networks using API, as well as modify service to networks mapping using
networking templates.
Fuel deploys the following networks:
Public network
Virtual machines communicate with each other and access the Internet through Public network.
Public network provides connectivity to the globally routed address space for VMs. The Public
network IP address assigned to the network and compute (in case of DVR) nodes is used by
Source NAT to enable the outgoing traffic from VM instances access the Internet.
Public network also provides Virtual IPs for public endpoints that are used to connect to
OpenStack services APIs.
Finally, Public network provides a neighboring address range for floating IPs that are assigned to
individual VM instances by the project administrator.
For security reasons, isolate Public network from other networks in an OpenStack environment.
Internal networks
Internal network is a general term for all networks in your OpenStack environment except for
Public and Private network. Internal networks include Storage, Management, and Admin (PXE)
Fuel networks. Internal network connects all OpenStack nodes within an OpenStack
environment. All components of an OpenStack environment communicate with each other using
internal networks. The internal network can also be used for serving iSCSI protocol exchanges
between compute and storage nodes.
Do not confuse internal network with Private, as the latter is only related to a network within a
project that provides communication between project's VMs. Isolate internal networks from
Public and Private networks for security reasons.
Admin (PXE) network (Fuel network)
The Fuel Master node uses Admin network to provision and orchestrate the OpenStack
environment. It provides DNS, DHCP, and a gateway to Slave nodes before the nodes are
provisioned. Since Fuel Slave nodes obtain their network configuration from the Fuel Master
node using DHCP, verify that Admin (PXE) network is isolated from all other networks in an
OpenStack environment and use only the DHCP server that the Fuel Master node provides.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 18

Note
Admin (PXE) network must always be untagged. Even when it is combined with other
networks on the same network interface.

Storage network (Storage replication)
Storage network handles replication traffic from Ceph or Swift. Ceph public traffic is dispatched
through br-mgmt bridge (Management network) by default. You can modify this setting through
network templates.
Management network
Management network serves all other internal traffic such as database queries, AMQP
messaging, and high-availability services, as well as iSCSI traffic between the compute and
storage nodes.
Private network
For VLAN segmentation, the Private network is used for VLAN-separated project traffic. The
Private network defines L2 topology by mapping a br-prv bridge to a node's interface, as well as
determines the VLAN ID range.
For VXLAN/GRE segmentation, the Private network is used for tunneling project's traffic. The
Private network defines L2 topology by mapping a br-mesh bridge to a node's interface and
setting optional VLAN ID. It also specifies a tunnel ID range and network L3 parameters such as
CIDR and gateway.

Networking Templates
You can use networking templates to create flexible network configurations. Networking
templates enable you to:

• Create additional networks. For example, you can create a separate network for Swift
storage traffic.

• Delete unnecessary networks.
• Add network roles.
• Create a network only if a relevant node role is present on the node.
• Customize networking topologies. For example, configure subinterface bonding.

However, networking templates have the following limitations:

• Interdependencies between templates for different node roles cannot be set.
• Mapping of network roles to networks and a network topology cannot be set for nodes

individually. They can only be set for a node role or/and a node group.
• There is no web UI support for networking templates. You can only operate via CLI or API.

After you upload a networking template, the Configure Interfaces tab in the Fuel Web UI
becomes inactive.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 19

Note
If you delete a template, Fuel automatically applies the default networking solution.

You can find the samples of network templates in the network template examples folder.

Specifying IP address ranges for logical networks
When you deploy an environment using Fuel, you can exclude specific IP addresses so that Fuel
does not assign them. This helps to avoid network conflicts in case these IP addresses were
previously reserved by other network entities.
To prevent IP address collisions, set the IP address range to be used by Fuel, for example, for
nodes and VIPs, excluding the reserved IPs. In addition, you can specify multiple IP address
ranges. If you have an IP address in use in the middle of the network IP address range, you can
split the range to exclude the IP addresses in use.

Virtual IP addresses for load balancing
Fuel automatically allocates Virtual IP addresses (VIPs) for the load balancing service (LB). If
automatic allocation does not meet your needs or you want to use an external load balancer,
you can set an arbitrary IP address as a VIP through the Fuel CLI.

Seealso

• Fuel CLI Reference
• Using Fuel CLI section of the Fuel User Guide

Multiple cluster networks
Mirantis OpenStack supports configuring multiple network domains per single OpenStack
environment. With multiple network clusters you can deploy large scale clusters that match
physical network layer of the data centre and provide a possibility to easily scale up your
environment. Use this feature for environments that deploy a large number of Fuel slave nodes
to avoid the broadcast storms that can occur when all nodes share a single L2 domain. You can
configure multiple cluster networks with the help of Fuel for OpenStack environments that use
neutron.
The multiple cluster network feature is based on node groups, which are groupings of nodes in
an OpenStack environment:

• All logical networks are associated with a node group rather than the environment. The only
exception is default Admin network. The default Admin network is shared between all
environments and associated with all nodes that do not belong to any environment.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 20

http://docs.openstack.org/developer/fuel-docs/network_templates.html
https://wiki.openstack.org/wiki/Fuel_CLI

Note
When using the multiple cluster networks feature, you must set gateways for all
networks within an OpenStack environment. Fuel generates static routes between
networks of different node groups using these gateway addresses.

• Each node group belongs to an OpenStack environment.
• A default node group is created automatically when user creates a new environment. The

environment can not have more than one default node group and the default node group
cannot be deleted while its environment exists.

• Each default node group uses the same default Admin network. Other node groups, which
are created by user through API, have their own Admin networks, which are not shared
between environments.

• The default Admin network is shared between all environments. This network cannot be
deleted. One Fuel installation always has exactly one default Admin network.

• The values for the default Fuel Admin (PXE) network are set using Fuel Menu. Default
values for other networks are taken from release metadata.

• OpenStack environments deployed with Neutron support multiple node groups.
Nailgun manages multiple cluster networks as follows:

• A node serializes its network information based on its relationship to networks in its node
group.

• When user adds a node to an OpenStack environment, Fuel automatically assigns the node
to a node group based on the node's IP address. If the node's IP address does not fit into
any Admin (PXE) network, then Fuel assigns the node to the default node group.

• Fuel automatically creates a default node group for a new environment. However, a user
can also create a node group manually through API or CLI. In both cases, Fuel automatically
generates a set of default networks for every new node group. Similarly, when you delete a
node group, all networks which belong to this node group are deleted as well.

Note
The default Admin (PXE) network is not deleted, because it applies to a default node
group of each OpenStack environment.

Additionally, a user can manually add or remove networks within a a node group through
API or CLI.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 21

• DHCP requests can be forwarded to the Fuel Master node using one of the following
methods:

• Configure switches to relay DHCP
• Use a relay client such as dhcp-helper

• Fuel stores information about all node groups in the nodegroup table.

Seealso

• Viewing node groups in Fuel User Guide
• Fuel Release Notes

Network topologies
Fuel deploys network topologies using the OpenStack Networking service called Neutron.

Note
Since the upstream development efforts of Nova Network have been gradually reduced
and Neutron is becoming a preferred option for a majority of OpenStack deployments,
Nova Network is deprecated in Fuel. Use Neutron for all new deployments.

Neutron is a flexible network manager that enables you to create complex network
configurations. Neutron provides both level 2 and 3 network virtualization, as well as IP address
management (IPAM). In addition, neutron has multiple open-source and enterprise-class plugins
that enable interoperability with such networking technologies as virtual switches and
software-defined networking (SDN).
This section describes network topologies that have been thoroughly tested and are
recommended for use in production environments. However, you can alternate these
configurations to address the specific requirements of your cloud.
Fuel deploys the following network configurations:

• Neutron with VLAN segmentation
In neutron's VLAN segmentation topology a VLAN is assigned to each tenant. IP subnets
and ranges in different tenants can overlap. This is the default networking option in
Fuel. The disadvantage of this option is that you must configure your networking
equipment, as well as provide the total number of tenants, before configuring the
network.
Neutron with VLAN segmentation examples

3 NICs 4 NICs
eth0 Port for Administrative network Port for Administrative network

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 22

eth1 Port for the following networks:

• Public/Floating (untagged)
• Management (tag=102)
• Storage (tag=103)

Port for the following networks:

• Public/Floating (untagged)
• Management (tag=102)

eth2 Port for Private network. The
number of VLANs depends on
the number of tenant networks
with a continuous range.

Port for Private network with
defined VLAN ID range

eth3 N/A Port for Storage network

• Neutron with tunneling segmentation
You can choose between VXLAN and GRE segmentation, with VXLAN being a default
and preferred option for most of the OpenStack environments. GRE segmentation is
deprecated in Fuel. In both VXLAN and GRE segmentations, project's traffic is isolated
by encapsulating the traffic in tunnels. Both VXLAN and GRE segmentation are more
flexible than VLAN in terms of the number of tenants. For example, VXLAN supports up
to 16M channels. Network hardware configuration is significantly simpler compared to
the VLAN segmentation and does not need to be synchronized with your L2 switch
configuration. Both VXLAN and GRE support subnet overlapping in different tenants.
However, the disadvantage of using GRE segmentation is that GRE encapsulation
decreases the network speed between the instances, as well as increases the CPU
usage on the compute and controller nodes.

Note
You can configure GRE segmentation using CLI while VLAN and VXLAN options
can be selected using UI wizard.

Neutron with VXLAN/GRE segmentation examples

2 NICs 3 NICs 4 NICs
eth0 Untagged port for

Administrative
network

Untagged port for
Administrative
network

Untagged port for
Administrative network

eth1 Port for the following
networks:

• Public/Floating
(untagged)

• Management
(tag=102)

• Storage
(tag=103)

Port for the following
networks:

• Public/Floating
(untagged)

• Management
(tag=102)

Untagged port for
Management network

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 23

eth2 N/A Untagged port for
Storage network

Untagged port for
Public/Floating network

eth3 N/A N/A Untagged port for
Storage network

Although Neutron with VLAN is the default option in the deployment wizard, some environments
require other network topologies. Therefore, you must select the option that conforms with your
configuration. For example, if you want to use a software-defined network (SDN) in your
OpenStack environment, you must use Neutron with VXLAN tunneling segmentation.
Additionally, if you use VMware vCenter as a hypervisor, you must use the ML2 driver Fuel
plugin.

Seealso

• Fuel CLI Reference
• vSphere integration in Fuel Installation Guide

Additional networking functionality
Fuel has plugins that provide additional networking functionality. The plugins enable such
functionality as Software Defined Network, Firewall-as-a-Service, VPN-as-a-Service, support for
different network adapters, and so on.
Additionaly, you can leverage Network Function Virtualization (NFV) in your OpenStack
environment by enabling the following features:

• Guaranteed resources for workloads
• Huge Pages
• NUMA/CPU pinning
• SR/IOV
• Anti-affinity groups

Seealso

• Fuel Plugins
• Mirantis OpenStack NFVI Deployment Guide

Known limitations

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 24

https://wiki.openstack.org/wiki/Fuel_CLI
https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/
https://www.mirantis.com/blog/mirantis-openstack-7-0-nfvi-deployment-guide-numacpu-pinning/

• Fuel automatically configures the admin_floating_net and admin_internal_net networks for
projects, as well as corresponding subnetworks. Use the neutron subnet-show command to
view subnets. For example:

neutron subnet-show admin_floating_net__subnet
neutron subnet-show admin_internal_net__subnet

Note
For security reasons, Fuel does not configure a DHCP server for the
admin_floating_net__subnet. If you use the admin_floating_net network for an
instance boot request, select an additional subnetwork with a DHCP server enabled.
For example, use admin_internal_net__subnet. Otherwise, the instance fails to boot.
You must also manually configure the interfaces from the subnetwork without a DHCP
server so the instance can obtain an IP address.

• Neutron will not allocate a floating IP range for your projects. After each project is created,
a floating IP range must be created. This does not prevent Internet connectivity for a
project's instances, but it would prevent them from receiving incoming connections. As an
administrator, assign floating IP addresses for the project proceeding with the following
steps:

1. Get admin credentials:

source /root/openrc

2. Get admin tenant-ID:

keystone tenant-list

System response

+----------------------------------+----------+---------+
| id | name | enabled |
+==================================+==========+=========+
| b796f91df6b84860a7cd474148fb2229 | admin | True |
+----------------------------------+----------+---------+
| cba7b0ff68ee4985816ac3585c8e23a9 | services | True |
+----------------------------------+----------+---------+

3. Create one floating IP address for the admin project:

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 25

neutron floatingip-create --tenant-id=b796f91df6b84860a7cd474148fb2229 admin_floating_net

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 26

Plan the storage
There are different storage types that you need to consider for your workload requirements.
This section provides the information on how to plan different types of storage for your
OpenStack environment.
This section includes the following topics:

Storage components overview
The two fundamentally different storage types are:

• Ephemeral storage — This is a temporary storage for the operating system in a guest VM.
Ephemeral storage is allocated for an instance in the OpenStack environment. As its name
suggests, the storage will be deleted once the instance is terminated. This means that the
VM user will lose the associated disks with the VM termination. Note that ephemeral
storage persists through a reboot of the VM.

• Persistent storage — In contrast to the ephemeral storage, the persistent one exists outside
an instance. Persistent storage is always available.

The Nova Compute service manages ephemeral storage.

• By default, ephemeral drives are stored locally on Compute nodes, in the Virtual Storage
partition.

• If Ceph is configured for the environment and the Ceph RBD back end for ephemeral drives
is enabled, Nova-compute stores ephemeral drives in Ceph.

• Other storage options are possible, such as an NFS share that is mounted from a SAN.
With Fuel deployment, you have the following storage options:

• Default providers — These are LVM for Cinder, local device for Swift, and Swift for Glance.
• Ceph — A storage platform that provides unified object, block, and file storage.

Plan block storage
The OpenStack component that provides the software to create block storage for your cloud is
called Cinder. To configure block storage Cinder must be combined with one of the supported
back ends.
The block storage back ends include:

• Cinder LVM (default) — each volume is stored as a logical volume in an LVM volume group
on one of your Cinder nodes.

• Ceph — each volume is stored as an object in the Ceph RADOS object storage system.

Note
If you use vCenter as a hypervisor, you must use the VMDK driver to store your volumes
in the vCenter datastore.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 27

Choose between Cinder LVM and Ceph for the Cinder storage backend based on the following:

• Ceph provides a single shared pool of storage nodes for image storage.
• Ceph provides object replication capabilities by storing Cinder volumes as Ceph RBD

objects. Each Ceph RBD object is stored as multiple RADOS objects. Ceph ensures that each
replica of an object is stored on a different node. This means that your volumes are
protected against hard drive and node failures.
You can customize the Ceph data replication rules in the CRUSH map separately for each
object pool, modify the number of object replicas, add different types of failure domains,
and so on.

• LVM provides much less protection of your data than Ceph does. Even if you use RAID on
each Cinder node, your data is only protected against a hard drive failure. If you lose the
Cinder node, you will also lose all volumes on the node.

• Ceph consumes more disk space than LVM. LVM stores a single replica of the data, whereas
Ceph stores at least two copies of your data so that your actual raw storage capacity must
be two to three times bigger than your data set. You can however implement erasure
coding striping to reduce the data multiplication requirements of Ceph.

• Ceph provides multi-node striping and redundancy for block storage.
• If you combine Ceph RBD backends for Cinder and Glance, you gain an important

advantage over Cinder LVM: copy-on-write cloning of Glance images into bootable Ceph
volumes.

• Ceph supports live migration of virtual machines with ephemeral drives, whereas LVM only
supports live migration of volume backed virtual machines.

With Cinder LVM, you have the following configuration options:

• Let Fuel create a JBOD partition that spans all the storage drives in a node.
• Join all drives into a RAID array before deployment and have the array appear to Fuel as a

single block device.
When deploying Ceph, Fuel partitions the Ceph storage nodes so that most of the space is
reserved for Ceph-OSD storage. All other partitions for the node consume a portion of the first
drive. To improve system performance, you can configure one or two SSDs and assign the
"Ceph General" role to them in the Fuel web UI.

Seealso

• Ceph Hardware Recommendations

Plan object storage
Mirantis OpenStack supports Ceph as an object storage for applications.
Ceph includes the optional Ceph Object Gateway component called RADOS Gateway that
applications can use to access RGW objects.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 28

http://ceph.com/docs/master/start/hardware-recommendations/

Note that the radosgw implementation of the Swift API does not implement all operations.
Ceph RBD uses RADOS directly and does not use the Swift API. This makes it possible to store
Glance images in Ceph and still use Swift as the object store for applications.
Note that it is not possible to have both radosgw and Swift running in the same OpenStack
environment, because the Ceph Object Gateway replaces Swift as the provider of the Swift APIs.

Storage plugins
Fuel integrates with leading storage providers and enables you to use third-party
enterprise-class storage solutions as Cinder back end. If your organization uses an established
storage platform, you can continue to leverage its benefits by using one of the Fuel plugins.
Mirantis is constantly extending the list of the supported third-party storage platforms to
address the requirements of its customers and partners.
For more information, see the Fuel plugin catalog.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 29

https://www.mirantis.com/software/fuel-plugins/

Plan the monitoring tools
This section provides recommendations on planning the tools to monitor your OpenStack
enviroment.
This section includes the following topics:

Monitor the OpenStack environment using the
OpenStack Telemetry service
Fuel can deploy the Telemetry service called Ceilometer in your OpenStack environment.
Ceilometer is an OpenStack component that collects and shares measurement data. You can
use this data for:

• Billing purposes
• Creating alarm rules and using alarms for your purpose, including autoscaling with Heat

The billing process contains the following steps: metering and rating. Ceilometer covers only the
metering part. For that purpose, the project collects and stores information about the system in
form of samples to provide data for any metric that can be billed.
Ceilometer includes an alarming service that allows creating alarm rules that will be applied to
the collected data. In addition, any system may use Ceilometer API to retrieve data.
Ceilometer has two sources of data:

• Polling
• Notifications from OpenStack services

Ceilometer collects the following types of data:
Metric samples

Metrics analyze activities in the cloud environment at the moment of sampling. Now, this
information is gathered mostly by polling and may consume significant amounts of I/O
processing resources and a large amount of database storage. Historically, metric samples
were derived from OpenStack notifications as well, therefore, the term non-metric meter
was introduced to describe these metrics. Also, the configuration option
disable_non_metric_meters was added. For example, instance and disk are non-metric
meters because they mean the existence of resources. When you choose the value for
disable_non_metric_meters, you need to keep in mind that if it is True, you will not be able to
retrieve non-metric meters using Ceilometer statistics API. It means that it would be
impossible to know the amount of resources (images, instances) during a time interval. In
Mirantis OpenStack, this configuration option is set to False.
To find out what metrics will be collected, refer to at least three files: meter.yaml,
pipeline.yaml, and ceilometer.conf. In Mirantis OpenStack, custom changes were made to all
these files to prevent performance degradation on one hand, and not to loose important
metrics on the other.

Events
An event is a configurable Ceilometer structure. It is based on notifications triggered by
services when various events take place in the OpenStack system. For example, "instance X
was created" and "volume Z was deleted". Though the system sends these notifications

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 30

continuously, in the default configuration, monitoring of events uses less resources of the
cloud environment than monitoring of meters. Polling has nothing to do with events in
Liberty. The main file where events are configured is event_definition.yaml.

Metrics and events can be configured for handling certain meters and notifications depending
on the information you are interested in.
You can configure Ceilometer to collect either a small or large amount of metering data. When
collecting a large amount of data, Ceilometer processes high volume of database writes. For
example, with 100 resources (virtual machine instances) and polling interval set to 1 minute,
Ceilometer collects around 150000 samples per hour.

Seealso

• Settings tab in the Create a new OpenStack environment section of the Fuel User
Guide

• Related projects in the Configure your environment section of the Fuel User Guide

Custom transformed metrics
Ceilometer provides the Transformers feature that you can use to create custom metrics based
on the existing ones. By default, Ceilometer configures several transformer-based metrics, such
as cpu_util, disk.bytes.rate, and others.
The most commonly used transformer-based metrics, such as cpu_util, disk.*.rate, and
network.*.rate are implemented for the libvirt hypervisor by default. The Ceilometer compute
agents create these metrics on the compute nodes. Ceilometer collects the metrics like other
default metrics with the generic pipeline.yaml configuration and without performing the
transformation on the notification agent side.

Important

Mirantis OpenStack supports all default metrics and does not support custom transformers
which require cache. Only the unit_conversion and arithmetic transformers are supported
as custom ones. Do not use the arithmetic transformer with an expression that contains
more than one metric.
Using the Redis plugin, you still may configure transformers that require cache, but note
that this approach is not performant and reliable enough and may lead to samples loss.

Seealso

• Transformers

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 31

http://docs.openstack.org/admin-guide/telemetry-data-collection.html#transformers

Plan the OpenStack Telemetry service back end
Mirantis OpenStack defaults to installing MongoDB as the recommended back-end database for
the OpenStack Telemetry service. The Fuel Master node enables you to choose the installation of
MongoDB as a role onto a node. This resolves the Ceilometer performance issues caused by the
volume of concurrent read/write operations. For instructions, see the Assign a role or roles to
each node server section in the Fuel User Guide.
When planning your resources, consider the following:

• The MongoDB partition requires at least 10240 MB of free space to be allocated for internal
use in replica mode.

• The resources consumed by metrics sampling are determined by:

• The polling interval
• The number of metrics being collected
• The number of resources from which the metrics are collected (for example, how many

instances are running, volumes, and so on)
• The number of configured events

The amount of storage required is also affected by the frequency with which you offload or
purge the data from the database.

• The Working set for the MongoDB database should stay in memory to achieve good
performance. The Working set is a part of data that is frequently used by Ceilometer.

• It is possible to have swap space on the nodes especially if MongoDB is deployed on
controller nodes, where situations with extreme memory constraints or simultaneous
memory usage by different services are possible.

• Frequent polling yields a better picture of what is happening in the cloud environment and
also significantly increases the amount of data being processed and stored.
Example:
In one test sampling, the same metrics for the same fairly small number of resources in the
same environment resulted in the following:

• 1 minute polling accumulated 0.8 TB of data over a year.
• 30 second polling accumulated 1.6 TB of data over a year.
• 5 second polling accumulated 9.6 TB of data over a year.

• Ceilometer consumes fairly small amounts of CPU. However, the I/O processing is extremely
intensive when the data is written to the disk. Therefore, we recommend using dedicated
MongoDB nodes rather than running the MongoDB role on the Controller nodes.
In our lab tests, nearly 100% of the disk I/O resources on the Controller nodes were
sometimes consumed by Ceilometer writing data to MongoDB when the database was
located on the Controller node and a small polling interval was used. This configuration
halted or interfered with all other OpenStack services on the Controller node and prevented
other processes from running.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 32

• Ceilometer has the metering_time_to_live and events_time_to_live configuration options for
samples and events correspondingly. By default, these options are set to 604800 seconds
(seven days). It means that samples and events which are older than seven days will be
removed with the native MongoDB job.

Seealso

• Optimize the MongoDB database
• Modify MongoDB indexes

Optimize the MongoDB database
To optimize the use of the MongoDB database, the OpenStack Telemetry service creates a set of
single-filed indexes in the resource, meter, and event collections, as well as an additional
compound index for statistic requests in the meter collection. The indexes improve performance
by ensuring that the database does not scan the whole collection of data.
To optimize the MongoDB database follow these recommendations:

• Improve the efficiency of MongoDB resources usage by deleting unused indexes, especially
from the meter collection.

• Improve the performance of Ceilometer statistic requests, which is used in the auto-scaling
feature, by removing unused fields from the statistic index. By default, Ceilometer creates a
compound index with fields that can be used as filters in a statistic request. The fields
include:

• Mandatory counter_name, set as an index prefix field, and timestamp, which is always
used with boundary interval limit.

• Optional resource_id, user_id, and project_id are included in default_statistic_idx.
If some parameters are not used in a statistic request, you can remove such fields from the
statistic index.

Seealso

• Modify MongoDB indexes

Modify MongoDB indexes
You can modify MongoDB indexes to improve performance of the OpenStack Telemetry service,
as well as the MongoDB database.
To update indexes in MongoDB:

1. From the mongo shell, log in to a MongoDB database:

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 33

mongo [-u username] [-p password]

2. Drop the old index:

db.meter.drop(‘default_statistic_idx’)

3. Create a new index:

db.meter.createIndex({counter_name: 1, resource_id: 1, user_id: 1, \
project_id: 1, timestamp: -1}, {name: ‘<custom_statistic_idx_name>’, \
background: true})

The resource_id, user_id, and project_id parameters are optional and should be added only
if used in statistic requests.
When creating a new index in large collections, set the background parameter to true to
avoid locking all the write and read operations.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 34

Plan a Hadoop cluster
If your business requirements include analyzing huge amounts of unstructured data, you may
want to deploy a Hadoop cluster. To deploy a Hadoop or Spark cluster in your OpenStack
environment, use the Sahara OpenStack program. This section describes the settings and
components that you need to plan for your Hadoop cluster.
This section includes the following topics:

Node requirements
All Sahara processes run on the controller nodes. The entire Hadoop cluster runs in virtual
machines on the compute nodes.
For successful Hadoop installation, you must deploy an OpenStack environment with at least
one controller node for the Sahara control processes and at least one compute node to run
virtual machines for the Hadoop cluster.
A typical Hadoop installation includes:

• 1 virtual machine for management and monitoring processes — Apache Ambari and
Cloudera Manager.

• 1 virtual machine that acts as the Hadoop master node to run ResourceManager and
NameNode.

• Virtual machines serving as the Hadoop cluster nodes, each of which runs NodeManager
and DataNode.

You must have exactly one instance of each management and master processes running in the
environment. Configure other components as required by your environment.
For example, you can run the NodeManager and DataNode in the same virtual machine that runs
ResourceManager and NameNode. You can also run DataNode and NodeManager in separate
virtual machines.
Sahara communicates with object storage through Swift API. You can use Swift or Ceph with
RadosGW as an object storage back end.

Note
If you have configured the Swift public URL with SSL, Sahara will only work with the
prepared Sahara images, regardless of Swift usage. You can download the prepared
images from Rackspace CDN.

Hardware requirements
Minimum hardware requirements for the OpenStack Hadoop cluster to run health check tests:

• Controller nodes:

• RAM: 6 GB• CPU: 2

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 35

http://sahara-files.mirantis.com/mos80/

• Compute nodes:

• RAM: 6 GB
• CPU: 2

Limitations
An OpenStack Hadoop cluster has the following limitations:

• Do note use QEMU as a hypervisor to test Sahara.
• While deploying OpenStack environment using Fuel web UI, select a hypervisor other than

QEMU.
• VirtualBox is not supported.

System prerequisites
Before deploying Sahara, verify that your environment meets system prerequisites.
Plugin Capabilities
The following table provides a plugin capability matrix:

Feature Vanilla
plugin

HDP
plugin

Cloudera
plugin

Spark
plugin

MapR
plugin

Neutron network x x x x x
Cluster Scaling x x x x N/A
Swift Integration x x x x N/A
Cinder Support x x x x x
Data Locality x x x x N/A
High Availability N/A x x N/A N/A

Floating IP addresses
Fuel configures Sahara to use floating IP addresses to manage virtual machines. Therefore, you
must provide a Floating IP pool in each node group template you define.
Sahara assigns a floating IP address to each virtual machine, therefore, ensure that your Fuel
configuration provides a pool of IP addresses to the cloud.
If you have a limited number of floating IP addresses or special security policies, you may not be
able to provide access to all instances. In this case, you can use the instances that have access
as proxy gateways. To enable this functionality, set the is_proxy_gateway parameter to true for
the node group you want to use as proxy. Sahara will communicate with all other cluster
instances through the instances of this node group.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 36

Note
Set the Floating IP pool only to a proxy node group.

Note
Ambari and Cloudera Manager node groups must have a floating IP address.

Security groups
Sahara can create and configure security groups separately for each cluster depending on a
provisioning plugin and the Hadoop version.
To enable security groups, set the auto_security_group parameter to True in all node group
templates that you plan to use.
Virtual machine flavor requirements
A minimum of 4 GB of RAM is recommended for master virtual machines. Clouder and Hadopp
master virtual machines require at least m1.large flavor.
For reasonable performance for workloads consider virtual machines with 8+ vCPU and 16+ GB
of RAM.
Hardware-assisted virtualization
You must enable hardware-assisted virtualization for the hypervisor you use for OpenStack.
Failure to enable this parameter may lead to frequent random errors during the deployment and
operation.
While most modern x86 CPUs support hardware-assisted virtualization, its support still might be
absent on compute nodes if they are themselves running as virtual machines. In that case
hypervisor running compute nodes must support passing through hardware-assisted
virtualization to the nested virtual machines and have it enabled.
Communication between virtual machines
Ensure that communication between virtual machines is not blocked.
Default templates
Sahara bundles default templates that define simple clusters for the supported plugins. Since
the templates are already provided in the Sahara database, you do not need to create
additional templates. Instead, use the default templates.
Supported default Sahara templates for plugins
You can use one of the following supported default Sahara templates with the corresponding
plugins.

Template for Vanilla Hadoop 2.7.1

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 37

Category Description
Template name vanilla-2
Template description The cluster template includes 1 master node and 3 worker nodes.
Number of node groups 2
Node group 1:
vanilla-2-master

Includes the management Hadoop components: NameNode,
HistoryServer, and ResourceManager. Also includes the Oozie
workflow scheduler.

Node group 2:
vanilla-2-worker

Includes the components required for data storage and
processing: NodeManager and DataNode.

Template for Cloudera Hadoop Distribution (CDH) 5.4.0

Category Description
Template name cdh-5
Template description The cluster template includes 1 master node, 1 manager node,

and 3 worker nodes.
Number of node groups 3
Node group 1:
cdh-5-master

Includes the management Hadoop components: NameNode,
HistoryServer, and ResourceManager. Also includes the Oozie
workflow scheduler.

Node group 2:
cdh-5-manager

Includes the component that provides UI to manage Hadoop
cluster: Cloudera Management.

Node group 3:
cdh-5-worker

Includes the components required for data storage and
processing: NodeManager and DataNode.

Template for Hortonworks Data Platform (HDP) 2.2, 2.3

Category Description
Template name hdp-2-х
Template description The cluster template includes 1 master node and 4 worker nodes.
Number of node groups 2
Node group 1:
hdp-2-х-master

Includes the management Hadoop components: Ambari,
NameNode, MapReduce HistoryServer, ResourceManager,
YARN Timeline Server, ZooKeeper. Also includes the Oozie
workflow scheduler.

Node group 2:
hdp-2-х-worker

Includes the components required for data storage and
processing: NodeManager and DataNode.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 38

Seealso

• Sahara documentation

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 39

http://docs.openstack.org/developer/sahara/overview.html

Plan the orchestration
This section describes how to plan the resources integration and auto-scaling of your
infrastructure using the Orchestration service (Heat).

Orchestration (Heat) overview
The Orchestration service, or Heat, implements a framework for managing the entire lifecycle of
your infrastructure including auto-scaling inside the OpenStack cloud.
The Orchestration service uses human-readable Heat Orchestration Templates (HOT) in the
declarative format to describe the deployment process of application infrastructure
components. It enables you to automatically set up fully repeatable deployments. Orchestration
service also supports the AWS CloudFormation template format through the OpenStack-native
REST API and CloudFormation-compatible Query API.
When you deploy an OpenStack environment, the Orchestration service installs by default and
integrates into Horizon.
The Orchestration service contains the following components:
heat-engine

The main component of the Heat framework that is responsible for reading templates,
launching instances, and providing events to the API users.

heat-api
Provides a native REST API that processes API requests.

heat CLI
Communicates with heat-api to process API requests.

heat-api-cfn
Provides an AWS CloudFormation compatible API.

Seealso

• Heat project wiki page
• Heat developer documentation
• Mirantis blog post about Heat

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 40

https://wiki.openstack.org/wiki/Heat
http://docs.openstack.org/developer/heat
http://www.mirantis.com/blog/heat-things-up-with-openstack-before-your-competitors-do/

Plan the vSphere integration
Fuel can deploy a Mirantis OpenStack environment with the VMware vSphere integration. This
section provides an overview of the VMware vSphere support, as well as the details on how to
plan the deployment of an environment with VMware vSphere as a hypervisor.
This section includes the following topics:

Overview
You can deploy your OpenStack environment using VMware vSphere as a virtualization platform.
Deploying an OpenStack environment on top of VMware vSphere, you can get access to the
unified OpenStack API and take advantage of such OpenStack services as the Data Processing
service (BigData), Application Catalog service, and others.
Since VMware vSphere provides its own network capabilities, some OpenStack networking
options are not supported. Your choice of network falls to either configuring a VMware
Distributed vSwitch (DVS) or installing an NSXV Fuel plugin.
The VMware vSphere integrated environments relies on the VMware vSphere advanced features
that include the following:

• vMotion workload migration
• vSphere High Availability
• vSphere Distributed Resource Scheduling (DRS)

You can easily access these features from the VMware vCenter driver provided by the VMware
vSphere virtualization product family. The VMware vCenter driver makes management
convenient from both the VMware vSphere Web client and the OpenStack Dashboard.
The VMware vSphere driver enables the interaction between the nova-compute service and
VMware vCenter server. If the driver manages multiple ESXi clusters, Fuel enables specifying
several clusters for a single OpenStack environment, so that a single nova-compute service
manages multiple ESXi clusters through a single VMware vCenter server.
Unlike other hypervisor drivers that require the nova-compute service to be running on the same
node as the hypervisor itself, the VMware vCenter driver enables the nova-compute service to
manage ESXi hypervisors remotely. By default, Fuel places nova-compute on a controller node.
However, if you plan to later extend this OpenStack environment with additional VMware
vCenter clusters, place nova-compute that communicates with VMware vCenter on a dedicated
compute-vmware node.

Seealso

• Install Fuel on VMware vSphere in the Fuel Installation Guide
• VMware DVS and VMware NSXv Fuel Plugins

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 41

https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/

Deploy an environment with VMware vCenter and
KVM/QEMU
Fuel supports the dual hypervisor deployment feature that enables the cloud administrator to
have a single point of control as well as a single pool of resources.
You can deploy an OpenStack environment with Vmware vCenter and KVM/QEMU using
availability zones.

Seealso

• For the information on how to specify the availability zone in the Fuel web UI, see the
VMware integration: Configuring a vCenter environment section of the User Guide.

Prerequisites
Before you deploy an environment integrated with VMware vSphere using Fuel, verify that the
vSphere installation is up and running.
To configure VMware vSphere components, complete the steps described in the VMware
vSphere prerequisites section in the Fuel Installation Guide.

Seealso

• VMware vSphere support in OpenStack
• Official vSphere documentation: Installation and Setup

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 42

http://docs.openstack.org/trunk/config-reference/content/vmware.html
http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vsphere.install.doc/GUID-7C9A1E23-7FCD-4295-9CB1-C932F2423C63.html

Known limitations
This section describes known limitations and workarounds for environments that use VMware
vSphere as a virtualization platform.
The limitations include:

• Fuel has been tested with VMware vCenter 5.5 and 6.0 only.
• The only supported image format is Virtual Machine Disk (VMDK).
• Generally, volumes that are created by the Block Storage service appear as SCSI disks. To

be able to read and write to these disks, verify that the operating system of an instance
supports SCSI disks. For example, a CirrOS image shipped with Fuel supports only IDE disks.
Therefore, even if a volume is attached to an instance, CirrOS cannot use it.

• The Ceph back end is not supported for the Image service, Block Storage service, and
RadosGW object storage.

• Red Hat Enterprise Linux compute nodes are not supported.
If you plan to add RHEL compute nodes to your OpenStack environment, you cannot use
VMware vCenter as a hypervisor.

Seealso

• The Preparing Murano images in VMware vCenter section in the Fuel User Guide

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 43

Plan the Fuel plugins
This section includes the following topics:

Fuel plugins overview
Fuel provides plugins that you can use to extend the functionality of your OpenStack
environment and enable various third-party components and technologies.
Most of the Fuel plugins are developed by OpenStack community members, as well as by
companies who support OpenStack. The Fuel plugins are distributed free of charge.
You can find the list of plugins validated by Mirantis to be compatible with the corresponding
version of Mirantis OpenStack in the Fuel Plugins catalog.

Note
Mirantis recommends that you install all Fuel plugins before you deploy an OpenStack
environment. Although, you can install some of the Fuel plugins after you deploy an
OpenStack environment, it may require manual configuration. For more information, see
plugin documentation.

Moreover, Fuel Plugins SDK enables you to develop any plugin that you need to meet your
requirements.

Seealso

• Fuel Plugins SDK
• Fuel Plugins catalog

Fuel plugin validation
Validation is the process that the Mirantis Partner Enablement team uses to ensure the provided
plugin can be used with Mirantis OpenStack.

Seealso

• Fuel Plugin validation
• Fuel Plugins SDK
• Fuel Plugins catalog

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 44

https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/
http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide.html
http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide.html
https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/
https://www.mirantis.com/partners/become-mirantis-unlocked-partner/fuel-plugin-development/fuel-plugin-validation/
http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide.html
https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/

Calculate hardware resources
After you read and understand what network, storage, and management topologies Fuel
deploys, you can estimate resources that you will need to run your OpenStack workloads. This
section provides examples on how to calculate the number of CPU cores and RAM per virtual
machine, amount of storage, both persistent and ephemeral, network hardware, and IOPS.
When choosing the hardware on which you will deploy your OpenStack environment, plan the
following:
CPU

Depends on the number of virtual machines that you plan to deploy in your cloud
environment and the CPU per virtual machine. The amount of CPU greatly depends on the
type of workloads that you plan to run in your environment. For example, environments
used for heavy computational work may require more CPU than environments used
primarily for storage.

Memory
Depends on the amount of RAM assigned per virtual machine and the controller node.

Storage
Depends on the local drive space per virtual machine, remote volumes that can be attached
to a virtual machine, and object storage.

Networking
Depends on the network topology, the network bandwidth per virtual machine, and network
storage.

This section includes the following topics:

Example conventions
For the purpose of example, we assume that your environment has the following prerequisites:

Environment prerequisites

Number of VMs 100
Amount of RAM per VM 4 GB RAM with dynamic allocation for up to 12 GB
Local storage per VM 150 GB
Persistent volume
storage per VM

500 GB

Total persistent storage
(object or block)

50 TB

Compute units 6 compute nodes with 2 sockets, 8 cores per socket, 2 GHz
Network requirements

• At least 100 Mbit/sec per VM
• High availability
• Latency-insensitive network storage

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 45

Calculate CPU
This section uses prerequisites listed in Example conventions.
When calculating CPU for compute nodes, you need to know the number of virtual machines you
plan to run on each compute node.
This calculation presumes the following:

• No CPU oversubscription
• Use of hyper-threading
• CPU supports the technologies required for your deployment.

To calculate CPU:

1. Calculate the number of CPU cores per virtual machine using the following formula:

max GHz/(number of GHz per core x 1.3)

1.3 is the hyper-threading coefficient. If you do not use hyper-threading, use 2 instead.
Example:

16/(2.4 x 1.3) = 5.12

Therefore, you must assign at least 5 CPU cores per virtual machine.
2. Calculate the total number of CPU cores:

(number of VMs x number of GHz per VM)/number of GHz per core

Example:

(100 x 2)/2.4 = 84

Therefore, the total number of CPU cores for 100 virtual machines is 84.
3. Calculate the required number of sockets:

total number of CPU cores/number of cores per socket

For example, if you use Intel® Xeon® Processor E5-2650-70 with 8 CPU cores.
Example:

84/8 = 10.5

Round the result to the next whole number. Therefore, you need 11 sockets.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 46

4. Round the number of sockets up to the next even number.
For example, if the number of sockets is 11, then use 12.

5. Calculate the number of servers required for your deployment:

total number of sockets/number of sockets per server

Example:

12/2 = 6

Therefore, you need 6 dual socket servers.
6. Calculate the number of virtual machines per compute node:

number of virtual machines/number of servers

Example:

100/6 = 16.6

Round this result to the whole number. Therefore, you can deploy 17 virtual machines per
server.

Using this calculation, you can add additional servers accounting for 17 virtual machines per
server.

Calculate memory
This section uses prerequisites listed in Example conventions.
Using the example from the Calculate CPU section, calculate the amount of RAM a compute
node will require to support 17 virtual machines.
When calculating RAM for a compute node, consider the memory a compute node itself requires
to accommodate core operating system operations. Allocate at least 16 GB RAM or more for the
core OS operations.
To calculate memory:

1. Use the following formula to calculate the total amount of RAM per compute node:

amount of RAM per VM x number of VMs per compute node

Example:

12 x 17 = 204

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 47

Therefore, you need at least 204 GB RAM to accommodate the virtual machine workloads.
2. Add the RAM required to accommodate the core operating system operations:

total amount of RAM per compute node + RAM for core OS operations

Example:

204 + 16 = 220

Therefore, you need at least 220 GB RAM.
3. Round the amount of RAM you calculated in step 2 to the number that fits your server

configuration and your selection of computer memory modules.
For example, for a 2 CPU socket board that typically has 16 memory slots and 16 GB
memory modules, you assign 256 GB RAM.

Adjust this calculation as required for your deployment.

Calculate storage
This section uses prerequisites listed in Example conventions.
When planning the number of disks and capacity required per server, you must consider storage
for the following types of data:

• Ephemeral storage
• Persistent object storage
• Persistent block storage

When you select hardware for your compute nodes, understand the types of workloads you plan
to process on them, as well as the impact of these workloads on storage. If you do not expect
storage impact to be significant, then you may consider using unified storage. For example, a
single 3 TB drive provides more than enough storage for seventeen virtual machines with 150
GB disk space. If speed is not important for your deployment, you might even consider installing
two or three 3 TB drives and configure a RAID-1 or RAID-5 for redundancy. However, if speed is
critical, you will likely want to have a single hardware drive for each VM. In this case, you may
want to use a 3U form factor server with 24 drives. The backplane of the server must support
the drive configuration that you plan to use.
You must also allocate disk space for the compute node operating system.

Calculate storage performance
This section uses prerequisites listed in Example conventions.
When estimating storage performance, the number of Input/Output operations per second
(IOPS), throughput, and latency are the three important factors that you must consider.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 48

Ephemeral storage
Use the following formula to calculate IOPS for the ephemeral storage based on the packing
density:

drive IOPS X drives per server / VMs per server

However, the actual storage performance depends on the drive technology that you use. For
example:

• If you use two mirrored 3.5" HDDs with 100 IOPS, then:

100 X 2 / 17 = 12 Read IOPS, 6 Write IOPS

• If you use four 600 GB HDDs with 200 IOPS in RAID-10, then:

200 X 4 / 17 VMs = 48 Read IOPS, 24 Write IOPS

• If you use eight 300 GB SSDs with 40K IOPS in RAID-10, then:

40 000 X 8 / 17 = 19 000 Read IOPS, 9500 Write IOPS

Although, SSDs provide the best performance, the difference in cost between SSDs and the less
costly platter-based solutions is significant. The acceptable cost burden is determined by the
balance between your budget and your performance and redundancy needs. Also, the rules for
redundancy in a cloud environment are different than in a traditional server installation,
because entire servers provide redundancy as opposed to a single server instance being
redundant. If you decide to use SSDs, you can increase performance even better by leveraging
from the carefully planned and assigned read-optimized, write-optimized, or mixed-use SSDs.
In other words, the weight for redundant components shifts from individual OS installation to
server redundancy. Therefore, it is far more critical to have redundant power supplies and
hot-swappable CPUs and RAM than to have redundant compute node storage. For example, you
have 18 drives installed on a server with 17 drives being directly allocated to each virtual
machine. If one of the drives fails, then you can simply replace the drive and push a new node
copy. The remaining virtual machines will process additional load that is present due to the
temporary loss of one node.
Mirantis recommends that you use persistent block storage rather than ephemeral storage for
virtual machines drives for most of the OpenStack environments. However, using local
ephemeral storage may be beneficial for compute nodes that run performance-critical
applications, such as databases.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 49

Block and object storage
Depending on the type of servers that you use for your remote persistent block or object
storage, the server configuration layout differs.
For example, for a 50 TB remote storage you may want to implement one of the following
layouts:

• 12 drive storage server using 3 TB 3.5" mirrored HDDs drives

• 36 TB raw, or 18 TB of usable space per 2U storage server
• 3 storage servers (50 TB / 18 TB per server)
• 12 slots x 100 IOPS per drive = 1200 Read IOPS, 600 Write IOPS per storage server
• 3 servers x 1200 IOPS per storage server / 100 VMs = 36 Read IOPS, 18 Write IOPS per

VM
• 24 drive storage server using 1TB 7200 RPM 2.5" drives

• 24 TB raw, or 12 TB of usable space per 2U storage server
• 5 servers (50 TB / 12 TB per server)
• 24 slots x 100 IOPS per drive = 2400 Read IOPS, 1200 Write IOPS per storage server.
• 5 servers x 2400 IOPS per storage server / 100 VMs = 120 Read IOPS, 60 Write IOPS

per storage server.
The examples above are provided for your reference only. You can implement any layout that
addresses the needs of your configuration. For example, a 36 drive server with 3 TB HDDs
addresses the same requirements. However, Mirantis does not recommend that you use a single
server in a production environment, because such configuration does not provide redundancy
required by most of the enterprise-class deployments.

Calculate object storage
This section uses prerequisites listed in Example conventions.
Object storage typically protects data by keeping as many copies of the data as defined by the
replication factor. By default, Fuel uses the replication factor of three for Swift and two for Ceph.
For production environments, set the Ceph replication factor to three.

Note
You can use Ceph with the replication factor of two for testing deployments.

You must also accommodate the requirement for handoff locations. A handoff location is a
partition or dedicated node on which Swift temporary places data in case of an error. This
ensures three copies of the data are saved. Depending on the size of your deployment and the
availability of storage resources, add 1 or 2 to the replication factor for handoff locations.
Additionally, plan to scale out your object storage once it reaches 75% of capacity in order to
avoid running out of space.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 50

To calculate object storage:

1. Use the following formula:

(required capacity x ((replication factor + handoff location))/
percentage full

Example:

(50 x (3+2))/0.75 = 333 TB

Therefore, you need 333 TB or a multiplication factor of 6.66.
2. Optionally, adjust the multiplication factor.

If the amount of storage is too high, you may want to lower the multiplication factor and
plan to expand your storage in the future.
Example:

50 x 4 = 200 TB

Therefore, with the multiplication factor 4, you need 200 TB.
3. Plan your storage server layout.

Example:

• 6 nodex x 12 3.5" 3 TB drives = 216 TB (36 TB per node)
• 10 nodes x 10 2.5" 2 TB drives = 200 TB (20 TB per node)

Mirantis recommends that you deploy more servers with fewer number of disks rather
than fewer servers with more disks. In case of a storage failure, the size of data that
Swift or Ceph will have to replicate is significantly smaller if you use fewer disks per
server. Using fewer disks per server is also beneficial when you scale out your storage
because of the amount of time required to re-balance your data objects. Therefore, in
the storage layout examples above, first option is the preferred one.

Seealso

• Fuel Installation Guide

Calculate ephemeral storage
In many production environments, you may want to use a Ceph cluster or network storage for
ephemeral volumes. You can also use any existing storage technology that is available in your
environment.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 51

To calculate ephemeral storage in a testing environment:

1. Use the following formula:

number of VMs per compute node x local storage per VM

Example:

17 x 150 GB = 2.55 TB

Therefore, you need a total of 2.55 TB of disk space on each compute node to
accommodate the requirements of 17 virtual machines with 150 GB disk drives.

2. Add storage required to accommodate the compute node operating system storage
requirements.
For example, if speed is critical in your deployment, each compute node requires 18 disk
drives, such as 200 GB SSD drives.

To calculate ephemeral storage in a production environment:

1. Use the following formula:

total number of VMs x total ephemeral storage

Example:

100 x 150 = 15 TB

Therefore, for 100 VMs with a requirement of 150 GB of ephemeral storage, you need 15 TB
of storage in Ceph cluster or in network storage.
To address ephemeral storage requirements, you can configure multiple SSD pools with
disk drives with appropriate capacity. For example, you can use 400 or 800 GB mixed-use
SSDs.
If you use Ceph RBD as a back end for ephemeral storage, you may want to use SSDs for
Ceph Object Storage Daemon (OSD) journal for better performance. Mirantis recommends
that you use one small write-optimized SSD per five OSDs.

Seealso

• Calculate object storage

However, in many production environments you may want to use a Ceph cluster or network
storage for ephemeral volumes. You can also use any existing storage technology that is
available in your environment.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 52

To calculate ephemeral storage in a testing environment:

1. Use the following formula:

number of VMs per compute node x local storage per VM

Example:

17 x 150 GB = 2.55 TB

Therefore, you need a total of 2.55 TB of disk space on each compute node to
accommodate the requirements of 17 virtual machines with 150 GB disk drives.

2. Add storage required to accommodate the compute node operating system storage
requirements.
For example, if speed is critical in your deployment, each compute node requires 18 disk
drives, such as 200 GB SSD drives.

To calculate ephemeral storage in a production environment:

1. Use the following formula:

total number of VMs x total ephemeral storage

Example:

100 x 150 = 15 TB

Therefore, for 100 VMs with a requirement of 150 GB of ephemeral storage, you need 15 TB
of storage in Ceph cluster or in network storage.
To address ephemeral storage requirements, you can configure multiple SSD pools with
disk drives with appropriate capacity. For example, you can use 400 or 800 GB mixed-use
SSDs.
If you use Ceph RBD as a back end for ephemeral storage, you may want to use SSDs for
Ceph Object Storage Daemon (OSD) journal for better performance. Mirantis recommends
that you use one small write-optimized SSD per five OSDs.

Seealso

• Calculate object storage

Calculate network
This section uses prerequisites listed in Example conventions.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 53

Information provided in this section is only relevant if you use Neutron without any
software-defined network (SDN) solutions. Network calculation varies for each SDN.
This section includes the following topics:

Calculate network
By default, Fuel creates the following networks: Public, Storage, PXE (Admin), Management, and
Private. However, your environment may require additional networks, such as multiple tenant
private networks and so on. For many of the additional networks you must plan in advance and
use VLANs.
To calculate network:

1. Calculate the speed per virtual machine that the network card that you selected provides:

network card performance/number of virtual machines per server

Example:

10000/17 = 580 Mbit/s

Therefore, one 10 Gb Ethernet network card provides 580 Mbit/s per virtual machine.
2. Adjust the number of network cards to the performance required for your deployment.

For example, to accommodate the requirement of 100 Mbit/s per virtual machine, you need
two 10 Gb Ethernet network cards. The two network cards also address the requirement of
a highly-available network.

For the environment described in this section, you can use the following hardware configuration:

• 2 network switches per compute node, each with at least 12 ports for data: 2 x 10 Gb
network interfaces per compute node x 6 compute nodes

• 1 x 1 Gb switch for IPMI (1 port per server x 6 servers)
• (optional) 2 Cluster Management switches

Calculate floating and public IP addresses
Before calculating floating and public IP addresses required for your OpenStack environment,
read Network requirements.
For the purpose of examples, this section uses the following conventions:

Example conventions

Parameter Value in this example
Number of controller nodes 3
Number of Zabbix nodes 1

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 54

Other nodes, such as compute, storage, or MongoDB 18 nodes in total:

• 10 compute nodes
• 5 Ceph OSD nodes
• 3 MongoDB nodes

Number of virtual routers for all the tenants. The virtual routers
must be connected to the external network.

10

Number of virtual machines that require direct access to the
external network

100

Number of extra IP addresses. Typically, this value equals 3 and
includes the following:

• 1 virtual IP address for virtual router
• 1 public virtual IP address
• 1 IP address for default gateway

3

Calculate IP addresses for Neutron
This section uses conventions listed in Calculate floating and public IP addresses.
To calculate IP addresses for Neutron:

1. Calculate public IP range using the following formula:

[(number of controller nodes + number of zabbix nodes) + number of extra IP addresses]

Example:

[(3 + 1) + 3] = 7

Therefore, you need 7 IP addresses from the public IP range.
2. If you do not plan to use Distribute Virtual Routing (DVR), calculate floating IP range using

the following formula:

[number of virtual routers for all tenants + number of VMs]

Example:

[10 + 100] = 110

Therefore, you need 110 IP addresses from the floating IP range.
3. If you use Distributed Virtual Routing (DVR) and plan to use floating IP addresses in the

OpenStack environment deployment, use the following formulas:

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 55

• For VLAN segmentation:

(number of controller nodes + number of extra IP addresses) + number of compute nodes

Example:

(3 + 3) + 10 = 16

Therefore, you need 16 IP addresses.
• For GRE segmentation:

(number of controller nodes + number of other nodes + number of extra IP addresses) + number of compute nodes

Example:

(3 + 18 + 3) + 10 = 34

Therefore, you need 34 IP addresses.
The following table summarizes results of the calculation:

Example conventions

Parameter Value in this
example

Use of public
IPs

Use of
floating IPs

Number of controller nodes 3 ✓ --
Number of Zabbix nodes 1 ✓ --
Other nodes 18 ✓ --
Number of virtual routers for all tenants.
The virtual routers must be connected to
the external network.

10 -- ✓

Number of virtual machines 100 -- ✓
Number of extra IP addresses. 3 ✓ --

Calculate IP addresses for Nova-network
This section uses conventions listed in Calculate floating and public IP addresses.
To calculate IP addresses for Nova-network:

1. Calculate the number of public IP addresses using the following formula:
[(number of controller nodes + number of Zabbix nodes + number of other nodes) + number of extra IPs]

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 56

Example:

[(3 + 1 + 18) + 3] = 25

Therefore, you need 25 IP addresses from the public IP range.
2. Calculate the number of floating IP addresses.

The number of floating IP addresses equals the number of virtual machines. Therefore, you
need 100 IP addresses from the floating IP range.

The following table summarizes results of the calculation:

Example conventions

Parameter Value in this
example

Use of public
IPs

Use of
floating IPs

Number of controller nodes 3 ✓ --
Number of Zabbix nodes 1 ✓ --
Other nodes 18 ✓ --
Number of virtual routers for all the
tenants. The virtual routers must be
connected to the external network.

10 n/a n/a

Number of virtual machines 100 -- ✓
Number of extra IP addresses. 3 ✓ --

By default, Fuel creates the following networks: Public, Storage, PXE (Admin), Management, and
Private. However, your environment may require additional networks, such as multiple tenant
private networks and so on. For many of the additional networks you must plan in advance and
use VLANs.
To calculate network:

1. Calculate the speed per virtual machine that the network card that you selected provides:

network card performance/number of virtual machines per server

Example:

10000/17 = 580 Mbit/s

Therefore, one 10 Gb Ethernet network card provides 580 Mbit/s per virtual machine.
2. Adjust the number of network cards to the performance required for your deployment.

For example, to accommodate the requirement of 100 Mbit/s per virtual machine, you need
two 10 Gb Ethernet network cards. The two network cards also address the requirement of
a highly-available network.

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 57

For the environment described in this section, you can use the following hardware configuration:

• 2 network switches per compute node, each with at least 12 ports for data: 2 x 10 Gb
network interfaces per compute node x 6 compute nodes

• 1 x 1 Gb switch for IPMI (1 port per server x 6 servers)
• (optional) 2 Cluster Management switches

Mirantis OpenStack Planning Guide 9.2

©2017, Mirantis Inc. Page 58

	Copyright notice
	Preface
	Intended Audience
	Documentation History

	Introduction
	OpenStack environment architecture
	Introduction to Fuel
	Overview of the planning process

	Fuel system requirements
	Network requirements
	Public and floating IP address requirements
	Routing requirements
	Switching requirements

	Fuel Master node hardware requirements
	Storage on the Fuel Master node
	Fuel Slave nodes hardware recommendations

	Fuel reference architecture overview
	Nodes and roles
	Highly-available environment architecture
	Node configuration
	Highly-available MySQL database
	Server load balancing using HAProxy
	Cluster resource management using Pacemaker and Corosync

	Plan the network
	Logical networks
	Networking Templates
	Specifying IP address ranges for logical networks
	Virtual IP addresses for load balancing
	Multiple cluster networks
	Network topologies
	Additional networking functionality
	Known limitations

	Plan the storage
	Storage components overview
	Plan block storage
	Plan object storage
	Storage plugins

	Plan the monitoring tools
	Monitor the OpenStack environment using the OpenStack Telemetry service
	Custom transformed metrics
	Plan the OpenStack Telemetry service back end
	Optimize the MongoDB database
	Modify MongoDB indexes

	Plan a Hadoop cluster
	Node requirements
	Hardware requirements
	Limitations
	System prerequisites

	Plan the orchestration
	Orchestration (Heat) overview

	Plan the vSphere integration
	Overview
	Deploy an environment with VMware vCenter and KVM/QEMU
	Prerequisites
	Known limitations

	Plan the Fuel plugins
	Fuel plugins overview
	Fuel plugin validation

	Calculate hardware resources
	Example conventions
	Calculate CPU
	Calculate memory
	Calculate storage
	Calculate storage performance
	Ephemeral storage
	Block and object storage
	Calculate object storage
	Calculate ephemeral storage

	Calculate network
	Calculate network
	Calculate floating and public IP addresses
	Calculate IP addresses for Neutron
	Calculate IP addresses for Nova-network

