
Network FunctionsVirtualization
Solution Guide for DevStack

version 9.2

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page i

Contents
Copyright notice 1
Preface 2

Intended Audience 2
Documentation History 2

Introduction 3
Prerequisites 4

Software requirements 4
Hardware requirements 4
Limitations 5

Prepare your environment for NFV 7
Prepare DevStack environment 7
Verify packages versions 9
Install packages for NUMA, DPDK, and Huge Pages 9

Enable NUMA 11
Introduction 11

NUMA overview 11
NUMA prerequisites 11

Verify CPU support 11
Verify nested KVM support 12

Install and configure NUMA environment 13
Emulate NUMA environment 13
Configure NUMA 14

Example configurations 15
Example: Boot VM with two NUMA nodes 15
Example: Boot VM with CPU and memory pining 18

Configure NUMA 21
Enable OVS and DPDK 22

Introduction 22
DPDK Overview 22

Verify DPDK requirements 23
Configure DPDK 24

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page ii

Enable OVS with DPDK ports in Neutron 24
Configure libvirt 25
Boot a virtual machine with Huge Pages 25

Examples 28
Example: Enable OVS with DPDK support on the same host 28
Example: Enable OVS with DPDK support on different hosts 32

Examples of configuration files 33
Example of the configuration file for a compute node 33
Example of the configuration file for All-in-one host machine 34

DPDK Overview 36
Enable SR-IOV 38

Introduction 38
SR-IOV overview 38

SR-IOV requirements 38
Enable I/O MMU 40
Configure SR-IOV OpenStack environment 40
Examples 44

Example: one instance with OVS vNIC and VLAN segmentation 44
Example: two instances each with one SR-IOV VF 45
Example: one instance with both OVS vNIC and SR-IOV VF 45
Test connectivity 47

Install SR-IOV OpenStack environment 48
Enable Huge Pages 50

Introduction 50
Huge Pages overview 50

Verify CPU support 50
Configure Huge Pages 50
Boot a virtual machine with Huge Pages 52

Glossary 55

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page iii

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 1

Preface
This documentation provides information on how to use Fuel to deploy OpenStack
environments. The information is for reference purposes and is subject to change.

Intended Audience
This documentation is intended for OpenStack administrators and developers; it assumes that
you have experience with network and cloud concepts.

Documentation History
The following table lists the released revisions of this documentation:

Revision Date Description
February 6, 2017 9.2 GA

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 2

Introduction
This guide describes procedures required to enable Network Functions Virtualization (NFV) in
the DevStack version of OpenStack. With enabled NFV features, DevStack can act as NFV
infrastructure (NFVI) enabling Virtual Network Functions (VNFs).
The objective of NFV is to address problems related to communications service providers (CSPs)
that need to deliver specialized network functions such as firewalls, load balancers, and content
filters on an on-demand basis. Rather than requiring the deployment of proprietary hardware
appliances in their network, NFV helps CSPs to address these problems by decoupling software
functions from the underlying hardware. NFV performs this decoupling by leveraging standard IT
virtualization technology along with the introduction of open APIs and an ecosystem of
suppliers, building end-to-end, flexible, and scalable solutions. In such way, NFV improves
hardware resources utilization and reduces operating costs.
NFV features can be added to Compute and Networking services to build NFVI on top of the
OpenStack environment. Fusion of NFV and OpenStack helps to deliver the virtualized network
function in a quicker and automated way.
The guide describes the following NFV features that can deliver near bare-metal performance
for the virtual function in the OpenStack infrastructure:

• Huge Pages is a technology that supports of 2MB and 1GB size memory pages. Huge Pages
reduce time to access data stored in the memory by using bigger memory pages, which
leads to fewer page entries to look up by CPU when choosing a page associated with a
current process.

• NUMA/CPU pinning is a shared memory architecture that describes the placement of main
memory modules on processors in a multiprocessor system. You can leverage NUMA when
you have data strongly associated with certain tasks or users. In such case, CPU can use its
local memory module to access data reducing access time.

• SR/IOV is an extension to the PCI Express (PCIe) specification that enables a network
adapter to separate access to its resources among various PCIe hardware functions:
Physical Function (PF) and Virtual Functions (VFs). As a result, you can achieve near
bare-metal performance, since network devices can forward traffic directly to a VF
bypassing the host.

• DPDK is a set of libraries and drivers to perform fast packet processing in the user space
that OVS can use to move network packets processing from a kernel to a user space. OVS
with DPDK acceleration on compute nodes reduces the processing time of network packets
transferred between a host's network interface and a guest bypassing the host's kernel.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 3

Prerequisites
This section describes software and hardware requirements needed to enable NFV features as
well as possible limitations.

Software requirements

Software requirements

NFV feature Linux distri
bution

Linux
kernel
version

libvirt
version

QEMU
version

OpenStack
version

DPDK Ubuntu
14.04

2.6.33 or
later

1.2.9.3 or
later

2.3.0 Liberty

Huge Pages Ubuntu
14.04

default 1.2.8 or
later

2.1.0 or
later

Liberty

NUMA Ubuntu
14.04

default 1.2.7 or
later (except
1.2.9.2)

2.1.0 or
later

Liberty

SR-IOV Ubuntu
14.04,
Fedora 22 or
newer, or Ce
ntOS/RHEL 7

3.8 or later N/A N/A Liberty

Use the latest DPDK version 16.04 or the master branch to avoid memory segmentation fault
that DPDK-enabled applications may cause in a VM instance on the host where Open vSwitch
with DPDK is enabled.
DPDK has the following extra requirements for kernel:

• UIO or vfio support
• HUGETLBFS support

Seealso
LP1597004: DPDK-enabled applications in VM can cause SEGFAULT in host
OpenVSwitch+DPDK

Hardware requirements
NFV features depend on hardware implementation. Therefore, you must verify that your
hardware supports NFV features before running examples from this guide.
If you plan to enable SR-IOV, your environment must meet the following prerequisites:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 4

https://bugs.launchpad.net/mos/+bug/1597004
https://bugs.launchpad.net/mos/+bug/1597004

• a physical network adapter must support SR-IOV
• a host system must support SR-IOV enabled on the device and I/O MMU (Intel VT-d or

AMD-Vi)
If you plan to enable Huge Pages, your CPU must support Huge Pages.
If you plan to enable NUMA, your CPU must support NUMA.
If you plan to enable DPDK, your CPU must support:

• Streaming SIMD Extensions version 3 or higher
• pse or pdpe1gb

Limitations
This section describes the limitations of software packages used to enable NFV features.
For libvirt version before 1.2.12:

• LP1379346: Error creating a VM: internal error: No PCI buses available
For libvirt version 1.2.9.2:

• LP1449028: NUMA tuning broken in select libvirt versions
For QEMU version before 2.3.0:

• LP1417937: qemu appears to be built without CONFIG_NUMA defined
For DPDK library version before 16.04:

• LP1597004: DPDK-enabled applications in VM can cause SEGFAULT in host
OpenVSwitch+DPDK

For ovs-dpdk-networking plugin:

• networking-ovs-dpdk bugs
For OpenStack:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 5

https://bugs.launchpad.net/ubuntu/+source/libvirt/+bug/1379346
https://bugs.launchpad.net/nova/+bug/1449028
https://bugs.launchpad.net/ubuntu/+source/qemu/+bug/1417937
https://bugs.launchpad.net/mos/+bug/1597004
https://bugs.launchpad.net/mos/+bug/1597004
https://bugs.launchpad.net/networking-ovs-dpdk

• Guarantee resource allocation to NFV workloads. Extensive virtual CPU and RAM
overprovisioning may result in latency spikes when several instances compete for the
limited physical resources controlled by a hypervisor.
Cloud administrators must verify that the corresponding OpenStack Compute service
settings are configured to address this limitation in /etc/nova/nova.conf. For example:

ram_allocation_ratio=1.0
reserved_host_memory_mb=512
cpu_allocation_ratio=1.0

Seealso
Nova configuration options

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 6

http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html

Prepare your environment for NFV
This section describes initialization steps needed to prepare your environment for enablement
of NFV features.

Prepare DevStack environment
DevStack is a set of scripts used to quickly create an OpenStack development environment from
the source in git repository master or specific branches suitable for development and
operational testing. DevStack can be used to demonstrate running OpenStack services and
provide examples of using them from a command line. For NFV enablement use DevStack
running on Ubuntu 14.04.
To prepare DevStack environment:

1. If you deploy DevStack after installation of the Ubuntu packages, remove PPA of these
packages:

sudo add-apt-repository --remove ppa:ubuntu-cloud-archive/liberty-staging

You need this because these packages are not authorized, and DevStack deployment will
fail otherwise.

2. Install OS that supports NFV features you want to enable in an OpenStack environment.

Note
Any of the distributions mentioned in Prerequisites section will provide you with a
suitable platform on top of which you can build your OpenStack environment.

3. Configure the interfaces needed for networking.
4. Disable any management entities such as Network Manager that might interfere with

configuration. There are several ways this can be accomplished:

• One way is to disable Network Manager and instead default to simple kernel network
configuration by executing the following commands.

1. Stop the NetworkManager service:

systemctl stop NetworkManager

2. Disable the NetworkManager service:

systemctl disable NetworkManager

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 7

3. Make the network service start upon reboot:

chkconfig --levels 345 network on

4. Start the network service:

systemctl start network

• An alternative way is to update all configuration files for interfaces you wish to use with
OpenStack that are located in the folder /etc/sysconfig/network-scripts/ by including the
line:

NM_CONTROLLED=no

This will prevent Network Manager from changing interface settings.
5. Enable iptables and disable firewall.

Note
DevStack uses iptables rules. Therefore, DevStack will not work properly when the
Linux firewall is enabled.

1. Save iptables rules:

service iptables save

2. Disable firewall:

systemctl disable firewalld

3. Enable iptables:

systemctl enable iptables

4. Stop the firewall service:

systemctl stop firewalld

5. Start iptables:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 8

systemctl start iptables

6. Download DevStack:

git clone https://git.openstack.org/openstack-dev/devstack

Seealso

• DevStack documentation

Verify packages versions
Your host environment for NUMA, DPDK, and Huge Pages must have the proper versions of libvirt
and QEMU packages specified in Prerequisites.
To verify packages versions:

1. Verify libvirt version:

libvirtd --version

Example of system response

libvirtd (libvirt) 1.2.16

2. Verify QEMU version:

qemu-system-x86_64 -version

Example of system response

QEMU emulator version 2.3.0

Install packages for NUMA, DPDK, and Huge Pages
NUMA, DPDK, and Huge Pages require the following libvirt and QEMU packages installed on a
host system:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 9

http://docs.openstack.org/developer/devstack/

• libvirt-dev
• libvirt-bin
• qemu-system-x86
• qemu-kvm

If required versions of libvirt and QEMU are not installed on the host machine, you need to install
them manually.
To install libvirt and QEMU packages:

1. Log into the host machine.
2. Add PPA to the Ubuntu repository:

sudo add-apt-repository ppa:ubuntu-cloud-archive/liberty-staging

Warning
If you deploy DevStack after installation of the provided packages, do not add PPA of
these packages.

3. Retrieve new lists of packages:

sudo apt-get update

4. Install the libvirt packages:

sudo apt-get install libvirt-dev libvirt-bin

5. Install the QEMU packages:

sudo apt-get install qemu-kvm qemu-system-x86

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 10

Enable NUMA
Introduction
This chapter describes how to enable and use NUMA on the OpenStack Liberty environment.

NUMA overview
Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing,
where the memory access time depends on the memory location relative to the processor.
Under NUMA, a processor can access its own local memory faster than non-local memory
(memory local to another processor or memory shared between processors). The benefits of
NUMA are limited to particular workloads, notably on servers where the data are often
associated strongly with certain tasks or users.

NUMA prerequisites
This section decribes prerequisites for NUMA enablement.

Verify CPU support
CPU must support NUMA.
To verify NUMA support by CPU, run:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 12 13 14 15 16 17
node 0 size: 128910 MB
node 0 free: 669 MB
node 1 cpus: 6 7 8 9 10 11 18 19 20 21 22 23
node 1 size: 129022 MB
node 1 free: 4014 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 11

Note
You can have one NUMA node. But, in practice, a good NUMA topology should contain at
least two NUMA nodes.

Verify nested KVM support
The tests require support for nested KVM, which is not enabled by default on hosts with a
hypervisor. You need to turn on the nested KVM support explicitly on the host when loading the
kvm-intel or kvm-amd kernel modules.
To verify nested KVM support on Intel hosts, run:

cat /sys/module/kvm_intel/parameters/nested

Example of system response:

N

If the nested KVM support is not enabled, run:

rmmod kvm-intel
echo "options kvm-intel nested=y" > /etc/modprobe.d/dist.conf
modprobe kvm-intel

cat /sys/module/kvm_intel/parameters/nested

Example of system response:

Y

To verify nested KVM support on AMD hosts, run:

cat /sys/module/kvm_amd/parameters/nested

Example of system response:

0

If the nested KVM support is not enabled, run:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 12

rmmod kvm-amd
echo "options kvm-amd nested=1" > /etc/modprobe.d/dist.conf
modprobe kvm-amd

cat /sys/module/kvm_amd/parameters/nested

Example of system response:

1

Install and configure NUMA environment
Emulate NUMA environment
If your CPU does not support NUMA, you can emulate NUMA environment for development and
debugging purposes. However, you will not have any performance improvement in the case of
emulation.
Mirantis recommends you to have at least two NUMA nodes. If the numactl -H command shows
only one NUMA node, you can emulate NUMA nodes.
To emulate NUMA nodes:

1. Provision a basic Ubuntu Server 14.04 AMD64 guest with 4 virtual CPUs, 8 GB of RAM, and
50 GB of disk space:

Warning
Ensure virt-viewer is installed to finish Ubuntu installation.

mkdir ~/images
cd ~/images
wget http://releases.ubuntu.com/14.04/ubuntu-14.04.3-server-amd64.iso
virt-install --name ubuntu_14 --ram 8000 --vcpus 4 --file ~/images/ubuntu_14.img \
 --file-size 50 --cdrom ~/images/ubuntu-14.04.3-server-amd64.iso

2. Shutdown the VM:

virsh destroy ubuntu_14

3. Open the VM's configuration file to edit:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 13

virsh edit ubuntu_14

4. Create or replace the CPU section:

<cpu mode='host-passthrough'>
 <numa>
 <cell id='0' cpus='0-1' memory='4096000' unit='KiB'/>
 <cell id='1' cpus='2-3' memory='4096000' unit='KiB'/>
 </numa>
 </cpu>

This example emulates two NUMA nodes; each NUMA node has 2 CPUs and 4GB RAM.
5. Start the VM:

virsh start ubuntu_14

6. Verify that the VM's CPU section has been changed:

virsh dumpxml ubuntu_14 | grep cpu

Example of system response:

<vcpu placement='static'>4</vcpu>
<cpu mode='host-passthrough'>
 <cell cpus='0-1' memory='4096000'/>
 <cell cpus='2-3' memory='4096000'/>
</cpu>

7. Connect to the VM using SSH. Take all further steps on the VM.

Configure NUMA
To configure NUMA:

1. Add the following parameter to /etc/nova/nova.conf:

[libvirt]
virt_type = kvm

2. Add NUMATopologyFilter to scheduler_default_filters:

[DEFAULT]
scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter,NUMATopologyFilter

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 14

3. Restart the nova-scheduler and nova-compute services.

sudo service nova-scheduler restart
sudo service nova-compute restart

Example configurations
This section describes examples of using NUMA when booting VM in an OpenStack environment:

Example: Boot VM with two NUMA nodes
This example demonstrates booting VM with two NUMA nodes.
To boot VM with two NUMA nodes:

1. Create a new flavor or use an existing one to use with NUMA. To create a new flavor, run:

. openrc admin admin # get admin rights
nova flavor-create m1.numa 999 1024 5 4

2. Add numa_nodes to the flavor.

Note
vCPUs and RAM will be divided equally between the NUMA nodes.

nova flavor-key m1.numa set hw:numa_nodes=2
nova flavor-show m1.numa

Example of system response:

+----------------------------+------------------------+
| Property | Value |
+----------------------------+------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	5
extra_specs	{"hw:numa_nodes": "2"}
id	999
name	m1.numa
os-flavor-access:is_public	True
ram	1024
rxtx_factor	1.0
swap	
vcpus	4

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 15

+----------------------------+------------------------+

3. Create a new image or use an existing image.

Note
You need an Ubuntu image and the default Cirros image.

To create a new Ubuntu image, run:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. To enable SSH connections, do:

1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new ssh key pair or use the existing key pair. To create a new ssh key pair,
run:

ssh-keygen

3. Add the key pair to the Computing service:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Verify free memory before booting the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 718 MB

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 16

node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

6. Boot a new instance using the created flavor.

nova boot --flavor m1.numa --image ubuntu --key-name my_kp inst1

7. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 293 MB # was 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 81 MB # was 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

8. Retrieve the instance's IP:

nova show inst1 | awk '/network/ {print $5}'

Example of system response:

10.0.0.2

9. Connect to the VM using SSH:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 17

ssh ubuntu@10.0.0.2

10
.
Install numactl:

sudo apt-get install numactl

11
.
Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 489 MB
node 0 free: 393 MB
node 1 cpus: 2 3
node 1 size: 503 MB
node 1 free: 323 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

Example: Boot VM with CPU and memory pining
This example demonstrates booting VM with CPU and memory pining.
To boot VM with CPU and memory pining:

1. Create a new flavor with specific division of vCPUs and RAM between the NUMA nodes:

. openrc admin admin # get admin rights
nova flavor-create m1.numa_2 9992 1024 5 4

2. Add numa_nodes and other specific options to the flavor:

nova flavor-key m1.numa_2 set hw:numa_nodes=2 hw:numa_cpus.0=0,2 hw:numa_cpus.1=1,3 \
 hw:numa_mem.0=324 hw:numa_mem.1=700
nova flavor-show m1.numa_2 | grep extra

Example of system response:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 18

| extra_specs | {"hw:numa_cpus.0": "0,2", "hw:numa_cpus.1": "1,3", "hw:numa_nodes": "2", "hw:numa_mem.1": "700", "hw:numa_mem.0": "324"} |

3. Create a new image or use an existing image.

Note
You need an Ubuntu image or the default Cirros image.

To create a new Ubuntu image, run:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. To enable SSH connections, do:

1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new ssh key pair or use the existing key pair. To create a new ssh key pair,
run:

ssh-keygen

3. Add the key pair to the Computing service:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Boot a new instance using the created flavor.

nova boot --flavor m1.numa_2 --image ubuntu --key-name my_kp inst2

6. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 19

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 293 MB # was 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 81 MB # was 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

7. Retrieve the instance's IP:

nova show inst2 | awk '/network/ {print $5}'

Example of system response:

10.0.0.3

8. Connect to the VM using SSH:

ssh ubuntu@10.0.0.3

9. Install numactl:

sudo apt-get install numactl

10
.
Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 2
node 0 size: 303 MB
node 0 free: 92 MB
node 1 cpus: 1 3
node 1 size: 689 MB

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 20

node 1 free: 629 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

You can see that the NUMA topology has two NUMA nodes. Total RAM size is about 1 GB,
node-0 CPUs are 0 and 2, node-1 CPUs are 1 and 3, node-1 RAM is about 324 MB, node-2
RAM is about 700 as specified in the m1.numa_2 flavor.

Configure NUMA
To configure NUMA:

1. Add the following parameter to /etc/nova/nova.conf:

[libvirt]
virt_type = kvm

2. Add NUMATopologyFilter to scheduler_default_filters:

[DEFAULT]
scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter,NUMATopologyFilter

3. Restart the nova-scheduler and nova-compute services.

sudo service nova-scheduler restart
sudo service nova-compute restart

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 21

Enable OVS and DPDK
Introduction
This section of the NFV guide explains the DPDK technology and points to the way you can
enable it with DevStack.

Warning
OVS with DPDK support is an experimental feature.

DPDK Overview
Intel© DPDK is a set of libraries and drivers to perform fast packet processing in the user space.
Open vSwitch uses DPDK functions and drivers as the netdev datapath to perform out-of-kernel
packet processing. In this scenario, the VHOST_USER DPDK library will be used as the user space
VHOST implementation. OpenStack users can perform fast host to guest to host packet
processing with adding accelerated OVS to a compute node.

In the figure above, OVS uses DPDK libraries as the netdev datapath, poll mode drivers as the
packet processing unit for host NICs and the vHost and ivshmem libraries as the host to guest
control plane and data plane. Using the ivshmem library of the DPDK means running the DPDK
application on a guest OS. In this scenario, the guest DPDK application must use host’s shared
Huge Pages, which is out of scope for this guide. For the VHOST_USER implementation, OVS

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 22

provides socket devices for management of control messages and shared hugepages provides a
mechanism for data plane packet processing.

Seealso
Related features of DPDK are described in http://dpdk.org/doc/guides/

Verify DPDK requirements
In most Fedora, Ubuntu, or RHEL distributions, you can use the vendor-supplied kernel
configuration to run most of the DPDK applications.
To verify DPDK requirements:

1. Verify the kernel version:

uname -r

2. Verify if the host OS supports UIO:

modprobe uio
ll /sys/class | grep uio

3. Verify if the host OS supports VFIO-PCI:

modprobe vfio
ll /sys/class | grep vfio

4. Verify if HUGETLBFS is enabled:

egrep '\[always\]' /sys/kernel/mm/transparent_hugepage/enabled

Example of system response:

[always] madvise never

5. Verify if the host CPU supports hugepages:

egrep '(pse|pdpe1gb)' /proc/cpuinfo

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 23

http://dpdk.org/doc/guides/

Example of system response:

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm

Note
PSE stands for 2MB hugepages support and PDPE1GB - 1GB hugepages support.

6. Verify if CPU supports SSE instruction sets:

egrep 'sse' /proc/cpuinfo

Example of system response:

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm

Seealso
The full list of requirements for all DPDK applications

Configure DPDK
This section describes configuration steps to enable OVS with DPDK support.

Enable OVS with DPDK ports in Neutron
You can enable OVS with DPDK ports in Neutron by installing the ovs-dpdk-networking plugin,
which is a collection of agents and drivers needed to manage DPDK accelerated OVS with
Neutron.
To enable OVS+DPDK ports in Neutron:

1. Enable the networking-ovs-dpdk plugin.
2. Within the DevStack directory create the local.conf file or modify the existing one in the

following way:

enable_plugin networking-ovs-dpdk https://review.openstack.org/openstack/networking-ovs-dpdk master # enable appropriate plugin to be downloaded and used in OpenStack
OVS_NUM_HUGEPAGES=3072 # set up the hugepages amount on the host

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 24

http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html#compilation-of-the-dpdk

OVS_DATAPATH_TYPE=netdev # set up appropriate dapatath type (netdev used for DPDK application)
OVS_LOG_DIR=/opt/stack/logs # specify logging directory for OVS

3. To choose a role of the host, add several configuration parameters to local.conf.

Note
In Examples of configuration files section, at the end of this chapter, you can find two
examples of how to create local.conf for controller and compute nodes.

4. Run the ./stack.sh script to download OpenStack components.
By enabling the networking-ovs-dpdk plugin the default OVS support will be overridden by the
OVS+DPDK support. The DevStack init mechanics provide initial scripts within the plugin’s
directory.

Configure libvirt
DPDK needs hugepages enabled in libvirt.
To configure libvirt with Huge Pages:

1. Add a mount point for the hugelbfs file system to the /etc/libvirt/qemu.conf configuration
file.

hugetlbfs_mount = "/run/hugepages/kvm" # this is default mount point

Boot a virtual machine with Huge Pages
A kvm-based VM requires an appropriate flavor for booting that enables using hugepages as a
vNIC’s data plane back end.
To create a flavor and boot a VM, run:

1. Create a new flavor or use an existing one:

. openrc admin admin # get admin rights
nova flavor-create huge 999 2048 4 2 # 999 1024 4 1 for default

2. Add size of huge pages to the flavor:

nova flavor-key huge set hw:mem_page_size=2048
nova flavor-show huge

Example of system response:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 25

+----------------------------+------------------------------+
| Property | Value |
+----------------------------+------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	4
extra_specs	{"hw:mem_page_size": "2048"}
id	7
name	huge
os-flavor-access:is_public	True
ram	1024
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+------------------------------+

3. Create a new image or use an existing glance image.

Note
Use the Ubuntu image from the Ubuntu images repository and the default Cirros
image.

If needed, you can create an image named ubuntu with the following command:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. Boot instance with the created flavor:

nova boot --flavor huge --image ubuntu inst1

When booting, the Compute service creates the appropriate vhost_user port in the OVS
integration bridge. To verify this, run:

sudo ovs-vsctl show

Example of system response:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 26

796b6936-7d5f-4cad-917d-52bc78962c78
 Bridge br-int
 fail_mode: secure
 Port "tap1623aff5-33"
 tag: 1
 Interface "tap1623aff5-33"
 type: internal
 Port br-int
 Interface br-int
 type: internal
 Port "qr-ac082c22-3d"
 tag: 1
 Interface "qr-ac082c22-3d"
 type: internal
 Port "vhua1434f2e-fd" #new port vhost-user type
 tag: 2
 Interface "vhua1434f2e-fd"
 type: dpdkvhostuser
 Port "qr-15a7bc43-5c"
 tag: 1
 Interface "qr-15a7bc43-5c"
 type: internal
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Bridge br-tun
 fail_mode: secure
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port br-tun
 Interface br-tun
 type: internal
 Bridge br-ex
 Port "qg-d77a0c60-9d"
 Interface "qg-d77a0c60-9d"
 type: internal
 Port br-ex
 Interface br-ex
 type: internal

5. Verify the VM's state after boot:

nova list

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 27

Example of system response:

+--------------------------------------+---------------+--------+------------+-------------+------------------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+---------------+--------+------------+-------------+------------------------------------+
| 73280c74-f263-442e-a56a-0321da23b0c4 | inst1 | ACTIVE | - | Running | private1337=192.11.0.7, 172.24.4.4 |
| 477a0c70-8b40-464e-853d-63a8ff50ad5a | inst2 | ACTIVE | - | Running | private1337=192.11.0.8, 172.24.4.5 |
+--------------------------------------+---------------+--------+------------+-------------+------------------------------------+

Seealso
Ubuntu images repository

Examples
This section demonstrates various CLI and GUI interactions that you can perform using the
DPDK technology described above.

Example: Enable OVS with DPDK support on the same host
This example demonstrates launching two virtual machines on a single compute node, with the
compute node using OVS with DPDK support. The example also shows communication between
these virtual machines over the VM's single vNIC.
The following hardware node is used in the example:

• the host name cz7119
• running Intel Xeon 12 cores and 64 GB RAM
• OS installed Ubuntu 14.04 LTS Trusty Thar
• two NICs with 1GB/s each, where eth0 is a single external network interface and eth1 is an

unused interface
To configure a single All-in-one node, use the configuration example from the Examples of
configuration files section at the end of this chapter.
To enable OVS with DPDK support on the same host:

1. Create the local.conf file within the devstack directory or edit the existing one to add the
appropriate configuration.

2. Configure the host following the instructions from the previous chapter.
3. After getting OpenStack deployed on the single node, configure public and private

networks.
To configure public and private networks, either use the Horizon web UI or host CLI:

1. Login to the Horizon web UI using default admin/admin login and password.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 28

https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

2. After switching the project to admin, enter the Network page.
3. Create two networks: the private one called private1337 192.11.0.0/24 and the

external public network called public1337 172.24.4/24.
4. In the Routers section create a router for internal networks.
5. In the Gateway section create a gateway for the external public network.

Note
Do not forget to add the private network to the router’s port.

To access VMs using SSH:

1. Create a key-pair:

ssh-keygen
nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

2. Create instances using Horizon web UI.
3. Go to the Instances pad and launch two VMs with the names ubuntu-cloud-image-1 and

ubuntu-cloud-image-2.

Note
To work with vhost-user ports, VMs must use hugepage-configured flavor.
Do not pre-configure the image for this. Use Ubuntu Cloud Image as mentioned in the
previous chapter.

4. On the Security tab choose my_kp as a key-pair.
5. On the networking tab choose private network to allocate private IP addresses and click

Launch to create VMs.
6. After getting VMs in the Active state, associate floating IPs from the public network. To do

this, click Manage Instance and Associate floating IP.
7. Choose one of the IPs in the range. To do this, allocate IPs from the pool or take unused

ones.
8. To access the external network, add appropriate NAT rules on the controller. For example, if

eth0 is an API interface of the node, run:

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 29

9. Connect through SSH from the host with the key-pair to VMs directly.

Note
If you use Ubuntu Cloud Image for a guest OS, the default user name is ubuntu.

For example, to login to the VM with floating 172.24.4.4, run:

ssh ubuntu@172.24.4.4

10
.
To verify that the guest interfaces have been properly configured, run ifconfig to check the
network interfaces.

1. Run ifconfig on ubuntu-cloud-image-1:

ifconfig

Example of system response:

eth0 Link encap:Ethernet HWaddr fa:16:3e:ce:e3:58
 inet addr:192.11.0.5 Bcast:192.11.0.255 Mask:255.255.255.0
 inet6 addr: fe80::f816:3eff:fece:e358/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:106 errors:0 dropped:0 overruns:0 frame:0
 TX packets:111 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:22859 (22.8 KB) TX bytes:14150 (14.1 KB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 MB)

2. Run ifconfig on ubuntu-cloud-image-2:

ifconfig

Example of system response:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 30

eth0 Link encap:Ethernet HWaddr fa:16:3e:ce:e3:58
 inet addr:192.11.0.6 Bcast:192.11.0.255 Mask:255.255.255.0
 inet6 addr: fe80::f816:3eff:feef:1c3f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:107 errors:0 dropped:0 overruns:0 frame:0
 TX packets:101 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:23057 (23.0 KB) TX bytes:13130 (13.1 KB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 MB)

To run a simple test:
Ping one VM from another:

ping 192.11.0.6

Example of system response:

PING 192.11.0.6 (192.11.0.6) 56(84) bytes of data.
64 bytes from 192.11.0.6: icmp_seq=1 ttl=64 time=0.414 ms
64 bytes from 192.11.0.6: icmp_seq=2 ttl=64 time=0.152 ms
64 bytes from 192.11.0.6: icmp_seq=3 ttl=64 time=0.160 ms
64 bytes from 192.11.0.6: icmp_seq=4 ttl=64 time=0.154 ms
...

To measure traffic performance:

1. Install iperf:

sudo apt-get install iperf

2. Run iperf as a server on ubuntu-cloud-image-1:

iperf -s

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 31

3. Run iperf as a client on ubuntu-cloud-image-2:

iperf -c 192.11.0.5

where 192.11.0.5 is the private IP address of ubuntu-cloud-image-1.
4. Verify iperf test results on ubuntu-cloud-image-1:

--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 192.11.0.5 port 5001 connected with 192.11.0.6 port 41230
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 1.09 GBytes 939 Mbits/sec

Example: Enable OVS with DPDK support on different hosts
This example demonstrates launching two virtual machines on different compute nodes, with
both compute nodes using OVS with DPDK support.
The following hardware nodes are used in the example:

• hostnames cz7119 and cz7120 with 2x1GB interfaces each
• nodes have Intel Xeon and 64 GB RAM
• hosts OS: Ubuntu Trusty 14.04, Linux kernel version 3.13

Running a single node test significantly differs from a multi-node test in the network topology.
To run this example, you need the All-in-one node with the same configuration as in the previous
example and a compute node with local.conf from the Examples of configuration files section at
the end of this chapter.
To enable OVS with DPDK support on different hosts:

1. Set up extra interfaces called data interfaces. Each node has an interface connected to
another interface through a switch.

2. With the selected VLAN tenant segmentation you need to open switch ports for a
configured range of VLANs.

3. Set up appropriate local.conf files.
4. Run the devstack initialization script.

./stack.sh

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 32

During the DevStack configuration, the networking-ovs-dpdk driver binds data interface on each
node to the appropriate DPDK driver and adds the appropriate interface as the DPDK port to
OVS. The tenant’s traffic between VMs will be managed by data interfaces.
Setting up of the VMs for this example is almost the same. The only difference is that you need
to verify if the Compute service spawned VMs on the different nodes.
To verify if VMs are spawned on the different nodes:

1. Go to the Admin tab.
2. View the Instances page. The Instances page lists all VMs of all projects with the associated

hosts.
In this example, ubuntu-cloud-image-1 is running on the host named cz7119 and
ubuntu-cloud-image-2 is running on the cz7120 host.

3. Follow the previous example to setup two VMs from the Horizon tab.

Note
You do not need to do extra work to setup the connectivity between two VMs.

Examples of configuration files
This section contains examples of configuration files for a compute node that you can use in the
deployment scenarios provided.

Example of the configuration file for a compute node
local.conf:

[[local|localrc]]

ADMIN_PASSWORD=admin
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=$ADMIN_PASSWORD

HOST_IP_IFACE=eth0
HOST_IP=<API_IP_ADDRESS>
HOST_NAME=$(hostname)

SERVICE_HOST=<ALL_IN_ONE_API_IP_ADDRESS>

MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOST=$SERVICE_HOST
KEYSTONE_AUTH_HOST=$SERVICE_HOST

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 33

KEYSTONE_SERVICE_HOST=$SERVICE_HOST

HORIZON_PASSWORD=admin

enable_plugin networking-ovs-dpdk https://review.openstack.org/openstack/networking-ovs-dpdk master
OVS_DPDK_MODE=compute
disable_all_services
enable_service n-cpu
enable_service q-agt

DEST=/opt/stack
SCREEN_LOGDIR=$DEST/logs/screen
LOGFILE=${SCREEN_LOGDIR}/xstack.sh.log
LOGDAYS=1

#Dual socket platform with 16GB RAM,3072*2048kB hugepages leaves ~4G for the system.
OVS_NUM_HUGEPAGES=3072

#Dual socket platform with 64GB RAM,14336*2048kB hugepages leaves ~6G for the system.
#OVS_NUM_HUGEPAGES=14336

OVS_DATAPATH_TYPE=netdev
OVS_LOG_DIR=/opt/stack/logs
OVS_SOCKET_MEM=1024,0 #socket memory amount
OVS_HUGEPAGE_MOUNT=/run/hugepages/kvm #hugepages mount point
OVS_BRIDGE_MAPPINGS=default:br-eth1

Q_PLUGIN=ml2
ENABLE_TENANT_TUNNELS=False
ENABLE_TENANT_VLANS=True
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,logger
Q_AGENT=openvswitch
Q_ML2_TENANT_NETWORK_TYPE=vlan
ML2_VLAN_RANGES=default:70-79

MULTI_HOST=1

[[post-config|$NOVA_CONF]]
[DEFAULT]
vnc_enabled=True
vncserver_listen=0.0.0.0
vncserver_proxyclient_address=$HOST_IP

Example of the configuration file for All-in-one host machine
local.conf:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 34

[[local|localrc]]

ADMIN_PASSWORD=admin
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=$ADMIN_PASSWORD

HOST_IP_IFACE=eth0
HOST_IP=<API_IP_ADDRESS>
HOST_NAME=$(hostname)

HORIZON_PASSWORD=admin

enable_plugin networking-ovs-dpdk https://review.openstack.org/openstack/networking-ovs-dpdk master
OVS_DPDK_MODE=controller_ovs_dpdk

disable_service n-net
disable_service tempest
enable_service n-cpu
enable_service q-agt
enable_service q-svc
enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
enable_service neutron
enable_service q-vpn
enable_service q-fwaas

Q_PLUGIN=ml2
ENABLE_TENANT_TUNNELS=False
ENABLE_TENANT_VLANS=True
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,logger
Q_AGENT=openvswitch
Q_ML2_TENANT_NETWORK_TYPE=vlan
ML2_VLAN_RANGES=default:70:79

DEST=/opt/stack
SCREEN_LOGDIR=$DEST/logs/screen
LOGFILE=${SCREEN_LOGDIR}/xstack.sh.log
LOGDAYS=1

#Dual socket platform with 16GB RAM,3072*2048kB hugepages leaves ~4G for the system.
OVS_NUM_HUGEPAGES=3072

#Dual socket platform with 64GB RAM,14336*2048kB hugepages leaves ~6G for the system.
#OVS_NUM_HUGEPAGES=14336

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 35

OVS_DATAPATH_TYPE=netdev
OVS_LOG_DIR=/opt/stack/logs
OVS_SOCKET_MEM=1024,0 #socket memory amount
OVS_HUGEPAGE_MOUNT=/run/hugepages/kvm #hugepages mount point
OVS_BRIDGE_MAPPINGS=default:br-eth1

DPDK Overview
Intel© DPDK is a set of libraries and drivers to perform fast packet processing in the user space.
Open vSwitch uses DPDK functions and drivers as the netdev datapath to perform out-of-kernel
packet processing. In this scenario, the VHOST_USER DPDK library will be used as the user space
VHOST implementation. OpenStack users can perform fast host to guest to host packet
processing with adding accelerated OVS to a compute node.

In the figure above, OVS uses DPDK libraries as the netdev datapath, poll mode drivers as the
packet processing unit for host NICs and the vHost and ivshmem libraries as the host to guest
control plane and data plane. Using the ivshmem library of the DPDK means running the DPDK
application on a guest OS. In this scenario, the guest DPDK application must use host’s shared
Huge Pages, which is out of scope for this guide. For the VHOST_USER implementation, OVS
provides socket devices for management of control messages and shared hugepages provides a
mechanism for data plane packet processing.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 36

Seealso
Related features of DPDK are described in http://dpdk.org/doc/guides/

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 37

http://dpdk.org/doc/guides/

Enable SR-IOV
Introduction
This chapter describes the process of using Single-Root I/O Virtualization (SR-IOV) to accelerate
data plane performance for virtual machines running on the OpenStack platform.
You can find instructions for configuring and installing the required libraries, dependencies, and
applications along with various constraints that Open vSwitch (OVS) with SR-IOV has in
comparison with regular OVS installations.
The chapter explains data plane communication paths between virtual machines running on
compute hosts with and without SR-IOV.

Warning
SR-IOV support is an experimental feature.

SR-IOV overview
Modern SR-IOV is a combination of several different technologies, of which PCI Express (PCIe)
SR-IOV is one piece.
The first component required to enable SR-IOV is an input/output memory management unit (I/O
MMU), which prevents virtual functions (VFs) from accessing memory regions unrelated to their
given task. I/O MMU connects a direct memory access-capable (DMA-capable) I/O bus to the
main memory. I/O MMU will map virtual DMA addresses to physical memory addresses on the
system. Similar to how a memory management unit (MMU) manages an existing memory, I/O
MMU can provide memory protection and reports attempts to access a memory that should not
be accessed by a device.
The second component needed to use SR-IOV for KVM virtualization is the ability to assign PCI
ports to virtual guests referred to as PCI device passthrough. PCI passthrough makes devices
accessible as if they were a part of a guest itself. As a result, devices can achieve near
bare-metal performance for networking tasks, since they can bypass much of the overhead
involved in passing traffic through the host.
The final component is SR-IOV functionality itself. SR-IOV enables the partitioning of a single
physical function (PF) into multiple virtual functions (VFs). The advantage of using VFs is that
each VF can then be assigned to separate tasks. By making use of I/O MMU and PCI device
passthrough, you can split up a single PF into a number of virtual functions. Thus, resources,
such as access to physical networks, can be shared while still providing isolation and security of
virtualization.

SR-IOV requirements
This section describes requirements for SR-IOV enablement.
To assign a virtual function to a guest, you need to satisfy the following conditions:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 38

1. You need to have an SR-IOV capable device. To identify if a device supports SR-IOV, check
for an SR-IOV capability in the device configuration. The device configuration also contains
the number of VFs the device can support. The example below shows a simple test to
determine if the device (Intel X540-T2 network adapter) located at the 1:00.0
(bus:device.function number) can support SR-IOV.

lspci -vvv -s 1:00.0 | grep -A 9 SR-IOV | cut 2-72

Example of system response:

Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)
 IOVCap: Migration-, Interrupt Message Number: 000
 IOVCtl: Enable- Migration- Interrupt- MSE- ARIHierarchy+
 IOVSta: Migration-
 Initial VFs: 64, Total VFs: 64, Number of VFs: 0, Function Dependency
 VF offset: 128, stride: 2, Device ID: 10ed
 Supported Page Size: 00000553, System Page Size: 00000001
 Region 0: Memory at 0000000000000000 (64-bit, non-prefetchable)
 Region 3: Memory at 0000000000000000 (64-bit, non-prefetchable)
 VF Migration: offset: 00000000, BIR: 0

2. You need to have a host system that supports SR-IOV enabled on the device. Normally,
such systems support I/O MMU.

Note
Intel provides I/O MMU feature under the name Intel VT-d, and in the case of AMD the
feature is called AMD-Vi.

3. BIOS should support populating the base address registers that the SR-IOV extended
configuration space contains. If the base address registers, regions 0 and 3 above, for the
VFs are not populated and read as 0 as in the example, you can add a kernel parameter
pci=realloc that may correct this issue on the next boot.

4. The kernel should support SR-IOV. Most modern kernels should have support for the
feature. But you must enable SR-IOV support in the kernel configuration when you build the
kernel.
The Linux kernel has supported:

• SR-IOV since the version 2.6.30
• the configuration of the MAC address and VLAN of a VF since the version 2.6.34
• dynamic enablement of SR-IOV through the sysfs sriov_numvfs value since the version

3.8

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 39

5. A distribution that supports SR-IOV. Most modern distributions support SR-IOV. This
documentation contains examples using the CentOS 7 distribution. In general, for DevStack
you can use Ubuntu 14.04, Fedora 22 or newer, or CentOS/RHEL 7.

Enable I/O MMU
If your hardware and software satisfy the requirements above, you can enable I/O MMU.
To enable the Intel I/O MMU, add the following parameters to the command line that invokes the
kernel:

iommu=pt
intel_iommu=on

• iommu=pt enables a feature called identity mapping. By identity mapping of the host
memory to the device, the host accesses I/O MMU at much lower cost.

• intel_iommu=on enables Intel I/O MMU. In some cases, this argument can be omitted. For
kernel configurations where I/O MMU is not enabled by default due to performance impacts,
you can mitigate these impacts with iommu=pt.

Configure SR-IOV OpenStack environment
This section provides an example of the OpenStack environment with SR-IOV support.
In this example, the node uses the following network interfaces:

• eth0 (00:19.0) - provides a host IP for management on the network 192.168.1.0/24.
• enp1s0f0 (01:00.0) - connects guests to the physical network 10.0.0.0/24. This is a trunk

interface between OVS and the physical network.
• enp1s0f1 (01:00.1) - also connects guests to the physical network 10.0.0.0/24. The interface

provides SR-IOV connectivity.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 40

Warning
Do not use OVS on the interface that provides SR-IOV connectivity as most NICs contain
only a simple switch that mirrors the external port at best when promiscuous mode is
enabled. As a result, some vendors disable promiscuous functionality when SR-IOV is
enabled. This, in turn, disables the ability to trunk VLANs, which OVS requires.

To configure SR-IOV OpenStack environment:

1. Set up the port enp1s0f0 in a promiscuous mode to act as a VLAN trunk for OVS.
2. Set up the port enp1s0f1 with VLAN to access the provider network, which you can define

later:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 41

Bring up public interface and PF
ip link set dev enp1s0f0 up
ip link set dev enp1s0f1 up

3. Allocate the VFs:

Attempt to enable SR-IOV with 7 VFs
echo 7 > /sys/class/net/enp1s0f1/device/sriov_numvfs

4. Set up DevStack.

1. Configure the local.conf file for DevStack. This file defines much of the layout and
topology for the environment. The example uses Networking with OVS and provider
networks.

[[local|localrc]]
HOST_IP=192.168.1.2
ADMIN_PASSWORD=nova
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=$ADMIN_PASSWORD

Services
disable_service n-net
disable_service zookeeper
ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-sriov-agt

Neutron Options
ENABLE_TENANT_TUNNELS=False
ENABLE_TENANT_VLANS=True
TENANT_VLAN_RANGE=3001:4000
PHYSICAL_NETWORK=physnet1
OVS_PHYSICAL_BRIDGE=br-enp1s0f0
PUBLIC_INTERFACE=enp1s0f0
Q_USE_PROVIDER_NETWORKING=True
Q_L3_ENABLED=False
IP_VERSION=4

Neutron Networking options used to create Neutron Subnets
PROVIDER_NETWORK_TYPE="vlan"
SEGMENTATION_ID=2010

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local
Q_ML2_TENANT_NETWORK_TYPE=vlan

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 42

ML2 SR-IOV agent configuration
enable_plugin neutron git://git.openstack.org/openstack/neutron.git
PHYSICAL_DEVICE_MAPPINGS=physnet1:enp1s0f1

Default Fedora 23 image
IMAGE_URLS+="https://download.fedoraproject.org/pub/fedora/linux/releases/23/Cloud/x86_64/Images/Fedora-Cloud-Base-23-20151030.x86_64.qcow2"

Add PCI Passthru filter, add alias, add all ports on PF
[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
pci_alias={\\"name\\":\\"x540vf\\",\\"product_id\\":\\"1515\\",\\"vendor_id\\":\\"8086\\"}
pci_passthrough_whitelist={\\"devname\\":\\"enp1s0f1\\",\\"physical_network\\":\\"physnet1\\"}

ML2 plugin bits for SR-IOV enablement of Intel x540 NIC
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
supported_pci_vendor_devs = 8086:1528, 8086:1515

2. Create a script called local.sh that will take care of any DevStack's post-installation
options. Below you can find a script that takes care of providing an ssh key for login,
setting up some initial network rules to allow ssh and ping across the network, and
creating seven initial VFs under the names physnet1-vf<i>, where <i> represents a
value from 1 to 7.

#!/bin/bash

Add default key for admin and demo
nova keypair-add --pub_key=/opt/stack/.ssh/id_rsa.pub stack-ssh

Enable ping and ssh
for i in admin demo
do
 nova --os-project-name $i secgroup-add-rule default \
 tcp 22 22 0.0.0.0/0
 nova --os-project-name $i secgroup-add-rule default \
 icmp -1 -1 0.0.0.0/0
done

Add host nameserver to provider_net
ns=`grep nameserver /etc/resolv.conf | head -n1 | awk '{print $2}'`
neutron --os-project-name demo subnet-update \
 --dns-nameserver $ns provider_net

Create 3 VF ports
for i in `seq 1 3`
do
 neutron --os-project-name demo port-create physnet1 \

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 43

 --vnic-type direct --name physnet1-vf$i
done

3. Start installation:

./stack.sh

DevStack installation may take half an hour or more. Once completed, you have an environment
to begin creating instances that contain network devices routing either through the OVS
network or a VF.

Seealso
The DevStack configuration is based on the example available at
http://docs.openstack.org/developer/devstack/guides/neutron.html

Examples
This section describes examples of using SR-IOV in OpenStack environment with a mixed
network consisting of instances using OVS connected vNIC and/or an SR-IOV interface.
Before running any of the following commands, set several environment variables to configure
the user and project. For these scenarios, use the admin user and the demo project.
To configure the environment with the admin user and the demo project, run:

./openrc admin demo

Example: one instance with OVS vNIC and VLAN segmentation
This example demonstrates launching a single instance that contains a single vNIC that is
running across OVS in a VLAN segmented environment.
To create the instance with OVS vNIC and VLAN segmentation, run:

Get ID for physnet to later create OVS ports
net_id=`neutron net-show physnet1 -F id -f value`
One instance, with one vNIC port on OVS w/ VLAN
nova boot --flavor m1.small --key_name stack-ssh \
 --image Fedora-Cloud-Base-23-20151030.x86_64 \
 --nic net-id=$net_id Instance-0

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 44

http://docs.openstack.org/developer/devstack/guides/neutron.html

Note
You need to run the local.sh script listed in the Configure SR-IOV OpenStack environment
section first, which creates physnet1-vf1 VF as well as the stack-ssh ssh key.

Example: two instances each with one SR-IOV VF
This example demonstrates launching two instances with each instance containing a single
SR-IOV VF.
To create the instances each with one SR-IOV VF, run:

Two instances, each with one VF port
for i in 1 2
 do
 port_id=`neutron port-show physnet1-vf$i -F id -f value`
 nova boot --flavor m1.small --key_name stack-ssh \
 --image Fedora-Cloud-Base-23-20151030.x86_64 \
 --nic port-id=$port_id Instance-$i
 done

Note
You need to run the local.sh script listed in the Configure SR-IOV OpenStack environment
first, which creates physnet1-vf[1-2] VFs as well as the stack-ssh ssh key.

Example: one instance with both OVS vNIC and SR-IOV VF
This example demonstrates launching one instance with both an OVS vNIC and an SR-IOV VF.
To create the instance with both OVS vNIC and SR-IOV VF, run the script:

Get ID for physnet to later create OVS ports
net_id=`neutron net-show physnet1 -F id -f value`
One instance, with one VF port and one vNIC port on OVS w/ VLAN
for i in 3
 do
 port_id=`neutron port-show physnet1-vf$i -F id -f value`

 # determine the OVS port ID, and IP of VF
 port_ip=`neutron port-show physnet1-vf$i -F fixed_ips -f value | \
 sed 's/.* "//g' | sed 's/"}//g'`
 ovs_port_id=`neutron port-create physnet1 \
 --allowed_address_pairs type=dict list=true \

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 45

 ip_address=$port_ip | \
 grep " id" | awk '{print $4}'`

 # Create instance
 nova boot --flavor m1.small --key_name stack-ssh \
 --image Fedora-Cloud-Base-23-20151030.x86_64 \
 --user-data bond-config.sh \
 --nic port-id=$ovs_port_id \
 --nic port-id=$port_id Instance-$i
 done

Note
You need to run the local.sh script listed in the Configure SR-IOV OpenStack environment
section first, which creates physnet1-vf[1-3] VFs as well as the stack-ssh ssh key.

In addition, you can modify the OVS vNIC port to allow it to use the IP address belonging to the
SR-IOV VF. By doing this, you can provide failover support for the VF in case of VM migration or
if the link to the PF were to fail.
To enable the failover functionality from inside the VM, pass and run the script below to the
guest as bond-config.sh. The script creates a bond of the VF and vNIC:

#!/bin/bash
cat << EOF > /etc/modprobe.d/bonding.conf
alias bond0 bonding
options bonding mode=active-backup primary=eth1
options bonding arp_ip_target=10.0.0.2 arp_interval=1000 fail_over_mac=active
EOF
cat << EOF > /etc/sysconfig/network-scripts/ifcfg-bond0
DEVICE=bond0
BOOTPROTO=dhcp
ONBOOT=yes
USERCTL=no
EOF
for i in eth0 eth1
do
cat << EOF > /etc/sysconfig/network-scripts/ifcfg-$i
DEVICE=$i
BOOTPROTO=none
ONBOOT=yes
USERCTL=no
MASTER=bond0
SLAVE=yes
EOF

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 46

done
systemctl stop network
modprobe bonding
ifconfig bond0 up
ifenslave bond0 eth1
ifenslave bond0 eth0
systemctl restart network

Test connectivity
If a network provider does not have a router, instances can not access the Internet by default.
The script below makes use of the PF interface and provides NAT functionality so that the
instances can access the Internet when an actual router is not available on VLAN 2010.
To test connectivity, enable access to the Internet from instances by running the script below:

#!/bin/bash
set -x

PUB=`route | grep default | awk '{print $NF}'`
PRIV=provider_net-gw

Configure VLAN on PF so that we can access VFs without need of namespace
modprobe 8021q
ip link add link enp1s0f1 name $PRIV type vlan id 2010
ip addr add 10.0.0.1/24 dev $PRIV
ip link set dev $PRIV up

Enable IP forwarding
sysctl -w net.ipv4.ip_forward=1
sysctl -w net.ipv4.conf.all.rp_filter=0
sysctl -w net.ipv4.conf.default.rp_filter=0

Test for rules, if present then just exit
iptables -C FORWARD -i $PRIV -o $PUB -j ACCEPT && exit

Add NAT rules
iptables -t nat -A POSTROUTING -o $PUB -j MASQUERADE
iptables -A FORWARD -i $PUB -o $PRIV -m state \
 --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -o $PUB -i $PRIV -j ACCEPT

Move reject rule to the end of the list
iptables -A FORWARD -j REJECT --reject-with icmp-host-prohibited
iptables -D FORWARD -j REJECT --reject-with icmp-host-prohibited

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 47

Now, you can ping and ssh into the VMs. Also, with the NAT configured you can use utilities that
require Internet access such as dnf to download and install any additional packages that you
may want for guests to perform additional testing.

Install SR-IOV OpenStack environment
This section decribes the installation of an OpenStack environment with SR-IOV support.
To install your SR-IOV OpenStack environment:

1. Install OS that supports SR-IOV.

Note
Any of the distributions mentioned in Prerequisites section will provide you with a
suitable platform on top of which you can build your OpenStack environment.

2. Configure the interfaces needed for networking.
3. Disable any management entities such as Network Manager that might interfere with

configuration.
There are several ways this can be accomplished:

• One way is to disable Network Manager and instead default to simple kernel network
configuration by executing the following commands.

1. Stop the NetworkManager service:

systemctl stop NetworkManager

2. Disable the NetworkManager service:

systemctl disable NetworkManager

3. Start the network service upon reboot:

chkconfig --levels 345 network on

4. Start the network service:

systemctl start network

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 48

• An alternative way is to update all configuration files for interfaces you wish to use with
OpenStack that are located in the folder /etc/sysconfig/network-scripts/ by including the
line:

NM_CONTROLLED=no

This will prevent Network Manager from changing interface settings.
4. Enable iptables and disable firewall.

Note
DevStack uses iptables rules. Therefore, DevStack will not work properly when the
Linux firewall is enabled.

1. Save iptables rules:

service iptables save

2. Disable firewall:

systemctl disable firewalld

3. Enable iptables:

systemctl enable iptables

4. Stop the firewall service:

systemctl stop firewalld

5. Start iptables:

systemctl start iptables

5. Download DevStack:

git clone https://git.openstack.org/openstack-dev/devstack

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 49

Enable Huge Pages
Introduction
This chapter describes how to enable and use Huge Pages in an OpenStack environment.

Huge Pages overview
When a process uses memory, CPU marks it as used by that process. For efficiency, CPU
allocates RAM in chunks of 4K bytes, which is the default value on many platforms, called
pages. Those pages can be swapped to disk. Since a process address space is virtual, the CPU
and operating system have to remember which page belongs to which process, and where it is
stored.
Access time to data stored in memory depends on the number of pages. The big number of
pages slows down a data acquisition process.
For example, 1GB of memory used by a process has 262144 entries to look up (1GB / 4K). Every
Page Table Entry is 8 bytes in size. The total number of bytes to look up is 2 Mb (262144 * 8).
Modern CPU architectures support bigger pages called Huge pages on Linux, Super Pages on
BSD, or Large Pages on Windows. Huge pages help to minimize the number of entries to look up
by CPU.

Verify CPU support
CPU must support Huge Pages as listed in Prerequisites.
To verify CPU support:

1. Log into the host machine.
2. Verify the CPU support for Huge Pages by typing:

cat /proc/cpuinfo

In the output, look for the following parameters:

• PSE - support of 2MB hugepages
• PDPE1GB - support of 1GB hugepages

Configure Huge Pages
The verified OpenStack environment with Huge Pages support needs the recommended versions
of software listed in Prerequisites.
For testing, you need to reserve 1024 huge pages. Size of each page is 2 MB. The booted VM
uses 512 of these pages (1GB RAM).
To configure huge pages, follow the steps:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 50

1. Get ID of the kvm group on your host:

grep kvm /etc/group

Example of system response:

kvm:x:111:

2. Add the count of huge pages you want to reserve and the ID of kvm group to
/etc/sysctl.conf:

vm.nr_hugepages = 1024 # 1024 pages. The size of each page equals 2 MB
vm.hugetlb_shm_group = 111 # ‘kvm’ group id from step 2.

3. Apply changes:

sudo sysctl -p

4. Verify that options have been applied:

sudo sysctl -a | grep huge

Example of system response:

vm.hugepages_treat_as_movable = 0
vm.hugetlb_shm_group = 111 # here
vm.nr_hugepages = 1024 # and here
vm.nr_hugepages_mempolicy = 1024
vm.nr_overcommit_hugepages = 0

5. Enable huge pages in /etc/default/qemu-kvm or create file if it does not exist with the
following option:

KVM_HUGEPAGES=1

6. Reserve 1024 huge pages of 2MB size.

sudo sh -c "echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages"

7. Verify that the pages have been reserved:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 51

grep Huge /proc/meminfo

Example of system response:

AnonHugePages: 1138688 kB
HugePages_Total: 1024 # here we see that we have 1024 hugepages
HugePages_Free: 1024 # all pages are free
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB # size of each page equals 2 MB

8. Add the mount point for the hugetlbfs file system to /etc/libvirt/qemu.conf:

hugetlbfs_mount = "/run/hugepages/kvm" # this is default mount point for huge pages

9. Restart the qemu-kvm service:

sudo service qemu-kvm restart

10
.
Restart the libvirt-bin service:

sudo service libvirt-bin restart

11
.
Restart the nova-compute service.

sudo service nova-compute restart

Seealso

• PPA for Ubuntu packages
• Ubuntu Trusty cloud image

Boot a virtual machine with Huge Pages
This scenario demonstrates booting VM with Huge Pages.
To boot a virtual machine with Huge Pages:

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 52

https://launchpad.net/~ubuntu-cloud-archive/+archive/ubuntu/liberty-staging/
https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

1. Create a new flavor or use an existing one to use with Huge Pages. If you need to create a
new image flavor, run:

. openrc admin admin # get admin rights
nova flavor-create huge 999 1024 4 1

2. Add the size of huge pages to the image flavor.

nova flavor-key huge set hw:mem_page_size=2048
nova flavor-show huge

Example of system response

+----------------------------+------------------------------+
| Property | Value |
+----------------------------+------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	4
extra_specs	{"hw:mem_page_size": "2048"}
id	7
name	huge
os-flavor-access:is_public	True
ram	1024
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+------------------------------+

3. Create a new image or use an existing image. You need an Ubuntu image and the default
Cirros image. If you need to create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. Boot a new instance using the created flavor.

nova boot --flavor huge --image ubuntu inst1

5. After booting the VM, verify that the VM uses 512 huge pages.

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 53

grep Huge /proc/meminfo

Example of system response

AnonHugePages: 1138688 kB
HugePages_Total: 1024
HugePages_Free: 512
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 54

Glossary

NFV Glossary

Term Definition
ARI Alternative Routing-ID Interpretation
DPDK Data Plane Development Kit
DMA Direct Memory Access
Huge
Pages

The Linux kernel mechanism that enables multiple page size capabilities of modern
hardware architectures

IOAPIC Input/Output Advanced Programmable Interrupt Controller
IOMMU Input/Output Memory Management Unit
KVM Kernel-based Virtual Machine
MMU Memory Management Unit
MSI Message Signaled Interrupt
NUMA Non-Uniform Memory Access
OVS Open vSwitch
PCI Peripheral Component Interconnect
PF Physical Function
PMD Poll-mode driver
PPA Personal package archive
QEMU Quick Emulator
SR-IOV Single Root Input/Output Virtualization
VF Virtual Function
VHOST
_USER

DPDK VHOST_USER implementation

VIF VM’s Virtual Interface on the host sid
VM Virtual Machine

Network Functions Virtualization Solution Guide for DevStack

©2017, Mirantis Inc. Page 55

	Copyright notice
	Preface
	Intended Audience
	Documentation History

	Introduction
	Prerequisites
	Software requirements
	Hardware requirements
	Limitations

	Prepare your environment for NFV
	Prepare DevStack environment
	Verify packages versions
	Install packages for NUMA, DPDK, and Huge Pages

	Enable NUMA
	Introduction
	NUMA overview

	NUMA prerequisites
	Verify CPU support
	Verify nested KVM support

	Install and configure NUMA environment
	Emulate NUMA environment
	Configure NUMA

	Example configurations
	Example: Boot VM with two NUMA nodes
	Example: Boot VM with CPU and memory pining

	Configure NUMA

	Enable OVS and DPDK
	Introduction
	DPDK Overview

	Verify DPDK requirements
	Configure DPDK
	Enable OVS with DPDK ports in Neutron
	Configure libvirt
	Boot a virtual machine with Huge Pages

	Examples
	Example: Enable OVS with DPDK support on the same host
	Example: Enable OVS with DPDK support on different hosts

	Examples of configuration files
	Example of the configuration file for a compute node
	Example of the configuration file for All-in-one host machine

	DPDK Overview

	Enable SR-IOV
	Introduction
	SR-IOV overview

	SR-IOV requirements
	Enable I/O MMU
	Configure SR-IOV OpenStack environment
	Examples
	Example: one instance with OVS vNIC and VLAN segmentation
	Example: two instances each with one SR-IOV VF
	Example: one instance with both OVS vNIC and SR-IOV VF
	Test connectivity

	Install SR-IOV OpenStack environment

	Enable Huge Pages
	Introduction
	Huge Pages overview

	Verify CPU support
	Configure Huge Pages
	Boot a virtual machine with Huge Pages

	Glossary

