
MCP Deployment Guide
version 1.0

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 2

Preface
This documentation provides information on how to use Mirantis products to deploy cloud
environments. The information is for reference purposes and is subject to change.

Intended audience
This documentation is intended for deployment engineers, system administrators and
developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history
The following table lists the released revisions of this documentation:

Revision date Description
March 30, 2017 1.0 GA

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 3

Introduction to the MCP deployment
MCP enables you to deploy MCP clusters, that include OpenStack environments and Kubernetes
clusters, automatically through the MCP DriveTrain or using manual deployment procedures.
The manual deployment covered in this guide bases on four physical nodes. Three of these
nodes are physical servers hosting the Salt Master node, the MaaS node, and OpenStack VCP.
The fourth node is a compute host for the OpenStack environment instances.

Seealso

• The Minimum hardware requirements section in the MCP Reference Architecture
guide

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 4

Plan your deployment
The configuration of you MCP installation depends on the individual requirements your
OpenStack environment should meet to serve various purposes. Therefore, the plan of any MCP
deployment is discussed on a per-customer basis.
The outcome of this step are input parameters that are used to generate the Reclass metadata
model by Cookiecutter.
The tables below are examples of the deployment planning. The parameters included in these
tables are applicable to the manual deployment described in this guide and cover the planned
nodes, nodes' names, and the networking schema for the OpenStack environment.

Underlay networks

Description VLA
N ID CIDR Gatewa

y
Allocation

range
External
Access

Comme
nts

IPMI Accessible by
deployment
and operations
teams

MaaS NAT /
Proxy
(temporary)

20 172.17.8
.225/32

172.17.8
.193

172.17.8.225/3
2

Temporary IP
for external
NAT

PXE 101 172.31.3
5.0/24

172.31.3
5.1

.11-243 Pull packages
from internet
or local mirror

Control 102 172.31.1
10.0/24

172.31.1
10.1

.11-243 Pull packages
from internet
or local mirror

Proxy Network 200 172.31.1
11.0/29

172.31.1
11.1

.4-.6 (if
starting at .0)

Accessible by
users/admins

Need 3 a
ddresses

Data Network
1

103 172.31.1
12.0/24

172.31.1
12.1

.11-243 Accessible
from/to Cloud
Gateway
Router

Data Network
2

104 172.31.1
04.0/24

172.31.1
04.1

.11-243 Optional

Hosts details

Hostna
me Description

MGMT, PXE,
DHCP (VLAN

35)

Control
Plane (VLAN

110)

Web/API
Proxy (VLAN

111)

Cloud
Underlay

(DATA
1)(VLAN

112)

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 5

172.31.35.0/2
4

172.31.110.0/
24

172.31.111.0/
29

172.31.112.0/
24

cfg01 Salt Master 172.31.35.12 172.31.110.12
mas01 Metal as a

Service
172.31.35.13 172.31.110.13

OpenStack
Controller VIP

DHCP
dynamic

172.31.110.20

ctl01 OpenStack
Controller

172.31.110.21

ctl02 OpenStack
Controller

172.31.110.22

ctl03 OpenStack
Controller

172.31.110.23

OpenContrail
Controller VIP

172.31.110.30

ntw01 OpenContrail
Controller

172.31.110.31

ntw02 OpenContrail
Controller

172.31.110.32

ntw03 OpenContrail
Controller

172.31.110.33

OpenContrail
Analytics VIP

172.31.110.40

nal01 OpenContrail
Analytics

172.31.110.41

nal02 OpenContrail
Analytics

172.31.110.42

nal03 OpenContrail
Analytics

172.31.110.43

RabbitMQ VIP 172.31.110.50
rmq01 RabbitMQ

server
172.31.110.51

rmq02 RabbitMQ
server

172.31.110.52

rmq03 RabbitMQ
server

172.31.110.53

MySQL Galera
Database VIP

172.31.110.60

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 6

dbs01 MySQL Galera
Database

172.31.110.61

dbs02 MySQL Galera
Database

172.31.110.62

dbs03 MySQL Galera
Database

172.31.110.63

Ceilometer
VIP

172.31.110.70

mdb01 Ceilometer
collectors
MongoDB

172.31.110.71

mdb02 Ceilometer
collectors
MongoDB

172.31.110.72

mdb03 Ceilometer
collectors
MongoDB

172.31.110.73

prxvip01 Dashboard &
API VIP
(External)

172.31.111.6

prx01 Dashboard &
API proxy

172.31.110.81 172.31.111.4

prx02 Dashboard &
API proxy

172.31.110.82 172.31.111.5

Monitoring VIP 172.31.110.15
mon01 Monitoring

server
172.31.110.16

mon02 Monitoring
server

172.31.110.17

Metering VIP 172.31.110.90
mtr01 Metering

Server
Graphite

172.31.110.91

mtr02 Metering
Server
Graphite

172.31.110.92

Logging VIP 172.31.110.95
log01 Logging

Server, Elastic
cluster

172.31.110.96

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 7

log02 Logging
Server, Elastic
cluster

172.31.110.97

log03 Logging
Server, Elastic
cluster

172.31.110.98

bmk01 Benchmark
Rally Server

172.31.110.19

kvm01 KVM node
with
controllers

172.31.35.11 172.31.110.20
1

kvm02 KVM node
with
controllers

172.31.35.14 172.31.110.20
2

kvm03 KVM node
with
controllers

172.31.35.15 172.31.110.20
3

cmp01 Compute
Node (KVM)

172.31.35.30 172.31.110.10
1

172.31.112.11

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 8

Create a project repository manually
An MCP cluster deployment configuration is stored in a Git repository created on a per-customer
basis. This section instructs you on how to manually create and prepare your project repository
for an MCP deployment.
To create a project repository manually:

1. Initialize your project repository:

git init
git remote add origin [YOUR-GIT-REPO-URL]

mkdir -p classes/cluster
mkdir -p nodes

RECLASS_REPO=$PWD

2. Initialize submodule:

git submodule add https://github.com/Mirantis/reclass-system-salt-model ./classes/system/

3. Commit and push.
4. Proceed to Create a deployment metadata model.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 9

Create a deployment metadata model
In a Reclass metadata infrastructural model, the data is stored as a set of several layers of
objects, where objects of a higher layer are combined with objects of a lower layer, that allows
for as flexible configuration as required.
The MCP metadata model has the following levels:

• Service level includes metadata fragments for individual services that are stored in Salt
formulas and can be reused in multiple contexts.

• System level includes sets of services combined in a such way that the installation of these
services results in a ready-to-use system.

• Cluster level is the set of models that combine the already created system objects into
different solutions. A cluster module settings override any settings of service and system
levels and are specific for each deployment.

The model layers are firmly isolated from each other. They can be aggregated on south-north
direction using service interface agreements for objects on the same level. Such approach
allows reusing of the already created objects both on service and system levels.
This section describes how to generate the cluster level metadata model for your MCP cluster
deployment using the Model Designer UI. The tool used to generate the model is Cookiecutter, a
command-line utility that creates projects from templates.

Note
The Model Designer web UI is available internally, for the Mirantis deployment engineers.
If you have questions, please contact Mirantis support.

The workflow of a model creation includes the following stages:

1. Definition of the model through the Model Designer web UI.
2. Tracking the execution of the model creation pipeline in the Jenkins web UI if required.
3. Obtaining the generated model to your email address or getting it published to the project

repository directly.

Note
If you prefer publishing to the project repository, verify that the dedicated repository
is configured correctly and Jenkins can access it. See Create a project repository
manually for details.

As a result, you get a generated deployment model and can customize it to fit specific
use-cases. Otherwise, you can proceed with the base infrastructure deployment.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 10

Define the deployment model
This section instructs you on how to define the cluster level metadata model through the web UI
using Cookiecutter. Eventually, you will obtain a generic deployment configuration that can be
overriden afterwards.

Note
Currently, Cookiecutter can generate models with basic configurations. You may need to
manually customize your model after generation to meet specific requirements of your
deployment, for example, four interfaces bonding.

To define the deployment model:

1. Log in to the web UI.
2. Go to Integration dashboard > Models > Model Designer.
3. Click Create Model. The Create Model page opens.
4. Configure your model by selecting a corresponding tab and editing as required:

1. Configure General deployment parameters. Click Next.
2. Configure Infrastructure related parameters. Click Next.
3. Configure Product related parameters. Click Next.

5. Verify the model on the Output summary tab. Edit if required.
6. Click Confirm to trigger the Generate reclass cluster separated-products-auto Jenkins

pipeline. If required, you can track the success of the pipeline execution in the Jenkins web
UI.

If you selected the Send to e-mail address publication option on the General parameters tab, you
will receive the generated model to the e-mail address you specified in the Publication options >
Email address field on the Infrastructure parameters tab. Otherwise, the model will automatically
be pushed to your project repository.

Seealso

• Create a project repository manually
• Publish the deployment model to a project repository

General deployment parameters
The tables in this section outline the general configuration parameters that you can define for
your deployment model through the Model Designer web UI. Consult the Define the deployment
model section for the complete procedure.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 11

The General deployment parameters wizard includes the following sections:

• Basic deployment parameters cover basic deployment parameters
• Services deployment parameters define the platform you need to generate the model for
• Networking deployment parameters cover the generic networking setup for a dedicated

management interface and two interfaces for the workload. The two interfaces for the
workload are in bond and have tagged sub-interfaces for the Control plane (Control
network/VLAN) and Data plane (Tenant network/VLAN) traffic. The PXE interface is not
managed and is leaved to default DHCP from installation. Setups for the NFV scenarios are
not covered and require manual configuration.

Basic deployment parameters

Parameter Default JSON output Description
Cluster name cluster_name: deployment_name The name of the cluster that will be

used as cluster/<cluster_name>/ in
the project directory structure

Cluster domain cluster_domain: deploy-name.local The name of the domain that will be
used as part of the cluster FQDN

Public host public_host: ${_param:openstack_p
roxy_address}

The name or IP address of the
public endpoint for the deployment

Reclass
repository

reclass_repository: https://github.co
m/Mirantis/mk-lab-salt-model.git

The URL to your project Git
repository containing your models

Cookiecutter
template URL

cookiecutter_template_url: git@gith
ub.com:Mirantis/mk2x-cookiecutter-
reclass-model.git

The URL to the Cookiecutter
template repository

Cookiecutter
template branch

cookiecutter_template_branch: mas
ter

The branch of the Cookiecutter
template repository to use, master
by default

Deployment
type

deployment_type: physical The supported deployment types
include:

• Physical for the OpenStack
platform

• Physical and Heat for the
Kubernetes platform

Publication
method

publication_method: email The method to obtain the template.
Available options include:

• Send to the e-mail address
• Commit to repository

Services deployment parameters

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 12

Parameter Default JSON output Description
Platform platform: openstack_enabled The platform to generate the model

for:

• The OpenStack platform
supports OpenContrail,
StackLight, and CI/CD
sub-clusters enablement. If the
OpenContrail is not enabled,
the model will define OVS as a
network engine.

• The Kubernetes platform
supports StackLight and CI/CD
sub-clusters enablement, and
presupposes Calico networking.

Networking deployment parameters

Parameter Default JSON output Description
DNS Server 01 dns_server01: 8.8.8.8 The IP address of the dns01 server
DNS Server 02 dns_server02: 8.8.4.4 The IP address of the dns02 server
Deploy network
subnet

deploy_network_subnet: 10.0.0.0/24 The IP address of the deploy
network with the network mask

Deploy network
gateway

deploy_network_gateway: 10.0.0.1 The IP gateway address of the
deploy network

Control network
subnet

control_network_subnet: 10.0.1.0/2
4

The IP address of the control
network with the network mask

Tenant network
subnet

tenant_network_subnet: 10.0.2.0/24 The IP address of the tenant
network with the network mask

Tenant network
gateway

tenant_network_gateway: 10.0.2.1 The IP gateway address of the
tenant network

Control VLAN control_vlan: '10' The Control plane VLAN ID
Tenant VLAN tenant_vlan: '20' The Data plane VLAN ID

Infrastructure related parameters
The tables in this section outline the infrastructure configuration parameters you can define for
your deployment model through the Model Designer web UI. Consult the Define the deployment
model section for the complete procedure.
The Infrastructure deployment parameters wizard includes the following sections:

• Salt Master
• Ubuntu MAAS

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 13

• Publication options
• OpenStack networking
• CI/CD
• Repositories

Salt Master

Parameter Default JSON output Description
Salt Master
address

salt_master_address: 10.0.1.90 The IP address of the Salt Master
node on the control network

Salt Master
management
address

salt_master_management_address:
10.0.0.90

The IP address of the Salt Master
node on the management network

Salt Master
hostname

salt_master_hostname: cfg01 The hostname of the Salt Master
node

Ubuntu MAAS

Parameter Default JSON output Description
MAAS hostname maas_hostname: mas01 The hostname of the MAAS virtual

server
MAAS deploy
address

maas_deploy_address: 10.0.0.16 The IP address of the MAAS node on
the deploy network

Publication options

Parameter Default JSON output Description
Email address email_address: <your-email> The email address where the

generated Reclass model will be
sent to

OpenStack networking

Parameter Default JSON output Description
Openstack
network engine

openstack_network_engine: openco
ntrail

Available options include
opencontrail and ovs.
NFV feature generation is
experimental. The OpenStack Nova
compute NFV req enabled
parameter is for enabling
Hugepages and CPU pinning
without DPDK.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 14

CI/CD

Parameter Default JSON output Description
OpenLDAP
enabled

openldap_enabled: 'True' Enables OpenLDAP authentication

Repositories

Parameter Default JSON output Description
Local
repositories

local_repositories: 'False' If true, changes repositories URLs to
local mirrors. The local_repo_url
parameter should be added
manually after model generation.

Product related parameters
The tables in this section outline the product configuration parameters including infrastructure,
CI/CD, OpenContrail, OpenStack, and Stacklight hosts details. You can configure your product
infrastructure for the deployment model through the Model Designer web UI. Consult the Define
the deployment model section for the complete procedure.
The Product deployment parameters wizard includes the following sections:

• Infrastructure product parameters
• CI/CD product parameters
• OpenContrail service parameters
• OpenStack product parameters
• StackLight product parameters

Infrastructure product parameters

Section Default JSON output Description
Infra kvm01
hostname

infra_kvm01_hostname: kvm01 The hostname of the first
KVM node

Infra kvm01
control address

infra_kvm01_control_address: 10.0.1.24
1

The IP address of the first
KVM node on the control
network

Infra kvm01
deploy address

infra_kvm01_deploy_address: 10.0.0.24
1

The IP address of the first
KVM node on the
management network

Infra kvm02
hostname

infra_kvm02_hostname: kvm02 The hostname of the second
KVM node

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 15

Infra kvm02
control address

infra_kvm02_control_address: 10.0.1.24
2

The IP address of the second
KVM node on the control
network

Infra kvm02
deploy address

infra_kvm02_deploy_address: 10.0.0.24
2

The IP address of the second
KVM node on the
management network

Infra kvm03
hostname

infra_kvm03_hostname: kvm03 The hostname of the third
KVM node

Infra kvm03
control address

infra_kvm03_control_address: 10.0.1.24
3

The IP address of the third
KVM node on the control
network

Infra kvm03
deploy address

infra_kvm03_deploy_address: 10.0.0.24
3

The IP address of the third
KVM node on the
management network

Infra KVM VIP
address

infra_kvm_vip_address: 10.0.1.240 The virtual IP address of the
KVM cluster

Infra deploy NIC infra_deploy_nic: eth0 The NIC used for PXE of the
KVM hosts

Infra primary first
NIC

infra_primary_first_nic: eth1 The first NIC in the KVM bond

Infra primary
second NIC

infra_primary_second_nic: eth2 The second NIC in the KVM
bond

Infra bond mode infra_bond_mode: active-backup The bonding mode for the
KVM nodes. Available options
include:

• active-backup
• balance-xor
• broadcast
• 802.3ad
• balance-ltb
• balance-alb

To decide which bonding
mode best suits the needs of
your deployment, you can
consult the official Linux
bonding documentation.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 16

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

OpenStack
compute count

openstack_compute_count: '100' The number of compute
nodes to be generated. The
naming convention for
compute nodes is cmp000 - c
mp${openstack_compute_co
unt}. If the value is 100, for
example, the host names for
the compute nodes expected
by Salt include cmp000,
cmp001, ..., cmp100.

CI/CD product parameters

Section Default JSON output Description
CI/CD control
node01 address

cicd_control_node01_address: 10.0.1.91 The IP address of the first
CI/CD control node

CI/CD control
node01 hostname

cicd_control_node01_hostname: cid01 The hostname of the first
CI/CD control node

CI/CD control
node02 address

cicd_control_node02_address: 10.0.1.92 The IP address of the second
CI/CD control nod

CI/CD control
node02 hostname

cicd_control_node02_hostname: cid02 The hostname of the second
CI/CD control node

CI/CD control
node03 address

cicd_control_node03_address: 10.0.1.93 The IP address of the third
CI/CD control node

CI/CD control
node03 hostname

cicd_control_node03_hostname: cid03 The hostname of the third
CI/CD control node

CI/CD control VIP
address

cicd_control_vip_address: 10.0.1.90 The virtual IP address of the
CI/CD control cluster

CI/CD control VIP
hostname

cicd_control_vip_hostname: cid The hostname of the CI/CD
control cluster

OpenContrail service parameters

Section Default JSON output Description
OpenContrail
analytics address

opencontrail_analytics_address: 10.0.1.
30

The virtual IP address of the
OpenContrail analytics
cluster

OpenContrail
analytics
hostname

opencontrail_analytics_hostname: nal The hostname of the
OpenContrail analytics
cluster

OpenContrail
analytics node01
address

opencontrail_analytics_node01_address:
 10.0.1.31

The virtual IP address of the
first OpenContrail analytics
node on the control network

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 17

OpenContrail
analytics node01
hostname

opencontrail_analytics_node01_hostnam
e: nal01

The hostname of the first
OpenContrail analytics node
on the control network

OpenContrail
analytics node02
address

opencontrail_analytics_node02_address:
 10.0.1.32

The virtual IP address of the
second OpenContrail
analytics node on the control
network

OpenContrail
analytics node02
hostname

opencontrail_analytics_node02_hostnam
e: nal02

The hostname of the second
OpenContrail analytics node
on the control network

OpenContrail
analytics node03
address

opencontrail_analytics_node03_address:
 10.0.1.33

The virtual IP address of the
third OpenContrail analytics
node on the control network

OpenContrail
analytics node03
hostname

opencontrail_analytics_node03_hostnam
e: nal03

The hostname of the second
OpenContrail analytics node
on the control network

OpenContrail
control address

opencontrail_control_address: 10.0.1.20 The virtual IP address of the
OpenContrail control cluster

OpenContrail
control hostname

opencontrail_control_hostname: ntw The hostname of the
OpenContrail control cluster

OpenContrail
control node01
address

opencontrail_control_node01_address: 1
0.0.1.21

The virtual IP address of the
first OpenContrail control
node on the control network

OpenContrail
control node01
hostname

opencontrail_control_node01_hostname:
 ntw01

The hostname of the first
OpenContrail control node on
the control network

OpenContrail
control node02
address

opencontrail_control_node02_address: 1
0.0.1.22

The virtual IP address of the
second OpenContrail control
node on the control network

OpenContrail
control node02
hostname

opencontrail_control_node02_hostname:
 ntw02

The hostname of the second
OpenContrail control node on
the control network

OpenContrail
control node03
address

opencontrail_control_node03_address: 1
0.0.1.23

The virtual IP address of the
third OpenContrail control
node on the control network

OpenContrail
control node03
hostname

opencontrail_control_node03_hostname:
 ntw03

The hostname of the third
OpenContrail control node on
the control network

OpenContrail
router01 address

opencontrail_router01_address: 10.0.1.1
00

The IP address of the first
OpenContrail gateway router
for BGP

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 18

OpenContrail
router01
hostname

opencontrail_router01_hostname: rtr01 The hostname of the first
OpenContrail gateway router
for BGP

OpenContrail
router02 address

opencontrail_router02_address: 10.0.1.1
01

The IP address of the second
OpenContrail gateway router
for BGP

OpenContrail
router02
hostname

opencontrail_router02_hostname: rtr02 The hostname of the second
OpenContrail gateway router
for BGP

OpenStack product parameters

Section Default JSON output Description
Compute primary
first NIC

compute_primary_first_nic: eth1 The first NIC in the
OpenStack compute bond

Compute primary
second NIC

compute_primary_second_nic: eth2 The second NIC in the
OpenStack compute bond

Compute bond
mode

compute_bond_mode: active-backup The bond mode for the
compute nodes

OpenStack
compute rack01
hostname

openstack_compute_rack01_hostname:
cmp

The compute hostname
prefix

OpenStack
compute rack01
single subnet

openstack_compute_rack01_single_subn
et: 10.0.0.1

The control plane network
prefix for compute nodes

OpenStack
compute rack01
tenant subnet

openstack_compute_rack01_tenant_sub
net: 10.0.2

The data plane netwrok
prefix for compute nodes

OpenStack control
address

openstack_control_address: 10.0.1.10 The virtual IP address of the
control cluster on the control
network

OpenStack control
hostname

openstack_control_hostname: ctl The hostname of the VIP
control cluster

OpenStack control
node01 address

openstack_control_node01_address: 10.
0.1.11

The IP address of the first
control node on the control
network

OpenStack control
node01 hostname

openstack_control_node01_hostname: c
tl01

The hostname of the first
control node

OpenStack control
node02 address

openstack_control_node02_address: 10.
0.1.12

The IP address of the second
control node on the control
network

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 19

OpenStack control
node02 hostname

openstack_control_node02_hostname: c
tl02

The hostname of the second
control node

OpenStack control
node03 address

openstack_control_node03_address: 10.
0.1.13

The IP address of the third
control node on the control
network

OpenStack control
node03 hostname

openstack_control_node03_hostname: c
tl03

The hostname of the third
control node

OpenStack
database address

openstack_database_address: 10.0.1.50 The virtual IP address of the
database cluster on the
control network

OpenStack
database
hostname

openstack_database_hostname: dbs The hostname of the VIP
database cluster

OpenStack
database node01
address

openstack_database_node01_address: 1
0.0.1.51

The IP address of the first
database node on the control
network

OpenStack
database node01
hostname

openstack_database_node01_hostname:
 dbs01

The hostname of the first
database node

OpenStack
database node02
address

openstack_database_node02_address: 1
0.0.1.52

The IP address of the second
database node on the control
network

OpenStack
database node02
hostname

openstack_database_node02_hostname:
 dbs02

The hostname of the second
database node

OpenStack
database node03
address

openstack_database_node03_address: 1
0.0.1.53

The IP address of the third
database node on the control
network

OpenStack
database node03
hostname

openstack_database_node03_hostname:
 dbs03

The hostname of the third
database node

OpenStack
message queue
address

openstack_message_queue_address: 10
.0.1.40

The vitrual IP address of the
message queue cluster on
the control network

OpenStack
message queue
hostname

openstack_message_queue_hostname:
msg

The hostname of the VIP
message queue cluster

OpenStack
message queue
node01 address

openstack_message_queue_node01_ad
dress: 10.0.1.41

The IP address of the first
message queue node on the
control network

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 20

OpenStack
message queue
node01 hostname

openstack_message_queue_node01_hos
tname: msg01

The hostname of the first
message queue node

OpenStack
message queue
node02 address

openstack_message_queue_node02_ad
dress: 10.0.1.42

The IP address of the second
message queue node on the
control network

OpenStack
message queue
node02 hostname

openstack_message_queue_node02_hos
tname: msg02

The hostname of the second
message queue node

OpenStack
message queue
node03 address

openstack_message_queue_node03_ad
dress: 10.0.1.43

The IP address of the third
message wueue node on the
control network

OpenStack
message queue
node03 hostname

openstack_message_queue_node03_hos
tname: msg03

The hostname of the third
message queue node

OpenStack
benchmark
node01 address

openstack_benchmark_node01_address:
 10.0.1.95

The IP address of a
benchmark node on the
control network

OpenStack
benchmark
node01 hostname

openstack_benchmark_node01_hostna
me: bmk01

The hostname of a
becnhmark node

OpenStack proxy
address

openstack_proxy_address: 10.0.1.80 The virtual IP address of a
proxy cluster on the control
network

OpenStack proxy
hostname

openstack_proxy_hostname: prx The hostname of the VIP
proxy cluster

OpenStack proxy
node01 address

openstack_proxy_node01_address: 10.0.
1.81

The IP address of the first
proxy node on the control
network

OpenStack proxy
node01 hostname

openstack_proxy_node01_hostname: pr
x01

The hostname of the first
proxy node

OpenStack proxy
node02 address

openstack_proxy_node02_address: 10.0.
1.82

The IP address of the second
proxy node on the control
network

OpenStack proxy
node02 hostname

openstack_proxy_node02_hostname: pr
x02

The hostname of the second
proxy node

OpenStack
telemetry address

openstack_telemetry_address: 10.0.1.75 The virtual IP address of a
telemetry cluster on the
control network

OpenStack
telemetry
hostname

openstack_telemetry_hostname: mdb The hostname of the VIP
telemetry cluster

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 21

OpenStack
telemetry node01
address

openstack_telemetry_node01_address:
10.0.1.76

The IP address of the first
telemetry node on the
control network

OpenStack
telemetry node01
hostname

openstack_telemetry_node01_hostname
: mdb01

The hostname of the first
telemetry node

OpenStack
telemetry node02
address

openstack_telemetry_node02_address:
10.0.1.77

The IP address of the second
telemetry node on the
control network

OpenStack
telemetry node02
hostname

openstack_telemetry_node02_hostname
: mdb02

The hostname of the second
telemetry node

OpenStack
telemetry node03
address

openstack_telemetry_node03_address:
10.0.1.78

The IP address of the third
telemetry node on the
control network

OpenStack
telemetry node03
hostname

openstack_telemetry_node03_hostname
: mdb03

The hostname of the third
telemetry node

OpenStack version openstack_version: mitaka The version of OpenStack to
be deployed

StackLight product parameters

Section Default JSON output Description
StackLight log
address

stacklight_log_address: 10.0.1.60 The virtual IP address of the
StackLight logging cluster

StackLight log
hostname

stacklight_log_hostname: log The hostname of the
StackLight logging cluster

StackLight log
node01 address

stacklight_log_node01_address: 10.0.1.6
1

The IP address of the first
StackLight logging node

StackLight log
node01 hostname

stacklight_log_node01_hostname: log01 The hostname of the first
StackLight logging node

StackLight log
node02 address

stacklight_log_node02_address: 10.0.1.6
2

The IP address of the second
StackLight logging node

StackLight log
node02 hostname

stacklight_log_node02_hostname: log02 The hostname of the second
StackLight logging node

StackLight log
node03 address

stacklight_log_node03_address: 10.0.1.6
3

The IP address of the third
StackLight logging node

StackLight log
node03 hostname

stacklight_log_node03_hostname: log03 The hostname of the third
StackLight logging node

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 22

StackLight monitor
address

stacklight_monitor_address: 10.0.1.70 The virtual IP address of the
StackLight monitoring cluster

StackLight monitor
hostname

stacklight_monitor_hostname: mon The hostname of the
StackLight monitoring cluster

StackLight monitor
node01 address

stacklight_monitor_node01_address: 10.
0.1.71

The IP address of the first
StackLight monitoring node

StackLight monitor
node01 hostname

stacklight_monitor_node01_hostname:
mon01

The hostname of the first
StackLight monitoring node

StackLight monitor
node02 address

stacklight_monitor_node02_address: 10.
0.1.72

The IP address of the second
StackLight monitoring node

StackLight monitor
node02 hostname

stacklight_monitor_node02_hostname:
mon02

The hostname of the second
StackLight monitoring node

StackLight monitor
node03 address

stacklight_monitor_node03_address: 10.
0.1.73

The IP address of the third
StackLight monitoring node

StackLight monitor
node03 hostname

stacklight_monitor_node03_hostname:
mon03

The hostname of the third
StackLight monitoring node

StackLight
telemetry address

stacklight_telemetry_address: 10.0.1.85 The virtual IP address of a
StackLight telemetry cluster

StackLight
telemetry
hostname

stacklight_telemetry_hostname: mtr The hostname of a StackLight
telemetry cluster

StackLight
telemetry node01
address

stacklight_telemetry_node01_address: 1
0.0.1.86

The IP address of the first
StackLight telemetry node

StackLight
telemetry node01
hostname

stacklight_telemetry_node01_hostname:
 mtr01

The hostname of the first
StackLight telemetry node

StackLight
telemetry node02
address

stacklight_telemetry_node02_address: 1
0.0.1.87

The IP address of the second
StackLight telemetry node

StackLight
telemetry node02
hostname

stacklight_telemetry_node02_hostname:
 mtr02

The hostname of the second
StackLight telemetry node

StackLight
telemetry node03
address

stacklight_telemetry_node03_address: 1
0.0.1.88

The IP address of the third
StackLight telemetry node

StackLight
telemetry node03
hostname

stacklight_telemetry_node03_hostname:
 mtr03

The hostname of the third
StackLight telemetry node

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 23

Publish the deployment model to a project repository
If you selected the option to receive the generated deployment model to your email address
and customized it as required, you need to apply the model to the project repository.
To publish the metadata model, push the changes to the project Git repository:

git add *
git commit –m "Initial commit"

git pull -r
git push --set-upstream origin master

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 24

Install a base infrastructure
Base infrastructure of your MCP cluster includes the Salt Master node and virtualized control
plane (VCP). This section explains how to install the Salt Master node, configure the MaaS
service, and deploy physical nodes that will host the VCP of your deployment.

Get the virtual machines images
You must prepare virtual machine images before starting the installation to later use them in
virtual machines provisioning.
Fetch source images:

1. Log in to the Foundation node console.
2. Download the images:

• ubuntu-16-04-x64-mcp1.0.qcow2 for physical servers, Salt Master, MaaS, and
DriveTrain nodes

• ubuntu-14-04-x64-mcp1.0.qcow2 for the OpenStack controller nodes
3. Place the images to /var/lib/libvirt/images/.
4. If required, rename the source disk:

mv <src>.qcow2 <src>.src.qcow2

For example:

mv ubuntu-14-*.qcow2 ubuntu-14-04-x64.src.qcow2
mv ubuntu-16-*.qcow2 ubuntu-16-04-x64.src.qcow2

Prepare the image for the Foundation node
Before you proceed with the Salt Master and MaaS nodes installation, prepare the virtual
machine image for the Foundation node.
To prepare the image for Salt Master and MaaS nodes:

1. Create a new sparsely allocated image:

qemu-img create -f qcow2 -o preallocation=off <name>.qcow2 <num>G

For example:

qemu-img create -f qcow2 -o preallocation=off mas01.qcow2 120G
qemu-img create -f qcow2 -o preallocation=off cfg01.qcow2 120G

2. Install libguestfs-tools to enable resizing of the image:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 25

http://apt-mk.mirantis.com/images/ubuntu-16-04-x64-mcp1.0.qcow2
http://apt-mk.mirantis.com/images/ubuntu-14-04-x64-mcp1.0.qcow2

apt-get install libguestfs-tools

3. Use the virt-resize command to expand the partition and file system:

virt-resize --expand /dev/vda1 <src>.src.qcow2 / <name>.qcow2

For example:

virt-resize --expand /dev/vda1 ubuntu-16-04-x64.src.qcow2 mas01.qcow2

Install the Salt Master node
The Salt Master node acts as a central control point for the clients which are called the Salt
minion nodes. The minions, in their turn, connect back to the Salt Master node. Before you start
the installation process, bootstrap and configure the Salt Master node.

Prepare the Foundation node
The Foundation node is a physical node that hosts Salt Master, MaaS, and each of the first VM
nodes of the control plane.
To prepare the Foundation node for the Salt Master deployment:

1. Install Ubuntu 16.04 with OpenSSH server and Standard system utilities on it.
2. Create the bridge to provision network on the foundation node:

brctl addbr br-pxe
 brctl addif br-pxe <PROVISION_INTERFACE>

Where <PROVISION_INTERFACE> is the interface name connected to the PXE network.

Seealso

• Prepare the image for the Foundation node

Install the Salt Master node

Using libvirt CLI
Create config drive iso

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 26

apt-get install -y mkisofs curl virtinst cpu-checker qemu-kvm
curl -q https://raw.githubusercontent.com/larsks/virt-utils/master/create-config-drive |\
sed s,/bin/sh,/bin/bash,g >\
create-config-drive.sh
chmod +x create-config-drive.sh

./create-config-drive.sh -k *.pub -u vm-config.sh -h cfg01 /var/lib/libvirt/images/vm-config.iso

Boot VM

1. Initialize the VM_HOSTNAME variable. For example, VM_HOSTNAME=cfg01.
2. Boot the VM:

using: /var/lib/libvirt/images/cfg01.qcow2

virt-install --name $VM_HOSTNAME --ram 8096 --vcpus=4 --accelerate \
--network bridge:br-pxe,model=virtio \
--disk path=/var/lib/libvirt/images/cfg01.qcow2,size=200,bus=virtio,cache=none \
--boot hd --vnc --noreboot --autostart \
--disk path=/var/lib/libvirt/images/vm-config.iso,device=cdrom

virsh --connect qemu:///system start $VM_HOSTNAME

Using Virtual Machine Manager UI
To install the Salt Master node:

1. Import the existing disk image:

1. Use the cfg01.qcow2 image downloaded and resized earlier

1. Set OS Type to Linux.
2. Set Version to Ubuntu 16.04 LTS.
3. Click Forward.

2. Set the desired amount of RAM. For example, 8096 MB.
3. Set the desired number of vCPUs. For example, 4.
4. Click Forward.
5. Rename the VM to cfg01.
6. Select Customize the configuration before install.
7. Click Network Selection and select Specify shared device name.
8. Enter the configured bridge name for the PXE network - br-pxe.
9. Click Finish.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 27

Bootstrap the Salt Master node
To bootstrap the Salt Master node:

1. Log in to the Salt Master node console.
2. Install the required packages:

apt-get update
apt-get install git curl subversion

3. Download the deploy scripts to the /srv/salt/scripts directory:

svn export --force https://github.com/salt-formulas/salt-formulas/trunk/deploy/scripts \
 /srv/salt/scripts

4. Clone the Git repository with the Reclass model to the /srv/salt/reclass directory:

git clone <model-repository> /srv/salt/reclass

5. Fetch the classes/system submodule:

test ! -e .gitmodules || git submodule update --init --recursive

6. If not yet done, initialize submodule and add password to the
/srv/salt/reclass/classes/system directory:

Note
You may want to ping to a specific tag, for exmaple, mcp1.0.

git submodule add https://github.com/Mirantis/reclass-system-salt-model \
 /srv/salt/reclass/classes/system/

7. Run the salt-mastet-init.sh script from /srv/salt/scripts with the
MASTER_HOSTNAME=$SALT_MASTER_FQDN parameter:

Note
FQDN must match the specification under nodes/cfg01*.yml in your repository

cd /srv/salt/scripts
MASTER_HOSTNAME=cfg01.infra.ci.local ./salt-master-init.sh

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 28

8. Verify the cfg01 key has been added to Salt and your host FQDN is shown properly in the
Accepted Keys field:

salt-key

Example of output:

Accepted Keys: cfg01.infra.ci.local
Denied Keys:
Unaccepted Keys:
Rejected Keys:

9. To verify the Reclass model:

source /srv/salt/scripts/salt-master-init.sh

verify-salt-master
verify-salt-minions

Configure the Salt Master node
The general workflow of the Salt Master node configuration is as follows:

1. Attach review management and PXE networking
2. Attach control plane interfaces
3. Apply base states:

1. Run the salt.master state.
2. Run the salt.client state.

Use the Virtual Machine Manager CLI
On the KVM node that hosts the Salt Master VM, run:

virsh attach-interface --domain cfg01.ci.local \
 --type bridge --source br-ctl \
 --model virtio --config --live

Use the Virtual Machine Manager UI

1. Customize the cfg01 Salt Master VM:

1. After clicking Finish, the Hardware window opens.
2. Add Network for control services:

1. Click Add Hardware.
2. Select network:

• Network source: Specify shared device name

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 29

• Bridge name: br-ctl
• MAC address: leave default entry
• Device: virtio

2. Verify other settings. For example, you may want to modify the default Display from Spice
to VNC for your environment.

3. Remove undesired and irrelevant items. For example, Sound controller, USB redirectors,
and so on.

4. Click Begin Installation.
5. Configure the operating system:

1. Log in to the cfg01 console using the default image user credentials:

• Username: ubuntu
• Password: ubuntu

2. Configure the hostname:

1. Change the hostname to cfg01:

hostname cfg01

2. Add the new hostname to /etc/hostname and /etc/hosts.
3. Update /etc/hostname to contain short hostname
4. In /etc/hosts, include the short and FQDN of the host on the localhost line.
5. In /etc/interfaces, define the networking interfaces. For example:

source /etc/network/interfaces.d/*

The Loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
address 172.31.35.12/24

auto eth1
iface eth1 inet static
address 172.31.110.12/24
gateway 172.31.110.1
dns-nameservers 8.8.8.8
dns-search mk.slab.local

3. To use this node to access the Git repository, obtain the cfg01 node's SSH public key
and add it to the Git repository server.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 30

Apply the base states

salt-call state.apply salt,reclass,ntp --state-output=changes -lerror

Later, once you provision the rest of the infrastructure, apply all states:

salt-call state.apply --state-output=changes -lerror

Add minions manually
To manually install a Salt minion:

• /etc/salt/minion (id: fqdn ; master: ip (on mgmt/pxe network))
• Using MaaS / salt.control
• salt-key

Verify the Salt infrastructure

Verify the Reclass model on the Salt Master node
To validate the Reclass model and node pillars:
To perform verification on salt master host:

1. To verify salt master pillar:

source /srv/salt/scripts/salt-master-init.sh
verify_salt_master

2. To verify minions pillars:

1. Source salt-master-init.sh script and execute the verify_salt_minion function:

source /srv/salt/scripts/salt-master-init.sh
verify_salt_minion

Verify the model on a Minion
Verify that the Salt minion nodes are responding and have the same version as the Salt Master
node, that is currently 2016.3.x:

salt-call --version
salt '*' test.version

Set up a bare-metal provisioner
Bare-metal provisioning (MAAS) is used to discover and install minimum viable product (MVP)
components, such as bootstrap, storage, networking, and others, as well as to load Salt minions.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 31

Create the MAAS virtual server
The Metal-As-A-Service (MAAS) server is leveraged in MCP installations to handle physical node
lifecycle management. This section guides you through the creation and configuration steps for
the MaaS server.
The MAAS node is responsible for bare-metal provisioning allowing for rapid and reliable
installation of the operating system, basic hardware configurations, and recognition of physical
servers by network and system management software. You can deploy the MaaS node on the
same physical server you run other components of the Virtualized Control Plane on.
A MAAS node can be created either manually or automatically through the cloud controller
called Salt Virt in the same way as other control nodes.
To create the MAAS virtual server:

1. Log in to the Salt Master cfg01 node.
2. To create only the mas01 node that will provide DHCP for all other VMs, temporarily

comment out all lines related to Salt Virt in
/srv/salt/reclass/classes/cluster/cz-bud-mirantis-net/infra/kvm.yml. For example:

#- system.salt.control.cluster.opencontrail_analytics_cluster
#- system.salt.control.cluster.opencontrail_control_cluster
#- system.salt.control.cluster.openstack_control_cluster
#- system.salt.control.cluster.openstack_proxy_cluster
#- system.salt.control.cluster.openstack_database_cluster
#- system.salt.control.cluster.openstack_message_queue_cluster
#- system.salt.control.cluster.openstack_telemetry_cluster
#- system.salt.control.cluster.stacklight_server_cluster
#- system.salt.control.cluster.stacklight_log_cluster
#- system.salt.control.cluster.stacklight_telemetry_cluster
- system.salt.control.cluster.infra_maas_single
#- system.salt.control.cluster.cicd_control_cluster
- cluster.cz-bud-mirantis-net.cicd.gluster

cluster:
internal:
node:
mdb01:
image: ${_param:salt_control_xenial_image}
mdb02:
image: ${_param:salt_control_xenial_image}
mdb03:
image: ${_param:salt_control_xenial_image}
ctl01:
image: ${_param:salt_control_xenial_image}
ctl02:
image: ${_param:salt_control_xenial_image}
ctl03:
image: ${_param:salt_control_xenial_image}
dbs01:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 32

image: ${_param:salt_control_xenial_image}
dbs02:
image: ${_param:salt_control_xenial_image}
dbs03:
image: ${_param:salt_control_xenial_image}
msg01:
image: ${_param:salt_control_xenial_image}
msg02:
image: ${_param:salt_control_xenial_image}
msg03:
image: ${_param:salt_control_xenial_image}
prx01:
image: ${_param:salt_control_xenial_image}
prx02:
image: ${_param:salt_control_xenial_image}

3. Run Salt Virt to start the MAAS virtual server.
4. Uncomment the lines in /srv/salt/reclass/classes/cluster/cz-bud-mirantis-net/infra/kvm.yml

that you commented in Step 2.
5. Log in to the mas01 node console.

virsh console $(virsh list|grep mas01)

6. Configure the temporary mas01 networking. It will be statically set by Salt later.

ip a a <ip address>/24 dev ens2
ip r a default via <gateway>

7. Restart the Salt minion node:

service salt-minion restart

8. Add the MAAS ppa:

sudo add-apt-repository ppa:maas/stable

9. Proceed to Configure the MAAS service

Configure the MAAS service
After you create the MAAS virtual server as described in Create the MAAS virtual server, you can
configure the virtual machine settings. Besides configuring authentification, you need to set
DHCP on the networks on which compute nodes will reside. Compute nodes will PXE boot from
the specified networks, and the MaaS node will be told how to provision these PXE booted nodes.
To configure the MAAS service:

1. Run Salt states for MAAS:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 33

salt-call state.apply linux.system,linux,salt,openssh,ntp
salt-call state.apply linux.network.interface
salt-call state.apply maas.cluster,maas.region

2. Ignore the following error. It is caused by the initial setup.

 ID: maas_config
 Function: module.run
 Name: maas.process_maas_config
 Result: False
 Comment: Module function maas.process_maas_config threw an exception. Exception: {'updated': [], 'errors': {'commissioning_distro_series': '{"commissioning_distro_series": ["\'xenial\'
is not a valid commissioning_distro_series. It should be one of: \'---\'."]}', 'default_osystem': '{"default_osystem": ["\'ubuntu\' is not a valid osystem. It should be one of: \'---\'."]}
', 'default_distro_series': '{"default_distro_series": ["\'xenial\' is not a valid release. It should be one of: \'---\'."]}'}, 'success': ['enable_http_proxy', 'dnssec_validation', 'active
_discovery_interval', 'upstream_dns', 'enable_third_party_drivers', 'maas_name', 'default_storage_layout', 'ntp_external_only', 'disk_erase_with_secure_erase', 'default_min_hwe_kernel']}
 Started: 12:10:24.686243
 Duration: 1544.69 ms
 Changes:

3. The salt-formula-maas package cannot set an autogenerated PostgreSQL password.
Therefore, check the system response on the maas.region state application for the
password and update the infra_maas_database_password under
reclass/classes/cluster/<name>/infra/init.yml accordingly.
Example of system response:

 ID: /etc/maas/regiond.conf
 Function: file.managed
 Result: True
 Comment: File /etc/maas/regiond.conf updated
 Started: 12:10:17.516313
 Duration: 36.266 ms
 Changes:

 diff:

 +++
 @@ -5,6 +5,6 @@

 database_host: localhost
 database_name: maasdb
 -database_pass: LdfWIjusoUuM
 +database_pass: OMcpBlb07tm2
 database_user: maas
 maas_url: http://172.17.44.91:5240/MAAS

4. Before logging to the MAAS web UI, obtain your login credentials by typing the following
commands on the MAAS node:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 34

salt-call pillar.get maas:region:admin:username
salt-call pillar.get maas:region:admin:password

5. Log in to the the MAAS web UI using the following URL: http://<ip address>/MAAS/#/intro
6. Go to Subnets to verify your subnet configuration. By default, MAAS sets the subnet on a

network interface under the fabric-0 network. If your deploy network has other name, delete
the subnet on ``fabric-0`

7. Rerun the maas.region state to finalize the configuration:

salt-call state.sls maas.region

8. On the Networks tab, select deploy_network that is used for PXE/DHCP network in MAAS. For
example, fabric-0.

9. In the Take action drop-down menu, select Provide DHCP.
10

.
Enter the required Dynamic range and Gateway IP.

11
.
Click Provide DHCP to save the entry. This returns you to the deploy_network network page.

12
.
Add the SSH key to the MAAS web UI:

1. In the upper right corner, click the Mirantis username, select Account.
2. Click Add SSH key.
3. Paste the generated key into the Public Key field.
4. Click Add Key.

13
.
Reboot the VM.

14
.
In the MAAS web UI, select Nodes and controller. Verify that the node's status is green.

Deploy physical nodes using MAAS
Physical nodes host the Virtualized Control Plane (VCP) of your Mirantis Cloud Platform
deployment.
This section describes how to deploy the physical nodes using the MAAS service that you have
deployed on the foundation node as described in Set up a bare-metal provisioner. The servers
that you must deploy include kvm02 and kvm03 KVM nodes along with the compute cmp01 KVM
node.
You can provision physical nodes automatically or manually:

• An automated deployment requires you to define IPMI and MAC addresses in your Reclass
model. After you enforce all servers, the Salt Master node commissions and deploys them
automatically.

• A manual deployment enables commissioning nodes through the MAAS web UI.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 35

http:/

Warning
Before you proceed with the physical nodes deployment, verify that BIOS settings enable
PXE booting from NICs on each physical server.

Automatically commission and deploy the physical nodes
This section explains how to define physical nodes in a Reclass model to automatically
commission and then deploy the nodes through Salt.

Automatically commission the physical nodes
You must define all IPMI credentials in your Reclass model to access physical servers for
automated commissioning. Once you define the nodes, Salt enforces them into MAAS and starts
commissioning.
To automatically commission physical nodes:

1. Define all physical nodes under classes/cluster/<cluster>/infra/maas.yml using the following
structure.
For example, to define the kvm02 node:

maas:
 machines:
 kvm02:
 interface:
 mac: 00:25:90:eb:92:4a
 power_parameters:
 power_address: kvm02.ipmi.net
 power_password: password
 power_type: ipmi
 power_user: ipmi_user

Note
To get MAC addresses from IPMI, you can use the ipmi tool. Usage example for
Supermicro:

ipmitool -U ipmi_user-P passowrd -H kvm02.ipmi.net raw 0x30 0x21 1| tail -c 18

2. If required, the modifynode_info_scripts.py script on the
/usr/lib/python3/dist-packages/provisioningserver/refresh/ directory to configure unified

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 36

NICs naming in MAAS. For example, to set one for a 1 Gb Ethernet and ten for a 10 Gb
Ethernet, define the following script content for IPADDR_SCRIPT:

IPADDR_SCRIPT = dedent("""\
 #!/bin/bash

 i=1
 j=1

 ethernets=$(ip -o l | grep -E '^[0-9]+:\ .*link/ether.*' | awk -F":" '/,/{gsub(/ /, "", $0); print $2}' | grep -Ev "br|bond")

 declare -A interfaces
 for iface in ${ethernets[@]}; do
 speed=`ethtool $iface | grep '40000'`
 if [["$?" == 0]]; then
 interfaces[$iface]="fourty$i"
 ((i++))
 else
 speed=`ethtool $iface | grep '10000' `
 if [["$?" == 0]]; then
 interfaces[$iface]="ten$i"
 ((i++))
 else
 interfaces[$iface]="one$j"
 ((j++))
 fi
 fi
 done

 for i in ${!interfaces[@]}; do
 sedline+="-e s/${i}/${interfaces[$i]}/ "
 done

 ip addr | sed ${sedline}
 """)

3. Once you have defined all physical servers in your Reclass model, enforce the nodes:

salt-call maas.process_machines

All nodes are automatically commissioned.
4. Verify the status of machines either through the MAAS web UI or using the salt call

command:

salt-call maas.machines_status

The successfully commissioned servers appear in the ready status.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 37

5. Verify that all servers have correct NIC names and configurations.
6. Proceed to Deploy the automatically commissioned physical nodes.

Deploy the automatically commissioned physical nodes
Once you successfully commission your physical nodes, you can start the deployment.
To deploy the automatically commissioned physical nodes through MAAS:

1. Log in to the MAAS node console.
2. Type the salt-call command:

salt-call maas.deploy_machines

3. Check the status of the nodes:

salt-call maas.machines_status
local:

 machines:
 - hostname:kvm02,system_id:anc6a4,status:Deploying
 summary:

 Deploying:
 1

4. When all servers have been deployed, perform the verification of the servers` automatic
registration by running the salt-key command on the Salt Master node. All nodes should be
registered. For example:

salt-key
Accepted Keys:
cfg01.bud.mirantis.net
cmp001.bud.mirantis.net
cmp002.bud.mirantis.net
kvm02.bud.mirantis.net
kvm03.bud.mirantis.net

Manually commission and deploy the physical nodes
This section explains how to discover, commission, and deploy the physical nodes using the
MAAS web UI.

Manually discover and commission the physical nodes
You can discover and commission your physical nodes manually using the MAAS web UI.
To discover and commission physical nodes manually:

1. Power on a physical node.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 38

2. In the MAAS UI, verify that the server has been discovered.
3. On the Nodes tab, rename the discovered host accordingly. Click Save after each renaming.
4. In the Settings tab, configure the Commissioning release and the Default Minimum Kernel

Version to Ubuntu 16.04 TLS “Xenial Xerus” and Xenial (hwe-x), respectively.

Note
The above step ensures that the NIC naming convention uses the predictable
schemas, for example, enp130s0f0 rather than eth0.

5. In the Deploy area, configure the Default operating system used for deployment and Default
OS release used for deployment to Ubuntu and Ubuntu 14.04 LTS “Trusty Tahr”,
respectively.

6. Leave the remaining parameters as defaults.
7. Commission the node:

1. From the Take Action drop-down list, select Commission.
2. Define a storage schema for each node.
3. On the Nodes tab, click the required node link from the list.
4. Scroll down to the Available disks and partitions section.
5. Select two SSDs using check marks in the left column.
6. Click the radio button to make one of the disks the boot target.
7. Click Create RAID to create an MD raid1 volume.
8. In RAID type, select RAID 1.
9. In File system, select ext4.

10
.
Set / as Mount point.

11
.
Click Create RAID.

The Used disks and partitions section should now look as follows:

8. Repeat the above steps for each physical node.
9. Proceed to Manually deploy the physical nodes.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 39

Manually deploy the physical nodes
Start the manual deployment of the physical nodes with the control plane kvm02 and kvm03
physical nodes, and then proceed with the compute cmp01 node deployment.
To manually deploy the physical nodes through MAAS:

1. Verify that the boot order in the physical nodes' BIOS is set in the following order:

1. PXE
2. The physical disk that was chosen as the boot target in the Maas UI.

2. Log in to the MAAS web UI.
3. Click on a node.
4. Click the Take Action drop-down menu and select Deploy.
5. In the Choose your image area, verify that Ubuntu 14.04 LTS “Trusty Tahr” with the

Xenial(hwe-x) kernel is selected.
6. Click Go to deploy the node.
7. Repeat the above steps for each node.

Now, your physical nodes are deployed and you can proceed with configuring and deploying the
OpenStack controllers nodes on them. If you plan to install CI/CD infrastructure, proceed with Set
up physical servers for a CI/CD deployment.

Deploy VCP
The virtualized control plane (VCP) is hosted by KVM nodes deployed by MaaS. The VCP run
OpenStack services, database (MySQL), message queue (RabbitMQ), Contrail, and support
services, such as monitoring, log aggregation, and a time-series metric database. VMs can be
added to or removed from the VCP allowing for easy scaling of your environment.
After the KVM nodes are deployed, Salt is used to configure Linux networking, appropriate
repositories, host name, and so on by running the linux Salt state against these nodes. The
libvirt packages configuration, in its turn, is managed by running the libvirt Salt state.

Prepare KVM nodes to run OpenStack controller nodes
To prepare physical nodes to run OpenStack controller nodes:

1. On the Salt Master node, prepare the node operating system by running the Salt linux state:

salt-call state.sls linux -l info

Warning
Some formulae may not correctly deploy on the first run of this command. This could
be due to a race condition in running the deployment of nodes and services in
parallel while some services are dependent on others. Repeat the command

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 40

execution. If an immediate subsequent run of the command fails again, reboot the
affected physical node and re-run the command.

2. Prepare physical nodes operating system to run the controller node:

1. Verify the salt-common and salt-minion versions
2. If necessary, Install the correct versions of salt-common and salt-minion.

3. Proceed to Create and provision VMs on the first KVM node.

Verify the salt-common and salt-minion versions
To verify the version deployed with the state:

1. Log in to the physical node console.
2. To verify the salt-common version, run:

apt-cache policy salt-common

3. To verify the salt-minion version, run:

apt-cache policy salt-minion

The output for the commands above must show the 2016.3.4 version. If you have different
versions installed, proceed with Install the correct versions of salt-common and salt-minion.

Install the correct versions of salt-common and salt-minion
This section describes the workaround for salt.virt to properly inject minion.conf.
To manually install the required version of salt-common and salt-minion:

1. Log in to the physical node console
2. Change the version to 2016.3.4 in /etc/apt/sources.list.d/salt.list:

deb [arch=amd64] http://repo.saltstack.com/apt/ubuntu/14.04/amd64/2016.3 trusty main

3. Remove extra from /etc/apt/sources.list.d/tcpcloud_contrail.list:

deb [arch=amd64] http://apt.tcpcloud.eu/nightly trusty tcp oc30

4. Sync the packages index files:

apt-get update

5. Verify the versions:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 41

apt-cache policy salt-common
apt-cache policy salt-minion

6. If the wrong versions are installed, remove them:

apt-get remove salt-minion
apt-get remove salt-common

7. Install the required versions of salt-common and salt-minion:

apt-get install salt-common=2016.3.4
apt-get install salt-minion=2016.3.4

8. Restart the salt-minion service to ensure connectivity with the Salt Master node:

service salt-minion stop && service salt-minion start

9. Verify that the required version is installed:

apt-cache policy salt-common
apt-cache policy salt-minion

10
.
Repeat the procedure on each physical node.

Create and provision VMs on the first KVM node
The control plane VMs are created on each node by running the salt state. This state leverages
the salt virt module along with some customizations defined in a Mirantis formula called
salt-formula-salt. Similarly to how MaaS manages bare metal, the salt virt module creates VMs
based on profiles that are defined in the metadata and mounts the virtual disk to add the
appropriate parameters to the minion configuration file.
After the salt state successfully runs against a KVM node where metadata specifies the VMs
placement, these VMs will be started and automatically added to the Salt Master node.
To create control plane VMs:

1. Log in to the KVM node that does not host the Salt Master node and MaaS node. The correct
physical node name used in the installation described in this guide to perform the next step
is kvm02.

Warning
Otherwise, on running the command in the step below, you will delete the cfg Salt
Master and mas MaaS nodes!

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 42

2. Verify whether virtual machines are not yet present:

virsh list --name --all | grep -v mas | grep -v cfg | xargs -n 1 virsh destroy
virsh list --name --all | grep -v mas | grep -v cfg | xargs -n 1 virsh undefine

3. Log in to the Salt Master node console
4. Run the libvirt state:

salt 'kvm*' state.sls libvirt

5. Run salt.control to create virtual machines. This command also inserts minion.conf files
from KVM hosts:

salt 'kvm*' state.sls salt.control

6. To set the created virtual machines to automatically start after powering on the physical
nodes, run the virsh autostart command on each of the physical nodes:

virsh list --name | xargs -n 1 virsh autostart

7. On kvm02, run the Salt state for the minions to create the environment virtual machines:

salt-call state.sls salt

8. Verify that the required version of salt-common is installed:

apt-cache policy salt-common

9. Run the salt state:

salt-call state.sls salt

Note
The libvirt_service error may occur:

ID: libvirt_service
Function: service.running
Name: libvirt-bin
Result: False
Comment: The named service libvirt-bin is not available
Started: 22:09:35.231541
Duration: 30.584 ms

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 43

This is a known issue and can be ignored.

10
.
In the state.sls file, change lines 55 and 56 from libvirt-bin to libvirtd. For example:

}, merge=salt['grains.filter_by']({
 'trusty': {
 'libvirt_bin': '/etc/default/libvirtd',
 'libvirt_service': 'libvirtd',
 }

11
.
To verify that the minions are in sync, run the following command on the Salt Master node:

salt '*' saltutil.sync_all

12
.
On the affected nodes, re-run the libvirt state. In our example, it is kvm02:

salt-call state.sls libvirt

13
.
To restart the libvirt service on the affected nodes, run the following command on the Salt
Master node:

salt '*kvm02*' cmd.run 'service libvirtd restart'

14
.
Re-run the Salt state on kvm02:

salt-call state.sls salt

15
.
Sync your Git repository and local repository on your Salt Master node (the local path is
/srv/salt/reclass). Pull the synced changes to the local server:

root@cfg01:/srv/salt/reclass# git pull

16
.
On kvm02, re-run the linux and salt states:

salt-call state.sls linux,salt

Provision VMs on the second KVM node
Provisioning of the control plane VMs that run on the second kvm03 physical node is simpler
because all the configurations were made for kvm02. Though, you may still get some issues that
require manual intervention.
To provision the control plane VMs on the second KVM node:

1. Log in to kvm03.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 44

2. In the /etc/apt/sources.list.d/salt.list file, remove the repository so you can install the correct
version of salt-common and salt-minion. For example:

#deb [arch=amd64] http://repo.saltstack.com/apt/ubuntu/ubuntu14/2016.3 trusty main

3. Install the correct versions of salt-common and salt-minion.
4. Verify the salt-common and salt-minion versions
5. Run the libvirt and salt states on kvm03:

salt-call state.sls libvirt,salt.control

6. Log in to the Salt Master cfg01 node.
7. Run the salt.highstate against kvm03:

salt '*kvm03*' state.highstate

Provision VMs on the third KVM node
The provisioning of the control plane VMs hosted by the physical node where the mas01 MaaS
node and cfg01 Salt Master node reside should be performed last.
To provision the control plane VMs on the third KVM node:

1. Log in to the mas01 node.
2. Connect the kvm01 controller node through SSH. For example:

ssh ubuntu@172.31.25.11

3. Switch into the root context:

sudo -i

4. Run the Salt states for linux, ntp, openssh, and libvirt:

salt-call state.sls linux,ntp,openssh,libvirt

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 45

Deploy DriveTrain
The automated deployment of the MCP components is performed through CI/CD that is a part of
MCP DriveTrain along with SaltStack and Reclass. CI/CD, in its turn, includes Jenkins, Gerrit, and
MCP Registry components. This section explains how to deploy a CI/CD infrastructure.

MCP CI/CD components
The core components of the MCP CI/CD infrastructure include:

• Jenkins: CI server
• Gerrit: gate changes
• Aptly: Debian repository management
• Docker registry

The CI server roles depend on the specific functions it performs within the CI/CD infrastructure
and include:
CI controller role

CI/CD controller is the leader of Docker Swarm
The CI/CD controllers run the following services:

• Keepalived and HAProxy
• GlusterFS client
• Docker Swarm mode:

• Jenkins master
• Gerrit
• Aptly (API and public)
• Docker registry

CI worker role
CI workers are responsible for running a wide range of pipelines such as basic test
performance or update appliance. An example of CI workers are Jenkins slaves.

Set up physical servers for a CI/CD deployment
Before you proceed with the CI/CD deployment, you need to set up the KVM physical nodes right
after the physical nodes are deployed with MaaS as described in deploy_physical_nodes.
To set up the physical nodes for CI/CD:

1. Perform the initial Salt configuration:

salt 'kvm*' state.sls salt.minion

2. Set up network interfaces and the SSH access:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 46

salt -C 'I@salt:control' cmd.run 'salt-call state.sls \
 linux.system.user,openssh,linux.network;reboot'

3. Wait until the network interfaces come up and finish with the linux state application:

salt -C 'I@salt:control' state.sls linux

4. Install libvirt:

salt -C 'I@salt:control' state.sls libvirt

5. Enable virtual IP:

salt -C 'I@salt:control' state.sls keepalived

6. Deploy the GlusterFS cluster:

salt -C 'I@glusterfs:server' state.sls glusterfs.server.service
salt -C 'I@glusterfs:server and *01*' state.sls glusterfs.server.setup

7. Synchronize modules and states:

salt -C 'I@salt:control' saltutil.sync_all

8. Spin virtual machines through salt-virt:

salt -C 'I@salt:control' state.sls salt.control

9. Verify that the CI nodes appear in Salt.
Once the CI nodes are up and running, you can start deploying your CI/CD infrastructure as
described in Deploy CI/CD

Deploy CI/CD
Before you start deploying the CI/CD infrastructure, verify that your physical servers are running
Ubuntu 16.04 (Xenial) and have Internet access.
To deploy the CI/CD infrastructure:

1. Perform the setup of the physical servers as described in Set up physical servers for a CI/CD
deployment.

2. Log in to the Salt Master node.
3. Perform the initial configuration:

salt -C 'ci*' cmd.run 'salt-call state.sls salt.minion'
salt -C 'ci*' state.sls salt.minion,linux,openssh,ntp

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 47

4. Synchronize modules and states:

salt -C 'I@docker:swarm' saltutil.sync_all

5. Mount Gluster volumes from the KVM nodes:

salt -C 'I@glusterfs:client and I@docker:host' state.sls glusterfs.client

6. Configure virtual IP and HAProxy balancing:

salt -C 'I@haproxy:proxy and I@docker:host' state.sls haproxy,keepalived

7. Install Docker:

salt -C 'I@docker:host' state.sls docker.host

8. Initial Docker swarm leader:

salt -C 'I@docker:swarm:role:master' state.sls docker.swarm

9. Update the Salt mine to enable other swarm nodes to connect to leader:

salt -C 'I@docker:swarm' state.sls salt
salt -C 'I@docker:swarm' mine.flush
salt -C 'I@docker:swarm' mine.update

10
.
Complete the Docker swarm deployment:

salt -C 'I@docker:swarm' state.sls docker.swarm

11
.
Verify that all nodes are in the cluster:

salt -C 'I@docker:swarm:role:master' cmd.run 'docker node ls'

12
.
Start the CI/CD containers, for example, MySQL, Aptly, Jenkins, Gerrit, and others:

salt -C 'I@docker:swarm:role:master' state.sls docker.client

13
.
Configure the Aptly service:

salt -C 'I@aptly:server' state.sls aptly

14
.
Configure the OpenLDAP service for Jenkins and Gerrit:

salt -C 'I@openldap:client' cmd.run 'salt-call state.sls openldap'

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 48

15
.
Configure the Gerrit service, create users, projects, and so on:

salt -C 'I@gerrit:client' cmd.run 'salt-call state.sls gerrit'

Note
If the command execution fails in the first run, re-run it.

16
.
Configure the Jenkins service, create users, add pipelines, and so on:

salt -C 'I@jenkins:client' cmd.run 'salt-call state.sls jenkins'

Note
If the command execution fails in the first run, re-run it.

Now, you are able to access all CI/CD services using the VIP address and view the HAProxy stats
on port 9600 and Docker visualizer on port 8084.

Deploy CI/CD using Heat templates
This section explains how to deploy an environment with CI/CD installed using Heat templates.

Note
This section is targeted at Mirantis QA engineers only.

Note
For production environments, CI/CD should be deployed on a per-customer basis.
For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web UI with your Launchpad credentials.

After the deployment, you can proceed with the DevOps portal using the manual installation
procedure described in Deploy the DevOps portal manually.
To deploy CI/CD using Heat templates:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 49

https://jenkins-mk.vm.mirantis.net/

1. Verify you complete the Deploy CI/CD procedure.
2. Log in to the Jenkins web UI.
3. Go to the Deploy tab from the top navigation bar.
4. Expand the Heat category.
5. Select the Build with Parameters option from the drop-down menu next to one of the jobs in

this category.
6. Specify the following parameters:

• HEAT_STACK_DELETE = false
• SSH_PUBLIC_KEY = <PUBLIC_SSH_RSA_KEY>

7. If required, change the default values for other parameters.
8. Click Build.

By default, after the successful deployment of the pipeline, the DriveTrain will be available at
http://172.16.10.254:8800

Seealso

• View the deployment details
• Deploy the DevOps portal manually
• Remove CI/CD installed using Heat templates

Remove CI/CD installed using Heat templates
You may need to remove an earlier deployed CI/CD. To delete a Heat stack using Jenkins, run the
deploy-heat-cleanup Deploy pipeline.

Note
This section is targeted at Mirantis QA engineers only.

Note
For production environments, CI/CD should be deployed on a per-customer basis.
For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web UI with your Launchpad credentials.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 50

https://jenkins-mk.vm.mirantis.net/

To execute the CI/CD deploy pipeline:

1. Log in to the Jenkins web UI.
2. Go to the Deploy tab from the top navigation bar.
3. Expand the Heat category.
4. Select the Build with Parameters option from the drop-down menu next to the Deploy

heat-cleanup job in this category.
5. Define HEAT_STACK_NAME = <HEAT_STACK_NAME>

Note
To obtain the Heat stack name, search for the heat stack-create entry in the output of
the job that deployed this specific environment.

6. Click Build.

Seealso

• Deploy CI/CD using Heat templates

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 51

Deploy an MCP cluster using DriveTrain
After you have installed the MCP CI/CD infrastructure as descibed in Deploy DriveTrain, the
Jenkins web UI can be reached through the Jenkins master IP address. This section contains
procedures explaining how to deploy MCP clusters using the CI/CD pipelines.

Note
For production environments, CI/CD should be deployed on a per-customer basis.
For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web UI with your Launchpad credentials.

Deploy an OpenStack environment
This section explains how to configure and launch the OpenStack environment deployment
pipeline. This job is run by Jenkins through the Salt API on the functioning Salt Master node and
deployed hardware servers to set up your MCP OpenStack environment.
To deploy an OpenStack environment using CI/CD:

Note
For production environments, CI/CD should be deployed on a per-customer basis.
For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web UI with your Launchpad credentials.

1. Go to the central Jenkins lab.
2. Log in to the Jenkins web UI using your credentials.
3. Find the Deploy - OpenStack job in the global view.
4. Select the Build with Parameters option from the drop-down menu of the Deploy -

OpenStack job.
5. Specify the following parameters:

Deploy - OpenStack environment parameters

Parameter Description and values
ASK_ON_ERROR If checked, Jenkins will ask either to stop a pipeline or continue

execution in case of Salt state fails on any task

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 52

https://jenkins-mk.vm.mirantis.net/
https://jenkins-mk.vm.mirantis.net/
https://jenkins-mk.vm.mirantis.net/

INSTALL Specifies the components you need to install. The available
values include:

• core
• kvm
• openstack
• stacklight
• ovs or contrail (depending on the network plugin)

SALT_MASTER_CREDEN
TIALS

Includes credentials to Salt API

SALT_MASTER_URL Specifies the reachable IP address of the Salt Master node and
port on which Salt API listens. For example,
http://172.18.170.28:6969
To find out on which port Salt API listens:

1. Log in to the Salt Master node.
2. Search for the port in the /etc/salt/master.d/_api.conf file.
3. Verify that the Salt Master node is listening on that port:

netstat -tunelp | grep <PORT>

STACK_TYPE Specifies the environment type. Use physical for a bare metal
deployment

6. Click Build.

Seealso

• View the deployment details

Deploy a multi-site OpenStack environment
MCP DriveTrain enables you to deploy several OpenStack environments at the same time.

Note
For production environments, CI/CD should be deployed on a per-customer basis.
For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web UI with your Launchpad credentials.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 53

https://jenkins-mk.vm.mirantis.net/

To deploy a multi-site OpenStack environment, repeat the Deploy an OpenStack environment
procedure as many times as you need specifying different values for the SALT_MASTER_URL
parameter.

Seealso

• View the deployment details

View the deployment details
Once you have enforced a pipeline in CI/CD, you can monitor the progress of its execution on
the job progress bar that appears on your screen. Moreover, Jenkins enables you to analyze the
details of the deployments process.
To view the deployment details:

1. Log in to the Jenkins web UI.
2. Under Build History on the left, click the number of the build you are interested in.
3. Go to Console Output from the navigation menu to view the the deployment progress.
4. To view the whole output, click Full log.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 54

Deploy an MCP cluster manually
Deploy an OpenStack environment manually
This section explains how to manually configure and install software required by your MCP
OpenStack environment, such as support services, OpenStack services, StackLight, and others.

Deploy the DevOps portal
The DevOps portal is the MCP Control Plane component that is responsible for managing your
MCP deployment as the main administrative dashboard for the entire environment.

Note
The DevOps portal is provided as a technical preview.

Deploy the DevOps portal manually
Before you can deploy the DevOps portal, you must complete the steps described in Deploy
DriveTrain.

Note
The DevOps portal is provided as a technical preview.

To manually deploy the DevOps portal:

1. Log in to the Salt Master node.
2. Upload the DevOps Portal formula:

1. Clone the source code of the formula:

git clone https://gerrit.mcp.mirantis.net/oss/salt-formula-devops-portal \
/usr/share/salt-formulas/env/_formulas/devops_portal

2. Create a symbolic link to the formula subdirectory:

ln -s /usr/share/salt-formulas/env/_formulas/devops_portal/devops_portal \
/usr/share/salt-formulas/env/devops_portal

3. Create symbolic links to the service metadata subdirectory:

ln -s /usr/share/salt-formulas/env/_formulas/devops_portal/metadata/service/ \
/usr/share/salt-formulas/reclass/service/devops_portal

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 55

ln -s /usr/share/salt-formulas/reclass/service/devops_portal \
/srv/salt/reclass/classes/service/devops_portal

4. Create a symbolic link to the devops_utils.py module:

ln -s /usr/share/salt-formulas/env/_formulas/devops_portal/_modules/devops_utils.py \
/usr/share/salt-formulas/env/_modules/devops_utils.py

3. Configure the cluster metadata by editing the following configuration files:

1. Add the following classes and parameters to the
/srv/salt/reclass/classes/cluster/cicd_lab_dev/cicd/control/init.yml:

classes:
 - system.glusterfs.server.volume.devops_portal
 - system.glusterfs.server.volume.rundeck
 - system.glusterfs.client.volume.devops_portal
 - system.glusterfs.client.volume.rundeck
 - system.docker.swarm.service.devops_portal
 - system.docker.swarm.service.rundeck
 - system.haproxy.proxy.listen.oss.devops_portal
 - system.haproxy.proxy.listen.oss.rundeck
 # DevOps Portal
 - system.devops_portal.service.gerrit
 - system.devops_portal.service.jenkins
 - system.devops_portal.service.rundeck

2. Add the following class to the
/srv/salt/reclass/classes/cluster/cicd_lab_dev/cicd/control/master.yml:

classes:
 - service.devops_portal.config

4. Verify that metadata of the Salt Master node contains all the required parameters.

reclass --nodeinfo=$SALT_MASTER_FQDN.$ENV_DOMAIN
salt '*' saltutil.refresh_pillar
salt '$SALT_MASTER_FQDN.$ENV_DOMAIN' pillar.get devops_portal

For example, for the ci01 node on the cicd-lab-dev.local domain run:

reclass --nodeinfo=ci01.cicd-lab-dev.local
salt '*' saltutil.refresh_pillar
salt 'ci01.cicd-lab-dev.local' pillar.get devops_portal

5. Apply the Salt state to the deploy DevOps portal:

1. Synchronize modules:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 56

salt '*' saltutil.sync_modules

2. Apply states in the following strict order:

salt '*' state.sls glusterfs
salt -C 'I@devops_portal:control' state.sls devops_portal.config
salt '*' state.sls docker.client.service
salt '*' state.sls haproxy.proxy

Now, you can access the DevOps portal at the VIP address of the deployment on port 8800.

Build a custom image of the DevOps portal
For testing purposes, you may need to create a custom Docker image for the DevOps portal.
To build a custom Docker image:

1. Before you build the image and upload it to Sandbox, clone the source code of DevOps
portal:

git clone https://gerrit.mcp.mirantis.net/oss/devops-portal
cd devops-portal

2. Build your image:

docker build --rm -f docker/Dockerfile -t \
docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest .

3. Push the image into some specific prefix on Sandbox:

docker push docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest

Now, you can use this specific Docker image to deploy the DevOps Portal.

Install support services
Your installation should include a number of support services such as RabbitMQ for messaging;
HAProxy for load balancing, proxying, and HA; GlusterFS for storage; and others. This section
provides the procedures to install the services and verify they are up and running.

Warning
The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.
Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 57

Deploy Keepalived
Keepalived is a framework that provides high availability and load balancing to Linux systems.
Keepalived provides a virtual IP address that network clients use as a main entry point to access
the CI/CD services distributed between nodes. Therefore, in MCP, Keepalived is used in HA
(multiple-node warm-standby) configuration to keep track of services availability and manage
failovers.

Warning
The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.
Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

To deploy Keepalived:

salt -C 'I@keepalived:cluster' state.sls keepalived -b 1

To verify the VIP addresses:

salt -C 'I@keepalived:cluster' cmd.run "ip a | grep 172.16.10.2"

Note
Remember that multiple clusters are defined. Therefore, verify that all of them are up and
running.

Deploy NTP
The Network Time Protocol (NTP) is used to properly synchronize services among your
OpenStack nodes.
To deploy NTP:

salt '*' state.sls ntp

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 58

Deploy GlusterFS
GlusterFS is a highly-scalable distributed network file system that enables you to create a
reliable and redundant data storage. GlusterFS keeps all important data for Database,
Artifactory, and Gerrit in shared storage on separate volumes that makes MCP CI infrastructure
fully tolerant to failovers.
To deploy GlusterFS:

salt -C 'I@glusterfs:server' state.sls glusterfs.server.service
salt -C 'I@glusterfs:server' state.sls glusterfs.server.setup -b 1

To verify GlusterFS:

salt -C 'I@glusterfs:server' cmd.run "gluster peer status; gluster volume status" -b 1

Deploy RabbitMQ
RabbitMQ is an intermediary for messaging. It provides a platform to send and receive
messages for applications and a safe place for messages to live until they are received. All
OpenStack services depend on RabbitMQ message queues to communicate and distribute the
workload across workers.
To deploy RabbitMQ:

salt -C 'I@rabbitmq:server' state.sls rabbitmq

To verify the RabbitMQ status:

salt -C 'I@rabbitmq:server' cmd.run "rabbitmqctl cluster_status"

Deploy Galera
Galera cluster is a synchronous multi-master database cluster based on the MySQL storage
engine. Galera is an HA service that provides scalability and high system uptime.

Warning
The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.
Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 59

To deploy Galera:

salt -C 'I@galera:master' state.sls galera
salt -C 'I@galera:slave' state.sls galera

To verify Galera:

salt -C 'I@galera:master' mysql.status | grep -A1 wsrep_cluster_size
salt -C 'I@galera:slave' mysql.status | grep -A1 wsrep_cluster_size

Deploy HAProxy
HAProxy is a software that provides load balancing for network connections while Keepalived is
used for configuring the IP address of the VIP.

Warning
The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.
Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

To deploy HAProxy:

salt -C 'I@haproxy:proxy' state.sls haproxy
salt -C 'I@haproxy:proxy' service.status haproxy
salt -I 'haproxy:proxy' service.restart rsyslog

Deploy Memcached
Memcached is used for caching data for different OpenStack services such as Keystone, for
example.
To deploy Memcached:

salt -C 'I@memcached:server' state.sls memcached

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 60

Install OpenStack services
Many of the OpenStack service states make changes to the databases upon deployment. To
ensure proper deployment and to prevent multiple simultaneous attempts to make these
changes, deploy a service states on a single node of the environment first. Then, you can deploy
the remaining nodes of this environment.
Keystone must be deployed before other services. Following the order of installation is
important, because many of the services have dependencies of the others being in place.

Deploy Keystone
To deploy Keystone:

1. Set up the Keystone service:

salt -C 'I@keystone:server' state.sls keystone.server -b 1

2. Populate keystone services/tenants/admins:

salt -C 'I@keystone:client' state.sls keystone.client
salt -C 'I@keystone:server' cmd.run ". /root/keystonerc; keystone service-list"

Deploy Glance
The OpenStack Image service (Glance) provides a REST API for storing and managing virtual
machine images and snapshots.
To deploy Glance:

1. Install glance and verify that GlusterFS clusters exist:

salt -C 'I@glance:server' state.sls glance -b 1
salt -C 'I@glance:server' state.sls glusterfs.client

2. Update Fernet tokens before doing request on the Keystone server. Otherwise, you will get
the following error: No encryption keys found;
run keystone-manage fernet_setup to bootstrap one:

salt -C 'I@keystone:server' state.sls keystone.server
salt -C 'I@keystone:server' cmd.run ". /root/keystonerc; glance image-list"

Deploy Nova
To deploy the Nova:

1. Install Nova:

salt -C 'I@nova:controller' state.sls nova -b 1
salt -C 'I@keystone:server' cmd.run ". /root/keystonerc; nova service-list"

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 61

2. On one of the controller nodes, verify that the Nova services are enabled and running:

root@cfg01:~# ssh ctl01 "source keystonerc; nova service-list"

Deploy Neutron
To install Neutron:

salt -C 'I@neutron:server' state.sls neutron -b 1
salt -C 'I@neutron:gateway' state.sls neutron
salt -C 'I@keystone:server' cmd.run ". /root/keystonerc; neutron agent-list"

Warning
For installations with the OpenContrail setup, perform the API check after the Contrail
control installation.

Deploy Horizon
To install Horizon:

salt -C 'I@horizon:server' state.sls horizon
salt -C 'I@nginx:server' state.sls nginx

Deploy Tenant Telemetry
Tenant Telemetry collects metrics about the OpenStack resources and provides this data
through the Ceilometer API.
To install Tenant Telemetry:

1. On the controller nodes, install the Ceilometer agents and Aodh:

salt -C 'I@ceilometer:server' state.sls ceilometer -b 1
salt -C 'I@aodh:server' state.sls aodh -b 1

2. On the compute nodes, install Ceilometer:

salt -C 'I@ceilometer:agent' state.sls ceilometer

3. On the Salt Master node, install Heka for Ceilometer:

1. Restart salt-minion to make sure that it uses the latest Jinja library:

salt '*' --async service.restart salt-minion

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 62

2. Clean the Salt mine:

salt "*" mine.flush

3. Clean the grains files to make sure that you start from a clean state:

salt "*" file.remove /etc/salt/grains.d/heka
salt "*" file.remove /etc/salt/grains

4. Update the Salt mine:

salt "*" state.sls salt.minion.grains
salt "*" saltutil.refresh_modules
salt "*" mine.update

5. Install ceilometer_collector:

salt -C "I@heka:ceilometer_collector:enabled" state.sls heka.ceilometer_collector

6. Restart ceilometer_collector:

salt -C "I@heka:ceilometer_collector:enabled" service.restart ceilometer_collector

4. Install back ends for Ceilometer as described in Install StackLight back ends.

Note
Tenant Telemetry does not have any Grafana or Kibana dashboards, therefore, you
can skip the corresponding steps. The databases names and passwords for
Ceilometer are defined in the system Reclass model. For details, see example.

Deploy proxy nodes
To install proxy nodes:

1. Add NAT for br2:

root@kvm01:~# iptables -t nat -A POSTROUTING -o br2 -j MASQUERADE
root@kvm01:~# echo “1” > /proc/sys/net/ipv4/ip_forward
root@kvm01:~# iptables-save > /etc/iptables/rules.v4

2. Deploy linux, openssh, and salt states to the proxy nodes:

root@cfg01:~# salt 'prx*' state.sls linux,openssh,salt

3. Verify the connection to Horizon:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 63

https://github.com/Mirantis/reclass-system-salt-model/blob/master/influxdb/database/ceilometer.yml

1. You may need first to configure a SOCKS proxy or similar to the environment network
to gain access from within your browser.

2. In a browser, connect to each of the proxy IPs and its VIP to verify that they are active.

Install OpenContrail
OpenContrail is a component of MCP that provides overlay networking built on top of physical
IP-based underlay network for cloud environments. OpenContrail provides more flexibility in
terms of network hardware used in cloud environments comparing to other enterprise-class
networking solutions. However, OpenContrail only supports KVM and Citrix Xen hypervisors.

Install OpenContrail
To install OpenContrail:

1. Install OpenContrail with salt-call directly from the network nodes.

Note
This step may take about 5 minutes to complete.

salt-call state.sls opencontrail

Warning
The deployment may fail with two errors:

• Error stating that iptables service failed. Can be ignored.
• Error stating that net.netfilter is unavailable.

Rerun the OpenContrail state until only a single iptables failure remains.

2. Install OpenContrail on the remaining network nodes individually:

salt-call state.sls opencontrail

3. Verify the status of the service from one of the network nodes:

contrail-status

In the output, the services status should be active.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 64

Note
It may take some time for all services to finish initializing.

If you have issues during the OpenContrail deployment, check the Troubleshoot
OpenContrail section of this document.

4. Deploy OpenContrail to the analytics nodes:

1. From the Salt Master node, deploy the opencontrail state to the first of the Cassandra
nodes:

salt 'nal01*' state.sls opencontrail

Warning
The deployment may fail with two errors:

• Error stating that iptables service failed. Can be ignored.
• Error stating that net.netfilter is unavailable.

Rerun the OpenContrail state until only a single iptables failure remains.

5. On the Salt Master node, install OpenContrail on the remaining network nodes
simultaneously:

salt 'nal*' state.sls opencontrail

6. To verify the status of services, restart the Nova API service on the controller nodes to
reflect the newly installed OpenContrail dependencies from the Salt Master node:

salt 'ctl*' service.restart nova-api

Configure OpenContrail
It may happen that your installation does not use SSH overall because of not having a certificate
authority available. By default, OpenContrail uses SSL and requires certificate authentication. If
you attempt to access the OpenContrail UI through the proxy with such configuration, the UI will
accept your credentials but will end up in logging you out immediately. As a workaround, you
can use HTTP directly to the OpenContrail UI management VIP bypassing the proxy. You can log
in and perform the management functions without being logged out.
To configure OpenContrail:

1. Obtain the Administrator password.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 65

1. On the Salt Master:

salt 'ctl01*' cmd.run 'cat /root/keystonerc'

2. Record the OS_PASSWORD. This is the Administrator password you need to pass for the
OpenContrail registration.

2. Log in to the OpenContrail web UI. Use the OpenStack controller node VIP on port 8143.

3. Verify that at this point you have the following nodes registered in OpenContrail:

• 1 Virtual Router (cmp001)
• 3 Control Nodes (ntw0[1-3])
• 3 Analytics Nodes (nal03)
• 3 Config Nodes (nwt0[1-3])
• 6 Database Nodes (ntw0[1-3],nal0[1-3])

4. Navigate on the left to Networking > Networks.
5. Click the gear symbol for the FIPVN network and select Edit.
6. In the Edit Network window, expand Route Target(s).
7. Click the + symbol to add an ASN and target.
8. Enter the router ASN used during provisioning and 10 for the Target:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 66

9. Click Save.
10

.
Verify the configuration.

1. On the left, navigate to Infrastructure > BGP Routers.
2. Expand one of the ntw0* controller nodes and verify that the ASN is set correctly.

In this example: Autonomous System 64512

Deploy compute nodes

Provision a compute node
Provisioning of compute nodes is relatively straightforward and should be performed after the
bare-metal provisioning through MaaS is done. You can run all states at once. Though, this has
to be done multiple times with a reboot involved for changes to network configuration to take
effect. Ordering of dependencies is not yet orchestrated.
To provision a compute node:

1. Verify that /classes/system/reclass/storage/system/<cluster-name>_compute.yml contains
correct host information.

Note
In this file, create as many hosts as the number of compute nodes in your
environment.

2. Run the reclass.storage state on the Salt Master node to generate the target node
definitions:

salt '*cfg*' state.sls reclass.storage

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 67

3. Verify that the target nodes have connectivity with the Salt Master:

salt '*cmp[<num>]*' test.ping

4. Run the Salt highstate against the node(s):

Note
The highstate means that all states in the node definition will be run.

Note
You may see errors during the first run of highstate.

salt '*cmp[<num>]*' state.highstate

5. Reboot the node to apply network configuration changes.
6. Re-run the Salt highstate against the nodes:

Note
If you still see some failures, run the highstate again or remediate the specific failures
unless you identify them as benign.

salt '*cmp[<num>]*' state.highstate

Deploy vRouter on compute nodes
To deploy vRouter:

Note
Perform the procedure above on each cmp compute node.

1. Example of the salt command for cmp001:

salt "cmp001*" cmd.run '/usr/share/contrail-utils/provision_vrouter.py \
 --host_name cmp001 --host_ip 172.31.112.11 --api_server_ip 172.31.110.30 \

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 68

 --oper add --admin_user admin --admin_password 9kFLrGit63yatq3e \
 --admin_tenant_name admin --openstack_ip 172.31.110.20'

2. On the compute node, create a virtual gateway interface:

Note
This step is for scenarios where a simple gateway is used.

salt "cmp001*" cmd.run '/usr/share/contrail-utils/provision_vgw_node.py \
 --oper create --interface vgw1 --subnets 172.31.113.0/24 --routes 0.0.0.0/0 \
 --vrf default-domain:admin:FIPVN:FIPVN'

3. Fix errors in the OpenContrail UI for Global config → Forwarding options. Example of the
command to run on the ntw01 node:

/usr/share/contrail-utils/encap.py add admin 9kFLrGit63yatq3e admin 172.31.110.30

4. Provision the linklocal service:

/usr/share/contrail-utils/provision_linklocal.py --admin_user admin \
 --admin_password 9kFLrGit63yatq3e --linklocal_service_name metadata \
 --linklocal_service_ip 163.154.169.254 --linklocal_service_port 80 \
 --ipfabric_service_ip 172.31.110.20 --ipfabric_service_port 8775 \
 --api_server_ip 172.31.110.30

5. On the compute node cmp001, restart the vRouter supervisor service:

service supervisor-vrouter restart

Deploy a compute node
To deploy a cmp001 compute node:

1. Verify that linux/system/compute.yml has valid information about the host:

1. Change the Cookiecutter key:value names to include a three-digit number identifier.
As noted previously, this was hardcoded for two. Therefore, some items are not
populated correctly. In this case, the compute host information can be dropped.
Before:

host:
 local:
 address: ${_param:single_address}
 names:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 69

 - ${linux:system:name}.${linux:system:domain}
 - ${linux:system:name}

After:

host:
 local:
 address: ${_param:single_address}
 names:
 - cmp001.mk.slab.local
 - cmp001

2. Optional. Create as many hosts as you have compute nodes in your OpenStack
environment.
Before:

host:
 local:
 address: ${_param:single_address}
 names:
 - ${linux:system:name}.${linux:system:domain}
 - ${linux:system:name}

After:

host:
 cmp001:
 address: ${_param:single_address}
 names:
 - cmp001.mk.slab.local
 - cmp001

Note
If you have added nodes after deployment, you need to add their definitions as
described above. Then, run the reclass state on the Salt Master node to add
them under the Salt management.

2. On the Salt Master node, sync the Salt data to each of the nodes:

salt '*' saltutil.sync_all

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 70

3. Refresh the pillar data. This is not covered by sync_all and needs to be done every time you
run the reclass state on the cfg node:

salt '*' saltutil.refresh_pillar

4. Run the reclass.storage state to refresh the deployed pillar data:

salt '*cfg*' state.sls reclass.storage

5. Verify that the new machines have connectivity with the Salt Master node:

salt '*' test.ping

6. On the Salt Master node, run the Salt states for linux, ntp, openssh, and salt for the compute
nodes:

salt 'cmp*' state.sls linux,ntp,openssh,salt

7. Run the Salt highstate for the compute nodes:

salt 'cmp*' state.highstate

Note
You may need to run the highstate multiple times to get a successful deployment. If
after two runs you still have errors, reboot the compute nodes and run the highstate
again.

Note
You may have an error stating that iptables is down. Ignore this error.

Install StackLight
StackLight is the Logging, Metering, Alerting (LMA) toolchain, the operational health and
response monitoring solution. It monitors nodes, services, and clusters health, as well as
business KPIs. Moreover, StackLight provides rich operational insights out-of-the-box for the
OpenStack, OpenContrail, Kubernetes, and Calico services deployed on MCP. Cloud operators
can easily prevent service downtime using StackLight for monitoring as Stacklight quickly
notifies users of critical conditions that may occur in the system.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 71

Prerequisites
Before you start installing the StackLight components, complete the following steps:

1. Configure StackLight for installation.
The configuration of StackLight for installation is defined in the Reclass model. See
stacklight-salt-model as an example of the Reclass model to install StackLight on Mirantis
Cloud Platform. Three levels of the Reclass models are currently collocated on the Salt
Master node under the /srv/salt/reclass/classes directory:

• The service level model is imported directly from the metadata/service directory of all
MCP formulas. The Reclass parameters that are defined at the service level are the
most generic parameters and should not be modified in practice.

• The system level model, which is currently defined in the user Reclass model, imports
the service level models and defines additional parameters. The parameters defined in
the system level model relate to the system-wide configuration of StackLight, such as
the IP address and port number of the Elasticsearch and InfluxDB servers.

• The cluster level model defines the configuration of StackLight for a particular
deployment. A user Reclass model to install OpenStack with StackLight monitoring
must be created. This is where you typically define the name of the InfluxDB database,
username, password of the InfluxDB admin, and others.

2. Verify that you have Internet access to download several packages from external
repositories that are not included in the standard Ubuntu distribution. If there is no Internet
access, these repositories must be mirrored on MCP.

Install StackLight back ends
StackLight integrates several back-end servers to visualize an environment monitoring and
health statuses. This section describes how to to install various back-end visualization solutions,
including: InfluxDB and Grafana, Elasticsearch and Kibana, Sensu and Uchiwa.

Install InfluxDB and Grafana
The InfluxDB server must be installed on the monitoring cluster of Mirantis Cloud Platform
(MCP).

Hardware requirements
InfluxDB and Grafana have the following requirements:

Requirement Comments
Disk space InfluxDB requires at least 15 GB of disk space for the system and

10 GB for the logs. We highly recommend installing the InfluxDB
database on a dedicated disk partition. The size of the partition
depends on many factors including the size of the deployment
and the retention period. It has been measured that a partition of
100 GB is necessary for a deployment of about 200 compute
nodes with three controller nodes and a retention period of one
month.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 72

https://github.com/Mirantis/stacklight-salt-model

Hardware specification The hardware specification required for InfluxDB and Grafana
depends on the size of the deployment and other factors like the
retention period. A basic setup requires a quad-core CPU with 8 GB
of RAM and a fast disk of 500-1000 IOPS. See the InfluxDB
Hardware Sizing Guide for additional sizing information.

MCP supported versions MCP 1.0

Limitations
StackLight has the following limitations in regards to InfluxDB and Grafana:

• InfluxDB is deployed on three nodes in the active/passive failover mode (only one node is
storing data at a time).

• The current implementation of StackLight for MCP uses the latest version of the community
edition, InfluxDB 1.2. However, InfluxDB 1.2 does not support clustering. If you want to
deploy InfluxDB in cluster mode for HA and scale-out, you need to use the InfluxEnterprise
version.

Configure InfluxDB and Grafana
The configuration parameters of the InfluxDB and Grafana dashboard are defined in the Salt
formula. For details and the configuration examples, see the GitHub projects for SaltStack
InfluxDB formula and SaltStack Grafana formula.

Deploy InfluxDB and Grafana
This section describes how to deploy the InfluxDB cluster and Grafana.
To deploy InfluxDB
Depending on the cluster Reclass model, the InfluxDB server may run on one or several nodes
of the monitoring cluster. But only one InfluxDB server will be active at a time.

Note
To use a fully supported InfluxDB cluster for HA and scale-out, install the InfluxEnterprise
version separately.

To deploy InfluxDB, run the following command for the Salt minion nodes with the
influxdb:server role defined in the Salt Pillar:

salt -C 'I@influxdb:server' state.sls influxdb

The deployment of Grafana consists of the server, the collector, and the client deployment.
To deploy Grafana:

1. Deploy the server:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 73

https://docs.influxdata.com/influxdb/v0.10/guides/hardware_sizing
https://docs.influxdata.com/influxdb/v0.10/guides/hardware_sizing
https://github.com/salt-formulas/salt-formula-influxdb
https://github.com/salt-formulas/salt-formula-influxdb
https://github.com/salt-formulas/salt-formula-grafana
https://portal.influxdata.com/

salt -C 'I@grafana:server' state.sls grafana.server -b 1

2. The collector is used to retrieve dashboards provided by different services. Services that
have Grafana support enabled will generate grains and those grains will be used to fill
mines.
Run the collector before the client:

salt -C 'I@grafana:collector' state.sls grafana.collector
salt -C 'I@grafana:collector' state.sls salt.minion.grains
salt -C 'I@grafana:collector' saltutil.refresh_modules
salt -C 'I@grafana:collector' mine.update

3. Run the client that will configure Grafana:

1. Verify that the Salt Minion is properly configured to connect to the Grafana server:

salt -C 'I@grafana:client' state.sls salt.minion

2. Perform the configuration:

salt -C 'I@grafana:client' state.sls grafana.client

Verify InfluxDB and Grafana after deployment
Depending on the number of nodes and deployment setup, deploying InfluxDB and Grafana may
take up to several hours.
To verify InfluxDB:

1. Log in to the Salt Master node.
2. Run the following command:

/usr/bin/influx -database lma -password lmapass \
--username root -host mon -port 8086

Example of the system response:

Connected to http://mon:8086 version 1.2.0
InfluxDB shell version: 1.2.0
>

This example shows that executing /usr/bin/influx starts an interactive CLI and
automatically connects to the InfluxDB server.

3. To see a dump of all the time-series collected, run:
> show series

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 74

Example of the system response fragment:

[...] cluster_status,cluster_name=cinder-control,
environment_label=lucky,member=cinder_control,nagios_host=00-top-clusters
cluster_status,cluster_name=compute,environment_label=lucky,
member=compute_nodes,nagios_host=01-node-clusters cluster_status,
cluster_name=contrail-compute,environment_label=lucky,
member=contrail_compute,nagios_host=00-top-clusters cluster_status,
cluster_name=contrail-control,environment_label=lucky,
member=contrail_control,nagios_host=00-top-clusters [...]

To verify Grafana:

1. Log in to the Salt Master node.
2. Enter the monitoring VIP on port 3000 by default.
3. Authenticate using your credentials following the Connect to Grafana instructions.

You should be redirected to the Grafana Home page with a list of available dashboards
sorted by name.

Install Elasticsearch and Kibana
The Elasticsearch and Kibana servers must be installed on the monitoring cluster of the Mirantis
Cloud Platform.

Hardware requirements
Elasticsearch and Kibana have the following requirements:

Requirement Comments
Disk space Elasticsearch requires at least 15 GB of disk space for the system

and 10 GB for the logs. We highly recommend installing the
Elasticsearch database on a dedicated disk partition. The size of
the partition depends on many factors including the size of the
deployment, the retention period, and the log level. Logging at the
DEBUG level requires 10 times more space than logging at the
INFO level. It has been measured that a partition of 500 GB is
necessary for a deployment of about 200 compute nodes with
three controller nodes and a retention period of one month.

Hardware specification The hardware specification required for Elasticsearch depends on
the size of the deployment and other factors like the retention
period and logging activity. A basic setup requires a quad-core
CPU with 4 GB of RAM and a fast disk of 500-1000 IOPS. For larger
deployments, we recommend having 8 GB of RAM or 50% of the
available memory up to 32 GB maximum for the JVM heap.

MCP supported versions MCP 1.0

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 75

https://docs.mirantis.com/mcp/1.0/mcp-operations-guide/lma/grafana-ops/connect-grafana.html

Limitations
StackLight has the following limitations in regards to Elasticsearch and Kibana:

• The cluster must be installed on minimum three nodes to avoid split-brain issues.
• The advanced cluster operations may require manual steps. For details, see Advanced

operations.

Configure Elasticsearch and Kibana
The configuration parameters of the Elasticsearch engine and Kibana dashboard are defined in
the Salt formula. For details and the configuration examples, see the GitHub projects for
SaltStack Elasticsearch formula and SaltStack Kibana formula.

Deploy Elasticsearch and Kibana
The deployment of Elasticsearch and Kibana consists of the server and the client deployment.
To deploy Elasticsearch and Kibana:

1. Deploy the server that will install Elasticsearch and Kibana:

salt -C 'I@elasticsearch:server' state.sls elasticsearch.server -b 1
salt -C 'I@kibana:server' state.sls kibana.server -b 1

2. Deploy the client that will configure the server:

1. Configure the client to communicate with the server:

salt -C 'I@elasticsearch:client' state.sls elasticsearch.client.service
salt -C 'I@kibana:client' state.sls kibana.client.service

2. Restart the Minion on the nodes where clients are running:

salt -C 'I@elasticsearch:client or I@kibana:client' --async service.restart salt-minion

3. Configure the server itself:

salt -C 'I@elasticsearch:client' state.sls elasticsearch.client
salt -C 'I@kibana:client' state.sls kibana.client

Verify Elasticsearch and Kibana after deployment
After you deploy Elasticsearch and Kibana, verify that they are up and running using the steps
below.
To verify the Elasticsearch cluster:

1. Log in to the Salt Master node.
2. Run the following command:

curl http://mon:9200

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 76

https://docs.mirantis.com/mcp/1.0/mcp-operations-guide/lma/kibana-ops/advanced-ops.html
https://docs.mirantis.com/mcp/1.0/mcp-operations-guide/lma/kibana-ops/advanced-ops.html
https://github.com/salt-formulas/salt-formula-elasticsearch
https://github.com/salt-formulas/salt-formula-kibana

Example of the system response:

curl http://mon:9200
{
 "name" : "mon01",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "KJM5s5CkTNKGkhd807gcCg",
 "version" : {
 "number" : "2.4.4",
 "build_hash" : "fcbb46dfd45562a9cf00c604b30849a6dec6b017",
 "build_timestamp" : "2017-01-03T11:33:16Z",
 "build_snapshot" : false,
 "lucene_version" : "5.5.2"
 },
 "tagline" : "You Know, for Search"
}

To verify the Kibana dashboard
To verify that the Kibana dashboard is working, use the monitoring VIP and the default port
5601. No credentials are required.
You should be redirected to the Kibana Logs Analytics dashboard with six sections of logs:

1. Log messages over time per source
2. Log messages over time per severity
3. Number of log messages per severity
4. Top 10 sources
5. Top 10 programs
6. Top 10 hosts

Install Sensu
The Sensu server must be installed on the monitoring cluster of Mirantis Cloud Platform (MCP).

Hardware requirements
Sensu has the following requirements:

Requirement Comments
Disk space Sensu requires at least 15 GB of disk space for the system, 10 GB

for the logs, and 20 GB for Sensu itself.
Hardware specification A basic setup at least requires a quad-core CPU with 8 GB of RAM

and a fast disk.
MCP supported versions MCP 1.0

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 77

Configure Sensu
The configuration parameters of the Sensu engine and Uchiwa dashboard are defined in the Salt
formula. For details and configuration examples, see the GitHub project for SaltStack Sensu
formula.

Deploy Sensu
Sensu is an infrastructure and application monitoring and telemetry solution that is widely used
across the industry. Sensu provides a general purpose framework for monitoring infrastructure,
service and application health, and business KPIs.
In the StackLight architecture for MCP, the use of Sensu is dual:

• It monitors the components of the StackLight operational insight pipeline itself (collectd,
Local Metric Collector, Remote Metric Collector, and Aggregator).

• It handles the StackLight health status events for alerting and escalation.
The Sensu cluster must be installed on minimum three nodes to avoid split-brain issues.
To deploy Sensu
Run the following command for the Salt Minions:

salt -C 'I@sensu:server and I@rabbitmq:server' state.sls rabbitmq
salt -C 'I@sensu:server and I@rabbitmq:server' cmd.run "rabbitmqctl cluster_status"
salt -C 'I@redis:cluster:role:master' state.sls redis
salt -C 'I@redis:server' state.sls redis
salt -C 'I@sensu:server' state.sls sensu -b 1
salt -C 'I@sensu:client' state.sls sensu

This will install the Sensu cluster on the monitoring cluster and the Sensu client on all nodes.

Verify Sensu and Uchiwa
After you deploy Sensu, verify that it up and running using the steps below.
To verify Sensu:

1. Log in to the Salt Master node.
2. Run the following command:

salt -C 'I@sensu:server' service.status sensu-server

To verify the Uchiwa dashboard:
To verify that the Uchiwa dashboard is working, use the monitoring VIP and the default port
3001. The Sensu dashboard username is admin. The password can be retrieved from Salt Pillar
data:

salt ‘mon*’ pillar.data _param:sensu_dashboard_password

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 78

https://github.com/salt-formulas/salt-formula-sensu/tree/master/sensu
https://github.com/salt-formulas/salt-formula-sensu/tree/master/sensu

Seealso
Sensu official documentation
<https://sensuapp.org/docs/latest/overview/what-is-sensu.html>

Install StackLight operational insights pipeline
After you install back ends for StackLight as described in the Install StackLight back ends
section, proceed with installing the StackLight operational insights pipeline (SOIP) that includes
the Log Collector, the Local Metric Collector, the Remote Metric Collector, and the Aggregator.

Install SOIP
This section describes how to install the StackLight operational insights pipeline (SOIP). All steps
in this section must be executed from the Salt Master node.
To install SOIP:

1. Log in to the Salt Master node.
2. Restart salt-minion to make sure that it uses the latest Jinja library:

salt '*' --async service.restart salt-minion

3. Clean the Salt mine:

salt "*" mine.flush

4. Clean the grains files to make sure that you start from a clean state:

salt "*" file.remove /etc/salt/grains.d/collectd
salt "*" file.remove /etc/salt/grains.d/grafana
salt "*" file.remove /etc/salt/grains.d/heka
salt "*" file.remove /etc/salt/grains.d/sensu
salt "*" file.remove /etc/salt/grains

5. Install the collectd and heka services on the nodes:

salt "*" state.sls collectd
salt "*" state.sls heka

6. Update the Salt mine:

salt "*" state.sls salt.minion.grains
salt "*" saltutil.refresh_modules
salt "*" mine.update

7. Update Heka:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 79

salt -C 'I@heka:aggregator:enabled:True or \
I@heka:remote_collector:enabled:True' state.sls heka

8. Update collectd:

salt -C 'I@collectd:remote_client:enabled:True' state.sls collectd

9. Update Sensu:

salt -C 'I@sensu:server' state.sls sensu

10
.
Retrieve the StackLight monitoring VIP from Salt pillar:

salt-call pillar.data _param:stacklight_monitor_address --out key

Example of system response:

Local Keys:
_param:stacklight_monitor_address: 172.16.10.253

11
.
Restart the services that are bound to the monitoring VIP:

export vip=<MONITORING_VIP>
salt -G "ipv4:$vip" service.restart remote_collectd
salt -G "ipv4:$vip" service.restart remote_collector
salt -G "ipv4:$vip" service.restart aggregator

Seealso

• Verify SOIP

Verify SOIP
After you install the StackLight operational insights pipeline (SOIP) components, verify that they
are up and running on the targeted Salt Minion nodes.
To verify the Log Collector:

1. Log in to the Salt Master node.
2. Verify that the Log Collector status is True on all the Salt Minion nodes with names that start

with ctl:

salt 'ctl*' service.status log_collector
Example of the system response:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 80

ctl03.mcp-lab-advanced.local:
 True
ctl01.mcp-lab-advanced.local:
 True
ctl02.mcp-lab-advanced.local:
 True

To verify the Metric Collector:

1. Log in to the Salt Master node.
2. Verify that the Metric Collector status is True on all the Salt Minion nodes with names that

start with ctl:

salt 'ctl*' service.status metric_collector

Example of the system response:

ctl03.mcp-lab-advanced.local:
 True
ctl01.mcp-lab-advanced.local:
 True
ctl02.mcp-lab-advanced.local:
 True

To verify the Remote Metric Collector:

1. Log in to the Salt Master node.
2. Verify that the Remote Metric Collector status is True on the Salt Minion node with the

monitoring VIP:

salt 'mon*' service.status remote_collector

Only the node with the monitoring VIP should have the status True.
Example of the system response:

mon-01.mcp-lab-advanced.local:
 False
mon-02.mcp-lab-advanced.local:
 False
mon-03.mcp-lab-advanced.local:
 True

In this example, the Salt Minion node with the monitoring VIP mon-03 successfully runs the
Remote Metric Collector since its status is True.

To verify the Aggregator:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 81

1. Log in to the Salt Master node.
2. Verify that the Aggregator status is True on the Salt Minion node with the monitoring VIP:

salt 'mon*' service.status aggregator

Note
Only the node with the monitoring VIP should have the status True.

Example of the system response:

mon-01.mcp-lab-advanced.local:
 False
mon-02.mcp-lab-advanced.local:
 False
mon-03.mcp-lab-advanced.local:
 True

In the example above, the Salt Minion node with the monitoring VIP mon-03 successfully
runs the Aggregator since its status is True.

Install Horizon plugins
The Horizon Telemetry and Monitoring plugins must be installed on the proxy cluster of Mirantis
Cloud Platform (MCP).
The Horizon Telemetry and Monitoring plugins are deployed and configured by the Horizon
formula. To deploy plugins, deploy Horizon following the Deploy Horizon procedure.
To verify the Horizon plugins after deployment
After you successfully deploy Horizon with the Telemetry and Monitoring plugins, verify that the
Telemetry and Monitoring tabs are present in the Horizon dashboard.
To connect to the Horizon plugins dashboard
The Horizon dashboard with the Telemetry and Monitoring plugins can be reached through the
proxy VIP using the HTTPS protocol. To access the Horizon dashboard, use your OpenStack
credentials.

Seealso
The Logging, metering, alerting section in the MCP Operations Guide

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 82

Troubleshoot
This section provides solutions to the issues that may occur while installing Mirantis Cloud
Platform.
Troubleshooting of an MCP installation usually requires the salt command usage. The following
options may be helpful if you run into an error:

• -l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, or quiet.
Default is warning

• --state-output=STATE_OUTPUT
Override the configured STATE_OUTPUT value for minion output. One of full, terse, mixed,
changes, or filter. Default is full.

To synchronize all of the dynamic modules from the file server for a specific environment, use
the saltutil.sync_all module. For example:

salt '*' saltutil.sync_all

Troubleshooting the server provisioning
This section includes the workarounds for the following issues:

Virtual machine node stops responding
If one of the control plane VM nodes stops responding, you may need to redeploy it.
Workaround:

1. From the physical node where the target VM is located, get a list of the VM domain IDs and
VM names:

virsh list

2. Destroy the target VM (ungraceful powering off of the VM):

virsh destroy DOMAIN_ID

3. Undefine the VM (removes the VM configuration from KVM):

virsh undefine VM_NAME

4. Verify that your physical KVM node has the correct salt-common and salt-minion version:

apt-cache policy salt-common
apt-cache policy salt-minion

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 83

Note
If the salt-common and salt-minion versions are not 2015.8, proceed with Install the
correct versions of salt-common and salt-minion.

5. Redeploy the VM from the physical node meant to host the VM:

salt-call state.sls salt.control

6. Verify the newly deployed VM is listed in the Salt keys:

salt-key

7. Deploy the Salt states to the node:

salt 'OST_NAME*' state.sls linux,ntp,openssh,salt

8. Deploy service states to the node:

salt 'HOST_NAME*' state.sls keepalived,haproxy,SPECIFIC_SERVICES

Note
You may need to log in to the node itself and run the states locally for higher success
rates.

Troubleshoot OpenContrail
This section includes the workarounds for the following issues:

Troubleshoot Cassandra
Example of system response of the contrail-status command indicating the issue:

== Contrail Database ==
supervisor-database: active
contrail-database active
contrail-database-nodemgr initializing (Cassandra state detected
 DOWN.Disk space for analytics db not
 retrievable.)
kafka active

Workaround:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 84

1. Remove all files from the /var/lib/cassandra/ folder:

rm -rf /var/lib/cassandra/*

2. Restart the service:

service supervisor-database restart

3. Check the status:

contrail-status

Troubleshoot the database connectivity
Example of system response of the contrail-status command indicating the issue:

== Contrail Analytics ==
supervisor-analytics: active
contrail-alarm-gen active
contrail-analytics-api active
contrail-analytics-nodemgr active
contrail-collector initializing (Database:ctl02:Global connection down)
contrail-query-engine timeout
contrail-snmp-collector active
contrail-topology active

Workaround:

1. Restart the supervisor-analytics service:

service supervisor-analytics restart

2. Check the neutron API:

neutron net-list
+------------------------+-------------------------+---------+
| id | name | subnets |
+------------------------+-------------------------+---------+
d6638b91-4e1d-4214-...	ip-fabric	
ce66ee12-71b4-44ea-...	__link_local__	
d452af3a-3b9f-442e-...	default-virtual-network	
+------------------------+-------------------------+---------+

3. Restart nova-api to reflect installed OpenContrail dependencies:

salt 'ctl*' service.restart nova-api
ctl02.workshop.cloudlab.cz:
 True

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 85

ctl03.workshop.cloudlab.cz:
 True
ctl01.workshop.cloudlab.cz:
 True

4. Check the nova list command system response:

nova list

Now, OpenStack and OpenContrail controllers are properly deployed.
To troubleshoot OpenContrail, verify the OpenContrail status using the contrail-status command.

Note
Ignore the vRouter failure. The vRouter agent is located on the compute node only.

Example of system response:

contrail-status
vRouter is NOT PRESENT

== Contrail vRouter ==
supervisor-vrouter: unrecognized service
supervisor-vrouter: inactive
contrail-vrouter-agent failed

== Contrail Control ==
supervisor-control: active
contrail-control active
contrail-control-nodemgr active
contrail-dns active
contrail-named active

== Contrail Analytics ==
supervisor-analytics: active
contrail-analytics-api active
contrail-analytics-nodemgr active
contrail-collector active
contrail-query-engine active
contrail-snmp-collector active
contrail-topology active

== Contrail Config ==
supervisor-config: active
contrail-api:0 active

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 86

contrail-config-nodemgr active
contrail-device-manager active
contrail-discovery:0 active
contrail-schema initializing
contrail-svc-monitor initializing
ifmap active

== Contrail Web UI ==
supervisor-webui: active (disabled on boot)
contrail-webui active
contrail-webui-middleware active

== Contrail Database ==
supervisor-database: active
contrail-database active
contrail-database-nodemgr active

Deploy a Kubernetes cluster manually
Kubernetes is the system for containerized applications automated deployment, scaling, and
management. This section guides you through the deployment procedure for a Kubernetes
cluster.

Prerequisites
Generic hardware requirements for a Kubernetes cluster deployment include six nodes:
1x Configuration node

A host for the Salt Master node. Can be a virtual machine
3x Controller nodes

Hosts for the Kubernetes control plane components and ETCD
2x Compute nodes

Hosts for the Kubernetes pods, groups of containers that are deployed together on the same
host

For easier deployment and testing, the following usage of 3 NICs is recommended:

• 1x NIC as a PXE/DHCP/Salt network (PXE and DHCP is a third-party service in DC)
unmanaged by SaltStack

• 2x NICs as bond active-passive or active-active with two 10Gbit slave interfaces

Salt formulas used in the Kubernetes cluster deployment
MCP Kubernetes cluster standard deployment uses the following Salt formulas to deploy and
configure a Kubernetes cluster:
salt-formula-kubernetes

Handles Kubernetes hyperkube binaries, CNI plugins, Calico manifests
salt-formula-etcd

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 87

Provisions ETCD clusters
salt-formula-docker

Installs and configures the Docker daemon
salt-formula-bird

Customizes BIRD templates used by Calico to provide advanced networking scenarios for
route distribution through BGP

Generate a Kubernetes cluster metadata model
This section covers how to generate the metadata model for the MCP Kubernetes cluster
deployment.
To generate the Kubernetes metadata model:

1. Create a Git repository that will store your Kubernetes cluster configurations. To prepare
the Git repository, select one of the options below:

• Create a project repository manually.
• Prepare a Git repo automatically using the Jenkins pipeline.

2. Clone the kubernetes_mk template from the MCP templates repository as described in
get-cookiecutter-templates.

3. Define etcd members under Salt formulas level metadata.
In the majority of cases, the Kubernetes cluster deployment includes 3 etcd members for
Kubernetes. The cluster_node_address and cluster_node_hostname parameters are
commonly used through all Salt formulas. Define them once to use for all roles through your
deployment:

parameters:
 kubernetes:
 master:
 etcd:
 members:
 - host: ${_param:cluster_node01_address}
 name: ${_param:cluster_node01_hostname}
 - host: ${_param:cluster_node02_address}
 name: ${_param:cluster_node02_hostname}
 - host: ${_param:cluster_node03_address}
 name: ${_param:cluster_node03_hostname}

4. Define the networking plugin under the system level metadata.
The default networking plugin for the MCP deployment is Calico. To define Calico, edit the
reclass-system-salt-model/kubernetes/master/cluster.yml:

parameters:
 kubernetes:
 master:
 network:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 88

 engine: calico
 private_ip_range: ${_param:kubernetes_private_net_cidr}

5. Define the cluster level metadata for your Kubernetes deployment.
6. Copy the cookiecutter.json file from the template repository:

cd $RECLASS_REPO
cp cookiecutter.$ENV_NAME.json cookiecutter.json

7. Update new environment definition in cookiecutter.json to fit your deployment.
8. Generate the Kubernetes cluster level metadata definition:

cookiecutter ~/.cookiecutters/kubernetes_mk --output-dir \
 ./classes/cluster --no-input -f

The name of the cluster is defined by the project_name parameter.
9. Push the changes to the Git repository as described in Publish the deployment model to a

project repository.
Now, the Kubernetes metadata model is ready to be used on the Salt Master node.

Define interfaces
Since Cookiecutter is simply a tool to generate projects from templates, it cannot handle all
networking use-cases. Your cluster may include a single interface, two interfaces in bond, bond
and management interfaces, and so on.
This section explains how to handle 3 interfaces configuration:

• eth0 interface for pxe
• eth1 and eth2 as bond0 slave interfaces

To configure network interfaces, add the following example definition to the
{{ cookiecutter.cluster_name }}/kubernetes/init.yml file:

parameters:
…
 _param:
 deploy_nic: eth0
 primary_first_nic: eth1
 primary_second_nic: eth2
 linux:
 ...
 network:
 ...
 interface:
 deploy_nic:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 89

 name: ${_param:deploy_nic}
 enabled: true
 type: eth
 proto: static
 address: ${_param:deploy_address}
 netmask: 255.255.255.0
 primary_first_nic:
 name: ${_param:primary_first_nic}
 enabled: true
 type: slave
 master: bond0
 mtu: 9000
 pre_up_cmds:
 - /sbin/ethtool --offload eth6 rx off tx off tso off gro off
 primary_second_nic:
 name: ${_param:primary_second_nic}
 type: slave
 master: bond0
 mtu: 9000
 pre_up_cmds:
 - /sbin/ethtool --offload eth7 rx off tx off tso off gro off
 bond0:
 enabled: true
 proto: static
 type: bond
 use_interfaces:
 - ${_param:primary_first_nic}
 - ${_param:primary_second_nic}
 slaves: ${_param:primary_first_nic} ${_param:primary_second_nic}
 mode: active-backup
 mtu: 9000
 address: ${_param:single_address}
 netmask: 255.255.255.0
 name_servers:
 - {{ cookiecutter.dns_server01 }}
 - {{ cookiecutter.dns_server02 }}

Deploy a Kubernetes cluster
This section explains how you can deploy your Kubernetes cluster.
To deploy the Kubernetes cluster:

1. Set up the Salt Master node as described in Install the Salt Master node.
2. Update modules and states on all Minions:

salt '*' saltutil.sync_all

3. Create and distribute SSL certificates for services using the salt state:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 90

salt "*" state.sls salt

4. Install Keepalived:

salt -C 'I@keepalived:cluster' state.sls keepalived -b 1

5. Install HAProxy:

salt -C 'I@haproxy:proxy' state.sls haproxy
salt -C 'I@haproxy:proxy' service.status haproxy

6. Install Docker:

salt -C 'I@docker:host' state.sls docker.host
salt -C 'I@docker:host' cmd.run "docker ps"

7. Install etcd:

salt -C 'I@etcd:server' state.sls etcd.server.service
salt -C 'I@etcd:server' cmd.run "etcdctl cluster-health"

Install etcd with the SSL support:

salt -C 'I@etcd:server' state.sls salt.minion.cert,etcd.server.service
salt -C 'I@etcd:server' cmd.run '. /var/lib/etcd/configenv && etcdctl cluster-health'

8. Install Kubernetes and Calico:

salt -C 'I@kubernetes:master' state.sls kubernetes.master.kube-addons
salt -C 'I@kubernetes:pool' state.sls kubernetes.pool
salt -C 'I@kubernetes:pool' cmd.run "calicoctl node status"

9. Set up NAT for Calico:

salt -C 'I@kubernetes:master' state.sls etcd.server.setup

10
.
Run master to check consistency:

salt -C 'I@kubernetes:master' state.sls kubernetes exclude=kubernetes.master.setup

11
.
Register addons:

salt -C 'I@kubernetes:master' --subset 1 state.sls kubernetes.master.setup

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 91

Enable NFV features
Network Functions Virtualization (NFV) is a powerful technology that leverages virtualization of
particular network functions which allows a better flexibility in network administration and
enables you to use network hardware more efficiently.
MCP supports the following NFV features:

• Data Plane Development Kit or DPDK is a set of libraries and drivers to perform fast packet
processing in the user space that OVS/vRouter can use to move network packets processing
from a kernel to a user space. OVS/vRouter with DPDK acceleration on compute nodes
reduces the processing time of network packets transferred between a host’s network
interface and a guest bypassing the host’s kernel. Moreover, DPDK leverages benefits of
usage of other technologies such as Huge Pages, CPU pinning, and NUMA topology
scheduling.

• SR-IOV is an extension to the PCI Express (PCIe) specification that enables a network
adapter to separate access to its resources among various PCIe hardware functions:
Physical Function (PF) and Virtual Functions (VFs). As a result, you can achieve near
bare-metal performance, since network devices can forward traffic directly to a VF
bypassing the host.

• Multiqueue for DPDK-based vrouters enables the scaling of packet sending/receiving
processing to the number of available vCPUs of a guest by using multiple queues.

The following table shows compatibility matrix for MCP of NFV features for different
deployments.

NFV for MCP compatibility matrix

Type Host OS Kern
el

HugePa
ges

DPD
K

SR-I
OV

NUM
A

CPU
pinning Multiqueue

OVS Xenial 4.8 Yes No Yes Yes Yes Yes
Kernel
vRouter

Xenial 4.8 Yes No Yes Yes Yes Yes

DPDK
vRouter

Trusty 4.4 Yes Yes No Yes Yes No (version
3.2)

DPDK
OVS

Xenial 4.8 Yes Yes No Yes Yes Yes

Enable DPDK
Enabling Data Plane Development Kit (DPDK) strongly requires Huge Pages configuration before
an application start. To perform fast packet processing, a DPDK-based network application may
require to use isolated CPUs and resources spread on the multi-NUMA topology. These
configurations are common for both OVS and OpenContrail.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 92

Warning
Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

Enable OVS DPDK
This section explains how to prepare for and enable OVS DPDK in MCP.

Warning
Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

Limitations
The usage of the OVS DPDK feature in MCP includes the following limitations:

• OVS DPDK can be used only for tenant traffic
• Compute with DPDK cannot be used for non-dpdk workload

Prepare your environment for OVS DPDK
This section describes the initialization steps needed to prepare your deployment for the
enablement of the OVS DPDK feature.

Warning
Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

To prepare your environment for OVS DPDK:

1. Specify the DPDK driver.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 93

DPDK Environment Abstract Layer(EAL) uses either Userspace I/O (UIO) module or VFIO to
provide userspace access on low-level buffers. MCP supports both configurations.

Note
To use VFIO approach, verify that both kernel and BIOS are configured to use I/O
virtualization. This requirement is similar to SR-IOV Intel IOMMU and VT-d being
enabled.

To use one of Userspace I/O drivers, define the compute_dpdk_driver parameter. For
example:

compute_dpdk_driver: uio # vfio-pci

2. In respect to the parameter specified above, configure the DPDK physical driver. There is
one-to-one dependency of what driver must be selected for physical DPDK NIC based on the
configured I/O mechanism. For example:

dpdk0:
 ...
 driver: igb_uio # vfio

3. To enable the physical DPDK device to run several RX/TX queues for better packet
processing, configure the following parameter specifying the number of queues to be used.
For example:

dpdk0:
 ...
 n_rxq: 2 # number of RX/TX queues

Note
The increasing number of queues results in PMD threads consuming more cycles to
serve physical device. We strongly recommend that you configure the number of
physical queues not greater that CPUs configured for the DPDK-based application.

Enable OVS DPDK support
Before you proceed with the procedure, verify that you have performed the preparatory steps
described in Prepare your environment for OVS DPDK.
To enable OVS DPDK:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 94

1. Verify your NUMA nodes on the host operating system to see what vCPUs are available. For
example:

lscpu | grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-11

2. Include the class to cluster.<name>.openstack.compute and configure the dpdk0 interface.
Select from the following options:

• Single interface NIC dedicated for DPDK:

...
- system.neutron.compute.nfv.dpdk
...
parameters:
 linux:
 network:
 interfaces:
 ...
 # other interface setup
 …
 dpdk0:
 name: ${_param:dpdk0_name}
 pci: ${_param:dpdk0_pci}
 driver: igb_uio
 enabled: true
 type: dpdk_ovs_port
 n_rxq: 2
 br-prv:
 enabled: true
 type: dpdk_ovs_bridge

• OVS DPDK bond with 2 dedicated NICs

...
- system.neutron.compute.nfv.dpdk
...
parameters:
 linux:
 network:
 interfaces:
 ...
 # other interface setup
 …
 dpdk0:
 name: ${_param:dpdk0_name}
 pci: ${_param:dpdk0_pci}
 driver: igb_uio
 bond: dpdkbond1

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 95

 enabled: true
 type: dpdk_ovs_port
 n_rxq: 2
 dpdk1:
 name: ${_param:dpdk1_name}
 pci: ${_param:dpdk1_pci}
 driver: igb_uio
 bond: dpdkbond1
 enabled: true
 type: dpdk_ovs_port
 n_rxq: 2
 dpdkbond1:
 enabled: true
 bridge: br-prv
 type: dpdk_ovs_bond
 mode: active-backup
 br-prv:
 enabled: true
 type: dpdk_ovs_bridge

3. Calculate the hexadecimal coremask.
As well as for OpenContrail, OVS-DPDK needs logical cores parameter to be set. Open
vSwitch requires two parameters: lcore mask to DPDK processes and PMD mask to spawn
threads for poll-mode packet processing drivers. Both parameters must be calculated
respectively to isolated CPUs and are representing hexadecimal numbers. For example, if
we need to take single CPU number 2 for Open vSwitch and 4 CPUs with numbers 5, 6, 10
and 12 for forwarding PMD threads, we need to populate parameters below with the
following numbers:

• The lcores mask example:

• PMD CPU mask example:

4. Define the parameters in the cluster.<name>.openstack.init if they are the same for all
compute nodes. Otherwise, specify them in cluster.<name>.infra.config:

• dpdk0_name
Name of port being added to OVS bridge

• dpdk0_pci
PCI ID of physical device being added as a DPDK physical interface

• compute_dpdk_driver
Kernel module to provide userspace I/O support

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 96

• compute_ovs_pmd_cpu_mask
Hexadecimal mask of CPUs to run DPDK Poll-mode drivers

• compute_ovs_dpdk_socket_mem
Set of amount HugePages in Megabytes to be used by OVS-DPDK daemon taken for
each NUMA node. Set size is equal to NUMA nodes count, elements are divided by
comma

• compute_ovs_dpdk_lcore_mask
Hexadecimal mask of DPDK lcore parameter used to run DPDK processes

• compute_ovs_memory_channels
Number of memory channels to be used.

Example

compute_dpdk_driver: uio
compute_ovs_pmd_cpu_mask: "0x6"
compute_ovs_dpdk_socket_mem: "1024"
compute_ovs_dpdk_lcore_mask: "0x400"
compute_ovs_memory_channels: "2"

5. Specify the MAC address and in some cases PCI for every node.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: xenial
 dpdk0_name: enp5s0f1
 dpdk1_name: enp5s0f2
 dpdk0_pci: '"0000:05:00.1"'
 dpdk1_pci: '"0000:05:00.2"'

6. If the VXLAN neutron tenant type is selected, set the local IP address on br-prv for VXLAN
tunnel termination:

...
- system.neutron.compute.nfv.dpdk
...
parameters:
 linux:
 network:
 interfaces:
 ...

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 97

 # other interface setup
 …
 br-prv:
 enabled: true
 type: dpdk_ovs_bridge
 address: ${_param:tenant_address}
 netmask: 255.255.255.0

7. Select from the following options:

• If you are performing the initial deployment of your environment, proceed with further
environment configurations.

• If you are making changes to an existing environment, re-run salt configuration on the
Salt Master node:

salt "cmp*" state.sls linux.network,neutron

Note
For the changes to take effect, servers require a reboot.

8. If you need to set different values for each compute node, define them in
cluster.<NAME>.infra.config.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: xenial
 dpdk0_name: enp5s0f1
 dpdk1_name: enp5s0f2
 dpdk0_pci: '"0000:05:00.1"'
 dpdk1_pci: '"0000:05:00.2"'
 compute_dpdk_driver: uio
 compute_ovs_pmd_cpu_mask: "0x6"
 compute_ovs_dpdk_socket_mem: "1024"
 compute_ovs_dpdk_lcore_mask: "0x400"
 compute_ovs_memory_channels: "2"

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 98

Enable OpenContrail DPDK
OpenContrail 3.1.1 uses DPDK libraries version 2.1. Therefore, it is supported only on Ubuntu
Trusty with kernel 3.13 =< 4.4.

Warning
Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

A workload running on DPDK vRouter does not provide better pps if an application is not DPDK
aware. The performance result is the same as for kernel vRouter.
To enable the OpenContrail DPDK pinning:

1. Verify your NUMA nodes on the host operating system to see what vCPUs are available. For
example:

lscpu | grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-11

2. Include the class to cluster.<name>.openstack.compute and configure the vhost0 interface:

• For a single interface in DPDK:

...
- system.opencontrail.compute.dpdk
...
parameters:
 linux:
 network:
 interfaces:
 ...
 # other interface setup
 ...
 vhost0:
 enabled: true
 type: eth
 mtu: 9000
 address: ${_param:single_address}
 netmask: 255.255.255.0
 name_servers:
 - 8.8.8.8
 - 8.8.4.4

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 99

3. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

• compute_vrouter_taskset
Hexadecimal mask of CPUs used for DPDK-vRouter processes

• compute_vrouter_socket_mem
Set of amount HugePages in Megabytes to be used by vRouter-DPDK taken for
each NUMA node. Set size is equal to NUMA nodes count, elements are divided by
comma

• compute_vrouter_dpdk_pci
PCI of a DPDK NIC. In case of BOND there must be 0000:00:00.0

4. Calculate the hexadecimal mask. To enhance vRouter with DPDK technology, several
isolated host CPUs should be used for such DPDK processes as statistics, queue
management, memory management, and poll-mode drivers. To perform this, you need to
configure the hexadecimal mask of CPUs to be consumed by vRouter-DPDK.
The way to calculate the hexadecimal mask is simple as a set of CPUs corresponds to the
bits sequence size of CPUs number. 0 on i-th place in this sequence means that CPU number
i will not be taken for usage, and 1 has the opposite meaning. Simple translation of
binary-to-hexadecimal based on bit sequence of size 24 is illustrated below (vRouter is
bound to 4 cores: 14,13,2,1.)

5. Pass the hexadecimal mask to vRouter-DPDK command line using the following parameters.
For example:

compute_vrouter_taskset: "-c 1,2" # or hexadecimal 0x6
compute_vrouter_socket_mem: "1024" # or “1024,1024” for 2 NUMA nodes

6. Specify the MAC address and in some cases PCI for every node.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: trusty
 compute_vrouter_dpdk_mac_address: 00:1b:21:87:21:99
 compute_vrouter_dpdk_pci: "'0000:05:00.1'"
 primary_first_nic: enp5s0f1 # NIC for vRouter bind

7. Select from the following options:

• If you are performing the initial deployment of your environment, proceed with the
further environment configurations.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 100

• If you are making changes to an existing environment, re-run salt configuration on the
Salt Master node:

salt "cmp*" state.sls opencontrail

Note
For the changes to take effect, servers require a reboot.

8. If you need to set different values for each compute node, define them in
cluster.<NAME>.infra.config.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: trusty
 compute_vrouter_dpdk_mac_address: 00:1b:21:87:21:99
 compute_vrouter_dpdk_pci: "'0000:05:00.1'"
 compute_vrouter_taskset: "-c 1,2"
 compute_vrouter_socket_mem: "1024"
 primary_first_nic: enp5s0f1 # NIC for vRouter bind

Enable SR-IOV
Single Root I/O Virtualization (SR-IOV) is an I/O virtualization technology that allows a single PCIe
device to appear as multiple PCIe devices. This helps to optimize the device performance and
capacity, as well as hardware costs.

Prerequisites
If you want to use the SR-IOV feature with Mirantis OpenContrail or Neutron OVS, your
environment must meet the following prerequisites:

• Intel Virtualization Technology for Directed I/O (VT-d) and Active State Power Management
(ASPM) must be supported and enabled in BIOS

• Physical NIC with Virtual Function (VF) driver installed Enable ASPM (Active State Power
Management) of PCI Devices in BIOS. If required, upgrade BIOS to see ASPM option.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 101

Enable generic SR-IOV configuration
The following procedure is common for both OpenVSwitch and OpenContrail. SR-IOV can be
enabled before or after installation on the MCP cluster model level.
To enable SR-IOV:

1. Include the class to cluster.<NAME>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note
By default, the metadata model contains configuration for 1 NIC dedicated for
SR-IOV.

2. Set the following parameters:

• sriov_nic01_device_name
Name of the interface, where the Virtual Functions are enabled

• sriov_nic01_numvfs
Number of Virtual Functions

• sriov_nic01_physical_network
Default is physnet1, label for the physical network the interface belongs to

• sriov_unsafe_interrupts
Default is False, needs to be set to True if your hardware platform does not support
interrupt remapping

For most deployments with 1 NIC for SR-IOV, we recommend the following configuration in
cluster.<name>.openstack.init on all compute nodes:

sriov_nic01_device_name: eth1
sriov_nic01_numvfs: 7
sriov_nic01_physical_network: physnet3

3. If you need to set different values for each compute node, specify them in
cluster.<name>.infra.config.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 102

 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: xenial
 sriov_nic01_device_name: eth1
 sriov_nic01_numvfs: 7
 sriov_nic01_physical_network: physnet3

4. If your hardware does not support interrupt remapping, set the following parameter:

sriov_unsafe_interrupts: True

5. If you need more than one NIC on a compute node, set the following parameters in
cluster.<NAME>.openstack.compute.
Example

...
 nova:
 compute:
 sriov:
 sriov_nic01:
 devname: eth1
 physical_network: physnet3
 sriov_nic02:
 devname: eth2
 physical_network: physnet4
 sriov_nic03:
 devname: eth3
 physical_network: physnet5
 sriov_nic04:
 devname: eth4
 physical_network: physnet6
 linux:
 system:
 kernel:
 sriov: True
 unsafe_interrupts: False
 rc:
 local: |
 #!/bin/sh -e
 # Enabling 7 VFs on eth1 PF
 echo 7 > /sys/class/net/eth1/device/sriov_numvfs; sleep 2; ip link set eth1 up
 # Enabling 15 VFs on eth2 PF
 echo 15 > /sys/class/net/eth2/device/sriov_numvfs; sleep 2; ip link set eth2 up
 # Enabling 15 VFs on eth3 PF
 echo 15 > /sys/class/net/eth3/device/sriov_numvfs; sleep 2; ip link set eth3 up
 # Enabling 7 VFs on eth4 PF
 echo 7 > /sys/class/net/eth4/device/sriov_numvfs; sleep 2; ip link set eth4 up
 exit 0

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 103

6. Select from the following options:

• If you are performing the initial deployment your environment, proceed with the
further environment configurations.

• If you are making changes to an existing environment, re-run the salt configuration on
the Salt Master node:

salt "cmp*" state.sls linux,nova

Configure SR-IOV with OpenContrail
Since OpenContrail does not use Neutron SR-IOV agents, it does not require any special changes
on the Neutron side. Port configuration can be done through the Neutron APIs or the
OpenContrail UI.

Configure SR-IOV with OpenVSwitch
Neutron OVS requires enabling of the sriovnicswitch mechanism driver on the Neutron server
side and the neutron-sriov-nic-agent running on each compute node with this feature enabled.
To configure SR-IOV with OpenVSwitch:

1. Include the class to cluster.<NAME>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note
By default, the metadata model contains configuration for 1 NIC dedicated for
SR-IOV.

2. Include the class to cluster.<NAME>.openstack.control:

- system.neutron.control.openvswitch.sriov

3. If you need more than 1 NIC, extend the previous configuration by extra Neutron
cluster.<NAME>.openstack.compute.
Example

...
 neutron:
 compute:
 backend:
 sriov:
 sriov_nic01:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 104

 devname: eth1
 physical_network: physnet3
 sriov_nic02:
 devname: eth2
 physical_network: physnet4
 sriov_nic03:
 devname: eth3
 physical_network: physnet5
 sriov_nic04:
 devname: eth4
 physical_network: physnet6

Create instances with SR-IOV ports
To enable the SR-IOV support, you must create virtual instances with SR-IOV ports.
To create virtual instances with SR-IOV ports:

1. Create a network and a subnet with a segmentation ID. For example:

neutron net-create --provider:physical_network=physnet3 \
 --provider:segmentation_id=100 net04
neutron subnet-create net04 a.b.c.d/netmask

2. Request the ID of the Neutron network where you want the SR-IOV port to be created. For
example:

net_id=`neutron net-show net04 | grep "\ id\ " | awk '{ print $4 }'`

3. Create an SR-IOV port with one of the available VNIC driver types that are direct, normal,
direct-physical, and macvtap:

port_id=`neutron port-create $net_id --name sriov_port \
 --binding:vnic_type direct | grep "\ id\ " | awk '{ print $4 }'`

4. Create a virtual instance with the SR-IOV port created in step 3:

nova boot --flavor m1.large --image ubuntu_14.04 --nic port-id=$port_id test-sriov

Seealso

• Using SR-IOV functionality in the official OpenStack documentation

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 105

https://docs.openstack.org/mitaka/networking-guide/config-sriov.html

Seealso
Enable Multiqueue

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 106

Enable Huge Pages
Huge Pages is a technology that supports 2MB and 1GB size memory pages. Huge Pages
reduces time to access data stored in the memory by using bigger memory pages, which leads
to fewer page entries to look up by CPU when choosing a page associated with a current
process. Use of Huge Pages is beneficial in operations and processes that require large amount
of memory.

Warning
Verify that CPU supports HugePages before you proceed.

Enable the Huge Pages support
This section exaplains how to configure the support for the Huge Pages feature in your MCP
depoyment.
To enable Huge Pages:

1. Log in to the host machine.
2. To verify that CPU supports Huge Pages, analyze the system response of the following

command:

cat /proc/cpuinfo

In the system output, search for the parameters:

• PSE - support of 2MB hugepages
• PDPE1GB - support of 1GB hugepages

3. Include the class in cluster.<name>.openstack.compute:

- system.nova.compute.nfv.hugepages

4. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

compute_hugepages_size: 1G # or 2M
compute_hugepages_count: 40
compute_hugepages_mount: /mnt/hugepages_1G # or /mnt/hugepages_2M

5. Select from the following options:

• If you are performing the initial deployment your environment, proceed with the
further environment configurations.

• If you are making changes to an existing environment, re-run the salt configuration on
the Salt Master node:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 107

salt "cmp*" state.sls linux,nova

6. Reboot the affected servers.
7. If you need to set different values for each compute node, define them in

cluster.<name>.infra.config for each node.
Example:

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: xenial
 compute_hugepages_size: 1G # or 2M
 compute_hugepages_count: 40
 compute_hugepages_mount: /mnt/hugepages_1G # or /mnt/hugepages_2M

Seealso

• Boot a virtual machine with Huge Pages

Boot a virtual machine with Huge Pages
This section explains how to boot a VM with Huge Pages.
To boot a virtual machine with Huge Pages:

1. Create a new flavor or use an existing one to use with Huge Pages. To create a new image
flavor:

. openrc admin admin
nova flavor-create huge 999 1024 4 1

2. Add the size of huge pages to the image flavor:

nova flavor-key huge set hw:mem_page_size=2048

3. Verify the image flavor exists:

nova flavor-show huge

Example of system response

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 108

+----------------------------+------------------------------+
| Property | Value |
+----------------------------+------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	4
extra_specs	{"hw:mem_page_size": "2048"}
id	7
name	huge
os-flavor-access:is_public	True
ram	1024
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+------------------------------+

4. Create a new image or use an existing image. You need an Ubuntu image and the default
Cirros image.
To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

5. Boot a new instance using the created flavor:

nova boot --flavor huge --image ubuntu inst1

6. Verify that the new VM uses 512 huge pages:

grep Huge /proc/meminfo

Example of system response

AnonHugePages: 1138688 kB
HugePages_Total: 1024
HugePages_Free: 512
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 109

Configure NUMA and CPU pinning architecture
NUMA and CPU pinning is a shared memory architecture that describes the placement of main
memory modules on processors in a multiprocessor system. You can leverage NUMA when you
have data strongly associated with certain tasks or users. In such case, CPU can use its local
memory module to access data reducing access time.
NUMA usage is beneficial on particular workloads, for example, on configurations where data is
often associated with certain tasks or users.

Enable NUMA and CPU pinning
Before you proceed with enabling DPDK in your deployment, the NUMA and CPU pinning
enablement is required.
To enable NUMA and CPU pinning:

1. Verify your NUMA nodes on the host operating system:

lscpu | grep NUMA

Example of system response

NUMA node(s): 1
NUMA node0 CPU(s): 0-11

2. Include the class to cluster.<NAME>.openstack.compute:

- system.nova.compute.nfv.cpu_pinning

3. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

• compute_kernel_isolcpu
Set of host CPUs to be isolated from system. Kernel will not assign internal
processes on this set of CPUs. This parameter is configured in grub

• nova_cpu_pinning
Subset of CPUs isolated on previous step. This parameter is used by Nova to run
VMs only on isolated CPUs with dedicated pinning. Nova vCPU pinning set is
configured in the nova.conf file after system isolates appropriate CPUs

Example

nova_cpu_pinning: "1,2,3,4,5,7,8,9,10,11"
compute_kernel_isolcpu: ${_param:nova_cpu_pinning}

4. Select from the following options:

• If you are performing the initial deployment, proceed with the further environment
configurations.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 110

• If you are making changes to an existing environment, re-run the salt configuration on
the Salt Master node:

salt "cmp*" state.sls linux,nova

Note
To take effect, servers require a reboot.

5. If you need to set different values for each compute node, define them in
cluster.<name>.infra.config`.
Example

openstack_compute_node02:
 name: ${_param:openstack_compute_node02_hostname}
 domain: ${_param:cluster_domain}
 classes:
 - cluster.${_param:cluster_name}.openstack.compute
 params:
 salt_master_host: ${_param:reclass_config_master}
 linux_system_codename: xenial
 nova_cpu_pinning: "1,2,3,4,5,7,8,9,10,11"
 compute_kernel_isolcpu: "1,2,3,4,5,7,8,9,10,11"

Boot a VM with two NUMA nodes
This example demonstrates booting a VM with two NUMA nodes.
To boot VM with two NUMA nodes:

1. Create a new flavor or use an existing one to use with NUMA. To create a new flavor, run:

. openrc admin admin
nova flavor-create m1.numa 999 1024 5 4

2. Add numa_nodes to the flavor.

Note
vCPUs and RAM will be divided equally between the NUMA nodes.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 111

nova flavor-key m1.numa set hw:numa_nodes=2
nova flavor-show m1.numa

Example of system response:

+----------------------------+------------------------+
| Property | Value |
+----------------------------+------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	5
extra_specs	{"hw:numa_nodes": "2"}
id	999
name	m1.numa
os-flavor-access:is_public	True
ram	1024
rxtx_factor	1.0
swap	
vcpus	4
+----------------------------+------------------------+

3. Create a new image or use an existing image.

Note
You need an Ubuntu image and the default Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/\
 trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. To enable SSH connections:

1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair:

ssh-keygen

3. Add the key pair to Nova:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 112

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Verify free memory before you boot the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

6. Boot a new instance using the created flavor:

nova boot --flavor m1.numa --image ubuntu --key-name my_kp inst1

7. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 293 MB # was 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 81 MB # was 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

8. Retrieve the instance's IP:
nova show inst1 | awk '/network/ {print $5}'

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 113

Example of system response:

10.0.0.2

9. Connect to the VM using SSH:

ssh ubuntu@10.0.0.2

10
.
Install numactl:

sudo apt-get install numactl

11
.
Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 489 MB
node 0 free: 393 MB
node 1 cpus: 2 3
node 1 size: 503 MB
node 1 free: 323 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

Boot a VM with CPU and memory pinning
This example demonstrates booting VM with CPU and memory pinning.
To boot VM with CPU and memory pining:

1. Create a new flavor with specific division of vCPUs and RAM between the NUMA nodes:

. openrc admin admin
nova flavor-create m1.numa_2 9992 1024 5 4

2. Add numa_nodes and other specific options to the flavor:

nova flavor-key m1.numa_2 set hw:numa_nodes=2 hw:numa_cpus.0=0,2 \
 hw:numa_cpus.1=1,3 hw:numa_mem.0=324 hw:numa_mem.1=700
nova flavor-show m1.numa_2 | grep extra

Example of system response:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 114

| extra_specs | {"hw:numa_cpus.0": "0,2", "hw:numa_cpus.1": "1,3", \
"hw:numa_nodes": "2", "hw:numa_mem.1": "700", "hw:numa_mem.0": "324"} |

3. Create a new image or use an existing image.

Note
You need an Ubuntu image or the default Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
 --location https://cloud-images.ubuntu.com/trusty/current/\
 trusty-server-cloudimg-amd64-disk1.img \
 --disk-format qcow2 --container-format bare

4. To enable SSH connections:

1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair,
run:

ssh-keygen

3. Add the key pair to Nova:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Boot a new instance using the created flavor:

nova boot --flavor m1.numa_2 --image ubuntu --key-name my_kp inst2

6. Verify if free memory has been changed after booting the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 1
node 0 size: 3856 MB
node 0 free: 293 MB # was 718 MB

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 115

node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 81 MB # was 337 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

7. Retrieve the instance's IP:

nova show inst2 | awk '/network/ {print $5}'

Example of system response:

10.0.0.3

8. Connect to the VM using SSH:

ssh ubuntu@10.0.0.3

9. Install numactl:

sudo apt-get install numactl

10
.
Verify the NUMA topology on the VM:

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 2
node 0 size: 303 MB
node 0 free: 92 MB
node 1 cpus: 1 3
node 1 size: 689 MB
node 1 free: 629 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

You can see that the NUMA topology has two NUMA nodes. Total RAM size is about 1GB:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 116

• node-0 CPUs are 0 and 2
• node-1 CPUs are 1 and 3, node-1 RAM is about 324 MB
• node-2 RAM is about 700 as specified in the m1.numa_2 flavor

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 117

Enable Multiqueue
The MCP Multiqueue enables the scaling of packet sending/receiving processing to the number
of available vCPUs of a guest by using multiple queues. The feature includes:

• Multiqueue for DPDK-based vrouters
Is supported by OpenVSwitch only. Underlay configuration for OVS is a part of DPDK
interfaces and is defined by the n_rxq parameter. For example:

...
- system.neutron.compute.nfv.dpdk
...
parameters:
 linux:
 network:
 interfaces:
 ...
 # other interface setup
 …
 dpdk0:
 name: ${_param:dpdk0_name}
 pci: ${_param:dpdk0_pci}
 driver: igb_uio
 bond: dpdkbond1
 enabled: true
 type: dpdk_ovs_port
 n_rxq: 2
 dpdk1:
 name: ${_param:dpdk1_name}
 pci: ${_param:dpdk1_pci}
 driver: igb_uio
 bond: dpdkbond1
 enabled: true
 type: dpdk_ovs_port
 n_rxq: 2

• Multiqueue Virtio
Is supported by OpenContrail and OVS

Provision a VM with Multiqueue
To provision a VM with Multiqueue:

1. Set the image metadata property with the Multiqueue enabled:

nova image-meta <IMAGE_NAME> set hw_vif_multiqueue_enabled="true"

2. After the VM is spawned, use the following command on the virtio interface in the guest to
enable multiple queues inside the VM:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 118

ethtool –L <INTERFACE_NAME> combined <#queues>

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 119

Install Decapod
Decapod is a tool that simplifies the deployment and lifecycle management of Ceph clusters.
This section guides you through the process of installation and configuration of Decapod.

Prerequisites
You can build Decapod on any commodity node that has Linux or OS X. However, prior to
installing Decapod, verify that your software configurations meet the following requirements:

1. Install git and make.
2. Install Docker Engine as described in Install Docker Engine. Pay attention to the DNS

configuration.
3. Install Docker Compose version 1.6 or later as described in Install Docker Compose.
4. Verify that your machine has access to the external network.

Install Decapod
The installation procedure contains the following steps:

1. Building the Decapod images.
2. Moving the Docker images to the target node.
3. Configuring Docker Compose.
4. Running the Docker containers.
5. Running migrations. If you run Decapod for the first time or upgrade from a previous

version, apply migrations. This operation is idempotent and you may execute it safely at
any time. Decapod does not reapply already applied migrations. On the first boot,
migrations are required to obtain the root user. Otherwise, Decapod starts with an empty
database and, therefore, without the capability to perform any operations.

Before you install Decapod, verify that you have completed the tasks described in Prerequisites.
To install Decapod:

1. Clone the source code repository:

$ git clone --recurse-submodules \
 https://github.com/Mirantis/ceph-lcm.git decapod
$ cd decapod

2. In the repository, check the available versions using Git tag. To select a specific version:

git checkout {tag} && git submodule update --init --recursive

3. Build the Decapod images.

1. Copy the repository files to the top level directory:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 120

https://docs.docker.com/engine/installation
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/configure-a-dns-server-for-use-by-docker
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/configure-a-dns-server-for-use-by-docker
https://docs.docker.com/compose/install

make copy_example_keys

Note
The copy_example_keys target allows the build process to override the default
Ubuntu and Debian repositories.

2. Build the images:

$ make build_containers

Important

If you have no access to the private repository to fetch base images, use the
community repository:

$ make docker_registry_use_dockerhub

To switch back:

$ make docker_registry_use_internal_ci

4. Move the Docker images to the target node.

Note
In this release, only one machine with Docker and Docker compose is supported.
There may be one build machine and another production one. If you have such a
diversity, use the Docker registry to manage Decapod images or dump/load them
manually.

Use the following commands to dump Docker images, copy to a remote host, and load
them:

$ make dump_images
$ rsync -a output/images/ <remote_machine>:images/
$ scp docker-compose.yml <remote_machine>:docker-compose.yml
$ ssh <remote_machine>

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 121

$ cd images
$ for i in $(\ls -1 *.bz2); do docker load -i "$i"; done;
$ cd ..
$ docker-compose up

5. Configure Docker Compose as described in Configure Docker Compose and Configuration
files subsection in the Manage Ceph clusters using Decapod section of MCP Operations
Guide.

6. Run Docker Compose:

$ docker-compose up

To daemonize the process:

$ docker-compose up -d

To stop the detached process:

$ docker-compose down

For details, see Overview of the Docker Compose CLI.
7. If you run Decapod for the first time or upgrade from a previous version, run migrations.

Example:

$ docker-compose exec admin decapod-admin migration apply
2017-02-06 11:11:48 [DEBUG] (lock.py:118): Lock applying_migrations was acquire by locker 76eef103-0878-42c2-9727-b9e83e52db47
2017-02-06 11:11:48 [DEBUG] (lock.py:183): Prolong thread for locker applying_migrations of lock 76eef103-0878-42c2-9727-b9e83e52db47 has been started. Thread MongoLock prolonger 76eef103-0878-42c2-9727-b9e83e52db47 for applying_migrations, ident 140167584413440
2017-02-06 11:11:48 [INFO] (migration.py:123): Run migration 0000_index_models.py
2017-02-06 11:11:48 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0000_index_models.py. Pid 49
2017-02-06 11:11:53 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:11:56 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0000_index_models.py has been finished. Exit code 0
2017-02-06 11:11:56 [INFO] (migration.py:277): Save result of 0000_index_models.py migration (result MigrationState.ok)
2017-02-06 11:11:56 [INFO] (migration.py:123): Run migration 0001_insert_default_role.py
2017-02-06 11:11:56 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0001_insert_default_role.py. Pid 56
2017-02-06 11:11:58 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0001_insert_default_role.py has been finished. Exit code 0
2017-02-06 11:11:58 [INFO] (migration.py:277): Save result of 0001_insert_default_role.py migration (result MigrationState.ok)
2017-02-06 11:11:58 [INFO] (migration.py:123): Run migration 0002_insert_default_user.py
2017-02-06 11:11:58 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0002_insert_default_user.py. Pid 64
2017-02-06 11:11:58 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:11:59 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0002_insert_default_user.py has been finished. Exit code 0
2017-02-06 11:11:59 [INFO] (migration.py:277): Save result of 0002_insert_default_user.py migration (result MigrationState.ok)
2017-02-06 11:11:59 [INFO] (migration.py:123): Run migration 0003_native_ttl_index.py
2017-02-06 11:11:59 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py. Pid 192
2017-02-06 11:12:00 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py has been finished. Exit code 0

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 122

https://docs.docker.com/compose/reference/overview/

2017-02-06 11:12:00 [INFO] (migration.py:277): Save result of 0003_native_ttl_index.py migration (result MigrationState.ok)
2017-02-06 11:12:00 [INFO] (migration.py:123): Run migration 0004_migrate_to_native_ttls.py
2017-02-06 11:12:00 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py. Pid 200
2017-02-06 11:12:02 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py has been finished. Exit code 0
2017-02-06 11:12:02 [INFO] (migration.py:277): Save result of 0004_migrate_to_native_ttls.py migration (result MigrationState.ok)
2017-02-06 11:12:02 [INFO] (migration.py:123): Run migration 0005_index_cluster_data.py
2017-02-06 11:12:02 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py. Pid 208
2017-02-06 11:12:03 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py has been finished. Exit code 0
2017-02-06 11:12:03 [INFO] (migration.py:277): Save result of 0005_index_cluster_data.py migration (result MigrationState.ok)
2017-02-06 11:12:03 [INFO] (migration.py:123): Run migration 0006_create_cluster_data.py
2017-02-06 11:12:03 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py. Pid 216
2017-02-06 11:12:03 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:12:04 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py has been finished. Exit code 0
2017-02-06 11:12:04 [INFO] (migration.py:277): Save result of 0006_create_cluster_data.py migration (result MigrationState.ok)
2017-02-06 11:12:04 [INFO] (migration.py:123): Run migration 0007_add_external_id_to_user.py
2017-02-06 11:12:04 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py. Pid 224
2017-02-06 11:12:06 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py has been finished. Exit code 0
2017-02-06 11:12:06 [INFO] (migration.py:277): Save result of 0007_add_external_id_to_user.py migration (result MigrationState.ok)
2017-02-06 11:12:06 [DEBUG] (lock.py:202): Prolong thread for locker applying_migrations of lock 76eef103-0878-42c2-9727-b9e83e52db47 has been stopped. Thread MongoLock prolonger 76eef103-0878-42c2-9727-b9e83e52db47 for applying_migrations, ident 140167584413440
2017-02-06 11:12:06 [DEBUG] (lock.py:124): Try to release lock applying_migrations by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:12:06 [DEBUG] (lock.py:140): Lock applying_migrations was released by locker 76eef103-0878-42c2-9727-b9e83e52db47.

For a list of applied migrations, use the list all option.
Example:

$ docker-compose exec admin decapod-admin migration list all
[applied] 0000_index_models.py
[applied] 0001_insert_default_role.py
[applied] 0002_insert_default_user.py
[applied] 0003_native_ttl_index.py
[applied] 0004_migrate_to_native_ttls.py
[applied] 0005_index_cluster_data.py
[applied] 0006_create_cluster_data.py
[applied] 0007_add_external_id_to_user.py

For details on a certain migration, use the show option.
Example:

$ docker-compose exec admin decapod-admin migration show 0006_create_cluster_data.py
Name: 0006_create_cluster_data.py
Result: ok
Executed at: Mon Feb 6 11:12:04 2017
SHA1 of script: 73eb7adeb1b4d82dd8f9bdb5aadddccbcef4a8b3

-- Stdout:
Migrate 0 clusters.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 123

-- Stderr:

8. Reset the root user password.

1. Obtain the user ID:

$ docker-compose exec admin decapod user get-all

Example:

$ docker-compose exec admin decapod user get-all
[
 {
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "4ca555d3-24fd-4554-9b4b-ca44bac45062"
 },
 "id": "e6f28a01-ee7f-4ac8-b1ee-a1a21c3eb182",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1488279856,
 "version": 1
 }
]

2. Change the password:

$ decapod-admin password-reset USER_ID

Configure Docker Compose
To configure Docker Compose, modify the docker-compose.override.yml file or set the
environment variables. Use the official Docker documentation and the information below.
The Decapod Docker Compose configuration supports a number of environment variables. For a
list of variables, see the .env file at the top level of the repository. The defaults are applicable for
a development environment built on a local machine and have to be modified to run in
production:

Envi
ron
men
t var
iable

Defa
ult v
alue

Description

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 124

https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/env-file/

DECA
POD_
HTTP
_POR
T

9999 The port to bind the HTTP endpoint of Decapod.

DECA
POD_
HTTP
S_PO
RT

1000
0

The port to bind the HTTPS endpoint of Decapod.

DECA
POD_
REGI
STRY
_URL

By default, Decapod tries to access local images. To take images from a
private registry, point it here.

DECA
POD_
NAM
ESPA
CE

In private registries, Decapod images are not always created without a prefix,
sometimes the organization name, like mirantis, is present. The variable sets
this prefix.

DECA
POD_
VERS
ION

latest The Decapod version to use. This is the image tag that is set in the registry.
The latest tag means developer version.

DECA
POD_
SSH_
PRIV
ATE_
KEY

$(pw
d)/co
ntain
erizat
ion/fil
es/de
vconf
igs/a
nsibl
e_ssh
_keyf
ile.pe
m

A full path to the SSH private key that Ansible uses to access Ceph nodes.

Default configuration example:

networks: {}
services:
 api:
 image: decapod/api:latest
 links:
 - database

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 125

 restart: on-failure:5
 controller:
 image: decapod/controller:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: decapod/cron:latest
 links:
 - database
 restart: on-failure:3
 database:
 image: decapod/db:latest
 restart: always
 volumes_from:
 - service:database_data:rw
 database_data:
 image: decapod/db-data:latest
 volumes:
 - /data/db:rw
 frontend:
 image: decapod/frontend:latest
 links:
 - api
 - cron
 ports:
 - 10000:443
 - 9999:80
 restart: always
version: '2.0'
volumes: {}

For example, to set docker-prod-virtual.docker.mirantis.net as a registry and mirantis/ceph as a
namespace and run version 0.2, execute docker compose with the following environment
variables:

$ DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/ \
DECAPOD_NAMESPACE=mirantis/ceph/ DECAPOD_VERSION=0.2 docker-compose config
networks: {}
services:
 api:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/api:0.2
 links:
 - database
 restart: on-failure:5
 controller:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 126

 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/controller:0.2
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/cron:0.2
 links:
 - database
 restart: on-failure:3
 database:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db:0.2
 restart: always
 volumes_from:
 - service:database_data:rw
 database_data:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db-data:0.2
 volumes:
 - /data/db:rw
 frontend:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/frontend:0.2
 links:
 - api
 - cron
 ports:
 - 10000:443
 - 9999:80
 restart: always
version: '2.0'
volumes: {}

Important

The trailing slash in DECAPOD_REGISTRY_URL and DECAPOD_NAMESPACE is required due
to the limitations of the Docker Compose configuration file.

Note
Docker Compose supports reading the environment variables from the .env file, which
should be placed in the same directory as the docker-compose.yml file. For more
information, see the Docker documentation.

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 127

https://docs.docker.com/compose/environment-variables/#/the-env-file

Example:
Configuration:

• The default Mirantis registry for Decapod and the latest version of Decapod
• The private SSH key for Ansible is placed in /keys/ansible_ssh_keyfile.pem
• The Decapod HTTP port is 80 and the HTTP port is 443

The .env file should look as follows:

DECAPOD_NAMESPACE=mirantis/ceph/
DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/
DECAPOD_VERSION=latest
DOCKER_HTTP_PORT=80
DOCKER_HTTPS_PORT=443
DOCKER_SSH_PRIVATE_KEY=/keys/ansible_ssh_keyfile.pem

Alternatively, set the environment variables explicitly:

$ export DECAPOD_NAMESPACE=mirantis/ceph/
$ export DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/
$ export DECAPOD_VERSION=latest
$ export DOCKER_HTTP_PORT=80
$ export DOCKER_HTTPS_PORT=443
$ export DOCKER_SSH_PRIVATE_KEY=/keys/ansible_ssh_keyfile.pem
$ docker-compose config
networks: {}
services:
 api:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/api:latest
 links:
 - database
 restart: on-failure:5
 controller:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/controller:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /keys/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/cron:latest
 links:
 - database
 restart: on-failure:3
 database:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db:latest
 restart: always
 volumes_from:

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 128

 - service:database_data:rw
 database_data:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db-data:latest
 volumes:
 - /data/db:rw
 frontend:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/frontend:latest
 links:
 - api
 - cron
 ports:
 - 443:443
 - 80:80
 restart: always
version: '2.0'
volumes: {}

Seealso
Configuration files in the Manage Ceph clusters using Decapod section of MCP Operations
Guide

Mirantis Cloud Platform Deployment Guide 1.0

©2017, Mirantis Inc. Page 129

	Copyright notice
	Preface
	Intended audience
	Documentation history

	Introduction to the MCP deployment
	Plan your deployment
	Create a project repository manually
	Create a deployment metadata model
	Define the deployment model
	General deployment parameters
	Infrastructure related parameters
	Product related parameters
	Publish the deployment model to a project repository

	Install a base infrastructure
	Get the virtual machines images
	Prepare the image for the Foundation node
	Install the Salt Master node
	Prepare the Foundation node
	Install the Salt Master node
	Using libvirt CLI
	Using Virtual Machine Manager UI

	Bootstrap the Salt Master node
	Configure the Salt Master node
	Use the Virtual Machine Manager CLI
	Use the Virtual Machine Manager UI
	Apply the base states
	Add minions manually

	Verify the Salt infrastructure
	Verify the Reclass model on the Salt Master node
	Verify the model on a Minion

	Set up a bare-metal provisioner
	Create the MAAS virtual server
	Configure the MAAS service

	Deploy physical nodes using MAAS
	Automatically commission and deploy the physical nodes
	Automatically commission the physical nodes
	Deploy the automatically commissioned physical nodes

	Manually commission and deploy the physical nodes
	Manually discover and commission the physical nodes
	Manually deploy the physical nodes

	Deploy VCP
	Prepare KVM nodes to run OpenStack controller nodes
	Verify the salt-common and salt-minion versions
	Install the correct versions of salt-common and salt-minion
	Create and provision VMs on the first KVM node
	Provision VMs on the second KVM node
	Provision VMs on the third KVM node

	Deploy DriveTrain
	MCP CI/CD components
	Set up physical servers for a CI/CD deployment
	Deploy CI/CD
	Deploy CI/CD using Heat templates
	Remove CI/CD installed using Heat templates

	Deploy an MCP cluster using DriveTrain
	Deploy an OpenStack environment
	Deploy a multi-site OpenStack environment
	View the deployment details

	Deploy an MCP cluster manually
	Deploy an OpenStack environment manually
	Deploy the DevOps portal
	Deploy the DevOps portal manually
	Build a custom image of the DevOps portal

	Install support services
	Deploy Keepalived
	Deploy NTP
	Deploy GlusterFS
	Deploy RabbitMQ
	Deploy Galera
	Deploy HAProxy
	Deploy Memcached

	Install OpenStack services
	Deploy Keystone
	Deploy Glance
	Deploy Nova
	Deploy Neutron
	Deploy Horizon
	Deploy Tenant Telemetry
	Deploy proxy nodes

	Install OpenContrail
	Install OpenContrail
	Configure OpenContrail

	Deploy compute nodes
	Provision a compute node
	Deploy vRouter on compute nodes
	Deploy a compute node

	Install StackLight
	Prerequisites
	Install StackLight back ends
	Install InfluxDB and Grafana
	Hardware requirements
	Limitations
	Configure InfluxDB and Grafana
	Deploy InfluxDB and Grafana
	Verify InfluxDB and Grafana after deployment

	Install Elasticsearch and Kibana
	Hardware requirements
	Limitations
	Configure Elasticsearch and Kibana
	Deploy Elasticsearch and Kibana
	Verify Elasticsearch and Kibana after deployment

	Install Sensu
	Hardware requirements
	Configure Sensu
	Deploy Sensu
	Verify Sensu and Uchiwa

	Install StackLight operational insights pipeline
	Install SOIP
	Verify SOIP

	Install Horizon plugins

	Troubleshoot
	Troubleshooting the server provisioning
	Virtual machine node stops responding

	Troubleshoot OpenContrail
	Troubleshoot Cassandra
	Troubleshoot the database connectivity

	Deploy a Kubernetes cluster manually
	Prerequisites
	Salt formulas used in the Kubernetes cluster deployment
	Generate a Kubernetes cluster metadata model
	Define interfaces
	Deploy a Kubernetes cluster

	Enable NFV features
	Enable DPDK
	Enable OVS DPDK
	Limitations
	Prepare your environment for OVS DPDK
	Enable OVS DPDK support

	Enable OpenContrail DPDK

	Enable SR-IOV
	Prerequisites
	Enable generic SR-IOV configuration
	Configure SR-IOV with OpenContrail
	Configure SR-IOV with OpenVSwitch
	Create instances with SR-IOV ports

	Enable Huge Pages
	Enable the Huge Pages support
	Boot a virtual machine with Huge Pages

	Configure NUMA and CPU pinning architecture
	Enable NUMA and CPU pinning
	Boot a VM with two NUMA nodes
	Boot a VM with CPU and memory pinning

	Enable Multiqueue
	Provision a VM with Multiqueue

	Install Decapod
	Prerequisites
	Install Decapod
	Configure Docker Compose

