
MCP Operations Guide
version 1.0

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 2

Preface
This documentation provides information on how to use Mirantis products to deploy cloud
environments. The information is for reference purposes and is subject to change.

Intended audience
This documentation is intended for deployment engineers, system administrators and
developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history
The following table lists the released revisions of this documentation:

Revision date Description
March 30, 2017 1.0 GA

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 3

Introduction
This book provides information about designing and operating MCP clouds.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 4

Definitions
MCP is a deployment and lifecycle management (LCM) tool that enables DevOps engineers to
deploy Mirantis OpenStack and then update software and configuration through continuous
integration and continuous delivery.
SaltStack is an orchestration and configuration platform that implements the model-driven
architecture (MDA) that you can use to turn services configuration described using Reclass
models and Salt Formulas into actual services running on nodes.
Reclass (recursive external node classifier) is a cluster level representation of the configuration
metadata model.

Seealso
SaltStack Components

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 5

https://docs.saltstack.com/en/getstarted/overview.html

Provision hardware
MCP installations can use the Ubuntu’s Metal-as-a-Service (MAAS) or Ironic service to handle
physical node lifecycle management. The guide describes only MAAS as a bare metal
provisioning service.
As such, MAAS requires an IPMI user to manage power state. This should be configured as part
of the installation process.
MaaS provides DHCP to the network(s) on which compute nodes reside. Compute nodes then
perform PXE boot from the network and you can configure MaaS how to provision those PXE
booted nodes.

Reinstall MAAS
If your MAAS instance is lost or broken, you can reinstall it. This section describes how to install
MAAS from the Ubuntu Server 16.04 ISO image.
To reinstall MAAS:

1. Download a Ubuntu Server 16.04 LTS ISO image.
2. Create a VM with virt-install to boot from the Ubuntu ISO image. For example:

virt-install -n maas-vm -r 2048 --os-type=linux \
 --disk /path/to/images/maas.img,device=disk,bus=virtio,\
 size=40,sparse=true,format=raw -w bridge=br0,model=virtio \
 --vnc --noautoconsole \
 -c /path/to/iso/ubuntu-16.04.2-server-amd64.iso

3. Install MAAS using one of the options:

• Select the Install MAAS Region Controller option in the boot menu that will install an
entire MaaS environment.

• Select Install Ubuntu Server to install the Ubuntu 16.04 server first, then install MAAS
from packages:

sudo apt install maas

4. Configure MAAS as required to complete the installation.
5. Verify the installation by opening the MAAS web UI:

http://<MAAS-IP-ADDRESS>:5240/MAAS

6. If you have installed MAAS from the packages, create an initial (administrative) user first to
log in to the MAAS web UI:

sudo maas createadmin --username=<PROFILE> --email=<EMAIL_ADDRESS>

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 6

http://www.ubuntu.com/download/server?_ga=1.164668089.700444879.1421082326

Seealso
MAAS installation

Add an SSH key
To simplify access to provisioned nodes, add an SSH key that MAAS will deliver when
provisioning these nodes.
To add an SSH key:

1. In the MAAS web UI, open the user page by clicking on your user name at the top-right
conner.

2. Find the SSH keys section.
3. From the Source drop-down menu, specify the source of an SSH key using one of the

options:

• Launchpad, specifying your Launchpad ID
• Github, specifying your Github ID
• Upload, placing an existing public key to the Public key edit box

4. Click Import.

Seealso
MAAS Configuration

Add a boot image
You can select images with appropriate CPU architectures that MAAS will import, regularly sync,
and deploy to the managed nodes.
To add a new boot image:

1. In the MAAS web UI, open the Images page.
2. Select the releases you want to make available, as well as any architecture.
3. Click Save selection.

Seealso
MAAS Configuration

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 7

http://maas.io/docs/en/installconfig-install
https://docs.ubuntu.com/maas/2.1/en/installconfig-webui-conf-journey
https://docs.ubuntu.com/maas/2.1/en/installconfig-webui-conf-journey

Add a subnet
You can add new networking elements in MAAS such as fabrics, VLANs, subnets, and spaces.
MAAS should detect new network elements automatically. Otherwise, you can add them
manually.
To add a new subnet:

1. In the MAAS web UI, open the Subnets page.
2. Select Subnet in the Add drop-down menu at the top-right corner.
3. Specify Name, CIDR, Gateway IP, DNS servers, Fabric & VLAN, and Space.
4. Click Add subnet.

Seealso
MAAS Networking

Enable DHCP on a VLAN
Before enabling DHCP, ensure that you have the MAAS node network interface properly
configured to listen to VLAN.
You can use external DHCP or enable MAAS-managed DHCP. Using an external DHCP server for
enlistment and commissioning may work but is not supported. High availability also depends
upon MAAS-managed DHCP.
To enable MAAS-managed DHCP on a VLAN:

1. In the MAAS web UI, open the Subnets page.
2. Click on the VLAN you want to enable DHCP on.
3. In the VLAN configuration panel, you find DHCP Disabled.
4. From the Take action drop-down menu at the top-right corner, select the Provide dhcp item.
5. In the Provide DHCP panel, verify or change the settings for Rack controller, Subnet,

Dynamic range start IP, Dynamic range end IP.
6. Click Provide dhcp.
7. In the VLAN configuration panel, verify that DHCP is enabled.

Seealso

• Network interface configuration
• DHCP in MAAS

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 8

https://docs.ubuntu.com/maas/2.1/en/installconfig-networking
https://help.ubuntu.com/community/NetworkConfigurationCommandLine/Automatic
https://docs.ubuntu.com/maas/2.1/en/installconfig-network-dhcp

Enable device discovery
MAAS provides passive and active methods of device discovery.
Passive methods include:

• Listening to ARP requests
• DNS advertisements

To enable passive device discovery:

1. In the MAAS web UI, open the MAAS dashboard.
2. On the MAAS dashboard, turn on the Discovery enabled switch.
3. Verify if you can see the discovered devices on the MAAS dashboard.

Active methods include active subnet mapping that forces MAAS to discover nodes on all the
subnets with enabled active mapping using an active subnet mapping interval value.
To enable active subnet mapping:

1. In the MAAS web UI, open the Settings page.
2. Go to the Device Discovery section.
3. From the drop-down menu, select the value for Active subnet mapping interval.
4. Open the Subnets page.
5. Click the subnet you want to enable active mapping on.
6. In the Subnet summary section, turn on the Active mapping switch.

Seealso
Device discovery

Add a new node
Using MAAS, you can add new nodes in an unattended way called enlistment or manually, when
enlistment does not work.
MAAS enlistment uses a combination of DHCP with TFTP and PXE technologies.

Note
To boot a node over PXE, enable netboot or network boot in BIOS.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 9

https://docs.ubuntu.com/maas/2.1/en/installconfig-network-dev-discovery

Note
For KVM virtual machines, specify the boot device as network in the VM configuration file
and add the node manually. You need to configure the Virsh power type and provide
access to the KVM host as described in BMC Power Types.

To add a new node manually:

1. In the MAAS web UI, open the Nodes page.
2. Click the Add hardware drop-down menu at the top-right corner and select Add machine.
3. Set Machine name, Domain, Architecture, Minimum Kernel, Zone, MAC Address, Power type.

Note
See Configure power management for more details on power types.

4. Click Save machine.
MAAS will add the new machine to the list of nodes with the status Comissioning.

Seealso

• Add nodes
• BMC Power Types

Configure power management
MAAS supports many types of power control, from standard IPMI to non-standard types such as
virsh, VMWare, Nova, or even completely manual ones that require operator intervention. While
most servers may use their own custom vendor management, for example, iLO or DRAC,
standard IPMI controls are also supported, and you can use IPMI as shown in the following
example.
To configure IPMI node power management type:

1. In the MAAS web UI, open the Nodes page.
2. In the list of nodes, select the one you want to configure.
3. In the machine configuration window, go to the Power section and click the Edit button at

the top-right conner.
4. Select IPMI for Power type from the drop-down menu.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 10

https://docs.ubuntu.com/maas/2.1/en/installconfig-power-types#example:-virsh-(kvm)-power-type
https://docs.ubuntu.com/maas/2.1/en/installconfig-add-nodes
https://docs.ubuntu.com/maas/2.1/en/installconfig-power-types#example:-virsh-(kvm)-power-type

5. Specify parameters for the IPMI power type: Power driver, IP address, Power user, Power
password, and Power MAC.

6. Click Save changes.
After saving the changes, MAAS will verify that it can manage the node through IPMI.

Seealso
BMC Power Types

Commission a new node
When you add a new node, MAAS automatically starts commissioning the node once
configuration is done. Also, you can commission a node manually.
To commision a new node manually:

1. In the MAAS web UI, open the Nodes page.
2. In the list of nodes, click the node you want to configure.
3. In the node configuration window, click Take action at the top-right conner and select

Commission.
4. Select additional options by setting the appropriate check boxes to allow SSH access and

prevent machine from powering off, retain network and storage configuration if you want to
preserve data on the node. For example, if a node comes from an existing cloud with an
instance on it.

5. Click Go to start commissioning.
6. Verify that the node status has changed to Ready and hardware summary in the node

configuration window has been filled with values other than zeros, which means
commisionining was successful.

Note
Use MAAS CLI to commission a group of machines.

Seealso

• MAAS CLI
• Commission nodes
• Add a new node

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 11

https://docs.ubuntu.com/maas/2.1/en/installconfig-power-types
https://docs.ubuntu.com/maas/2.1/en/manage-cli-common#commission-all-machines
https://docs.ubuntu.com/maas/2.1/en/installconfig-commission-nodes

Deploy a node
Once a node has been commissioned, you can deploy it.
The deployment operation includes installing an operating system and copying the SSH keys
imported to MAAS. As a result, you can access the deployed node through SSH using the default
user account ubuntu.
To deploy a node:

1. In the MAAS web UI, open the Nodes page.
2. In the list of nodes, verify that the commisioned node is in the Ready state.
3. Click on the node to open the configuration window.
4. In the node configuration window, click the Take action button at the top-right conner and

select the Deploy item.
5. Specify the OS, release, and kernel options.
6. Click Go to start the deployment.

Once the deployment is finished, MAAS will change the node status to Deployed.

Seealso

• Deploy nodes
• Add an SSH key

Redeploy a node
To redeploy a node:

1. In the MAAS web UI, open the Nodes page.
2. In the list of nodes, select the node you want to redeploy.
3. In the node configuration window, click Take action at the top-right coner and select

Release.
4. Verify that the node status has changed to Ready.
5. Redeploy the node as described in Deploy a node.

Delete a node

Warning
Deleting a node in MAAS is a permanent operation. The node will be powered down, and
removed from the MAAS database. All existing configuration done on the node such as

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 12

https://docs.ubuntu.com/maas/2.1/en/installconfig-deploy-nodes

name, hardware specs, and power control type will be permanently lost. The node can be
readded again, however, it will be unrecognized by MAAS. In such case, you will need to
add the node as a new one and reconfigure from scratch.

To delete a node:

1. In the MAAS web UI, open the Nodes page.
2. In the list of nodes, select the node you want to delete.
3. In the node configuration window, click the Take action button at the top-right coner and

select Delete.
4. Click Go to confirm the deletion.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 13

SaltStack operations
SaltStack is an orchestration and configuration platform that implements the model-driven
architecture (MDA) that you can use to turn services configuration described using Reclass
models and Salt Formulas into actual services running on nodes.

Salt Minion operations
Run a command on a node
The Salt integrated cmd.run function is highly flexible and enables the operator to pass nearly
any bash command to a node or group of nodes and functions as a simple batch processing tool.
To run a command on a node, execute:

salt '[node]' cmd.run '[cmd]'

List services on a node
The Salt integrated service.get_all function shows available services on the node.
To list services on a node, run:

salt '<NODE_NAME>' service.get_all

Restart a service on a node
You can use the Salt integrated service.restart function to restart services.
To restart a service on a node, run:

salt '<NODE_NAME>' service.restart <SERVICE_NAME>

Note
If you do not know the name of the service or unsure which services are available, see the
List services on a node section.

Verify Minions have joined the Master
If you are not sure whether or not a Minion has been joined the Master, verify the output of
salt-key. The output of the command lists all known keys in the following states:

• Accepted
Nodes in this state have successfully joined the Salt Master

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 14

• Denied
Nodes in this state have not successfully joined because of a bad, duplicate, or rejected
key. Nodes in this state require additional user action to join the Master.

• Rejected
Nodes in this state have been explicitly rejected by an administrator.

To verify Minions have joined the Master, run:

salt-key

Example of a system response:

Accepted Keys:
<NODE_NAME>.domain.local
… [snip] ...
Execute salt-key:
Denied Keys:
Unaccepted Keys:
Rejected Keys:

Ping a Minion from the Master
You can ping all properly running Salt Minion nodes from the Salt Master. To verify that you have
network availability between Salt Minion nodes and the Salt Master node, use the test.ping
command.
To ping a Minion from the Master:

salt '<NODE_NAME>.domain.local' test.ping

Example of a system response:

<NODE_NAME>
 True

Salt States operations
Salt State is a declarative or imperative representation of a system state.

List available States of a Minion
A Salt Minion node can have different States.
To list available States of a Minion, execute on a node:

salt-call state.show_top

Example of a system response:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 15

local:

 base:
 - linux
 - ntp
 - salt
 - collectd
 - sensu
 - heka
 - openssh
 - nova
 - opencontrail
 - ceilometer

Apply a State to a Minion
You can apply changes to a Minion's State from the Salt Master.
To apply a State to a Minion, run:

salt '<NODE_NAME>' state.sls <STATE_NAME>

Salt Formula operations
Salt Formula is a declarative or imperative representation of a system configuration.

Verify and validate a Salt Formula
You can verify and validate a new Salt Formula before applying it by running a quick test for
invalid Jinja, YAML, and a Salt state.
To verify a SLS file in a Salt Formula, run:

salt '*' state.show_sls <SLS_FILE_NAME>

To validate the Salt Formula, run in the test-only (dry-run) mode using the test option:

salt '*' state.apply test

Seealso
Salt Command Line Reference

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 16

https://docs.saltstack.com/en/latest/ref/cli/salt.html#options

Apply a Salt Formula
This section covers how you can test and apply a Salt Formula.
To apply all configured states (highstate) from a Salt Formula to all Minions, run on the Salt
Master:

salt '*' state.apply

Note
This command is equal to:

salt '*' state.highstate

To apply individual SLS files in a Salt Formula, run:

salt '*' state.apply <SLS_FILE_1>,<SLS_FILE_2>

Warning
Applying Salt Formulas on more than 100 nodes may result in numerous failures.

Note
SaltStack runs new states in parallel leading to temporary out of service that may affect
end users. To avoid taking down services on all the nodes at the same time, you can
stagger highstates in a batch mode.

To apply a Salt Formula on a big number of nodes, for example, more than 100 nodes, follow
one of the approaches below.

• Use the --batch-size or -b flags to specify the number of nodes to have Salt apply a state in
parallel:

salt --batch-size <NUMBER_OF_NODES> '*' state.apply

• Specify a percentage of nodes to apply a highstate on:
salt -b <PERCENTAGE> '*' state.apply

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 17

• Use node name conventions in the form of <GROUP>.<NODE_TYPE_NAME><NUM> to run
a highstate by a pattern. For example: group1.cmp001:

salt 'group1.cmp*' state.highstate

• Use Node Groups that you can define in the Salt Master configuration file /etc/salt/master.
To run a highstate on nodes within a Node Group, run:

salt -N <GROUP_NODE> state.apply

• Use Grains for grouping nodes specifying a grain variable in the /etc/salt/grains
configuration file and then specify the grain value in the Salt command to apply a highstate
for the nodes that have this grain value assigned:

salt -G <GRAIN_NAME>:<GRAIN_VALUE> state.apply

Note
You can use --batch-size flag together with Node Groups and Grains. For example:

salt --batch-size 10% -N computes1 state.apply
salt -b 5 -N compute:compute1 state.apply

Seealso

• Salt Node Groups
• Salt Grains
• Salt Command Line Reference

Seealso
SaltStack components

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 18

https://docs.saltstack.com/en/latest/topics/targeting/nodegroups.html
https://docs.saltstack.com/en/latest/topics/grains/index.html
https://docs.saltstack.com/en/latest/ref/cli/salt.html#options
https://docs.saltstack.com/en/getstarted/overview.html

OpenStack operations
This section describes reprovisioning of OpenStack Controllers and Compute nodes.

Reprovision a controller node
If you have lost a controller node and recovery is not possible, you can recreate a controller
node from scratch.
To reprovision a controller node:

1. Verify MAAS works properly and provides the DHCP service to assign IP addresses and
bootstrap instances.

2. Run the salt.control state on a KVM node:

salt-call state.sls salt.control

Salt virt takes the name of a virtual machine and registers the virtual machine into the Salt
Master node.
Once created, the instance picks up an IP address from the MAAS DHCP service and the key
will be seen as accepted in the Salt Master node.

3. Run the Salt highstate:

salt '<CONTROLLER_NAME>' state.highstate -l info

Reprovision a compute node
Provisioning compute nodes is relatively straightforward in that you can run all states at once.
Though, you need to run and reboot it multiple times for network configuration changes to take
effect.

Note
Multiple reboots are needed because the ordering of dependencies is not yet
orchestrated.

To reprovision a compute node:

1. Verify that /classes/system/reclass/storage/system/<CLUSTER_NAME>_compute.yml
contains correct host information.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 19

Note
Create as many hosts as you have compute nodes in your environment within this
file.

2. Run the reclass.storage state on the Salt Master node to generate node definitions:

salt ‘*cfg*’ state.sls reclass.storage

3. Verify that the target nodes have connectivity with the Salt Master node:

salt ‘*cmp[<NUM>]*’ test.ping

4. Run the Salt highstate for the compute node(s):

salt ‘*cmp[<NUM>]*’ state.highstate

Note
Failures may occur during the first run of highstate.

5. Reboot to apply network configuration changes.
6. Rerun the Salt highstate for the node(s):

salt ‘*cmp[<NUM>]*’ state.highstate

7. Provision the vRouter on the compute node using CLI or the Contrail web UI. Example of the
CLI command:

salt ‘*cmp[<NUM>]*’ cmd.run '/usr/share/contrail-utils/provision_vrouter.py \
 --host_name <CMP_HOSTNAME> --host_ip <CMP_IP_ADDRESS> --api_server_ip <CONTRAIL_VIP> \
 --oper add --admin_user admin --admin_password <PASSWORD> \
 --admin_tenant_name admin --openstack_ip <OPENSTACK_VIP>'

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 20

MCP Control Plane
The MCP Control Plane consists of:

• The continuous integration and continuous delivery (CI/CD) pipeline
• The DevOps Portal

The CI/CD pipeline enables you to run an up-to-date cloud platform by delivering software
updates and configuration changes in a smoothly and reliable manner.
Using CI/CD pipeline results in stable software that is consistently tested, shared, and promoted
across all your MCP clusters.
CI/CD pipeline has the following components in the basement of the MCP CI/CD process:

• Jenkins - a job server
• Gerrit - a gate for reviewing changes coming to a Git repository
• Aptly - Debian repository management
• Artifactory - a registry for artifacts such as Docker images and deb packages

The CI/CD process for MCP cloud cluster can be divided into three main steps:

• Development and configuration
• Staging (verification and validation)
• Deployment to production

To manage CI/CD pipeline, visit the DevOps Portal.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 21

Logging, metering, alerting
Using StackLight for Mirantis Cloud Platform, cloud operators can monitor an OpenStack
environment and be quickly notified of critical conditions that may occur in the system so that
they can prevent service downtimes.
This section describes how StackLight works and how to use the components integrated with
the StackLight operational insights pipeline.

Restart Log Collector
The Log Collector starts automatically when the heka Salt state is applied. To manually start and
stop it, use the Salt commands.
The following example shows how to restart the Log Collector from the Salt Master node on all
Salt Minion nodes with names that start with ctl:

salt 'ctl*' service.restart log_collector

Alternatively, you can SSH to the node and use the service manager (systemd or upstart) to
restart the service. For example:

ssh ctl01.mcp-lab-advanced.local
service log_collector restart

See the salt.modules.service documentation for more information on how to use the Salt service
execution module.

Restart Metric Collector
The Local Metric Collector runs the metric_collector and collectd services on all monitoring
nodes.
The following example shows how to restart the Metric Collector from the Salt Master node on all
Salt minion nodes with the names that start with ctl:

salt 'ctl*' service.restart metric_collector
salt 'ctl*' service.restart collectd

The Remote Metric Collector is active on the node with the monitoring VIP. It runs the
remote_collector and the remote_collectd services.

Note
The IP address of the monitoring VIP is stored in the Salt Pillar.
To find the IP address value, use the following command (where
cfg01.mcp-lab-advanced.local is the Salt Master node):

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 22

https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.service.html

reclass --nodeinfo cfg01.mcp-lab-advanced | grep stacklight_monitor_address

To find the node with the VIP, use the following command (assuming that the monitoring
VIP is 172.16.10.253):

salt -G 'ipv4:172.16.10.253' test.ping

The following example shows how to restart the Remote Metric Collector (assuming that the
mon01 node has the monitoring VIP):

salt 'mon01.mcp-lab-advanced' service.restart remote_collector
salt 'mon01.mcp-lab-advanced' service.restart remote_collectd

Warning
Do not attempt to start remote_collector or remote_collectd on a monitoring node that
does not have the monitoring VIP. It may lead to multiple Remote Metric Collectors
running at the same time, resulting in unexpected behavior.

Alternatively, use the following Salt command to restart the remote_collector service on the
node with the monitoring VIP (assuming that the monitoring VIP is 172.16.10.253):

salt -G 'ipv4:172.16.10.253' service.restart remote_collector

Restart Aggregator
The Aggregator runs on one of the monitoring nodes. For example, the Aggregator runs on the
monitoring node named mon01.mcp-lab-advanced. Use the following command to restart the
Aggregator on that node:

salt 'mon01.mcp-lab-advanced.local' service.restart aggregator

Warning
Do not attempt to start the Aggregator on a monitoring node that does not have the
monitoring VIP. It may lead to multiple Aggregators running at the same time, resulting in
unexpected consequences.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 23

For example, the monitoring VIP is 172.16.10.253. Use the following command to restart the
Aggregator on the node with the monitoring VIP:

salt -G 'ipv4:172.16.10.253' service.restart aggregator

InfluxDB and Grafana operations
After you install and configure InfluxDB and Grafana, you can start using a collection of
predefined dashboards to visualize the time-series of your OpenStack environment.

Connect to Grafana
You can access Grafana through the monitoring VIP on port 3000 by default. To access the
Grafana dashboard, enter the credentials that can be retrieved from the Salt Pillar as follows
(where cfg01.mcp-lab-advanced.local is the Salt Master node):

reclass --nodeinfo cfg01.mcp-lab-advanced.local | grep grafana_user
 grafana_user: admin
reclass --nodeinfo cfg01.mcp-lab-advanced.local | grep grafana_password
 grafana_password: password

Restart Grafana
The Grafana service is called grafana-server. Use the following steps to restart the Grafana
service on all nodes of the monitoring cluster:

1. Log in to the Salt Master node.
2. Restart Grafana:

salt -C 'I@grafana:server' service.restart grafana-server

You can use the test.ping command to test the node selection. For example:

salt -C 'I@grafana:server' test.ping

3. Verify the status of the Grafana server on all nodes of the monitoring cluster:

salt -C 'I@influxdb:server' service.status grafana-server

Example of system response:

mon01.mcp-lab-advanced.local:
 True

In this example, the Grafana server runs on one node called mon01.mcp-lab-advanced.local
on the monitoring cluster.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 24

Restart InfluxDB
The InfluxDB service is called influxdb. Use the following steps to restart the InfluxDB server on
the Salt minion nodes with the influxdb:server role in the Salt Pillar:

1. Log in to the Salt Master node.
2. Restart InfluxDB:

salt -C 'I@grafana:server' service.restart influxdb

3. Verify that the InfluxDB server successfully runs on the monitoring cluster node with the
monitoring VIP:

salt -C 'I@influxdb:server' service.status influxdb

Example of system response:

mon01.mcp-lab-advanced.local:
 True

In this example, the InfluxDB server runs on one node named
mon01.mcp-lab-advanced.local on the monitoring cluster.

Manage Grafana dashboards
Grafana provides a collection of predefined dashboards to visualize the time-series of your MCP
cluster.

Main dashboard
Mirantis recommends that you start with the Main dashboard as an entry to other dashboards. It
provides a single pane of glass from where you can visualize the overall health status of your
OpenStack services such as Nova, Cinder, HAProxy, MySQL, RabbitMQ, and others.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 25

The Main dashboard, like most dashboards, provides a drop-down menu in the upper left corner
from where you can pick a particular metric dimension such as the controller name or the device
name you want to select.
In the example above, the dashboard displays the system metrics of node-48. The following
sections are displayed in the dashboard:

• The OPENSTACK SERVICES section where each of the represented services can be assigned
five different statuses.

Note
The precise determination of a service health status depends on the correlation
policies implemented for that service by a Global Status Evaluation (GSE) plugin. See
Aggregation and correlation.

The service health statuses can be as follows:

Status Description
DOWN When one or several primary functions of a service cluster has

failed. For example, all API endpoints of a service cluster like
Nova or Cinder failed.

CRITICAL When one or several primary functions of a service cluster are
severely degraded. The quality of service delivered to the end
user is severely impacted.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 26

WARNING When one or several primary functions of a service cluster are
slightly degraded. The quality of service delivered to the end
user is slightly impacted.

UNKNOWN When there is not enough data to infer the actual health
status of a service cluster.

OKAY When none of the above was found to be true.

• The VIRTUAL COMPUTE RESOURCES section provides an overview of the number of virtual
resources being used by the compute nodes including the following information:

• Number of virtual CPUs
• Memory and disk space being used
• Virtual resources that remain available to create new instances

• The SYSTEM section provides an overview of the number of physical resources being used
on the control plane (the controller cluster). You can select a specific controller using the
controller drop-down list in the left corner of the toolbar.

• The Ceph section provides an overview of the resources usage and current health status of
the Ceph cluster when it is deployed in the OpenStack environment.

• The Main section is also an entry point to access more detailed dashboards for each of the
OpenStack services that are monitored. For example, if you click the Nova box, the Nova
dashboard is displayed. For details, see Nova dashboard.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 27

Service Level dashboard
The Service Level dashboard is another single pane of glass entry point in Grafana to visualize
service uptime statistics. Service uptime statistics shows in percentage the health status of each
OpenStack top-level cluster as reported by StackLight for to the chosen time-picker interval.
Using that dashboard, you can easily verify whether your service-level objectives were met
during the past period.
The screen capture below shows an example of indicators displayed on the Service Level
dashboard:

Nova dashboard
The Nova dashboard provides a detailed view of the Nova-related metrics.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 28

The Nova dashboard consists of the following sections:

• The SERVICE STATUS section displays the overall health status of the Nova service cluster,
including the following information:

• The status of the API front end (the HAProxy public VIP)
• A counter of HTTP 5xx errors
• The HTTP requests response time
• The status code

• The NOVA API section displays the current health status of the API back ends, for example,
nova-api, ec2-api, and others.

• The NOVA SERVICES section displays the current and historical status of the Nova workers.
• The INSTANCES section displays information about the number of active instances in error

state and statistics about the creation time of instances.
• The RESOURCES section displays various indicators of the virtual resources usage.

Hypervisor dashboard
The Hypervisor dashboard brings operational insights about the virtual instances managed
through libvirt.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 29

The Hypervisor dashboard assembles various libvirt metrics. Use the drop-down menu to choose
a particular instance UUID running on a particular node. The example below shows the metrics
for the instance ID ba844a75-b9db-4c2f-9cb9-0b083fe03fb7 running on node-4.

Additional dashboards
Grafana provides four additional dashboards for Kubernetes, etcd, Docker, and Calico.
Grafana also provides 20 dashboards for OpenStack that you can use to explore different
time-series facets of your OpenStack environment. You may want to use the following
OpenStack additional dashboards:

• The Elasticsearch Cluster dashboard monitors the overall health status of the Elasticsearch
cluster including the state of the shards, the number of pending tasks, and various
resources usage metrics.

• The InfluxDB Cluster dashboard provides statistics about the InfluxDB processes running in
the InfluxDB cluster including various metrics of the resources usage.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 30

Viewing faults and anomalies
The LMA Toolchain can detect a number of service-affecting conditions such as the faults and
anomalies that occurred in your OpenStack environment. These conditions are reported in
annotations that are displayed in Grafana.
The Grafana annotations contain a textual representation of the alarm (or set of alarms) that
were triggered by the Collectors for a service. In other words, the annotations contain valuable
insights that you can use to diagnose and troubleshoot issues.
On the screen capture below, an annotation shows that the health status of Nova is DOWN
because there is no nova-api service back end (viewed from HAProxy) that is UP.

Hiding nodes from dashboards
When you remove a node from the environment, it is still displayed in the server and controller
drop-down lists of the Grafana dashboards.
To hide a node from the list:

1. Edit the associated InfluxDB query in the Templating section. For example:

• To remove node-1, add the following condition to the where clause:

and hostname != 'node-1'

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 31

• To hide more than one node, add more conditions:

and hostname != 'node-1' and hostname != 'node-2'

2. Repeat step 1 for all dashboards that display the deleted node.
3. Save the changes.

Seealso
The InfluxDB and Grafana official documentation:

• InfluxDB
• Grafana

Elasticsearch and Kibana operations
After you install and configure Elasticsearch and Kibana, you can start using the Kibana
dashboards to monitor and diagnose issues in your OpenStack environment.

Connect to Kibana
Kibana can be reached through the monitoring VIP on port 5601 by default. No credentials are
required to connect to the Kibana dashboard.

Restart Kibana
The Kibana service is called kibana.
To restart Kibana:

1. Log in to the Salt Master node.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 32

https://docs.influxdata.com/influxdb/v1.2/
http://docs.grafana.org

2. Run the following command:

salt -C 'I@kibana:server' service.restart kibana

Restart Elasticsearch
The Elasticsearch service is called elasticsearch.
To restart the Elasticsearch service:

1. Log in to the Salt master node.
2. Run the following command to restart the Elasticsearch service on all monitoring nodes one

by one:

salt -C 'I@elasticsearch:server' service.restart elasticsearch -b

Manage Kibana dashboards
The StackLight Kibana contains two built-in dashboards:

• The Logs analytics dashboard that is used to visualize and search the logs.
• The Notifications analytics dashboard that is used to visualize and search the OpenStack

notifications. This dashboard is available if you enable the feature in the Collector settings.
• The Audit analytics dashboard that is used to visualize and search for the OpenStack CADF

notifications.
You can switch from one dashboard to another by clicking on the top-right Load icon on the
toolbar, as shown on the screen capture below:

Each dashboard provides a single pane of glass for visualizing and searching for the logs and
notifications of your OpenStack environment.
The Kibana dashboard for logs is divided into several sections as follows:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 33

On the screen capture above, the following items are highlighted:

1. A time-picker control to choose the required time period and refresh frequency.
2. A text box to enter search queries.
3. The logs analytics with six different panels showing the following stack graphs:

1. All logs per source
2. All logs per severity
3. All logs for top 10 sources
4. All logs for top 10 programs
5. All logs for top 10 hosts
6. The number of logs per severity
7. The number of logs per role

The table of log messages is sorted in the reverse chronological order.

Use Kibana filters and queries
Filters and queries have similar syntax but they are used for different purposes:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 34

• The filters are used to restrict what is displayed in the Kibana dashboard.
• The queries are used for free-text search.

You can combine multiple queries and compare their results. You can also further filter the log
messages. For example, to select the deployment_id filter:

1. Expand a log entry.
2. Select the deployment_id field by clicking on the magnifying glass icon as follows:

This will apply a new filter in the Kibana dashboard:

Filtering works for any field that has been indexed for the log entries that are present in the
Kibana dashboard.
Filters and queries can also use wildcards that can be combined with the field names like in
programname: <name>*.
For example, to display only the Nova logs, enter programname:nova* in the query text box as
follows:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 35

Seealso
The Elasticsearch and Kibana official documentation:

• Elasticsearch
• Kibana

Sensu operations
After you install and configure Sensu and Uchiwa, you can start using the Uchiwa dashboard to
visualize the health status of all nodes and services running on your OpenStack environment.

Connect to Sensu
The Sensu dashboard supported by Uchiwa can be reached through the monitoring VIP on port
3001 by default. The Uchiwa credentials can be retrieved from Pillar using the following
command:

salt -C 'I@sensu:server' pillar.data sensu:dashboard:admin

Example of system response:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 36

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html
https://www.elastic.co/guide/en/kibana/4.6/index.html

mon01.mcp-lab-advanced:

 sensu:dashboard:admin:

 password:
 password
 username:
 admin

Restart Sensu
The Sensu services run on the MCP monitoring cluster.
To restart the Sensu services:

1. Log in to the Salt Master node.
2. Restart the Sensu services:

salt -C 'I@sensu:server' service.restart sensu-server
salt -C 'I@sensu:server' service.restart sensu-api
salt -C 'I@sensu:server' service.restart uchiwa

3. Restart the Sensu client:

salt -C 'I@sensu:client' service.restart sensu-client

Manage Sensu dashboard
The Sensu dashboard is supported by Uchiwa. The Uchiwa dashboard contains two main panels
that are described in this section.
The EVENTS panel
Once you authenticate to Uchiwa as described in the Connect to Sensu section, you are
automatically redirected to the EVENTS panel that shows the list of current Sensu events. If the
cluster status is up and running, no events are displayed on this panel.
The CLIENTS panel
The CLIENTS panel shows the list of the Sensu clients that are registered with Sensu.
A client is typically a Sensu client, but it can also be a proxy client. In the StackLight integration
with Sensu, the Aggregator is a proxy client that registers with Sensu.
Three virtual clients represent the aggregated health status of top-clusters, node-clusters, and
service-clusters:

• 00-top-clusters represents the aggregated health status of the top-level clusters such as
Nova, Keystone, RabbiMQ, GlusterFS, and so on.

• 01-node-clusters represents the aggregated health status of node clusters such as
controller and compute clusters.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 37

https://sensuapp.org/docs/0.26/reference/clients.html#proxy-clients

• 01-service-clusters represents the aggregated health status of service clusters such as
cinder_api, cinder_logs, cinder_scheduler, and so forth.

These virtual clients have no IP address assigned to them.
When an anomaly or fault is detected by the StackLight Operational Insights pipeline, the state
of the clients changes and its details are displayed on the panel. The green vertical line also
changes its color depending on the state.
Example:

In the example above, the status of ctl01 is CRITICAL (red) and the status of ctl02 is WARNING
(yellow) displaying the last received event stating that the Keystone API is too slow.
As a result, the status of the 01-service-clusters and 00-top-clusters virtual clients have also
changed to WARNING. The status of 01-node-clusters is WARNING that is related to the CRITICAL
status of ctl01 as follows:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 38

The status of control_nodes is WARNING because the CPU usage on ctl01 is too high, and hence,
ctl01 has the CRITICAL status.

However, the overall status of the control_nodes_clusters client is WARNING because only one of
the cluster controller nodes is affected. This is the result of the aggregation and correlation
policies in action. The overall status of the cluster of nodes is WARNING, despite that one of its
members has the CRITICAL status when the majority of its members is healthy.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 39

Seealso
Sensu official documentation

Use Horizon monitoring dashboards
After you deploy Horizon along with the Telemetry and Monitoring plugins, you can start
auditing your MCP cluster using the Horizon monitoring dashboards.
The Telemetry dashboard for Horizon provides access to the telemetry data stored in InfluxDB
for the control plane and data plane nodes.
With the admin role, you have access to the Telemetry dashboard of Horizon.
To access the control and data plane nodes telemetry:

1. Log in to Horizon as admin.
2. On the top-right of the Horizon web UI, click Telemetry.
3. In the Telemetry tab, click Control nodes or Compute nodes.

The tabs contain diagrams and tables displaying the control plane and data plane nodes
telemetry with the disk, CPU, and RAM usage on a per-node basis.

With the non-admin role, you have access to the Telemetry data overview of instances on a
per-tenant basis.
To access the telemetry overview of instances:

1. Log in to Horizon.
2. On the top-right of the Horizon web UI, click Telemetry.
3. In the Telemetry tab, click Overivew.

The table displays the interim statistics on CPU utilization, network transmit/receive, and
disk write/read operations on a per-instance basis.

The Monitoring dashboard displays the StackLight health status events stored in Sensu. A user
with the admin role can visualize those events the same way as in Uchiwa.
To access the Monitoring dashboard:

1. Log in to Horizon as admin.
2. On the top-right of the Horizon web UI, click Monitoring.

The Monitoring dashboard contains several tabs:

• The Current Events tab displays the details of the warnings and critical events, if any, stored
in Sensu. The tab contains the Resolve Events and Recheck Events options.

• The Event Stashes tab provides access to the Sensu stash data stored in the Redis
key/value store. In this store, you can create and access arbitrary JSON data (the value)
indexed by an arbitrary path (the key). For details on the Sensu key/value store, see Sensu
documentation.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 40

https://sensuapp.org/docs/0.26/guides
https://sensuapp.org/docs/0.23/reference/stashes.html#the-sensu-keyvalue-store
https://sensuapp.org/docs/0.23/reference/stashes.html#the-sensu-keyvalue-store

• The Service Checks tab provides access to the Sensu checks. From this tab, you can issue a
check request, silence or unsilence a check. For details on the Sensu checks, see Sensu
documentation.

• The Monitored Clients tab provides access to the list of registered Sensu clients along with
their service checks subscription. A Sensu client is materialized by either a Sensu
monitoring agent running on every node or a Sensu proxy client. Typically, the StackLight
Aggregator plays the role of a Sensu proxy client. It registers both the 01-node-clusters and
the 00-top-clusters virtual clients, which represent the MCP service clusters, and the MCP
top-level clusters respectively. For details on the Sensu client, see Sensu documentation.

• The Aggregates tab provides access to the list of the Sensu check aggregates. By default,
StackLight does not have a configuration for the Sensu check aggregates. For details on the
Sensu check aggregates, see Sensu documentation.

• The Monitoring Status tab provides status information on the Sensu monitoring framework
itself.

Seealso
The Install Horizon plugins subsection of the Install StackLight section in the MCP
Deployment Guide

StackLight alerts
The alerting system of StackLight for Mirantis Cloud Platform (MCP) is conceptually similar to the
alerting system of StackLight for Mirantis OpenStack but has several implementation changes
that were required to accommodate the constraints imposed by the MCP Configuration
Management system based on Salt and Reclass:

• The declarative definition of the alarms, aggregation rules, and correlation policies are now
collated in the heka.yml file of the Salt formulas. We globally refer to them as built-in
alarms. For example:

• The built-in alarms for Nova are stored in heka.yml of the salt-formula-nova GitHub
project.

• The built-in alarms for RabbitMQ are stored in heka.yml of the salt-formula-rabbitmq
GitHub project.

• The YAML structure of the alarms, correlation, and aggregation rules has changed. The new
structure is described below.

The built-in alarms defined in the formulas are somewhat considered immutable by the
engineering. In principle, they should always be relevant regardless of the deployment model
and as such, should not be altered even though it is technically possible to override them in the
user Reclass model. The built-in alarms are expected to detect all the critical conditions
occurring on the MCP and as such, should always be there and not tampered.
In addition to the built-in alarms, it is possible to define custom alarms in the user Reclass
model that would be more relevant to a specific deployment. The severity level attached to the
built-in alarms is generally for the most critical conditions. A deployer may decide to create

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 41

tohttps://sensuapp.org/docs/0.23/reference/checks.html#what-is-a-sensu-check
tohttps://sensuapp.org/docs/0.23/reference/checks.html#what-is-a-sensu-check
https://sensuapp.org/docs/0.23/reference/clients.html#what-is-a-sensu-client
https://sensuapp.org/docs/0.23/reference/aggregates.html#sensu-check-aggregates.
https://github.com/salt-formulas/salt-formula-nova/tree/master/nova/meta
https://github.com/salt-formulas/salt-formula-rabbitmq/tree/master/rabbitmq/meta

alarms in the Reclass model to track conditions of a lower severity level (like warning) that he
would like a cloud operator to be informed of.
Both the built-in alarms defined in the formulas and the custom alarms defined in the user
Reclass model use the same declarative YAML structure.

Seealso
StackLight alarm structure

StackLight alarm structure
The most effective way to explain the structure of an alarm in StackLight for Mirantis Cloud
Platform is to use an example. Consider the alarms defined for Nova within the heka.yml file of
the Nova formula. This example illustrates the alerting capabilities of StackLight for Mirantis
Cloud Platform because it has a combination of local and remote checks and measurements as
well as different levels of aggregation up to the control-plane and data-plane top-level clusters.

Alarms for the Local Metric Collector
The alarms for the metrics collected locally to the node are defined in the metric_collector
section. They are evaluated by the Local Metric Collector.
The definition of an alarm begins with the definition of triggers that are defined in the trigger
subsection which is a dictionary of alarm triggers.
A trigger executes the statistical function defined by the function key against metric time-series
defined by the metric key for those metrics that match the field key-value pairs. The resulting
value is compared to a threshold defined by the threshold key using a relational operator
defined by the relational_operator key. The metric time-series are stored in the memory of Heka.
Their size is proportional to a sliding window defined by the window key.
The following example describes the triggers set in the metric_collector section:

metric_collector:
 trigger:
 nova_logs_error:
 description: 'Too many errors have been detected in Nova logs'
 severity: warning
 no_data_policy: okay
 rules:
 - metric: log_messages
 field:
 service: nova
 level: error
 relational_operator: '>'
 threshold: 0.1
 window: 70
 periods: 0

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 42

https://github.com/salt-formulas/salt-formula-nova/blob/master/nova/meta/heka.yml

 function: max
 {%- if pillar.nova.controller is defined %}
 nova_api_local_endpoint:
 description: 'Nova API is locally down'
 severity: down
 rules:
 - metric: openstack_check_local_api
 field:
 service: nova-api
 relational_operator: '=='
 threshold: 0
 window: 60
 periods: 0
 function: last
 {%- endif %}

The following is the description of parameters described in the example above:
nova_logs_error:

Trigger used to monitor the rate of errors we have in the logs for Nova.
severity: warning

Severity of the trigger.
no_data_policy: okay

Defines the severity level to apply if no metrics are received during the ticker interval. In this
example, the policy says that it is okay. By default, the severity is unknown.

metric: log_messages
Metric obtained from the connection between the Log Collector and the Local Metric
Collector. It is ingested in the Heka pipeline the same way as the collectd metrics.

field:
The trigger is evaluated only if the fields of the Heka message match. In this example,
service must be nova and severity level must be error.

threshold: 0.1
The trigger is evaluated to true if the rate of error exceeds 0.1 that is more than 6 errors per
minute.

{%- if pillar.nova.controller is defined %}
Jinja templating conditional branch allows specifying the triggers that only apply to
controller nodes.

nova_api_local_endpoint:
The second alarm trigger to check the value of openstack_check_local_api metric for the
nova-api service. The trigger is evaluated to true if the value is 0 meaning that the service is
down.

The alarm subsection contains a dictionary of alarms. The alarms are composed of an array of
triggers and a dictionary of dimensions. The example below shows several alarms defined for
the Nova formula:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 43

• The nova_logs_compute alarm is created in Heka if it is a compute node.
• The nova_logs alarm and the nova_api_endpoint alarms are created if it is a controller node.

Important

An alarm is turned into a health status metric (an AFD) decorated with dimensions. The
use of dimensions by the correlation and aggregation process is shown below. Finally, an
alarm has an alerting property defined by the alerting key. The available values for this
property can be either enabled, disabled, or enabled_with_notification:

• An alarm that is enabled is turned into an alert (passive check) sent to Nagios.
• An alarm that is enabled_with_notification is turned into an alert notification using

any of notification schemes defined for Nagios.

The following example describes the alarm subsection for the triggers described above:

alarm:
 {%- if pillar.nova.compute is defined %}
 nova_logs_compute:
 alerting: enabled
 triggers:
 - nova_logs_error
 dimension:
 service: nova-logs-compute
 {%- endif %}
 {%- if pillar.nova.controller is defined %}
 nova_logs:
 alerting: enabled
 triggers:
 - nova_logs_error
 dimension:
 service: nova-logs
 nova_api_endpoint:
 alerting: enabled
 triggers:
 - nova_api_local_endpoint
 dimension:
 service: nova-api-endpoint
 {%- endif %}

The following is the description of parameters described in the example above:
nova_logs_compute:, nova_logs_error

These alarms have only one trigger but there could be more.
service: nova-logs-compute

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 44

The resulting status metric will be decorated with a dimension service set to
nova-logs-compute. This dimension will be used to aggregate alarms.

Alarms for the Remote Metric Collector
The alarms for the metrics collected remotely are defined in the remote_collector section of the
service formula. They are evaluated by the Remote Metric Collector.
The following example describes the remote_collector section structure example that is identical
to the structure of the local metric_collector section:

remote_collector:
 trigger:
 {%- if pillar.nova.controller is defined %}
 nova_api_check_failed:
 description: 'Endpoint check for nova-api is failed'
 severity: down
 rules:
 - metric: openstack_check_api
 field:
 service: nova-api
 relational_operator: '=='
 threshold: 0
 window: 60
 periods: 0
 function: last
 {%- for nova_service in ('cert', 'consoleauth', 'conductor', 'scheduler') %}
 nova_{{ nova_service }}_two_up:
 description: 'There is one or more {{ nova_service }} down'
 severity: warning
 rules:
 logical_operator: 'and'
 - metric: openstack_nova_services
 field:
 service: {{ nova_service }}
 state: up
 relational_operator: '>='
 threshold: 2
 window: 60
 periods: 0
 function: last
 - metric: openstack_nova_services
 field:
 service: {{ nova_service }}
 state: down
 relational_operator: '>'
 threshold: 0
 window: 60
 periods: 0

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 45

 function: last
 nova_{{ nova_service }}_one_up:
 description: 'There is only one Nova {{ nova_service }} up left'
 severity: critical
 rules:
 logical_operator: 'and'
 - metric: openstack_nova_services
 field:
 service: {{ nova_service }}
 state: up
 relational_operator: '=='
 threshold: 1
 window: 60
 periods: 0
 function: last
 - metric: openstack_nova_services
 field:
 service: {{ nova_service }}
 state: down
 relational_operator: '>'
 threshold: 0
 window: 60
 periods: 0
 function: last
 nova_{{ nova_service }}_zero_up:
 description: 'All Nova {{ nova_service }}s are down'
 severity: down
 rules:
 - metric: openstack_nova_services
 field:
 service: {{ nova_service }}
 state: up
 relational_operator: '=='
 threshold: 0
 window: 60
 periods: 0
 function: last
 {%- endfor %}

The following is the description of parameters described in the example above:
{%- if pillar.nova.controller is defined %}

This trigger applies only to the controller nodes. However, the resulting Heka plugins
configuration is exported to the remote metric collector using Salt Mine.

{%- for nova_service in ('cert', 'consoleauth', 'conductor','scheduler') %}``
Jinja templating allows defining the same trigger for a collection of services in a loop.

logical_operator:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 46

A logical operator can be used to describe a composition of triggering rule conditions. In this
example, the trigger evaluates to true if 2 rule conditions are met.

Likewise, the remote_collector section has the alarm subsection for the triggers defined in the
remote_collector subsection. In this subsection, the nova_{{ nova_service }}: alarm has three
triggers. The triggers are evaluated in the order they are listed in the array. The alarm evaluates
to true and returns when a trigger evaluates to true. The resulting status metrics will contain a
description of what triggered the alarm.
Example:

alarm:
 {%- if pillar.nova.controller is defined %}
 nova_api_check:
 alerting: enabled
 triggers:
 - nova_api_check_failed
 dimension:
 service: nova-api-check
 {%- for nova_service in ('cert', 'consoleauth', 'conductor', 'scheduler') %}
 nova_{{ nova_service }}:
 alerting: enabled
 triggers:
 - nova_{{ nova_service }}_zero_up
 - nova_{{ nova_service }}_one_down
 - nova_{{ nova_service }}_two_up
 dimension:
 service: nova-{{ nova_service }}
 {%- endfor %}
 nova_free_vcpu:
 alerting: enabled
 triggers:
 - nova_total_free_vcpu_warning
 dimension:
 service: nova-free-vcpu
 nova_free_memory:
 alerting: enabled
 triggers:
 - nova_total_free_memory_warning
 dimension:
 service: nova-free-memory
 nova_compute:
 alerting: enabled
 triggers:
 - nova_compute_all_down
 - nova_compute_majority_down
 - nova_compute_some_down
 dimension:
 service: nova-compute

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 47

 {%- endif %}
 {%- endif %}

Aggregation and correlation
The Aggregator section defines how the health status metrics (AFD metrics) are aggregated
together to infer a health status at the cluster level. Each aggregation is turned into a cluster
health status metric (GSE metric) decorated with dimensions. The aggregation process is
reentrant. Therefore, there can be several levels of aggregation and several metrics
representing the health status of a hierarchy of clusters.
Like an alarm, an aggregation has an alerting property defined by the alerting key. The value of
the alerting key can be either enabled, disabled, or enabled_with_notification. The health status
aggregation is performed using different correlation policies depending on the characteristics of
the clusters. The correlation policies are defined in the Heka formula independently of the
services formulas. Like for the alarms, it should be possible to define new policies in the user
Reclass model, if needed.
The following example describes the aggregations defined for Nova within the heka.yml file of
the Nova formula.

aggregator:
 alarm_cluster:
 nova_logs_compute:
 policy: majority_of_node_members
 group_by: hostname
 alerting: enabled
 match:
 service: nova-logs-compute
 members:
 - nova_logs_compute
 dimension:
 service: nova-data
 nagios_host: 01-service-clusters
 nova_logs:
 policy: availability_of_members
 group_by: hostname
 alerting: enabled
 match:
 service: nova-logs
 members:
 - nova_logs
 dimension:
 service: nova-control
 nagios_host: 01-service-clusters
 nova_api_endpoint:
 policy: availability_of_members
 group_by: hostname
 alerting: enabled

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 48

https://github.com/tcpcloud/salt-formula-heka/blob/master/heka/meta/heka.yml

 match:
 service: nova-api-endpoint
 members:
 - nova_api_endpoint
 dimension:
 service: nova-control
 nagios_host: 01-service-clusters
 nova_api_check:
 policy: availability_of_members
 alerting: enabled
 match:
 service: nova-api-check
 members:
 - nova_api_check
 dimension:
 service: nova-control
 nagios_host: 01-service-clusters
 {%- for nova_service in ('cert', 'consoleauth', 'conductor', 'scheduler') %}
 nova_{{ nova_service }}:
 policy: availability_of_members
 alerting: enabled
 match:
 service: nova-{{ nova_service }}
 members:
 - nova_{{ nova_service }}
 dimension:
 service: nova-control
 nagios_host: 01-service-clusters
 {%- endfor %}
 nova_free_vcpu:
 policy: majority_of_node_members
 alerting: enabled
 match:
 service: nova-free-vcpu
 members:
 - nova_free_vcpu
 dimension:
 service: nova-data
 nagios_host: 01-service-clusters
 nova_free_memory:
 policy: highest_severity
 alerting: enabled
 match:
 service: nova-free-memory
 members:
 - nova_free_memory
 dimension:
 service: nova-data
 nagios_host: 01-service-clusters

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 49

 nova_compute:
 policy: highest_severity
 alerting: enabled
 match:
 service: nova-compute
 members:
 - nova_compute
 dimension:
 service: nova-data
 nagios_host: 01-service-clusters
 nova_control:
 policy: highest_severity
 alerting: enabled_with_notification
 match:
 service: nova-control
 members:
 - nova_logs
 - nova_api_endpoint
 - nova_api_check
 {%- for nova_service in ('cert', 'consoleauth', 'conductor', 'scheduler') %}
 - nova_{{ nova_service }}
 {%- endfor %}
 dimension:
 cluster_name: nova-control
 nagios_host: 00-top-clusters
 nova_data:
 policy: highest_severity
 alerting: enabled_with_notification
 match:
 service: nova-data
 members:
 - nova_logs_compute
 - nova_free_vcpu
 - nova_free_memory
 - nova_compute
 dimension:
 cluster_name: nova-data
 nagios_host: 00-top-clusters

The following is the description of parameters described in the example above:
alarm_cluster:

This subsection contains a dictionary of aggregation rules.
policy: majority_of_node_members

The policy applied to the aggregation. In this case, the majority_of_node_members policy is
applied. The severity level applied to this aggregation is the result of applying this policy to
the nova_logs_compute AFDs traversing the Aggregator pipeline. In practice, if there a
majority of compute nodes that are warning because too many errors are found in the logs,
then the resulting GSE metric will be warning too.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 50

group_by: hostname
The incoming AFDs are bucketed by hostname. The policy is applied across the buckets as
opposed to the entire flow of AFDs regardless of the nodes they were emitted. Each host
bucket stores only the highest severity level.

match: service: nova-logs-compute
Only the AFDs that match the service dimension and the nova-logs-compute value are
matched.

members: - nova_logs_compute
The members list is a mere implementation artifact that may be removed in the future. For
now, it contains the list of all the AFDs that must be aggregated.

dimension:
The dimension(s) that decorates the GSE metric resulting from this aggregation. The GSE
dimensions are used as classifiers for higher level aggregations.

nagios_host: 01-service-clusters
The dimension nagios_host is used to configure the Nagios dashboard. The passive check for
the GSE resulting from that aggregation will be exposed under the 01-service-clusters virtual
host.

nova_control:
It is an aggregation of aggregations (an aggregation of GSEs). The resulting GSE represents
the health status of a so-called top-level cluster.

policy: highest_severity
This policy is applied to the top-level cluster. The resulting GSE will inherit the highest
severity level of its members. For example, if nova_api_endpoint is critical and it is the
highest severity level, then nova-control is critical too.

alerting: enabled_with_notification
A Nagios alert notification should be sent.

Create or modify an alarm trigger
The built-in alarms of StackLight are provided with relevant defaults that in most cases can be
applied to any deployment. But in practice, you may want to customize some alarms. For
example, a threshold defined in an alarm trigger could be too high or too low for your
deployment, hence resulting in flapping alerts. For this reason, the alerting system of StackLight
allows changing the definition of the triggers of the built-in alarms within the cluster Reclass
model.
Example
If you detect that the keystone_response_time alarm is flapping, the
keystone_response_time_duration trigger may be defined improperly.
By default, the following parameters are defined for Keystone in /etc/salt/grains.d/heka on the
controller nodes:

• For the keystone_response_time alarm:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 51

keystone_response_time:
 alerting: enabled
 dimension:
 service: keystone-response-time
 triggers:
 - keystone_response_time_duration

• For the keystone_response_time_duration trigger:

keystone_response_time_duration:
 description: Keystone API is too slow
 no_data_policy: okay
 rules:
 - field:
 http_method: == GET || == POST
 http_status: == 2xx
 function: max
 metric: openstack_keystone_http_response_times
 periods: 0
 relational_operator: '>'
 threshold: 0.3
 value: upper_90
 window: 60
 severity: warning

The threshold value is 0.3 by default. It means that every time the upper_90 value of the
openstack_keystone_http_response_times metric is greater than 300 milliseconds, the alarm
evaluates to true which results in an alert in Sensu and/or Nagios.

Note
In this example, we use the 90 percentile value to discard the 10% outliers values from
the trigger evaluations.

To change the threshold value to 500 milliseconds, you must override the trigger in the Reclass
model and reapply the configuration of the alarms on the controller nodes where this trigger is
evaluated.
To create an alarm trigger:

1. On the Salt Master node, create a Reclass file under the cluster Reclass model with a new
definition of the trigger:

pwd
/srv/salt/reclass/classes/cluster/mcp-lab-advanced/stacklight

less ./custom_alarms.yml

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 52

parameters:
 heka:
 metric_collector:
 trigger:
 # Override the openstack_keystone_http_response_times
 # trigger to relax the threshold value
 keystone_response_time_duration:
 description: 'Keystone API is too slow'
 severity: warning
 no_data_policy: okay
 rules:
 - metric: openstack_keystone_http_response_times
 field:
 http_method: '== GET || == POST'
 http_status: '== 2xx'
 relational_operator: '>'
 threshold: 0.5
 window: 60
 periods: 0
 value: upper_90
 function: max

2. Add the custom_alarms class to the control class:

pwd
/srv/salt/reclass/classes/cluster/mcp-lab-advanced/openstack

less ./control.yml
classes:
- system.linux.system.lowmem
[...]
- system.heka.alarm.openstack_control
- cluster.mcp-lab-advanced
- cluster.mcp-lab-advanced.custom_alarms

3. Remove the Heka grains on the controller nodes:

salt "ctl*" file.remove /etc/salt/grains.d/heka

4. Recreate the Heka grains:

salt "ctl*" state.sls heka

5. Restart the metric collectors on the controller nodes.
Now, the Heka grains in etc/salt/grains.d on the controller nodes should be updated with the new
trigger definition as follows:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 53

[...]
heka:
 [...]
 metric_collector:
 [...]
 trigger:
 [...]
 keystone_response_time_duration:
 description: Keystone API is too slow
 no_data_policy: okay
 rules:
 - field:
 http_method: == GET || == POST
 http_status: == 2xx
 metric: openstack_keystone_http_response_times
 periods: 0
 relational_operator: '>'
 threshold: 0.5
 value: upper_90
 window: 60
 severity: warning

Seealso
Create or modify an alarm

Create or modify an alarm
In StackLight, the alarms can contain a dictionary of triggers. You can add or remove triggers to
existing alarms as required.
Example
By default, the keystone_response_time alarm contains only one
keystone_response_time_duration trigger. To raise the criticality of the alarm when Keystone
stops responding within an acceptable delay, you can either create a new alarm called
custom_keystone_response_time or add a new trigger to the existing alarm. In this example, the
acceptable delay must be below 1 second in the 90 percentile of all the response time samples.
To create a custom_keystone_response_time alarm:

1. Log in to the Salt Master node.
2. Create the custom_alarms.yml Reclass file under the cluster Reclass model with a new

definition of the trigger as described in the Create or modify an alarm trigger section.
3. On every controller node, change the directory to /etc/salt/grains.d/heka.
4. Verify that the custom_alarms.yml file for Keystone contains the following parameters:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 54

parameters:
 heka:
 metric_collector:
 alarm:
 # Override the keystone_response_time alarm
 # with a new trigger
 custom_keystone_response_time:
 alerting: enabled
 dimension:
 service: keystone-response-time
 triggers:
 - keystone_response_time_duration_critical
 - keystone_response_time_duration_warning
 trigger:
 # Create 2 triggers. One a critical level and
 # one at warning level.
 keystone_response_time_duration_critical:
 description: 'Keystone API is too slow'
 severity: warning
 no_data_policy: okay
 rules:
 - metric: openstack_keystone_http_response_times
 field:
 http_method: '== GET || == POST'
 http_status: '== 2xx'
 relational_operator: '>='
 threshold: 1
 window: 60
 periods: 0
 value: upper_90
 function: max
 keystone_response_time_duration_warning:
 description: 'Keystone API is too slow'
 severity: warning
 no_data_policy: okay
 rules:
 - metric: openstack_keystone_http_response_times
 field:
 http_method: '== GET || == POST'
 http_status: '== 2xx'
 relational_operator: '>='
 threshold: 0.5
 window: 60
 periods: 0
 value: upper_90
 function: max

5. Execute the stacklight_monitor_install.sh script to verify that the configuration change is
properly applied to the entire alerts processing system of StackLight including Sensu and/or

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 55

Nagios. This procedure is necessary since creating a new alarm has a larger configuration
impact on the alerting system of StackLight than simply creating or modifying a trigger.

1. Log in to the Salt Master node.
2. Change the directory to /srv/salt/reclass/scripts.
3. Run the stacklight_monitor_install.sh script.

The script updates the grains and the pillars used for the configuration of the Collectors, the
Aggregator, Sensu, and/or Nagios and restarts the StackLight services with the proper
configuration.

Seealso
Create or modify an alarm trigger

Create or modify an aggregation
To activate a new alarm in a service-level and/or top-level cluster, update the aggregation rules.
The aggregation rules are executed by the Aggregator that runs on the monitoring cluster.
The modification of the built-in aggregation rules is similar to the modification of a built-in
trigger or alarm. You can either create a new aggregation rule or override an existing one.
Example
The following example shows how to override the Keystone service cluster aggregation rule to
incorporate the new alarm created in the Create or modify an alarm section:

1. Log in to the Salt Master node.
2. Create the custom_aggregation file:

pwd
/srv/salt/reclass/classes/cluster/mcp-lab-advanced/stacklight

cat ./custom_aggregation.yml
parameters:
 heka:
 aggregator:
 alarm_cluster:
 keystone:
 alerting: enabled_with_notification
 dimension:
 cluster_name: keystone
 nagios_host: 00-top-clusters
 match:
 service: keystone
 members:
 - custom_keystone_response_time

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 56

 - keystone_logs
 - keystone_public_api_endpoint
 - keystone_public_api_check
 policy: highest_severity

In this file, the new ``custom_keystone_response_time`` alarm is added
to the list of alarm members of the Keystone cluster. For this cluster,
the Aggregator will correlate the new alarm with other alarms of the
cluster using the ``highest_severity`` policy.

3. Add the new custom_aggregation class to the server class under StackLight since the
Aggregator runs on the StackLight monitoring cluster:

pwd
/srv/salt/reclass/classes/cluster/mcp-lab-advanced/stacklight

less ./server.yml
classes:
- system.linux.system.repo.grafana
[...]
- system.nagios.server.single
- cluster.mcp-lab-advanced
- cluster.mcp-lab-advanced.custom_aggregation

4. On the Salt Master node, run the stacklight_monitor_install.sh script to apply changes.

Seealso

• Aggregation and correlation
• Create or modify an alarm trigger
• Create or modify an alarm

Seealso

• StackLight alerts

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 57

Create or modify a metric
StackLight provides a large collection of metrics for the monitoring of the entities supported out
of the box. StackLight can also be easily extended to support new service check and
measurement metrics without programming Lua plugins. A special Lua decoder plugin of the
Metric Collector allows turning all the telemetry data samples it receives from collectd into
standard metric messages. These samples have a JSON payload that is formatted by the Write
HTTP plugin of collectd. An enhancement of the Lua decoder plugin allows handling
transparently all the samples that comply with clearly defined mapping conventions.

Note
A special Lua decoder for collectd is defined in the support metadata of the Heka formula
(meta/heka.yml file) as follow:

metric_collector:
 decoder:
 collectd:
 engine: sandbox
 module_file: /usr/share/lma_collector/decoders/collectd.lua

Mapping conventions of StackLight metric data model
The samples injected by a collectd plugin can be mapped automatically into standard metric
messages as long as they comply with the StackLight metric data model conventions as
described in the table below.

StackLight metric
data model attributes Mapping of collectd samples attributes

Timestamp The timestamp of the metric built out of the time key value in
nanoseconds.

Logger Always collectd.
Type Always metric.
Severity Always 6.
Hostname The hostname where the metric is collected. It is built out of the

host key value.
Payload The original JSON payload.
Fields[name] The name of the metric built out of the plugin key value and a

concatenation of optional key values (if not null) separated by the
_ delimiter.
sample[‘plugin’]_<‘sample[‘plugin_instance’]>_<sample[‘type’]>_
<sample[‘type_instance’]>

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 58

Fields[Type] Type of metric that can be either gauge, counter, derive, or
absolute built out of the dstypes array of values. One metric is
created per value of the dstypes array.

Fields[Value] The value of the metric built out of the the values array of values.
One metric is created per value of the values array.

Fields[Interval] The sampling interval of the metric built out of the interval key
value.

Fields[Region] The OpenStack region for metrics collected in OpenStack clusters.
Fields [Environment_labe
l]

An MCP environment name.

Fields[Tag_fields] An array of tags built out of the meta key/value pairs array.
Fields[‘hostname’] The hostname that the metric applies to built out of the host key

value. If the sample contains a meta with a discard_hostname key
value that is not null, then Fields[‘hostname’] is reset to null.

Example
When you create a new collectd plugin that you integrate with the Metric Collector, this plugin
complies with the mapping conventions described above. The following example shows the
resulting metric message in the reStructuredText format. For the illustration purposes, the
collectd plugin generates samples with a random number.

:Timestamp: 2017-03-16 10:46:03.349999872 +0000 UTC
:Type: metric
:Hostname: localhost
:Pid: 19884
:Uuid: caf25c89-9a28-4899-a993-2747a9631441
:Logger: collectd
:Payload: {"type":"gauge","values":[27001],"type_instance":"",\
"meta":{"foo":"bar"},"dsnames":["value"],"plugin":"collectd_random",\
"time":1489661163.35,"interval":10,"host":"localhost",\
"dstypes":["gauge"],"plugin_instance":"random_value"}
:EnvVersion:
:Severity: 6
:Fields:
 | name:"type" type:string value:"gauge"
 | name:"source" type:string value:"collectd_random"
 | name:"tag_fields" type:string value:["foo","hostname"]
 | name:"name" type:string value:"collectd_random_random_value"
 | name:"hostname" type:string value:"localhost"
 | name:"value" type:double value:27001
 | name:"environment_label" type:string value:"mk22-lab-dvr.local"
 | name:"interval" type:double value:10
 | name:"foo" type:string value:"bar"

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 59

The Payload attribute contains the original collectd JSON payload (highlighted in the example)
received by the Metric Collector. This message is injected into the Heka pipeline every 10
seconds ticker interval.
Now, you can create a new alarm trigger as described in Create or modify an alarm trigger. It will
raise a warning health status when the maximum value of the samples goes above 1000 within
the last 60 seconds window.
This example is fictitious but it shows that custom metrics can be evaluated exactly the same
way as regular metrics.

dumb_random_value_trigger:
 description: monitor max value of random number
 rules:
 - field:
 foo: == bar
 function: max
 metric: collectd_random_random_value
 periods: 0
 relational_operator: '>'
 threshold: 1000
 value: value
 window: 60
 severity: warning

Register a custom collectd plugin in Metric Collector
Changing the configuration of the Metric Collector in MCP requires modifications in the Salt
formulas and/or Reclass models.
The following example shows how to add a new collectd plugin written in Python to the Local
Metric Collector. This operation requires changing the support metadata in the following Salt
formulas:

1. The collectd formula.
2. The formula of the service that you want the new metric to be collected for.

In the following example, the new metric is to be collected for the Linux operating system, since
this type of metric is useful for the monitoring of the nodes. To complete this example, we
therefore need to modify the support metadata of both collectd and Linux formulas. After the
change, the new collectd plugin should be installed on all the nodes of the MCP environment
where the Linux formula is applied when collectd is enabled. The configuration changes
described below work exactly the same way as for other formulas than Linux.

Caution!

In an MCP environment provisioned by the MCP bootstrap, all formulas are extracted from
the MCP packages under the /srv/salt/env directory of the Salt Master node. However,
those formulas are not supposed to be modified directly, because all changes are erased

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 60

every time the formula is updated. Instead, the customization is supposed to be done in a
versioned fork of the community formula as a site customization.
Getting into the details of managing site formulas customization is beyond the scope of
this document.

To apply the configuration changes for the Metric Collector:

1. Apply the changes in the Salt Linux formula.
2. Apply the changes in the Salt collectd formula.
3. Re-run the collectd state.

Seealso
Apply changes to the Linux and collectd formulas

Apply changes to the Linux and collectd formulas
Changing the configuration of the Metric Collector requires modifications in the Salt formulas
and/or the Reclass models. After you register your custom collectd plugin as described in
Register a custom collectd plugin in Metric Collector, apply the changes to the corresponding
Salt formulas.
To apply changes to the Linux and collectd formulas:

1. Log in to the Salt Master node.
2. In the support metadata directory, append the collectd_random fragment to the

collectd.yml file.

root@cfg01:/srv/salt/env/prd/linux/meta# cat << EOF >> collectd.yml
 collectd_random:
 plugin: python
 template: linux/files/collectd_random.conf
EOF

3. In /srv/salt/env/prd/linux/files, create the new collectd plugin configuration file:

root@cfg01:/srv/salt/env/prd/linux/files# cat << EOF > collectd_random.conf
Import "collectd_random"

<Module "collectd_random">
</Module>
EOF

4. In files/plugin, add the new collectd plugin to the Salt collectd formula.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 61

5. Apply the collectd state. The resulting configuration changes that should be applied by Salt
are as follows:

salt "*" state.sls collectd true=false
cfg01.mk22-lab-dvr.local:

[...]

 ID: collectd_client_grain
 Function: file.managed
 Name: /etc/salt/grains.d/collectd
 Result: True
 Comment: File /etc/salt/grains.d/collectd updated
 Started: 15:48:36.653025
 Duration: 16.887 ms
 Changes:

 diff:

 +++
 @@ -26,6 +26,9 @@
 metric_collector:
 match: heka.*metric_collector
 template: collectd/files/collectd_processes.conf
 + collectd_random:
 + plugin: python
 + template: linux/files/collectd_random.conf
 linux_network_netlink:
 ignore_selected: false
 interfaces:

[...]

 ID: /etc/collectd/conf.d/collectd_python.conf
 Function: file.managed
 Result: True
 Comment: File /etc/collectd/conf.d/collectd_python.conf updated
 Started: 15:48:38.134810
 Duration: 53.823 ms
 Changes:

 diff:

 +++
 @@ -14,5 +14,9 @@
 Url "http://localhost:8888"
 </Module>

 + Import "collectd_random"

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 62

 +
 +<Module "collectd_random">
 +</Module>

 </Plugin>

[...]

 ID: collectd_service
 Function: service.running
 Name: collectd
 Result: True
 Comment: Service restarted
 Started: 15:48:38.418323
 Duration: 333.999 ms
 Changes:

 collectd:
 True

6. Restart the collectd service.
Now, the new metric should be available in the operational insights pipeline of StackLight.

Seealso

• Mapping conventions of StackLight metric data model
• Register a custom collectd plugin in Metric Collector

Seealso

• Create or modify an alarm trigger
• Create or modify an alarm
• Create or modify an aggregation

Seealso
The Install StackLight section in the MCP Deployment Guide

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 63

Manage Ceph clusters using Decapod
Using Decapod, you can deploy Ceph clusters and manage their lifecycle. All the management
functionality is distributed using configurable plugins, called playbooks.
This section describes how to deploy a Ceph cluster, perform various operations using Decapod
plugins, back up and restore Decapod, generate a diagnostic snapshot, and others.

Configuration files
Decapod supports a number of configuration files you may want to propagate into a container.
This section describes these files.

SSH private key
The ansible_ssh_keyfile.pem file is an SSH private key used by Ansible to connect to Ceph nodes.
Decapod uses Ansible to configure remote machines. Ansible uses SSH to connect to remote
machines. Therefore, it is required to propagate SSH private key to Decapod. If you do not have
a prepared SSH private key, generate a new one as described in Create SSH keys.
After you generate the key, copy it to the top level of the source code repository. The file name
must be ansible_ssh_keyfile.pem and the format of the file must be PEM.

Warning
Keep the key private.

SSL certificates
The following files are the SSL certificates:

• ssl.key - Private key for SSL/TLS certificate. Used by web UI.
• ssl.crt - Signed certificate for SSL/TLS. Used by web UI.
• ssl-dhparam.pem - Diffie-Hellman ephemeral parameters for SSL/TLS. This enables perfect

forward secrecy for secured connection.
If you do not have such certificates, generate new ones as described in OpenSSL Essentials and
Forward Secrecy & Diffie Hellman Ephemeral Parameters. All SSL keys should be in the PEM
format. Place the SSL files to the top level of your source code repository.

Warning
Keep the key private. Do not use self-signed certificates for a production installation.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 64

https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.html
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html#Forward_Secrecy_&_Diffie_Hellman_Ephemeral_Parameters

Decapod configuration file
Decapod configuration is performed within the config.yaml file in YAML format. Decapod
searches for the configuration file in several locations in the following order:

• $(pwd/decapod.yaml
• $XDG_CONFIG_HOME/decapod/config.yaml
• :`$HOME/.decapod.yaml
• /etc/decapod/config.yaml
• Default configuration file of the decapod_common package

If a configuration file was found and parsed before, other alternatives will not be used.
Therefore, if you have the default configuration file in /etc/decapod/config.yaml then placing the
configuration to $XDG_CONFIG_HOME/decapod/config.yaml will override the default one. For
details, see XDG Base Directory Specification.
Default configuration in containerized Decapod stack is placed in /etc/decapod/config.yaml.

Decapod config.yaml example
The following is an example of the default Decapod configuration file for containers:

common:
 password:
 length: 10
 time_cost: 10
 memory_cost: 2048
 parallelism: 3
 hash_len: 32
 salt_len: 16
 password_reset_ttl_in_seconds: 86400 # 1 day
 email:
 enabled: false
 from: "noreply@mirantis.com"
 host: "localhost"
 port: 25
 login: ""
 password: ""

Options here are Flask options so please check
http://flask.pocoo.org/docs/0.11/config/#builtin-configuration-values
api:
 debug: false
 testing: false
 logger_name: "decapod.decapod_api.wsgi"
 logger_handler_policy: "never"
 json_sort_keys: faluse
 jsonify_prettyprint_regular: false

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 65

http://www.yaml.org/
https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

 json_as_ascii: false
 pagination_per_page: 25
 server_discovery_token: "26758c32-3421-4f3d-9603-e4b5337e7ecc"
 reset_password_url: "http://127.0.0.1/password_reset/{reset_token}/"
 token:
 ttl_in_seconds: 1800
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"
 auth:
 type: native
 parameters: {}
 # type: keystone
 # parameters:
 # auth_url: http://keystone:5000/v3
 # username: admin
 # password: nomoresecret
 # project_domain_name: default
 # project_name: admin
 # user_domain_name: default

controller:
 pidfile: "/tmp/decapod-controller.pid"
 daemon: false
 ansible_config: "/etc/ansible/ansible.cfg"
 # 0 worker_threads means that we will have 2 * CPU count threads
 worker_threads: 0
 graceful_stop: 10
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"

cron:
 clean_finished_tasks_after_seconds: 2592000 # 60 * 60 * 24 * 30; 30 days

db:
 uri: "mongodb://database:27017/decapod?ssl=true"
 connect: false
 connect_timeout: 5000 # ms, 5 seconds
 socket_timeout: 5000 # ms, 5 seconds
 pool_size: 50
 gridfs_chunk_size_in_bytes: 261120 # 255 kilobytes

plugins:
 alerts:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 66

 enabled: []
 email:
 enabled: false
 send_to:
 - "bigboss@example.com"
 from: "errors@example.com"
 playbooks:
 disabled:
 - hello_world

Default Python logging is used.
https://docs.python.org/2/library/logging.config.html#dictionary-schema-details
logging:
 version: 1
 incremental: false
 disable_existing_loggers: true
 root:
 handlers: []
 filters: {}
 formatters:
 stderr_default:
 format: "%(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 stderr_debug:
 format: "%(asctime)s [%(levelname)-8s] (%(filename)15s:%(lineno)-4d): %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 syslog:
 format: "%(name)s %(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 handlers:
 stderr_debug:
 class: "logging.StreamHandler"
 formatter: "stderr_debug"
 level: "DEBUG"
 stderr_default:
 class: "logging.StreamHandler"
 formatter: "stderr_default"
 level: "DEBUG"
 syslog:
 class: "logging.handlers.SysLogHandler"
 formatter: "syslog"
 level: "DEBUG"

Seealso
Decapod config.yaml settings description

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 67

Settings description
The following tables describe the config.yaml configuration file settings:

Common settings

Setting Description
common Defines generic Decapod settings not related

to API or controller. You can specify the
following parameters:
password

Describes settings for Decapod key
derivation function. Decapod does not
store user passwords in plain text.
Instead, it uses key derivation functions
to calculate a cryptographic secure hash
from the password. To do so, it uses the
Argon2 key derivation function that is
similar to the scrypt key derivation
function but has a property for defense
against concurrent attacks with GPUs.
To change the default settings, follow the
Argon2 documentation.

password_reset_ttl_in_seconds
Sets the TTL value in seconds for the
password reset token. When resetting the
password, the user gets a secret token.
Consuming this token performs the actual
password reset. This parameter sets the
TTL of such token. The token is valid only
for the specified amount of time and
expires after.

email
Defines how to send emails from
Decapod. The from parameter defines the
email to set in the From field. The
enabled parameter (boolean) enables or
disables the email sending. If disabled, all
other fields in this section are ignored.

The api section contains settings specific to the API service only. Some parameters propagate
directly to Flask. For Flask settings description, see Flask documentation. The following
parameters are related to Flask:

• DEBUG
• TESTING
• LOGGER_NAME

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 68

https://password-hashing.net/argon2-specs.pdf
http://www.tarsnap.com/scrypt.html
http://www.tarsnap.com/scrypt.html
http://argon2-cffi.readthedocs.io/en/stable/parameters.html
http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values

• LOGGER_HANDLER_POLICY
• JSON_SORT_KEYS
• JSON_AS_ASCII
• JSONIFY_PRETTYPRINT_REGULAR

If you are not sure which parameter to specify, use the default ones.
The following parameters of the api section are Decapod-related:

Decapod-related API settings

Setting Description
pagination_per_page Sets a default count of items per page in

paginated listings. If the number of items is
less than pagination_per_page, then fewer
elements would be returned.

server_discovery_token Defines the server discovery token. Servers
found during the server discovery must have
an authentication token to access the
POST /v1/server API endpoint. This token
does not refer to any certain user and allows
accessing only the mentioned API endpoint.
However, Ansible will access the remote host
to gather facts and verify the access.

reset_password_url Defines the template of the URL that will be
used for generating the email during the
password reset. The email sent to the user
will contain this URL. Decapod will replace
{reset_token} to a correct password reset
token.

token Contains configuration for authentication
tokens. The ttl_in_seconds is the TTL value in
seconds. This parameter applies only to
newly generated tokens. This section is used
only if native authentication back end is
enabled. For example, Keystone integration
will not use this parameter because Keystone
manages its own tokens.

logging Defines specific parameters for logging in API.
Applies the parameters specified in the
logging setting to API only.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 69

auth Configures the authentication back end used
by Decapod. If not specified, the native
authentication back end with default
configuration is used. The type parameter
defines the type of the back end to use and
parameters define the back-end
configuration. for details on available
authentication back ends, see Authentication
back ends.

Controller settings

Setting Description

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 70

controller Defines specific settings for the controller
service. This service manages the task queue
and runs Ansible for tasks. You can specify
the following parameters:
daemon

Defines whether to run the controller
service as a UNIX daemon. If you use
systemd or Docker containers, set this to
false.

pidfile
Defines the PIDFile for the daemon if the
controller service is run as a daemon.

ansible_config
Defines the path to the default Ansible
configuration to use. You can leave this
parameter as is.

worker_threads
Defines the number of workers per
controller. The controller service uses the
worker pool to manage Ansible
executions concurrently. The 0 value
means to define this number
automatically. By default, it is
2 * cpu_count.

graceful_stop
Defines the graceful stop for external
processes in seconds. Since the controller
service executes a number of processes,
it cannot be stopped immediately, the
processes should be correctly finished.
Initially, the controller service sends the
SIGTERM signal to the processes and if
they do not stop after the amount of time
specified in graceful_stop, the controller
service stops them with SIGKILL.

logging
Defines specific parameters for logging in
the controller service. Applies the
parameters specified in the logging
setting to the controller service only.

Cron settings

Setting Description

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 71

cron Defines Cron-related settings. You can
specify the following parameters:
clean_finished_tasks_after_seconds

Defines the TTL for finished tasks. After
the specified amount of time, the tasks
will be purged from the database. This is
related only to finished tasks that were
completed or failed and is not related to
not started tasks.

Database settings

Setting Description

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 72

db Defines the MongoDB-related settings, for
example, how to connect to the database and
some specifics of the database client
configuration. You can specify the following
parameters:
uri

Defines the URI to connect to MongoDB.
For information on connection URIs, see
the MongoDB documentation.

connect
Defines whether Decapod will connect to
MongoDB immediately after initialization
of a client or on the first request. We
suggest that you keep this parameter
value false.

socket_timeout
Defines the amount of time in
milliseconds the driver will wait during
server monitoring when connecting a new
socket to a server before concluding that
the server is unavailable.

socket_timeout
Defines the amount of time in
milliseconds the driver will wait for a
response after sending an ordinary
(non-monitoring) database operation
before concluding that a network error
has occurred.

pool_size
Defines the maximum allowed number of
concurrent connections to each
connected server. Requests to a server
will be blocked if there are more
connections to the requested served than
defined in pool_size.

gridfs_chunk_size_in_bytes
Defines the size of file chunk (a part of
the file, stored in a separate document)
for GridFS. It is 255 kilobytes by default.

Plugins and logs settings

Setting Description

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 73

https://docs.mongodb.com/manual/reference/connection-string/
https://docs.mongodb.com/manual/core/gridfs/

plugins Describes what to do with plugins: disable,
enable, and others. All plugins are split into 2
categories, alerts and plugins.

• The alerts section contains a list of
enabled alerts plugins responsible for
issues alerting, for example, in case of a
500 error. Every parameter except
enabled defines how to set up each alert
plugin.

• The playbooks section has only 1
parameter: disabled that lists the plugins
that are disabled even if installed.

logging Defines the configuration of Decapod logging.
For more information on this setting and its
options, see Python documentation.

Seealso
Decapod configuration file example

Authentication back ends
Decapod supports two authentication backends: the default native and the Keystone
authentication back ends.

Native authentication back end
Native authentication back end uses Decapod MongoDB to store authentication tokens. Each
time a user logs in to Decapod, it creates a new authentication token and stores it in the
collection. Each time a user logs out, Decapod removes the corresponding token. Also, every
token has a TTL value and when it expires, MongoDB deletes the token. This is performed using
the MongoDB TTL indexes.
To set up the native authentication back end, place the following snippet to the api section of
the config.yaml file:

auth:
 type: native
 parameters: {}

This type of back end does not require configuration.

Keystone authentication back end
Keystone authentication back end uses Keystone for authentication. This is option has a more
complex setup than the default Native authentication back end.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 74

https://docs.python.org/3.5/library/logging.config.html#configuration-dictionary-schema
https://docs.openstack.org/developer/keystone/

Using the Keystone authentication back end, creating or deleting a user in Decapod will not
affect Keystone and Decapod will not create or remove a user from Keystone. Decapod
synchronizes the user list with Keystone every 10 minutes. So if you create, delete, or disable a
user in Keystone, it will be also created, deleted, or disabled in Decapod.
To set up Keystone integration:

1. Place the following snippet to the api section of the config.yaml file:

auth:
 type: keystone
 parameters:
 auth_url: {os_auth_url}
 username: {os_username}
 password: {os_password}
 project_domain_name: {os_project_domain_name}
 project_name: {os_project_name}
 user_domain_name: {os_domain_name}

For details on these parameters, see the OpenStack command-line options. For the whole
list of options, see v3.Password.

Important

Username and password should correspond to the user that has enough permissions
to request tokens for other users and list them.

2. Perform initial synchronization using the admin service:

 $ docker-compose -p myprojectname exec admin decapod-admin keystone initial -h
 Usage: decapod-admin keystone initial [OPTIONS] ROLE [USER]...

 Initial Keystone sync.

 On initial sync it is possible to setup role for a user (users). If no
 usernames are given, then all users from Keystone would be synced and role
 will be applied to them.

 Options:
 -h, --help Show this message and exit.

Specify the role name (default is ``wheel``, which has the biggest number of
permissions) and user login for this role.

As a result, you should be able to access Decapod and set required roles for users.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 75

https://docs.openstack.org/developer/python-openstackclient/man/openstack.html#options
https://docs.openstack.org/developer/python-keystoneclient/api/keystoneclient.auth.identity.v3.html#keystoneclient.auth.identity.v3.password.Password

Note
Newly synchronized users from Keystone have no role.

Using the admin service, synchronization is performed by Cron, but you can execute it manually
after the initial synchronization:

$ docker-compose -p myprojectname exec admin decapod-admin keystone sync

Seealso
Decapod configuration file

MongoDB certificate and key
The mongodb.pem file is the SSL/TLS pair of certificate and key, concatenated in one file. This is
required for a secure connection to MongoDB. Generate this file as described in MongoDB
documentation. To allow SSL/TLS on client side, verify that the configuration file has the
?ssl=true parameter in URI. For example, mongodb://database:27017/db will not use a secure
connection, but mongodb://database:27017/db?ssl=true will.

Note
To use database authentication, see:

• MongoDB documentation
• MongoDB security
• Docker hub

After you have a MongoDB running with the required authentication, verify that the user
and password pair is set in the configuration file. The URI should look like
mongodb://user:password@database:27017/db?ssl=true.
By default, containers contain no information about users and their passwords.

Configuration files location
The table below provides the list of configuration files and their location in containers depending
on the particular Docker Compose service. After changing the configuration, place the changed
file into an appropriate container.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 76

https://docs.mongodb.com/manual/tutorial/configure-ssl/#pem-file
https://docs.mongodb.com/manual/tutorial/configure-ssl/#pem-file
https://docs.mongodb.com/manual/core/security-users/
https://gist.github.com/leommoore/f977860d22dfb2860fc2
https://hub.docker.com/_/mongo/

Configuration files location

Configuration file Location
ansible_ssh_keyfile.pem

• Controller: /root/.ssh/id_rsa
• Admin: /root/.ssh/id_rsa

ssl.key
• Front end: /ssl/ssl.key

ssl.crt
• Front end: /ssl/ssl.crt

ssl-dhparam.pem
• Front end: /ssl/dhparam.pem

config.yaml
• API: /etc/decapod/config.yaml
• Controller: /etc/decapod/config.yaml
• Admin: /etc/decapod/config.yaml

mongodb.pem
• Database: /certs/mongodb.pem

mongodb-ca.crt
• Database: /certs/mongodb-ca.crt

To specify custom files, use the docker-compose.override.yml file. For details, see Docker
Compose documentation. An example of the docker-compose.override.yml file is placed in the
top level of the repository.

Note
Provide the modified configuration for API, controller, and Cron services. There is no
possibility to define it for all services in Docker Compose configuration version 2.

Seealso

• PEM
• YAML

Deploy an OS on a Ceph node

Warning
Decapod does not perform bare metal provisioning, OS deployment, and network setup.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 77

https://docs.docker.com/compose/extends/#/multiple-compose-files
https://docs.docker.com/compose/extends/#/multiple-compose-files
https://tools.ietf.org/html/rfc1421
http://www.yaml.org/spec/1.2/spec.html

The OS must support cloud-init. Also, it must be possible to run your own user data. For the
available datasources for cloud-init, see Datasources. Alternatively, you can set user data using
the kernel command line. For bare metal provisioning, try MAAS. This section covers the MAAS
installation and OS deployment with this tool.

Generate user data for cloud-init

Prerequisites
Prior to generating the user data for cloud-init, complete the following steps:

1. Verify that your Decapod installation is up and running:

$ docker-compose -p PROJECT ps

All containers except decapod_database_data_1 should be in the Up state.
2. Obtain the server discovery token. Decapod uses automatic server discovery and cloud-init

is required only for that. To access the Decapod API, servers will access it using an
authentication token with limited capabilities (posting to the server discovery API endpoint).
The server discovery token is set in the api.server_discovery_token section of the
config.yaml file. Keep this token private. To obtain the token:

$ grep server_discovery_token config.yaml
 server_discovery_token: "7f080dab-d803-4339-9c69-e647f7d6e200"

3. Generate an SSH public key. To generate the SSH public key from a private one, run:

$ ssh-keygen -y -f ansible_ssh_keyfile.pem > ansible_ssh_keyfile.pem.pub

Note
The ansible_ssh_keyfile.pem file should have the 0600 permissions:

$ chmod 0600 ansible_ssh_keyfile.pem

Generate user data
Verify that you have completed the steps described in Prerequisites.
To generate user data:
Run the following command:

$ decapod -u http://10.10.0.2:9999 cloud-config \
 7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 78

http://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt

Where the URL is the public URL of the Decapod machine with a correct port. The servers will
send an HTTP request for server discovery using this URL. As a result, you will obtain a
YAML-like user data.

Deploy OS using MAAS
Decapod does not provide MAAS deployment. This section describes one of the Ceph node OS
deployment options that you may consider. To provision your Ceph nodes manually, skip this
section.

Prerequisites
MAAS installation has the following requirements:

• MAAS has its own DHCP server. To avoid collisions, disable the default one.
• If you plan to run MAAS in a virtual network with libvirt, create a new network with disabled

DHCP, but enabled NAT.

Install MAAS
To install MAAS:
To install MAAS, follow the steps described in:

1. Installing a single node MAAS.
2. Importing the boot images.
3. Logging in.

Deploy an OS using MAAS
To deploy an operating system using MAAS:

1. Encode the user data to base64 and send it to MAAS:

$ decapod -u http://10.10.0.2:9999 cloud-config \
 7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub \
 | base64 -w 0 > user_data.txt

2. Deploy an OS using the required MAAS version.

Note
MAAS 2.0 has non-backward-compatible API changes.

• MAAS 2.0:

1. Obtain system_id of the machine to deploy:

$ maas mymaas nodes read

2. Deploy the OS:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 79

https://maas.ubuntu.com/docs/install.html#installing-a-single-node-maas
https://maas.ubuntu.com/docs/install.html#import-the-boot-images
https://maas.ubuntu.com/docs/maascli.html#logging-in

$ maas mymaas machine deploy {system_id} user_data={base64-encoded of user-data}

Where mymaas is the profile name of the MAAS command line.
• MAAS prior to 2.0:

1. Obtain system_id of the machine to deploy:

$ maas prof nodes list

2. Deploy the OS:

$ maas mymaas node start {system_id} user_data={base64-encoded of \
user-data} distro_series={distro series. Eg. trusty}

Where mymaas is the profile name of the MAAS command line.

Note
If you do not want or cannot use server discovery, refer to Ansible playbooks to prepare a
machine based on generated user data.

Manage users and roles
This section descibes how to manage users and roles in Decapod through the web UI.

Manage users
To add a new user:

1. Log in to the Decapod web UI.
2. Navigate to USERS MANAGEMENT.
3. Click the USERS tab.
4. Click CREATE NEW USER and type the required data.
5. Click SAVE. A new user has been created.

Note
The password is sent to the user email. This password can be changed.

After saving the changes, you will see that the CHANGELOG is updated. This CHANGELOG tracks
all the results and it is possible to view the details about a user modifications. This is related not

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 80

https://github.com/Mirantis/ceph-lcm/tree/master/infrastructure_playbooks/server_discovery_playbook

only to the user management. Decapod stores all changes and you can always obtain the entire
log.
Clicking DELETE USER does not delete the user but archives it instead. You can still access the
user through the Decapod CLI if you know the user ID.

Manage roles
Using the Decapod web UI you can create, edit, and delete roles as well as assign a role to a
user.
To create a new role:

1. In the Decapod web UI. Navigate to USERS MANAGEMENT.
2. Click the ROLES tab.
3. Click CREATE NEW ROLE.
4. Type the role name and select the required permissions.
5. Click SAVE CHANGES.

To edit a role:

1. In the Decapod web UI, navigate to USERS MANAGEMENT.
2. Click the ROLES tab.
3. Click the pen icon near the required role name and edit the role as required.

To delete a role:

1. In the Decapod web UI, navigate to USERS MANAGEMENT.
2. Click the ROLES tab.
3. Click the trash can icon near the required role name.

Note
This will not completely delete the role but will archive it instead. You can access the
role through the Decapod CLI if you know the role ID.

To assign a role to a user:

1. In the Decapod web UI, navigate to USERS MANAGEMENT.
2. Click the USERS tab.
3. Expand the required user.
4. Select the required role in the ROLE section.
5. Click SAVE.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 81

Seealso
Ceph cluster deployed by Decapod in MCP Reference Architecture

Deploy a cluster
This section describes the cluster deployment workflow using the Decapod web UI.

Create a cluster
To create a cluster:

1. Log in to the Decapod web UI.
2. Navigate to CLUSTER.
3. Click CREATE NEW CLUSTER.
4. Type the cluster name and click SAVE.

A new cluster is empty and contains no servers. Discover servers as described in Discover a
server.

View servers
Verify that you have discovered the required servers as described in Discover a server.
To view the discovered servers:

1. Log in to the Decapod web UI.
2. Navigate to SERVERS. The SERVERS page lists the servers accessible by Decapod.
3. Expand the required server to view its details.

Create a playbook configuration
To create a playbook configuration:

1. Log in to the Decapod web UI.
2. Navigate to PLAYBOOK CONFIGURATION.
3. Click CREATE NEW CONFIGURATION.
4. Type the configuration name and select a cluster, then click NEXT.
5. Select the required playbook and click NEXT.

The table lists the plugins available for execution. Some playbooks require an explicit list of
servers. For example, to purge a cluster, Decapod will use the servers in this cluster and
you do not need to specify them manually.

6. In the SELECT SERVERS window, select all servers and click SAVE CHANGES. Once the new
playbook configuration is created, you will see the PLAYBOOK CONFIGURATION window.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 82

7. Edit the playbook configuration, if required, and click SAVE CHANGES.

Execute a playbook configuration
To execute a playbook configuration:

1. In the Decapod web UI, navigate to CONFIGURATIONS.
2. Click EXECUTE to execute the required configuration. Once the execution starts, its state

changes to STARTED on the EXECUTIONS page.
3. To view the execution process, click LOGS.
4. Once the execution is finished, its status will change to COMPLETED. To download the entire

execution log, click DOWNLOAD.

Playbook plugins
Decapod uses plugins to manage Ceph. These plugins support various tasks, such as cluster
deployment, adding and removing of OSDs, and others. This section describes the available
playbook plugins and the main options these plugins support.

Deploy Ceph cluster
The Deploy Ceph cluster playbook plugin allows you to deploy an initial Ceph cluster. The plugin
supports all the capabilities and roles of ceph-ansible.

Note
The majority of configuration options described in this section match the ceph-ansible
settings. For a list of supported parameters, see official list.

Overview
The following table shows the general information about the Deploy Ceph cluster plugin:

Property Value
ID cluster_deploy
Name Deploy Ceph Cluster
Required Server List Yes

The following table lists the available hints for the plugin:

Hint Title Default
value Description

dmcrypt Use dmcrypted OSDs False Defines the dmcrypt usage
for OSD devices.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 83

https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample

collocation Collocate OSD data and
journal on same devices

False Defines whether the
journal and data have to be
placed on the same
devices.

rest_api Setup Ceph RestAPI False Defines the RestAPI
installation for Ceph.

mon_count The number of monitors to
deploy

3 Defines the number of
monitors.

The Deploy Ceph cluster plugin is tightly coupled with ceph-ansible versions. The following table
shows the mapping between the plugin version and the corresponding version of ceph-ansible.

Plugin
version ceph-ansible version

>=0.1,<0.2 v1.0.8
>=0.2,<0.3 v2.1.9

Parameters and roles
The Deploy Ceph cluster plugin has the following parameters:
ceph_facts_template

The path to custom Ceph facts template. Decapod deploys the custom facts module on the
nodes that collect the Ceph-related facts. Usually, you do not need to configure this
parameter.

ceph_stable
Set to true if it is required to install Ceph from the stable repository.

ceph_stable_repo, ceph_stable_release, ceph_stable_distro_source
The options define the repository where to obtain Ceph. In case of Ubuntu Xenial, you will
get the following repository string:

deb {{ ceph_stable_repo }} {{ ceph_stable_distro_source }} main

cluster
Defines the cluster name.

Important

Some tools require the ceph cluster name only. The default name allows executing the
ceph utility without an explicit cluster name and with the --cluster option.

cluster_network
Defines the cluster network.

copy_admin_key

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 84

https://github.com/ceph/ceph-ansible/tree/v1.0.8
https://github.com/ceph/ceph-ansible/tree/v2.1.9
http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref/

Copies the admin key to all nodes. This is required if you want to run the ceph utility from
any cluster node. Keep this option as true. Otherwise, it may break some playbooks that
maintain the lifecycle after deployment.

fsid
The unique identifier for your object store. Since you can run multiple clusters on the same
hardware, you must specify the unique ID of the object store when bootstrapping a monitor.

journal_collocation
Defines if the OSD will place its journal on the same disk with the data. It is false by default.
If you want to have separate disks for journals (SSDs) and data (rotationals), set this to false.
Also, set raw_multi_journal to true and list journal disks as raw_journal_devices.

raw_multi_journal
This option is the opposite to journal_collocation.

Note
The raw_multi_journal and journal_collocation options must have different values. For
example, if journal_collocation is set to true, set raw_multi_journal to false.

dmcrypt_journal_collocation
This option has the same meaning as journal_collocation but both journal and data disks are
encrypted by dmcrypt.

dmcrypt_dedicated_journal
This option has the same meaning as journal_collocation set to false. If
dmcrypt_dedicated_journal is set to true, the journal and data will be placed on different
disks and encrypted with dmcrypt.

journal_size
OSD journal size in megabytes.

max_open_files
Sets the number of open files to have on a node.

nfs_file_gw
Set to true to enable file access through NFS. Requires an MDS role.

nfs_obj_gw
Set to true to enable object access through NFS. Requires an RGW role.

os_tuning_params
Different kernels parameters. This is the list of dicts where name is the name of the
parameter and value is the value.

public_network
Defines the public network.

monitor_interface
The option defines the NIC on the host that is connected to the public network.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 85

http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref

devices
Defines the disks where to place the OSD data. If collocation is enabled, then journal
devices, raw_journal_devices, are not used.

raw_journal_devices
Defines the disks where to place the journals for OSDs. If collocation is enabled, this option
is not used.

The ceph-ansible project supports two deployment modes of a Ceph cluster: with journal
collocation and on separate drives, and also with dmcrypt and without it. Therefore, there are
four possible combinations.
The following table lists the possible combinations:

Setting Combination 1 Combination 2 Combination 3 Combination 4
collocation true true false false
dmcrypt true false true false
journal_collocati
on

false true false false

raw_multi_journ
al

true false false true

dmcrypt_journal
_collocation

false false false false

dmcrypt_dedicat
ed_journal

false false true false

Data devices
option name

devices devices devices devices

Journal devices
option name

-- -- raw_journal_devi
ces

raw_journal_devi
ces

Consider the different meaning of devices and raw_journal_devices in different modes: if no
collocation is defined, then devices means disks with data. Journals are placed on
raw_journal_devices disks. Otherwise, define devices only. In this case, the journal will be placed
on the same device as the data.

Configuration example
The following is an example of the Deploy Ceph cluster plugin configuration:

{
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/\
 decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 86

 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "dmcrypt_dedicated_journal": true,
 "dmcrypt_journal_collocation": false,
 "fsid": "e0b82a0d-b669-4787-8f4d-84f6733e45cd",
 "journal_collocation": false,
 "journal_size": 512,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "kernel.pid_max",
 "value": 4194303
 },
 {
 "name": "fs.file-max",
 "value": 26234859
 }
],
 "public_network": "10.10.0.0/24",
 "raw_multi_journal": false
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 87

]
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.9"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 88

 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.9"
],
 "rgws": []
 }
}

Add OSD host
The Add OSD host playbook plugin allows you to add a new host with OSDs to a cluster. The
plugin supports all the capabilities and roles of ceph-ansible.

Note
The majority of configuration options described in this section match the ceph-ansible
settings. For a list of supported parameters, see official list.

Overview
The following table shows the general information about the Add OSD host plugin:

Property Value
ID add_osd
Name Add OSD Host
Required server list Yes

The following table lists the available hints for the plugin:

Hint Title Default
value Description

dmcrypt Use dmcrypted OSDs False Defines the dmcrypt usage for
OSD devices.

collocation Collocate OSD data
and journal on same
devices

False Defines whether the journal and
data will be placed on the same
devices.

The Add OSD host plugin is tightly coupled with ceph-ansible versions. The following table shows
the mapping between the plugin version and the corresponding version of ceph-ansible.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 89

https://github.com/ceph/ceph-ansible/blob/master/group_vars/osds.yml.sample

Plugin
version ceph-ansible version

>=0.1,<0.2 v1.0.8
>=0.2,<0.3 v2.1.9

Parameters and roles
The Add OSD host plugin parameters are mostly the same as the ones for the Deploy Ceph
cluster plugin. However, the plugin has the following roles:
mons

Defines the nodes to deploy monitors.
osds

Defines the nodes to deploy OSDs.

Note
For consistency, Decapod checks the Ceph version it is going to deploy. If a Ceph cluster
has inconsistent versions, the deployment stops and you must fix the versions withing the
cluster. If the Ceph version you are going to deploy is newer that the deployed ones, the
process will also stop and you must update the cluster packages first.
The following parameters are responsble for such checks:
ceph_version_verify

A boolean setting that checks that strict mode is enabled. If set to false, no verification
described above is performed.

ceph_version_verify_packagename
The name of the package to check. It is not required to configure this setting.

Configuration example
The following is an example of the Add OSD host plugin configuration:

{
 "data": {
 "cluster_id": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/\
 dist-packages/shrimp_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 90

https://github.com/ceph/ceph-ansible/tree/v1.0.8
https://github.com/ceph/ceph-ansible/tree/v2.1.9

 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "kernel.pid_max",
 "value": 4194303
 },
 {
 "name": "fs.file-max",
 "value": 26234859
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.2": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.3": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "mons": [
 "10.10.0.2"
],
 "osds": [
 "10.10.0.3",
],
 }
 },
 "name": "add_osd_name",
 "playbook_id": "add_osd"

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 91

 },
 "id": "fd76cea9-3efa-4432-854c-fee30ca79ddb",
 "initiator_id": "9d010f3f-2ec0-4079-ae8c-f46415e2530c",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1478174220,
 "version": 2
}

Remove OSD host
The Remove OSD host playbook plugin allows you to remove a host with OSDs from a cluster.

Overview
The following table shows the general information about the Remove OSD host plugin:

Property Value
ID remove_osd
Name Remove OSD Host
Required Server List Yes

Configuration example
The following is an example of the Remove OSD host plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9"
],
 "osds": [
 "10.10.0.12"
]

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 92

 }
}

This playbook has the simplest possible configuration. You only need to define the monitors and
the OSD to remove.

Add monitor host
The Add monitor host playbook plugin allows you to add a new host with monitors to a cluster.
The plugin supports all the capabilities and roles of ceph-ansible.

Note
The majority of configuration options described in this section match the ceph-ansible
settings. For a list of supported parameters, see official list.

Overview
The following table shows the general information about the Add monitor host plugin:

Property Value
ID add_mon
Name Add Monitor Host
Required Server List Yes

The Add monitor host plugin is tightly coupled with ceph-ansible versions. The following table
shows the mapping between the plugin version and the corresponding version of ceph-ansible.

Plugin
version ceph-ansible version

>=0.2,<0.3 v2.1.9

Parameters and roles
The Add monitor host plugin parameters are mostly the same as the ones for the Deploy Ceph
cluster plugin. However, the plugin has the following role:
mons

Defines the nodes to deploy monitors.

Note
For consistency, Decapod checks the Ceph version it is going to deploy. If a Ceph cluster
has inconsistent versions, the deployment stops and you must fix the versions withing the

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 93

https://github.com/ceph/ceph-ansible/blob/master/group_vars/mons.yml.sample
https://github.com/ceph/ceph-ansible/tree/v2.1.9

cluster. If the Ceph version you are going to deploy is newer that the deployed ones, the
process will also stop and you must update the cluster packages first.
The following parameters are responsble for such checks:
ceph_version_verify

A boolean setting that checks that strict mode is enabled. If set to false, no verification
described above is performed.

ceph_version_verify_packagename
The name of the package to check. It is not required to configure this setting.

Configuration example
The following is an example of the Add monitor host plugin configuration:

{
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/\
 decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "d5069dc9-05d9-4ef2-bc21-04a938917260",
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 94

 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 }
 }
 },
 "mons": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.8",
 "10.10.0.9"
]
 }
}

Remove monitor host
The Remove monitor host playbook plugin allows you to remove a host with monitor from a
cluster.

Overview
The following table shows general information about the Remove monitor host plugin:

Property Value
ID remove_mon
Name Remove monitor host
Required server list Yes

Note
You must have enough monitor hosts to make PAXOS quorum.

Configuration example
The following is an example of the Remove monitor host plugin configuration:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 95

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9",
 "10.10.0.12"
]
 }
}

This playbook has the simplest possible configuration. You only need to define the monitors you
want to remove.

Purge cluster
The Purge cluster playbook plugin allows you to remove a host with OSDs from a cluster.

Overview
The following table shows the general information about the Purge cluster plugin:

Property Value
ID purge_cluster
Name Purge Cluster
Required Server List No

Parameters and roles
The Purge cluster plugin has the following parameter:
cluster

Defines the name of the cluster.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 96

Important

Some tools require the ceph cluster name only. The default name allows executing the
ceph utility without an explicit cluster name and with the --cluster option.

Configuration example
The following is an example of the Purge cluster plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible"
 },
 "10.10.0.11": {
 "ansible_user": "ansible"
 },
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.8": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9"
],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "restapis": [
 "10.10.0.9"
]

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 97

 }
}

This playbook has the simplest possible configuration. You only need to define the nodes and
their roles.

Telegraf integration
The Telegraf integration playbook plugin activates the Ceph metrics in Telegraf. These metrics
can be sent to Prometheus, InfluxDB, or any other endpoint.

Overview
The following table shows general information about the Telegraf integration plugin:

Property Value
ID telegraf_integration
Name Telegraf Integration
Required Server List Yes

The plugin uses a standalone Ansible role from Ansible Galaxy. The following table shows the
versions mapping:

Plugin
version Ansible Galaxy version

>=0.2,<0.3 dj-wasabi.telegraf 0.7.0

Configuration example
The following is an example of the Telegraf integration plugin configuration:

{
 "global_vars": {
 "ceph_binary": "/usr/bin/ceph",
 "ceph_config": "/etc/ceph/ceph.conf",
 "ceph_user": "client.admin",
 "configpath": "/etc/telegraf/telegraf.conf",
 "gather_admin_socket_stats": true,
 "gather_cluster_stats": true,
 "install": true,
 "interval": "1m",
 "mon_prefix": "ceph-mon",
 "osd_prefix": "ceph-osd",
 "socket_dir": "/var/run/ceph",
 "socket_suffix": "asock",
 "telegraf_agent_collection_jitter": 0,
 "telegraf_agent_deb_url": "https://dl.influxdata.com/telegraf/releases/telegraf_1.1.2_amd64.deb",
 "telegraf_agent_debug": false,

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 98

https://www.influxdata.com/time-series-platform/telegraf/
https://galaxy.ansible.com/dj-wasabi/telegraf/

 "telegraf_agent_flush_interval": 10,
 "telegraf_agent_flush_jitter": 0,
 "telegraf_agent_interval": 10,
 "telegraf_agent_logfile": "",
 "telegraf_agent_metric_batch_size": 1000,
 "telegraf_agent_metric_buffer_limit": 10000,
 "telegraf_agent_omit_hostname": false,
 "telegraf_agent_output": [
 {
 "config": [
 "urls = [\"http://localhost:8086\"]",
 "database = \"telegraf\"",
 "precision = \"s\""
],
 "type": "influxdb"
 }
],
 "telegraf_agent_quiet": false,
 "telegraf_agent_round_interval": true,
 "telegraf_agent_tags": {},
 "telegraf_agent_version": "1.1.2",
 "telegraf_plugins_default": [
 {
 "config": [
 "percpu = true"
],
 "plugin": "cpu"
 },
 {
 "plugin": "disk"
 },
 {
 "plugin": "io"
 },
 {
 "plugin": "mem"
 },
 {
 "plugin": "net"
 },
 {
 "plugin": "system"
 },
 {
 "plugin": "swap"
 },
 {
 "plugin": "netstat"
 }

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 99

],
 "telegraf_plugins_extra": {}
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.0.0.20": {
 "ansible_user": "ansible"
 }
 }
 },
 "telegraf": [
 "10.0.0.20"
]
 }
}

Seealso

• Ceph storage input plugin
• Telegraf source for Ceph storage

Telegraf removal
While the Telegraf integration plugin installs and configures Telegraf, the Telegraf removal
plugin uninstalls Telegraf or its managed section from the configuration.

Overview
The following table shows general information about the Telegraf removal plugin:

Property Value
ID purge_telegraf
Name Telegraf removal
Required Server List Yes

The following hints are available for the plugin:
remove_config_section_only

If set to true, the plugin will remove the corresponding section created by Telegraf
integration plugin from /etc/telegraf/telegraf.conf.

Configuration example
The following is an example of the Telegraf removal plugin configuration:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 100

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/ceph
https://galaxy.ansible.com/dj-wasabi/telegraf/

{
 "global_vars": {
 "configpath": "/etc/telegraf/telegraf.conf",
 "remove_config_section_only": false
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.0.0.20": {
 "ansible_user": "ansible"
 }
 }
 },
 "telegraf": [
 "10.0.0.20"
]
 }
}

Cinder integration
The Cinder integration plugin allows you to perform an integration between a deployed Ceph
cluster and the OpenStack Block storage service (Cinder).

Overview
The following table shows general information about the Cinder integration plugin:

Property Value
ID cinder_integration
Name Cinder Integration
Required Server List No

The following table lists the available hints for the plugin:

Hint Title Default
value Description

cinder Use Cinder with Ceph
back end

True Defines if Cinder will be used
with Ceph back end. This is
required to create a volumes
pool by default.

Cinder requires keyrings and the contents of the Ceph configuration file, for example, ceph.conf.
This plugin creates required keyrings in Ceph, creates required pools, and allows Decapod to
return required files.
To integrate Cinder:

1. Run the plugin through the Decapod Web UI.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 101

2. Obtain the required files:

$ decapod cluster cinder-integration a2b813b2-df23-462b-8dab-6a80f9bc7fce

Where a2b813b2-df23-462b-8dab-6a80f9bc7fce is the cluster ID. This command will return
the contents of required files.
To obtain the files and store in the file system, use the --store option:

$ decapod cluster cinder-integration --store 8b205db5-3d29-4f1b-82a5-e5cefb522d4f

This command will output the contents of the files and store them in the file system.

Parameters and roles
The Cinder integration plugin has the following parameters:
cluster

Name of the cluster to use.
clients

A mapping of client to create in Ceph for permissions.
pools

A mapping of pool name to PG count that should be used.

Configuration example
The following is an example of the Cinder integration plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.0.0.20": {
 "ansible_user": "ansible",
 "clients": {
 "compute": {
 "mon": "allow r",
 "osd": "allow class-read object_prefix rbd_children, allow \
 rwx pool=compute, allow rwx pool=volumes, allow rx pool=images"
 },
 "images": {
 "mon": "allow r",
 "osd": "allow class-read object_prefix rbd_children, allow \
 rwx pool=images"
 },

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 102

 "volumes": {
 "mon": "allow r",
 "osd": "allow class-read object_prefix rbd_children, allow \
 rwx pool=volumes, allow rx pool=images"
 }
 },
 "pools": {
 "compute": 64,
 "images": 64,
 "volumes": 64
 }
 }
 }
 },
 "mons": [
 "10.0.0.20"
]
 }
}

Use the Decapod CLI
Install the Decapod CLI
To install the Decapod CLI on a local machine, install two packages:

• decapodlib, the RPC client library to access the Decapod API
• decapod-cli, the CLI wrapper for the library

To install the Decapod CLI:

1. At the top level of the source code repository, run the following command to build the
packages and place them to the output/eggs directory:

$ make build_eggs

2. Install the packages:

$ pip install output/eggs/decapodlib*.whl output/eggs/decapod_cli*.whl

3. Run decapod to verify the installation.

Seealso

• Access the Decapod CLI

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 103

Access the Decapod CLI
To access Decapod, you need to know its URL (http://10.10.0.2:9999 or https://10.10.0.2:10000),
your username and password (root/root for a development installation).
To access Decapod using CLI:

1. Set your credentials directly to the Decapod CLI or use the environment variables:

export DECAPOD_URL=http://10.10.0.2:9999
export DECAPOD_LOGIN=root
export DECAPOD_PASSWORD=root

Save this to a file and source when required.
2. Verify that it works:

$ decapod -u http://10.10.0.2:9999 -l root -p root user get-all

If you used environment variables, run:

$ decapod user get-all

Cluster deployment workflow
This section describes the cluster deployment workflow and includes the following topics:

Create a cluster
To create a cluster:

1. Verify that you can log in to the Decapod using CLI.
2. To create a cluster, run:

$ decapod cluster create <CUSTER_NAME>

Example:

$ decapod cluster create ceph
{
 "data": {
 "configuration": {},
 "name": "ceph"
 },
 "id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "cluster",
 "time_deleted": 0,
 "time_updated": 1479902503,

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 104

http://10.10.0.2:9999
https://10.10.0.2:10000

 "version": 1
}

As a result, a new cluster with the name ceph and ID
f2621e71-76a3-4e1a-8b11-fa4ffa4a6958 has been created. This ID is required for creating
the playbook configuration.

3. Proceed to Discover a server.

Discover a server
To discover a server:

1. Generate the user-data configuration for cloud-init. For details, see Generate user data.
The cloud-init execution generates the content of /etc/rc.local. The first and next reboots
will call the Decapod API for server registering. Such registration is an idempotent
operation. The execution of the Decapod API (POST /v1/server) creates a task for the
controller server on facts discovery. The controller executes this task and collects facts from
the remote host. A new server model is created or the information on the existing one is
updated.

2. With this configuration, deploy an operating system on a Ceph node. For an example of
such deployment, see: Deploy an OS on a Ceph node, official cloud-init documentation, or
use kernel parameters.

As a result, the server should be listed in Decapod. The server discovery takes time because of
cloud-init. Therefore, the server may appear in five minutes after deployment. Once the server
appears in Decapod, the tool can use it.

Seealso
Ceph cluster deployed by Decapod in MCP Reference Architecture

Create a playbook configuration
To create a playbook configuration:

1. List the existing playbooks:

$ decapod playbook get-all
{
 "items": [
 {
 "description": "Adding new OSD to the cluster.\n\nThis \
 plugin adds OSD to the existing cluster.",
 "id": "add_osd",
 "name": "Add OSD to Ceph cluster",
 "required_server_list": true

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 105

http://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt

 },
 {
 "description": "Ceph cluster deployment playbook.\n\nThis \
 plugin deploys Ceph cluster into a set of servers. After \
 sucessfull deployment, cluster model will be updated.",
 "id": "cluster_deploy",
 "name": "Deploy Ceph cluster",
 "required_server_list": true
 },
 {
 "description": "Example plugin for playbook.\n\nThis plugin \
 deploys simple hello world service on remote machine \
 If\nremote machine host is 'hostname', \
 then http://hostname:8085 will\nrespond with \
 '{\"result\": \"ok\"}' JSON.",
 "id": "hello_world",
 "name": "Hello World",
 "required_server_list": false
 },
 {
 "description": "Purge whole Ceph cluster.\n\nThis plugin \
 purges whole Ceph cluster. It removes packages, all data,\
 \nreformat Ceph devices.",
 "id": "purge_cluster",
 "name": "Purge cluster",
 "required_server_list": false
 },
 {
 "description": "Remove OSD host from cluster.",
 "id": "remove_osd",
 "name": "Remove OSD host from Ceph cluster",
 "required_server_list": true
 }
]
}

This will list the available playbooks in details. The name and description are the
human-readable items to display in the Decapod UI.

2. Note the ID of the Ceph cluster deployment playbook. It is cluster_deploy in the example
above.

3. The cluster deployment playbook requires a list of servers to operate with (field
required_server_list is true). To list the available servers:

$ decapod server get-all

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 106

Note
The output of this command can be quite long. Therefore, we recommend that you
use a tool for listing. One of the best tools available to work with JSON in CLI is jq.

4. Obtain the required server IDs:

• Extract the IDs manually
• Use compact listing:

$ decapod server get-all --compact
"machine_id","version","fqdn","username","default_ip",\
"interface=mac=ipv4=ipv6","..."
"015fd324-4437-4f28-9f4b-7e3a90bdc30f","1","chief-gull.maas","ansible",\
"10.10.0.9","ens3=52:54:00:29:14:22=10.10.0.9=fe80::5054:ff:fe29:1422"
"7e791f07-845e-4d70-bff1-c6fad6bfd7b3","1","exotic-swift.maas","ansible",\
"10.10.0.11","ens3=52:54:00:05:b0:54=10.10.0.11=fe80::5054:ff:fe05:b054"
"70753205-3e0e-499d-b019-bd6294cfbe0f","1","helped-pig.maas","ansible",\
"10.10.0.12","ens3=52:54:00:01:7c:1e=10.10.0.12=fe80::5054:ff:fe01:7c1e"
"40b96868-205e-48a2-b8f6-3e3fcfbc41ef","1","joint-feline.maas","ansible",\
"10.10.0.10","ens3=52:54:00:4a:c3:6d=10.10.0.10=fe80::5054:ff:fe4a:c36d"
"8dd33842-fee6-4ec7-a1e5-54bf6ae24710","1","polite-rat.maas","ansible",\
"10.10.0.8","ens3=52:54:00:d4:da:29=10.10.0.8=fe80::5054:ff:fed4:da29"

Where machine_id is the server ID.
• Use the jq tool mentioned above:

$ decapod server get-all | jq -rc '.[]|.id'
015fd324-4437-4f28-9f4b-7e3a90bdc30f
7e791f07-845e-4d70-bff1-c6fad6bfd7b3
70753205-3e0e-499d-b019-bd6294cfbe0f
40b96868-205e-48a2-b8f6-3e3fcfbc41ef
8dd33842-fee6-4ec7-a1e5-54bf6ae24710

Note
We recommend using the jq tool as the compact representation shows only a limited
amount of information. Using jq allows you to extract any certain data.

5. At this step you should have all the required data to create a playbook configuration:

• The cluster name (can be any)
• The playbook name

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 107

https://stedolan.github.io/jq/

• The cluster ID
• The server IDs

6. Create a playbook configuration using the following command:

$ decapod playbook-configuration create <NAME> <PLAYBOOK> <CLUSTER_ID> [SERVER_IDS]...

Example:

$ decapod playbook-configuration create deploy cluster_deploy \
f2621e71-76a3-4e1a-8b11-fa4ffa4a6958 015fd324-4437-4f28-9f4b-7e3a90bdc30f \
7e791f07-845e-4d70-bff1-c6fad6bfd7b3 70753205-3e0e-499d-b019-bd6294cfbe0f \
40b96868-205e-48a2-b8f6-3e3fcfbc41ef 8dd33842-fee6-4ec7-a1e5-54bf6ae24710
{
 "data": {
 "cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/\
 dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 108

 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 109

 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.9"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.9"
],
 "rgws": []
 }
 },
 "name": "deploy",
 "playbook_id": "cluster_deploy"
 },
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1479906402,
 "version": 1
}

Where the playbook configuration ID is fd499a1e-866e-4808-9b89-5f582c6bd29e.

Update a playbook configuration
You may need to update a playbook configuration, for example, to use another host for the
monitor.
To do so, update the playbook model using one of the following ways:

• Edit the playbook and send to stdin of the decapod playbook-configuration update
fd499a1e-866e-4808-9b89-5f582c6bd29e command where
fd499a1e-866e-4808-9b89-5f582c6bd29e is the playbook configuration ID.

• Run an external editor with the --model-editor option. Using this option, the Decapod CLI
downloads the model and sends its data field to the editor. After you save and close the

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 110

editor, the updated model is sent to the Decapod API. To use this model, verify that your
editor is set using the env | grep EDITOR command.

• Dump JSON with modifications and inject into the --model option.

Important

Avoid updating fields outside of the data field (that is why the --model-editor option shows
only the data field). Sending the whole model back to the Decapod API allows keeping
consistent behavior of the Decapod API.

To update a playbook configuration:

1. Run the decapod playbook-configuration update command with the --model-editor flag.
Example:

$ decapod playbook-configuration update fd499a1e-866e-4808-9b89-5f582c6bd29e --model-editor
{
 "data": {
 "cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/\
 dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 111

 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 112

 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.8"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.9"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.8"
],
 "rgws": []
 }
 },
 "name": "deploy",
 "playbook_id": "cluster_deploy"
 },
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1479907354,
 "version": 2
}

The example above shows replacing 10.10.0.9 in mons/restapis and adding it to the OSD
list, and also placing the 10.10.0.8 from OSDs to mons/restapis. As a result, the playbook
configuration ID is fd499a1e-866e-4808-9b89-5f582c6bd29e and the version is 2.

2. Save your changes and exit the editor. Proceed to Execute a playbook configuration.

Execute a playbook configuration
To execute a playbook configuration:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 113

1. Run decapod execution create with the playbook configuration ID and version.
Example:

$ decapod execution create fd499a1e-866e-4808-9b89-5f582c6bd29e 2
{
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "created"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 1
}

Once done, the playbook configuration is in the created state. It takes some time for the
execution to start.

2. To verify that the execution has started, use the decapod execution get command with the
execution ID.
Example:

 $ decapod execution get f2fbb668-6c89-42d2-9251-21e0b79ae973
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "started"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 2
}

Once completed, the execution state will turn to completed.
Additionally, you can perform the following actions:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 114

• Track the execution steps using the decapod execution steps command with the execution
ID.
Example:

$ decapod execution steps f2fbb668-6c89-42d2-9251-21e0b79ae973
[
 {
 "data": {
 "error": {},
 "execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "name": "add custom repo",
 "result": "skipped",
 "role": "ceph.ceph-common",
 "server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
 "time_finished": 1479908609,
 "time_started": 1479908609
 },
 "id": "58359d01b3670f0089d9330b",
 "initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "model": "execution_step",
 "time_deleted": 0,
 "time_updated": 1479908609,
 "version": 1
 },
 {
 "data": {
 "error": {},
 "execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "name": "add gluster nfs ganesha repo",
 "result": "skipped",
 "role": "ceph.ceph-common",
 "server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
 "time_finished": 1479908609,
 "time_started": 1479908609
 },
 "id": "58359d01b3670f0089d9330c",
 "initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "model": "execution_step",
 "time_deleted": 0,
 "time_updated": 1479908609,
 "version": 1
 }
]

• View the execution history using the decapod execution get-version-all command with the
execution ID.
Example:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 115

$ decapod execution get-version-all f2fbb668-6c89-42d2-9251-21e0b79ae973
[
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "completed"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479909342,
 "version": 3
 },
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "started"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 2
 },
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "created"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 1
 }
]

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 116

• Once the execution is done, view the entire execution log using the decapod execution log
command with the execution ID.
Example:

$ decapod execution log f2fbb668-6c89-42d2-9251-21e0b79ae973
Using /etc/ansible/ansible.cfg as config file
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/deploy_monitors.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/start_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/ceph_keys.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/openstack_config.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/create_mds_filesystems.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/secure_cluster.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/./docker/main.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/checks.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/dirs_permissions.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/create_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/fetch_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/selinux.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/start_docker_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/copy_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/calamari.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph-agent/tasks/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/\

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 117

decapod_ansible/ceph-ansible/roles/ceph-agent/tasks/start_agent.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/\
decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml

...

TASK [ceph-restapi : run the ceph rest api docker image] ***********************
task path: /usr/local/lib/python2.7/dist-packages/decapod_ansible/\
ceph-ansible/roles/ceph-restapi/tasks/docker/start_docker_restapi.yml:2
skipping: [10.10.0.8] => {"changed": false, "skip_reason": "Conditional check failed", "skipped": true}

PLAY [rbdmirrors] **
skipping: no hosts matched

PLAY [clients] ***
skipping: no hosts matched

PLAY [iscsigws] **
skipping: no hosts matched

PLAY RECAP ***
10.10.0.10 : ok=61 changed=12 unreachable=0 failed=0
10.10.0.11 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.12 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.8 : ok=90 changed=19 unreachable=0 failed=0
10.10.0.9 : ok=60 changed=12 unreachable=0 failed=0

Admin service

Important

The Admin service must be used only by experienced users and administrators.

Along with ordinary Decapod Docker containers, docker-compose runs an optional but strongly
recommended service called the admin service. This service provides special containers that act
like a lightweight virtual machine with configured command-line interface and a decapod-admin
tool that performs maintenance of low-level operations on Decapod or cluster.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 118

This service has a number of additional utilities, such as vim, nano, less, jq, yaql,
jmespath-terminal, and jp. Vim is configured as a default editor. Basically, it means that you can
execute decapod from a container as is.

root@7252bfd5947d:/# decapod user get-all
[
 {
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "e6ba587a-6256-401a-8734-8cead3d7a4c7"
 },
 "id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1487146111,
 "version": 1
 }
]
root@7252bfd5947d:/# decapod user get-all | jp '[0].id'
"7a52f762-7c2d-4164-b779-15f86f4aef2a"
root@7252bfd5947d:/# decapod user get-all | jq -r '.[0]|.id'
7a52f762-7c2d-4164-b779-15f86f4aef2a

The admin service runs Cron jobs that perform Keystone synchronization, monitoring, and data
collection.
Additionally, the Decapod admin service enables various maintenance and admin tasks as
described in the following topics.

Access the admin service
To access the Decapod admin service:

$ docker-compose -p PROJECT_NAME exec admin bash

Note
The -p option is the name of the project. If you have not specified it when running
docker-compose, do not specify it now.

As a result, you will enter the container. The default environment allows you to run the decapod
utility with a configured URL and login/password pair root/root.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 119

root@7252bfd5947d:/# env | grep DECAPOD
DECAPOD_PASSWORD=root
DECAPOD_LOGIN=root
DECAPOD_URL=http://frontend:80

The admin service provides bundled documentation within the container. To access
documentation:

1. Obtain the documentation port. The port is the value of the DECAPOD_DOCS_PORT
environment variable and is 9998 by default.

2. Access the documentation using the obtained port and your credentials. For example, if you
access Decapod using http://10.0.0.10:9999, the documentation will be served on
http://10.0.0.10:9998.

Apply migrations
Migrations in Decapod are similar to migrations in databases but affect not only the schema but
also the data. The main idea of such a migration is to adapt the existing data to a newer version
of Decapod. For all available commands and options related to migrations, run decapod-admin
migration --help.
To get a list of migrations, run decapod-admin migration list all.
Example:

root@7252bfd5947d:/# decapod-admin migration list all
[applied] 0000_index_models.py
[applied] 0001_insert_default_role.py
[applied] 0002_insert_default_user.py
[applied] 0003_native_ttl_index.py
[applied] 0004_migrate_to_native_ttls.py
[applied] 0005_index_cluster_data.py
[applied] 0006_create_cluster_data.py
[applied] 0007_add_external_id_to_user.py

You can apply migrations at any time. Decapod tracks migrations that have already been
applied. To apply migrations, run decapod-admin migration apply or decapod-admin migration
apply MIGRATION_NAME to apply a particular migration.
Example:

root@7252bfd5947d:/# decapod-admin migration apply
2017-02-15 10:19:25 [DEBUG] (lock.py:118): Lock \
applying_migrations was acquire by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c
2017-02-15 10:19:25 [DEBUG] (lock.py:183): Prolong thread for \
locker applying_migrations of lock 071df271-d0ba-4fdc-83d0-49575d0acf3c \
has been started. Thread MongoLock prolonger \
071df271-d0ba-4fdc-83d0-49575d0acf3c for applying_migrations, ident 140625762334464
2017-02-15 10:19:25 [INFO] (migration.py:119): No migration are \

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 120

required to be applied.
2017-02-15 10:19:25 [DEBUG] (lock.py:202): Prolong thread for \
locker applying_migrations of lock 071df271-d0ba-4fdc-83d0-49575d0acf3c \
has been stopped. Thread MongoLock prolonger \
071df271-d0ba-4fdc-83d0-49575d0acf3c for applying_migrations, ident 140625762334464
2017-02-15 10:19:25 [DEBUG] (lock.py:124): Try to release lock \
applying_migrations by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c.
2017-02-15 10:19:25 [DEBUG] (lock.py:140): Lock \
applying_migrations was released by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c.

To show details on a migration, run decapod-admin migration show MIGRATION_NAME.
Example:

root@7252bfd5947d:/# decapod-admin migration show 0006_create_cluster_data.py
Name: 0006_create_cluster_data.py
Result: ok
Executed at: Wed Feb 15 08:08:36 2017
SHA1 of script: 73eb7adeb1b4d82dd8f9bdb5aadddccbcef4a8b3

-- Stdout:
Migrate 0 clusters.

-- Stderr:

Generate cloud-init user data configuration
You can generate user data configuration for cloud-init as described in Generate user data.
Alternatively, use the decapod-admin.
To generate user data configuration using the decapod-admin tool, run decapod-admin
cloud-config [OPTIONS] PUBLIC_URL specifying the URL accessible by Ceph nodes. For all
available options, run decapod-admin cloud-config --help.
Example:

root@7252bfd5947d:/# decapod-admin cloud-config http://10.0.0.10:9999
#cloud-config
packages: [python]
runcmd:
- [echo, === START DECAPOD SERVER DISCOVERY ===]
- [sh, -xc, 'grep -q ''/usr/share/server_discovery.sh'' /etc/rc.local || \
sed -i ''s?^exit 0?/usr/share/server_discovery.sh >> /var/log/\
server_discovery.log 2>\&1\nexit 0?'' /etc/rc.local']
- [sh, -xc, systemctl enable rc-local.service || true]
- [sh, -xc, /usr/share/server_discovery.sh 2>&1 | tee -a /var/log/\
server_discovery.log]
- [echo, === FINISH DECAPOD SERVER DISCOVERY ===]
users:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 121

- groups: [sudo]
 name: ansible
 shell: /bin/bash
 ssh-authorized-keys: [ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC7K9bHPrSu5V\
 HnUOis2Uwc822fMyPTtwjfOkzNi/\
 oVOxmd1QE3DilrO5fJ33pRwEj7r1DfTlJmZWs8XwWaaUXkQ+iyfRPtgt/Ox+X5A/XaLdi/\
 yz7UjnHc8ERDUT/z73RzDwf21KNQOopGRuyhe+gvGZ5mhYDz3bnnYY9IRBNYaGw4bjS0q1\
 AbkPa1PvCo7P5b5UuRjhi4H74zCFkQD4evQsrQOcgev5GimnODqMntU0jnI/eEJwnnd1TcY\
 G7dS6FqMWpFX1gqcKjFIuqNTZLYzJu9U8mxxKmGOQSI6KWfP0etBw1YRHRIfdZmdaqSKHh0\
 ZhUUHjbf8Hb5Vqv1Fkzf0cGPbfrazEDI5FaVjkZMGFfdgs1be6xO7NHqzu1JJ3ZEur28o0A\
 QyOVvrEJIxQayDM0qyKi7B4+j6QDL0CDaWN3dUZO45il/KOm/eXCm4yQg0ImXHUmsDoW+6W\
 6akI/fSCAn8r9GK2QBBJPeTPA95WlOSXtICnrsqgb74yKPEsslzfrTUIiyoXBuuR9o5OoPX\
 ghKrazqcTeK/Vdl7w4nZ00O4jllHMTrS1xyubN0QeBd+3D8Hy2bN5h7WjiJsZ2XhlKR0Z1i5\
 AbgCR9hfQl84aFIXRARz+6uuDDHe2ONXujcS9jhuN7SOLGckiaXNfAeAsbEkYZytnUgdoxbHYSfzw==]
 sudo: ['ALL=(ALL) NOPASSWD:ALL']
write_files:
- content: |
 #-*- coding: utf-8 -*-

 from __future__ import print_function

 import json
 import ssl
 import sys

 try:
 import urllib.request as urllib2
 except ImportError:
 import urllib2

 data = {
 "username": 'ansible',
 "host": sys.argv[1].lower().strip(),
 "id": sys.argv[2].lower().strip()
 }
 headers = {
 "Content-Type": "application/json",
 "Authorization": '26758c32-3421-4f3d-9603-e4b5337e7ecc',
 "User-Agent": "cloud-init server discovery"
 }

 def get_response(url, data=None):
 if data is not None:
 data = json.dumps(data).encode("utf-8")
 request = urllib2.Request(url, data=data, headers=headers)
 request_kwargs = {"timeout": 20}
 if sys.version_info >= (2, 7, 9):
 ctx = ssl.create_default_context()
 ctx.check_hostname = False

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 122

 ctx.verify_mode = ssl.CERT_NONE
 request_kwargs["context"] = ctx
 try:
 return urllib2.urlopen(request, **request_kwargs).read()
 except Exception as exc:
 print("Cannot request {0}: {1}".format(url, exc))

 metadata_ip = get_response('http://169.254.169.254/latest/meta-data/public-ipv4')
 if metadata_ip is not None:
 data["host"] = metadata_ip
 print("Use IP {0} discovered from metadata API".format(metadata_ip))

 response = get_response('http://10.0.0.10:9999', data)
 if response is None:
 sys.exit("Server discovery failed.")
 print("Server discovery completed.")
 path: /usr/share/server_discovery.py
 permissions: '0440'
- content: |
 #!/bin/bash
 set -xe -o pipefail

 echo "Date $(date) | $(date -u) | $(date '+%s')"

 main() {
 local ip="$(get_local_ip)"
 local hostid="$(get_local_hostid)"

 python /usr/share/server_discovery.py "$ip" "$hostid"
 }

 get_local_ip() {
 local remote_ipaddr="$(getent ahostsv4 "10.0.0.10" | head -n 1 | cut -f 1 -d ' ')"

 ip route get "$remote_ipaddr" | head -n 1 | rev | cut -d ' ' -f 2 | rev
 }

 get_local_hostid() {
 dmidecode | grep UUID | rev | cut -d ' ' -f 1 | rev
 }

 main
 path: /usr/share/server_discovery.sh
 permissions: '0550'

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 123

Back up and restore database
Using the decapod-admin tool, you can back up and restore MongoDB, the main storage system
used by Decapod. The archive format created by this tool is a native MongoDB archive that is
compressed by default.
The output of decapod-admin db backup and decapod-admin db restore is similar to the output
of mongodump --archive --gzip and mongorestore --archive --gzip. The decapod-admin tool uses
/etc/decapod/config.yaml to read Decapod MongoDB settings and correctly constructs the
command line taking the SSL settings into account. To get a list of available commands and
options, run decapod-admin db --help.
To back up the database:

$ decapod-admin db backup > backupfile

To restore the database:

$ decapod-admin db restore < backupfile

If you do not require compression, use the -r flag. In such case, mongodump and mongorestore
will not use the --gzip flag.

Seealso
Archiving and compression in MongoDB tools

SSH to Ceph hosts
Using the decapod-admin tool, you can SSH to remote hosts with the same user as used by
Ansible.
To SSH to a remote host, use the decapod-admin ssh server-ip SERVER_IP or decapod-admin ssh
server-id SERVER_ID command.
Example:

root@7252bfd5947d:/# decapod-admin ssh server-id 8cf8af12-89a0-477d-85e7-ce6cbe5f8a07
2017-02-15 09:42:40 [DEBUG] (ssh.py:111): Execute \
['/usr/bin/ssh', '-4', '-tt', '-x', '-o', 'UserKnownHostsFile=/dev/null', \
'-o', 'StrictHostKeyChecking=no', '-l', 'ansible', '-i', \
'/root/.ssh/id_rsa', '10.0.0.23']
Warning: Permanently added '10.0.0.23' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-22-generic x86_64)

 * Documentation: https://help.ubuntu.com/

171 packages can be updated.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 124

https://www.mongodb.com/blog/post/archiving-and-compression-in-mongodb-tools

73 updates are security updates.

Last login: Wed Feb 15 09:30:45 2017 from 10.0.0.10
ansible@ceph-node04:~$ whoami
ansible

For all available options, run decapod-admin ssh --help.

Execute SSH in parallel
You may need to execute commands on remote hosts in parallel. For such purposes,
decapod-admin uses its own implementation of pdsh integrated with Decapod.
Using decapod-admin pdsh, you can execute commands on multiple hosts in parallel, upload
files and download them from remote hosts. For details on decapod-admin pdsh usage and all
available commands and options, run decapod-admin pdsh --help.
Examples

root@7252bfd5947d:/# decapod-admin pdsh exec -- ls -la
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: total 32
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: drwxr-xr-x 5 ansible ansible 4096 Feb 15 09:22 .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : total 32
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:40 .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 125

https://linux.die.net/man/1/pdsh

: -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: total 36
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:00 .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw------- 1 ansible ansible 7 Feb 15 09:43 .bash_history
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : total 32
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:30 .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 126

: drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful

root@7252bfd5947d:/# decapod-admin pdsh upload /etc/decapod/config.yaml .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: Start to upload /etc/decapod/config.yaml to .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: Finished uploading of /etc/decapod/config.yaml to .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: Start to upload /etc/decapod/config.yaml to .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: Start to upload /etc/decapod/config.yaml to .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: Finished uploading of /etc/decapod/config.yaml to .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: Finished uploading of /etc/decapod/config.yaml to .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: Start to upload /etc/decapod/config.yaml to .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: Finished uploading of /etc/decapod/config.yaml to .

root@7252bfd5947d:/# decapod-admin pdsh exec -- ls -lah config.yaml
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml

root@7252bfd5947d:/# decapod-admin pdsh download config.yaml results/
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 \
: Start to download config.yaml to results/9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 \
: Start to download config.yaml to results/26261da0-2dde-41e9-8ab6-8836c806623e
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 \
: Start to download config.yaml to results/8cf8af12-89a0-477d-85e7-ce6cbe5f8a07
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 \
: Start to download config.yaml to results/62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93

Restore entities
You can restore entities that were explicitly or accidentally deleted, for example, a cluster, user,
server, role, and others. To restore a deleted entity, use the decapod-admin restore ITEM_TYPE
ITEM_ID command specifying the type of the entity and its ID.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 127

Example:

root@7252bfd5947d:/# decapod-admin restore user 6805075b-e40d-4800-8520-8569dd7327bd
{
 "data": {
 "email": "test@example.com",
 "full_name": "Full",
 "login": "test",
 "role_id": null
 },
 "id": "6805075b-e40d-4800-8520-8569dd7327bd",
 "initiator_id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "model": "user",
 "time_deleted": 1487154755,
 "time_updated": 1487154755,
 "version": 2
}
Undelete item? [y/N]: y
{
 "data": {
 "email": "test@example.com",
 "full_name": "Full",
 "login": "test",
 "role_id": null
 },
 "id": "6805075b-e40d-4800-8520-8569dd7327bd",
 "initiator_id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1487154769,
 "version": 3
}

For command options and entity types, run decapod-admin restore -h.

Unlock servers
All playbook executions lock the servers they use to eliminate issues caused by a concurrent
execution. However, you may be required to manually unlock servers. To do so, use the
decapod-admin locked-servers command.
To list all locked servers:

decapod-admin locked-servers get-all

To unlock a server:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 128

decapod-admin locked-servers unlock SERVER_ID

For all available options, run decapod-admin locked-servers --help.

Reset password
You can reset a user password through the Decapod web UI. However, in some cases you may
want to change the password bypassing the usual procedure. For example, if a user has an
obsolete, non-working email or if you want to change the default root/root username and
password pair.
To explicitly reset a user password:

decapod-admin password-reset [OPTIONS] USER_ID

If you do not pass the new password, decapod-admin will prompt you to enter it.
Example:

$ decapod-admin password-reset c83d0ede-aad1-4f1f-b6f0-730879974763
New password []:
Repeat for confirmation:

If you do not pass any password, the tool will generate one and output it to stdout.
Example:

$ decapod-admin password-reset c83d0ede-aad1-4f1f-b6f0-730879974763
New password []:
54\gE'1Ck_

For all available options, run decapod-admin password-reset -h.

Seealso

• jq
• YAQL
• JMESPath terminal
• jp

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 129

https://stedolan.github.io/jq/
https://yaql.readthedocs.io/en/latest/
https://github.com/jmespath/jmespath.terminal
https://github.com/jmespath/jp

Monitor Ceph
Decapod supports integration with various monitoring systems. By default, it uses an in-house
tool called ceph-monitoring. You can also integrate Decapod with other tools, such as
Prometheus through Telegraf. For a list of supported plugins, see Playbook plugins.
The ceph-monitoring tool collects statistics on the cluster state and monitors its performance by
running particular scripts under the admin service.
To access the collected data:

1. Obtain the Decapod monitoring port. The port is the value of the
DECAPOD_MONITORING_PORT environment variable and is 10001 by default.

2. Access the data using the obtained port and your credentials. For example, if you access
Decapod using http://10.0.0.10:9999, the data will be served on http://10.0.0.10:10001.

If there is no information available about a recently deployed cluster, try again in 15 minutes. If
the data is still not accessible, obtain the logs of the admin service:

$ docker-compose -p myprojectname logs admin

Generate a diagnostic snapshot
To simplify the interaction between development and operation, Decapod supports diagnostic or
debug snapshots, similar to Fuel snapshots. A snapshot is an archive that contains all
information required to debug and troubleshoot issues.
Snapshots store the following information:

• Backup of the database
• Logs from services
• File docker-compose.yml
• Configuration files from Decapod services (config.yaml)
• Datetimes from services
• Data from ceph-monitoring
• Version of installed packages
• Git commit SHAs of Decapod itself
• Information about docker and containers

Snapshots do not store Ansible private keys or user passwords. Passwords are hashed by
Argon2.
To generate a diagnostic snapshot:
Run the script:

$./scripts/debug_snapshot.py snapshot

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 130

https://github.com/Mirantis/ceph-monitoring/
https://prometheus.io/
https://www.influxdata.com/time-series-platform/telegraf/
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/maintain-environment/create-snapshot.html
https://github.com/p-h-c/phc-winner-argon2

Alternatively, if you have containers only, follow the steps below.

1. Run the following command:

$ docker-compose exec -T admin cat /debug-snapshot | python - snapshot

2. Configure the snapshot settings as required:

$ docker-compose -p myproject exec -T admin cat /debug-snapshot | python - --help
usage: - [-h] [-f COMPOSE_FILE] [-p PROJECT_NAME] snapshot_path

Create a debug snapshot for Decapod.

positional arguments:
 snapshot_path Path where to store snapshot (do not append extension,
 we will do it for you).

optional arguments:
 -h, --help show this help message and exit
 -f COMPOSE_FILE, --compose-file COMPOSE_FILE
 path to docker-compose.yml file. (default:
 /vagrant/docker-compose.yml)
 -p PROJECT_NAME, --project-name PROJECT_NAME
 the name of the project. (default: vagrant)

Please find all logs in syslog by ident 'decapod-debug-snapshot'.

$ docker-compose -p myproject exec -T admin cat /debug-snapshot | python - -p myproject snapshot

As a result, you will get a snapshot like snapshot_path.*. The snapshot tool calculates the best
compression algorithm available on your platform and uses its extension. Therefore, the
snapshot may look like snapshot_path.tar.bz2 or snapshot_path.tar.xz depending on how your
Python was built.

Upgrade Decapod
Before starting any upgrade procedure, perform a backup of Decapod. The upgrade procedure is
consequent, which means before upgrading to the latest version, you must first upgrade to the
next version. For example, to upgrade Decapod from version X to X+3, first upgrade to X+1,
then to X+2, and only then to X+3.

Verify Decapod version
To verify the Decapod version installed:

1. Obtain the project name:

$ docker-compose ps | grep api | cut -f 1 -d '_' | sort -u
shrimp

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 131

2. Verify the Decapod version:

docker inspect -f '{{ .Config.Labels.version }}' $(docker-compose -p \
PROJ ps -q database | head -n 1)

Where PROJ is the project name.
Example:

docker inspect -f '{{ .Config.Labels.version }}' $(docker-compose -p \
PROJ ps -q database | head -n 1)
0.1.0

Upgrade Decapod from 0.1.x to 1.0
Prior to upgrading Decapod, perform the steps described in Prerequisites.

Note
You do not need to perform any changes in the existing Ceph deployments.

Prerequisites
Prior to upgrading Decapod from 0.1.x to 1.0.0, verify that you have completed the following
tasks:

1. From the machine that runs Decapod, obtain the latest versions of Decapod 1.0 release
series:

$ git clone -b stable-1.0 --recurse-submodules https://github.com/Mirantis/ceph-lcm.git ~/decapod

2. Create a directory to store configuration files and private keys for Decapod:

$ mkdir -p ~/decapod_runtime

3. Obtain the project name:

$ docker-compose ps | grep api | cut -f 1 -d '_' | sort -u
shrimp

For simplicity, further examples use PROJ as the project name.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 132

Note
To avoid passing -p each time you run docker-compose, use the
COMPOSE_PROJECT_NAME environment variable.

4. Copy the required configuration files to the ~/decapod_runtime directory:

$ cp ~/decapod/{.env,docker-compose.yml,docker-compose.override.yml} ~/decapod_runtime

5. Set the path to the SSH private key in the .env file:

$ sed -i "s?^DECAPOD_SSH_PRIVATE_KEY=.*?DECAPOD_SSH_PRIVATE_KEY=$HOME/\
decapod_runtime/id_rsa?" ~/decapod_runtime/.env

Use the name of your private key if it differs from the id_rsa in the example above.

Upgrade Decapod
To upgrade Decapod from 0.1.x to 1.0.0:

1. Back up the database:

• To use the existing configuration, run the following command from the directory where
you run Decapod:

$ docker exec -i proj_database_1 mongodump --gzip --archive --ssl \
--sslAllowInvalidCertificates > ~/pre_upgrade

Where proj is the lowercase container name.

Note
To restore the database:

$ docker exec -i proj_database_1 mongorestore --drop --gzip \
--archive --ssl --sslAllowInvalidCertificates < ~/pre_upgrade

• To use the default configuration, rename the database in MongoDB from shrimp to
decapod and back up the data.

1. Rename the database:

$ docker-compose -p PROJ exec database moshell
MongoDB shell version: 3.2.10

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 133

https://docs.docker.com/compose/reference/envvars/#/composeprojectname

connecting to: false
2017-02-14T06:38:15.400+0000 W NETWORK [thread1] The server \
certificate does not match the host name 127.0.0.1
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
Server has startup warnings:
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** WARNING:\
 /sys/kernel/mm/transparent_hugepage/enabled is 'always'.
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** \
We suggest setting it to 'never'
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** WARNING:\
 /sys/kernel/mm/transparent_hugepage/defrag is 'always'.
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** \
We suggest setting it to 'never'
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
> db.copyDatabase("shrimp", "decapod", "localhost")
{ "ok" : 1 }
> use shrimp
switched to db shrimp
> db.dropDatabase()
{ "dropped" : "shrimp", "ok" : 1 }

2. Back up the database:

$ docker exec -i proj_database_1 mongodump --gzip --archive --ssl \
--sslAllowInvalidCertificates > ~/pre_upgrade_renamed

2. Optional. If you have modified any configuration files such as config.yaml or id_rsa, copy the
files to a custom directory, for example, ~/decapod_runtime. To do so, run the following
commands from the same directory used to run Decapod 0.1:

$ mkdir ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q api):/etc/shrimp/config.yaml" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q controller):/root/.ssh/id_rsa" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/dhparam.pem" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/ssl.crt" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/ssl.key" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q database):/certs/mongodb.pem" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q database):/certs/mongodb-ca.crt" ~/decapod_runtime

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 134

Note
If you did not generate any custom configuration files and used the default
configuration, skip this step and proceed to step 4.

3. Obtain the Decapod 1.0.0 images. To do so, follow steps 1-2 in the Install Decapod section
of MCP Deployment Guide.

Note
The required configuration files are stored in ~/decapod_runtime and the repository
for Decapod 1.0.0 is cloned to ~/decapod as described in Prerequisites.

4. Stop and remove containers for version 0.1.x. Since Docker containers are stateless and
you have created a backup of the state (the database backup), drop the existing containers
and start new ones. Execute the following command from the directory where you run
Decapod:

$ docker-compose -p PROJ down -v

5. Run Decapod 1.0.0.

1. Change the directory to ~/decapod_runtime.
2. Run Decapod:

$ docker-compose -p PROJ up --remove-orphans -d

6. Restore the database:

$ docker exec -i $(docker-compose -p PROJ ps -q admin) decapod-admin db \
restore < ~/pre_upgrade_renamed

Alternatively, if you did not rename the database:

$ docker exec -i (docker-compose -p PROJ ps admin) decapod-admin db restore < ~/pre_upgrade

7. Apply migrations:

$ docker-compose -p PROJ exec admin decapod-admin migration apply

8. Optional. You can configure MongoDB to be not backward compatible with the previous
release. To do so, run:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 135

$ docker-compose -p PROJ exec database moshell
MongoDB server version: 3.4.2
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
Server has startup warnings:
2017-02-14T07:00:13.729+0000 I STORAGE [initandlisten]
2017-02-14T07:00:13.730+0000 I STORAGE [initandlisten] ** WARNING: \
Using the XFS filesystem is strongly recommended with the WiredTiger storage engine
2017-02-14T07:00:13.730+0000 I STORAGE [initandlisten] ** \
See http://dochub.mongodb.org/core/prodnotes-filesystem
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: \
Access control is not enabled for the database.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** \
Read and write access to data and configuration is unrestricted.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: \
/sys/kernel/mm/transparent_hugepage/enabled is 'always'.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** \
We suggest setting it to 'never'
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: \
/sys/kernel/mm/transparent_hugepage/defrag is 'always'.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** \
We suggest setting it to 'never'
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
> db.adminCommand({setFeatureCompatibilityVersion: "3.4"})
{ "ok" : 1 }

9. Optional. Change the root password as described in Reset password.

Seealso
Back up and restore Decapod

Back up and restore Decapod
The decapod-admin tool allows you to manually create a backup of Decapod and its
configuration and restore it.
Decapod stores its state in MongoDB. Restoring the database backups restores all the Decapod
data except the internal container state, such as the data from ceph-monitoring that is refreshed

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 136

https://github.com/Mirantis/ceph-monitoring/

every 10 minutes by default. However, you can collect such data explicitly using the
docker-compose exec controller decapod-collect-data command.
To perform a backup:

$ docker-compose exec -T admin decapod-admin db backup > db_backup

To restore Decapod:

$ docker exec -i $(docker-compose ps -q admin) admin decapod-admin restore < db_backup

Note
Using docker-compose exec to perform the restore is currently not possible due to a
docker-compose bug.

Alternatively, use the backup_db.py and restore_db.py scripts in the ./scripts directory:

1. Run the scripts:

$./scripts/backup_db.py /var/backup/decapod_db
$./scripts/restore_db.py /var/backup/decapod_db

2. Add the backup to Cron:

0 */6 * * * /home/user/decapod_scripts/backup_db.py -p decapod -f \
/home/user/decapod_runtime/docker-compose.yml /var/backups/decapod/\
decapod_$(date --iso-8601) > /var/log/cron.log 2>&1

Seealso

• Monitor Ceph
• Admin service

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 137

https://github.com/docker/compose/issues/3352

Secure installation
See MCP Security Best Practices

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 138

https://docs.mirantis.com/mcp/master/mcp-security-best-practices/index.html

Back up and restore a MySQL database
The Mirantis Cloud Platform (MCP) uses MySQL databases to store the data generated by
different components of MCP. Mirantis recommends backing up your MySQL databases daily to
ensure the integrity of your data. You should create an instant backup before upgrading your
MySQL database. You may also need to create a MySQL database backup for testing purposes.
You can choose from the following backup tools:

• Backupninja that can copy databases along with backing up and restoring them. For
example, copy the nova database to the nova_upgrade database.

• Xtrabackup that only backs up and restores the databases but is faster than Backupninja.

Back up and restore a MySQL database using
Backupninja
MCP uses the Backupninja utility to back up MySQL databases. Backupninja installs
automatically with your cloud environment using a SaltStack formula and includes the following
components:

• Backupninja server collects requests from the Backupninja client nodes and runs on any
node, for example, the Salt Master node.

• Backupninja client sends database backups to the Backupninja server and runs on the
database cluster nodes.

This section describes how to create and restore your MySQL databases using Backupninja.

Create a backup schedule for a MySQL database using Backupninja
This section describes how to create a backup schedule for a MySQL database using the
Backupninja utility. By default, Backupninja runs daily at 1.00 AM.
To create a backup schedule for a MySQL database:

1. Log in to the Salt Master node.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 139

2. Add the following lines to cluster/openstack/database_init.yml:

classes:
- system.backupninja.client.single
- system.openssh.client.root
parameters:
 _param:
 backupninja_backup_host: <IP>

Note
The backupninja_backup_host parameter is the backupninja server that runs on any
server, for example, on the Salt Master node.

3. Include the following pillar to the node that runs the backupninja server and will store the
database backups remotely:

classes:
- system.backupninja.server.single

4. Run the salt.minion state:

salt '*' state.sls salt.minion

5. Refresh grains for the backupninja client node:

salt-call state.apply salt.minion.grains

6. Refresh grains for the backupninja server node:

salt-call state.apply salt.minion.grains

7. Run the backupninja state on the backupninja server node:

salt-call state.sls backupninja

8. Run the backupninja state on the backupninja client node:

salt-call state.sls backupninja

Running this state creates two backup configuration scripts in /etc/backup.d/ that will run
daily at 1.00 AM.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 140

Seealso

• Create an instant backup of a MySQL database using Backupninja
• Restore a MySQL database using Backupninja

Create an instant backup of a MySQL database using Backupninja
After you create a backup schedule as described in Create a backup schedule for a MySQL
database using Backupninja, you may also need to create an instant backup of a MySQL
database.
To create an instant backup of a MySQL database:

1. Verify that you have completed the steps described in Create a backup schedule for a
MySQL database using Backupninja.

2. Log in to the MySQL Galera Database Master node, for example, dbs01.
3. Compress all MySQL databases and store them in /var/backups/mysql/sqldump/:

backupninja -n --run /etc/backup.d/101.mysql

4. Move the local backup files to the backupninja server using rsync:

backupninja -n --run /etc/backup.d/200.backup.rsync

Seealso
Restore a MySQL database using Backupninja

Restore a MySQL database using Backupninja
You may need to restore a MySQL database after a hardware or software failure or if you want
to create a clone of the existing database from a backup.
To restore a MySQL database using Backupninja:

1. Log in to the Salt Master node.
2. Include the following pillar to cluster/openstack/database_init.yml to restore the MySQL

database from any database node:

classes:
- system.mysql.client.single_init
parameters:
 _param:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 141

 backupninja_backup_host: <IP>

3. Run the mysql.client state on the database node:

salt-call state.sls mysql.client

Running this state restores the databases and creates a file for every restored database in
/root/mysql/flags.

Caution!

If you rerun the state, it will not restore the database again. To repeat the restore
procedure for any database, first delete the database file from /root/mysql/flags and
then rerun the mysql.client state again.

Back up and restore a MySQL database using Xtrabackup
MCP uses the Xtrabackup utility to back up MySQL databases. Xtrabackup installs automatically
with your cloud environment using a SaltStack formula and includes the following components:

• Xtrabackup server collects requests from the Xtrabackup client nodes and runs on any
node, for example, the Salt Master node.

• Xtrabackup client sends database backups to the Xtrabackup server and runs on the MySQL
Galera Database Master node.

This section describes how to create and restore your MySQL databases using Xtrabackup.

Create a backup schedule for a MySQL database using Xtrabackup
To ensure the consistent and timely backing up of your data, create a backup schedule using
Xtrabackup.
To create a backup schedule for a MySQL database:

1. Log in to the Salt Master node.
2. Configure the xtrabackup server role by adding the following lines to

cluster/infra/config.yml:

classes:
- system.xtrabackup.server.single

By default, adding this include statement results in Xtrabackup keeping five complete
backups and their incrementals. To change the default setting, include the following pillar to
cluster/infra/config.yml.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 142

parameters:
 xtrabackup:
 server:
 enabled: true
 hours_before_full: 48
 full_backups_to_keep: 5

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 143

3. Configure the xtrabackup client role by adding the following lines to
cluster/openstack/database.init:

classes:
- system.xtrabackup.client.single
parameters:
 _param:
 # Change the hostname to the Salt Master node hostname if unsure.
 xtrabackup_remote_server: cfg01

Note
The xtrabackup_remote_server parameter should contain the resolvable hostname of
the host where the xtrabackup server is running.

By default, adding this include statement results in Xtrabackup keeping three complete
backups and their incrementals on the xtrabackup client node. To change the default
setting, include the following pillar to cluster/openstack/database.init:

parameters:
 xtrabackup:
 client:
 enabled: true
 # The number of complete backups and their increments to keep
 # on the MySQL Galera Database Master node.
 full_backups_to_keep: 3
 hours_before_full: 48
 # This parameter schedules a cron job to run incremental backups
 # every 12 hours.
 hours_before_incr: 12
 compression: true
 compression_threads: 2
 database:
 user: username
 password: password
 target:
 # The xtrabackup server host. In this example, it is the
 # Salt Master node where backups will be stored.
 host: cfg01

4. Verify that the hours_before_full parameter of the xtrabackup client in
cluster/openstack/database.init matches the same parameter of the xtrabackup server in
cluster/infra/config.yml.

5. Run the xtrabackup server state:

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 144

salt -C 'I@xtrabackup:server' state.sls xtrabackup

6. Run the xtrabackup client state:

salt -C 'I@xtrabackup:client' state.sls openssh.client,xtrabackup

Seealso

• Create an instant backup of a MySQL database using Xtrabackup
• Restore a MySQL database using Xtrabackup

Create an instant backup of a MySQL database using Xtrabackup
After you create a backup schedule as described in Create a backup schedule for a MySQL
database using Xtrabackup, you may also need to create an instant backup of a MySQL
database.
To create an instant backup for a MySQL database using Xtrabackup:

1. Verify that you have completed the steps described in Create a backup schedule for a
MySQL database using Xtrabackup.

2. Log in to the MySQL Galera Database Master node, for example, dbs01.
3. Run the following script:

/usr/local/bin/innobackupex-runner.sh

4. Verify that a complete backup was created on the MySQL Galera Database Master node:

ls /srv/backups/mysql/xtrabackup/full

Note
If you rerun /usr/local/bin/innobackupex-runner.sh, it creates an incremental backup
for the previous complete backup in /srv/backups/mysql/xtrabackup/incr.

5. Verify that the complete backup was rsynced to the xtrabackup server node from the Salt
Master node:

salt -C 'I@xtrabackup:server' cmd.run 'ls /srv/backups/mysql/xtrabackup/full'

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 145

Note
If you run /usr/local/bin/innobackupex-runner.sh more than once, at least one
incremental backup is created in /srv/backups/mysql/xtrabackup/incr on the node.

Seealso
Restore a MySQL database using Xtrabackup

Restore a MySQL database using Xtrabackup
You may need to restore a MySQL database after a hardware or software failure or if you want
to create a clone of the existing database from a backup.
To restore a MySQL database using Xtrabackup:

1. Log in to the Salt Master node.
2. Add the following lines to cluster/openstack/database_init.yml:

xtrabackup:
 client:
 enabled: true
 restore_full_latest: 1
 restore_from: remote

where:

• restore_full_latest can have the following values: 1 or 2. 1 means restoring the
database from the last complete backup and its increments. 2 means restoring the
second latest complete backup and its increments.

• restore_from can have the following values: local or remote. The remote value uses scp
to get the files from the xtrabackup server.

3. Proceed with either automatic restore steps using the Jenkins web UI pipeline or with
manual restore steps:

• Automatic restore steps:

1. Add the upgrade pipeline to DriveTrain:

1. Add the following lines to cluster/cicd/control/leader.yml:

classes:
- system.jenkins.client.job.deploy.update.restore_mysql

2. Run the salt state.sls jenkins.client state.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 146

2. Log in to the Jenkins web UI.
3. Open the Xtrabackup - restore mysql db pipeline.
4. In the SALT_MASTER_CREDENTIALS field, add salt-qa-credentials as credentials for

connection.
5. In the SALT_MASTER_URL field, add the IP address of you Salt Master node host

and salt-api port, for example, http://172.18.170.27:6969
6. Click Deploy.

• Manual restore steps:

1. Stop the mysql service on the MySQL Galera Database dbs02 and dbs03 nodes:

salt -C 'I@galera:slave' service.stop mysql
2. Remove the MySQL log files from the MySQL Galera Database dbs02 and dbs03

nodes:

salt -C 'I@galera:slave' cmd.run 'rm /var/lib/mysql/ib_logfile*'

3. Stop the mysql service on the MySQL Galera Database Master node:

salt -C 'I@galera:master' service.stop mysql

4. Log in to the MySQL Galera Database Master node.
5. Replace the wsrep_cluster_address row in /etc/mysql/my.cnf with the following:

wsrep_cluster_address="gcomm://"

6. Log in to the Salt Master node.
7. Move the MySQL database files to a new location /root/mysql/mysql.bak/ on the

MySQL Galera Database Master node:

salt -C 'I@galera:master' cmd.run 'mkdir /root/mysql/mysql.bak/'
salt -C 'I@galera:master' cmd.run 'mv /var/lib/mysql/* /root/mysql/mysql.bak'
salt -C 'I@galera:master' cmd.run 'rm /var/lib/mysql/.galera_bootstrap'

8. Verify that the MySQL database files are removed from /var/lib/mysql/ on the
MySQL Galera Database Master node:

salt -C 'I@galera:master' cmd.run 'ls /var/lib/mysql/'
salt -C 'I@galera:master' cmd.run 'ls -ld /var/lib/mysql/.?*'

9. Log in to the MySQL Galera Database Master node where the restore operation
occurs.

10
.
Run the xtrabackup state:

salt-call state.sls xtrabackup

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 147

mailto:'I@galera

This state restores the databases and creates a file in
/srv/backups/mysql/xtrabackup/dbrestored.

Caution!

If you rerun the state, it will not restore the database again. To repeat the
restore procedure, first delete the
/srv/backups/mysql/xtrabackupd/dbrestored file and then rerun the
xtrabackup state again.

11
.
Log in to the Salt Master node.

12
.
Verify that the MySQL database files are present again on the MySQL Galera
Database Master node:

salt -C 'I@galera:master' cmd.run 'ls /var/lib/mysql/'

13
.
Start the mysql service on the MySQL Galera Database Master node:

salt -C 'I@galera:master' service.start mysql

Note
This process takes a certain amount of time and does not provide an
immediate output.

14
.
Start the mysql service on the MySQL Galera Database dbs02 and dbs03 nodes
from the Salt Master node:

salt -C 'I@galera:slave' service.start mysql

Note
This process takes a certain amount of time and does not provide an
immediate output.

15
.
Verify that all MySQL Galera Database nodes joined the Galera cluster:

salt -C 'I@galera:master' mysql.status | grep -A1 wsrep_cluster_size

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 148

Update and upgrade
This section describes update and upgrade procedures for MCP clusters.

Minor update
Minor updates enable:

• Delivering hot fixes to source code of OpenStack, Kubernetes, or MCP Control Plane.
• Updating packages for an OpenStack service.
• Applying security patches to operating system components and packages.

Change service configuration
MCP Control Plane enables you to apply service configuration changes to your cluster leveraging
the CI/CD pipeline that will run your change through review and deployment processes.
To change service configuration:

1. Change a Metadata model of your cluster.
2. Commit your change to Gerrit.
3. Submit the patch to the Git repository that will trigger the update job automatically.

Note
You can trigger the job manually in Jenkins web UI by selecting Rebuild in in the
drop-down menu of a build.

4. Go to Update Service(s) Configuration job in Jenkins available from the customer's DevOps
Portal.

5. [Optional] Modify the default build parameters and rebuild.

1. Select Rebuild in the drop-down menu of the current build and modify the following
parameters:

Parameter Description Comment
SALT_MASTER_C
REDENTIALS

Credentials to the Salt API. N/A

SALT_MASTER_U
RL

Full Salt API address. For example,
https://10.10.10.1:8000.

N/A

TARGET_BATCH_
LIVE

Batch size for the complete live
configurations changes on all nodes, empty
string means apply to all targeted nodes.

Use the batch
mode to apply
changes on
more than 100
nodes.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 149

TARGET_SERVE
RS

Salt compound target to match nodes to be
updated. For example, G@osfamily:debian.

Use * to apply
changes on all
nodes.

TARGET_STATES Configuration changes to be applied. For
example, linux, linux,openssh,
salt.minion.grains.

An empty string
means running
highstate.

TARGET_SUBSET
_LIVE

The number of nodes to apply live the
configurations changes.

Specify the
subset number
to apply live
changes on
more than 100
nodes.

TARGET_SUBSET
_TEST

The number of nodes to test configuration
changes.

An empty string
means all
targeted nodes.

2. Click Rebuild.
6. Approve the changes to be applied live on a sample node and all other nodes. Click the

Proceed button in the web UI or Console.

Note
You can use both: the Console view or web UI to approve operations in the pipeline.

7. Verify the status of all tasks in the pipeline for the current build. The task items in the web
UI should be green.

Update service packages
To update service packages:

1. Go to Update System Package(s) job in Jenkins available from the customer's DevOps
Portal.

2. Specify the parameters for the build:

1. Select Rebuild in the drop-down menu of the current build and specify the following
parameters:

Parameter Description Comment
SALT_MASTER_C
REDENTIALS

Credentials to the Salt API. N/A

SALT_MASTER_U
RL

A full Salt API address. For example,
https://10.10.10.1:8000.

N/A

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 150

TARGET_BATCH_
LIVE

Batch size for the complete live
configurations changes on all nodes, empty
string means apply to all targeted nodes.

Use the batch
mode to apply
changes on
more than 100
nodes.

TARGET_PACKA
GES

List of packages to be updated. For example,
<PACKAGE1>=<VERSION> <PACKAGE2>=
<VERSION>.

An empty string
means updating
all packages to
the latest
version.

TARGET_SERVE
RS

Salt compound target to match nodes to be
updated. For example, cfg01*.

Use * to apply
changes on all
nodes.

TARGET_SUBSET
_LIVE

The number of nodes to apply live the
configurations changes.

Specify the
subset number
to apply live
changes on
more than 100
nodes.

TARGET_SUBSET
_TEST

The number of nodes to test configuration
changes.

An empty string
means all
targeted nodes.

2. Click Rebuild.
3. If you did not specify the package names in the job parameters before, you will be asked to

enter the package names during the job execution. For example, to update the nova-api
packages, print:

nova-api

Note
Use * to update all available packages.

4. Approve the changes to be applied live on a sample node and all other nodes. Click the
Proceed button in the web UI or Console.

Note
You can use both: the Console view or web UI to approve operations in the pipeline.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 151

5. Verify the status of all tasks in the pipeline for the current build. The task items in the web
UI should be green.

Add a service
You can install a new service to the Virtualized Control Plane through the MCP Control Plane
using the DevOps Portal.
To add a service:

1. Modify YAML configuration files in a Reclass model to enable a new service.
2. Commit your change to Gerrit.
3. Submit the patch to the Git repository that will trigger the update job automatically.

Note
You can trigger the job manually in Jenkins web UI by selecting Rebuild in in the
drop-down menu of a build.

4. Go to Update Service(s) Configuration job in Jenkins available from the customer's DevOps
Portal.

5. [Optional] Modify the default build parameters and rebuild.

1. Select Rebuild in the drop-down menu of the current build and modify the following
parameters:

Parameter Description Comment
SALT_MASTER_C
REDENTIALS

Credentials to the Salt API. N/A

SALT_MASTER_U
RL

Full Salt API address. For example,
https://10.10.10.1:8000.

N/A

TARGET_BATCH_
LIVE

Batch size for the complete live
configurations changes on all nodes, empty
string means apply to all targeted nodes.

Use the batch
mode to apply
changes on
more than 100
nodes.

TARGET_SERVE
RS

Salt compound target to match nodes to be
updated. For example, G@osfamily:debian.

Use * to apply
changes on all
nodes.

TARGET_STATES Configuration changes to be applied. For
example, linux, linux,openssh,
salt.minion.grains.

An empty string
means running
highstate.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 152

TARGET_SUBSET
_LIVE

The number of nodes to apply live the
configurations changes.

Specify the
subset number
to apply live
changes on
more than 100
nodes.

TARGET_SUBSET
_TEST

The number of nodes to test configuration
changes.

An empty string
means all
targeted nodes.

2. Click Rebuild.
6. Approve the changes to be applied live on a sample node. Click the Proceed button in the

web UI or Console.

Note
You can use both: the Console view or web UI to approve operations in the pipeline.

7. Go to a sample node where the service has been already installed and verify if the service
is running properly.

8. Go back to the Jenkins job and approve the changes to be applied live on all other nodes.
9. Verify the status of all tasks in the pipeline for the current build. The task items in the web

UI should be green.

Major upgrade
Major upgrades enable:

• Delivering new features of MCP Control Plane.
• Upgrading between OpenStack releases.
• Upgrading host and guest operating systems to new versions including kernels.
• Updating the LCM platform.

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 153

Troubleshooting
For MAAS troubleshooting see MAAS documentation

Mirantis Cloud Platform Operations Guide 1.0

©2017, Mirantis Inc. Page 154

https://docs.ubuntu.com/maas/2.1/en/troubleshoot-faq

	Copyright notice
	Preface
	Intended audience
	Documentation history

	Introduction
	Definitions
	Provision hardware
	Reinstall MAAS
	Add an SSH key
	Add a boot image
	Add a subnet
	Enable DHCP on a VLAN
	Enable device discovery
	Add a new node
	Configure power management
	Commission a new node
	Deploy a node
	Redeploy a node
	Delete a node

	SaltStack operations
	Salt Minion operations
	Run a command on a node
	List services on a node
	Restart a service on a node
	Verify Minions have joined the Master
	Ping a Minion from the Master

	Salt States operations
	List available States of a Minion
	Apply a State to a Minion

	Salt Formula operations
	Verify and validate a Salt Formula
	Apply a Salt Formula

	OpenStack operations
	Reprovision a controller node
	Reprovision a compute node

	MCP Control Plane
	Logging, metering, alerting
	Restart Log Collector
	Restart Metric Collector
	Restart Aggregator
	InfluxDB and Grafana operations
	Connect to Grafana
	Restart Grafana
	Restart InfluxDB
	Manage Grafana dashboards
	Main dashboard
	Service Level dashboard
	Nova dashboard
	Hypervisor dashboard
	Additional dashboards

	Viewing faults and anomalies
	Hiding nodes from dashboards

	Elasticsearch and Kibana operations
	Connect to Kibana
	Restart Kibana
	Restart Elasticsearch
	Manage Kibana dashboards
	Use Kibana filters and queries

	Sensu operations
	Connect to Sensu
	Restart Sensu
	Manage Sensu dashboard

	Use Horizon monitoring dashboards
	StackLight alerts
	StackLight alarm structure
	Alarms for the Local Metric Collector
	Alarms for the Remote Metric Collector
	Aggregation and correlation
	Create or modify an alarm trigger
	Create or modify an alarm
	Create or modify an aggregation

	Create or modify a metric
	Mapping conventions of StackLight metric data model
	Register a custom collectd plugin in Metric Collector
	Apply changes to the Linux and collectd formulas

	Manage Ceph clusters using Decapod
	Configuration files
	SSH private key
	SSL certificates
	Decapod configuration file
	Decapod config.yaml example
	Settings description
	Authentication back ends
	Native authentication back end
	Keystone authentication back end

	MongoDB certificate and key
	Configuration files location

	Deploy an OS on a Ceph node
	Generate user data for cloud-init
	Prerequisites
	Generate user data

	Deploy OS using MAAS
	Prerequisites
	Install MAAS
	Deploy an OS using MAAS

	Manage users and roles
	Manage users
	Manage roles

	Deploy a cluster
	Create a cluster
	View servers
	Create a playbook configuration
	Execute a playbook configuration

	Playbook plugins
	Deploy Ceph cluster
	Overview
	Parameters and roles
	Configuration example

	Add OSD host
	Overview
	Parameters and roles
	Configuration example

	Remove OSD host
	Overview
	Configuration example

	Add monitor host
	Overview
	Parameters and roles
	Configuration example

	Remove monitor host
	Overview
	Configuration example

	Purge cluster
	Overview
	Parameters and roles
	Configuration example

	Telegraf integration
	Overview
	Configuration example

	Telegraf removal
	Overview
	Configuration example

	Cinder integration
	Overview
	Parameters and roles
	Configuration example

	Use the Decapod CLI
	Install the Decapod CLI
	Access the Decapod CLI
	Cluster deployment workflow
	Create a cluster
	Discover a server
	Create a playbook configuration
	Update a playbook configuration
	Execute a playbook configuration

	Admin service
	Access the admin service
	Apply migrations
	Generate cloud-init user data configuration
	Back up and restore database
	SSH to Ceph hosts
	Execute SSH in parallel
	Restore entities
	Unlock servers
	Reset password

	Monitor Ceph
	Generate a diagnostic snapshot
	Upgrade Decapod
	Verify Decapod version
	Upgrade Decapod from 0.1.x to 1.0
	Prerequisites
	Upgrade Decapod

	Back up and restore Decapod

	Secure installation
	Back up and restore a MySQL database
	Back up and restore a MySQL database using Backupninja
	Create a backup schedule for a MySQL database using Backupninja
	Create an instant backup of a MySQL database using Backupninja
	Restore a MySQL database using Backupninja

	Back up and restore a MySQL database using Xtrabackup
	Create a backup schedule for a MySQL database using Xtrabackup
	Create an instant backup of a MySQL database using Xtrabackup
	Restore a MySQL database using Xtrabackup

	Update and upgrade
	Minor update
	Change service configuration
	Update service packages
	Add a service

	Major upgrade

	Troubleshooting

