
MCP Reference Architecture
version 1.0

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page i

Contents
Copyright notice 1
Preface 2

Intended audience 2
Documentation history 2

Introduction 3
MCP design 3

Deployment automation 5
SaltStack and Reclass model 5
SaltStack repository structure 6
Deployment templates 7

Repository planning 8
Local mirror design 8
List of repositories 9

Infrastructure node planning 10
Overview 10
Multi-site and multi-cluster architecture 12
DriveTrain overview 13

CI/CD pipeline overview 13
DevOps portal 14

Cloud Intelligence Service overview 15
Cloud Health Service overview 17
Runbooks Automation overview 17
Capacity Management Service overview 18

High availability in DriveTrain 19
Plan an OpenStack environment 21

Virtualized control plane planning 22
Virtualized control plane overview 22
Minimum virtualized control plane design 23
Virtual control plane requirements 24
Example of virtualized control plane design 25

Compute nodes planning 26

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page ii

Network planning 28
Selecting a network technology 28
Types of networks 29
OpenContrail traffic flow 31

User Interface and API traffic 31
SDN traffic 31
Storage traffic 32

Neutron OVS use cases 33
Node configuration 33
VCP servers network interfaces 33
Neutron VXLAN tenant networks with network nodes (no DVR) 34

Network node configuration 34
Compute nodes configuration 35

Neutron VXLAN tenant networks with DVR for internal traffic 36
Network node configuration 36
Compute nodes configuration 37

Neutron VLAN tenant networks with network nodes (no DVR) 38
Network node configuration 38
Compute nodes configuration 39

Neutron VXLAN tenant networks with network nodes for SNAT (DVR
for all)

40

Network node configuration 42
Compute nodes configuration 42

Neutron VLAN tenant networks with network nodes for SNAT (DVR for
both)

43

Network node configuration 44
Compute nodes configuration 44

Storage planning 46
Ceph cluster deployed by Decapod 46

Data models 47
User model 47
Role model 48
Server model 48
Cluster model 49

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page iii

Decapod playbooks 50
Supported Ceph packages 51

Image storage planning 54
Block storage planning 54
Object storage planning 54

Logging, metering, and alerting planning 56
StackLight operational insights pipeline components 57

Log Collector 59
Metric Collector 60
Aggregator 63

Components integrated with StackLight operational insights pipeline 65
InfluxDB and Grafana clusters 65
Elasticsearch cluster and Kibana server 65
Sensu monitoring cluster 66

Sensu components 66
Sensu events handling 67

Horizon 68
LMA reference deployment 68
Multi-domain monitoring support 70
Tenant Telemetry for OpenStack 72

Plan a Kubernetes cluster 75
Kubernetes cluster overview 75
Kubernetes cluster components 76
Calico networking considerations 79
Etcd cluster 79
High availability in Kubernetes 79
Kubernetes Master Tier high availability 80

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page iv

Copyright notice
2017 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 1

Preface
This documentation provides information on how to use Mirantis products to deploy cloud
environments. The information is for reference purposes and is subject to change.

Intended audience
This documentation is intended for deployment engineers, system administrators and
developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history
The following table lists the released revisions of this documentation:

Revision date Description
March 30, 2017 1.0 GA

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 2

Introduction
Mirantis Cloud Platform (MCP) is a deployment and lifecycle management (LCM) tool that
enables deployment engineers to deploy MCP clusters and then update software and
configuration through the continuous integration and continuous delivery pipeline.

MCP design
MCP includes the following key design elements:

MCP design overview

Component Description
DriveTrain A general term for the MCP Lifecycle Management (LCM) system

that includes the CI/CD pipeline, including Gerrit, Jenkins, and MCP
Registry, SaltStack, and the Reclass model. The components
perform the following functions:

• SaltStack is a flexible and scalable deployment and
configuration management tool that is used for lifecycle
management of MCP clusters.

• Reclass is an External Node classifier that, coupled with
SaltStack, provides an inventory of nodes for easy
configuration management.

• Gerrit is a Git repository and code review management
system in which all MCP codebase and configurations are
stored and through which all changes to MCP clusters are
delivered.

• Jenkins is a build automation tool that, coupled with Gerrit,
enables continuous integration and continuous delivery of
updates and upgrades to the MCP clusters.

• MCP Registry is a repository with binary artifacts required for
MCP cluster deployment and functioning.

MCP clusters Using DriveTrain, you can deploy and manage multiple MCP
clusters of different types. An MCP cluster can be an OpenStack
environment or a Kubernetes cluster. Different types of MCP
clusters can co-exist in one enclosed environment and be
governed by the same set of monitoring and lifecylce
management components.

DevOps portal DevOps portal provides a single point of entry for cloud operators.
Using DevOps portal, cloud operators can access functionality
provided by DriveTrain and StackLight.

Logging, monitoring, and
alerting (LMA), or
StackLight

Responsible for collection, analysis, and visualization of
application critical data, as well as alerting and error notifications
through a configured communication system, such as email.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 3

Metal-as-a-Service
(MaaS)

Automation software that allows you to manage physical servers
as easy as virtual machines.

High Availability ensured
by Keepalived and
HAProxy

Keepalived is routing software that provides virtual IP addresses.
HAProxy is software that provides load balancing for network
connections.

Mirantis OpenContrail
(optional)

MCP enables you to deploy Mirantis OpenContrail as an network
virtualization solution. Mirantis OpenContrail uses official
OpenContrail packages with additional customizations by Mirantis.

Ceph cluster (optional) Distributed object storage for an OpenStack environment.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 4

Deployment automation
MCP uses SaltStack as an automation tool coupled with the Reclass and Cookiecutter tools to
deploy MCP clusters. For example, all virtualized control plane (VCP) node configurations, as
well as Kubernetes Master Tier configurations are defined by SaltStack formulas, service and
cluster level classes (in Reclass terminology), and metadata.

SaltStack and Reclass model
SaltStack is an automation tool that executes formulas. Each SaltStack formula defines one
component of the MCP cluster, such as MySQL, RabbitMQ, OpenStack services, and so on. This
approach enables you to combine the components on a cluster level as needed so that services
do not interfere with each other and can be reused in multiple scenarios.
Reclass is an external node classifier (ENC) which enables cloud operators to manage an
inventory of nodes by combining different classes into MCP cluster configurations. Reclass
operates classes which you can view as tags or categories.
The following diagram displays the Mirantis Reclass model hierarchy of classes:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 5

MCP reclass classes

Service class System class Cluster class
A service class defines one
component of the MCP
cluster, such as RabbitMQ,
OpenStack services, MySQL,
and so on. Service classes
are defined in SaltStack
formulas provided as .deb
packages that you deploy on
the Salt Master node during
the bootstrap.
SaltStack formulas consist of
the execution part that
defines the commands that
need to be deployed and
metadata that defines
sensitive parameters, such as
IP addresses, domain names,
and so on. A service class
inherits metadata from the
system and cluster classes.

A system class defines
nodes, such as compute and
controller nodes, and the
components required to be
deployed on those nodes.
System classes are the sets
of the service classes
combined in a way that
produces a ready-to-use
system on an integration
level. For example, in the
service ‘haproxy’ there is
only one port configured by
default (haproxy_admin_port:
9600), but the system
‘horizon’ class adds to the
service ‘haproxy’ several new
ports, extending the service
model and integrating the
system components with
each other. System classes
are provided in a Git
repository. You must clone
the repository on your
SaltStack Master node to use
the system classes. System
classes inherit metadata from
cluster classes.

A cluster class defines an
MCP cluster profile, such as a
demo or production cluster. A
cluster class combines
system classes into new
solutions corresponding to
the needs of the deployment.
A set of predefined
environment profiles is
provided in a Git repository.
You must clone the
repository on your SaltStack
Master node to use the
cluster classes. Alternatively,
you can generate cluster
classes from the templates
using Cookiecutter. This
approach significantly speeds
up metadata pre-population.

SaltStack repository structure
The repository structure allows deployment engineers to store and deploy multiple MCP cluster
profiles. This is especially beneficial for multi-site and multi-cloud deployments that require
different types of clouds to co-exist while using similar metadata at service and system levels.
Reusing the system and service level metadata prevents data degradation over time, as well as
provides consistency and ability to customize the system and service level classes as needed.
The following diagram displays the system and service classes repository structure:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 6

Deployment templates
Although you can deploy an MCP cluster using an environment profile defined in the cluster
level class, the Cookiecutter templates significantly simplify the process of deployment.
Cookiecutter is a tool that Mirantis deployment engineers use to create project templates and
later use these templates to deploy different types of MCP clusters based on customer-specific
data. An example of a Cookiecutter template can be a demo MCP cluster or a production MCP
cluster.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 7

Repository planning
The MCP lifecycle management tool is provided as source code and configuration metadata
stored in APT and Git repositories respectively. The Salt Master node requires access to both
APT and Git repositories, while all other nodes in the environment require access to the APT
repositories.
If you can provide an Internet connection to your OpenStack environment, you can use the
repositories directly. However, if, for security or other reasons, your environment does not have
an Internet connection, you need to configure local repository mirrors for both APT and Git
repositories. Another option is to provide an Internet connection to the Salt Master node to
access Git repository only while creating an APT repository mirror.

Local mirror design
You can place the APT and Git repository mirrors as virtual machines on the same KVM node
where you run MaaS and Salt Master nodes.
The following diagram is an example of the virtual machines layout:

You will need to set up a local repository mirror and configure the APT repositories described in
List of repositories. If your environment is completely isolated from the Internet, then you will
also need to configure Git repositories with the required configuration files and provide Salt
Master with the access to that repository.
You can use GitLab to configure Git mirror and Aptly for APT mirrors.

Seealso

• GitLab Repository Mirroring
• Aptly Mirror

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 8

https://docs.gitlab.com/ee/workflow/repository_mirroring.html
https://www.aptly.info/doc/aptly/mirror/

List of repositories
The following table lists the APT repositories required for a MCP installation:

List of MCP APT repositories

Repositories Description
http://archive.ubuntu.com/ubuntu/ (Required) Includes Ubuntu packages
http://apt.tcpcloud.eu/nightly (Required) Includes TCP cloud nightly builds.
http://mirror.fuel-infra.org/mos-repos/ubuntu/
<version>

(Required) MOS packages for the required
version of Mirantis OpenStack. For example:
http://mirror.fuel-infra.org/mos-repos/ubuntu/
8.0-mu-2/

http://repo.saltstack.com/apt/ubuntu/14.04/a
md64/2016.3

Includes SaltStack packages.

In addition to APT repositories that contain common configurations, you will need to configure
Git repositories with the customer-specific metadata.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 9

Infrastructure node planning
In large data centers, the services required for managing user workloads reside on separate
servers from where the actual workloads run. The services that manage the workloads coupled
with the hardware on which they run are typically called the control plane, while the servers
that host user workloads are called the data plane.
In MCP, the control plane is hosted on the infrastructure nodes. Infrastructure nodes run all the
components required for deployment, lifecycle management, and monitoring of your MCP
cluster. A special type of infrastructure node called the foundation node, in addition to other
services, hosts the bare-metal provisioning service called Metal-as-a-Service and the SaltStack
Master node that provides infrastructure automation.

Overview
Infrastructure nodes are the nodes that run all required services for the MCP cluster
deployment, lifecycle management, and monitoring.
The following main components run on the infrastructure nodes:
DriveTrain

DriveTrain includes containerized lifecycle management services, such as SaltStack,
Reclass, Jenkins, Gerrit, and the MCP Registry, as well as Operational Support System
tooling, including Rundeck automation, cloud health, cloud intelligence, and capacity
management services. SaltStack and Reclass run on the foundation node only.

Logging, Metering, Alerting (LMA) or StackLight
The LMA toolchain includes containerized services required for cloud data collection and the
visualization tools, such as Kibana and Grafana.

Provisioning tools (the foundation node only)
The foundation node includes the tools required for initial provisioning of your cloud
environment, such as MaaS and Cookiecutter.

Virtualized Control Plane (VCP) (OpenStack environments only)
Virtualized Control Plane includes packaged-based OpenStack services such as Compute
service, Networking service, and so on. VCP also includes other related services that enable
cloud environment operation.

OpenContrail Controller (with Mirantis OpenContrail only)
The OpenContrail controller node includes package-based services of Mirantis OpenContrail,
such as the API server and configuration database.

OpenContrail Analytics (with Mirantis OpenContrail only)
The OpenContrail analytics node includes package-based services for Mirantis OpenContrail
metering and analytics, such as the Cassandra database for analytics and data collectors.

Note
If you use Open vSwitch Neutron plugin for tenant networking, all networking components
run on the infrastructure nodes as virtual machines.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 10

Network node (with Open vSwitch only)
Network nodes are required if you use Neutron OVS as your network solution. Network
nodes run the Neutron L3 Routers through which the compute nodes traffic flows.

The following diagram displays the infrastructure and foundation node services mapping with
Mirantis OpenContrail.

The following diagram displays the infrastructure and foundation node services mapping for
tenant networking with Neutron Open vSwitch.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 11

Multi-site and multi-cluster architecture
Mirantis Cloud Platform (MCP) can manage multiple disparate clusters using the same
DriveTrain and infrastructure node installation. The cluster of environments might consist of the
following types:

• OpenStack environments
• Kubernetes clusters

MCP provides the means to manage these sets of clusters using one DriveTrain installation over
the L3 network. The cloud operator can execute such operations as applying the global
configuration changes to a set of clusters or to an individual cluster, update cluster components,
such as OpenStack services, and so on.
SaltStack uses a single data model structure to describe a multi-cluster and multi-site
configuration of MCP. This structure resides in a single Git repository. Each cluster is defined by
one directory in the repository directory tree. Each cluster has the site parameter that defines
which site this cluster belongs to and allows to target Salt states to specific sites or subsets of
sites.
SaltStack distributes appropriate changes to targeted sites, clusters, and nodes.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 12

DriveTrain overview
DriveTrain is a set of tools and services that enable you to deploy, monitor, and manage your
cloud environment. The DriveTrain components run on the infrastructure nodes alongside with
the Virtualized Control Plane (VCP) and other components.
DriveTrain implements the Infrastructure-as-Code (IaC) technology that treats provisioning and
lifecycle management of a compute infrastructure through the use of source code and through
applying changes to the source code through a CI/CD pipeline.
DriveTrain includes the following components:

• Lifecycle management tools that enable cloud administrators to apply configuration
changes to a cloud environment. The lifecycle management tools are a part of the CI/CD
pipeline.
The lifecycle management tools include:

• SaltStack
• Reclass
• Jenkins
• MCP registry
• Gerrit

• Operational Support System (OSS) tooling that provides support for maintenance and
day-to-day operations in your cloud.
OSS tooling includes:

• Cloud Intelligence service (CIS)
• Cloud Health service
• Runbooks

CI/CD pipeline overview
The MCP Continuous Integration and Continuous Deployment (CI/CD) pipeline enables the
delivery of configuration changes and updates to your MCP cluster.
The MCP CI/CD pipeline overview includes the following components:
Gerrit

Stores the source code, SaltStack formulas, and Reclass models, as well as provides code
review capabilities.

Jenkins
Detects the changes submitted to the MCP cluster configuration through Gerrit and
executes the jobs that run the related SaltStack formulas and Reclass models to apply the
changes.

MCP Registry
Stores the software artifacts, such as Docker images and Debian packages, required for MCP
clusters.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 13

The following diagram describes the workflow of the CI/CD pipeline:

CI/CD pipeline workflow

Description
1 An operator submits changes to a Reclass model or a SaltStack formula in

Gerrit for review.
2 Depending on your configuration and whether you have a staging

environment or deploy changes directly to a production MCP cluster, the
workflow might slightly differ. Typically, if you have a production MCP cluster,
Jenkins triggers a deployment job only after you merge your changes.
However, you have a staging environment, your changes may be applied at
the moment of submission.

3 Jenkins triggers a job that invokes the required SaltStack formulas and
Reclass models from Gerrit and artifacts from the MCP Registry.

4 SaltStack applies changes to the cloud environment.

DevOps portal
The DevOps portal is the main entry point for users who manage the Mirantis Cloud Platform
(MCP) The main goal of the DevOps portal is to provide information about the cloud
management status. In that sense, the DevOps portal acts as a main administrative dashboard
for the entire MCP environment.

Note
The DevOps portal is provided as a technical preview.

The DevOps portal performs the following main tasks:

• Displays information about the cloud in the form of graphs, statuses, success dashboards,
and so on.

• Provides links to other sets of tools, including Grafana, Kibana, and Rundeck.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 14

The following diagram shows a high level architecture of the DevOps portal components.

Cloud Intelligence Service overview
The Cloud Intelligence Service (CIS) consists of a set of collectors that gather information on the
service level, including OpenStack, MaaS, and so on. CIS stores that information, tracks
changes, as well categorizes that information for easier consumption by users or other services.
CIS can query services APIs, as well as connect to specific databases in order to accelerate data
collection. Although CIS has powerful search capabilities, it cannot modify any of the resources.
The DevOps portal provides a user interface, as well as an API for CIS through which users can
create search queries that CIS submits to the search engine and displays the list of resources,
outputs, and graphs.
The following diagram displays the CIS high level architecture.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 15

Runbook runs the collectors that gather information about the cloud resources every five
minutes and stores them in Elasticsearch. The cloud operator queries Cloud Intelligence Service
information through the UI or API.
Minimum hardware requirements for CIS:

• Virtual machines - 3
• RAM - 8 GB
• Disk 50 GB
• vCPU - 2

In a multi-cloud environment, that includes multiple OpenStack isolations, the DevOps portal
runs one copy of the collectors per an OpenStack isolation. Such approach enables CIS to collect
data from multiple resources while keeping them separate, so the data from one OpenStack
environment is not mixed with the data from the other OpenStack environment.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 16

Cloud Health Service overview
Cloud health includes a set of collectors that provide a high level overview of the cloud status
through the notifications about network, storage, or compute nodes outages, the control plane
status changes, and so on. Cloud health functions similarly to a monitoring system in which
collectors perform specific tests to verify Failed Customer Interactions (FCI), as well as test
cloud API availability and response time. The results are displayed in the DevOps portal. When
the FCI graph goes to zero, it typically signifies a problem in the system.
The following diagram describes the high level architecture of the Cloud Health Service:

Runbook executes FCI, synth transactions and API tests and stores the corresponding data in
the Logging, Metering, and Alerting (LMA) toolchain. The DevOps portal queries LMA and creates
graphs and heatmaps for the cloud status. The cloud operator monitors the heatmaps and
graphs through the DevOps portal.

Runbooks Automation overview
Runbooks Automation is an automation service that enables users to create a workflow of jobs
that are executed at a specific time or interval The OSS components use the Runbooks
automation service in order to automate such tasks as backup creation, metrics querying, report
generation, cloud maintenance, and so on. Runbooks automation is provided through a tool
called Rundeck which enables the users easily add scripts as Rundeck jobs and chain them into
workflows. While Jenkins and the SaltStack LCM engine are mainly used for deployment and
lifecycle management, Rundeck enables users to perform day-to-day operations and
maintenance tasks.
The following diagram illustrates the architecture of the Runbooks Automation service:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 17

Minimum hardware requirements for the Runbooks Automation service include:

• Virtual Machines - 3
• RAM - 8GB
• Disk - 50 GB
• CPU - 2

In a multi-cloud environment, with multiple OpenStack isolations, the Runbook Automation
service connects to multiple nodes on one or more clouds. Nodes are filtered and specified on
each job.

Capacity Management Service overview
The Capacity Management Service comprises multiple dashboards that provide an overview of
the resource utilization in the cloud. The leverages service the data collected by the LMA and
CIS systems.
The Capacity Management Service dashboards include the following and other metrics:

• CPU utilization by hypervisor grouped by availability zones
• Total amount of RAM (GB) in use
• Total amount of storage (GB) in use
• Memory utilization by hypervisor grouped by availability zones

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 18

• Total number of hypervisors
The following diagram displays the high level Capacity Management Service architecture:

The Forecast Engine sends notifications with the required actions, such as add more nodes or
clean up the storage, and creates a ticket in the corresponding task management system, such
as Salesforce. The Forecast Engine pulls data from LMA and CIS and predicts the future resource
utilization. The cloud operator accesses graphs and heatmaps through the DevOps portal that
displays the capacity of the cloud.

High availability in DriveTrain
DriveTrain is one of the critical components of the MCP solution. Therefore, its continuous
availability is essential for the MCP solution to function properly. Although, you can deploy
DriveTrain in the single node Docker Swarm mode for testing purposes, most production
environments require a highly-available DriveTrain installation.
All DriveTrain components run as containers in Docker Swarm mode which ensures services are
provided continuously without interruptions and are susceptible to failures.
The following components ensure high availability of DriveTrain:

• Docker Swarm mode is a special Docker mode that provides Docker cluster management.
Docker Swarm ensures:

• High availability of the DriveTrain services. In case of failure on any infrastructure
node, Docker Swarm reschedules all services to other available nodes. GlusterFS
ensures the integrity of persistent data.

• Internal network connectivity between the Docker Swarm services through the Docker
native networking.

• Keepalived is a routing utility for Linux that provides a single point of entry for all DriveTrain
services through a virtual IP address (VIP). If the node on which the VIP is active fails,
Keepalived fails over the VIP to other available nodes.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 19

• nginx is web-server software that exposes the DriveTrain service's APIs that run in a private
network to a public network space.

• GlusterFS is a distributed file system that ensures the integrity of the MCP Registry and
Gerrit data by storing the data in a shared storage on separate volumes. This ensures that
persistent data is preserved during the failover.

The following diagram describes high availability in DriveTrain:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 20

Plan an OpenStack environment
MCP enables you to deploy one or multiple OpenStack environments to address the needs of
your data center.
Coupled together with the deployment automation, native logging, monitoring, and alerting
component, as well as with support for OpenContrail and Open vSwitch networking, an MCP
OpenStack environment represents a reliable, scalable, and flexible cloud solution that supports
numerous types of workloads and applications.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 21

Virtualized control plane planning
The MCP virtualized control plane (VCP) provides all services and components required to
manage your cloud. When planning a physical and virtual servers that will run VCP services,
consider the size of the OpenStack environment, redundancy requirements, and the hardware
you plan to use.

Virtualized control plane overview
Virtualized control plane (VCP) consists of the services required to manage workloads and
respond to API calls. VCP is the heart and brain of your OpenStack deployment that controls all
logic responsible for OpenStack environment management. To ensure high availability and fault
tolerance, VCP must run on at least three physical nodes. However, depending on your hardware
you may decide to break down the services on a larger number of nodes. The number of virtual
instances that must run each service may vary as well. See Virtual control plane requirements.
Initially, you may add a minimum number of virtual instances required for each service to the
VCP and later increase or decrease this number as needed.
The following tables describes the MCP virtualized control plane.

VCP services

Platform Service
OpenStack

• Identity service (Keystone)
• Image service (Glance)
• Compute service (Nova)
• Networking service (Neutron OVS or OpenContrail plugin)
• Dashboard (Horizon)
• (optional) Block Storage service (Cinder)

Bare-metal provisioning MaaS
Configuration
management service
Storage Ceph

• Ceph monitors
• RadosGW

Networking OpenContrail

• Control Config DB
• Config
• Analytics
• DB

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 22

Back-end services
• Proxy (NGINX)
• GlusterFS
• RabbitMQ
• MySQL/Galera

(optional) Logging,
Metering, and Alerting
(LMA)

• StackLight

Minimum virtualized control plane design
The SaltStack cluster class describes the minimum virtualized control plane configuration that is
the deployment of the VCP services on three physical servers. This configuration can be altered
according to the needs of your cloud environment and the hardware you use.
For scale out purposes, Mirantis recommends dedicating three additional servers for MySQL /
Galera and three servers for RabbitMQ. The LMA toolchain may also be run on three additional
servers.
The following diagram describes the minimum VCP design.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 23

Seealso

• Example of virtualized control plane design
• Virtual control plane requirements

Virtual control plane requirements
Depending on the environment size, a certain number of virtual instances is required for each
VCP service. The following table lists the minimum virtual control plane requirements for an
OpenStack environment that runs up to 500 virtual instances.

Virtual control plane requirements

Component

Nu
mb
er
of
no
des

vC
PU

Vir
tua
l M
em
ory
(GB

)

Vir
tua
l Di
sk

(GB
)

vNI
Cs Scale

RabbitMQ 3 4 8 50 2 Vertical. Horizontal scaling
may decrease performance.

MySQL 3 4 8 80 2 Horizontal and vertical.
Horizontal scaling must be
limited to about 5 members.

OpenContrail Controllers 3 4 16 50 2 Horizontal for configuration
database Cassandra. The
database does not include
analytics.

OpenContrail Analytics 3 4 12 300 2 Horizontal and vertical,
analytics database
(Cassandra).

Logging, Metering, Alerting 3 8 16 300 2 Vertical
OpenStack Dashboard 2 4 8 50 3 Horizontal and vertical.
OpenStack controllers 3 8 16 100 4 Horizontal: Compute service,

Image service, Block Storage
service, Identity service,
Orchestration service,
Hadoop service, Vertical:
HAProxy

GlusterFS 3 2 4 300 2 Vertical
Benchmark 1 2 4 80 2 Vertical

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 24

Example of virtualized control plane design
This section provides an example of VCP design that includes 12 physical nodes. Multiple virtual
instances of each component spread across the physical servers ensuring redundancy and fault
tolerance. Each physical node runs a KVM hypervisor and the virtual instances run on top of
KVM.

Note
This example is for your reference only. It is not a recommended layout, but a design
used for a particular environment and particular hardware. Your use case may or may not
completely differ from this example.

The following diagram describes how VCP services are distributed among physical servers in the
provided example.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 25

Compute nodes planning
Determining the appropriate hardware for the compute nodes greatly depends on the
workloads, number of virtual machines, and types of applications that you plan to run on the
nodes. Typically, you need a two-socket server with the CPU, memory, and disk space that meet
your project requirements.
That said, it is essential to understand your cloud capacity utilization tendencies and patterns to
plan for expansion accordingly. On one hand, planning expansion too aggressively may result in
underuse and financial losses for the company, while underestimating expansion trends
threatens oversubscription and eventual performance degradation.
Mirantis provides a spreadsheet with the compute node calculation. You need to fill the following
parameters in the spreadsheet:

Compute nodes planning

Parameter Description
Overhead
components

Describe components that put additional overhead on system
resources, such as DVR/vRouter and Hypervisor. The parameters
specified in the spreadsheet represent standard workloads. The DVR /
vRouter parameters represent a Compute node with 2 x 10 Gbps
NICs. If you use a larger capacity network interfaces, such as 40
Gbps, this number may increase. For most deployments, the
hypervisor overhead parameters equal represented numbers.

HW Components Compute profile represents the hardware specification that you
require for the specified number of virtual machines and the selected
flavor. The adjusted version of the compute profile represents the
hardware specification after correction to overhead components.

Oversubscription
ratio

Defines the amount of virtual resources to allocate for a single
physical resource entity. Oversubscription ratio highly depends on the
workloads that you plan to run in your cloud. For example, Mirantis
recommends to allocate 8 vCPU per 1 hyper-thread CPU, as well as
1:1 ratio for both memory and disk for standard workloads, such as
web application development environments. If you plan to run higher
CPU utilization workloads, you may need to decrease CPU ratio down
to 1:1.

Flavor definitions Defines a virtual machine flavor that you plan to use in your
deployment. The flavor depends on the workloads that you plan to
run. In the spreadsheet, the OpenStack medium virtual machine is
provided as an example.

Flavor totals Defines the final hardware requirements based on specified
parameters. Depending on the number and the virtual machine
flavor, you get the number of compute nodes (numHosts) with the
hardware characteristics.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 26

Resource utilization
per compute node

The resource utilization parameter defines the percentage of
memory, proccessing, and storage resource utilization on each
compute node. Mirantis recommends that vCPU, vMEM, and vDISK
are utilized at least at 50 %, so that your compute nodes are properly
balanced. If your calculation results in less than 50 % utilization,
adjust the numbers to use the resources more efficiently.

Seealso

• Download Compute nodes calculation

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 27

https://docs.mirantis.com/mcp/1.0/mcp-ref-arch/_downloads/mcp_compute_sizing.xlsx

Network planning
Depending on the size of the environment and the components that you use, you may want to
have a single or multiple network interfaces, as well as run different types of traffic on a single
or multiple VLANs.

Selecting a network technology
Mirantis Cloud Platform supports the following network technologies:

• OpenContrail
• Neutron Open vSwitch

The following table compares the two technologies and defines use cases for both:

OpenContrail vs Neutron OVS

OpenContrail Neutron OVS
Mirantis recommends OpenContrail for both
staging and production environments. It
provides both basic networking, such as IP
address management, security groups,
floating IP addresses, and advanced
networking functions, including DPDK
network virtualization and SR-IOV.
The following functionality is supported by
OpenContrail only:

• Service chaining
• MPLS over UDP/GRE with vMX router
• Multi-site SDN
• Network analytics

If you cannot use OpenContrail due to
hardware or other limitations, your other
option is to use Neutron OVS. Neutron OVS
supports the following use cases:

• L3 fabric:

• Neutron VXLAN tenant networks
with network nodes without DVR

• Neutron VXLAN tenant networks
with network nodes with DVR
east-west and a network node for
north-south traffic.

• The following use cases require L2
networks for external provider networks
to be available across all compute nodes.
Therefore, these use cases are not for
multi-rack strategy or L3 fabric
networking:

• Neutron VLAN tenant networks with
network nodes without DVR

• Neutron VXLAN tenant networks
with network nodes for SNAT (DVR
for both)

• Neutron VLAN tenant networks with
network nodes for SNAT (DVR for
both)

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 28

Types of networks
When planning your OpenStack environment, consider what types of traffic your workloads
generate and design your network accordingly. If you anticipate that certain types of traffic,
such as storage replication, will likely consume a significant amount of network bandwidth, you
may want to move that traffic to a dedicated network interface to avoid performance
degradation.
The following diagram provides an overview of the underlay networks in an OpenStack
environment:

In an OpenStack environment, you typically work with the following types of networks:

• Underlay networks for OpenStack that are required to build network infrastructure and
related components. Underlay networks include:

• PXE / Management
This network is used by SaltStack and MaaS to serve deployment and provisioning
traffic, as well as to communicate with nodes after deployment. After deploying an
OpenStack environment, this network runs low traffic. Therefore, a dedicated 1 Gbit
network interface is sufficient. The size of the network also depends on the number of
hosts managed by MaaS and SaltStack. Although not required, routing significantly
simplifies the OpenStack environment provisioning by providing a default gateway to
reach APT and Git repositories.

• Public
Virtual machines access the Internet through Public network. Public network provides
connectivity to the globally routed address space for VMs. In addition, Public network
provides a neighboring address range for floating IPs that are assigned to individual VM
instances by the project administrator.

• Proxy

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 29

This network is used for network traffic created by Horizon and for OpenStack API
access. The proxy network requires routing. Typically, two proxy nodes with Keepalived
VIPs are present in this network, therefore, the /29 network is sufficient. In some use
cases, you can use Proxy network as Public network.

• Control
This network is used for internal communication between the components of the
OpenStack environment. All nodes are connected to this network including the VCP
virtual machines and KVM nodes. OpenStack components communicate through the
management network. This network requires routing.

• Data
This network is used by OpenContrail to build a network overlay. All tenant networks,
including floating IP, fixed with RT, and private networks, are carried over this overlay
(MPLSoGRE/UDP over L3VPN/EVPN). Compute and Juniper MX routers connect to this
network. There are two approaches to organizing data network: flat VLAN and L3
separation. Flat VLAN presumes that you have one L2 domain that includes all
compute nodes and vMXs. In this case, this network does not require routing. The L3
separation presumes that groups of compute nodes and vMX routers are located in
different L3 networks and, therefore, require routing.

• Storage access (optional)
This network is used to access third-party storage devices and Ceph servers. The
network does not need to be accessible from outside the cloud environment. However,
Mirantis recommends that you reserve a dedicated and redundant 10 Gbit network
connection to ensure low latency and fast access to the block storage volumes. You
can configure this network with routing for L3 connectivity or without routing. If you set
this network without routing, you must ensure additional L2 connectivity to nodes that
use Ceph.

• Storage replication (optional)
This network is used for copying data between OSD nodes in a Ceph cluster. Does not
require access from outside the OpenStack environment. However, Mirantis
recommends reserving a dedicated and redundant 10 Gbit network connection to
accommodation high replication traffic. Use routing only if rack-level L2 boundary is
required or if you want to configure smaller broadcast domains (subnets).

• Virtual networks inside OpenStack
Virtual network inside OpenStack include virtual public and internal networks. Virtual public
network connects to the underlay public network. Virtual internal networks exist within the
underlay data network. Typically, you need multiple virtual networks of both types to
address the requirements of your workloads.

Disregarding the size of your cloud, you must have isolated virtual or physical networks for PXE,
Proxy, and all other traffic. At minimum, allocate one 1 Gbit physical network interface for PXE
network, and two bonded 10 Gbit physical network interfaces for all other networks. Allocate
VLANs on the bonded physical interface to isolate Proxy, Data, and Control logical networks. All
other networks are optional and depend on your environment configuration.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 30

OpenContrail traffic flow
This section provides diagrams that describe types of traffic and the directions of traffic flow in
an OpenStack environment.

User Interface and API traffic
The following diagram displays all types of UI and API traffic in an OpenStack environment,
including Horizon, monitoring, OpenStack API, and OpenContrail UI/API traffic. The Openstack
Dashboard node hosts Horizon and acts as proxy for all other types of traffic. SSL termination
occurs on this node as well.

SDN traffic
SDN or OpenContrail traffic goes through the overlay Data network and processes east-west and
north-south traffic for applications that run in an OpenStack environment. This network segment
typically contains tenant networks as separate MPLS over GRE and MPLS over UDP tunnels. The
traffic load depends on workload.
The control traffic between OpenContrail controllers, edge routers, and vRouters use iBGP and
XMPP protocols. Both protocols produce low traffic which does not affect the MPLS over GRE and
MPLS over UDP traffic. However, this traffic is critical and must be reliably delivered. Mirantis
recommends configuring higher QoS for this type of traffic.
The following diagram displays both MPLS over GRE / MPLS over UDP and iBGP and XMPP traffic
examples:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 31

Storage traffic
Storage traffic flows through dedicated storage networks that Mirantis recommends to configure
if you use Ceph.
The following diagram displays the storage traffic flow for Ceph RBD, replication, and RadosGW.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 32

Neutron OVS use cases
Neutron OVS applies to a number of use cases. This section provides traffic flow diagrams, as
well as compute and network nodes configurations for all use cases.
Neutron OVS requires you to set up a specific network node, which is sometimes called gateway
that handles the routing across the internal networks, as well as the outbound routing.

Node configuration
For all Neutron OVS use cases, configure four VLANs and four IP addresses in separate networks
on all compute and network nodes. You will also need two VLAN ranges for tenant traffic and
external VLAN traffic.
The following table lists node network requirements:

Node network configuration

Port Description IP Address VLAN
br-mesh Tenant overlay traffic

(VXLAN)
Routed, Subnet Leaf switch only

br-mgmt Openstack and other
management traffic

Routed, Subnet Leaf switch only

br-stor Storage traffic Routed, Subnet Leaf switch only
eth0 PXE Boot traffic VLAN, Subnet, Default Global
br-prv Tenant VLAN traffic

bridge
VLAN range Global

br-floating External VLAN traffic
bridge

VLAN range Global

VCP servers network interfaces
Each physical server that hosts KVM on which Virtualized Control Plane (VCP) services run must
have the following network configuration:

VCP servers network configuration

Port Description IP Address VLAN
br-pxe PXE Boot traffic VLAN, Subnet Global
br-mgmt Openstack and other

management traffic
Routed, Subnet Leaf switch only

br-stor Storage traffic Routed, Subnet Leaf switch only
eth0 PXE Boot traffic VLAN, Subnet, Default Global

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 33

Neutron VXLAN tenant networks with network nodes (no DVR)
If you configure your network with Neutron OVS VXLAN tenant networks with network nodes and
without a Distributed Virtual Router (DVR) on the compute nodes, all routing happens on the
network nodes. This is a very simple configuration that typically works for test clouds and
production environments with little tenant traffic. The disadvantage of this approach is that
internal traffic from one virtual internal network to the other virtual internal network has to go
all the way to the network node rather than being transmitted directly through the data network
as when you use a DVR. This results in networks nodes becoming a performance bottleneck for
the tenant traffic.
The following diagram displays internal and external traffic flow.

The internal traffic from one tenant virtual machine located on virtual Internal network 1 goes to
another virtual machine located in the Internal network 2 through the DVR1 and DVR2 on the
network node to the target VM. The external traffic from a virtual machine goes through the
Internal network 1 and the tenant VXLAN (br-mesh) to the DVR 1 on the network node and the
Public network to the outside network.

Network node configuration
In this use case, the network node terminates VXLAN mesh tunnels and sends traffic to external
provider VLAN networks. Therefore, all tagged interfaces must be configured directly in Neutron
OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is mapped as
physnet1 into the Neutron provider networks. br-mgmt and br-mesh are Neutron OVS internal
ports with tags and IP addresses. As there is no need to handle storage traffic on the network
nodes, all the sub-interfaces can be created in Neutron OVS. This also allows for the creation of
VLAN providers through the Neutron API.
The following diagram displays network node configuration for the use case with Neutron VXLAN
tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 34

Compute nodes configuration
In this use case, compute nodes do not have access to the external network. Therefore, you
configure a Linux bridge br-mesh, which is unidirectionally connected with br-tun and used for
VXLAN tunneling. All Open vSwitch bridges are automatically created by the Neutron OVS agent.
For a highly-available production environment, network interface bonding is required. The
separation of types of traffic is done by bonded tagged sub-interfaces, such as bond.y for the
virtualized control plane traffic (mgmt IP), bond.x for data plane bridge (br_mesh) which
provides VTEP for OVS and bond.z for storage etc. IP address of br-mesh is used as local IP in the
openvswitch.ini configuration file for tunneling.
The following diagram displays compute nodes configuration for the use case with Neutron
VXLAN tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 35

Neutron VXLAN tenant networks with DVR for internal traffic
If you configure your network with Neutron OVS VXLAN tenant networks with network nodes and
a Distributed Virtual Router (DVR) for internal traffic, DVR routers are only used for traffic that is
routed within the cloud infrastructure and that remains encapsulated. All external traffic is
routed through the network nodes. Each tenant requires at least two 2 DVRs - one for internal
(East-West) traffic and the other for external (North-South) traffic. This use case is beneficial for
the environments with high traffic flow between the virtual machines.
The following diagram displays internal and external traffic flow.

The internal traffic from one tenant virtual machine located on the virtual Internal network 1
goes to another virtual machine located in the Internal network 2 through the DVRs on the
compute nodes without leaving the data plane. The external traffic from a virtual machine goes
through the Internal network 1 to the DVR on the compute node, then to the DVR on the
network node, and finally through the Public network to the outside network.

Network node configuration
In this use case, the network node terminates VXLAN mesh tunnels and sends traffic to external
provider VLAN networks. Therefore, all tagged interfaces must be configured directly in Neutron
OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is mapped as
physnet1 into the Neutron provider networks. br-mgmt and br-mesh are Neutron OVS internal
ports with tags and IP addresses. As there is no need to handle storage traffic on the network
nodes, all the sub-interfaces can be created in Neutron OVS. This also allows for the creation of
VLAN providers through the Neutron API.
The following diagram displays network node configuration for the use case with Neutron VXLAN
tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 36

Compute nodes configuration
In this use case, compute nodes do not have access to the external network. Therefore, you
configure a Linux bridge br-mesh, which is unidirectionally connected with br-tun and used for
VXLAN tunneling. All Open vSwitch bridges are automatically created by the Neutron OVS agent.
For a highly-available production environment, network interface bonding is required. The
separation of types of traffic is done by bonded tagged sub-interfaces, such as bond.y for the
virtualized control plane traffic (mgmt IP), bond.x for data plane bridge (br_mesh) which
provides VTEP for OVS and bond.z for storage etc. IP address of br-mesh is used as local IP in the
openvswitch.ini configuration file for tunneling.
The following diagram displays compute nodes configuration for the use case with Neutron
VXLAN tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 37

Neutron VLAN tenant networks with network nodes (no DVR)
If you configure your network with Neutron OVS VXLAN tenant networks with network nodes and
without a Distributed Virtual Router (DVR) on the compute nodes, all routing happens on the
network nodes.
The following diagram displays internal and external traffic flow.

The internal traffic from one tenant virtual machine located on virtual Internal network 1 goes to
another virtual machine located in the Internal network 2 through the DVRs on the network
node. The external traffic from a virtual machine goes through the Internal network 1 and the
tenant VLAN (br-mesh) to the DVR on the network node and through the Public network to the
outside network.

Network node configuration
In this use case, the network node terminates private VLANs and sends traffic to the external
provider of VLAN networks. Therefore, all tagged interfaces must be configured directly in
Neutron OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is
mapped as physnet1 into the Neutron provider networks. br-floating is patched with br-prv
which is mapped as physnet2 for VLAN tenant network traffic. br-mgmt is an OVS internal port
with a tag and an IP address. br-prv is the Neutron OVS bridge which is connected to br-floating
through the patch interface. As storage traffic handling on the network nodes is not required, all
the sub-interfaces can be created in Neutron OVS which enables creation of VLAN providers
through the Neutron API.
The following diagram displays network node configuration for the use case with Neutron VLAN
tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 38

Compute nodes configuration
In this use case, the network node terminates private VLANs and sends traffic to the external
provider of VLAN networks. Therefore, all tagged interfaces must be configured directly in
Neutron OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is
mapped as physnet1 into the Neutron provider networks. br-floating is patched with br-prv
which is mapped as physnet2 for VLAN tenant network traffic. br-mgmt is an OVS internal port
with a tag and an IP address. br-prv is the Neutron OVS bridge which is connected to br-floating
through the patch interface. As storage traffic handling on the network nodes is not required, all
the sub-interfaces can be created in Neutron OVS which enables creation of VLAN providers
through the Neutron API.
The following diagram displays compute nodes configuration for the use case with Neutron
VLAN tenant networks with network nodes and DVRs configured on the network node only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 39

Neutron VXLAN tenant networks with network nodes for SNAT (DVR for all)
If you configure your network with Neutron OVS VXLAN tenant networks with network nodes for
SNAT and Distributed Virtual Routers (DVR) on the compute nodes, network nodes perform
SNAT and routing between tenant and public networks. The compute nodes running DVRs
perform routing between tenant networks, as well as routing to public networks in cases when
public networks (provider, externally routed) are exposed or Floating IP addresses are used.
The following diagram displays internal and external traffic flow.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 40

The internal traffic from one tenant virtual machine located on the virtual Internal network 1
goes to another virtual machine located in the Internal network 2 through the DVRs on the
compute nodes. The external traffic (SNAT) from a virtual machine goes through the Internal
network 1 and the DVR on the compute node to the DVR on the network node and through the
Public network to the outside network. The external routable traffic from a virtual machine on
the compute nodes goes through the Internal network 1 and the DVR on the compute node
through the Control or Public network to the outside network.
Traffic flow examples:

• A virtual machine without a floating IP address sends traffic to a destination outside the
Public network (N-S). The Internal network 1 is connected to a public network through the
Neutron router. The virtual machine (VM) is connected to the Internal network 1.

1. The VM sends traffic through the DVR to the network node.
2. The network node performs SNAT, de-encapsulates and forwards traffic to the public

network's external gateway router.
3. Return path same.

• A virtual machine with a floating IP address sends traffic to a destination outside the Public
network (N-S). The compute node with a DVR hosting the VM is connected to a public
network. An Internal network 1 is connected to the external network through the Neutron
router. The VM is connected to the Internal network 1.

1. The VM sends traffic through the compute node DVR to a public network (egress).
2. The compute node DVR performs SNAT, de-encapsulates and forwards traffic to the

public network's external gateway router.
3. Return path (ingress) same (DNAT).

• A virtual machine on an internal (private, tenant) network sends traffic to a destination IP
address on a public (provider, externally routed) network (E-W). The compute node with
DVR hosting the VM is connected to the provider network. The Internal network 1 is
connected to the provider network through the Neutron router. The VM is connected to the
Internal network 1.

1. The VM sends traffic through the compute node DVR to a destination IP on a public
network.

2. The compute node DVR de-encapsulates and forwards traffic to a public network (no
NAT).

3. Return path same.
• A virtual machine (VM1) sends traffic to another VM (VM2) located on separate host(E-W).

The Internal network 1 is connected to the Internal network 2 through the Neutron router.
The (VM1) is connected to the Internal network 1 and the VM2 is connected to the Internal
network 2.

1. The VM1 sends traffic to the VM2 through the compute node DVR.
2. The DVR on the compute node hosting VM1 forwards encapsulated traffic to the DVR

on the compute node hosting VM2.
3. Return path same.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 41

Network node configuration
In this use case, the network node terminates VXLAN mesh tunnels and sends traffic to external
provider VLAN networks. Therefore, all tagged interfaces must be configured directly in Neutron
OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is mapped as
physnet1 into the Neutron provider networks. br-mgmt and br-mesh are Neutron OVS internal
ports with tags and IP addresses. As there is no need to handle storage traffic on the network
nodes, all the sub-interfaces can be created in Neutron OVS. This also allows for the creation of
VLAN providers through the Neutron API.
The following diagram displays network node configuration for the use case with Neutron VXLAN
tenant networks with network nodes and DVRs configured on the network node only.

Compute nodes configuration
In this use case, compute nodes can access external network, therefore, there is the OVS bridge
called br-floating. All Open vSwitch bridges are automatically created by the Neutron OVS agent.
For a highly-available production environment, network interface bonding is required. The
separation of types of traffic is done by the bonded tagged sub-interfaces, such as bond.x for the
virtualized control plane traffic (mgmt IP), bond.y for data plane bridge (br_mesh) which
provides VTEP for OVS and bond.z for storage etc. IP address of br-mesh is used as local IP in the
openvswitch.ini configuration file for tunneling.
The following diagram displays the compute nodes configuration for the use case with Neutron
VXLAN tenant networks with network nodes for SNAT and DVRs for all.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 42

Neutron VLAN tenant networks with network nodes for SNAT (DVR for both)
If you configure your network with Neutron OVS VLAN tenant networks with network nodes for
SNAT and Distributed Virtual Routers (DVR) on the compute nodes, SNAT traffic is managed on
the network nodes while all other routing happens on the compute nodes.
The following diagram displays internal and external traffic flow.

The internal traffic from one tenant virtual machine located on the virtual Internal network 1
goes to another virtual machine located in the Internal network 2 through the DVRs on the

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 43

compute nodes. The external traffic from a virtual machine goes through the Internal network 1
and the DVR on the compute node to the DVR on the network node and through the public
network to the outside network.

Network node configuration
In this use case, the network node terminates private VLANs and sends traffic to the external
provider of VLAN networks. Therefore, all tagged interfaces must be configured directly in
Neutron OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is
mapped as physnet1 into the Neutron provider networks. br-floating is patched with br-prv
which is mapped as physnet2 for VLAN tenant network traffic. br-mgmt is an OVS internal port
with a tag and an IP address. br-prv is the Neutron OVS bridge which is connected to br-floating
through the patch interface. As storage traffic handling on the network nodes is not required, all
the sub-interfaces can be created in Neutron OVS which enables creation of VLAN providers
through the Neutron API.
The following diagram displays network node configuration for the use case with Neutron VLAN
tenant networks with network nodes and DVRs configured on the network node only.

Compute nodes configuration
In this use case, the network node terminates private VLANs and sends traffic to the external
provider of VLAN networks. Therefore, all tagged interfaces must be configured directly in
Neutron OVS as internal ports without Linux bridges. Bond0 is added into br-floating, which is
mapped as physnet1 into the Neutron provider networks. br-floating is patched with br-prv
which is mapped as physnet2 for VLAN tenant network traffic. br-mgmt is an OVS internal port
with a tag and an IP address. br-prv is the Neutron OVS bridge which is connected to br-floating
through the patch interface. As storage traffic handling on the network nodes is not required, all
the sub-interfaces can be created in Neutron OVS which enables creation of VLAN providers
through the Neutron API.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 44

The following diagram displays compute nodes configuration for the use case with Neutron
VLAN tenant networks with Network Nodes for SNAT and DVR for both:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 45

Storage planning
Depending on your workload requirements, you need to consider different types of storage. This
section provides information on how to plan different types of storage for your OpenStack
environment.
You typically need to plan for the following types of storage:
Image storage

The storage required for storing virtual machine images that are used to span virtual
machines in the OpenStack environment.

Ephemeral block storage
Temporary storage for the operating system in a guest virtual machine. Ephemeral storage
is allocated for an instance in an OpenStack environment. As its name suggests, the storage
will be deleted once the instance is terminated. This means that the VM user will lose the
associated disks with the VM termination. Ephemeral storage persists through a reboot of a
VM.

Persistent block storage
In contrast to ephemeral storage, persistent block storage exists outside an instance.
Persistent block storage exists independently of virtual instances and can be attached to an
arbitrary instance. Persistent block storage can only be attached to one instance at a time.

Object storage
Object storage enables you to store data as objects as opposed to block storage that
manages data as blocks combining data, metadata, and a unique identifier in one piece.
Object storage is highly scalable, does not have any limit on the amount of metadata, and
can be used for various types of files.

Mirantis recommends to use Ceph cluster deployed by a separate software tool called Decapod
for all types of storage. However, a variety of other storage options required for an OpenStack
environment are supported as well.

Ceph cluster deployed by Decapod
Ceph is the preferred option for all storage types, including image storage, ephemeral and
persistent block storage, and object storage. Mirantis recommends deploying a standalone Ceph
cluster using the Ceph lifecycle management tool called Decapod.
Decapod is a software tool that drastically simplifies the deployment and lifecycle management
of Ceph. Using Decapod, you can deploy clusters with best known practices, add new nodes to a
cluster, remove them, and purge a cluster, if required. You can use the Decapod web UI to
manage your clusters. Also, Decapod provides a simple API to manage cluster configurations.
In addition, when you use Decapod, you can deploy one Ceph cluster with multiple storage pools
isolated from each other that can serve multiple OpenStack environments.
The following diagram displays the use case with one Ceph cluster serving multiple OpenStack
environments:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 46

Decapod uses Ansible with the Ceph-Ansible community project to deliver the best user
experience. For tasks, you can use plugins that encapsulate the appropriate settings. You can
customize any configuration before execution.
Decapod provides the following functionality:

• Deploying Ceph on remote nodes
• Adding and removing Ceph roles, for example, deploying an OSD or removing a monitor
• Upgrading, updating, and purging clusters
• Managing partitions on disk devices for Ceph

However, Decapod does not cover:

• Providing a server for PXE
• Managing DHCP
• Managing networks by all means
• Managing host OS packages
• Deploying an OS
• Managing partitions on disks that are not related to Ceph

Data models
This section describes the Decapod data models, entities, and workflows.

User model
A user is an entity that contains common information about the Decapod user. It has a login,
email, password, full name, and a role. The user model is used for authentication and
authorization purposes.
When creating a user model in the system, Decapod sends a new password to a user's email.
The user can reset the password and set a new one.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 47

A user created without a role can do a bare minimum with the system because even entities
listing requires permissions. Authorization is performed by assigning a role to a user. A user may
have only one role in Decapod.

Seealso

• Role model

Role model
A role has two properties: name and permissions. Consider the role as a named set of
permissions. Decapod has two types of permissions:

• API permissions enable using different API endpoints and, therefore, a set of actions
available for usage. For example, to view the list of users, you must have the view_user
permission. To modify the information about a user, you also require the edit_user
permission.

Note
Some API endpoints require several permissions. For example, user editing requires
both view_user and edit_user permissions.

• Playbook permissions define a list of playbooks that a user can execute. For example, a
user with any role can execute service playbooks to safely update a host package or add
new OSDs. But a user requires special permissions to execute destructive playbooks, such
as purging a cluster or removing OSD hosts.

Server model
The server model defines a server used for Ceph purposes. Servers are detected during the
server discovery process. Each server has a name (FQDN by default), IP, FQDN, state, cluster ID,
and facts. A user is only allowed to modify the server name, other attributes are updated
automatically on the server discovery. The facts property is a set of facts collected by Ansible
and returned as is. By default, Ansible collects only its own facts, ignoring Ohai and Facter.

Note
Do not create a new server manually using the API. Servers must be discovered by the
discovery protocol.

Server discovery is an automatic process of discovering new servers in Decapod. During this
process, Decapod works passively.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 48

Important

Decapod does not perform a node operating system deployment. The server discovery is
performed using cloud-init, so the only requirement for the node OS is to support
cloud-init.

The cloud-init package is required to create a user for Ansible, set the deployment SSH public
key for the user's authorized keys, and update the /etc/rc.local script. Then, the /etc/rc.local
script registers the host in Decapod.

Seealso

• Ohai
• Facter
• The cloud-init documentation

Cluster model
A cluster model defines a separate Ceph deployment. You can create as many cluster models as
required. Each cluster model has a default name that you can edit only explicitly. You can delete
only that cluster model that does not contain servers.
An explicit cluster model is required because it defines a name of FSID for Ceph. By default, the
name of the model is used as a name of the Ceph cluster and its ID as FSID.
The cluster model configuration is a simple mapping of roles to the list of servers. You cannot
manage this configuration explicitly. Instead, you can use playbooks. For example, when
executing the playbook for adding a new OSD host, this host will be added to the list of servers
for the role osds. If you remove Rados Gateways from the clusters using an appropriate
playbook, these servers will be deleted from the list.
Several models are required to deploy a cluster. Basically, cluster deployment contains the
following steps:

1. Creating an empty cluster model. This model is a holder for the cluster configuration. Also,
it defines the Ceph FSID and name.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 49

https://docs.chef.io/ohai.html
https://docs.puppet.com/facter
http://cloudinit.readthedocs.io/en/latest/index.html

2. Creating a playbook configuration model for the deploy_cluster playbook. This will allow you
to deploy the cluster.

Note
Cluster deployment is an idempotent operation and you may execute it multiple
times.

3. Executing that playbook configuration by creating a new execution. If required, examine
the execution steps or logs.

Seealso

• Playbook configuration
• Playbook execution

Decapod playbooks
To deliver Ceph management functionality, Decapod uses plugins called playbooks. A plugin is a
Python package that contains Ansible playbooks, a configuration file, and the Python code itself.
Each plugin requires configuration.

Playbook configuration
In most cases, Ansible playbooks are generic and have the capability to inject values, such as
the hosts where a playbook has to be executed and also some arbitrary parameters, for
example, Ceph FSID. These parameters are injected into the Ansible playbooks using the
--extra-vars option or by setting them in inventory. A playbook configuration defines the name of
the playbook and its parameters. For simplicity, parameters are split into two sections:

• The global_vars section contains global variables for a playbook. Each parameter in this
section is defined for all hosts. However, the inventory section redefines any parameters.
Parameters from the global_vars section will be passed as --extra-vars parameters. For
details, see the Ansible documentation.

• The inventory section is used as the Ansible inventory. Mostly, this will be a real inventory.
You can modify the section to exclude sensitive information, for example. But in most cases,
the inventory parameters are used as is.

Decapod generates the best possible configuration for a given set of Server model models that
can be modified afterward.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 50

http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line

Note
Decapod uses the server IP as a host. This IP is the IP of the machine visible to Decapod
and does not belong to any network other than the one used by Decapod to SSH on the
machine.

Creating a playbook configuration supports optional hints that allow generating a more precise
configuration. For example, if you set the dmcrypt hint for a cluster deployment, Decapod will
generate the configuration with dmcrypted OSDs. For available hints, see the documentation for
a particular plugin.

Seealso

• Playbook execution

Playbook execution
You can run each playbook configuration multiple times. The playbook execution model defines
a single execution of a playbook configuration. As a result, you will get the execution status,
such as completed, failed, and others, and the execution log. The execution log can be shown
as:

• Execution steps, which are the parsed steps of the execution.
• The raw log, which is a pure Ansible log of the whole execution as is, taken from stdout and

stderr.
Each execution step has timestamps (started, finished), ID of the server that issued the event, a
role and task name of the event, the task status, and detailed information on the error, if any.

Seealso

• Playbook configuration

Supported Ceph packages
Mirantis provides its own Ceph packages with a set of patches that are not included in the
community yet but are crucial for customers and internal needs. The supported LTS release of
Ceph is Jewel. And the only supported distribution is 16.04 Xenial Xerus.
Mirantis keeps the patches as minimal and non-intrusive as possible and tracks the community
releases as close as reasonable. To publish an urgent fix, intermediate releases can be issued.
The packages are available from the following APT repository:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 51

http://docs.ceph.com/docs/master/release-notes/#v10-2-0-jewel

deb http://mirror.fuel-infra.org/decapod/ceph/jewel-xenial jewel-xenial main

The following table lists packages provided for upgrades only:

Ceph
relea

se

Ubun
tu rel
ease

APT repository

Jewel 14.04 deb http://mirror.fuel-infra.org/decapod/ceph/jewel-trusty jewel-trusty main
Hamm
er (0.9
4.x)

14.04 deb http://mirror.fuel-infra.org/decapod/ceph/hammer-trusty hammer-trusty
 main

Hamm
er (0.9
4.x)

12.04 deb http://mirror.fuel-infra.org/decapod/ceph/hammer-precise hammer-prec
ise main

Firefly 14.04 deb http://mirror.fuel-infra.org/decapod/ceph/firefly-trusty firefly-trusty mai
n

Firefly 12.04 deb http://mirror.fuel-infra.org/decapod/ceph/firefly-precise firefly-precise m
ain

Important

Packages for old LTS releases and Jewel for Ubuntu 14.04 are intended for upgrade
purposes only and are not maintained other than fixing bugs hindering the upgrade to
Jewel and Ubuntu 16.04.

Note
Create and use your own repository by following the instructions in the corresponding
Create APT repository mirror playbook.
This playbook creates only the repository. You must then set up the web server like
NGINX or Caddy.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 52

http://docs.ceph.com/docs/master/release-notes/#v0-94-hammer
http://docs.ceph.com/docs/master/release-notes/#v0-94-hammer
http://docs.ceph.com/docs/master/release-notes/#v0-80-firefly
https://github.com/Mirantis/ceph-lcm/tree/master/infrastructure_playbooks/apt_mirror_playbook

Seealso

• Ceph
• Ansible
• Ceph-Ansible community project
• Decapod API reference

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 53

http://ceph.com/
https://www.ansible.com/
https://github.com/ceph/ceph-ansible
http://decapod.readthedocs.io/en/latest/api/index.html

Image storage planning
The OpenStack Image service (Glance) provides a REST API for storing and managing virtual
machine images and snapshots. Glance requires you to configure a back end for storing images.
MCP supports the following options as Glance back end:
Ceph cluster

The default and preferred option for most use cases.
GlusterFS

A highly-scalable distributed network file system that allows you to create a reliable and
redundant data storage. Typically, you select GlusterFS as your image storage if you have a
specific business requirement that Ceph cannot address.

OpenStack Object Storage (Swift)
You can use the OpenStack Object Storage if you deploy it as your object storage. However,
Ceph cluster is still the preferred choice.

Block storage planning
The OpenStack component that provides an API to create block storage for your cloud is called
OpenStack Block Storage service, or Cinder. Cinder requires you to configure one or multiple
supported back ends.
Mirantis Cloud Platform (MCP) supports the following Cinder back ends:
Cinder drivers

If you already use a network storage solution, such as NAS or SAN, you can use it as a
storage back end for Cinder using a corresponding Cinder driver, if available.

Ceph cluster
Ceph supports object, block, and file storage. Therefore, you can use it as OpenStack Block
Storage service back end to deliver a reliable, highly-available block storage solution
without single points of failure.

In environments that require high performance operations, such as databases and high
performance computing, you can configure a combination of two block storage back ends: a
high performance storage back end and a standard operations storage back end.
To achieve this functionality, one option is to configure a segment of the Ceph cluster with solid
state drives (SSD) and the rest of the Ceph cluster with regular hard disk drives (HDD). The
other option includes a high performance third party block storage running as a second block
storage back end through a Cinder driver.

Object storage planning
Options for the MCP object storage include:
Ceph

Ceph is the preferred option for most use cases except for the ones listed below. Ceph
provides a robust, reliable, and easy to manage object storage solution.

OpenStack Object Storage (Swift)

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 54

The OpenStack Object Storage typically used for providing non-server-specific data, such as
web assets or media directly to the client. Typically, Ceph is sufficient for most use cases.
However, for the following use cases, you may want to use Swift:

• Multi-tenancy
OpenStack allows you to run virtual machines of different tenants on the physical
hardware. This practice, although bringing certain economic benefits, may potentially
introduce the risk of a security breach. Multi-tenancy was recently introduced in Ceph
and, therefore, may lack production-ready stability. Swift is an alternative solution that
at the moment provides better reliability.

• Multi-region
If parts of your OpenStack environment are geographically separated, Swift performs
data distribution and synchronization in terms of minutes while other solutions require
much more time. For this use case, you can configure two object storage back ends:
one for global object storage based on Swift and one for local object storage based on
Ceph.

• Amazon S3
Generally, Swift provides better compatibility with Amazon S3 cloud storage solution
comparing to Ceph. However, depending on a use case, Ceph might be sufficient and if
so must be used instead of Swift.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 55

Logging, metering, and alerting planning
StackLight, also known as the Mirantis Logging, Metering, Alerting (LMA) toolchain, is the
operational health and response monitoring solution of the Mirantis Cloud Platform (MCP).
StackLight monitors all devices, resources, and services running in standalone or cluster mode
on top of the infrastructure clusters of MCP. This includes OpenStack, OpenContrail, Kubernetes,
and Ceph.
StackLight provides rich operational insights about the monitored entities with over 700
collected metrics and 150 different alarms.
Using StackLight, cloud operators are quickly notified of critical conditions that may occur on
MCP to prevent service downtimes. As a core part of MCP, StackLight is released together with
MCP and is automatically installed and activated through deploying a supported Reclass model.
The supported Reclass models for MCP are generated by the Cookiecutter project. Currently,
Cookiecutter contains the following Reclass model templates:

• Kubernetes_mk for a standalone Kubernetes control plane
• Openstack_mk_contrail for an OpenStack control plane with Contrail SDN
• Openstack_mk_ovs for an OpenStack control plane with Open vSwitch networking

StackLight contains the following components:

Component name Description
Log Collector Collects, processes and persists the logs
Local Metric Collector Creates metrics, evaluates alarms, and

persists metrics at a local point of collection
Remote Metric Collector Creates metrics, evaluates alarms, and

persists metrics at a remote point of
collection

Aggregator Aggregates and correlates anomalies
detected by the collectors to derive cluster
level health indicators that are sent to Sensu
or other alerting destinations like Nagios

collectd Performs service checks and various resource
usage measurements

InfluxDB Stores the LMA metrics in a time-series
database

Grafana Visualizes the time-series in graphs
Elasticsearch Stores the logs and the OpenStack

notifications
Kibana Visualizes the logs and the OpenStack

notifications

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 56

Sensu Performs the StackLight self-monitoring
checks and self-healing functions, triggers
the alerting notifications

Redis Used as data persistency for Sensu
RabbitMQ Used as a message transporting tool for

Sensu
Uchiwa Used as a monitoring dashboard for Sensu
Nagios (optional) Visualizes the alerts and triggers alert

notifications (alternative to Sensu)
Horizon Contains two plugins to visualize health

status of the OpenStack environment and
resource usage of tenants (tenant
monitoring)

This section describes the architecture and workflow of the essential LMA toolchain components
as well as back ends and services integrated with StackLight operational insights pipeline.

StackLight operational insights pipeline components
The StackLight operational insights pipeline constitutes the Log Collector, the Local and Remote
Metric Collectors, and the Aggregator.
The intent of the StackLight operational insights pipeline is to measure, analyze, and report in a
timely manner everything that may fail in any of the devices, resources, and services running in
the standalone or cluster mode on top of the infrastructure clusters of Mirantis Cloud Platform.
The StackLight operational insights pipeline includes monitoring of the following components:

Component Sub-component
Linux operating system n/a
OpenStack

• Nova
• Cinder
• Glance
• Neutron
• Keystone
• Horizon
• Heat
• Swift

RabbitMQ n/a
Apache n/a
libvirt n/a

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 57

Keepalived n/a
Memcached n/a
MySQL n/a
NGINX n/a
NTP n/a
OpenContrail

• Cassandra
• Contrail server
• Zookeeper (not available yet)
• Kafka (not available yet)

Kubernetes
• Kube-apiserver
• Kube-controller-manager
• Kube-proxy
• Kube-scheduler
• Kubelet
• Docker
• etcd

Calico
• Felix
• BIRD
• confd

Ceph
• OSD
• ceph-mon

StackLight
• InfluxDB
• Elasticsearch
• Grafana
• Kibana

The StackLight operational insights pipeline incorporates a pragmatic approach to what
StackLight monitors and how. The core value of the pipeline is to collect all necessary data and
make a deep analysis of those data to define the actual health status of the services running in
the MCP infrastructure. StackLight performs this analysis both at a discrete and cluster level
which is a distinguishing capability of StackLight considering its built-in understanding of the
services behavior, role, and relationship.
The StackLight operational insights pipeline is not a general-purpose monitoring system and
does not aim to become one. The goal is to instead make that operational insights pipeline

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 58

readily available in a universally pluggable manner to third-party monitoring systems such as
Nagios and/or Sensu, which are widely used in the industry.
The diagram below shows the data workflow inside the StackLight operational insights pipeline.

Log Collector
The Log Collector is installed on each of the nodes managed by Mirantis Cloud Platform. It is
responsible for streaming the log files of the processes running on the nodes. It is based on the
Heka stream processing technology.
The logs are parsed and sanitized using an internal message structure representation so that
they can be further analyzed and processed for anomaly detection and indexing in Elasticsearch
by field.
The important feature of the Log Collector is to create metrics about errors found in the logs.
The specific Lua plugins accumulate these messages in memory to create statistics such as rate
of errors by application. These metrics are then sent to the Local Metric Collector every ticker
interval (every 10 seconds by default) to be evaluated in alarms and correlated with other
metrics.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 59

The metrics derived from logs are used to alert the operator upon abnormal conditions such as
a spike of HTTP 5xx errors. Finally, the logs are sent to Elasticsearch where they are indexed for
viewing and searching in Kibana.
The Log Collector has the following components:

1. Heka, which provides a LogStreamer plugin that allows scanning, sorting, and reading
logstreams in a sequential user-defined order.

2. A collection of Lua plugins running in the Heka Lua Sandbox to run the logs processing
logic.

Note
A logstream is a single linear data stream that is spread across one or more
sequential log files. For example, an Apache or NGINX server typically generates two
log streams for each domain: an access log and an error log. See Heka
documentation for additional details.

Out of the box, the Log Collector handles the following types of outputs:

• An HTTP output to Elasticsearch where the logs and the notifications are sent
• A TCP or UDP output to a syslog server where the logs are sent
• A TCP output to the Local Metric Collector where the metrics derived from logs are sent

The diagram below shows the data workflow inside the Log Collector.

Metric Collector
StackLight for Mirantis Cloud Platform has two types of Metric Collectors:

• The Local Metric Collector
• The Remote Metric Collector

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 60

https://hekad.readthedocs.io/en/latest/pluginconfig/logstreamer.html
https://hekad.readthedocs.io/en/latest/pluginconfig/logstreamer.html

The term “Collector” is rather a misnomer since the Metric Collector does much more than
simply collecting data. The Metric Collector is a smart monitoring agent that performs advanced
monitoring functions at the point of data collection.
For both Local and Remote Metric Collectors, the processing logic of the data, especially the
alarms handling, is distributed across all the nodes where the Metric Collector is running, as
opposed to being executed on a central server. Such logic ensures an excellent scalability and
resilience of StackLight.
The Metric Collector is based on the same Heka technology as the Log Collector. By design, the
Metric Collector is liberal with the data it accepts and conservative with the data it sends. This
makes Heka a natural fit for the task because of its fast and flexible stream processing engine
and standard plugins that cover a large array of the StackLight plugability and interoperability
requirements with native monitoring systems.

Note
The future StackLight version may use HindSight instead of Heka for the Metric Collector.
Hindsight is a C-based data processing infrastructure based on the same lua sandbox
project to replace Heka.

The Local Metric Collector should be installed on each of the nodes monitored by StackLight.
The Remote Metric Collector should be installed as a part of the monitoring cluster of the
virtualized control plane of MCP in an active/passive HA cluster managed by Keepalived and
HAProxy. Keepalived manages failover of the IP address for the HAProxy monitoring VIP.
Only one Remote Metric Collector in active state should be bound to the monitoring VIP at a
time. However, there should be more than one Remote Metric Collector installed in
active/passive failover mode to ensure that no single point of failure of the Remote Metric
Collector functions.
As opposed to the Local Meric Collector, the Remote Metric Collector monitors the services
remotely from the node where they are running. It also collects and processes the OpenStack
notifications using the Heka RabbitMQ input plugin. The Remote Metric Collector is typically
used to check the availability of the services through their assigned VIP. On the Remote Metric
Collector, the CADF-compatible notifications are encoded differently depending on whether they
are stored in Elasticsearch and/or sent to a syslog-compatible service, for example, a SIEM
system such as QRadar.
Several types of measurements are also performed, for example, to get statistics about global
resources utilization or health status information, such as those reported by the built-in
heartbeat monitoring of OpenStack.
The Metric Collector has the following components:

1. The collectd daemon that performs the service health checks and resource usage
measurements. The collectd daemon has a collection of the purpose-built plugins to
perform various types of checks and measurements. In general, the checks and
measurements are implemented in separate Python plugins so that the measurements can
be turned off in configuration independently of the checks.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 61

https://github.com/mozilla-services/lua_sandbox
https://collectd.org

2. Heka and a collection of the Lua plugins running in the Heka Lua Sandbox are used to
normalize and process the operational data obtained from collectd and other sources, such
as the Log Collector or RabbitMQ for the OpenStack notifications. The normalization process
consists of decoding and sanitizing the raw data obtained from collectd into a standard
message structure. This structure contains the following items that are consumed by other
plugins of the stream processing pipeline to process the alarms:

• metric name
• metric value
• metric timestamp
• metric metadata

Finally, there are the encoder and output plugins responsible for serializing and sending the
metric messages to an external destination such as InfluxDB, Nagios, or Sensu.

The Heka messages traversing the pipeline are persisted to disk that prevents data loss when
the hekad process crashes. Also, Heka is configured with a buffer of 1 GB to prevent transient
network congestion issues. When the buffer is full, Heka drops all new incoming messages. This
policy allows reducing the load during ingestion of the collectd data into Heka to prevent collectd
blocking. The collectd daemon blocks when it crosses its internal buffer high watermark.
Relaxing the back pressure on collectd is critical since in general collectd does not recover from
a block state without a restart.

Important

The configuration of StackLight in MCP is data-model driven. In practice, it means that the
parameterization of what plugin is installed on what node in Heka and collectd is defined
in the Reclass model as opposed to be defined in the Heka and collectd formulas
themselves.

Out of the box, the Metric Collector handles the following types of outputs:

• A TCP output to the Aggregator where the AFD metrics are sent
• An HTTP output to InfluxDB where all metrics are sent
• An HTTP output to Elasticsearch where all notifications are sent
• A TCP or UDP output to a syslog server where the CADF notifications are sent (only the

Remote Metric Collector)
The diagram below shows the data workflow inside the Metric Collector.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 62

https://github.com/mozilla-services/heka

Aggregator
The Aggregator must be installed on the virtualized control plane of the MCP monitoring cluster
in an active/passive HA cluster managed by Keepalived and HAProxy. Only one Aggregator
should be bound to the monitoring VIP at a time. However, there should be more than one
Aggregator installed in active/passive failover mode to ensure no single point of failure of the
Aggregator functions. Keepalived is used to configure the IP address of the monitoring VIP.
The Aggregator is based on the same Heka technology as the Collectors, but it does not perform
any collectd checks or measurements. Instead, it receives a stream of metrics from all the
Collectors called the Anomaly and Fault Detection (AFD) metrics.
The AFD metrics contain the health status of the entities being monitored by the Collectors. The
role of the Aggregator is to apply a set of declaratively defined correlation policies. The result of
this processing produces another kind of metrics called the Global Status Evaluation (GSE)
metrics.
The GSE metrics contain the health status of the clusters. These metrics are logical constructs
that are declaratively defined in aggregation rules.
Both the AFD and GSE metrics are also called health status metrics. Ultimately, the AFD and
GSE metrics are transformed into health status events that are sent to Sensu for alerting.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 63

Caution!

In StackLight, Sensu is used by default instead of Nagios. Sending of passive checks to
Nagios is still supported, but it is not the preferred alerting mechanism in StackLight for
MCP.

Out-of-the-box, the Aggregator handles the following types of outputs:

• An HTTP output to InfluxDB where all metrics are sent
• An HTTP output to Nagios where the passive checks are sent (optional)
• A UDP output to the local Sensu client where all the AFD and GSE metrics are sent

The diagram below shows the data workflow inside the Aggregator.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 64

Seealso
StackLight alerts in the MCP Operations Guide

Components integrated with StackLight operational insights pipeline
The LMA toolchain includes several back-end servers integrated with the StackLight operational
insights pipeline to perform the visualization of an environment monitoring and health status.

InfluxDB and Grafana clusters
InfluxDB is a powerful time-series database to store and search metrics time-series. The
InfluxDB cluster must be installed as part of the virtualized control plane of MCP in an
active/passive HA mode managed by Keepalived and HAProxy. Only one InfluxDB server should
be active at a time.

Note
The current implementation of StackLight for MCP uses InfluxDB community version 1.2. If
you want to use a fully supported InfluxDB cluster for HA and scale-out, install the
InfluxEnterprise version separately.

The Grafana server is installed in an active/active HA mode on the monitoring cluster of the
virtualized control plane. With Grafana, HAProxy is used for load balancing with sticky sessions.
InfluxDB and Grafana are mainly used to diagnose and visualize trends (what has changed since
when) in time-series over a certain retention period that is configurable in the Salt model. The
Grafana dashboards are not defined in the support metadata of the Grafana formula but in the
support metadata formula of the monitored entities.
In the StackLight architecture, InfluxDB is not in the critical path of alerting, because the alarms
are evaluated by the Collectors and the alerts displayed in Sensu and Nagios convey the same
alerting information that the Grafana annotations.

Elasticsearch cluster and Kibana server
The Elasticsearch cluster must be installed as part of the virtualized control plane for HA and
scale-out. The Elasticsearch clustering is supported natively. It must be installed on at least
three nodes to avoid split-brain issues. All Elasticsearch servers store data and can be elected
master. By default, five shards per index type per day and two replicas, but this setting can be
changed in the Salt model. The Elasticsearch cluster is reconfigured automatically when new
nodes are added (or removed) to the cluster. Access to the Elasticsearch and Kibana servers is
done through the monitoring VIP for failover and load balancing. The Kibana server is installed in
an active/active HA mode managed by HAProxy and Keepalived.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 65

Sensu monitoring cluster
Sensu is the overarching monitoring system that the StackLight operational insights pipeline is
integrated with.
Sensu replaces Nagios as a widely used and more efficient monitoring system that includes and
API to query events, as opposed to Nagios. This API allows displaying the health status of the
OpenStack services in Horizon. Sensu also contains clustering and multi-domain monitoring
support that allow aggregating the monitoring of multiple domains (datacenters) using Uchiwa.
Uchiwa is a simple dashboard for the Sensu monitoring framework running on top of multiple
instances of the Sensu API server and presenting a unified monitoring view of a multi-domain
deployment.
In the StackLight architecture for MCP, Sensu plays a dual role:

• It monitors the components of the StackLight operational insight pipeline itself (collectd,
Local Metric Collector, Remote Metric Collector, and Aggregator). The monitoring of these
components covers not only the processes statuses but also functional checks, such as
verifying that the stream processing pipeline of Heka is up.

• It handles the StackLight health status events for alerting and escalation. Those events
convey health status information about all monitored devices, resources, and services
running in standalone or in cluster mode on top of the infrastructure clusters of MCP. This
Sensu integration comes as a complete replacement of the passive checks handled by
Nagios in the former StackLight architecture.

The Sensu monitoring cluster is installed in a distributed fashion on the monitoring cluster for
high availability and scale-out. As for other services of StackLight, HAProxy is used for
load-balancing and failover using a VIP managed by Keepalived.

Sensu components
The Sensu framework has the following components:

Component Description
Secure transport The Sensu services use RabbitMQ as a messaging queue to

communicate with one another.
Data store The Sensu server and Sensu API instances use Redis as a data

store registry for the checks, events, and clients. By storing those
data in Redis, the Sensu services themselves can remain
stateless. Therefore, there can be several instances of the Sensu
server and Sensu API instance running in parallel.

Sensu server The Sensu server is a scalable event processor that processes
event data and takes action. Typically, the Sensu server can
process the events received from StackLight using filters,
mutators, and handlers. The Sensu server is installed with a
default handler which is defined in the alarms of the Reclass
model.

Sensu API Sensu provides access to monitoring data and core functionality
through a RESTful HTTP JSON-based API. This API is used by
Uchiwa and Horizon.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 66

https://sensuapp.org/docs/0.28/api/events-api.html

Sensu client The Sensu client is the monitoring agent that is responsible for
monitoring the StackLight operational insights pipeline services. It
also directed by the Sensu server to perform regular Keepalived
checks to verify the availability of the nodes as a whole.

Uchiwa The monitoring dashboard for Sensu.

A special Sensu client instance supports the integration of the StackLight operational insights
pipeline with Sensu. The Aggregator sends health status events to the local Sensu client through
UDP. Technically, the Aggregator is viewed by Sensu as a proxy client that converts the AFD and
GSE metrics traversing the Heka pipeline into the Sensu-compatible events.

Sensu events handling
The health status events sent by the Aggregator to Sensu may contain the name of a Sensu
handler associated with the event. This name is configurable in the service metadata of the
Heka formula that can be overridden in the Salt model.
A Sensu event may or may not have a handler name depending on the alarm definition in the
support metadata of the monitored entity formula:

• If the alarm is enabled with alerting, then the event will be sent with the noop handler
name. The noop handler on the Sensu server does nothing (cat /dev/null). The noop handler
must be enabled for the Sensu server in the Salt model.
Example of an alarm with alerting enabled:

nova_compute:
 policy: highest_severity
 alerting: enabled
 match:
 service: nova-compute
 members:
 - nova_compute
 dimension:
 service: nova-data
 nagios_host: 01-service-cluster

• If the alarm is enabled with notification (see example below), then the event will be sent
with the name of the notification handler name that must be defined in the model for the
Aggregator. This handler should also be defined in the Salt model for Sensu. Otherwise, this
will be logged by the Sensu server as an error every time an event is received. Several
handlers can be defined with the Sensu Salt formula including Graphite, Hipchat, Pagerduty,
SalesForce.com, Slack, Statsd, and others. A default handler is used for events that have no
handler defined. The Sensu handler used by the Aggregator must be defined in the Salt
model.
Example of an alarm with alerting with notification enabled:

 nova_control:
 policy: highest_severity
 alerting: enabled_with_notification

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 67

https://sensuapp.org/docs/0.28/reference/clients.html#proxy-clients
https://sensuapp.org/docs/0.28/reference/handlers.html#what-is-a-sensu-event-handler

 match:
 service: nova-control
 members:
 - nova_logs
 - nova_api_endpoint
 - nova_api_check
 {%- for nova_service in ('cert', 'consoleauth', 'conductor', 'scheduler') %}
 - nova_{{ nova_service }}
 {%- endfor %}
 dimension:
 cluster_name: nova-control
 nagios_host: 00-top-clusters

Seealso
The StackLight alarm structure section in the MCP Operations Guide

Horizon
In addition to Sensu, the StackLight operational insights pipeline has an integration with Horizon
using two plugins:

• The horizon-telemetry-dashboard plugin provides access to the Telemetry data stored in
InfluxDB for the control plane and data plane nodes. A user with the admin role has access
to the Telemetry Dashboard of Horizon. A user with a non-admin role has access to the
Telemetry data overview of instances on a per tenant basis.

• The horizon-monitoring-dashboard plugin provides access to the StackLight health status
events stored in Sensu. Using the Monitoring dashboard of Horizon, a user with the admin
role can visualize those events the same way as in Uchiwa.

LMA reference deployment
A deployment of the StackLight back-end servers in a cluster is primarily intended to ensure
high availability before scale-out putting aside Elasticsearch that can handle both scale-out
through shards and replicas and HA clustering natively.
Resilience to hardware failures is ensured as long as there are at least three nodes configured
for hosting the StackLight monitoring cluster. This is required to avoid the split-brain effect in
the master election process.
It is possible to add and remove nodes in the monitoring cluster after the initial deployment. All
the heavy-lifting configuration management is handled transparently by the formulas. The
constraints and limitations are described in the back-end server formulas README file.
As for standalone deployments, the back-end servers can be installed on the same node or on
different nodes. Your deployment blueprint may vary, but to reduce cost, it is possible to
collocate all the StackLight back-end servers on the same node. Or you can use virtual

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 68

machines of the virtualized control plane to segregate the back-end servers by function or
workload profile.
The limitations and constraints of the monitoring cluster are as follows:

1. The InfluxDB server that is installed by default on the Mirantis Cloud Platform is the latest
available community version. However, the community version does not support HA
clustering. Therefore, only one active instance of the InfluxDB server runs in the monitoring
cluster at a time.
InfluxDB is not used for alerting. Therefore, the crash of the active InfluxDB server will only
affect the scope and time window of the time-series that can be visualized in Grafana after
a failover of the active InfluxDB server to a new node of the monitoring cluster. To mitigate
that issue, we recommend performing regular backups of the InfluxDB database that can be
restored on the failover node after a crash of the primary node. If you still want to run
InfluxDB in a fully supported cluster mode for HA and scale-out, you should install the
InfluxEnterprise commercial edition of InfluxDB separately.

2. The StackLight integration with an LDAP server for authentication and authorization is
supported natively for Grafana. For additional details, see the Grafana formula. However, it
is not supported for Kibana and Sensu. If you want to add support for LDAP authentication
and authorization in Kibana and/or Sensu, you should install the commercial version
separately.

The following diagram shows a reference deployment of Stacklight on Mirantis Cloud Platform
based on nodes classification defined in the Cookiecutter project for StackLight with OpenStack:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 69

https://github.com/salt-formulas/salt-formula-grafana

Multi-domain monitoring support
The multi-domain monitoring allows controlling multiple Mirantis Cloud Platform (MCP) clusters
using a single DriveTrain in a centralized fashion.
In MCP, a domain typically refers to a Reclass model that is deployed in an MCP cluster. As such,
a multi-domain MCP cluster includes one or several OpenStack environments and one or several
Kubernetes clusters that can be operated in a somewhat centralized fashion from DriveTrain as
shown in the diagram below.

Note
The name of an MCP cluster is defined by the cluster_domain parameter in the Reclass
model.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 70

Since the StackLight operational insights pipeline must be installed and configured as part of the
same MCP cluster as the entities it monitors, the StackLight operational insights pipeline
components must be deployed separately from DriveTrain. For example, the Metric Collector
and the Aggregator use the service and support metadata of the Nova formula to configure the
collectd checks and the Heka plugins used to precisely monitor the OpenStack Compute service.
Therefore, the StackLight operational insights pipeline must be installed in the same Virtualized
Control Plane as the OpenStack environment and Kubernetes cluster.
It should be technically possible to run the Sensu cluster (sensu-api, sensu-server, rabbitmq and
redis) in a central location as long as there is a Layer-3 IP connectivity between the Sensu clients
and RabbitMQ. But we do not recommend this scenario for the Sensu deployment to avoid the
name clashing problems for the registered clients (that is the name of the physical hosts and the
name of the virtual hosts representing the clusters, such as 00-top-clusters) across the
Virtualized Control Plane.
The InfluxDB and the Elasticsearch clusters can be installed in a central location as long as there
is a Layer-3 IP connectivity between the StackLight operational insights pipeline components

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 71

and InfluxDB and/or Elasticsearch. Furthermore, all the metrics stored in Influxdb are tagged
with the cluster_domain name, known as the environment_label tag, as well as the OpenStack
region and availability zone tags when applicable. Therefore, you can execute the InfluxDB
queries filtered by any of those tags if you want to segregate results. The same tagging and
queries filtering applies to the logs and the notifications stored in Elasticsearch.
Uchiwa can be installed in a central location for multi-domain monitoring since you can federate
several Sensu clusters in Uchiwa as a logical representation of several MCP clusters.

Tenant Telemetry for OpenStack
MCP LMA toolchain provides Tenant Telemetry for OpenStack environments based on the
OpenStack Telemetry Data Collection service, or Ceilometer. Tenant Telemetry assists in
resource utilization planning and expansion, addresses scalability issues by collecting various
OpenStack resource metrics, as well as provides the metrics to such auto-scaling systems as
OpenStack Orchestration service, or Heat, that is used to launch stacks of resources, such as
virtual machines.
Tenant Telemetry stores scalability metrics in the time-series database called InfluxDB and
information about the OpenStack resources in Elasticsearch. In the default Reclass models,
Tenant Telemetry shares these resources with other components of the LMA toolchain.
Therefore, Tenant Telemetry is deployed together with the LMA toolchain.
By default, Tenant Telemetry supports only sample and statistics API. However, you can enable
full Ceilometer API support. Tenant Telemetry implements a complete Ceilometer functionality
except complex queries with InfluxDB and Elasticsearch as back ends for samples and events.
Tenant Telemetry supports the community Aodh service that uses the Ceilometer API and
provides an alarm evaluator mechanism based on metrics. Aodh allows triggering actions that
are based on defined rules against sample or event OpenStack services data that is collected by
Ceilometer. After the event-driven alarm evaluation, Aodh provides instant alarm notifications to
the user.
Instead of the native Ceilometer Collector service, Heka is used to consume messages for the
Ceilometer queues and send them to InfluxDB and Elasticsearch. The Heka Salt formula contains
the ceilometer_collector pillar.
The following diagram displays Tenant Telemetry architecture:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 72

Tenant Telemetry uses the Ceilometer agents to collect data and Heka to transfer data to
InfluxDB and Elasticsearch. The Ceilometer API is used to retrieve data from back ends and
provide it to the end user.
The following table describes the components of Tenant Telemetry:

Tenant Telemetry components

Component Description
Central
agents

Collect metrics from the OpenStack services and sends them to the
notifications.sample queue. Central agents run on the virtualized control
plane nodes.

Compute
agents

Request virtutal instances metadata from Nova API every 10 minutes and
send them to the notifications.sample queue. Compute agents run on the
compute nodes.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 73

Notification
agents

Collect messages from the OpenStack services notification.sample and
notifications.info queues and send them to the metering.sample queue. All
OpenStack notifications are converted into Ceilometer Events and published
to Elasticsearch. Events are published to Elasticsearch using the direct
publishing mechanism provided by Ceilometer. Heka does not participate in
events processing.

Heka Processes the data collected from RabbitMQ and OpenStack notifications
using a set of Lua plugins and transforms the data into metrics that are sent
to InfluxDB and Elasticsearch.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 74

Plan a Kubernetes cluster
Kubernetes is an orchestrator for containerized applications. MCP enables you to deploy a
Kubernetes cluster as a standalone deployment or side by side with an OpenStack
environment(s). MCP provides lifecycle management of the Kubernetes cluster through the
continuous integration and continuous delivery pipeline, as well as monitoring through the MCP
Logging, Metering, and Alerting solution.

Kubernetes cluster overview
Kubernetes provides orchestration, scheduling, configuration management, scaling, and
updates to the containerized customer workloads. Kubernetes components are typically
installed on bare metal nodes.
At a high level, a Kubernetes cluster includes the following types of nodes:
Kubernetes Master node

Runs the services related to the Kubernetes Master Tier, such as the Kubernetes control
plane services.

Kubernetes Minion node
Runs user workloads. In MCP, a Kubernetes Minion node is identical to the compute node.

The MCP Kubernetes design is flexible and allows you to install the Kubernetes Master Tier
services on an arbitrary number of nodes. For example, some installations may require you to
dedicate a node for the etcd cluster members. The minimum recommended number of nodes in
the Kubernetes Master Tier for production environments is three. However, for testing purposes,
you can deploy all the components on one single node.
The following diagram describes the minimum production Kubernetes installation:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 75

Kubernetes cluster components
A Kubernetes cluster includes Kubernetes components as well as supplementary services and
components that run on all or some of the nodes.
The components can be divided into the following types:
Common components

These components run on all nodes in the Kubernetes cluster. The common components
include:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 76

• Calico is an SDN solution that provides pure L3 networking to the Kubernetes cluster.
Calico includes the following main components that run on every node in the
Kubernetes cluster:

• Calico Felix is a network agent responsible for managing routing tables, network
interfaces, and filters on the participating hosts.

• BIRD is a lightweight BGP daemon that allows for exchange of addressing
information between the nodes of the Calico network.

• kube-dns provides discovery capabilities to Kubernetes services.
• kubelet is an agent service of Kubernetes that is responsible for creating and managing

Docker containers on the Kubernetes cluster nodes.
• The Container Network Interface (CNI) plugin for Calico SDN establishes a standard for

network interface configuration in Linux containers.
Master components

These components run on the Kubernetes Master nodes and provide the control plane
functionality. Most of the components run as Docker containers, with a few exceptions that
run in static pods in Kubernetes.

• etcd is a distributed key-value store that stores data across the Kubernetes cluster.
• etcd-proxy is a process that redirects requests to available nodes in the etcd cluster.
• kubectl is a command line client for the Kubernetes API that enables cloud operators to

execute commands against Kubernetes clusters.
• kubedns services DNS requests, as well as monitors the Kubernetes Master node for

changes in Services and Endpoints. The DNS pod includes the following containers
kubedns, dnsmasq, and healthz.

• kube-proxy is responsible for the TCP/UDP stream forwarding or round-robin TCP/UDP
forwarding across various back ends.

• kube-apiserver is a REST API server that verifies and configures data for such API
objects as pods, services, replication controllers, and so on.

• kube-scheduler is a utility that implements functions of workloads provisioning
scheduling in pods to specific Kubernetes minions according to workloads capacity
requirements, minions allowances and user-defined policies, such as affinity, data
localization and other custom restraints. kube-scheduler may significantly affect
performance.

• kube-control-manager is a process that embeds the core control loops shipped with
Kubernetes, such as the replication controller and so on.

Minion components
These components run on all Kubernetes Minion nodes and include all Common components,
as well as etcd-proxy.

Optional components
You may need to install some of these components if your environment has specific
requirements:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 77

• The OpenContrail SDN can be installed as an alternative to Calico networking in the
MCP clusters that require L2 network connectivity.

Note
The OpenContrail SDN for Kubernetes is available as technical preview only.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 78

Calico networking considerations
As Kubernetes does not provide native support for networking, MCP uses Calico as an L3 overlay
networking provider for all Kubernetes deployments through the Common Network Interface
(CNI) plugin. Calico ensures propagation of internal container IP addresses to all Kubernetes
Minion nodes over the BGP protocol, as well as provides network connectivity between the
containers. Calico uses the etcd key-value store as storage for the configuration data. Mirantis
recommends setting up a standalone etcd cluster, separate from the one that Kubernetes uses.
Calico runs in a container called calico-node on every node in the Kubernetes cluster, including
both Kubernetes Master nodes and Kubernetes Minion nodes. The calico-node container is
controlled by the operating system directly as a systemd service.
The calico-node container incorporates the following main Calico services:
Felix

The primary Calico agent which is responsible for programming routes and ACLs, as well as
for all components and services required to provide network connectivity on the host.

BIRD
A BGP client that distributes routing information. confd is a dynamic configuration manager
for BIRD, triggered automatically by updates in the configuration data.

Etcd cluster
In the MCP Kubernetes cluster deployment, etcd is used for both Kubernetes components and
Calico networking. Etcd is a distributed key-value store that allows you to store data from
cluster environments. Etcd is based on the Raft consensus algorithm that ensures
fault-tolerance and high performance of the store.
Every instance of etcd can operate in one of the following modes:
Etcd full daemon

In the full daemon mode, an etcd instance participates in Raft consensus and has persistent
storage. Three instances of etcd run in full mode on the Kubernetes Master nodes. This
ensures quorum in the cluster and resiliency of service.

Etcd native proxy
In the native proxy mode, etcd forwards client requests to an available node in the etcd
cluster, therefore, acting as a reverse proxy. In this mode, etcd does not take part in the
Raft consensus mechanism.

Both etcd and etcd-proxy run as systemd services.

High availability in Kubernetes
The Kubernetes Master Tier is highly-available and works in active-standby mode. MCP installs
all control components on all nodes in the Kubernetes Master Tier with one node at a time being
selected as a master replica and others running in the stand-by mode. API servers work
independently while external or internal Kubernetes load balancer dispatches requests between
all of them.
The following diagram describes the API flow in a highly available Kubernetes cluster:

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 79

High availability of the proxy server is ensured by the software called HAProxy. HAProxy
provides access to the Kubernetes API endpoint by redirecting the requests to instances of
kube-apiserver in a round-robin fashion. The proxy server sends API traffic to available back
ends and HAProxy prevents the traffic from going to the unavailable nodes. The Keepalived
daemon provides VIP management for the proxy server. Optionally, SSL termination can be
configured on the HAProxy, so that the traffic to kube-apiserver instances goes over the internal
Kubernetes network.
Each of the three Kubernetes Master nodes runs its own instance of kube-apiserver on the
localhost address. All Kubernetes Master Tier services work with the Kubernetes API locally,
while the services that run on the Kubernetes Minion nodes access the Kubernetes API through
the HAProxy server.
Every Kubernetes Master node runs an instance of kube-scheduler and kube-controller-manager.
Only one service of each kind is active at a time, while others remain in the warm standby mode.
This behavior is controlled by the etcd-based clustering with leaders election.

Kubernetes Master Tier high availability
All Kubernetes Master Tier services run as static pods defined by the kubelet manifests in the
/etc/kubernetes/manifests/ directory. One Docker image runs all static pods.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 80

The DNS service is defined in Kubernetes API after installation of the Kubernetes cluster. The
kubedns pod is controlled by the replication controller with replica factor of 1, which means that
only one instance of the pod is active in a cluster at any time.
The etcd daemons that form the cluster run on the Kubernetes Master nodes. Every node in the
cluster also runs the etcd-proxy process. Any service that requires access to the etcd cluster
communicates with the local instance of etcd-proxy to reach it. External access to the etcd
cluster is restricted.
The Calico node container runs on every node in the cluster, including Kubernetes Master and
Minion nodes. The calico-node container runs as a plain Docker container under the control of
systemd.
Calico announces address spaces of pods between hosts through BGP protocol. It supports the
following nodes of of operation of BGP protocol, configurable in Salt installer:
Full mesh BGP

This topology only requires that nodes support BGP using calico-node. The underlay network
can have any topology with no specific requirements to ToR hardware. However, in the case
of full mesh, number of BGP connections grows exponentially at scale which may result in
various performance and capacity issues and makes troubleshooting increasingly difficult.
Correspondingly, this configuration only recommended for small environments and testing
environments.

ToR BGP peering
This option requires that ToR switches have L3 and BGP capabilities, which increases the
cost. On the other hand, it drastically reduces the complexity of the BGP topology, including
the number of connections. This configuration recommended for all staging and production
environments.

The following diagram describes high availability in Kubernetes Master Tier.

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 81

Mirantis Cloud Platform Reference Architecture 1.0

©2017, Mirantis Inc. Page 82

	Copyright notice
	Preface
	Intended audience
	Documentation history

	Introduction
	MCP design

	Deployment automation
	SaltStack and Reclass model
	SaltStack repository structure
	Deployment templates

	Repository planning
	Local mirror design
	List of repositories

	Infrastructure node planning
	Overview
	Multi-site and multi-cluster architecture
	DriveTrain overview
	CI/CD pipeline overview
	DevOps portal
	Cloud Intelligence Service overview
	Cloud Health Service overview
	Runbooks Automation overview
	Capacity Management Service overview

	High availability in DriveTrain

	Plan an OpenStack environment
	Virtualized control plane planning
	Virtualized control plane overview
	Minimum virtualized control plane design
	Virtual control plane requirements
	Example of virtualized control plane design

	Compute nodes planning
	Network planning
	Selecting a network technology
	Types of networks
	OpenContrail traffic flow
	User Interface and API traffic
	SDN traffic
	Storage traffic

	Neutron OVS use cases
	Node configuration
	VCP servers network interfaces
	Neutron VXLAN tenant networks with network nodes (no DVR)
	Network node configuration
	Compute nodes configuration

	Neutron VXLAN tenant networks with DVR for internal traffic
	Network node configuration
	Compute nodes configuration

	Neutron VLAN tenant networks with network nodes (no DVR)
	Network node configuration
	Compute nodes configuration

	Neutron VXLAN tenant networks with network nodes for SNAT (DVR for all)
	Network node configuration
	Compute nodes configuration

	Neutron VLAN tenant networks with network nodes for SNAT (DVR for both)
	Network node configuration
	Compute nodes configuration

	Storage planning
	Ceph cluster deployed by Decapod
	Data models
	User model
	Role model
	Server model
	Cluster model
	Decapod playbooks
	Playbook configuration
	Playbook execution

	Supported Ceph packages

	Image storage planning
	Block storage planning
	Object storage planning

	Logging, metering, and alerting planning
	StackLight operational insights pipeline components
	Log Collector
	Metric Collector
	Aggregator

	Components integrated with StackLight operational insights pipeline
	InfluxDB and Grafana clusters
	Elasticsearch cluster and Kibana server
	Sensu monitoring cluster
	Sensu components
	Sensu events handling

	Horizon

	LMA reference deployment
	Multi-domain monitoring support
	Tenant Telemetry for OpenStack

	Plan a Kubernetes cluster
	Kubernetes cluster overview
	Kubernetes cluster components
	Calico networking considerations
	Etcd cluster
	High availability in Kubernetes
	Kubernetes Master Tier high availability

