

Topic: ITRI OpenStack Distribution

Speaker: Yuh-Jye (EJ) Chang 误称法

About Myself

- 1984-1988 NTU ME BS
- 1994-1999 Syracuse CS PhD
- 1998-2006 Lucent/Bell Labs
- 2006-2011 Alcatel-Lucent/Bell Labs
- 2011-Present ITRI/CCMA S Division
- 2015-Present ITRI/ICL F Division

Agenda

- About ITRI OpenStack Distribution
- BAMPI
- High Availability
- Disco (Cinder Plugin)
- SOFA (All flash storage)
- Peregrine (Neutron Plugin)
- PDCM (Monitoring)

Why ITRI OpenStack?

Because we need

- Scalable and comprehensive bare metal provisioning
- HA support for every OpenStack system component
- Standard operating procedures (SOPs) and tools for change management
- Scalability for Internet-facing packet processing
- Overhead-minimizing network virtualization
- Physical data center administration tool
- PMLS (HaaS): Physical Machine (Hardware) Leasing Service)

What's inside IOD?

- Auto Deployment from Bare Metal
- ITRI OpenStack Components High Availability
- Dual Switch Protection
- Physical Data Center Monitor
- Cinder Plugin DISCO
- Neutron Plugin Peregrine
- Compute Node Failover
 - Move VMs in the broken Host to another healthy Host

IOD Deployment Procedure

Network Architecture

BAMPI

- BAMPI is an infrastructure software application used in data centers to deploy servers from bare metal.
- BAMPI can be used to remotely configure BIOS, BMC, RAID, OS and restore operating systems on servers.
- In addition, BAMPI can take care of hardwarespecific tasks such as firmware upgrades, check BIOS, BMC, RAID and OS.

	Manpower	ВАМРІ
Initialize BMC Network	X Time of Completion for 80 servers:288 man-hours	★ Time of Completion for 80 servers: 1.5 man-hours
Find the MAC Address of Server		
Upgrade BIOS / BMC / RAID Firmware		
Configure BIOS / BMC / RAID / OS		
Check BIOS / BMC / RAID / OS		
Restore OS		
Configue OS		
Check Service Connectivity		
Delete Kitting VMkernel		

Typical IOD Deployment

CHINA

IOD Stack

High Availability

- Duel switch protection
- VM SDN: Peregrine redundant switch fast failover
- MySQL Galera cluster
- RabbitMQ server cluster
- API end points (Nova, Keystone, Glance,)
 HA (Haproxy + Heartbeat)
- Multiple Agent instance (Nova, Keystone,)
- Neutron layer 3 HA

DISCO

Distributed Integrated Storage with Comprehensive Data PrOtection

A storage abstraction on a large number of JBOD (just a bunch of disks) in storage servers

DISCO Characteristics

Thin provisioning

Just use what you need,
Physical space is
allocated dynamically for
better efficiency.

Transparent data protection

DISCO keeps your data safe through its N-way replication & self-healing mechanisms.

HA support

Data integrity is always preserved no matter what disaster occurs.

Fast volume cloning

No copy of metadata nor data while cloning a volume.

WADB – Wide Area Data Backup

De-duplication

- Process the dirty blocks when taking the snapshot
- Data deduplication is a specialized data compression technique for eliminating duplicate copies of repeating data
- Background process without performance impact

DISCO UI

Monitor service & hardware

Volume to component mapping

Component performance

OpenStack integration

SOFA

Key Features:

- Commodity hardware
- 1 M Random 4KB IOPS
- Proprietary RAID protection (w/o IOPS and lifetime penalty)
- Global hot spare for SSD failure
- Global Wear Leveling
- QoS: minimum IOPS guaranteed
- Fast Volume Clone
- Fast full snapshot and incremental snapshot
- Optimized network protocol
- Self-adaptive mechanism compatible with all kinds of platforms

Global Wear Leveling

I am worried about the worn-out issue of SSD Single SSD will not be worn-out **CUSTOMERS** before whole disk array **SOFA**

TPC-C workload, Internet shopping

Volume Manager

- Main features
- Thin Provisioning
- Fast Clone Volume
- Incremental Snapshot

QoS

- Minimum IOPS guaranteed
- Maximum IOPS bound: for better pricing strategy

QoS

High utilization: Idle bandwidth sharing

1M 4KB Random IOPS

1 million 4KB random read / write IOPS

LXR

Peregrine

Peregrine hybrid SDN solution

ITRI contributes SNMP4SDN plugin to OpenDaylight, the plugin use SNMP and CLI to control Ethernet switches

Commodity Ethernet Switch

No vendor lock-in and no need to spend money in expensive hardware

Virtual OpenFlow Switch (OVS)

Provide powerful edge intelligence

Peregrine Characteristics

Commodity Ethernet Switch

Use OVS and Ethernet Switch provide SDN feature make it cost efficiency.

Traffic Engineering

Dynamically calculate the packet transmission path and balance the traffic load on each physical link.

Fast Failover

Pre-calculate backup path and immediately deploy it when error occurs.

Diagnostic UI

Provide Physical / virtual topology and traffic load, VM traffic load and traffic analysis.

Traffic Optimization

 Peregrine is L2 fabric architecture and able to achieve optimal load-balanced of all the physical networks by dynamically calculates the packet transmission path.

Fast Failover

 Peregrine is able to re-deploy packet transmission path when any of link or device is failed by applying centralization control architecture in Fast Failover.

Peregrine UI

Physical & virtual topology Physical & virtual traffic load VM traffic analysis User defined data path OpenStack integration

Traffic Congestion Diagnosis Video

Link Failover Video

PDCM

- PDCM stands for Physical Data Center Management.
- It is a hardware monitor system and a service management system.

Features:

- ✓ Health monitoring of physical devices
- ✓ Health monitoring of OpenStack system components
- ✓ Traffic load and resource usage reporting
- ✓ Event and alerting system

PDCM provides a comprehensive solution for monitoring OpenStack cloud, including hardware devices and OpenStack services.

Device Hardware Monitoring

- ✓ CPU Utilization
- ✓ Memory Utilization
- ✓ Power Usage
- ✓ Network Routes
- ✓ Interfaces
- ✓ File Systems
- ✓ Current and Voltage
- ✓ Fans
- ✓ Thermal
- ✓ Hard Disk
- ✓ Raid Card
- **√** ..

OpenStack Services Monitoring

- **Nova Services**
- **Neutron Agents**
- **Cinder Services**
- Regions
- **Availability Zones**
- Instances
- Hosts
- **Hypervisors**
- **Flavors**
- **Images**
- **Networks**
- **Subnets**
- **Routers**
- **Ports**
- Floating IPs.
- PM-VM mapping

