

Considerations for Building a Private Cloud

Folsom Update

Ryan Richard, RHCA
OpenStack Architect - Private Cloud
ryan.richard@rackspace.com
[@rackninja](https://twitter.com/rackninja)

April 2013

Why Folsom?

What is a Private Cloud?

- ② Elastic or Traditional Virtualization (hint: Pick One!)
- ③ Multi-tenant (Multi-Application)
- ④ Size
- ⑤ Private API endpoints
- ⑥ Limited inbound connectivity
- ⑦ Customized for specific workloads

Build with the End in Mind

of instances on this physical host?

vCPU

Ram

Disk

Flavor: m1.tiny

Ram: 512MiB

vCPU: 1

Disk: 0 (size of image)

Total instances:

48

Build with the End in Mind

of instances on this physical host?

vCPU

Ram

Disk

Flavor: m1.medium

Ram: 4096MiB

vCPU: 2

Disk: 10GiB + 40GiB


Total instances:

24

Build with the End in Mind

of instances on this physical host?

vCPU

Ram

Disk

Flavor: ram heavy

Ram: 64GiB

vCPU: 8

Disk: 100GiB

Total instances:

2

Capacity Thoughts

Don't allow disk size of 0

Public Cloud: Limit flavors to image size

Private Cloud: Can add flavors for specific application profiles

Network Utilization

Capacity Thoughts

I can always add more machines....

But you can't change or modify the fixed network once instances are running

Capacity Thoughts

I can always add more machines....

But you can't change or modify the fixed network once instances are running

$(\text{resource} / \text{resource in smallest flavor}) = \text{maximum \# of instances per machine}$

Fixed Network - Double or quadruple number of expected instances

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

- 1) Host Network
- 2) Fixed Network
- 3) Floating network

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

1) Host Network

2) Fixed Network

3) Floating network

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

1) Host Network

Easy to add physical nodes and/or networks

2) Fixed Network

3) Floating network

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

1) Host Network

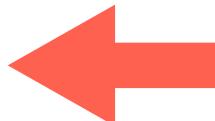
Easy to add physical nodes and/or networks

2) Fixed Network

3) Floating network

Build with the End in Mind

nova-network


2 networks (3 w/ floating IPs)

1) Host Network

Easy to add physical nodes and/or networks

2) Fixed Network

Don't try to change the fixed network once in production

3) Floating network

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

1) Host Network

Easy to add physical nodes and/or networks

2) Fixed Network

Don't try to change the fixed network once in production

3) Floating network

Build with the End in Mind

nova-network

2 networks (3 w/ floating IPs)

1) Host Network

Easy to add physical nodes and/or networks

2) Fixed Network

Don't try to change the fixed network once in production

3) Floating network

Easy to add additional floating networks

Images and Storage

Images

Drivers: `virtio` `vhost_net` `xen` ...
Format: `raw` `qcow2` `vdi` ...

Container: `bare` `ami` `bundle` ...

Cloud tech: `cloud-init` `none`

Partitioning: `fixed` `dynamic`

Building images talk tomorrow @1:50 in room C123

Images and Storage

Glance

File backed (local)

Alternatives: Swift, CloudFiles, NFS (locally mounted)

Snapshots?

qcow2 format: “snapshot_image_format=qcow2“

Images and Storage

Glance Performance

- ④ Network Throughput: 1Gbps = 125MBps (expect ~112MB/s)
- ④ RAID 5 - large sequential read/writes
- ④ Disk Bandwidth > IOPS
- ④ Improve cache - Reduce # of images

Images and Storage

Glance Performance

- Network Throughput: 1Gbps = 125MBps (expect ~112MB/s)
- RAID 5 - large sequential read/writes
- Disk Bandwidth > IOPS
- Improve cache - Reduce # of images

Image Size	Not Cached	Cached
1.4GB	20secs	1sec
16.4GB	2min 21secs	1sec

Images and Storage

Glance Performance

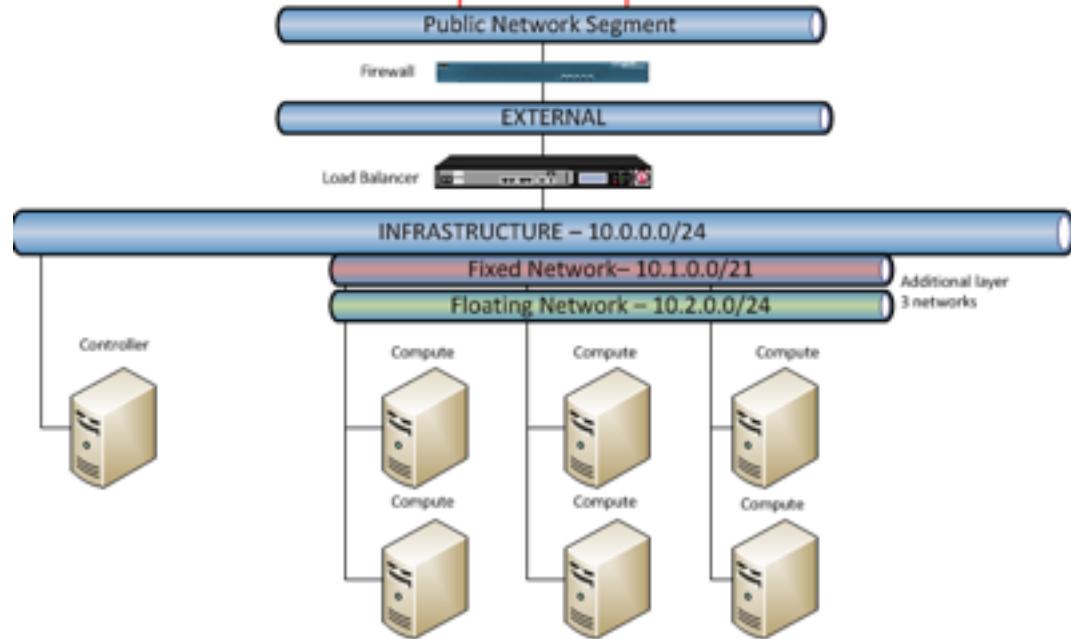
- ④ Network Throughput: 1Gbps = 125MBps (expect ~112MB/s)
- ④ RAID 5 - large sequential read/writes
- ④ Disk Bandwidth > IOPS
- ④ Improve cache - Reduce # of images

Image Size	Not Cached	Cached	
1.4GB	20secs	1sec	*times from “creating image” to “qemu-img create”
16.4GB	2min 21secs	1sec	

Images and Storage

Storage

- 4 focus points: Glance, Compute (local), Cinder, Swift
- Glance - Space, Sequential read/write
- Compute - random IO
- Cinder - Performance, Density
- Swift - JBOD, density


Architecture Examples and Thoughts

1 - 20 physical servers

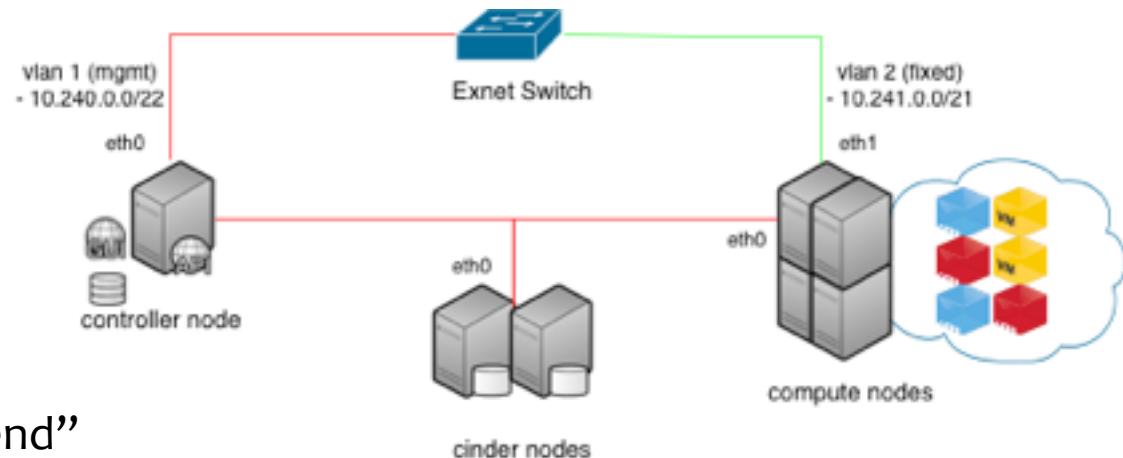
④ Single controller

④ Single API

④ Single network (1Gbps or 2Gbps)

Architecture Examples and Thoughts

20-100 servers


- ④ HA controllers and load balanced APIs

- ④ Swift/CloudFiles for Glance

- ④ Availability Zones

- ④ Consider “frontend” and “backend” networks

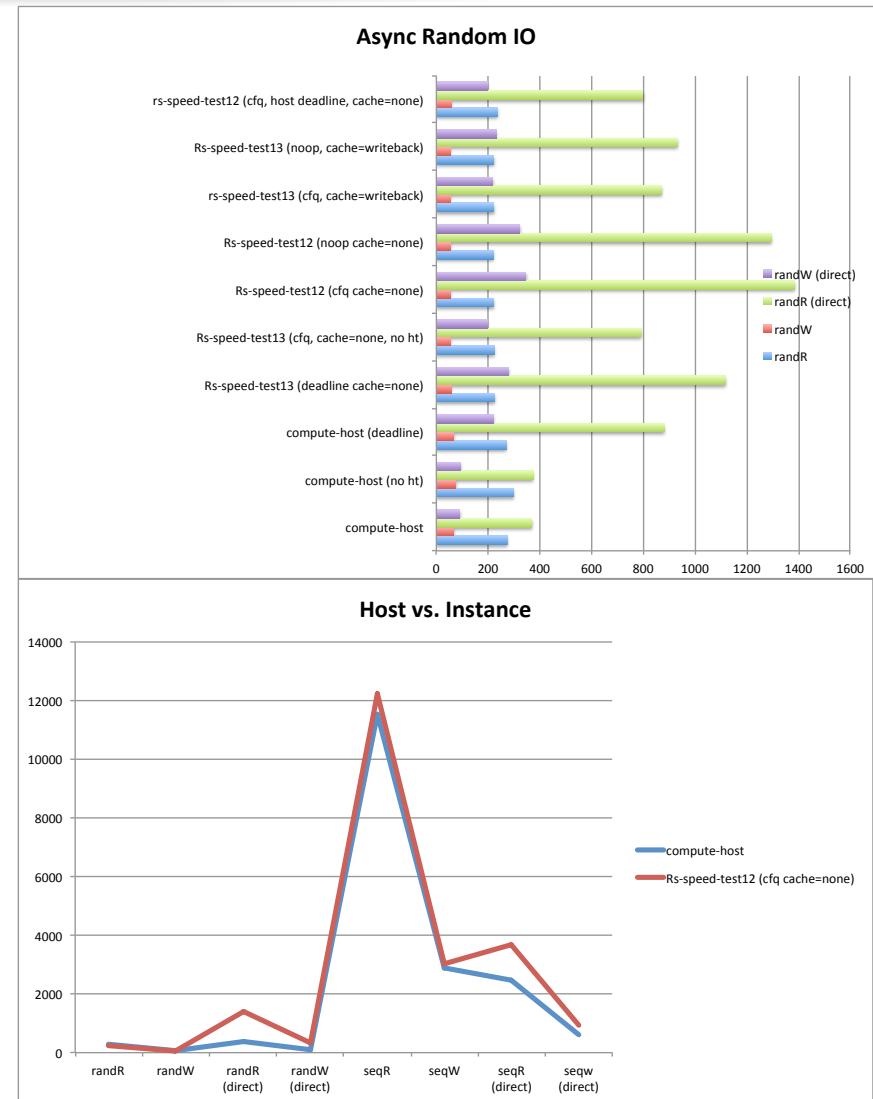
- ④ Compute Node metrics - Dedicated Machine(s)

Performance Considerations and Bottlenecks

IO

- Random IO
- Reduce IO per instance
- Block Storage!
- Review Hypervisor best practices

Performance Considerations and Bottlenecks


IO

Random IO

Reduce IO per instance

Block Storage!

Review Hypervisor best practices

Lessons Learned

Lessons learned

- ④ Floating IPs MUST be associated with the “public_interface”
- ④ Each piece of OpenStack has its own architecture
- ④ Folsom is stable
- ④ Migration (live, block) works but scenarios exist where it doesn’t
- ④ OpenStack is still changing often, keep up to date with current state of the projects

Don't do Heterogeneous Nodes

Operational Updates

- nova hypervisor* calls
- Image types in Glance
- policy.json
- Coming in Grizzly:
 - Cells
 - Quantum
- Better LDAP/AD support

But....

- ➊ But this is a design summit also
- ➋ Open to discussions/thoughts/questions

THANK YOU

Rackspace is hiring

www.rackertalent.com

RACKSPACE® HOSTING | 5000 WALZEM ROAD | SAN ANTONIO, TX 78218

US SALES: 1-800-961-2888 | US SUPPORT: 1-800-961-4454 | WWW.RACKSPACE.COM

RACKSPACE® HOSTING | © RACKSPACE US, INC. | RACKSPACE® AND FANATICAL SUPPORT® ARE SERVICE MARKS OF RACKSPACE US, INC. REGISTERED IN THE UNITED STATES AND OTHER COUNTRIES. | WWW.RACKSPACE.COM