

Optimizing VM images for OpenStack with KVM/QEMU

Chet Burgess Sr. Director, Engineering Metacloud

A Few Notes

- All topics covered in this presentation assume the following software versions:
 - · QEMU 1.0.0+
 - · OpenStack Grizzly (2013.1)
 - · libvirt 0.9.8+
 - · Ubuntu 12.04 LTS
 - RHEL/CentOS 6.3

There are a number of different ways of doing what is described in this presentation. This is simply one way of doing things based upon our experience running production clouds for our clients.

Introduction

Disk & Container Formats

· RAW

٠

•

٠

- · QCOW2
- · AMI
- · Launching an Instance
- Image OS Preparation
 - · cloud-init
 - · Authentication Model
 - · Networking
 - · Hotplug Support
- Putting It All Together

Tools For Manipulating Disk Files

As with disk and container formats there are too many different tools to cover in one session, but here are some of our favorites:

QEMU (http://www.qemu.org)

- · qemu-img Swiss Army Knife
- · qemu-nbd Mounting QCOW disk files

libguestfs (http://libguestfs.org)

•

- guestmount (requires FUSE) Mounting various disk formats
- virt-filesystems Detailed disk file information

Disk vs. Container Formats

Disk formats store partition and block data:

- QEMU+KVM supports a cornucopia of different disk formats, too many to cover in this presentation
- We will be covering RAW and QCOW2
- Container formats express metadata about a VM as well as its underlying block devices:
 - Typically contains files in a disk format
 - We will be covering AMI

RAW Disk Format

- Direct representation of a disk structure
- Can be sparse

٠

٠

٠

- · Widely supported by hypervisors
 - Can be treated as a block device

QCOW2 Disk Format

- QEMU Copy on Write Version 2
- Supports pre-allocation as well as on-demand allocation of blocks
- Wide range of features:
 - Read-only backing files
 - Snapshots (internal and external)
 - · Compression
 - Encryption

RAW vs QCOW2

- RAW has very little overhead and thus a performance advantage
 - QCOW2 is designed for virtualization and actively developed with cloud like use cases in mind
- QCOW2 supports snapshots*

RAW vs QCOW2 (cont)

- Benefits of read-only backing files with QCOW2:
 - Faster instance launching
 - · Common backing files
 - Size can be represented virtually
 - Increased storage efficiency

•

• No duplication of "base" image data

AMI...Identity Crisis

- It's a disk format, its RAW, it's a container, it's all of the above.
- Three distinct files

٠

- · AMI Amazon Machine Image
 - A raw disk image containing no partition information or boot sectors, just the file system (/dev/sda).
- · AKI Amazon Kernel Image (vmlinuz)
- · ARI Amazon Ramdisk Image (initrd)

AMI is booted using the associated ARI and AKI

Launching an Instance

- User selects an image and flavor
- Request is scheduled to nova-compute node
- nova-compute ensures the image is available locally
 - Checks in instance_dir/_base
 - · Downloads from glance if not found
 - · Converted to RAW as necessary using qemu-img
 - Image is stored in instance_dir/_base

Launching an Instance (cont)

Disk file is created at instance_dir/instance_uuid/disk

· QCOW2

٠

- · Default in nova
- Dynamically allocated
- Backing file of previously downloaded image
- · Disk Size Set
 - · Disk size of the flavor
 - · If no size in the flavor, backing file size

Launching an Instance (cont)

Disk file is created at instance_dir/instance_uuid/disk

- · RAW
 - Requires flag "use_cow_images=false"
 - A copy of the image file is created
 - Disk resized using qemu-img
 - · Disk size of the flavor
 - If no size in the flavor, not resized

Image OS Preparation

- · cloud-init
- · Authentication Model
- · Networking

•

Hotplug Support

cloud-init Overview

- Flexible, modular toolset to handle numerous instance configuration tasks
 - http://tinyurl.com/cloudinit
- Leverages Nova's metadata API (compatible with EC2)
 - http://tinyurl.com/ec2metadata
- Provides a module for dynamically resizing the root file system
 - Can only grow to the maximum size defined by the partition
 - AMI has no partition table
 - · Ubuntu provides cloud-initramfs-growroot

cloud-init Installation

- Ubuntu package installation:
 - # apt-get install cloud-init cloud-initramfs-growroot
- RHEL/CentOS package installation:
 - Setup EPEL: http://tinyurl.com/epelpackages
 - # yum install cloud-init

cloud-init Configuration

Extremely basic configuration:

```
# vi /etc/cloud.cfg:
    user: cloud
    disable_root: 1
    preserve_hostname: False
```

Verify cloud-init is configured for the "EC2" data source (Ubuntu Only):

```
# dpkg-reconfigure cloud-init
```


Authentication Model

- Disable SSH password-based logins
- Remote root logins disallowed via SSH

PasswordAuthentication no PermitRootLogin no

Allow anyone in the "sudo" (Ubuntu) or "wheel" (RHEL) group to obtain root without a password

%sudo ALL=(ALL:ALL) NOPASSWD: ALL

Authentication Model (cont)

Create a "cloud" user and add it to the sudo or wheel group Lock the password of the "cloud" user

```
# useradd -m -G sudo -s /bin/bash cloud
# passwd -l cloud
```

- Allow root login without a password from the console
 - · Can only be used from the virtual console
 - · Virtual console access equates to root regardless
 - · Password here has no <u>actual</u> security benefit

Networking

- MAC addresses are generated dynamically each time an instance is spawned
 - Eliminate MAC address binding
 - · udev rules

٠

- # rm -r /etc/udev/rules.d/70-persistent-net.rules
- # rm -r /lib/udev/write_net_rules
- Interface configuration (RHEL/CentOS)
 - Remove or comment out HWADDR in /etc/sysconfig/network-scripts/ifcfg-eth*

Networking (cont)

- Configure the DHCP Client for persistence
 - · VMs should never give up trying to obtain a DHCP lease
 - The alternative is to fall off the network and require administrative intervention
- RHEL/CentOS
- Ubuntu
 - # rm /sbin/dhclient3

Hotplug Support

- Required for attaching and deteching cinder volumes without rebooting
- Make sure the following kernel modules load at boot
 - # echo `modprobe acpiphp' > /etc/rc.modules
 - # echo `modprobe pci_hotplug' >> /etc/rc.modules
 - # chmod +x /etc/rc.modules

•

٠

Already statically compiled into some kernels

Putting It All Together

- AMI formatted images stored in glance
 - Automatic resizing of the file system by cloud-init
- RAW backed dynamically-allocated QCOW2 instance disks
 - · Faster instance launching
 - · Increased storage efficiency
 - Snapshots
 - cloud-init
- Properly Prepared OS

More Information

- Video and slides will be available via the conference
 - Direct Link: http://tinyurl.com/mc-image-presentation
- **Contact Information**
 - My initials (cfb) at my company (metacloud.com)
 - cburgess on irc.freenode.net
 - #openstack, #openstack-dev, #openstack-nova
 - Twitter: cfbIV
 - Visit me at the Metacloud booth (place)
 - · Monday 2PM-4PM
 - Tuesday 3:30PM-4:30PM
 - · Wednesday 4:30PM-5:30PM

