Networking in the cloud: An SDN-primer

Ben Cherian Chief Strategy Officer @bencherian

Midokura

The current state networking is too m

manu

100

Telecom has this problem before

Almon Strowger – mortician, inventor, and possibly paranoid

Strowger's switches

<u>Wanted to solve:</u> Privacy Intended human errors

Solved these too: Unintended human errors Speed of connections Lowering operational costs of running a local exchange

What is SDN?

Traditional networks

Control Plane: Responsible for making decision on where the traffic is sent Data Plane: Responsible for forwarding traffic to the selected destination

The network needs better abstraction

A basic example of SDN

Categories of SDN

Iaas Cloud Networking Requirements

- Multi-tenancy
- L2 isolation
- L3 routing isolation
 - > VPC
 - Like VRF (virtual routing and forwarding)
- Scalable control plane

• ACLs

- Stateful (L4) Firewall
 - Security Groups
- VPN
 - IPSec
- BGP gateway
- REST API
- Internetion with CNAC

Iaas Cloud Networking Requirements

Typical Network Topology

Candidate models

• Traditional network

• Centrally controlled OpenFlow based hopby-hop switching fabric

• Edge to edge overlays

Traditional Network

- Ethernet VLANs for L2 isolation
 - ➤ 4096 limit
 - VLANs will have large spanning trees terminating on many hosts
 - High churn in switch control planes doing MAC learning non-stop
 - Need MLAG for L2 multi-path
 - ♦ Vendor specific
- VRFs for L3 isolation
 - Not acalable to aloud acala

OpenFlow Fabric

- State in switches
 - Proportional to virtual network state
 - > Need to update all switches in path when provisioning
 - Not scalable, not fast enough to update, no atomicity of updates
- Not good for IaaS cloud virtual networking

Edge to Edge IP Overlays

- Isolation not using VLANs
 - ➢ IP encapsulation
- Decouple from physical network
- Provisioning VM doesn't change underlay state
- Underlay delivers to destination host IP
 - Forwarding equivalence class (FEC)
- Use scalable IGP (iBGP, OSPF) to build multi-path

Market trends supporting overlay solutions

- Packet processing on x86 CPUs (at edge)
 - Intel DPDK facilitates packet processing
 - Number of cores in servers increasing fast
- Clos Networks (for underlay)
 - Spine and Leaf architecture with IP
 - Economical and high E-W bandwidth
- Merchant silicon (cheap IP switches)
 - Broadcom, Intel (Fulcrum Micro), Marvell

Example of an overlay solution

Logical Topology

Overlays are the right approach!

But not sufficient. We still need a scalable control plane.

Questions?

